1 // SPDX-License-Identifier: GPL-2.0
3 // Freescale DMA ALSA SoC PCM driver
5 // Author: Timur Tabi <timur@freescale.com>
7 // Copyright 2007-2010 Freescale Semiconductor, Inc.
9 // This driver implements ASoC support for the Elo DMA controller, which is
10 // the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
11 // the PCM driver is what handles the DMA buffer.
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/platform_device.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/interrupt.h>
18 #include <linux/delay.h>
19 #include <linux/gfp.h>
20 #include <linux/of_address.h>
21 #include <linux/of_irq.h>
22 #include <linux/of_platform.h>
23 #include <linux/list.h>
24 #include <linux/slab.h>
26 #include <sound/core.h>
27 #include <sound/pcm.h>
28 #include <sound/pcm_params.h>
29 #include <sound/soc.h>
34 #include "fsl_ssi.h" /* For the offset of stx0 and srx0 */
36 #define DRV_NAME "fsl_dma"
39 * The formats that the DMA controller supports, which is anything
40 * that is 8, 16, or 32 bits.
42 #define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 | \
43 SNDRV_PCM_FMTBIT_U8 | \
44 SNDRV_PCM_FMTBIT_S16_LE | \
45 SNDRV_PCM_FMTBIT_S16_BE | \
46 SNDRV_PCM_FMTBIT_U16_LE | \
47 SNDRV_PCM_FMTBIT_U16_BE | \
48 SNDRV_PCM_FMTBIT_S24_LE | \
49 SNDRV_PCM_FMTBIT_S24_BE | \
50 SNDRV_PCM_FMTBIT_U24_LE | \
51 SNDRV_PCM_FMTBIT_U24_BE | \
52 SNDRV_PCM_FMTBIT_S32_LE | \
53 SNDRV_PCM_FMTBIT_S32_BE | \
54 SNDRV_PCM_FMTBIT_U32_LE | \
55 SNDRV_PCM_FMTBIT_U32_BE)
57 struct snd_soc_component_driver dai
;
58 dma_addr_t ssi_stx_phys
;
59 dma_addr_t ssi_srx_phys
;
60 unsigned int ssi_fifo_depth
;
61 struct ccsr_dma_channel __iomem
*channel
;
67 * The number of DMA links to use. Two is the bare minimum, but if you
68 * have really small links you might need more.
70 #define NUM_DMA_LINKS 2
72 /** fsl_dma_private: p-substream DMA data
74 * Each substream has a 1-to-1 association with a DMA channel.
76 * The link[] array is first because it needs to be aligned on a 32-byte
77 * boundary, so putting it first will ensure alignment without padding the
80 * @link[]: array of link descriptors
81 * @dma_channel: pointer to the DMA channel's registers
82 * @irq: IRQ for this DMA channel
83 * @substream: pointer to the substream object, needed by the ISR
84 * @ssi_sxx_phys: bus address of the STX or SRX register to use
85 * @ld_buf_phys: physical address of the LD buffer
86 * @current_link: index into link[] of the link currently being processed
87 * @dma_buf_phys: physical address of the DMA buffer
88 * @dma_buf_next: physical address of the next period to process
89 * @dma_buf_end: physical address of the byte after the end of the DMA
90 * @buffer period_size: the size of a single period
91 * @num_periods: the number of periods in the DMA buffer
93 struct fsl_dma_private
{
94 struct fsl_dma_link_descriptor link
[NUM_DMA_LINKS
];
95 struct ccsr_dma_channel __iomem
*dma_channel
;
97 struct snd_pcm_substream
*substream
;
98 dma_addr_t ssi_sxx_phys
;
99 unsigned int ssi_fifo_depth
;
100 dma_addr_t ld_buf_phys
;
101 unsigned int current_link
;
102 dma_addr_t dma_buf_phys
;
103 dma_addr_t dma_buf_next
;
104 dma_addr_t dma_buf_end
;
106 unsigned int num_periods
;
110 * fsl_dma_hardare: define characteristics of the PCM hardware.
112 * The PCM hardware is the Freescale DMA controller. This structure defines
113 * the capabilities of that hardware.
115 * Since the sampling rate and data format are not controlled by the DMA
116 * controller, we specify no limits for those values. The only exception is
117 * period_bytes_min, which is set to a reasonably low value to prevent the
118 * DMA controller from generating too many interrupts per second.
120 * Since each link descriptor has a 32-bit byte count field, we set
121 * period_bytes_max to the largest 32-bit number. We also have no maximum
124 * Note that we specify SNDRV_PCM_INFO_JOINT_DUPLEX here, but only because a
125 * limitation in the SSI driver requires the sample rates for playback and
126 * capture to be the same.
128 static const struct snd_pcm_hardware fsl_dma_hardware
= {
130 .info
= SNDRV_PCM_INFO_INTERLEAVED
|
131 SNDRV_PCM_INFO_MMAP
|
132 SNDRV_PCM_INFO_MMAP_VALID
|
133 SNDRV_PCM_INFO_JOINT_DUPLEX
|
134 SNDRV_PCM_INFO_PAUSE
,
135 .formats
= FSLDMA_PCM_FORMATS
,
136 .period_bytes_min
= 512, /* A reasonable limit */
137 .period_bytes_max
= (u32
) -1,
138 .periods_min
= NUM_DMA_LINKS
,
139 .periods_max
= (unsigned int) -1,
140 .buffer_bytes_max
= 128 * 1024, /* A reasonable limit */
144 * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
146 * This function should be called by the ISR whenever the DMA controller
147 * halts data transfer.
149 static void fsl_dma_abort_stream(struct snd_pcm_substream
*substream
)
151 snd_pcm_stop_xrun(substream
);
155 * fsl_dma_update_pointers - update LD pointers to point to the next period
157 * As each period is completed, this function changes the the link
158 * descriptor pointers for that period to point to the next period.
160 static void fsl_dma_update_pointers(struct fsl_dma_private
*dma_private
)
162 struct fsl_dma_link_descriptor
*link
=
163 &dma_private
->link
[dma_private
->current_link
];
165 /* Update our link descriptors to point to the next period. On a 36-bit
166 * system, we also need to update the ESAD bits. We also set (keep) the
167 * snoop bits. See the comments in fsl_dma_hw_params() about snooping.
169 if (dma_private
->substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
) {
170 link
->source_addr
= cpu_to_be32(dma_private
->dma_buf_next
);
171 #ifdef CONFIG_PHYS_64BIT
172 link
->source_attr
= cpu_to_be32(CCSR_DMA_ATR_SNOOP
|
173 upper_32_bits(dma_private
->dma_buf_next
));
176 link
->dest_addr
= cpu_to_be32(dma_private
->dma_buf_next
);
177 #ifdef CONFIG_PHYS_64BIT
178 link
->dest_attr
= cpu_to_be32(CCSR_DMA_ATR_SNOOP
|
179 upper_32_bits(dma_private
->dma_buf_next
));
183 /* Update our variables for next time */
184 dma_private
->dma_buf_next
+= dma_private
->period_size
;
186 if (dma_private
->dma_buf_next
>= dma_private
->dma_buf_end
)
187 dma_private
->dma_buf_next
= dma_private
->dma_buf_phys
;
189 if (++dma_private
->current_link
>= NUM_DMA_LINKS
)
190 dma_private
->current_link
= 0;
194 * fsl_dma_isr: interrupt handler for the DMA controller
196 * @irq: IRQ of the DMA channel
197 * @dev_id: pointer to the dma_private structure for this DMA channel
199 static irqreturn_t
fsl_dma_isr(int irq
, void *dev_id
)
201 struct fsl_dma_private
*dma_private
= dev_id
;
202 struct snd_pcm_substream
*substream
= dma_private
->substream
;
203 struct snd_soc_pcm_runtime
*rtd
= substream
->private_data
;
204 struct snd_soc_component
*component
= snd_soc_rtdcom_lookup(rtd
, DRV_NAME
);
205 struct device
*dev
= component
->dev
;
206 struct ccsr_dma_channel __iomem
*dma_channel
= dma_private
->dma_channel
;
207 irqreturn_t ret
= IRQ_NONE
;
210 /* We got an interrupt, so read the status register to see what we
211 were interrupted for.
213 sr
= in_be32(&dma_channel
->sr
);
215 if (sr
& CCSR_DMA_SR_TE
) {
216 dev_err(dev
, "dma transmit error\n");
217 fsl_dma_abort_stream(substream
);
218 sr2
|= CCSR_DMA_SR_TE
;
222 if (sr
& CCSR_DMA_SR_CH
)
225 if (sr
& CCSR_DMA_SR_PE
) {
226 dev_err(dev
, "dma programming error\n");
227 fsl_dma_abort_stream(substream
);
228 sr2
|= CCSR_DMA_SR_PE
;
232 if (sr
& CCSR_DMA_SR_EOLNI
) {
233 sr2
|= CCSR_DMA_SR_EOLNI
;
237 if (sr
& CCSR_DMA_SR_CB
)
240 if (sr
& CCSR_DMA_SR_EOSI
) {
241 /* Tell ALSA we completed a period. */
242 snd_pcm_period_elapsed(substream
);
245 * Update our link descriptors to point to the next period. We
246 * only need to do this if the number of periods is not equal to
247 * the number of links.
249 if (dma_private
->num_periods
!= NUM_DMA_LINKS
)
250 fsl_dma_update_pointers(dma_private
);
252 sr2
|= CCSR_DMA_SR_EOSI
;
256 if (sr
& CCSR_DMA_SR_EOLSI
) {
257 sr2
|= CCSR_DMA_SR_EOLSI
;
261 /* Clear the bits that we set */
263 out_be32(&dma_channel
->sr
, sr2
);
269 * fsl_dma_new: initialize this PCM driver.
271 * This function is called when the codec driver calls snd_soc_new_pcms(),
272 * once for each .dai_link in the machine driver's snd_soc_card
275 * snd_dma_alloc_pages() is just a front-end to dma_alloc_coherent(), which
276 * (currently) always allocates the DMA buffer in lowmem, even if GFP_HIGHMEM
277 * is specified. Therefore, any DMA buffers we allocate will always be in low
278 * memory, but we support for 36-bit physical addresses anyway.
280 * Regardless of where the memory is actually allocated, since the device can
281 * technically DMA to any 36-bit address, we do need to set the DMA mask to 36.
283 static int fsl_dma_new(struct snd_soc_pcm_runtime
*rtd
)
285 struct snd_card
*card
= rtd
->card
->snd_card
;
286 struct snd_pcm
*pcm
= rtd
->pcm
;
289 ret
= dma_coerce_mask_and_coherent(card
->dev
, DMA_BIT_MASK(36));
293 /* Some codecs have separate DAIs for playback and capture, so we
294 * should allocate a DMA buffer only for the streams that are valid.
297 if (pcm
->streams
[SNDRV_PCM_STREAM_PLAYBACK
].substream
) {
298 ret
= snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV
, card
->dev
,
299 fsl_dma_hardware
.buffer_bytes_max
,
300 &pcm
->streams
[SNDRV_PCM_STREAM_PLAYBACK
].substream
->dma_buffer
);
302 dev_err(card
->dev
, "can't alloc playback dma buffer\n");
307 if (pcm
->streams
[SNDRV_PCM_STREAM_CAPTURE
].substream
) {
308 ret
= snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV
, card
->dev
,
309 fsl_dma_hardware
.buffer_bytes_max
,
310 &pcm
->streams
[SNDRV_PCM_STREAM_CAPTURE
].substream
->dma_buffer
);
312 dev_err(card
->dev
, "can't alloc capture dma buffer\n");
313 snd_dma_free_pages(&pcm
->streams
[SNDRV_PCM_STREAM_PLAYBACK
].substream
->dma_buffer
);
322 * fsl_dma_open: open a new substream.
324 * Each substream has its own DMA buffer.
326 * ALSA divides the DMA buffer into N periods. We create NUM_DMA_LINKS link
327 * descriptors that ping-pong from one period to the next. For example, if
328 * there are six periods and two link descriptors, this is how they look
329 * before playback starts:
331 * The last link descriptor
332 * ____________ points back to the first
341 * _________________________________________
342 * | | | | | | | The DMA buffer is
343 * | | | | | | | divided into 6 parts
344 * |______|______|______|______|______|______|
346 * and here's how they look after the first period is finished playing:
358 * _________________________________________
361 * |______|______|______|______|______|______|
363 * The first link descriptor now points to the third period. The DMA
364 * controller is currently playing the second period. When it finishes, it
365 * will jump back to the first descriptor and play the third period.
367 * There are four reasons we do this:
369 * 1. The only way to get the DMA controller to automatically restart the
370 * transfer when it gets to the end of the buffer is to use chaining
371 * mode. Basic direct mode doesn't offer that feature.
372 * 2. We need to receive an interrupt at the end of every period. The DMA
373 * controller can generate an interrupt at the end of every link transfer
374 * (aka segment). Making each period into a DMA segment will give us the
375 * interrupts we need.
376 * 3. By creating only two link descriptors, regardless of the number of
377 * periods, we do not need to reallocate the link descriptors if the
378 * number of periods changes.
379 * 4. All of the audio data is still stored in a single, contiguous DMA
380 * buffer, which is what ALSA expects. We're just dividing it into
381 * contiguous parts, and creating a link descriptor for each one.
383 static int fsl_dma_open(struct snd_pcm_substream
*substream
)
385 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
386 struct snd_soc_pcm_runtime
*rtd
= substream
->private_data
;
387 struct snd_soc_component
*component
= snd_soc_rtdcom_lookup(rtd
, DRV_NAME
);
388 struct device
*dev
= component
->dev
;
389 struct dma_object
*dma
=
390 container_of(component
->driver
, struct dma_object
, dai
);
391 struct fsl_dma_private
*dma_private
;
392 struct ccsr_dma_channel __iomem
*dma_channel
;
393 dma_addr_t ld_buf_phys
;
394 u64 temp_link
; /* Pointer to next link descriptor */
396 unsigned int channel
;
401 * Reject any DMA buffer whose size is not a multiple of the period
402 * size. We need to make sure that the DMA buffer can be evenly divided
405 ret
= snd_pcm_hw_constraint_integer(runtime
,
406 SNDRV_PCM_HW_PARAM_PERIODS
);
408 dev_err(dev
, "invalid buffer size\n");
412 channel
= substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
? 0 : 1;
415 dev_err(dev
, "dma channel already assigned\n");
419 dma_private
= dma_alloc_coherent(dev
, sizeof(struct fsl_dma_private
),
420 &ld_buf_phys
, GFP_KERNEL
);
422 dev_err(dev
, "can't allocate dma private data\n");
425 if (substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
)
426 dma_private
->ssi_sxx_phys
= dma
->ssi_stx_phys
;
428 dma_private
->ssi_sxx_phys
= dma
->ssi_srx_phys
;
430 dma_private
->ssi_fifo_depth
= dma
->ssi_fifo_depth
;
431 dma_private
->dma_channel
= dma
->channel
;
432 dma_private
->irq
= dma
->irq
;
433 dma_private
->substream
= substream
;
434 dma_private
->ld_buf_phys
= ld_buf_phys
;
435 dma_private
->dma_buf_phys
= substream
->dma_buffer
.addr
;
437 ret
= request_irq(dma_private
->irq
, fsl_dma_isr
, 0, "fsldma-audio",
440 dev_err(dev
, "can't register ISR for IRQ %u (ret=%i)\n",
441 dma_private
->irq
, ret
);
442 dma_free_coherent(dev
, sizeof(struct fsl_dma_private
),
443 dma_private
, dma_private
->ld_buf_phys
);
447 dma
->assigned
= true;
449 snd_pcm_set_runtime_buffer(substream
, &substream
->dma_buffer
);
450 snd_soc_set_runtime_hwparams(substream
, &fsl_dma_hardware
);
451 runtime
->private_data
= dma_private
;
453 /* Program the fixed DMA controller parameters */
455 dma_channel
= dma_private
->dma_channel
;
457 temp_link
= dma_private
->ld_buf_phys
+
458 sizeof(struct fsl_dma_link_descriptor
);
460 for (i
= 0; i
< NUM_DMA_LINKS
; i
++) {
461 dma_private
->link
[i
].next
= cpu_to_be64(temp_link
);
463 temp_link
+= sizeof(struct fsl_dma_link_descriptor
);
465 /* The last link descriptor points to the first */
466 dma_private
->link
[i
- 1].next
= cpu_to_be64(dma_private
->ld_buf_phys
);
468 /* Tell the DMA controller where the first link descriptor is */
469 out_be32(&dma_channel
->clndar
,
470 CCSR_DMA_CLNDAR_ADDR(dma_private
->ld_buf_phys
));
471 out_be32(&dma_channel
->eclndar
,
472 CCSR_DMA_ECLNDAR_ADDR(dma_private
->ld_buf_phys
));
474 /* The manual says the BCR must be clear before enabling EMP */
475 out_be32(&dma_channel
->bcr
, 0);
478 * Program the mode register for interrupts, external master control,
479 * and source/destination hold. Also clear the Channel Abort bit.
481 mr
= in_be32(&dma_channel
->mr
) &
482 ~(CCSR_DMA_MR_CA
| CCSR_DMA_MR_DAHE
| CCSR_DMA_MR_SAHE
);
485 * We want External Master Start and External Master Pause enabled,
486 * because the SSI is controlling the DMA controller. We want the DMA
487 * controller to be set up in advance, and then we signal only the SSI
488 * to start transferring.
490 * We want End-Of-Segment Interrupts enabled, because this will generate
491 * an interrupt at the end of each segment (each link descriptor
492 * represents one segment). Each DMA segment is the same thing as an
493 * ALSA period, so this is how we get an interrupt at the end of every
496 * We want Error Interrupt enabled, so that we can get an error if
497 * the DMA controller is mis-programmed somehow.
499 mr
|= CCSR_DMA_MR_EOSIE
| CCSR_DMA_MR_EIE
| CCSR_DMA_MR_EMP_EN
|
502 /* For playback, we want the destination address to be held. For
503 capture, set the source address to be held. */
504 mr
|= (substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
) ?
505 CCSR_DMA_MR_DAHE
: CCSR_DMA_MR_SAHE
;
507 out_be32(&dma_channel
->mr
, mr
);
513 * fsl_dma_hw_params: continue initializing the DMA links
515 * This function obtains hardware parameters about the opened stream and
516 * programs the DMA controller accordingly.
518 * One drawback of big-endian is that when copying integers of different
519 * sizes to a fixed-sized register, the address to which the integer must be
520 * copied is dependent on the size of the integer.
522 * For example, if P is the address of a 32-bit register, and X is a 32-bit
523 * integer, then X should be copied to address P. However, if X is a 16-bit
524 * integer, then it should be copied to P+2. If X is an 8-bit register,
525 * then it should be copied to P+3.
527 * So for playback of 8-bit samples, the DMA controller must transfer single
528 * bytes from the DMA buffer to the last byte of the STX0 register, i.e.
529 * offset by 3 bytes. For 16-bit samples, the offset is two bytes.
531 * For 24-bit samples, the offset is 1 byte. However, the DMA controller
532 * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
533 * and 8 bytes at a time). So we do not support packed 24-bit samples.
534 * 24-bit data must be padded to 32 bits.
536 static int fsl_dma_hw_params(struct snd_pcm_substream
*substream
,
537 struct snd_pcm_hw_params
*hw_params
)
539 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
540 struct fsl_dma_private
*dma_private
= runtime
->private_data
;
541 struct snd_soc_pcm_runtime
*rtd
= substream
->private_data
;
542 struct snd_soc_component
*component
= snd_soc_rtdcom_lookup(rtd
, DRV_NAME
);
543 struct device
*dev
= component
->dev
;
545 /* Number of bits per sample */
546 unsigned int sample_bits
=
547 snd_pcm_format_physical_width(params_format(hw_params
));
549 /* Number of bytes per frame */
550 unsigned int sample_bytes
= sample_bits
/ 8;
552 /* Bus address of SSI STX register */
553 dma_addr_t ssi_sxx_phys
= dma_private
->ssi_sxx_phys
;
555 /* Size of the DMA buffer, in bytes */
556 size_t buffer_size
= params_buffer_bytes(hw_params
);
558 /* Number of bytes per period */
559 size_t period_size
= params_period_bytes(hw_params
);
561 /* Pointer to next period */
562 dma_addr_t temp_addr
= substream
->dma_buffer
.addr
;
564 /* Pointer to DMA controller */
565 struct ccsr_dma_channel __iomem
*dma_channel
= dma_private
->dma_channel
;
567 u32 mr
; /* DMA Mode Register */
571 /* Initialize our DMA tracking variables */
572 dma_private
->period_size
= period_size
;
573 dma_private
->num_periods
= params_periods(hw_params
);
574 dma_private
->dma_buf_end
= dma_private
->dma_buf_phys
+ buffer_size
;
575 dma_private
->dma_buf_next
= dma_private
->dma_buf_phys
+
576 (NUM_DMA_LINKS
* period_size
);
578 if (dma_private
->dma_buf_next
>= dma_private
->dma_buf_end
)
579 /* This happens if the number of periods == NUM_DMA_LINKS */
580 dma_private
->dma_buf_next
= dma_private
->dma_buf_phys
;
582 mr
= in_be32(&dma_channel
->mr
) & ~(CCSR_DMA_MR_BWC_MASK
|
583 CCSR_DMA_MR_SAHTS_MASK
| CCSR_DMA_MR_DAHTS_MASK
);
585 /* Due to a quirk of the SSI's STX register, the target address
586 * for the DMA operations depends on the sample size. So we calculate
587 * that offset here. While we're at it, also tell the DMA controller
588 * how much data to transfer per sample.
590 switch (sample_bits
) {
592 mr
|= CCSR_DMA_MR_DAHTS_1
| CCSR_DMA_MR_SAHTS_1
;
596 mr
|= CCSR_DMA_MR_DAHTS_2
| CCSR_DMA_MR_SAHTS_2
;
600 mr
|= CCSR_DMA_MR_DAHTS_4
| CCSR_DMA_MR_SAHTS_4
;
603 /* We should never get here */
604 dev_err(dev
, "unsupported sample size %u\n", sample_bits
);
609 * BWC determines how many bytes are sent/received before the DMA
610 * controller checks the SSI to see if it needs to stop. BWC should
611 * always be a multiple of the frame size, so that we always transmit
612 * whole frames. Each frame occupies two slots in the FIFO. The
613 * parameter for CCSR_DMA_MR_BWC() is rounded down the next power of two
614 * (MR[BWC] can only represent even powers of two).
616 * To simplify the process, we set BWC to the largest value that is
617 * less than or equal to the FIFO watermark. For playback, this ensures
618 * that we transfer the maximum amount without overrunning the FIFO.
619 * For capture, this ensures that we transfer the maximum amount without
620 * underrunning the FIFO.
623 * w = SSI watermark value (which equals f - 2)
624 * b = DMA bandwidth count (in bytes)
625 * s = sample size (in bytes, which equals frame_size * 2)
627 * For playback, we never transmit more than the transmit FIFO
628 * watermark, otherwise we might write more data than the FIFO can hold.
629 * The watermark is equal to the FIFO depth minus two.
631 * For capture, two equations must hold:
635 * So, b > 2 * s, but b must also be <= s * w. To simplify, we set
636 * b = s * w, which is equal to
637 * (dma_private->ssi_fifo_depth - 2) * sample_bytes.
639 mr
|= CCSR_DMA_MR_BWC((dma_private
->ssi_fifo_depth
- 2) * sample_bytes
);
641 out_be32(&dma_channel
->mr
, mr
);
643 for (i
= 0; i
< NUM_DMA_LINKS
; i
++) {
644 struct fsl_dma_link_descriptor
*link
= &dma_private
->link
[i
];
646 link
->count
= cpu_to_be32(period_size
);
648 /* The snoop bit tells the DMA controller whether it should tell
649 * the ECM to snoop during a read or write to an address. For
650 * audio, we use DMA to transfer data between memory and an I/O
651 * device (the SSI's STX0 or SRX0 register). Snooping is only
652 * needed if there is a cache, so we need to snoop memory
653 * addresses only. For playback, that means we snoop the source
654 * but not the destination. For capture, we snoop the
655 * destination but not the source.
657 * Note that failing to snoop properly is unlikely to cause
658 * cache incoherency if the period size is larger than the
659 * size of L1 cache. This is because filling in one period will
660 * flush out the data for the previous period. So if you
661 * increased period_bytes_min to a large enough size, you might
662 * get more performance by not snooping, and you'll still be
663 * okay. You'll need to update fsl_dma_update_pointers() also.
665 if (substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
) {
666 link
->source_addr
= cpu_to_be32(temp_addr
);
667 link
->source_attr
= cpu_to_be32(CCSR_DMA_ATR_SNOOP
|
668 upper_32_bits(temp_addr
));
670 link
->dest_addr
= cpu_to_be32(ssi_sxx_phys
);
671 link
->dest_attr
= cpu_to_be32(CCSR_DMA_ATR_NOSNOOP
|
672 upper_32_bits(ssi_sxx_phys
));
674 link
->source_addr
= cpu_to_be32(ssi_sxx_phys
);
675 link
->source_attr
= cpu_to_be32(CCSR_DMA_ATR_NOSNOOP
|
676 upper_32_bits(ssi_sxx_phys
));
678 link
->dest_addr
= cpu_to_be32(temp_addr
);
679 link
->dest_attr
= cpu_to_be32(CCSR_DMA_ATR_SNOOP
|
680 upper_32_bits(temp_addr
));
683 temp_addr
+= period_size
;
690 * fsl_dma_pointer: determine the current position of the DMA transfer
692 * This function is called by ALSA when ALSA wants to know where in the
693 * stream buffer the hardware currently is.
695 * For playback, the SAR register contains the physical address of the most
696 * recent DMA transfer. For capture, the value is in the DAR register.
698 * The base address of the buffer is stored in the source_addr field of the
699 * first link descriptor.
701 static snd_pcm_uframes_t
fsl_dma_pointer(struct snd_pcm_substream
*substream
)
703 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
704 struct fsl_dma_private
*dma_private
= runtime
->private_data
;
705 struct snd_soc_pcm_runtime
*rtd
= substream
->private_data
;
706 struct snd_soc_component
*component
= snd_soc_rtdcom_lookup(rtd
, DRV_NAME
);
707 struct device
*dev
= component
->dev
;
708 struct ccsr_dma_channel __iomem
*dma_channel
= dma_private
->dma_channel
;
710 snd_pcm_uframes_t frames
;
712 /* Obtain the current DMA pointer, but don't read the ESAD bits if we
713 * only have 32-bit DMA addresses. This function is typically called
714 * in interrupt context, so we need to optimize it.
716 if (substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
) {
717 position
= in_be32(&dma_channel
->sar
);
718 #ifdef CONFIG_PHYS_64BIT
719 position
|= (u64
)(in_be32(&dma_channel
->satr
) &
720 CCSR_DMA_ATR_ESAD_MASK
) << 32;
723 position
= in_be32(&dma_channel
->dar
);
724 #ifdef CONFIG_PHYS_64BIT
725 position
|= (u64
)(in_be32(&dma_channel
->datr
) &
726 CCSR_DMA_ATR_ESAD_MASK
) << 32;
731 * When capture is started, the SSI immediately starts to fill its FIFO.
732 * This means that the DMA controller is not started until the FIFO is
733 * full. However, ALSA calls this function before that happens, when
734 * MR.DAR is still zero. In this case, just return zero to indicate
735 * that nothing has been received yet.
740 if ((position
< dma_private
->dma_buf_phys
) ||
741 (position
> dma_private
->dma_buf_end
)) {
742 dev_err(dev
, "dma pointer is out of range, halting stream\n");
743 return SNDRV_PCM_POS_XRUN
;
746 frames
= bytes_to_frames(runtime
, position
- dma_private
->dma_buf_phys
);
749 * If the current address is just past the end of the buffer, wrap it
752 if (frames
== runtime
->buffer_size
)
759 * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
761 * Release the resources allocated in fsl_dma_hw_params() and de-program the
764 * This function can be called multiple times.
766 static int fsl_dma_hw_free(struct snd_pcm_substream
*substream
)
768 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
769 struct fsl_dma_private
*dma_private
= runtime
->private_data
;
772 struct ccsr_dma_channel __iomem
*dma_channel
;
774 dma_channel
= dma_private
->dma_channel
;
777 out_be32(&dma_channel
->mr
, CCSR_DMA_MR_CA
);
778 out_be32(&dma_channel
->mr
, 0);
780 /* Reset all the other registers */
781 out_be32(&dma_channel
->sr
, -1);
782 out_be32(&dma_channel
->clndar
, 0);
783 out_be32(&dma_channel
->eclndar
, 0);
784 out_be32(&dma_channel
->satr
, 0);
785 out_be32(&dma_channel
->sar
, 0);
786 out_be32(&dma_channel
->datr
, 0);
787 out_be32(&dma_channel
->dar
, 0);
788 out_be32(&dma_channel
->bcr
, 0);
789 out_be32(&dma_channel
->nlndar
, 0);
790 out_be32(&dma_channel
->enlndar
, 0);
797 * fsl_dma_close: close the stream.
799 static int fsl_dma_close(struct snd_pcm_substream
*substream
)
801 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
802 struct fsl_dma_private
*dma_private
= runtime
->private_data
;
803 struct snd_soc_pcm_runtime
*rtd
= substream
->private_data
;
804 struct snd_soc_component
*component
= snd_soc_rtdcom_lookup(rtd
, DRV_NAME
);
805 struct device
*dev
= component
->dev
;
806 struct dma_object
*dma
=
807 container_of(component
->driver
, struct dma_object
, dai
);
810 if (dma_private
->irq
)
811 free_irq(dma_private
->irq
, dma_private
);
813 /* Deallocate the fsl_dma_private structure */
814 dma_free_coherent(dev
, sizeof(struct fsl_dma_private
),
815 dma_private
, dma_private
->ld_buf_phys
);
816 substream
->runtime
->private_data
= NULL
;
819 dma
->assigned
= false;
825 * Remove this PCM driver.
827 static void fsl_dma_free_dma_buffers(struct snd_pcm
*pcm
)
829 struct snd_pcm_substream
*substream
;
832 for (i
= 0; i
< ARRAY_SIZE(pcm
->streams
); i
++) {
833 substream
= pcm
->streams
[i
].substream
;
835 snd_dma_free_pages(&substream
->dma_buffer
);
836 substream
->dma_buffer
.area
= NULL
;
837 substream
->dma_buffer
.addr
= 0;
843 * find_ssi_node -- returns the SSI node that points to its DMA channel node
845 * Although this DMA driver attempts to operate independently of the other
846 * devices, it still needs to determine some information about the SSI device
847 * that it's working with. Unfortunately, the device tree does not contain
848 * a pointer from the DMA channel node to the SSI node -- the pointer goes the
849 * other way. So we need to scan the device tree for SSI nodes until we find
850 * the one that points to the given DMA channel node. It's ugly, but at least
851 * it's contained in this one function.
853 static struct device_node
*find_ssi_node(struct device_node
*dma_channel_np
)
855 struct device_node
*ssi_np
, *np
;
857 for_each_compatible_node(ssi_np
, NULL
, "fsl,mpc8610-ssi") {
858 /* Check each DMA phandle to see if it points to us. We
859 * assume that device_node pointers are a valid comparison.
861 np
= of_parse_phandle(ssi_np
, "fsl,playback-dma", 0);
863 if (np
== dma_channel_np
)
866 np
= of_parse_phandle(ssi_np
, "fsl,capture-dma", 0);
868 if (np
== dma_channel_np
)
875 static const struct snd_pcm_ops fsl_dma_ops
= {
876 .open
= fsl_dma_open
,
877 .close
= fsl_dma_close
,
878 .ioctl
= snd_pcm_lib_ioctl
,
879 .hw_params
= fsl_dma_hw_params
,
880 .hw_free
= fsl_dma_hw_free
,
881 .pointer
= fsl_dma_pointer
,
884 static int fsl_soc_dma_probe(struct platform_device
*pdev
)
886 struct dma_object
*dma
;
887 struct device_node
*np
= pdev
->dev
.of_node
;
888 struct device_node
*ssi_np
;
890 const uint32_t *iprop
;
893 /* Find the SSI node that points to us. */
894 ssi_np
= find_ssi_node(np
);
896 dev_err(&pdev
->dev
, "cannot find parent SSI node\n");
900 ret
= of_address_to_resource(ssi_np
, 0, &res
);
902 dev_err(&pdev
->dev
, "could not determine resources for %pOF\n",
908 dma
= kzalloc(sizeof(*dma
), GFP_KERNEL
);
914 dma
->dai
.name
= DRV_NAME
;
915 dma
->dai
.ops
= &fsl_dma_ops
;
916 dma
->dai
.pcm_new
= fsl_dma_new
;
917 dma
->dai
.pcm_free
= fsl_dma_free_dma_buffers
;
919 /* Store the SSI-specific information that we need */
920 dma
->ssi_stx_phys
= res
.start
+ REG_SSI_STX0
;
921 dma
->ssi_srx_phys
= res
.start
+ REG_SSI_SRX0
;
923 iprop
= of_get_property(ssi_np
, "fsl,fifo-depth", NULL
);
925 dma
->ssi_fifo_depth
= be32_to_cpup(iprop
);
927 /* Older 8610 DTs didn't have the fifo-depth property */
928 dma
->ssi_fifo_depth
= 8;
932 ret
= devm_snd_soc_register_component(&pdev
->dev
, &dma
->dai
, NULL
, 0);
934 dev_err(&pdev
->dev
, "could not register platform\n");
939 dma
->channel
= of_iomap(np
, 0);
940 dma
->irq
= irq_of_parse_and_map(np
, 0);
942 dev_set_drvdata(&pdev
->dev
, dma
);
947 static int fsl_soc_dma_remove(struct platform_device
*pdev
)
949 struct dma_object
*dma
= dev_get_drvdata(&pdev
->dev
);
951 iounmap(dma
->channel
);
952 irq_dispose_mapping(dma
->irq
);
958 static const struct of_device_id fsl_soc_dma_ids
[] = {
959 { .compatible
= "fsl,ssi-dma-channel", },
962 MODULE_DEVICE_TABLE(of
, fsl_soc_dma_ids
);
964 static struct platform_driver fsl_soc_dma_driver
= {
966 .name
= "fsl-pcm-audio",
967 .of_match_table
= fsl_soc_dma_ids
,
969 .probe
= fsl_soc_dma_probe
,
970 .remove
= fsl_soc_dma_remove
,
973 module_platform_driver(fsl_soc_dma_driver
);
975 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
976 MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM Driver");
977 MODULE_LICENSE("GPL v2");