i2c: cpm: Fix build break due to incompatible pointer types
[linux/fpc-iii.git] / net / rds / iw_rdma.c
blobb09a40c1adceebf170617da3826c82002b04807a
1 /*
2 * Copyright (c) 2006 Oracle. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/ratelimit.h>
37 #include "rds.h"
38 #include "iw.h"
42 * This is stored as mr->r_trans_private.
44 struct rds_iw_mr {
45 struct rds_iw_device *device;
46 struct rds_iw_mr_pool *pool;
47 struct rdma_cm_id *cm_id;
49 struct ib_mr *mr;
51 struct rds_iw_mapping mapping;
52 unsigned char remap_count;
56 * Our own little MR pool
58 struct rds_iw_mr_pool {
59 struct rds_iw_device *device; /* back ptr to the device that owns us */
61 struct mutex flush_lock; /* serialize fmr invalidate */
62 struct work_struct flush_worker; /* flush worker */
64 spinlock_t list_lock; /* protect variables below */
65 atomic_t item_count; /* total # of MRs */
66 atomic_t dirty_count; /* # dirty of MRs */
67 struct list_head dirty_list; /* dirty mappings */
68 struct list_head clean_list; /* unused & unamapped MRs */
69 atomic_t free_pinned; /* memory pinned by free MRs */
70 unsigned long max_message_size; /* in pages */
71 unsigned long max_items;
72 unsigned long max_items_soft;
73 unsigned long max_free_pinned;
74 int max_pages;
77 static void rds_iw_flush_mr_pool(struct rds_iw_mr_pool *pool, int free_all);
78 static void rds_iw_mr_pool_flush_worker(struct work_struct *work);
79 static int rds_iw_init_reg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
80 static int rds_iw_map_reg(struct rds_iw_mr_pool *pool,
81 struct rds_iw_mr *ibmr,
82 struct scatterlist *sg, unsigned int nents);
83 static void rds_iw_free_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
84 static unsigned int rds_iw_unmap_fastreg_list(struct rds_iw_mr_pool *pool,
85 struct list_head *unmap_list,
86 struct list_head *kill_list,
87 int *unpinned);
88 static void rds_iw_destroy_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
90 static int rds_iw_get_device(struct sockaddr_in *src, struct sockaddr_in *dst,
91 struct rds_iw_device **rds_iwdev,
92 struct rdma_cm_id **cm_id)
94 struct rds_iw_device *iwdev;
95 struct rds_iw_cm_id *i_cm_id;
97 *rds_iwdev = NULL;
98 *cm_id = NULL;
100 list_for_each_entry(iwdev, &rds_iw_devices, list) {
101 spin_lock_irq(&iwdev->spinlock);
102 list_for_each_entry(i_cm_id, &iwdev->cm_id_list, list) {
103 struct sockaddr_in *src_addr, *dst_addr;
105 src_addr = (struct sockaddr_in *)&i_cm_id->cm_id->route.addr.src_addr;
106 dst_addr = (struct sockaddr_in *)&i_cm_id->cm_id->route.addr.dst_addr;
108 rdsdebug("local ipaddr = %x port %d, "
109 "remote ipaddr = %x port %d"
110 "..looking for %x port %d, "
111 "remote ipaddr = %x port %d\n",
112 src_addr->sin_addr.s_addr,
113 src_addr->sin_port,
114 dst_addr->sin_addr.s_addr,
115 dst_addr->sin_port,
116 src->sin_addr.s_addr,
117 src->sin_port,
118 dst->sin_addr.s_addr,
119 dst->sin_port);
120 #ifdef WORKING_TUPLE_DETECTION
121 if (src_addr->sin_addr.s_addr == src->sin_addr.s_addr &&
122 src_addr->sin_port == src->sin_port &&
123 dst_addr->sin_addr.s_addr == dst->sin_addr.s_addr &&
124 dst_addr->sin_port == dst->sin_port) {
125 #else
126 /* FIXME - needs to compare the local and remote
127 * ipaddr/port tuple, but the ipaddr is the only
128 * available information in the rds_sock (as the rest are
129 * zero'ed. It doesn't appear to be properly populated
130 * during connection setup...
132 if (src_addr->sin_addr.s_addr == src->sin_addr.s_addr) {
133 #endif
134 spin_unlock_irq(&iwdev->spinlock);
135 *rds_iwdev = iwdev;
136 *cm_id = i_cm_id->cm_id;
137 return 0;
140 spin_unlock_irq(&iwdev->spinlock);
143 return 1;
146 static int rds_iw_add_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id)
148 struct rds_iw_cm_id *i_cm_id;
150 i_cm_id = kmalloc(sizeof *i_cm_id, GFP_KERNEL);
151 if (!i_cm_id)
152 return -ENOMEM;
154 i_cm_id->cm_id = cm_id;
156 spin_lock_irq(&rds_iwdev->spinlock);
157 list_add_tail(&i_cm_id->list, &rds_iwdev->cm_id_list);
158 spin_unlock_irq(&rds_iwdev->spinlock);
160 return 0;
163 static void rds_iw_remove_cm_id(struct rds_iw_device *rds_iwdev,
164 struct rdma_cm_id *cm_id)
166 struct rds_iw_cm_id *i_cm_id;
168 spin_lock_irq(&rds_iwdev->spinlock);
169 list_for_each_entry(i_cm_id, &rds_iwdev->cm_id_list, list) {
170 if (i_cm_id->cm_id == cm_id) {
171 list_del(&i_cm_id->list);
172 kfree(i_cm_id);
173 break;
176 spin_unlock_irq(&rds_iwdev->spinlock);
180 int rds_iw_update_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id)
182 struct sockaddr_in *src_addr, *dst_addr;
183 struct rds_iw_device *rds_iwdev_old;
184 struct rdma_cm_id *pcm_id;
185 int rc;
187 src_addr = (struct sockaddr_in *)&cm_id->route.addr.src_addr;
188 dst_addr = (struct sockaddr_in *)&cm_id->route.addr.dst_addr;
190 rc = rds_iw_get_device(src_addr, dst_addr, &rds_iwdev_old, &pcm_id);
191 if (rc)
192 rds_iw_remove_cm_id(rds_iwdev, cm_id);
194 return rds_iw_add_cm_id(rds_iwdev, cm_id);
197 void rds_iw_add_conn(struct rds_iw_device *rds_iwdev, struct rds_connection *conn)
199 struct rds_iw_connection *ic = conn->c_transport_data;
201 /* conn was previously on the nodev_conns_list */
202 spin_lock_irq(&iw_nodev_conns_lock);
203 BUG_ON(list_empty(&iw_nodev_conns));
204 BUG_ON(list_empty(&ic->iw_node));
205 list_del(&ic->iw_node);
207 spin_lock(&rds_iwdev->spinlock);
208 list_add_tail(&ic->iw_node, &rds_iwdev->conn_list);
209 spin_unlock(&rds_iwdev->spinlock);
210 spin_unlock_irq(&iw_nodev_conns_lock);
212 ic->rds_iwdev = rds_iwdev;
215 void rds_iw_remove_conn(struct rds_iw_device *rds_iwdev, struct rds_connection *conn)
217 struct rds_iw_connection *ic = conn->c_transport_data;
219 /* place conn on nodev_conns_list */
220 spin_lock(&iw_nodev_conns_lock);
222 spin_lock_irq(&rds_iwdev->spinlock);
223 BUG_ON(list_empty(&ic->iw_node));
224 list_del(&ic->iw_node);
225 spin_unlock_irq(&rds_iwdev->spinlock);
227 list_add_tail(&ic->iw_node, &iw_nodev_conns);
229 spin_unlock(&iw_nodev_conns_lock);
231 rds_iw_remove_cm_id(ic->rds_iwdev, ic->i_cm_id);
232 ic->rds_iwdev = NULL;
235 void __rds_iw_destroy_conns(struct list_head *list, spinlock_t *list_lock)
237 struct rds_iw_connection *ic, *_ic;
238 LIST_HEAD(tmp_list);
240 /* avoid calling conn_destroy with irqs off */
241 spin_lock_irq(list_lock);
242 list_splice(list, &tmp_list);
243 INIT_LIST_HEAD(list);
244 spin_unlock_irq(list_lock);
246 list_for_each_entry_safe(ic, _ic, &tmp_list, iw_node)
247 rds_conn_destroy(ic->conn);
250 static void rds_iw_set_scatterlist(struct rds_iw_scatterlist *sg,
251 struct scatterlist *list, unsigned int sg_len)
253 sg->list = list;
254 sg->len = sg_len;
255 sg->dma_len = 0;
256 sg->dma_npages = 0;
257 sg->bytes = 0;
260 static int rds_iw_map_scatterlist(struct rds_iw_device *rds_iwdev,
261 struct rds_iw_scatterlist *sg)
263 struct ib_device *dev = rds_iwdev->dev;
264 int i, ret;
266 WARN_ON(sg->dma_len);
268 sg->dma_len = ib_dma_map_sg(dev, sg->list, sg->len, DMA_BIDIRECTIONAL);
269 if (unlikely(!sg->dma_len)) {
270 printk(KERN_WARNING "RDS/IW: dma_map_sg failed!\n");
271 return -EBUSY;
274 sg->bytes = 0;
275 sg->dma_npages = 0;
277 ret = -EINVAL;
278 for (i = 0; i < sg->dma_len; ++i) {
279 unsigned int dma_len = ib_sg_dma_len(dev, &sg->list[i]);
280 u64 dma_addr = ib_sg_dma_address(dev, &sg->list[i]);
281 u64 end_addr;
283 sg->bytes += dma_len;
285 end_addr = dma_addr + dma_len;
286 if (dma_addr & PAGE_MASK) {
287 if (i > 0)
288 goto out_unmap;
289 dma_addr &= ~PAGE_MASK;
291 if (end_addr & PAGE_MASK) {
292 if (i < sg->dma_len - 1)
293 goto out_unmap;
294 end_addr = (end_addr + PAGE_MASK) & ~PAGE_MASK;
297 sg->dma_npages += (end_addr - dma_addr) >> PAGE_SHIFT;
300 /* Now gather the dma addrs into one list */
301 if (sg->dma_npages > fastreg_message_size)
302 goto out_unmap;
306 return 0;
308 out_unmap:
309 ib_dma_unmap_sg(rds_iwdev->dev, sg->list, sg->len, DMA_BIDIRECTIONAL);
310 sg->dma_len = 0;
311 return ret;
315 struct rds_iw_mr_pool *rds_iw_create_mr_pool(struct rds_iw_device *rds_iwdev)
317 struct rds_iw_mr_pool *pool;
319 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
320 if (!pool) {
321 printk(KERN_WARNING "RDS/IW: rds_iw_create_mr_pool alloc error\n");
322 return ERR_PTR(-ENOMEM);
325 pool->device = rds_iwdev;
326 INIT_LIST_HEAD(&pool->dirty_list);
327 INIT_LIST_HEAD(&pool->clean_list);
328 mutex_init(&pool->flush_lock);
329 spin_lock_init(&pool->list_lock);
330 INIT_WORK(&pool->flush_worker, rds_iw_mr_pool_flush_worker);
332 pool->max_message_size = fastreg_message_size;
333 pool->max_items = fastreg_pool_size;
334 pool->max_free_pinned = pool->max_items * pool->max_message_size / 4;
335 pool->max_pages = fastreg_message_size;
337 /* We never allow more than max_items MRs to be allocated.
338 * When we exceed more than max_items_soft, we start freeing
339 * items more aggressively.
340 * Make sure that max_items > max_items_soft > max_items / 2
342 pool->max_items_soft = pool->max_items * 3 / 4;
344 return pool;
347 void rds_iw_get_mr_info(struct rds_iw_device *rds_iwdev, struct rds_info_rdma_connection *iinfo)
349 struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
351 iinfo->rdma_mr_max = pool->max_items;
352 iinfo->rdma_mr_size = pool->max_pages;
355 void rds_iw_destroy_mr_pool(struct rds_iw_mr_pool *pool)
357 flush_workqueue(rds_wq);
358 rds_iw_flush_mr_pool(pool, 1);
359 BUG_ON(atomic_read(&pool->item_count));
360 BUG_ON(atomic_read(&pool->free_pinned));
361 kfree(pool);
364 static inline struct rds_iw_mr *rds_iw_reuse_fmr(struct rds_iw_mr_pool *pool)
366 struct rds_iw_mr *ibmr = NULL;
367 unsigned long flags;
369 spin_lock_irqsave(&pool->list_lock, flags);
370 if (!list_empty(&pool->clean_list)) {
371 ibmr = list_entry(pool->clean_list.next, struct rds_iw_mr, mapping.m_list);
372 list_del_init(&ibmr->mapping.m_list);
374 spin_unlock_irqrestore(&pool->list_lock, flags);
376 return ibmr;
379 static struct rds_iw_mr *rds_iw_alloc_mr(struct rds_iw_device *rds_iwdev)
381 struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
382 struct rds_iw_mr *ibmr = NULL;
383 int err = 0, iter = 0;
385 while (1) {
386 ibmr = rds_iw_reuse_fmr(pool);
387 if (ibmr)
388 return ibmr;
390 /* No clean MRs - now we have the choice of either
391 * allocating a fresh MR up to the limit imposed by the
392 * driver, or flush any dirty unused MRs.
393 * We try to avoid stalling in the send path if possible,
394 * so we allocate as long as we're allowed to.
396 * We're fussy with enforcing the FMR limit, though. If the driver
397 * tells us we can't use more than N fmrs, we shouldn't start
398 * arguing with it */
399 if (atomic_inc_return(&pool->item_count) <= pool->max_items)
400 break;
402 atomic_dec(&pool->item_count);
404 if (++iter > 2) {
405 rds_iw_stats_inc(s_iw_rdma_mr_pool_depleted);
406 return ERR_PTR(-EAGAIN);
409 /* We do have some empty MRs. Flush them out. */
410 rds_iw_stats_inc(s_iw_rdma_mr_pool_wait);
411 rds_iw_flush_mr_pool(pool, 0);
414 ibmr = kzalloc(sizeof(*ibmr), GFP_KERNEL);
415 if (!ibmr) {
416 err = -ENOMEM;
417 goto out_no_cigar;
420 spin_lock_init(&ibmr->mapping.m_lock);
421 INIT_LIST_HEAD(&ibmr->mapping.m_list);
422 ibmr->mapping.m_mr = ibmr;
424 err = rds_iw_init_reg(pool, ibmr);
425 if (err)
426 goto out_no_cigar;
428 rds_iw_stats_inc(s_iw_rdma_mr_alloc);
429 return ibmr;
431 out_no_cigar:
432 if (ibmr) {
433 rds_iw_destroy_fastreg(pool, ibmr);
434 kfree(ibmr);
436 atomic_dec(&pool->item_count);
437 return ERR_PTR(err);
440 void rds_iw_sync_mr(void *trans_private, int direction)
442 struct rds_iw_mr *ibmr = trans_private;
443 struct rds_iw_device *rds_iwdev = ibmr->device;
445 switch (direction) {
446 case DMA_FROM_DEVICE:
447 ib_dma_sync_sg_for_cpu(rds_iwdev->dev, ibmr->mapping.m_sg.list,
448 ibmr->mapping.m_sg.dma_len, DMA_BIDIRECTIONAL);
449 break;
450 case DMA_TO_DEVICE:
451 ib_dma_sync_sg_for_device(rds_iwdev->dev, ibmr->mapping.m_sg.list,
452 ibmr->mapping.m_sg.dma_len, DMA_BIDIRECTIONAL);
453 break;
458 * Flush our pool of MRs.
459 * At a minimum, all currently unused MRs are unmapped.
460 * If the number of MRs allocated exceeds the limit, we also try
461 * to free as many MRs as needed to get back to this limit.
463 static void rds_iw_flush_mr_pool(struct rds_iw_mr_pool *pool, int free_all)
465 struct rds_iw_mr *ibmr, *next;
466 LIST_HEAD(unmap_list);
467 LIST_HEAD(kill_list);
468 unsigned long flags;
469 unsigned int nfreed = 0, ncleaned = 0, unpinned = 0;
471 rds_iw_stats_inc(s_iw_rdma_mr_pool_flush);
473 mutex_lock(&pool->flush_lock);
475 spin_lock_irqsave(&pool->list_lock, flags);
476 /* Get the list of all mappings to be destroyed */
477 list_splice_init(&pool->dirty_list, &unmap_list);
478 if (free_all)
479 list_splice_init(&pool->clean_list, &kill_list);
480 spin_unlock_irqrestore(&pool->list_lock, flags);
482 /* Batched invalidate of dirty MRs.
483 * For FMR based MRs, the mappings on the unmap list are
484 * actually members of an ibmr (ibmr->mapping). They either
485 * migrate to the kill_list, or have been cleaned and should be
486 * moved to the clean_list.
487 * For fastregs, they will be dynamically allocated, and
488 * will be destroyed by the unmap function.
490 if (!list_empty(&unmap_list)) {
491 ncleaned = rds_iw_unmap_fastreg_list(pool, &unmap_list,
492 &kill_list, &unpinned);
493 /* If we've been asked to destroy all MRs, move those
494 * that were simply cleaned to the kill list */
495 if (free_all)
496 list_splice_init(&unmap_list, &kill_list);
499 /* Destroy any MRs that are past their best before date */
500 list_for_each_entry_safe(ibmr, next, &kill_list, mapping.m_list) {
501 rds_iw_stats_inc(s_iw_rdma_mr_free);
502 list_del(&ibmr->mapping.m_list);
503 rds_iw_destroy_fastreg(pool, ibmr);
504 kfree(ibmr);
505 nfreed++;
508 /* Anything that remains are laundered ibmrs, which we can add
509 * back to the clean list. */
510 if (!list_empty(&unmap_list)) {
511 spin_lock_irqsave(&pool->list_lock, flags);
512 list_splice(&unmap_list, &pool->clean_list);
513 spin_unlock_irqrestore(&pool->list_lock, flags);
516 atomic_sub(unpinned, &pool->free_pinned);
517 atomic_sub(ncleaned, &pool->dirty_count);
518 atomic_sub(nfreed, &pool->item_count);
520 mutex_unlock(&pool->flush_lock);
523 static void rds_iw_mr_pool_flush_worker(struct work_struct *work)
525 struct rds_iw_mr_pool *pool = container_of(work, struct rds_iw_mr_pool, flush_worker);
527 rds_iw_flush_mr_pool(pool, 0);
530 void rds_iw_free_mr(void *trans_private, int invalidate)
532 struct rds_iw_mr *ibmr = trans_private;
533 struct rds_iw_mr_pool *pool = ibmr->device->mr_pool;
535 rdsdebug("RDS/IW: free_mr nents %u\n", ibmr->mapping.m_sg.len);
536 if (!pool)
537 return;
539 /* Return it to the pool's free list */
540 rds_iw_free_fastreg(pool, ibmr);
542 /* If we've pinned too many pages, request a flush */
543 if (atomic_read(&pool->free_pinned) >= pool->max_free_pinned ||
544 atomic_read(&pool->dirty_count) >= pool->max_items / 10)
545 queue_work(rds_wq, &pool->flush_worker);
547 if (invalidate) {
548 if (likely(!in_interrupt())) {
549 rds_iw_flush_mr_pool(pool, 0);
550 } else {
551 /* We get here if the user created a MR marked
552 * as use_once and invalidate at the same time. */
553 queue_work(rds_wq, &pool->flush_worker);
558 void rds_iw_flush_mrs(void)
560 struct rds_iw_device *rds_iwdev;
562 list_for_each_entry(rds_iwdev, &rds_iw_devices, list) {
563 struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
565 if (pool)
566 rds_iw_flush_mr_pool(pool, 0);
570 void *rds_iw_get_mr(struct scatterlist *sg, unsigned long nents,
571 struct rds_sock *rs, u32 *key_ret)
573 struct rds_iw_device *rds_iwdev;
574 struct rds_iw_mr *ibmr = NULL;
575 struct rdma_cm_id *cm_id;
576 struct sockaddr_in src = {
577 .sin_addr.s_addr = rs->rs_bound_addr,
578 .sin_port = rs->rs_bound_port,
580 struct sockaddr_in dst = {
581 .sin_addr.s_addr = rs->rs_conn_addr,
582 .sin_port = rs->rs_conn_port,
584 int ret;
586 ret = rds_iw_get_device(&src, &dst, &rds_iwdev, &cm_id);
587 if (ret || !cm_id) {
588 ret = -ENODEV;
589 goto out;
592 if (!rds_iwdev->mr_pool) {
593 ret = -ENODEV;
594 goto out;
597 ibmr = rds_iw_alloc_mr(rds_iwdev);
598 if (IS_ERR(ibmr))
599 return ibmr;
601 ibmr->cm_id = cm_id;
602 ibmr->device = rds_iwdev;
604 ret = rds_iw_map_reg(rds_iwdev->mr_pool, ibmr, sg, nents);
605 if (ret == 0)
606 *key_ret = ibmr->mr->rkey;
607 else
608 printk(KERN_WARNING "RDS/IW: failed to map mr (errno=%d)\n", ret);
610 out:
611 if (ret) {
612 if (ibmr)
613 rds_iw_free_mr(ibmr, 0);
614 ibmr = ERR_PTR(ret);
616 return ibmr;
620 * iWARP reg handling
622 * The life cycle of a fastreg registration is a bit different from
623 * FMRs.
624 * The idea behind fastreg is to have one MR, to which we bind different
625 * mappings over time. To avoid stalling on the expensive map and invalidate
626 * operations, these operations are pipelined on the same send queue on
627 * which we want to send the message containing the r_key.
629 * This creates a bit of a problem for us, as we do not have the destination
630 * IP in GET_MR, so the connection must be setup prior to the GET_MR call for
631 * RDMA to be correctly setup. If a fastreg request is present, rds_iw_xmit
632 * will try to queue a LOCAL_INV (if needed) and a REG_MR work request
633 * before queuing the SEND. When completions for these arrive, they are
634 * dispatched to the MR has a bit set showing that RDMa can be performed.
636 * There is another interesting aspect that's related to invalidation.
637 * The application can request that a mapping is invalidated in FREE_MR.
638 * The expectation there is that this invalidation step includes ALL
639 * PREVIOUSLY FREED MRs.
641 static int rds_iw_init_reg(struct rds_iw_mr_pool *pool,
642 struct rds_iw_mr *ibmr)
644 struct rds_iw_device *rds_iwdev = pool->device;
645 struct ib_mr *mr;
646 int err;
648 mr = ib_alloc_mr(rds_iwdev->pd, IB_MR_TYPE_MEM_REG,
649 pool->max_message_size);
650 if (IS_ERR(mr)) {
651 err = PTR_ERR(mr);
653 printk(KERN_WARNING "RDS/IW: ib_alloc_mr failed (err=%d)\n", err);
654 return err;
657 ibmr->mr = mr;
658 return 0;
661 static int rds_iw_rdma_reg_mr(struct rds_iw_mapping *mapping)
663 struct rds_iw_mr *ibmr = mapping->m_mr;
664 struct rds_iw_scatterlist *m_sg = &mapping->m_sg;
665 struct ib_reg_wr reg_wr;
666 struct ib_send_wr *failed_wr;
667 int ret, n;
669 n = ib_map_mr_sg_zbva(ibmr->mr, m_sg->list, m_sg->len, PAGE_SIZE);
670 if (unlikely(n != m_sg->len))
671 return n < 0 ? n : -EINVAL;
673 reg_wr.wr.next = NULL;
674 reg_wr.wr.opcode = IB_WR_REG_MR;
675 reg_wr.wr.wr_id = RDS_IW_REG_WR_ID;
676 reg_wr.wr.num_sge = 0;
677 reg_wr.mr = ibmr->mr;
678 reg_wr.key = mapping->m_rkey;
679 reg_wr.access = IB_ACCESS_LOCAL_WRITE |
680 IB_ACCESS_REMOTE_READ |
681 IB_ACCESS_REMOTE_WRITE;
684 * Perform a WR for the reg_mr. Each individual page
685 * in the sg list is added to the fast reg page list and placed
686 * inside the reg_mr WR. The key used is a rolling 8bit
687 * counter, which should guarantee uniqueness.
689 ib_update_fast_reg_key(ibmr->mr, ibmr->remap_count++);
690 mapping->m_rkey = ibmr->mr->rkey;
692 failed_wr = &reg_wr.wr;
693 ret = ib_post_send(ibmr->cm_id->qp, &reg_wr.wr, &failed_wr);
694 BUG_ON(failed_wr != &reg_wr.wr);
695 if (ret)
696 printk_ratelimited(KERN_WARNING "RDS/IW: %s:%d ib_post_send returned %d\n",
697 __func__, __LINE__, ret);
698 return ret;
701 static int rds_iw_rdma_fastreg_inv(struct rds_iw_mr *ibmr)
703 struct ib_send_wr s_wr, *failed_wr;
704 int ret = 0;
706 if (!ibmr->cm_id->qp || !ibmr->mr)
707 goto out;
709 memset(&s_wr, 0, sizeof(s_wr));
710 s_wr.wr_id = RDS_IW_LOCAL_INV_WR_ID;
711 s_wr.opcode = IB_WR_LOCAL_INV;
712 s_wr.ex.invalidate_rkey = ibmr->mr->rkey;
713 s_wr.send_flags = IB_SEND_SIGNALED;
715 failed_wr = &s_wr;
716 ret = ib_post_send(ibmr->cm_id->qp, &s_wr, &failed_wr);
717 if (ret) {
718 printk_ratelimited(KERN_WARNING "RDS/IW: %s:%d ib_post_send returned %d\n",
719 __func__, __LINE__, ret);
720 goto out;
722 out:
723 return ret;
726 static int rds_iw_map_reg(struct rds_iw_mr_pool *pool,
727 struct rds_iw_mr *ibmr,
728 struct scatterlist *sg,
729 unsigned int sg_len)
731 struct rds_iw_device *rds_iwdev = pool->device;
732 struct rds_iw_mapping *mapping = &ibmr->mapping;
733 u64 *dma_pages;
734 int ret = 0;
736 rds_iw_set_scatterlist(&mapping->m_sg, sg, sg_len);
738 ret = rds_iw_map_scatterlist(rds_iwdev, &mapping->m_sg);
739 if (ret) {
740 dma_pages = NULL;
741 goto out;
744 if (mapping->m_sg.dma_len > pool->max_message_size) {
745 ret = -EMSGSIZE;
746 goto out;
749 ret = rds_iw_rdma_reg_mr(mapping);
750 if (ret)
751 goto out;
753 rds_iw_stats_inc(s_iw_rdma_mr_used);
755 out:
756 kfree(dma_pages);
758 return ret;
762 * "Free" a fastreg MR.
764 static void rds_iw_free_fastreg(struct rds_iw_mr_pool *pool,
765 struct rds_iw_mr *ibmr)
767 unsigned long flags;
768 int ret;
770 if (!ibmr->mapping.m_sg.dma_len)
771 return;
773 ret = rds_iw_rdma_fastreg_inv(ibmr);
774 if (ret)
775 return;
777 /* Try to post the LOCAL_INV WR to the queue. */
778 spin_lock_irqsave(&pool->list_lock, flags);
780 list_add_tail(&ibmr->mapping.m_list, &pool->dirty_list);
781 atomic_add(ibmr->mapping.m_sg.len, &pool->free_pinned);
782 atomic_inc(&pool->dirty_count);
784 spin_unlock_irqrestore(&pool->list_lock, flags);
787 static unsigned int rds_iw_unmap_fastreg_list(struct rds_iw_mr_pool *pool,
788 struct list_head *unmap_list,
789 struct list_head *kill_list,
790 int *unpinned)
792 struct rds_iw_mapping *mapping, *next;
793 unsigned int ncleaned = 0;
794 LIST_HEAD(laundered);
796 /* Batched invalidation of fastreg MRs.
797 * Why do we do it this way, even though we could pipeline unmap
798 * and remap? The reason is the application semantics - when the
799 * application requests an invalidation of MRs, it expects all
800 * previously released R_Keys to become invalid.
802 * If we implement MR reuse naively, we risk memory corruption
803 * (this has actually been observed). So the default behavior
804 * requires that a MR goes through an explicit unmap operation before
805 * we can reuse it again.
807 * We could probably improve on this a little, by allowing immediate
808 * reuse of a MR on the same socket (eg you could add small
809 * cache of unused MRs to strct rds_socket - GET_MR could grab one
810 * of these without requiring an explicit invalidate).
812 while (!list_empty(unmap_list)) {
813 unsigned long flags;
815 spin_lock_irqsave(&pool->list_lock, flags);
816 list_for_each_entry_safe(mapping, next, unmap_list, m_list) {
817 *unpinned += mapping->m_sg.len;
818 list_move(&mapping->m_list, &laundered);
819 ncleaned++;
821 spin_unlock_irqrestore(&pool->list_lock, flags);
824 /* Move all laundered mappings back to the unmap list.
825 * We do not kill any WRs right now - it doesn't seem the
826 * fastreg API has a max_remap limit. */
827 list_splice_init(&laundered, unmap_list);
829 return ncleaned;
832 static void rds_iw_destroy_fastreg(struct rds_iw_mr_pool *pool,
833 struct rds_iw_mr *ibmr)
835 if (ibmr->mr)
836 ib_dereg_mr(ibmr->mr);