Merge tag 'for-linus-20190706' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / kernel / rcu / tree_plugin.h
blob1102765f91fd12ed7776f3f5cc88aefb743fe7ae
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4 * Internal non-public definitions that provide either classic
5 * or preemptible semantics.
7 * Copyright Red Hat, 2009
8 * Copyright IBM Corporation, 2009
10 * Author: Ingo Molnar <mingo@elte.hu>
11 * Paul E. McKenney <paulmck@linux.ibm.com>
14 #include <linux/delay.h>
15 #include <linux/gfp.h>
16 #include <linux/oom.h>
17 #include <linux/sched/debug.h>
18 #include <linux/smpboot.h>
19 #include <linux/sched/isolation.h>
20 #include <uapi/linux/sched/types.h>
21 #include "../time/tick-internal.h"
23 #ifdef CONFIG_RCU_BOOST
24 #include "../locking/rtmutex_common.h"
25 #else /* #ifdef CONFIG_RCU_BOOST */
28 * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
29 * all uses are in dead code. Provide a definition to keep the compiler
30 * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
31 * This probably needs to be excluded from -rt builds.
33 #define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })
34 #define rt_mutex_futex_unlock(x) WARN_ON_ONCE(1)
36 #endif /* #else #ifdef CONFIG_RCU_BOOST */
38 #ifdef CONFIG_RCU_NOCB_CPU
39 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
40 static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
41 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
44 * Check the RCU kernel configuration parameters and print informative
45 * messages about anything out of the ordinary.
47 static void __init rcu_bootup_announce_oddness(void)
49 if (IS_ENABLED(CONFIG_RCU_TRACE))
50 pr_info("\tRCU event tracing is enabled.\n");
51 if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
52 (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
53 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n",
54 RCU_FANOUT);
55 if (rcu_fanout_exact)
56 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
57 if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
58 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
59 if (IS_ENABLED(CONFIG_PROVE_RCU))
60 pr_info("\tRCU lockdep checking is enabled.\n");
61 if (RCU_NUM_LVLS >= 4)
62 pr_info("\tFour(or more)-level hierarchy is enabled.\n");
63 if (RCU_FANOUT_LEAF != 16)
64 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
65 RCU_FANOUT_LEAF);
66 if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
67 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n",
68 rcu_fanout_leaf);
69 if (nr_cpu_ids != NR_CPUS)
70 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
71 #ifdef CONFIG_RCU_BOOST
72 pr_info("\tRCU priority boosting: priority %d delay %d ms.\n",
73 kthread_prio, CONFIG_RCU_BOOST_DELAY);
74 #endif
75 if (blimit != DEFAULT_RCU_BLIMIT)
76 pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
77 if (qhimark != DEFAULT_RCU_QHIMARK)
78 pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
79 if (qlowmark != DEFAULT_RCU_QLOMARK)
80 pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
81 if (jiffies_till_first_fqs != ULONG_MAX)
82 pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
83 if (jiffies_till_next_fqs != ULONG_MAX)
84 pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
85 if (jiffies_till_sched_qs != ULONG_MAX)
86 pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs);
87 if (rcu_kick_kthreads)
88 pr_info("\tKick kthreads if too-long grace period.\n");
89 if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
90 pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
91 if (gp_preinit_delay)
92 pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
93 if (gp_init_delay)
94 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
95 if (gp_cleanup_delay)
96 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay);
97 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
98 pr_info("\tRCU debug extended QS entry/exit.\n");
99 rcupdate_announce_bootup_oddness();
102 #ifdef CONFIG_PREEMPT_RCU
104 static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake);
105 static void rcu_read_unlock_special(struct task_struct *t);
108 * Tell them what RCU they are running.
110 static void __init rcu_bootup_announce(void)
112 pr_info("Preemptible hierarchical RCU implementation.\n");
113 rcu_bootup_announce_oddness();
116 /* Flags for rcu_preempt_ctxt_queue() decision table. */
117 #define RCU_GP_TASKS 0x8
118 #define RCU_EXP_TASKS 0x4
119 #define RCU_GP_BLKD 0x2
120 #define RCU_EXP_BLKD 0x1
123 * Queues a task preempted within an RCU-preempt read-side critical
124 * section into the appropriate location within the ->blkd_tasks list,
125 * depending on the states of any ongoing normal and expedited grace
126 * periods. The ->gp_tasks pointer indicates which element the normal
127 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
128 * indicates which element the expedited grace period is waiting on (again,
129 * NULL if none). If a grace period is waiting on a given element in the
130 * ->blkd_tasks list, it also waits on all subsequent elements. Thus,
131 * adding a task to the tail of the list blocks any grace period that is
132 * already waiting on one of the elements. In contrast, adding a task
133 * to the head of the list won't block any grace period that is already
134 * waiting on one of the elements.
136 * This queuing is imprecise, and can sometimes make an ongoing grace
137 * period wait for a task that is not strictly speaking blocking it.
138 * Given the choice, we needlessly block a normal grace period rather than
139 * blocking an expedited grace period.
141 * Note that an endless sequence of expedited grace periods still cannot
142 * indefinitely postpone a normal grace period. Eventually, all of the
143 * fixed number of preempted tasks blocking the normal grace period that are
144 * not also blocking the expedited grace period will resume and complete
145 * their RCU read-side critical sections. At that point, the ->gp_tasks
146 * pointer will equal the ->exp_tasks pointer, at which point the end of
147 * the corresponding expedited grace period will also be the end of the
148 * normal grace period.
150 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
151 __releases(rnp->lock) /* But leaves rrupts disabled. */
153 int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
154 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
155 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
156 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
157 struct task_struct *t = current;
159 raw_lockdep_assert_held_rcu_node(rnp);
160 WARN_ON_ONCE(rdp->mynode != rnp);
161 WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
162 /* RCU better not be waiting on newly onlined CPUs! */
163 WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask &
164 rdp->grpmask);
167 * Decide where to queue the newly blocked task. In theory,
168 * this could be an if-statement. In practice, when I tried
169 * that, it was quite messy.
171 switch (blkd_state) {
172 case 0:
173 case RCU_EXP_TASKS:
174 case RCU_EXP_TASKS + RCU_GP_BLKD:
175 case RCU_GP_TASKS:
176 case RCU_GP_TASKS + RCU_EXP_TASKS:
179 * Blocking neither GP, or first task blocking the normal
180 * GP but not blocking the already-waiting expedited GP.
181 * Queue at the head of the list to avoid unnecessarily
182 * blocking the already-waiting GPs.
184 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
185 break;
187 case RCU_EXP_BLKD:
188 case RCU_GP_BLKD:
189 case RCU_GP_BLKD + RCU_EXP_BLKD:
190 case RCU_GP_TASKS + RCU_EXP_BLKD:
191 case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
192 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
195 * First task arriving that blocks either GP, or first task
196 * arriving that blocks the expedited GP (with the normal
197 * GP already waiting), or a task arriving that blocks
198 * both GPs with both GPs already waiting. Queue at the
199 * tail of the list to avoid any GP waiting on any of the
200 * already queued tasks that are not blocking it.
202 list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
203 break;
205 case RCU_EXP_TASKS + RCU_EXP_BLKD:
206 case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
207 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD:
210 * Second or subsequent task blocking the expedited GP.
211 * The task either does not block the normal GP, or is the
212 * first task blocking the normal GP. Queue just after
213 * the first task blocking the expedited GP.
215 list_add(&t->rcu_node_entry, rnp->exp_tasks);
216 break;
218 case RCU_GP_TASKS + RCU_GP_BLKD:
219 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
222 * Second or subsequent task blocking the normal GP.
223 * The task does not block the expedited GP. Queue just
224 * after the first task blocking the normal GP.
226 list_add(&t->rcu_node_entry, rnp->gp_tasks);
227 break;
229 default:
231 /* Yet another exercise in excessive paranoia. */
232 WARN_ON_ONCE(1);
233 break;
237 * We have now queued the task. If it was the first one to
238 * block either grace period, update the ->gp_tasks and/or
239 * ->exp_tasks pointers, respectively, to reference the newly
240 * blocked tasks.
242 if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) {
243 rnp->gp_tasks = &t->rcu_node_entry;
244 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq);
246 if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
247 rnp->exp_tasks = &t->rcu_node_entry;
248 WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
249 !(rnp->qsmask & rdp->grpmask));
250 WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
251 !(rnp->expmask & rdp->grpmask));
252 raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
255 * Report the quiescent state for the expedited GP. This expedited
256 * GP should not be able to end until we report, so there should be
257 * no need to check for a subsequent expedited GP. (Though we are
258 * still in a quiescent state in any case.)
260 if (blkd_state & RCU_EXP_BLKD && rdp->deferred_qs)
261 rcu_report_exp_rdp(rdp);
262 else
263 WARN_ON_ONCE(rdp->deferred_qs);
267 * Record a preemptible-RCU quiescent state for the specified CPU.
268 * Note that this does not necessarily mean that the task currently running
269 * on the CPU is in a quiescent state: Instead, it means that the current
270 * grace period need not wait on any RCU read-side critical section that
271 * starts later on this CPU. It also means that if the current task is
272 * in an RCU read-side critical section, it has already added itself to
273 * some leaf rcu_node structure's ->blkd_tasks list. In addition to the
274 * current task, there might be any number of other tasks blocked while
275 * in an RCU read-side critical section.
277 * Callers to this function must disable preemption.
279 static void rcu_qs(void)
281 RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n");
282 if (__this_cpu_read(rcu_data.cpu_no_qs.s)) {
283 trace_rcu_grace_period(TPS("rcu_preempt"),
284 __this_cpu_read(rcu_data.gp_seq),
285 TPS("cpuqs"));
286 __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
287 barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */
288 WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false);
293 * We have entered the scheduler, and the current task might soon be
294 * context-switched away from. If this task is in an RCU read-side
295 * critical section, we will no longer be able to rely on the CPU to
296 * record that fact, so we enqueue the task on the blkd_tasks list.
297 * The task will dequeue itself when it exits the outermost enclosing
298 * RCU read-side critical section. Therefore, the current grace period
299 * cannot be permitted to complete until the blkd_tasks list entries
300 * predating the current grace period drain, in other words, until
301 * rnp->gp_tasks becomes NULL.
303 * Caller must disable interrupts.
305 void rcu_note_context_switch(bool preempt)
307 struct task_struct *t = current;
308 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
309 struct rcu_node *rnp;
311 barrier(); /* Avoid RCU read-side critical sections leaking down. */
312 trace_rcu_utilization(TPS("Start context switch"));
313 lockdep_assert_irqs_disabled();
314 WARN_ON_ONCE(!preempt && t->rcu_read_lock_nesting > 0);
315 if (t->rcu_read_lock_nesting > 0 &&
316 !t->rcu_read_unlock_special.b.blocked) {
318 /* Possibly blocking in an RCU read-side critical section. */
319 rnp = rdp->mynode;
320 raw_spin_lock_rcu_node(rnp);
321 t->rcu_read_unlock_special.b.blocked = true;
322 t->rcu_blocked_node = rnp;
325 * Verify the CPU's sanity, trace the preemption, and
326 * then queue the task as required based on the states
327 * of any ongoing and expedited grace periods.
329 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
330 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
331 trace_rcu_preempt_task(rcu_state.name,
332 t->pid,
333 (rnp->qsmask & rdp->grpmask)
334 ? rnp->gp_seq
335 : rcu_seq_snap(&rnp->gp_seq));
336 rcu_preempt_ctxt_queue(rnp, rdp);
337 } else if (t->rcu_read_lock_nesting < 0 &&
338 t->rcu_read_unlock_special.s) {
341 * Complete exit from RCU read-side critical section on
342 * behalf of preempted instance of __rcu_read_unlock().
344 rcu_read_unlock_special(t);
345 rcu_preempt_deferred_qs(t);
346 } else {
347 rcu_preempt_deferred_qs(t);
351 * Either we were not in an RCU read-side critical section to
352 * begin with, or we have now recorded that critical section
353 * globally. Either way, we can now note a quiescent state
354 * for this CPU. Again, if we were in an RCU read-side critical
355 * section, and if that critical section was blocking the current
356 * grace period, then the fact that the task has been enqueued
357 * means that we continue to block the current grace period.
359 rcu_qs();
360 if (rdp->deferred_qs)
361 rcu_report_exp_rdp(rdp);
362 trace_rcu_utilization(TPS("End context switch"));
363 barrier(); /* Avoid RCU read-side critical sections leaking up. */
365 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
368 * Check for preempted RCU readers blocking the current grace period
369 * for the specified rcu_node structure. If the caller needs a reliable
370 * answer, it must hold the rcu_node's ->lock.
372 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
374 return rnp->gp_tasks != NULL;
377 /* Bias and limit values for ->rcu_read_lock_nesting. */
378 #define RCU_NEST_BIAS INT_MAX
379 #define RCU_NEST_NMAX (-INT_MAX / 2)
380 #define RCU_NEST_PMAX (INT_MAX / 2)
383 * Preemptible RCU implementation for rcu_read_lock().
384 * Just increment ->rcu_read_lock_nesting, shared state will be updated
385 * if we block.
387 void __rcu_read_lock(void)
389 current->rcu_read_lock_nesting++;
390 if (IS_ENABLED(CONFIG_PROVE_LOCKING))
391 WARN_ON_ONCE(current->rcu_read_lock_nesting > RCU_NEST_PMAX);
392 barrier(); /* critical section after entry code. */
394 EXPORT_SYMBOL_GPL(__rcu_read_lock);
397 * Preemptible RCU implementation for rcu_read_unlock().
398 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
399 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
400 * invoke rcu_read_unlock_special() to clean up after a context switch
401 * in an RCU read-side critical section and other special cases.
403 void __rcu_read_unlock(void)
405 struct task_struct *t = current;
407 if (t->rcu_read_lock_nesting != 1) {
408 --t->rcu_read_lock_nesting;
409 } else {
410 barrier(); /* critical section before exit code. */
411 t->rcu_read_lock_nesting = -RCU_NEST_BIAS;
412 barrier(); /* assign before ->rcu_read_unlock_special load */
413 if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
414 rcu_read_unlock_special(t);
415 barrier(); /* ->rcu_read_unlock_special load before assign */
416 t->rcu_read_lock_nesting = 0;
418 if (IS_ENABLED(CONFIG_PROVE_LOCKING)) {
419 int rrln = t->rcu_read_lock_nesting;
421 WARN_ON_ONCE(rrln < 0 && rrln > RCU_NEST_NMAX);
424 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
427 * Advance a ->blkd_tasks-list pointer to the next entry, instead
428 * returning NULL if at the end of the list.
430 static struct list_head *rcu_next_node_entry(struct task_struct *t,
431 struct rcu_node *rnp)
433 struct list_head *np;
435 np = t->rcu_node_entry.next;
436 if (np == &rnp->blkd_tasks)
437 np = NULL;
438 return np;
442 * Return true if the specified rcu_node structure has tasks that were
443 * preempted within an RCU read-side critical section.
445 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
447 return !list_empty(&rnp->blkd_tasks);
451 * Report deferred quiescent states. The deferral time can
452 * be quite short, for example, in the case of the call from
453 * rcu_read_unlock_special().
455 static void
456 rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags)
458 bool empty_exp;
459 bool empty_norm;
460 bool empty_exp_now;
461 struct list_head *np;
462 bool drop_boost_mutex = false;
463 struct rcu_data *rdp;
464 struct rcu_node *rnp;
465 union rcu_special special;
468 * If RCU core is waiting for this CPU to exit its critical section,
469 * report the fact that it has exited. Because irqs are disabled,
470 * t->rcu_read_unlock_special cannot change.
472 special = t->rcu_read_unlock_special;
473 rdp = this_cpu_ptr(&rcu_data);
474 if (!special.s && !rdp->deferred_qs) {
475 local_irq_restore(flags);
476 return;
478 if (special.b.need_qs) {
479 rcu_qs();
480 t->rcu_read_unlock_special.b.need_qs = false;
481 if (!t->rcu_read_unlock_special.s && !rdp->deferred_qs) {
482 local_irq_restore(flags);
483 return;
488 * Respond to a request by an expedited grace period for a
489 * quiescent state from this CPU. Note that requests from
490 * tasks are handled when removing the task from the
491 * blocked-tasks list below.
493 if (rdp->deferred_qs) {
494 rcu_report_exp_rdp(rdp);
495 if (!t->rcu_read_unlock_special.s) {
496 local_irq_restore(flags);
497 return;
501 /* Clean up if blocked during RCU read-side critical section. */
502 if (special.b.blocked) {
503 t->rcu_read_unlock_special.b.blocked = false;
506 * Remove this task from the list it blocked on. The task
507 * now remains queued on the rcu_node corresponding to the
508 * CPU it first blocked on, so there is no longer any need
509 * to loop. Retain a WARN_ON_ONCE() out of sheer paranoia.
511 rnp = t->rcu_blocked_node;
512 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
513 WARN_ON_ONCE(rnp != t->rcu_blocked_node);
514 WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
515 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
516 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq &&
517 (!empty_norm || rnp->qsmask));
518 empty_exp = sync_rcu_preempt_exp_done(rnp);
519 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
520 np = rcu_next_node_entry(t, rnp);
521 list_del_init(&t->rcu_node_entry);
522 t->rcu_blocked_node = NULL;
523 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
524 rnp->gp_seq, t->pid);
525 if (&t->rcu_node_entry == rnp->gp_tasks)
526 rnp->gp_tasks = np;
527 if (&t->rcu_node_entry == rnp->exp_tasks)
528 rnp->exp_tasks = np;
529 if (IS_ENABLED(CONFIG_RCU_BOOST)) {
530 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
531 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
532 if (&t->rcu_node_entry == rnp->boost_tasks)
533 rnp->boost_tasks = np;
537 * If this was the last task on the current list, and if
538 * we aren't waiting on any CPUs, report the quiescent state.
539 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
540 * so we must take a snapshot of the expedited state.
542 empty_exp_now = sync_rcu_preempt_exp_done(rnp);
543 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
544 trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
545 rnp->gp_seq,
546 0, rnp->qsmask,
547 rnp->level,
548 rnp->grplo,
549 rnp->grphi,
550 !!rnp->gp_tasks);
551 rcu_report_unblock_qs_rnp(rnp, flags);
552 } else {
553 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
556 /* Unboost if we were boosted. */
557 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
558 rt_mutex_futex_unlock(&rnp->boost_mtx);
561 * If this was the last task on the expedited lists,
562 * then we need to report up the rcu_node hierarchy.
564 if (!empty_exp && empty_exp_now)
565 rcu_report_exp_rnp(rnp, true);
566 } else {
567 local_irq_restore(flags);
572 * Is a deferred quiescent-state pending, and are we also not in
573 * an RCU read-side critical section? It is the caller's responsibility
574 * to ensure it is otherwise safe to report any deferred quiescent
575 * states. The reason for this is that it is safe to report a
576 * quiescent state during context switch even though preemption
577 * is disabled. This function cannot be expected to understand these
578 * nuances, so the caller must handle them.
580 static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
582 return (__this_cpu_read(rcu_data.deferred_qs) ||
583 READ_ONCE(t->rcu_read_unlock_special.s)) &&
584 t->rcu_read_lock_nesting <= 0;
588 * Report a deferred quiescent state if needed and safe to do so.
589 * As with rcu_preempt_need_deferred_qs(), "safe" involves only
590 * not being in an RCU read-side critical section. The caller must
591 * evaluate safety in terms of interrupt, softirq, and preemption
592 * disabling.
594 static void rcu_preempt_deferred_qs(struct task_struct *t)
596 unsigned long flags;
597 bool couldrecurse = t->rcu_read_lock_nesting >= 0;
599 if (!rcu_preempt_need_deferred_qs(t))
600 return;
601 if (couldrecurse)
602 t->rcu_read_lock_nesting -= RCU_NEST_BIAS;
603 local_irq_save(flags);
604 rcu_preempt_deferred_qs_irqrestore(t, flags);
605 if (couldrecurse)
606 t->rcu_read_lock_nesting += RCU_NEST_BIAS;
610 * Handle special cases during rcu_read_unlock(), such as needing to
611 * notify RCU core processing or task having blocked during the RCU
612 * read-side critical section.
614 static void rcu_read_unlock_special(struct task_struct *t)
616 unsigned long flags;
617 bool preempt_bh_were_disabled =
618 !!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK));
619 bool irqs_were_disabled;
621 /* NMI handlers cannot block and cannot safely manipulate state. */
622 if (in_nmi())
623 return;
625 local_irq_save(flags);
626 irqs_were_disabled = irqs_disabled_flags(flags);
627 if (preempt_bh_were_disabled || irqs_were_disabled) {
628 WRITE_ONCE(t->rcu_read_unlock_special.b.exp_hint, false);
629 /* Need to defer quiescent state until everything is enabled. */
630 if (irqs_were_disabled) {
631 /* Enabling irqs does not reschedule, so... */
632 raise_softirq_irqoff(RCU_SOFTIRQ);
633 } else {
634 /* Enabling BH or preempt does reschedule, so... */
635 set_tsk_need_resched(current);
636 set_preempt_need_resched();
638 local_irq_restore(flags);
639 return;
641 WRITE_ONCE(t->rcu_read_unlock_special.b.exp_hint, false);
642 rcu_preempt_deferred_qs_irqrestore(t, flags);
646 * Check that the list of blocked tasks for the newly completed grace
647 * period is in fact empty. It is a serious bug to complete a grace
648 * period that still has RCU readers blocked! This function must be
649 * invoked -before- updating this rnp's ->gp_seq, and the rnp's ->lock
650 * must be held by the caller.
652 * Also, if there are blocked tasks on the list, they automatically
653 * block the newly created grace period, so set up ->gp_tasks accordingly.
655 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
657 struct task_struct *t;
659 RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
660 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
661 dump_blkd_tasks(rnp, 10);
662 if (rcu_preempt_has_tasks(rnp) &&
663 (rnp->qsmaskinit || rnp->wait_blkd_tasks)) {
664 rnp->gp_tasks = rnp->blkd_tasks.next;
665 t = container_of(rnp->gp_tasks, struct task_struct,
666 rcu_node_entry);
667 trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
668 rnp->gp_seq, t->pid);
670 WARN_ON_ONCE(rnp->qsmask);
674 * Check for a quiescent state from the current CPU, including voluntary
675 * context switches for Tasks RCU. When a task blocks, the task is
676 * recorded in the corresponding CPU's rcu_node structure, which is checked
677 * elsewhere, hence this function need only check for quiescent states
678 * related to the current CPU, not to those related to tasks.
680 static void rcu_flavor_sched_clock_irq(int user)
682 struct task_struct *t = current;
684 if (user || rcu_is_cpu_rrupt_from_idle()) {
685 rcu_note_voluntary_context_switch(current);
687 if (t->rcu_read_lock_nesting > 0 ||
688 (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) {
689 /* No QS, force context switch if deferred. */
690 if (rcu_preempt_need_deferred_qs(t)) {
691 set_tsk_need_resched(t);
692 set_preempt_need_resched();
694 } else if (rcu_preempt_need_deferred_qs(t)) {
695 rcu_preempt_deferred_qs(t); /* Report deferred QS. */
696 return;
697 } else if (!t->rcu_read_lock_nesting) {
698 rcu_qs(); /* Report immediate QS. */
699 return;
702 /* If GP is oldish, ask for help from rcu_read_unlock_special(). */
703 if (t->rcu_read_lock_nesting > 0 &&
704 __this_cpu_read(rcu_data.core_needs_qs) &&
705 __this_cpu_read(rcu_data.cpu_no_qs.b.norm) &&
706 !t->rcu_read_unlock_special.b.need_qs &&
707 time_after(jiffies, rcu_state.gp_start + HZ))
708 t->rcu_read_unlock_special.b.need_qs = true;
712 * Check for a task exiting while in a preemptible-RCU read-side
713 * critical section, clean up if so. No need to issue warnings, as
714 * debug_check_no_locks_held() already does this if lockdep is enabled.
715 * Besides, if this function does anything other than just immediately
716 * return, there was a bug of some sort. Spewing warnings from this
717 * function is like as not to simply obscure important prior warnings.
719 void exit_rcu(void)
721 struct task_struct *t = current;
723 if (unlikely(!list_empty(&current->rcu_node_entry))) {
724 t->rcu_read_lock_nesting = 1;
725 barrier();
726 WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true);
727 } else if (unlikely(t->rcu_read_lock_nesting)) {
728 t->rcu_read_lock_nesting = 1;
729 } else {
730 return;
732 __rcu_read_unlock();
733 rcu_preempt_deferred_qs(current);
737 * Dump the blocked-tasks state, but limit the list dump to the
738 * specified number of elements.
740 static void
741 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
743 int cpu;
744 int i;
745 struct list_head *lhp;
746 bool onl;
747 struct rcu_data *rdp;
748 struct rcu_node *rnp1;
750 raw_lockdep_assert_held_rcu_node(rnp);
751 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
752 __func__, rnp->grplo, rnp->grphi, rnp->level,
753 (long)rnp->gp_seq, (long)rnp->completedqs);
754 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
755 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
756 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext);
757 pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
758 __func__, rnp->gp_tasks, rnp->boost_tasks, rnp->exp_tasks);
759 pr_info("%s: ->blkd_tasks", __func__);
760 i = 0;
761 list_for_each(lhp, &rnp->blkd_tasks) {
762 pr_cont(" %p", lhp);
763 if (++i >= 10)
764 break;
766 pr_cont("\n");
767 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
768 rdp = per_cpu_ptr(&rcu_data, cpu);
769 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
770 pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
771 cpu, ".o"[onl],
772 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
773 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
777 #else /* #ifdef CONFIG_PREEMPT_RCU */
780 * Tell them what RCU they are running.
782 static void __init rcu_bootup_announce(void)
784 pr_info("Hierarchical RCU implementation.\n");
785 rcu_bootup_announce_oddness();
789 * Note a quiescent state for PREEMPT=n. Because we do not need to know
790 * how many quiescent states passed, just if there was at least one since
791 * the start of the grace period, this just sets a flag. The caller must
792 * have disabled preemption.
794 static void rcu_qs(void)
796 RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!");
797 if (!__this_cpu_read(rcu_data.cpu_no_qs.s))
798 return;
799 trace_rcu_grace_period(TPS("rcu_sched"),
800 __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs"));
801 __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
802 if (!__this_cpu_read(rcu_data.cpu_no_qs.b.exp))
803 return;
804 __this_cpu_write(rcu_data.cpu_no_qs.b.exp, false);
805 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
809 * Register an urgently needed quiescent state. If there is an
810 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
811 * dyntick-idle quiescent state visible to other CPUs, which will in
812 * some cases serve for expedited as well as normal grace periods.
813 * Either way, register a lightweight quiescent state.
815 * The barrier() calls are redundant in the common case when this is
816 * called externally, but just in case this is called from within this
817 * file.
820 void rcu_all_qs(void)
822 unsigned long flags;
824 if (!raw_cpu_read(rcu_data.rcu_urgent_qs))
825 return;
826 preempt_disable();
827 /* Load rcu_urgent_qs before other flags. */
828 if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
829 preempt_enable();
830 return;
832 this_cpu_write(rcu_data.rcu_urgent_qs, false);
833 barrier(); /* Avoid RCU read-side critical sections leaking down. */
834 if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) {
835 local_irq_save(flags);
836 rcu_momentary_dyntick_idle();
837 local_irq_restore(flags);
839 rcu_qs();
840 barrier(); /* Avoid RCU read-side critical sections leaking up. */
841 preempt_enable();
843 EXPORT_SYMBOL_GPL(rcu_all_qs);
846 * Note a PREEMPT=n context switch. The caller must have disabled interrupts.
848 void rcu_note_context_switch(bool preempt)
850 barrier(); /* Avoid RCU read-side critical sections leaking down. */
851 trace_rcu_utilization(TPS("Start context switch"));
852 rcu_qs();
853 /* Load rcu_urgent_qs before other flags. */
854 if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs)))
855 goto out;
856 this_cpu_write(rcu_data.rcu_urgent_qs, false);
857 if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs)))
858 rcu_momentary_dyntick_idle();
859 if (!preempt)
860 rcu_tasks_qs(current);
861 out:
862 trace_rcu_utilization(TPS("End context switch"));
863 barrier(); /* Avoid RCU read-side critical sections leaking up. */
865 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
868 * Because preemptible RCU does not exist, there are never any preempted
869 * RCU readers.
871 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
873 return 0;
877 * Because there is no preemptible RCU, there can be no readers blocked.
879 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
881 return false;
885 * Because there is no preemptible RCU, there can be no deferred quiescent
886 * states.
888 static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
890 return false;
892 static void rcu_preempt_deferred_qs(struct task_struct *t) { }
895 * Because there is no preemptible RCU, there can be no readers blocked,
896 * so there is no need to check for blocked tasks. So check only for
897 * bogus qsmask values.
899 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
901 WARN_ON_ONCE(rnp->qsmask);
905 * Check to see if this CPU is in a non-context-switch quiescent state,
906 * namely user mode and idle loop.
908 static void rcu_flavor_sched_clock_irq(int user)
910 if (user || rcu_is_cpu_rrupt_from_idle()) {
913 * Get here if this CPU took its interrupt from user
914 * mode or from the idle loop, and if this is not a
915 * nested interrupt. In this case, the CPU is in
916 * a quiescent state, so note it.
918 * No memory barrier is required here because rcu_qs()
919 * references only CPU-local variables that other CPUs
920 * neither access nor modify, at least not while the
921 * corresponding CPU is online.
924 rcu_qs();
929 * Because preemptible RCU does not exist, tasks cannot possibly exit
930 * while in preemptible RCU read-side critical sections.
932 void exit_rcu(void)
937 * Dump the guaranteed-empty blocked-tasks state. Trust but verify.
939 static void
940 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
942 WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks));
945 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
947 #ifdef CONFIG_RCU_BOOST
949 static void rcu_wake_cond(struct task_struct *t, int status)
952 * If the thread is yielding, only wake it when this
953 * is invoked from idle
955 if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
956 wake_up_process(t);
960 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
961 * or ->boost_tasks, advancing the pointer to the next task in the
962 * ->blkd_tasks list.
964 * Note that irqs must be enabled: boosting the task can block.
965 * Returns 1 if there are more tasks needing to be boosted.
967 static int rcu_boost(struct rcu_node *rnp)
969 unsigned long flags;
970 struct task_struct *t;
971 struct list_head *tb;
973 if (READ_ONCE(rnp->exp_tasks) == NULL &&
974 READ_ONCE(rnp->boost_tasks) == NULL)
975 return 0; /* Nothing left to boost. */
977 raw_spin_lock_irqsave_rcu_node(rnp, flags);
980 * Recheck under the lock: all tasks in need of boosting
981 * might exit their RCU read-side critical sections on their own.
983 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
984 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
985 return 0;
989 * Preferentially boost tasks blocking expedited grace periods.
990 * This cannot starve the normal grace periods because a second
991 * expedited grace period must boost all blocked tasks, including
992 * those blocking the pre-existing normal grace period.
994 if (rnp->exp_tasks != NULL)
995 tb = rnp->exp_tasks;
996 else
997 tb = rnp->boost_tasks;
1000 * We boost task t by manufacturing an rt_mutex that appears to
1001 * be held by task t. We leave a pointer to that rt_mutex where
1002 * task t can find it, and task t will release the mutex when it
1003 * exits its outermost RCU read-side critical section. Then
1004 * simply acquiring this artificial rt_mutex will boost task
1005 * t's priority. (Thanks to tglx for suggesting this approach!)
1007 * Note that task t must acquire rnp->lock to remove itself from
1008 * the ->blkd_tasks list, which it will do from exit() if from
1009 * nowhere else. We therefore are guaranteed that task t will
1010 * stay around at least until we drop rnp->lock. Note that
1011 * rnp->lock also resolves races between our priority boosting
1012 * and task t's exiting its outermost RCU read-side critical
1013 * section.
1015 t = container_of(tb, struct task_struct, rcu_node_entry);
1016 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1017 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1018 /* Lock only for side effect: boosts task t's priority. */
1019 rt_mutex_lock(&rnp->boost_mtx);
1020 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */
1022 return READ_ONCE(rnp->exp_tasks) != NULL ||
1023 READ_ONCE(rnp->boost_tasks) != NULL;
1027 * Priority-boosting kthread, one per leaf rcu_node.
1029 static int rcu_boost_kthread(void *arg)
1031 struct rcu_node *rnp = (struct rcu_node *)arg;
1032 int spincnt = 0;
1033 int more2boost;
1035 trace_rcu_utilization(TPS("Start boost kthread@init"));
1036 for (;;) {
1037 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1038 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1039 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1040 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1041 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1042 more2boost = rcu_boost(rnp);
1043 if (more2boost)
1044 spincnt++;
1045 else
1046 spincnt = 0;
1047 if (spincnt > 10) {
1048 rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1049 trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1050 schedule_timeout_interruptible(2);
1051 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1052 spincnt = 0;
1055 /* NOTREACHED */
1056 trace_rcu_utilization(TPS("End boost kthread@notreached"));
1057 return 0;
1061 * Check to see if it is time to start boosting RCU readers that are
1062 * blocking the current grace period, and, if so, tell the per-rcu_node
1063 * kthread to start boosting them. If there is an expedited grace
1064 * period in progress, it is always time to boost.
1066 * The caller must hold rnp->lock, which this function releases.
1067 * The ->boost_kthread_task is immortal, so we don't need to worry
1068 * about it going away.
1070 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1071 __releases(rnp->lock)
1073 raw_lockdep_assert_held_rcu_node(rnp);
1074 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1075 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1076 return;
1078 if (rnp->exp_tasks != NULL ||
1079 (rnp->gp_tasks != NULL &&
1080 rnp->boost_tasks == NULL &&
1081 rnp->qsmask == 0 &&
1082 ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1083 if (rnp->exp_tasks == NULL)
1084 rnp->boost_tasks = rnp->gp_tasks;
1085 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1086 rcu_wake_cond(rnp->boost_kthread_task,
1087 rnp->boost_kthread_status);
1088 } else {
1089 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1094 * Wake up the per-CPU kthread to invoke RCU callbacks.
1096 static void invoke_rcu_callbacks_kthread(void)
1098 unsigned long flags;
1100 local_irq_save(flags);
1101 __this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
1102 if (__this_cpu_read(rcu_data.rcu_cpu_kthread_task) != NULL &&
1103 current != __this_cpu_read(rcu_data.rcu_cpu_kthread_task)) {
1104 rcu_wake_cond(__this_cpu_read(rcu_data.rcu_cpu_kthread_task),
1105 __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
1107 local_irq_restore(flags);
1111 * Is the current CPU running the RCU-callbacks kthread?
1112 * Caller must have preemption disabled.
1114 static bool rcu_is_callbacks_kthread(void)
1116 return __this_cpu_read(rcu_data.rcu_cpu_kthread_task) == current;
1119 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1122 * Do priority-boost accounting for the start of a new grace period.
1124 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1126 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1130 * Create an RCU-boost kthread for the specified node if one does not
1131 * already exist. We only create this kthread for preemptible RCU.
1132 * Returns zero if all is well, a negated errno otherwise.
1134 static int rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
1136 int rnp_index = rnp - rcu_get_root();
1137 unsigned long flags;
1138 struct sched_param sp;
1139 struct task_struct *t;
1141 if (!IS_ENABLED(CONFIG_PREEMPT_RCU))
1142 return 0;
1144 if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1145 return 0;
1147 rcu_state.boost = 1;
1148 if (rnp->boost_kthread_task != NULL)
1149 return 0;
1150 t = kthread_create(rcu_boost_kthread, (void *)rnp,
1151 "rcub/%d", rnp_index);
1152 if (IS_ERR(t))
1153 return PTR_ERR(t);
1154 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1155 rnp->boost_kthread_task = t;
1156 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1157 sp.sched_priority = kthread_prio;
1158 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1159 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1160 return 0;
1163 static void rcu_cpu_kthread_setup(unsigned int cpu)
1165 struct sched_param sp;
1167 sp.sched_priority = kthread_prio;
1168 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1171 static void rcu_cpu_kthread_park(unsigned int cpu)
1173 per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1176 static int rcu_cpu_kthread_should_run(unsigned int cpu)
1178 return __this_cpu_read(rcu_data.rcu_cpu_has_work);
1182 * Per-CPU kernel thread that invokes RCU callbacks. This replaces
1183 * the RCU softirq used in configurations of RCU that do not support RCU
1184 * priority boosting.
1186 static void rcu_cpu_kthread(unsigned int cpu)
1188 unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
1189 char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
1190 int spincnt;
1192 for (spincnt = 0; spincnt < 10; spincnt++) {
1193 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1194 local_bh_disable();
1195 *statusp = RCU_KTHREAD_RUNNING;
1196 local_irq_disable();
1197 work = *workp;
1198 *workp = 0;
1199 local_irq_enable();
1200 if (work)
1201 rcu_do_batch(this_cpu_ptr(&rcu_data));
1202 local_bh_enable();
1203 if (*workp == 0) {
1204 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1205 *statusp = RCU_KTHREAD_WAITING;
1206 return;
1209 *statusp = RCU_KTHREAD_YIELDING;
1210 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1211 schedule_timeout_interruptible(2);
1212 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1213 *statusp = RCU_KTHREAD_WAITING;
1217 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1218 * served by the rcu_node in question. The CPU hotplug lock is still
1219 * held, so the value of rnp->qsmaskinit will be stable.
1221 * We don't include outgoingcpu in the affinity set, use -1 if there is
1222 * no outgoing CPU. If there are no CPUs left in the affinity set,
1223 * this function allows the kthread to execute on any CPU.
1225 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1227 struct task_struct *t = rnp->boost_kthread_task;
1228 unsigned long mask = rcu_rnp_online_cpus(rnp);
1229 cpumask_var_t cm;
1230 int cpu;
1232 if (!t)
1233 return;
1234 if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1235 return;
1236 for_each_leaf_node_possible_cpu(rnp, cpu)
1237 if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1238 cpu != outgoingcpu)
1239 cpumask_set_cpu(cpu, cm);
1240 if (cpumask_weight(cm) == 0)
1241 cpumask_setall(cm);
1242 set_cpus_allowed_ptr(t, cm);
1243 free_cpumask_var(cm);
1246 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1247 .store = &rcu_data.rcu_cpu_kthread_task,
1248 .thread_should_run = rcu_cpu_kthread_should_run,
1249 .thread_fn = rcu_cpu_kthread,
1250 .thread_comm = "rcuc/%u",
1251 .setup = rcu_cpu_kthread_setup,
1252 .park = rcu_cpu_kthread_park,
1256 * Spawn boost kthreads -- called as soon as the scheduler is running.
1258 static void __init rcu_spawn_boost_kthreads(void)
1260 struct rcu_node *rnp;
1261 int cpu;
1263 for_each_possible_cpu(cpu)
1264 per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
1265 if (WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec), "%s: Could not start rcub kthread, OOM is now expected behavior\n", __func__))
1266 return;
1267 rcu_for_each_leaf_node(rnp)
1268 (void)rcu_spawn_one_boost_kthread(rnp);
1271 static void rcu_prepare_kthreads(int cpu)
1273 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1274 struct rcu_node *rnp = rdp->mynode;
1276 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1277 if (rcu_scheduler_fully_active)
1278 (void)rcu_spawn_one_boost_kthread(rnp);
1281 #else /* #ifdef CONFIG_RCU_BOOST */
1283 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1284 __releases(rnp->lock)
1286 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1289 static void invoke_rcu_callbacks_kthread(void)
1291 WARN_ON_ONCE(1);
1294 static bool rcu_is_callbacks_kthread(void)
1296 return false;
1299 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1303 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1307 static void __init rcu_spawn_boost_kthreads(void)
1311 static void rcu_prepare_kthreads(int cpu)
1315 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1317 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1320 * Check to see if any future RCU-related work will need to be done
1321 * by the current CPU, even if none need be done immediately, returning
1322 * 1 if so. This function is part of the RCU implementation; it is -not-
1323 * an exported member of the RCU API.
1325 * Because we not have RCU_FAST_NO_HZ, just check whether or not this
1326 * CPU has RCU callbacks queued.
1328 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1330 *nextevt = KTIME_MAX;
1331 return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist);
1335 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1336 * after it.
1338 static void rcu_cleanup_after_idle(void)
1343 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1344 * is nothing.
1346 static void rcu_prepare_for_idle(void)
1350 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1353 * This code is invoked when a CPU goes idle, at which point we want
1354 * to have the CPU do everything required for RCU so that it can enter
1355 * the energy-efficient dyntick-idle mode. This is handled by a
1356 * state machine implemented by rcu_prepare_for_idle() below.
1358 * The following three proprocessor symbols control this state machine:
1360 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1361 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1362 * is sized to be roughly one RCU grace period. Those energy-efficiency
1363 * benchmarkers who might otherwise be tempted to set this to a large
1364 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1365 * system. And if you are -that- concerned about energy efficiency,
1366 * just power the system down and be done with it!
1367 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1368 * permitted to sleep in dyntick-idle mode with only lazy RCU
1369 * callbacks pending. Setting this too high can OOM your system.
1371 * The values below work well in practice. If future workloads require
1372 * adjustment, they can be converted into kernel config parameters, though
1373 * making the state machine smarter might be a better option.
1375 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
1376 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
1378 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1379 module_param(rcu_idle_gp_delay, int, 0644);
1380 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1381 module_param(rcu_idle_lazy_gp_delay, int, 0644);
1384 * Try to advance callbacks on the current CPU, but only if it has been
1385 * awhile since the last time we did so. Afterwards, if there are any
1386 * callbacks ready for immediate invocation, return true.
1388 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1390 bool cbs_ready = false;
1391 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1392 struct rcu_node *rnp;
1394 /* Exit early if we advanced recently. */
1395 if (jiffies == rdp->last_advance_all)
1396 return false;
1397 rdp->last_advance_all = jiffies;
1399 rnp = rdp->mynode;
1402 * Don't bother checking unless a grace period has
1403 * completed since we last checked and there are
1404 * callbacks not yet ready to invoke.
1406 if ((rcu_seq_completed_gp(rdp->gp_seq,
1407 rcu_seq_current(&rnp->gp_seq)) ||
1408 unlikely(READ_ONCE(rdp->gpwrap))) &&
1409 rcu_segcblist_pend_cbs(&rdp->cblist))
1410 note_gp_changes(rdp);
1412 if (rcu_segcblist_ready_cbs(&rdp->cblist))
1413 cbs_ready = true;
1414 return cbs_ready;
1418 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1419 * to invoke. If the CPU has callbacks, try to advance them. Tell the
1420 * caller to set the timeout based on whether or not there are non-lazy
1421 * callbacks.
1423 * The caller must have disabled interrupts.
1425 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1427 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1428 unsigned long dj;
1430 lockdep_assert_irqs_disabled();
1432 /* If no callbacks, RCU doesn't need the CPU. */
1433 if (rcu_segcblist_empty(&rdp->cblist)) {
1434 *nextevt = KTIME_MAX;
1435 return 0;
1438 /* Attempt to advance callbacks. */
1439 if (rcu_try_advance_all_cbs()) {
1440 /* Some ready to invoke, so initiate later invocation. */
1441 invoke_rcu_core();
1442 return 1;
1444 rdp->last_accelerate = jiffies;
1446 /* Request timer delay depending on laziness, and round. */
1447 rdp->all_lazy = !rcu_segcblist_n_nonlazy_cbs(&rdp->cblist);
1448 if (rdp->all_lazy) {
1449 dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1450 } else {
1451 dj = round_up(rcu_idle_gp_delay + jiffies,
1452 rcu_idle_gp_delay) - jiffies;
1454 *nextevt = basemono + dj * TICK_NSEC;
1455 return 0;
1459 * Prepare a CPU for idle from an RCU perspective. The first major task
1460 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1461 * The second major task is to check to see if a non-lazy callback has
1462 * arrived at a CPU that previously had only lazy callbacks. The third
1463 * major task is to accelerate (that is, assign grace-period numbers to)
1464 * any recently arrived callbacks.
1466 * The caller must have disabled interrupts.
1468 static void rcu_prepare_for_idle(void)
1470 bool needwake;
1471 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1472 struct rcu_node *rnp;
1473 int tne;
1475 lockdep_assert_irqs_disabled();
1476 if (rcu_is_nocb_cpu(smp_processor_id()))
1477 return;
1479 /* Handle nohz enablement switches conservatively. */
1480 tne = READ_ONCE(tick_nohz_active);
1481 if (tne != rdp->tick_nohz_enabled_snap) {
1482 if (!rcu_segcblist_empty(&rdp->cblist))
1483 invoke_rcu_core(); /* force nohz to see update. */
1484 rdp->tick_nohz_enabled_snap = tne;
1485 return;
1487 if (!tne)
1488 return;
1491 * If a non-lazy callback arrived at a CPU having only lazy
1492 * callbacks, invoke RCU core for the side-effect of recalculating
1493 * idle duration on re-entry to idle.
1495 if (rdp->all_lazy && rcu_segcblist_n_nonlazy_cbs(&rdp->cblist)) {
1496 rdp->all_lazy = false;
1497 invoke_rcu_core();
1498 return;
1502 * If we have not yet accelerated this jiffy, accelerate all
1503 * callbacks on this CPU.
1505 if (rdp->last_accelerate == jiffies)
1506 return;
1507 rdp->last_accelerate = jiffies;
1508 if (rcu_segcblist_pend_cbs(&rdp->cblist)) {
1509 rnp = rdp->mynode;
1510 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1511 needwake = rcu_accelerate_cbs(rnp, rdp);
1512 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1513 if (needwake)
1514 rcu_gp_kthread_wake();
1519 * Clean up for exit from idle. Attempt to advance callbacks based on
1520 * any grace periods that elapsed while the CPU was idle, and if any
1521 * callbacks are now ready to invoke, initiate invocation.
1523 static void rcu_cleanup_after_idle(void)
1525 lockdep_assert_irqs_disabled();
1526 if (rcu_is_nocb_cpu(smp_processor_id()))
1527 return;
1528 if (rcu_try_advance_all_cbs())
1529 invoke_rcu_core();
1532 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1534 #ifdef CONFIG_RCU_NOCB_CPU
1537 * Offload callback processing from the boot-time-specified set of CPUs
1538 * specified by rcu_nocb_mask. For the CPUs in the set, there are kthreads
1539 * created that pull the callbacks from the corresponding CPU, wait for
1540 * a grace period to elapse, and invoke the callbacks. These kthreads
1541 * are organized into leaders, which manage incoming callbacks, wait for
1542 * grace periods, and awaken followers, and the followers, which only
1543 * invoke callbacks. Each leader is its own follower. The no-CBs CPUs
1544 * do a wake_up() on their kthread when they insert a callback into any
1545 * empty list, unless the rcu_nocb_poll boot parameter has been specified,
1546 * in which case each kthread actively polls its CPU. (Which isn't so great
1547 * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
1549 * This is intended to be used in conjunction with Frederic Weisbecker's
1550 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1551 * running CPU-bound user-mode computations.
1553 * Offloading of callbacks can also be used as an energy-efficiency
1554 * measure because CPUs with no RCU callbacks queued are more aggressive
1555 * about entering dyntick-idle mode.
1560 * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
1561 * The string after the "rcu_nocbs=" is either "all" for all CPUs, or a
1562 * comma-separated list of CPUs and/or CPU ranges. If an invalid list is
1563 * given, a warning is emitted and all CPUs are offloaded.
1565 static int __init rcu_nocb_setup(char *str)
1567 alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1568 if (!strcasecmp(str, "all"))
1569 cpumask_setall(rcu_nocb_mask);
1570 else
1571 if (cpulist_parse(str, rcu_nocb_mask)) {
1572 pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n");
1573 cpumask_setall(rcu_nocb_mask);
1575 return 1;
1577 __setup("rcu_nocbs=", rcu_nocb_setup);
1579 static int __init parse_rcu_nocb_poll(char *arg)
1581 rcu_nocb_poll = true;
1582 return 0;
1584 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1587 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1588 * grace period.
1590 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1592 swake_up_all(sq);
1595 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1597 return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
1600 static void rcu_init_one_nocb(struct rcu_node *rnp)
1602 init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1603 init_swait_queue_head(&rnp->nocb_gp_wq[1]);
1606 /* Is the specified CPU a no-CBs CPU? */
1607 bool rcu_is_nocb_cpu(int cpu)
1609 if (cpumask_available(rcu_nocb_mask))
1610 return cpumask_test_cpu(cpu, rcu_nocb_mask);
1611 return false;
1615 * Kick the leader kthread for this NOCB group. Caller holds ->nocb_lock
1616 * and this function releases it.
1618 static void __wake_nocb_leader(struct rcu_data *rdp, bool force,
1619 unsigned long flags)
1620 __releases(rdp->nocb_lock)
1622 struct rcu_data *rdp_leader = rdp->nocb_leader;
1624 lockdep_assert_held(&rdp->nocb_lock);
1625 if (!READ_ONCE(rdp_leader->nocb_kthread)) {
1626 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1627 return;
1629 if (rdp_leader->nocb_leader_sleep || force) {
1630 /* Prior smp_mb__after_atomic() orders against prior enqueue. */
1631 WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
1632 del_timer(&rdp->nocb_timer);
1633 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1634 smp_mb(); /* ->nocb_leader_sleep before swake_up_one(). */
1635 swake_up_one(&rdp_leader->nocb_wq);
1636 } else {
1637 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1642 * Kick the leader kthread for this NOCB group, but caller has not
1643 * acquired locks.
1645 static void wake_nocb_leader(struct rcu_data *rdp, bool force)
1647 unsigned long flags;
1649 raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1650 __wake_nocb_leader(rdp, force, flags);
1654 * Arrange to wake the leader kthread for this NOCB group at some
1655 * future time when it is safe to do so.
1657 static void wake_nocb_leader_defer(struct rcu_data *rdp, int waketype,
1658 const char *reason)
1660 unsigned long flags;
1662 raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1663 if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT)
1664 mod_timer(&rdp->nocb_timer, jiffies + 1);
1665 WRITE_ONCE(rdp->nocb_defer_wakeup, waketype);
1666 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
1667 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1670 /* Does rcu_barrier need to queue an RCU callback on the specified CPU? */
1671 static bool rcu_nocb_cpu_needs_barrier(int cpu)
1673 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1674 unsigned long ret;
1675 #ifdef CONFIG_PROVE_RCU
1676 struct rcu_head *rhp;
1677 #endif /* #ifdef CONFIG_PROVE_RCU */
1680 * Check count of all no-CBs callbacks awaiting invocation.
1681 * There needs to be a barrier before this function is called,
1682 * but associated with a prior determination that no more
1683 * callbacks would be posted. In the worst case, the first
1684 * barrier in rcu_barrier() suffices (but the caller cannot
1685 * necessarily rely on this, not a substitute for the caller
1686 * getting the concurrency design right!). There must also be a
1687 * barrier between the following load and posting of a callback
1688 * (if a callback is in fact needed). This is associated with an
1689 * atomic_inc() in the caller.
1691 ret = rcu_get_n_cbs_nocb_cpu(rdp);
1693 #ifdef CONFIG_PROVE_RCU
1694 rhp = READ_ONCE(rdp->nocb_head);
1695 if (!rhp)
1696 rhp = READ_ONCE(rdp->nocb_gp_head);
1697 if (!rhp)
1698 rhp = READ_ONCE(rdp->nocb_follower_head);
1700 /* Having no rcuo kthread but CBs after scheduler starts is bad! */
1701 if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
1702 rcu_scheduler_fully_active) {
1703 /* RCU callback enqueued before CPU first came online??? */
1704 pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
1705 cpu, rhp->func);
1706 WARN_ON_ONCE(1);
1708 #endif /* #ifdef CONFIG_PROVE_RCU */
1710 return !!ret;
1714 * Enqueue the specified string of rcu_head structures onto the specified
1715 * CPU's no-CBs lists. The CPU is specified by rdp, the head of the
1716 * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy
1717 * counts are supplied by rhcount and rhcount_lazy.
1719 * If warranted, also wake up the kthread servicing this CPUs queues.
1721 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
1722 struct rcu_head *rhp,
1723 struct rcu_head **rhtp,
1724 int rhcount, int rhcount_lazy,
1725 unsigned long flags)
1727 int len;
1728 struct rcu_head **old_rhpp;
1729 struct task_struct *t;
1731 /* Enqueue the callback on the nocb list and update counts. */
1732 atomic_long_add(rhcount, &rdp->nocb_q_count);
1733 /* rcu_barrier() relies on ->nocb_q_count add before xchg. */
1734 old_rhpp = xchg(&rdp->nocb_tail, rhtp);
1735 WRITE_ONCE(*old_rhpp, rhp);
1736 atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
1737 smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
1739 /* If we are not being polled and there is a kthread, awaken it ... */
1740 t = READ_ONCE(rdp->nocb_kthread);
1741 if (rcu_nocb_poll || !t) {
1742 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1743 TPS("WakeNotPoll"));
1744 return;
1746 len = rcu_get_n_cbs_nocb_cpu(rdp);
1747 if (old_rhpp == &rdp->nocb_head) {
1748 if (!irqs_disabled_flags(flags)) {
1749 /* ... if queue was empty ... */
1750 wake_nocb_leader(rdp, false);
1751 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1752 TPS("WakeEmpty"));
1753 } else {
1754 wake_nocb_leader_defer(rdp, RCU_NOCB_WAKE,
1755 TPS("WakeEmptyIsDeferred"));
1757 rdp->qlen_last_fqs_check = 0;
1758 } else if (len > rdp->qlen_last_fqs_check + qhimark) {
1759 /* ... or if many callbacks queued. */
1760 if (!irqs_disabled_flags(flags)) {
1761 wake_nocb_leader(rdp, true);
1762 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1763 TPS("WakeOvf"));
1764 } else {
1765 wake_nocb_leader_defer(rdp, RCU_NOCB_WAKE_FORCE,
1766 TPS("WakeOvfIsDeferred"));
1768 rdp->qlen_last_fqs_check = LONG_MAX / 2;
1769 } else {
1770 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
1772 return;
1776 * This is a helper for __call_rcu(), which invokes this when the normal
1777 * callback queue is inoperable. If this is not a no-CBs CPU, this
1778 * function returns failure back to __call_rcu(), which can complain
1779 * appropriately.
1781 * Otherwise, this function queues the callback where the corresponding
1782 * "rcuo" kthread can find it.
1784 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
1785 bool lazy, unsigned long flags)
1788 if (!rcu_is_nocb_cpu(rdp->cpu))
1789 return false;
1790 __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
1791 if (__is_kfree_rcu_offset((unsigned long)rhp->func))
1792 trace_rcu_kfree_callback(rcu_state.name, rhp,
1793 (unsigned long)rhp->func,
1794 -atomic_long_read(&rdp->nocb_q_count_lazy),
1795 -rcu_get_n_cbs_nocb_cpu(rdp));
1796 else
1797 trace_rcu_callback(rcu_state.name, rhp,
1798 -atomic_long_read(&rdp->nocb_q_count_lazy),
1799 -rcu_get_n_cbs_nocb_cpu(rdp));
1802 * If called from an extended quiescent state with interrupts
1803 * disabled, invoke the RCU core in order to allow the idle-entry
1804 * deferred-wakeup check to function.
1806 if (irqs_disabled_flags(flags) &&
1807 !rcu_is_watching() &&
1808 cpu_online(smp_processor_id()))
1809 invoke_rcu_core();
1811 return true;
1815 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
1816 * not a no-CBs CPU.
1818 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_data *my_rdp,
1819 struct rcu_data *rdp,
1820 unsigned long flags)
1822 lockdep_assert_irqs_disabled();
1823 if (!rcu_is_nocb_cpu(smp_processor_id()))
1824 return false; /* Not NOCBs CPU, caller must migrate CBs. */
1825 __call_rcu_nocb_enqueue(my_rdp, rcu_segcblist_head(&rdp->cblist),
1826 rcu_segcblist_tail(&rdp->cblist),
1827 rcu_segcblist_n_cbs(&rdp->cblist),
1828 rcu_segcblist_n_lazy_cbs(&rdp->cblist), flags);
1829 rcu_segcblist_init(&rdp->cblist);
1830 rcu_segcblist_disable(&rdp->cblist);
1831 return true;
1835 * If necessary, kick off a new grace period, and either way wait
1836 * for a subsequent grace period to complete.
1838 static void rcu_nocb_wait_gp(struct rcu_data *rdp)
1840 unsigned long c;
1841 bool d;
1842 unsigned long flags;
1843 bool needwake;
1844 struct rcu_node *rnp = rdp->mynode;
1846 local_irq_save(flags);
1847 c = rcu_seq_snap(&rcu_state.gp_seq);
1848 if (!rdp->gpwrap && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1849 local_irq_restore(flags);
1850 } else {
1851 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1852 needwake = rcu_start_this_gp(rnp, rdp, c);
1853 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1854 if (needwake)
1855 rcu_gp_kthread_wake();
1859 * Wait for the grace period. Do so interruptibly to avoid messing
1860 * up the load average.
1862 trace_rcu_this_gp(rnp, rdp, c, TPS("StartWait"));
1863 for (;;) {
1864 swait_event_interruptible_exclusive(
1865 rnp->nocb_gp_wq[rcu_seq_ctr(c) & 0x1],
1866 (d = rcu_seq_done(&rnp->gp_seq, c)));
1867 if (likely(d))
1868 break;
1869 WARN_ON(signal_pending(current));
1870 trace_rcu_this_gp(rnp, rdp, c, TPS("ResumeWait"));
1872 trace_rcu_this_gp(rnp, rdp, c, TPS("EndWait"));
1873 smp_mb(); /* Ensure that CB invocation happens after GP end. */
1877 * Leaders come here to wait for additional callbacks to show up.
1878 * This function does not return until callbacks appear.
1880 static void nocb_leader_wait(struct rcu_data *my_rdp)
1882 bool firsttime = true;
1883 unsigned long flags;
1884 bool gotcbs;
1885 struct rcu_data *rdp;
1886 struct rcu_head **tail;
1888 wait_again:
1890 /* Wait for callbacks to appear. */
1891 if (!rcu_nocb_poll) {
1892 trace_rcu_nocb_wake(rcu_state.name, my_rdp->cpu, TPS("Sleep"));
1893 swait_event_interruptible_exclusive(my_rdp->nocb_wq,
1894 !READ_ONCE(my_rdp->nocb_leader_sleep));
1895 raw_spin_lock_irqsave(&my_rdp->nocb_lock, flags);
1896 my_rdp->nocb_leader_sleep = true;
1897 WRITE_ONCE(my_rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
1898 del_timer(&my_rdp->nocb_timer);
1899 raw_spin_unlock_irqrestore(&my_rdp->nocb_lock, flags);
1900 } else if (firsttime) {
1901 firsttime = false; /* Don't drown trace log with "Poll"! */
1902 trace_rcu_nocb_wake(rcu_state.name, my_rdp->cpu, TPS("Poll"));
1906 * Each pass through the following loop checks a follower for CBs.
1907 * We are our own first follower. Any CBs found are moved to
1908 * nocb_gp_head, where they await a grace period.
1910 gotcbs = false;
1911 smp_mb(); /* wakeup and _sleep before ->nocb_head reads. */
1912 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
1913 rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
1914 if (!rdp->nocb_gp_head)
1915 continue; /* No CBs here, try next follower. */
1917 /* Move callbacks to wait-for-GP list, which is empty. */
1918 WRITE_ONCE(rdp->nocb_head, NULL);
1919 rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
1920 gotcbs = true;
1923 /* No callbacks? Sleep a bit if polling, and go retry. */
1924 if (unlikely(!gotcbs)) {
1925 WARN_ON(signal_pending(current));
1926 if (rcu_nocb_poll) {
1927 schedule_timeout_interruptible(1);
1928 } else {
1929 trace_rcu_nocb_wake(rcu_state.name, my_rdp->cpu,
1930 TPS("WokeEmpty"));
1932 goto wait_again;
1935 /* Wait for one grace period. */
1936 rcu_nocb_wait_gp(my_rdp);
1938 /* Each pass through the following loop wakes a follower, if needed. */
1939 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
1940 if (!rcu_nocb_poll &&
1941 READ_ONCE(rdp->nocb_head) &&
1942 READ_ONCE(my_rdp->nocb_leader_sleep)) {
1943 raw_spin_lock_irqsave(&my_rdp->nocb_lock, flags);
1944 my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
1945 raw_spin_unlock_irqrestore(&my_rdp->nocb_lock, flags);
1947 if (!rdp->nocb_gp_head)
1948 continue; /* No CBs, so no need to wake follower. */
1950 /* Append callbacks to follower's "done" list. */
1951 raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1952 tail = rdp->nocb_follower_tail;
1953 rdp->nocb_follower_tail = rdp->nocb_gp_tail;
1954 *tail = rdp->nocb_gp_head;
1955 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1956 if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
1957 /* List was empty, so wake up the follower. */
1958 swake_up_one(&rdp->nocb_wq);
1962 /* If we (the leader) don't have CBs, go wait some more. */
1963 if (!my_rdp->nocb_follower_head)
1964 goto wait_again;
1968 * Followers come here to wait for additional callbacks to show up.
1969 * This function does not return until callbacks appear.
1971 static void nocb_follower_wait(struct rcu_data *rdp)
1973 for (;;) {
1974 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FollowerSleep"));
1975 swait_event_interruptible_exclusive(rdp->nocb_wq,
1976 READ_ONCE(rdp->nocb_follower_head));
1977 if (smp_load_acquire(&rdp->nocb_follower_head)) {
1978 /* ^^^ Ensure CB invocation follows _head test. */
1979 return;
1981 WARN_ON(signal_pending(current));
1982 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
1987 * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes
1988 * callbacks queued by the corresponding no-CBs CPU, however, there is
1989 * an optional leader-follower relationship so that the grace-period
1990 * kthreads don't have to do quite so many wakeups.
1992 static int rcu_nocb_kthread(void *arg)
1994 int c, cl;
1995 unsigned long flags;
1996 struct rcu_head *list;
1997 struct rcu_head *next;
1998 struct rcu_head **tail;
1999 struct rcu_data *rdp = arg;
2001 /* Each pass through this loop invokes one batch of callbacks */
2002 for (;;) {
2003 /* Wait for callbacks. */
2004 if (rdp->nocb_leader == rdp)
2005 nocb_leader_wait(rdp);
2006 else
2007 nocb_follower_wait(rdp);
2009 /* Pull the ready-to-invoke callbacks onto local list. */
2010 raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
2011 list = rdp->nocb_follower_head;
2012 rdp->nocb_follower_head = NULL;
2013 tail = rdp->nocb_follower_tail;
2014 rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2015 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
2016 if (WARN_ON_ONCE(!list))
2017 continue;
2018 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeNonEmpty"));
2020 /* Each pass through the following loop invokes a callback. */
2021 trace_rcu_batch_start(rcu_state.name,
2022 atomic_long_read(&rdp->nocb_q_count_lazy),
2023 rcu_get_n_cbs_nocb_cpu(rdp), -1);
2024 c = cl = 0;
2025 while (list) {
2026 next = list->next;
2027 /* Wait for enqueuing to complete, if needed. */
2028 while (next == NULL && &list->next != tail) {
2029 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
2030 TPS("WaitQueue"));
2031 schedule_timeout_interruptible(1);
2032 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
2033 TPS("WokeQueue"));
2034 next = list->next;
2036 debug_rcu_head_unqueue(list);
2037 local_bh_disable();
2038 if (__rcu_reclaim(rcu_state.name, list))
2039 cl++;
2040 c++;
2041 local_bh_enable();
2042 cond_resched_tasks_rcu_qs();
2043 list = next;
2045 trace_rcu_batch_end(rcu_state.name, c, !!list, 0, 0, 1);
2046 smp_mb__before_atomic(); /* _add after CB invocation. */
2047 atomic_long_add(-c, &rdp->nocb_q_count);
2048 atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
2050 return 0;
2053 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2054 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2056 return READ_ONCE(rdp->nocb_defer_wakeup);
2059 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2060 static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp)
2062 unsigned long flags;
2063 int ndw;
2065 raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
2066 if (!rcu_nocb_need_deferred_wakeup(rdp)) {
2067 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
2068 return;
2070 ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2071 WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2072 __wake_nocb_leader(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
2073 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake"));
2076 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
2077 static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
2079 struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
2081 do_nocb_deferred_wakeup_common(rdp);
2085 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
2086 * This means we do an inexact common-case check. Note that if
2087 * we miss, ->nocb_timer will eventually clean things up.
2089 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2091 if (rcu_nocb_need_deferred_wakeup(rdp))
2092 do_nocb_deferred_wakeup_common(rdp);
2095 void __init rcu_init_nohz(void)
2097 int cpu;
2098 bool need_rcu_nocb_mask = false;
2100 #if defined(CONFIG_NO_HZ_FULL)
2101 if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2102 need_rcu_nocb_mask = true;
2103 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2105 if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) {
2106 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2107 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2108 return;
2111 if (!cpumask_available(rcu_nocb_mask))
2112 return;
2114 #if defined(CONFIG_NO_HZ_FULL)
2115 if (tick_nohz_full_running)
2116 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2117 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2119 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2120 pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
2121 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2122 rcu_nocb_mask);
2124 if (cpumask_empty(rcu_nocb_mask))
2125 pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
2126 else
2127 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2128 cpumask_pr_args(rcu_nocb_mask));
2129 if (rcu_nocb_poll)
2130 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2132 for_each_cpu(cpu, rcu_nocb_mask)
2133 init_nocb_callback_list(per_cpu_ptr(&rcu_data, cpu));
2134 rcu_organize_nocb_kthreads();
2137 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2138 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2140 rdp->nocb_tail = &rdp->nocb_head;
2141 init_swait_queue_head(&rdp->nocb_wq);
2142 rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2143 raw_spin_lock_init(&rdp->nocb_lock);
2144 timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
2148 * If the specified CPU is a no-CBs CPU that does not already have its
2149 * rcuo kthread, spawn it. If the CPUs are brought online out of order,
2150 * this can require re-organizing the leader-follower relationships.
2152 static void rcu_spawn_one_nocb_kthread(int cpu)
2154 struct rcu_data *rdp;
2155 struct rcu_data *rdp_last;
2156 struct rcu_data *rdp_old_leader;
2157 struct rcu_data *rdp_spawn = per_cpu_ptr(&rcu_data, cpu);
2158 struct task_struct *t;
2161 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2162 * then nothing to do.
2164 if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2165 return;
2167 /* If we didn't spawn the leader first, reorganize! */
2168 rdp_old_leader = rdp_spawn->nocb_leader;
2169 if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2170 rdp_last = NULL;
2171 rdp = rdp_old_leader;
2172 do {
2173 rdp->nocb_leader = rdp_spawn;
2174 if (rdp_last && rdp != rdp_spawn)
2175 rdp_last->nocb_next_follower = rdp;
2176 if (rdp == rdp_spawn) {
2177 rdp = rdp->nocb_next_follower;
2178 } else {
2179 rdp_last = rdp;
2180 rdp = rdp->nocb_next_follower;
2181 rdp_last->nocb_next_follower = NULL;
2183 } while (rdp);
2184 rdp_spawn->nocb_next_follower = rdp_old_leader;
2187 /* Spawn the kthread for this CPU. */
2188 t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2189 "rcuo%c/%d", rcu_state.abbr, cpu);
2190 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo kthread, OOM is now expected behavior\n", __func__))
2191 return;
2192 WRITE_ONCE(rdp_spawn->nocb_kthread, t);
2196 * If the specified CPU is a no-CBs CPU that does not already have its
2197 * rcuo kthread, spawn it.
2199 static void rcu_spawn_cpu_nocb_kthread(int cpu)
2201 if (rcu_scheduler_fully_active)
2202 rcu_spawn_one_nocb_kthread(cpu);
2206 * Once the scheduler is running, spawn rcuo kthreads for all online
2207 * no-CBs CPUs. This assumes that the early_initcall()s happen before
2208 * non-boot CPUs come online -- if this changes, we will need to add
2209 * some mutual exclusion.
2211 static void __init rcu_spawn_nocb_kthreads(void)
2213 int cpu;
2215 for_each_online_cpu(cpu)
2216 rcu_spawn_cpu_nocb_kthread(cpu);
2219 /* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */
2220 static int rcu_nocb_leader_stride = -1;
2221 module_param(rcu_nocb_leader_stride, int, 0444);
2224 * Initialize leader-follower relationships for all no-CBs CPU.
2226 static void __init rcu_organize_nocb_kthreads(void)
2228 int cpu;
2229 int ls = rcu_nocb_leader_stride;
2230 int nl = 0; /* Next leader. */
2231 struct rcu_data *rdp;
2232 struct rcu_data *rdp_leader = NULL; /* Suppress misguided gcc warn. */
2233 struct rcu_data *rdp_prev = NULL;
2235 if (!cpumask_available(rcu_nocb_mask))
2236 return;
2237 if (ls == -1) {
2238 ls = int_sqrt(nr_cpu_ids);
2239 rcu_nocb_leader_stride = ls;
2243 * Each pass through this loop sets up one rcu_data structure.
2244 * Should the corresponding CPU come online in the future, then
2245 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
2247 for_each_cpu(cpu, rcu_nocb_mask) {
2248 rdp = per_cpu_ptr(&rcu_data, cpu);
2249 if (rdp->cpu >= nl) {
2250 /* New leader, set up for followers & next leader. */
2251 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2252 rdp->nocb_leader = rdp;
2253 rdp_leader = rdp;
2254 } else {
2255 /* Another follower, link to previous leader. */
2256 rdp->nocb_leader = rdp_leader;
2257 rdp_prev->nocb_next_follower = rdp;
2259 rdp_prev = rdp;
2263 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2264 static bool init_nocb_callback_list(struct rcu_data *rdp)
2266 if (!rcu_is_nocb_cpu(rdp->cpu))
2267 return false;
2269 /* If there are early-boot callbacks, move them to nocb lists. */
2270 if (!rcu_segcblist_empty(&rdp->cblist)) {
2271 rdp->nocb_head = rcu_segcblist_head(&rdp->cblist);
2272 rdp->nocb_tail = rcu_segcblist_tail(&rdp->cblist);
2273 atomic_long_set(&rdp->nocb_q_count,
2274 rcu_segcblist_n_cbs(&rdp->cblist));
2275 atomic_long_set(&rdp->nocb_q_count_lazy,
2276 rcu_segcblist_n_lazy_cbs(&rdp->cblist));
2277 rcu_segcblist_init(&rdp->cblist);
2279 rcu_segcblist_disable(&rdp->cblist);
2280 return true;
2284 * Bind the current task to the offloaded CPUs. If there are no offloaded
2285 * CPUs, leave the task unbound. Splat if the bind attempt fails.
2287 void rcu_bind_current_to_nocb(void)
2289 if (cpumask_available(rcu_nocb_mask) && cpumask_weight(rcu_nocb_mask))
2290 WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask));
2292 EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb);
2295 * Return the number of RCU callbacks still queued from the specified
2296 * CPU, which must be a nocbs CPU.
2298 static unsigned long rcu_get_n_cbs_nocb_cpu(struct rcu_data *rdp)
2300 return atomic_long_read(&rdp->nocb_q_count);
2303 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2305 static bool rcu_nocb_cpu_needs_barrier(int cpu)
2307 WARN_ON_ONCE(1); /* Should be dead code. */
2308 return false;
2311 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
2315 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
2317 return NULL;
2320 static void rcu_init_one_nocb(struct rcu_node *rnp)
2324 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2325 bool lazy, unsigned long flags)
2327 return false;
2330 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_data *my_rdp,
2331 struct rcu_data *rdp,
2332 unsigned long flags)
2334 return false;
2337 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2341 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2343 return false;
2346 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2350 static void rcu_spawn_cpu_nocb_kthread(int cpu)
2354 static void __init rcu_spawn_nocb_kthreads(void)
2358 static bool init_nocb_callback_list(struct rcu_data *rdp)
2360 return false;
2363 static unsigned long rcu_get_n_cbs_nocb_cpu(struct rcu_data *rdp)
2365 return 0;
2368 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2371 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2372 * grace-period kthread will do force_quiescent_state() processing?
2373 * The idea is to avoid waking up RCU core processing on such a
2374 * CPU unless the grace period has extended for too long.
2376 * This code relies on the fact that all NO_HZ_FULL CPUs are also
2377 * CONFIG_RCU_NOCB_CPU CPUs.
2379 static bool rcu_nohz_full_cpu(void)
2381 #ifdef CONFIG_NO_HZ_FULL
2382 if (tick_nohz_full_cpu(smp_processor_id()) &&
2383 (!rcu_gp_in_progress() ||
2384 ULONG_CMP_LT(jiffies, READ_ONCE(rcu_state.gp_start) + HZ)))
2385 return true;
2386 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2387 return false;
2391 * Bind the RCU grace-period kthreads to the housekeeping CPU.
2393 static void rcu_bind_gp_kthread(void)
2395 if (!tick_nohz_full_enabled())
2396 return;
2397 housekeeping_affine(current, HK_FLAG_RCU);
2400 /* Record the current task on dyntick-idle entry. */
2401 static void rcu_dynticks_task_enter(void)
2403 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2404 WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
2405 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2408 /* Record no current task on dyntick-idle exit. */
2409 static void rcu_dynticks_task_exit(void)
2411 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2412 WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
2413 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */