USB: mark uas driver as BROKEN
[linux/fpc-iii.git] / fs / dcache.c
blobf104945dcc7dac322f3b869abf2ceb9319938b49
1 /*
2 * fs/dcache.c
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
9 /*
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include "internal.h"
41 #include "mount.h"
44 * Usage:
45 * dcache->d_inode->i_lock protects:
46 * - i_dentry, d_alias, d_inode of aliases
47 * dcache_hash_bucket lock protects:
48 * - the dcache hash table
49 * s_anon bl list spinlock protects:
50 * - the s_anon list (see __d_drop)
51 * dcache_lru_lock protects:
52 * - the dcache lru lists and counters
53 * d_lock protects:
54 * - d_flags
55 * - d_name
56 * - d_lru
57 * - d_count
58 * - d_unhashed()
59 * - d_parent and d_subdirs
60 * - childrens' d_child and d_parent
61 * - d_alias, d_inode
63 * Ordering:
64 * dentry->d_inode->i_lock
65 * dentry->d_lock
66 * dcache_lru_lock
67 * dcache_hash_bucket lock
68 * s_anon lock
70 * If there is an ancestor relationship:
71 * dentry->d_parent->...->d_parent->d_lock
72 * ...
73 * dentry->d_parent->d_lock
74 * dentry->d_lock
76 * If no ancestor relationship:
77 * if (dentry1 < dentry2)
78 * dentry1->d_lock
79 * dentry2->d_lock
81 int sysctl_vfs_cache_pressure __read_mostly = 100;
82 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
84 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
87 EXPORT_SYMBOL(rename_lock);
89 static struct kmem_cache *dentry_cache __read_mostly;
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
99 #define D_HASHBITS d_hash_shift
100 #define D_HASHMASK d_hash_mask
102 static unsigned int d_hash_mask __read_mostly;
103 static unsigned int d_hash_shift __read_mostly;
105 static struct hlist_bl_head *dentry_hashtable __read_mostly;
107 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
108 unsigned int hash)
110 hash += (unsigned long) parent / L1_CACHE_BYTES;
111 hash = hash + (hash >> D_HASHBITS);
112 return dentry_hashtable + (hash & D_HASHMASK);
115 /* Statistics gathering. */
116 struct dentry_stat_t dentry_stat = {
117 .age_limit = 45,
120 static DEFINE_PER_CPU(unsigned int, nr_dentry);
122 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
123 static int get_nr_dentry(void)
125 int i;
126 int sum = 0;
127 for_each_possible_cpu(i)
128 sum += per_cpu(nr_dentry, i);
129 return sum < 0 ? 0 : sum;
132 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
133 size_t *lenp, loff_t *ppos)
135 dentry_stat.nr_dentry = get_nr_dentry();
136 return proc_dointvec(table, write, buffer, lenp, ppos);
138 #endif
141 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
142 * The strings are both count bytes long, and count is non-zero.
144 #ifdef CONFIG_DCACHE_WORD_ACCESS
146 #include <asm/word-at-a-time.h>
148 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
149 * aligned allocation for this particular component. We don't
150 * strictly need the load_unaligned_zeropad() safety, but it
151 * doesn't hurt either.
153 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
154 * need the careful unaligned handling.
156 static inline int dentry_cmp(const unsigned char *cs, size_t scount,
157 const unsigned char *ct, size_t tcount)
159 unsigned long a,b,mask;
161 if (unlikely(scount != tcount))
162 return 1;
164 for (;;) {
165 a = load_unaligned_zeropad(cs);
166 b = load_unaligned_zeropad(ct);
167 if (tcount < sizeof(unsigned long))
168 break;
169 if (unlikely(a != b))
170 return 1;
171 cs += sizeof(unsigned long);
172 ct += sizeof(unsigned long);
173 tcount -= sizeof(unsigned long);
174 if (!tcount)
175 return 0;
177 mask = ~(~0ul << tcount*8);
178 return unlikely(!!((a ^ b) & mask));
181 #else
183 static inline int dentry_cmp(const unsigned char *cs, size_t scount,
184 const unsigned char *ct, size_t tcount)
186 if (scount != tcount)
187 return 1;
189 do {
190 if (*cs != *ct)
191 return 1;
192 cs++;
193 ct++;
194 tcount--;
195 } while (tcount);
196 return 0;
199 #endif
201 static void __d_free(struct rcu_head *head)
203 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
205 WARN_ON(!list_empty(&dentry->d_alias));
206 if (dname_external(dentry))
207 kfree(dentry->d_name.name);
208 kmem_cache_free(dentry_cache, dentry);
212 * no locks, please.
214 static void d_free(struct dentry *dentry)
216 BUG_ON(dentry->d_count);
217 this_cpu_dec(nr_dentry);
218 if (dentry->d_op && dentry->d_op->d_release)
219 dentry->d_op->d_release(dentry);
221 /* if dentry was never visible to RCU, immediate free is OK */
222 if (!(dentry->d_flags & DCACHE_RCUACCESS))
223 __d_free(&dentry->d_u.d_rcu);
224 else
225 call_rcu(&dentry->d_u.d_rcu, __d_free);
229 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
230 * @dentry: the target dentry
231 * After this call, in-progress rcu-walk path lookup will fail. This
232 * should be called after unhashing, and after changing d_inode (if
233 * the dentry has not already been unhashed).
235 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
237 assert_spin_locked(&dentry->d_lock);
238 /* Go through a barrier */
239 write_seqcount_barrier(&dentry->d_seq);
243 * Release the dentry's inode, using the filesystem
244 * d_iput() operation if defined. Dentry has no refcount
245 * and is unhashed.
247 static void dentry_iput(struct dentry * dentry)
248 __releases(dentry->d_lock)
249 __releases(dentry->d_inode->i_lock)
251 struct inode *inode = dentry->d_inode;
252 if (inode) {
253 dentry->d_inode = NULL;
254 list_del_init(&dentry->d_alias);
255 spin_unlock(&dentry->d_lock);
256 spin_unlock(&inode->i_lock);
257 if (!inode->i_nlink)
258 fsnotify_inoderemove(inode);
259 if (dentry->d_op && dentry->d_op->d_iput)
260 dentry->d_op->d_iput(dentry, inode);
261 else
262 iput(inode);
263 } else {
264 spin_unlock(&dentry->d_lock);
269 * Release the dentry's inode, using the filesystem
270 * d_iput() operation if defined. dentry remains in-use.
272 static void dentry_unlink_inode(struct dentry * dentry)
273 __releases(dentry->d_lock)
274 __releases(dentry->d_inode->i_lock)
276 struct inode *inode = dentry->d_inode;
277 dentry->d_inode = NULL;
278 list_del_init(&dentry->d_alias);
279 dentry_rcuwalk_barrier(dentry);
280 spin_unlock(&dentry->d_lock);
281 spin_unlock(&inode->i_lock);
282 if (!inode->i_nlink)
283 fsnotify_inoderemove(inode);
284 if (dentry->d_op && dentry->d_op->d_iput)
285 dentry->d_op->d_iput(dentry, inode);
286 else
287 iput(inode);
291 * dentry_lru_(add|del|prune|move_tail) must be called with d_lock held.
293 static void dentry_lru_add(struct dentry *dentry)
295 if (list_empty(&dentry->d_lru)) {
296 spin_lock(&dcache_lru_lock);
297 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
298 dentry->d_sb->s_nr_dentry_unused++;
299 dentry_stat.nr_unused++;
300 spin_unlock(&dcache_lru_lock);
304 static void __dentry_lru_del(struct dentry *dentry)
306 list_del_init(&dentry->d_lru);
307 dentry->d_flags &= ~DCACHE_SHRINK_LIST;
308 dentry->d_sb->s_nr_dentry_unused--;
309 dentry_stat.nr_unused--;
313 * Remove a dentry with references from the LRU.
315 static void dentry_lru_del(struct dentry *dentry)
317 if (!list_empty(&dentry->d_lru)) {
318 spin_lock(&dcache_lru_lock);
319 __dentry_lru_del(dentry);
320 spin_unlock(&dcache_lru_lock);
325 * Remove a dentry that is unreferenced and about to be pruned
326 * (unhashed and destroyed) from the LRU, and inform the file system.
327 * This wrapper should be called _prior_ to unhashing a victim dentry.
329 static void dentry_lru_prune(struct dentry *dentry)
331 if (!list_empty(&dentry->d_lru)) {
332 if (dentry->d_flags & DCACHE_OP_PRUNE)
333 dentry->d_op->d_prune(dentry);
335 spin_lock(&dcache_lru_lock);
336 __dentry_lru_del(dentry);
337 spin_unlock(&dcache_lru_lock);
341 static void dentry_lru_move_list(struct dentry *dentry, struct list_head *list)
343 spin_lock(&dcache_lru_lock);
344 if (list_empty(&dentry->d_lru)) {
345 list_add_tail(&dentry->d_lru, list);
346 dentry->d_sb->s_nr_dentry_unused++;
347 dentry_stat.nr_unused++;
348 } else {
349 list_move_tail(&dentry->d_lru, list);
351 spin_unlock(&dcache_lru_lock);
355 * d_kill - kill dentry and return parent
356 * @dentry: dentry to kill
357 * @parent: parent dentry
359 * The dentry must already be unhashed and removed from the LRU.
361 * If this is the root of the dentry tree, return NULL.
363 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
364 * d_kill.
366 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
367 __releases(dentry->d_lock)
368 __releases(parent->d_lock)
369 __releases(dentry->d_inode->i_lock)
371 list_del(&dentry->d_u.d_child);
373 * Inform try_to_ascend() that we are no longer attached to the
374 * dentry tree
376 dentry->d_flags |= DCACHE_DENTRY_KILLED;
377 if (parent)
378 spin_unlock(&parent->d_lock);
379 dentry_iput(dentry);
381 * dentry_iput drops the locks, at which point nobody (except
382 * transient RCU lookups) can reach this dentry.
384 d_free(dentry);
385 return parent;
389 * Unhash a dentry without inserting an RCU walk barrier or checking that
390 * dentry->d_lock is locked. The caller must take care of that, if
391 * appropriate.
393 static void __d_shrink(struct dentry *dentry)
395 if (!d_unhashed(dentry)) {
396 struct hlist_bl_head *b;
397 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
398 b = &dentry->d_sb->s_anon;
399 else
400 b = d_hash(dentry->d_parent, dentry->d_name.hash);
402 hlist_bl_lock(b);
403 __hlist_bl_del(&dentry->d_hash);
404 dentry->d_hash.pprev = NULL;
405 hlist_bl_unlock(b);
410 * d_drop - drop a dentry
411 * @dentry: dentry to drop
413 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
414 * be found through a VFS lookup any more. Note that this is different from
415 * deleting the dentry - d_delete will try to mark the dentry negative if
416 * possible, giving a successful _negative_ lookup, while d_drop will
417 * just make the cache lookup fail.
419 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
420 * reason (NFS timeouts or autofs deletes).
422 * __d_drop requires dentry->d_lock.
424 void __d_drop(struct dentry *dentry)
426 if (!d_unhashed(dentry)) {
427 __d_shrink(dentry);
428 dentry_rcuwalk_barrier(dentry);
431 EXPORT_SYMBOL(__d_drop);
433 void d_drop(struct dentry *dentry)
435 spin_lock(&dentry->d_lock);
436 __d_drop(dentry);
437 spin_unlock(&dentry->d_lock);
439 EXPORT_SYMBOL(d_drop);
442 * d_clear_need_lookup - drop a dentry from cache and clear the need lookup flag
443 * @dentry: dentry to drop
445 * This is called when we do a lookup on a placeholder dentry that needed to be
446 * looked up. The dentry should have been hashed in order for it to be found by
447 * the lookup code, but now needs to be unhashed while we do the actual lookup
448 * and clear the DCACHE_NEED_LOOKUP flag.
450 void d_clear_need_lookup(struct dentry *dentry)
452 spin_lock(&dentry->d_lock);
453 __d_drop(dentry);
454 dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
455 spin_unlock(&dentry->d_lock);
457 EXPORT_SYMBOL(d_clear_need_lookup);
460 * Finish off a dentry we've decided to kill.
461 * dentry->d_lock must be held, returns with it unlocked.
462 * If ref is non-zero, then decrement the refcount too.
463 * Returns dentry requiring refcount drop, or NULL if we're done.
465 static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
466 __releases(dentry->d_lock)
468 struct inode *inode;
469 struct dentry *parent;
471 inode = dentry->d_inode;
472 if (inode && !spin_trylock(&inode->i_lock)) {
473 relock:
474 spin_unlock(&dentry->d_lock);
475 cpu_relax();
476 return dentry; /* try again with same dentry */
478 if (IS_ROOT(dentry))
479 parent = NULL;
480 else
481 parent = dentry->d_parent;
482 if (parent && !spin_trylock(&parent->d_lock)) {
483 if (inode)
484 spin_unlock(&inode->i_lock);
485 goto relock;
488 if (ref)
489 dentry->d_count--;
491 * if dentry was on the d_lru list delete it from there.
492 * inform the fs via d_prune that this dentry is about to be
493 * unhashed and destroyed.
495 dentry_lru_prune(dentry);
496 /* if it was on the hash then remove it */
497 __d_drop(dentry);
498 return d_kill(dentry, parent);
502 * This is dput
504 * This is complicated by the fact that we do not want to put
505 * dentries that are no longer on any hash chain on the unused
506 * list: we'd much rather just get rid of them immediately.
508 * However, that implies that we have to traverse the dentry
509 * tree upwards to the parents which might _also_ now be
510 * scheduled for deletion (it may have been only waiting for
511 * its last child to go away).
513 * This tail recursion is done by hand as we don't want to depend
514 * on the compiler to always get this right (gcc generally doesn't).
515 * Real recursion would eat up our stack space.
519 * dput - release a dentry
520 * @dentry: dentry to release
522 * Release a dentry. This will drop the usage count and if appropriate
523 * call the dentry unlink method as well as removing it from the queues and
524 * releasing its resources. If the parent dentries were scheduled for release
525 * they too may now get deleted.
527 void dput(struct dentry *dentry)
529 if (!dentry)
530 return;
532 repeat:
533 if (dentry->d_count == 1)
534 might_sleep();
535 spin_lock(&dentry->d_lock);
536 BUG_ON(!dentry->d_count);
537 if (dentry->d_count > 1) {
538 dentry->d_count--;
539 spin_unlock(&dentry->d_lock);
540 return;
543 if (dentry->d_flags & DCACHE_OP_DELETE) {
544 if (dentry->d_op->d_delete(dentry))
545 goto kill_it;
548 /* Unreachable? Get rid of it */
549 if (d_unhashed(dentry))
550 goto kill_it;
553 * If this dentry needs lookup, don't set the referenced flag so that it
554 * is more likely to be cleaned up by the dcache shrinker in case of
555 * memory pressure.
557 if (!d_need_lookup(dentry))
558 dentry->d_flags |= DCACHE_REFERENCED;
559 dentry_lru_add(dentry);
561 dentry->d_count--;
562 spin_unlock(&dentry->d_lock);
563 return;
565 kill_it:
566 dentry = dentry_kill(dentry, 1);
567 if (dentry)
568 goto repeat;
570 EXPORT_SYMBOL(dput);
573 * d_invalidate - invalidate a dentry
574 * @dentry: dentry to invalidate
576 * Try to invalidate the dentry if it turns out to be
577 * possible. If there are other dentries that can be
578 * reached through this one we can't delete it and we
579 * return -EBUSY. On success we return 0.
581 * no dcache lock.
584 int d_invalidate(struct dentry * dentry)
587 * If it's already been dropped, return OK.
589 spin_lock(&dentry->d_lock);
590 if (d_unhashed(dentry)) {
591 spin_unlock(&dentry->d_lock);
592 return 0;
595 * Check whether to do a partial shrink_dcache
596 * to get rid of unused child entries.
598 if (!list_empty(&dentry->d_subdirs)) {
599 spin_unlock(&dentry->d_lock);
600 shrink_dcache_parent(dentry);
601 spin_lock(&dentry->d_lock);
605 * Somebody else still using it?
607 * If it's a directory, we can't drop it
608 * for fear of somebody re-populating it
609 * with children (even though dropping it
610 * would make it unreachable from the root,
611 * we might still populate it if it was a
612 * working directory or similar).
613 * We also need to leave mountpoints alone,
614 * directory or not.
616 if (dentry->d_count > 1 && dentry->d_inode) {
617 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
618 spin_unlock(&dentry->d_lock);
619 return -EBUSY;
623 __d_drop(dentry);
624 spin_unlock(&dentry->d_lock);
625 return 0;
627 EXPORT_SYMBOL(d_invalidate);
629 /* This must be called with d_lock held */
630 static inline void __dget_dlock(struct dentry *dentry)
632 dentry->d_count++;
635 static inline void __dget(struct dentry *dentry)
637 spin_lock(&dentry->d_lock);
638 __dget_dlock(dentry);
639 spin_unlock(&dentry->d_lock);
642 struct dentry *dget_parent(struct dentry *dentry)
644 struct dentry *ret;
646 repeat:
648 * Don't need rcu_dereference because we re-check it was correct under
649 * the lock.
651 rcu_read_lock();
652 ret = dentry->d_parent;
653 spin_lock(&ret->d_lock);
654 if (unlikely(ret != dentry->d_parent)) {
655 spin_unlock(&ret->d_lock);
656 rcu_read_unlock();
657 goto repeat;
659 rcu_read_unlock();
660 BUG_ON(!ret->d_count);
661 ret->d_count++;
662 spin_unlock(&ret->d_lock);
663 return ret;
665 EXPORT_SYMBOL(dget_parent);
668 * d_find_alias - grab a hashed alias of inode
669 * @inode: inode in question
670 * @want_discon: flag, used by d_splice_alias, to request
671 * that only a DISCONNECTED alias be returned.
673 * If inode has a hashed alias, or is a directory and has any alias,
674 * acquire the reference to alias and return it. Otherwise return NULL.
675 * Notice that if inode is a directory there can be only one alias and
676 * it can be unhashed only if it has no children, or if it is the root
677 * of a filesystem.
679 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
680 * any other hashed alias over that one unless @want_discon is set,
681 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
683 static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
685 struct dentry *alias, *discon_alias;
687 again:
688 discon_alias = NULL;
689 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
690 spin_lock(&alias->d_lock);
691 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
692 if (IS_ROOT(alias) &&
693 (alias->d_flags & DCACHE_DISCONNECTED)) {
694 discon_alias = alias;
695 } else if (!want_discon) {
696 __dget_dlock(alias);
697 spin_unlock(&alias->d_lock);
698 return alias;
701 spin_unlock(&alias->d_lock);
703 if (discon_alias) {
704 alias = discon_alias;
705 spin_lock(&alias->d_lock);
706 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
707 if (IS_ROOT(alias) &&
708 (alias->d_flags & DCACHE_DISCONNECTED)) {
709 __dget_dlock(alias);
710 spin_unlock(&alias->d_lock);
711 return alias;
714 spin_unlock(&alias->d_lock);
715 goto again;
717 return NULL;
720 struct dentry *d_find_alias(struct inode *inode)
722 struct dentry *de = NULL;
724 if (!list_empty(&inode->i_dentry)) {
725 spin_lock(&inode->i_lock);
726 de = __d_find_alias(inode, 0);
727 spin_unlock(&inode->i_lock);
729 return de;
731 EXPORT_SYMBOL(d_find_alias);
734 * Try to kill dentries associated with this inode.
735 * WARNING: you must own a reference to inode.
737 void d_prune_aliases(struct inode *inode)
739 struct dentry *dentry;
740 restart:
741 spin_lock(&inode->i_lock);
742 list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
743 spin_lock(&dentry->d_lock);
744 if (!dentry->d_count) {
745 __dget_dlock(dentry);
746 __d_drop(dentry);
747 spin_unlock(&dentry->d_lock);
748 spin_unlock(&inode->i_lock);
749 dput(dentry);
750 goto restart;
752 spin_unlock(&dentry->d_lock);
754 spin_unlock(&inode->i_lock);
756 EXPORT_SYMBOL(d_prune_aliases);
759 * Try to throw away a dentry - free the inode, dput the parent.
760 * Requires dentry->d_lock is held, and dentry->d_count == 0.
761 * Releases dentry->d_lock.
763 * This may fail if locks cannot be acquired no problem, just try again.
765 static void try_prune_one_dentry(struct dentry *dentry)
766 __releases(dentry->d_lock)
768 struct dentry *parent;
770 parent = dentry_kill(dentry, 0);
772 * If dentry_kill returns NULL, we have nothing more to do.
773 * if it returns the same dentry, trylocks failed. In either
774 * case, just loop again.
776 * Otherwise, we need to prune ancestors too. This is necessary
777 * to prevent quadratic behavior of shrink_dcache_parent(), but
778 * is also expected to be beneficial in reducing dentry cache
779 * fragmentation.
781 if (!parent)
782 return;
783 if (parent == dentry)
784 return;
786 /* Prune ancestors. */
787 dentry = parent;
788 while (dentry) {
789 spin_lock(&dentry->d_lock);
790 if (dentry->d_count > 1) {
791 dentry->d_count--;
792 spin_unlock(&dentry->d_lock);
793 return;
795 dentry = dentry_kill(dentry, 1);
799 static void shrink_dentry_list(struct list_head *list)
801 struct dentry *dentry;
803 rcu_read_lock();
804 for (;;) {
805 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
806 if (&dentry->d_lru == list)
807 break; /* empty */
808 spin_lock(&dentry->d_lock);
809 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
810 spin_unlock(&dentry->d_lock);
811 continue;
815 * We found an inuse dentry which was not removed from
816 * the LRU because of laziness during lookup. Do not free
817 * it - just keep it off the LRU list.
819 if (dentry->d_count) {
820 dentry_lru_del(dentry);
821 spin_unlock(&dentry->d_lock);
822 continue;
825 rcu_read_unlock();
827 try_prune_one_dentry(dentry);
829 rcu_read_lock();
831 rcu_read_unlock();
835 * prune_dcache_sb - shrink the dcache
836 * @sb: superblock
837 * @count: number of entries to try to free
839 * Attempt to shrink the superblock dcache LRU by @count entries. This is
840 * done when we need more memory an called from the superblock shrinker
841 * function.
843 * This function may fail to free any resources if all the dentries are in
844 * use.
846 void prune_dcache_sb(struct super_block *sb, int count)
848 struct dentry *dentry;
849 LIST_HEAD(referenced);
850 LIST_HEAD(tmp);
852 relock:
853 spin_lock(&dcache_lru_lock);
854 while (!list_empty(&sb->s_dentry_lru)) {
855 dentry = list_entry(sb->s_dentry_lru.prev,
856 struct dentry, d_lru);
857 BUG_ON(dentry->d_sb != sb);
859 if (!spin_trylock(&dentry->d_lock)) {
860 spin_unlock(&dcache_lru_lock);
861 cpu_relax();
862 goto relock;
865 if (dentry->d_flags & DCACHE_REFERENCED) {
866 dentry->d_flags &= ~DCACHE_REFERENCED;
867 list_move(&dentry->d_lru, &referenced);
868 spin_unlock(&dentry->d_lock);
869 } else {
870 list_move_tail(&dentry->d_lru, &tmp);
871 dentry->d_flags |= DCACHE_SHRINK_LIST;
872 spin_unlock(&dentry->d_lock);
873 if (!--count)
874 break;
876 cond_resched_lock(&dcache_lru_lock);
878 if (!list_empty(&referenced))
879 list_splice(&referenced, &sb->s_dentry_lru);
880 spin_unlock(&dcache_lru_lock);
882 shrink_dentry_list(&tmp);
886 * shrink_dcache_sb - shrink dcache for a superblock
887 * @sb: superblock
889 * Shrink the dcache for the specified super block. This is used to free
890 * the dcache before unmounting a file system.
892 void shrink_dcache_sb(struct super_block *sb)
894 LIST_HEAD(tmp);
896 spin_lock(&dcache_lru_lock);
897 while (!list_empty(&sb->s_dentry_lru)) {
898 list_splice_init(&sb->s_dentry_lru, &tmp);
899 spin_unlock(&dcache_lru_lock);
900 shrink_dentry_list(&tmp);
901 spin_lock(&dcache_lru_lock);
903 spin_unlock(&dcache_lru_lock);
905 EXPORT_SYMBOL(shrink_dcache_sb);
908 * destroy a single subtree of dentries for unmount
909 * - see the comments on shrink_dcache_for_umount() for a description of the
910 * locking
912 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
914 struct dentry *parent;
916 BUG_ON(!IS_ROOT(dentry));
918 for (;;) {
919 /* descend to the first leaf in the current subtree */
920 while (!list_empty(&dentry->d_subdirs))
921 dentry = list_entry(dentry->d_subdirs.next,
922 struct dentry, d_u.d_child);
924 /* consume the dentries from this leaf up through its parents
925 * until we find one with children or run out altogether */
926 do {
927 struct inode *inode;
930 * remove the dentry from the lru, and inform
931 * the fs that this dentry is about to be
932 * unhashed and destroyed.
934 dentry_lru_prune(dentry);
935 __d_shrink(dentry);
937 if (dentry->d_count != 0) {
938 printk(KERN_ERR
939 "BUG: Dentry %p{i=%lx,n=%s}"
940 " still in use (%d)"
941 " [unmount of %s %s]\n",
942 dentry,
943 dentry->d_inode ?
944 dentry->d_inode->i_ino : 0UL,
945 dentry->d_name.name,
946 dentry->d_count,
947 dentry->d_sb->s_type->name,
948 dentry->d_sb->s_id);
949 BUG();
952 if (IS_ROOT(dentry)) {
953 parent = NULL;
954 list_del(&dentry->d_u.d_child);
955 } else {
956 parent = dentry->d_parent;
957 parent->d_count--;
958 list_del(&dentry->d_u.d_child);
961 inode = dentry->d_inode;
962 if (inode) {
963 dentry->d_inode = NULL;
964 list_del_init(&dentry->d_alias);
965 if (dentry->d_op && dentry->d_op->d_iput)
966 dentry->d_op->d_iput(dentry, inode);
967 else
968 iput(inode);
971 d_free(dentry);
973 /* finished when we fall off the top of the tree,
974 * otherwise we ascend to the parent and move to the
975 * next sibling if there is one */
976 if (!parent)
977 return;
978 dentry = parent;
979 } while (list_empty(&dentry->d_subdirs));
981 dentry = list_entry(dentry->d_subdirs.next,
982 struct dentry, d_u.d_child);
987 * destroy the dentries attached to a superblock on unmounting
988 * - we don't need to use dentry->d_lock because:
989 * - the superblock is detached from all mountings and open files, so the
990 * dentry trees will not be rearranged by the VFS
991 * - s_umount is write-locked, so the memory pressure shrinker will ignore
992 * any dentries belonging to this superblock that it comes across
993 * - the filesystem itself is no longer permitted to rearrange the dentries
994 * in this superblock
996 void shrink_dcache_for_umount(struct super_block *sb)
998 struct dentry *dentry;
1000 if (down_read_trylock(&sb->s_umount))
1001 BUG();
1003 dentry = sb->s_root;
1004 sb->s_root = NULL;
1005 dentry->d_count--;
1006 shrink_dcache_for_umount_subtree(dentry);
1008 while (!hlist_bl_empty(&sb->s_anon)) {
1009 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
1010 shrink_dcache_for_umount_subtree(dentry);
1015 * This tries to ascend one level of parenthood, but
1016 * we can race with renaming, so we need to re-check
1017 * the parenthood after dropping the lock and check
1018 * that the sequence number still matches.
1020 static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq)
1022 struct dentry *new = old->d_parent;
1024 rcu_read_lock();
1025 spin_unlock(&old->d_lock);
1026 spin_lock(&new->d_lock);
1029 * might go back up the wrong parent if we have had a rename
1030 * or deletion
1032 if (new != old->d_parent ||
1033 (old->d_flags & DCACHE_DENTRY_KILLED) ||
1034 (!locked && read_seqretry(&rename_lock, seq))) {
1035 spin_unlock(&new->d_lock);
1036 new = NULL;
1038 rcu_read_unlock();
1039 return new;
1044 * Search for at least 1 mount point in the dentry's subdirs.
1045 * We descend to the next level whenever the d_subdirs
1046 * list is non-empty and continue searching.
1050 * have_submounts - check for mounts over a dentry
1051 * @parent: dentry to check.
1053 * Return true if the parent or its subdirectories contain
1054 * a mount point
1056 int have_submounts(struct dentry *parent)
1058 struct dentry *this_parent;
1059 struct list_head *next;
1060 unsigned seq;
1061 int locked = 0;
1063 seq = read_seqbegin(&rename_lock);
1064 again:
1065 this_parent = parent;
1067 if (d_mountpoint(parent))
1068 goto positive;
1069 spin_lock(&this_parent->d_lock);
1070 repeat:
1071 next = this_parent->d_subdirs.next;
1072 resume:
1073 while (next != &this_parent->d_subdirs) {
1074 struct list_head *tmp = next;
1075 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1076 next = tmp->next;
1078 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1079 /* Have we found a mount point ? */
1080 if (d_mountpoint(dentry)) {
1081 spin_unlock(&dentry->d_lock);
1082 spin_unlock(&this_parent->d_lock);
1083 goto positive;
1085 if (!list_empty(&dentry->d_subdirs)) {
1086 spin_unlock(&this_parent->d_lock);
1087 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1088 this_parent = dentry;
1089 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1090 goto repeat;
1092 spin_unlock(&dentry->d_lock);
1095 * All done at this level ... ascend and resume the search.
1097 if (this_parent != parent) {
1098 struct dentry *child = this_parent;
1099 this_parent = try_to_ascend(this_parent, locked, seq);
1100 if (!this_parent)
1101 goto rename_retry;
1102 next = child->d_u.d_child.next;
1103 goto resume;
1105 spin_unlock(&this_parent->d_lock);
1106 if (!locked && read_seqretry(&rename_lock, seq))
1107 goto rename_retry;
1108 if (locked)
1109 write_sequnlock(&rename_lock);
1110 return 0; /* No mount points found in tree */
1111 positive:
1112 if (!locked && read_seqretry(&rename_lock, seq))
1113 goto rename_retry;
1114 if (locked)
1115 write_sequnlock(&rename_lock);
1116 return 1;
1118 rename_retry:
1119 if (locked)
1120 goto again;
1121 locked = 1;
1122 write_seqlock(&rename_lock);
1123 goto again;
1125 EXPORT_SYMBOL(have_submounts);
1128 * Search the dentry child list for the specified parent,
1129 * and move any unused dentries to the end of the unused
1130 * list for prune_dcache(). We descend to the next level
1131 * whenever the d_subdirs list is non-empty and continue
1132 * searching.
1134 * It returns zero iff there are no unused children,
1135 * otherwise it returns the number of children moved to
1136 * the end of the unused list. This may not be the total
1137 * number of unused children, because select_parent can
1138 * drop the lock and return early due to latency
1139 * constraints.
1141 static int select_parent(struct dentry *parent, struct list_head *dispose)
1143 struct dentry *this_parent;
1144 struct list_head *next;
1145 unsigned seq;
1146 int found = 0;
1147 int locked = 0;
1149 seq = read_seqbegin(&rename_lock);
1150 again:
1151 this_parent = parent;
1152 spin_lock(&this_parent->d_lock);
1153 repeat:
1154 next = this_parent->d_subdirs.next;
1155 resume:
1156 while (next != &this_parent->d_subdirs) {
1157 struct list_head *tmp = next;
1158 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1159 next = tmp->next;
1161 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1164 * move only zero ref count dentries to the dispose list.
1166 * Those which are presently on the shrink list, being processed
1167 * by shrink_dentry_list(), shouldn't be moved. Otherwise the
1168 * loop in shrink_dcache_parent() might not make any progress
1169 * and loop forever.
1171 if (dentry->d_count) {
1172 dentry_lru_del(dentry);
1173 } else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
1174 dentry_lru_move_list(dentry, dispose);
1175 dentry->d_flags |= DCACHE_SHRINK_LIST;
1176 found++;
1179 * We can return to the caller if we have found some (this
1180 * ensures forward progress). We'll be coming back to find
1181 * the rest.
1183 if (found && need_resched()) {
1184 spin_unlock(&dentry->d_lock);
1185 goto out;
1189 * Descend a level if the d_subdirs list is non-empty.
1191 if (!list_empty(&dentry->d_subdirs)) {
1192 spin_unlock(&this_parent->d_lock);
1193 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1194 this_parent = dentry;
1195 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1196 goto repeat;
1199 spin_unlock(&dentry->d_lock);
1202 * All done at this level ... ascend and resume the search.
1204 if (this_parent != parent) {
1205 struct dentry *child = this_parent;
1206 this_parent = try_to_ascend(this_parent, locked, seq);
1207 if (!this_parent)
1208 goto rename_retry;
1209 next = child->d_u.d_child.next;
1210 goto resume;
1212 out:
1213 spin_unlock(&this_parent->d_lock);
1214 if (!locked && read_seqretry(&rename_lock, seq))
1215 goto rename_retry;
1216 if (locked)
1217 write_sequnlock(&rename_lock);
1218 return found;
1220 rename_retry:
1221 if (found)
1222 return found;
1223 if (locked)
1224 goto again;
1225 locked = 1;
1226 write_seqlock(&rename_lock);
1227 goto again;
1231 * shrink_dcache_parent - prune dcache
1232 * @parent: parent of entries to prune
1234 * Prune the dcache to remove unused children of the parent dentry.
1236 void shrink_dcache_parent(struct dentry * parent)
1238 LIST_HEAD(dispose);
1239 int found;
1241 while ((found = select_parent(parent, &dispose)) != 0)
1242 shrink_dentry_list(&dispose);
1244 EXPORT_SYMBOL(shrink_dcache_parent);
1247 * __d_alloc - allocate a dcache entry
1248 * @sb: filesystem it will belong to
1249 * @name: qstr of the name
1251 * Allocates a dentry. It returns %NULL if there is insufficient memory
1252 * available. On a success the dentry is returned. The name passed in is
1253 * copied and the copy passed in may be reused after this call.
1256 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1258 struct dentry *dentry;
1259 char *dname;
1261 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1262 if (!dentry)
1263 return NULL;
1265 if (name->len > DNAME_INLINE_LEN-1) {
1266 dname = kmalloc(name->len + 1, GFP_KERNEL);
1267 if (!dname) {
1268 kmem_cache_free(dentry_cache, dentry);
1269 return NULL;
1271 } else {
1272 dname = dentry->d_iname;
1274 dentry->d_name.name = dname;
1276 dentry->d_name.len = name->len;
1277 dentry->d_name.hash = name->hash;
1278 memcpy(dname, name->name, name->len);
1279 dname[name->len] = 0;
1281 dentry->d_count = 1;
1282 dentry->d_flags = 0;
1283 spin_lock_init(&dentry->d_lock);
1284 seqcount_init(&dentry->d_seq);
1285 dentry->d_inode = NULL;
1286 dentry->d_parent = dentry;
1287 dentry->d_sb = sb;
1288 dentry->d_op = NULL;
1289 dentry->d_fsdata = NULL;
1290 INIT_HLIST_BL_NODE(&dentry->d_hash);
1291 INIT_LIST_HEAD(&dentry->d_lru);
1292 INIT_LIST_HEAD(&dentry->d_subdirs);
1293 INIT_LIST_HEAD(&dentry->d_alias);
1294 INIT_LIST_HEAD(&dentry->d_u.d_child);
1295 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1297 this_cpu_inc(nr_dentry);
1299 return dentry;
1303 * d_alloc - allocate a dcache entry
1304 * @parent: parent of entry to allocate
1305 * @name: qstr of the name
1307 * Allocates a dentry. It returns %NULL if there is insufficient memory
1308 * available. On a success the dentry is returned. The name passed in is
1309 * copied and the copy passed in may be reused after this call.
1311 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1313 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1314 if (!dentry)
1315 return NULL;
1317 spin_lock(&parent->d_lock);
1319 * don't need child lock because it is not subject
1320 * to concurrency here
1322 __dget_dlock(parent);
1323 dentry->d_parent = parent;
1324 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1325 spin_unlock(&parent->d_lock);
1327 return dentry;
1329 EXPORT_SYMBOL(d_alloc);
1331 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1333 struct dentry *dentry = __d_alloc(sb, name);
1334 if (dentry)
1335 dentry->d_flags |= DCACHE_DISCONNECTED;
1336 return dentry;
1338 EXPORT_SYMBOL(d_alloc_pseudo);
1340 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1342 struct qstr q;
1344 q.name = name;
1345 q.len = strlen(name);
1346 q.hash = full_name_hash(q.name, q.len);
1347 return d_alloc(parent, &q);
1349 EXPORT_SYMBOL(d_alloc_name);
1351 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1353 WARN_ON_ONCE(dentry->d_op);
1354 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1355 DCACHE_OP_COMPARE |
1356 DCACHE_OP_REVALIDATE |
1357 DCACHE_OP_DELETE ));
1358 dentry->d_op = op;
1359 if (!op)
1360 return;
1361 if (op->d_hash)
1362 dentry->d_flags |= DCACHE_OP_HASH;
1363 if (op->d_compare)
1364 dentry->d_flags |= DCACHE_OP_COMPARE;
1365 if (op->d_revalidate)
1366 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1367 if (op->d_delete)
1368 dentry->d_flags |= DCACHE_OP_DELETE;
1369 if (op->d_prune)
1370 dentry->d_flags |= DCACHE_OP_PRUNE;
1373 EXPORT_SYMBOL(d_set_d_op);
1375 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1377 spin_lock(&dentry->d_lock);
1378 if (inode) {
1379 if (unlikely(IS_AUTOMOUNT(inode)))
1380 dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
1381 list_add(&dentry->d_alias, &inode->i_dentry);
1383 dentry->d_inode = inode;
1384 dentry_rcuwalk_barrier(dentry);
1385 spin_unlock(&dentry->d_lock);
1386 fsnotify_d_instantiate(dentry, inode);
1390 * d_instantiate - fill in inode information for a dentry
1391 * @entry: dentry to complete
1392 * @inode: inode to attach to this dentry
1394 * Fill in inode information in the entry.
1396 * This turns negative dentries into productive full members
1397 * of society.
1399 * NOTE! This assumes that the inode count has been incremented
1400 * (or otherwise set) by the caller to indicate that it is now
1401 * in use by the dcache.
1404 void d_instantiate(struct dentry *entry, struct inode * inode)
1406 BUG_ON(!list_empty(&entry->d_alias));
1407 if (inode)
1408 spin_lock(&inode->i_lock);
1409 __d_instantiate(entry, inode);
1410 if (inode)
1411 spin_unlock(&inode->i_lock);
1412 security_d_instantiate(entry, inode);
1414 EXPORT_SYMBOL(d_instantiate);
1417 * d_instantiate_unique - instantiate a non-aliased dentry
1418 * @entry: dentry to instantiate
1419 * @inode: inode to attach to this dentry
1421 * Fill in inode information in the entry. On success, it returns NULL.
1422 * If an unhashed alias of "entry" already exists, then we return the
1423 * aliased dentry instead and drop one reference to inode.
1425 * Note that in order to avoid conflicts with rename() etc, the caller
1426 * had better be holding the parent directory semaphore.
1428 * This also assumes that the inode count has been incremented
1429 * (or otherwise set) by the caller to indicate that it is now
1430 * in use by the dcache.
1432 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1433 struct inode *inode)
1435 struct dentry *alias;
1436 int len = entry->d_name.len;
1437 const char *name = entry->d_name.name;
1438 unsigned int hash = entry->d_name.hash;
1440 if (!inode) {
1441 __d_instantiate(entry, NULL);
1442 return NULL;
1445 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1446 struct qstr *qstr = &alias->d_name;
1449 * Don't need alias->d_lock here, because aliases with
1450 * d_parent == entry->d_parent are not subject to name or
1451 * parent changes, because the parent inode i_mutex is held.
1453 if (qstr->hash != hash)
1454 continue;
1455 if (alias->d_parent != entry->d_parent)
1456 continue;
1457 if (dentry_cmp(qstr->name, qstr->len, name, len))
1458 continue;
1459 __dget(alias);
1460 return alias;
1463 __d_instantiate(entry, inode);
1464 return NULL;
1467 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1469 struct dentry *result;
1471 BUG_ON(!list_empty(&entry->d_alias));
1473 if (inode)
1474 spin_lock(&inode->i_lock);
1475 result = __d_instantiate_unique(entry, inode);
1476 if (inode)
1477 spin_unlock(&inode->i_lock);
1479 if (!result) {
1480 security_d_instantiate(entry, inode);
1481 return NULL;
1484 BUG_ON(!d_unhashed(result));
1485 iput(inode);
1486 return result;
1489 EXPORT_SYMBOL(d_instantiate_unique);
1491 struct dentry *d_make_root(struct inode *root_inode)
1493 struct dentry *res = NULL;
1495 if (root_inode) {
1496 static const struct qstr name = { .name = "/", .len = 1 };
1498 res = __d_alloc(root_inode->i_sb, &name);
1499 if (res)
1500 d_instantiate(res, root_inode);
1501 else
1502 iput(root_inode);
1504 return res;
1506 EXPORT_SYMBOL(d_make_root);
1508 static struct dentry * __d_find_any_alias(struct inode *inode)
1510 struct dentry *alias;
1512 if (list_empty(&inode->i_dentry))
1513 return NULL;
1514 alias = list_first_entry(&inode->i_dentry, struct dentry, d_alias);
1515 __dget(alias);
1516 return alias;
1520 * d_find_any_alias - find any alias for a given inode
1521 * @inode: inode to find an alias for
1523 * If any aliases exist for the given inode, take and return a
1524 * reference for one of them. If no aliases exist, return %NULL.
1526 struct dentry *d_find_any_alias(struct inode *inode)
1528 struct dentry *de;
1530 spin_lock(&inode->i_lock);
1531 de = __d_find_any_alias(inode);
1532 spin_unlock(&inode->i_lock);
1533 return de;
1535 EXPORT_SYMBOL(d_find_any_alias);
1538 * d_obtain_alias - find or allocate a dentry for a given inode
1539 * @inode: inode to allocate the dentry for
1541 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1542 * similar open by handle operations. The returned dentry may be anonymous,
1543 * or may have a full name (if the inode was already in the cache).
1545 * When called on a directory inode, we must ensure that the inode only ever
1546 * has one dentry. If a dentry is found, that is returned instead of
1547 * allocating a new one.
1549 * On successful return, the reference to the inode has been transferred
1550 * to the dentry. In case of an error the reference on the inode is released.
1551 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1552 * be passed in and will be the error will be propagate to the return value,
1553 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1555 struct dentry *d_obtain_alias(struct inode *inode)
1557 static const struct qstr anonstring = { .name = "" };
1558 struct dentry *tmp;
1559 struct dentry *res;
1561 if (!inode)
1562 return ERR_PTR(-ESTALE);
1563 if (IS_ERR(inode))
1564 return ERR_CAST(inode);
1566 res = d_find_any_alias(inode);
1567 if (res)
1568 goto out_iput;
1570 tmp = __d_alloc(inode->i_sb, &anonstring);
1571 if (!tmp) {
1572 res = ERR_PTR(-ENOMEM);
1573 goto out_iput;
1576 spin_lock(&inode->i_lock);
1577 res = __d_find_any_alias(inode);
1578 if (res) {
1579 spin_unlock(&inode->i_lock);
1580 dput(tmp);
1581 goto out_iput;
1584 /* attach a disconnected dentry */
1585 spin_lock(&tmp->d_lock);
1586 tmp->d_inode = inode;
1587 tmp->d_flags |= DCACHE_DISCONNECTED;
1588 list_add(&tmp->d_alias, &inode->i_dentry);
1589 hlist_bl_lock(&tmp->d_sb->s_anon);
1590 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1591 hlist_bl_unlock(&tmp->d_sb->s_anon);
1592 spin_unlock(&tmp->d_lock);
1593 spin_unlock(&inode->i_lock);
1594 security_d_instantiate(tmp, inode);
1596 return tmp;
1598 out_iput:
1599 if (res && !IS_ERR(res))
1600 security_d_instantiate(res, inode);
1601 iput(inode);
1602 return res;
1604 EXPORT_SYMBOL(d_obtain_alias);
1607 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1608 * @inode: the inode which may have a disconnected dentry
1609 * @dentry: a negative dentry which we want to point to the inode.
1611 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1612 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1613 * and return it, else simply d_add the inode to the dentry and return NULL.
1615 * This is needed in the lookup routine of any filesystem that is exportable
1616 * (via knfsd) so that we can build dcache paths to directories effectively.
1618 * If a dentry was found and moved, then it is returned. Otherwise NULL
1619 * is returned. This matches the expected return value of ->lookup.
1622 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1624 struct dentry *new = NULL;
1626 if (IS_ERR(inode))
1627 return ERR_CAST(inode);
1629 if (inode && S_ISDIR(inode->i_mode)) {
1630 spin_lock(&inode->i_lock);
1631 new = __d_find_alias(inode, 1);
1632 if (new) {
1633 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1634 spin_unlock(&inode->i_lock);
1635 security_d_instantiate(new, inode);
1636 d_move(new, dentry);
1637 iput(inode);
1638 } else {
1639 /* already taking inode->i_lock, so d_add() by hand */
1640 __d_instantiate(dentry, inode);
1641 spin_unlock(&inode->i_lock);
1642 security_d_instantiate(dentry, inode);
1643 d_rehash(dentry);
1645 } else
1646 d_add(dentry, inode);
1647 return new;
1649 EXPORT_SYMBOL(d_splice_alias);
1652 * d_add_ci - lookup or allocate new dentry with case-exact name
1653 * @inode: the inode case-insensitive lookup has found
1654 * @dentry: the negative dentry that was passed to the parent's lookup func
1655 * @name: the case-exact name to be associated with the returned dentry
1657 * This is to avoid filling the dcache with case-insensitive names to the
1658 * same inode, only the actual correct case is stored in the dcache for
1659 * case-insensitive filesystems.
1661 * For a case-insensitive lookup match and if the the case-exact dentry
1662 * already exists in in the dcache, use it and return it.
1664 * If no entry exists with the exact case name, allocate new dentry with
1665 * the exact case, and return the spliced entry.
1667 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1668 struct qstr *name)
1670 int error;
1671 struct dentry *found;
1672 struct dentry *new;
1675 * First check if a dentry matching the name already exists,
1676 * if not go ahead and create it now.
1678 found = d_hash_and_lookup(dentry->d_parent, name);
1679 if (!found) {
1680 new = d_alloc(dentry->d_parent, name);
1681 if (!new) {
1682 error = -ENOMEM;
1683 goto err_out;
1686 found = d_splice_alias(inode, new);
1687 if (found) {
1688 dput(new);
1689 return found;
1691 return new;
1695 * If a matching dentry exists, and it's not negative use it.
1697 * Decrement the reference count to balance the iget() done
1698 * earlier on.
1700 if (found->d_inode) {
1701 if (unlikely(found->d_inode != inode)) {
1702 /* This can't happen because bad inodes are unhashed. */
1703 BUG_ON(!is_bad_inode(inode));
1704 BUG_ON(!is_bad_inode(found->d_inode));
1706 iput(inode);
1707 return found;
1711 * We are going to instantiate this dentry, unhash it and clear the
1712 * lookup flag so we can do that.
1714 if (unlikely(d_need_lookup(found)))
1715 d_clear_need_lookup(found);
1718 * Negative dentry: instantiate it unless the inode is a directory and
1719 * already has a dentry.
1721 new = d_splice_alias(inode, found);
1722 if (new) {
1723 dput(found);
1724 found = new;
1726 return found;
1728 err_out:
1729 iput(inode);
1730 return ERR_PTR(error);
1732 EXPORT_SYMBOL(d_add_ci);
1735 * __d_lookup_rcu - search for a dentry (racy, store-free)
1736 * @parent: parent dentry
1737 * @name: qstr of name we wish to find
1738 * @seqp: returns d_seq value at the point where the dentry was found
1739 * @inode: returns dentry->d_inode when the inode was found valid.
1740 * Returns: dentry, or NULL
1742 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1743 * resolution (store-free path walking) design described in
1744 * Documentation/filesystems/path-lookup.txt.
1746 * This is not to be used outside core vfs.
1748 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1749 * held, and rcu_read_lock held. The returned dentry must not be stored into
1750 * without taking d_lock and checking d_seq sequence count against @seq
1751 * returned here.
1753 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1754 * function.
1756 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1757 * the returned dentry, so long as its parent's seqlock is checked after the
1758 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1759 * is formed, giving integrity down the path walk.
1761 struct dentry *__d_lookup_rcu(const struct dentry *parent,
1762 const struct qstr *name,
1763 unsigned *seqp, struct inode **inode)
1765 unsigned int len = name->len;
1766 unsigned int hash = name->hash;
1767 const unsigned char *str = name->name;
1768 struct hlist_bl_head *b = d_hash(parent, hash);
1769 struct hlist_bl_node *node;
1770 struct dentry *dentry;
1773 * Note: There is significant duplication with __d_lookup_rcu which is
1774 * required to prevent single threaded performance regressions
1775 * especially on architectures where smp_rmb (in seqcounts) are costly.
1776 * Keep the two functions in sync.
1780 * The hash list is protected using RCU.
1782 * Carefully use d_seq when comparing a candidate dentry, to avoid
1783 * races with d_move().
1785 * It is possible that concurrent renames can mess up our list
1786 * walk here and result in missing our dentry, resulting in the
1787 * false-negative result. d_lookup() protects against concurrent
1788 * renames using rename_lock seqlock.
1790 * See Documentation/filesystems/path-lookup.txt for more details.
1792 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1793 unsigned seq;
1794 struct inode *i;
1795 const char *tname;
1796 int tlen;
1798 if (dentry->d_name.hash != hash)
1799 continue;
1801 seqretry:
1802 seq = read_seqcount_begin(&dentry->d_seq);
1803 if (dentry->d_parent != parent)
1804 continue;
1805 if (d_unhashed(dentry))
1806 continue;
1807 tlen = dentry->d_name.len;
1808 tname = dentry->d_name.name;
1809 i = dentry->d_inode;
1810 prefetch(tname);
1812 * This seqcount check is required to ensure name and
1813 * len are loaded atomically, so as not to walk off the
1814 * edge of memory when walking. If we could load this
1815 * atomically some other way, we could drop this check.
1817 if (read_seqcount_retry(&dentry->d_seq, seq))
1818 goto seqretry;
1819 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
1820 if (parent->d_op->d_compare(parent, *inode,
1821 dentry, i,
1822 tlen, tname, name))
1823 continue;
1824 } else {
1825 if (dentry_cmp(tname, tlen, str, len))
1826 continue;
1829 * No extra seqcount check is required after the name
1830 * compare. The caller must perform a seqcount check in
1831 * order to do anything useful with the returned dentry
1832 * anyway.
1834 *seqp = seq;
1835 *inode = i;
1836 return dentry;
1838 return NULL;
1842 * d_lookup - search for a dentry
1843 * @parent: parent dentry
1844 * @name: qstr of name we wish to find
1845 * Returns: dentry, or NULL
1847 * d_lookup searches the children of the parent dentry for the name in
1848 * question. If the dentry is found its reference count is incremented and the
1849 * dentry is returned. The caller must use dput to free the entry when it has
1850 * finished using it. %NULL is returned if the dentry does not exist.
1852 struct dentry *d_lookup(struct dentry *parent, struct qstr *name)
1854 struct dentry *dentry;
1855 unsigned seq;
1857 do {
1858 seq = read_seqbegin(&rename_lock);
1859 dentry = __d_lookup(parent, name);
1860 if (dentry)
1861 break;
1862 } while (read_seqretry(&rename_lock, seq));
1863 return dentry;
1865 EXPORT_SYMBOL(d_lookup);
1868 * __d_lookup - search for a dentry (racy)
1869 * @parent: parent dentry
1870 * @name: qstr of name we wish to find
1871 * Returns: dentry, or NULL
1873 * __d_lookup is like d_lookup, however it may (rarely) return a
1874 * false-negative result due to unrelated rename activity.
1876 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1877 * however it must be used carefully, eg. with a following d_lookup in
1878 * the case of failure.
1880 * __d_lookup callers must be commented.
1882 struct dentry *__d_lookup(struct dentry *parent, struct qstr *name)
1884 unsigned int len = name->len;
1885 unsigned int hash = name->hash;
1886 const unsigned char *str = name->name;
1887 struct hlist_bl_head *b = d_hash(parent, hash);
1888 struct hlist_bl_node *node;
1889 struct dentry *found = NULL;
1890 struct dentry *dentry;
1893 * Note: There is significant duplication with __d_lookup_rcu which is
1894 * required to prevent single threaded performance regressions
1895 * especially on architectures where smp_rmb (in seqcounts) are costly.
1896 * Keep the two functions in sync.
1900 * The hash list is protected using RCU.
1902 * Take d_lock when comparing a candidate dentry, to avoid races
1903 * with d_move().
1905 * It is possible that concurrent renames can mess up our list
1906 * walk here and result in missing our dentry, resulting in the
1907 * false-negative result. d_lookup() protects against concurrent
1908 * renames using rename_lock seqlock.
1910 * See Documentation/filesystems/path-lookup.txt for more details.
1912 rcu_read_lock();
1914 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1915 const char *tname;
1916 int tlen;
1918 if (dentry->d_name.hash != hash)
1919 continue;
1921 spin_lock(&dentry->d_lock);
1922 if (dentry->d_parent != parent)
1923 goto next;
1924 if (d_unhashed(dentry))
1925 goto next;
1928 * It is safe to compare names since d_move() cannot
1929 * change the qstr (protected by d_lock).
1931 tlen = dentry->d_name.len;
1932 tname = dentry->d_name.name;
1933 if (parent->d_flags & DCACHE_OP_COMPARE) {
1934 if (parent->d_op->d_compare(parent, parent->d_inode,
1935 dentry, dentry->d_inode,
1936 tlen, tname, name))
1937 goto next;
1938 } else {
1939 if (dentry_cmp(tname, tlen, str, len))
1940 goto next;
1943 dentry->d_count++;
1944 found = dentry;
1945 spin_unlock(&dentry->d_lock);
1946 break;
1947 next:
1948 spin_unlock(&dentry->d_lock);
1950 rcu_read_unlock();
1952 return found;
1956 * d_hash_and_lookup - hash the qstr then search for a dentry
1957 * @dir: Directory to search in
1958 * @name: qstr of name we wish to find
1960 * On hash failure or on lookup failure NULL is returned.
1962 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1964 struct dentry *dentry = NULL;
1967 * Check for a fs-specific hash function. Note that we must
1968 * calculate the standard hash first, as the d_op->d_hash()
1969 * routine may choose to leave the hash value unchanged.
1971 name->hash = full_name_hash(name->name, name->len);
1972 if (dir->d_flags & DCACHE_OP_HASH) {
1973 if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
1974 goto out;
1976 dentry = d_lookup(dir, name);
1977 out:
1978 return dentry;
1982 * d_validate - verify dentry provided from insecure source (deprecated)
1983 * @dentry: The dentry alleged to be valid child of @dparent
1984 * @dparent: The parent dentry (known to be valid)
1986 * An insecure source has sent us a dentry, here we verify it and dget() it.
1987 * This is used by ncpfs in its readdir implementation.
1988 * Zero is returned in the dentry is invalid.
1990 * This function is slow for big directories, and deprecated, do not use it.
1992 int d_validate(struct dentry *dentry, struct dentry *dparent)
1994 struct dentry *child;
1996 spin_lock(&dparent->d_lock);
1997 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
1998 if (dentry == child) {
1999 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2000 __dget_dlock(dentry);
2001 spin_unlock(&dentry->d_lock);
2002 spin_unlock(&dparent->d_lock);
2003 return 1;
2006 spin_unlock(&dparent->d_lock);
2008 return 0;
2010 EXPORT_SYMBOL(d_validate);
2013 * When a file is deleted, we have two options:
2014 * - turn this dentry into a negative dentry
2015 * - unhash this dentry and free it.
2017 * Usually, we want to just turn this into
2018 * a negative dentry, but if anybody else is
2019 * currently using the dentry or the inode
2020 * we can't do that and we fall back on removing
2021 * it from the hash queues and waiting for
2022 * it to be deleted later when it has no users
2026 * d_delete - delete a dentry
2027 * @dentry: The dentry to delete
2029 * Turn the dentry into a negative dentry if possible, otherwise
2030 * remove it from the hash queues so it can be deleted later
2033 void d_delete(struct dentry * dentry)
2035 struct inode *inode;
2036 int isdir = 0;
2038 * Are we the only user?
2040 again:
2041 spin_lock(&dentry->d_lock);
2042 inode = dentry->d_inode;
2043 isdir = S_ISDIR(inode->i_mode);
2044 if (dentry->d_count == 1) {
2045 if (inode && !spin_trylock(&inode->i_lock)) {
2046 spin_unlock(&dentry->d_lock);
2047 cpu_relax();
2048 goto again;
2050 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2051 dentry_unlink_inode(dentry);
2052 fsnotify_nameremove(dentry, isdir);
2053 return;
2056 if (!d_unhashed(dentry))
2057 __d_drop(dentry);
2059 spin_unlock(&dentry->d_lock);
2061 fsnotify_nameremove(dentry, isdir);
2063 EXPORT_SYMBOL(d_delete);
2065 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2067 BUG_ON(!d_unhashed(entry));
2068 hlist_bl_lock(b);
2069 entry->d_flags |= DCACHE_RCUACCESS;
2070 hlist_bl_add_head_rcu(&entry->d_hash, b);
2071 hlist_bl_unlock(b);
2074 static void _d_rehash(struct dentry * entry)
2076 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2080 * d_rehash - add an entry back to the hash
2081 * @entry: dentry to add to the hash
2083 * Adds a dentry to the hash according to its name.
2086 void d_rehash(struct dentry * entry)
2088 spin_lock(&entry->d_lock);
2089 _d_rehash(entry);
2090 spin_unlock(&entry->d_lock);
2092 EXPORT_SYMBOL(d_rehash);
2095 * dentry_update_name_case - update case insensitive dentry with a new name
2096 * @dentry: dentry to be updated
2097 * @name: new name
2099 * Update a case insensitive dentry with new case of name.
2101 * dentry must have been returned by d_lookup with name @name. Old and new
2102 * name lengths must match (ie. no d_compare which allows mismatched name
2103 * lengths).
2105 * Parent inode i_mutex must be held over d_lookup and into this call (to
2106 * keep renames and concurrent inserts, and readdir(2) away).
2108 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2110 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2111 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2113 spin_lock(&dentry->d_lock);
2114 write_seqcount_begin(&dentry->d_seq);
2115 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2116 write_seqcount_end(&dentry->d_seq);
2117 spin_unlock(&dentry->d_lock);
2119 EXPORT_SYMBOL(dentry_update_name_case);
2121 static void switch_names(struct dentry *dentry, struct dentry *target)
2123 if (dname_external(target)) {
2124 if (dname_external(dentry)) {
2126 * Both external: swap the pointers
2128 swap(target->d_name.name, dentry->d_name.name);
2129 } else {
2131 * dentry:internal, target:external. Steal target's
2132 * storage and make target internal.
2134 memcpy(target->d_iname, dentry->d_name.name,
2135 dentry->d_name.len + 1);
2136 dentry->d_name.name = target->d_name.name;
2137 target->d_name.name = target->d_iname;
2139 } else {
2140 if (dname_external(dentry)) {
2142 * dentry:external, target:internal. Give dentry's
2143 * storage to target and make dentry internal
2145 memcpy(dentry->d_iname, target->d_name.name,
2146 target->d_name.len + 1);
2147 target->d_name.name = dentry->d_name.name;
2148 dentry->d_name.name = dentry->d_iname;
2149 } else {
2151 * Both are internal. Just copy target to dentry
2153 memcpy(dentry->d_iname, target->d_name.name,
2154 target->d_name.len + 1);
2155 dentry->d_name.len = target->d_name.len;
2156 return;
2159 swap(dentry->d_name.len, target->d_name.len);
2162 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2165 * XXXX: do we really need to take target->d_lock?
2167 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2168 spin_lock(&target->d_parent->d_lock);
2169 else {
2170 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2171 spin_lock(&dentry->d_parent->d_lock);
2172 spin_lock_nested(&target->d_parent->d_lock,
2173 DENTRY_D_LOCK_NESTED);
2174 } else {
2175 spin_lock(&target->d_parent->d_lock);
2176 spin_lock_nested(&dentry->d_parent->d_lock,
2177 DENTRY_D_LOCK_NESTED);
2180 if (target < dentry) {
2181 spin_lock_nested(&target->d_lock, 2);
2182 spin_lock_nested(&dentry->d_lock, 3);
2183 } else {
2184 spin_lock_nested(&dentry->d_lock, 2);
2185 spin_lock_nested(&target->d_lock, 3);
2189 static void dentry_unlock_parents_for_move(struct dentry *dentry,
2190 struct dentry *target)
2192 if (target->d_parent != dentry->d_parent)
2193 spin_unlock(&dentry->d_parent->d_lock);
2194 if (target->d_parent != target)
2195 spin_unlock(&target->d_parent->d_lock);
2199 * When switching names, the actual string doesn't strictly have to
2200 * be preserved in the target - because we're dropping the target
2201 * anyway. As such, we can just do a simple memcpy() to copy over
2202 * the new name before we switch.
2204 * Note that we have to be a lot more careful about getting the hash
2205 * switched - we have to switch the hash value properly even if it
2206 * then no longer matches the actual (corrupted) string of the target.
2207 * The hash value has to match the hash queue that the dentry is on..
2210 * __d_move - move a dentry
2211 * @dentry: entry to move
2212 * @target: new dentry
2214 * Update the dcache to reflect the move of a file name. Negative
2215 * dcache entries should not be moved in this way. Caller must hold
2216 * rename_lock, the i_mutex of the source and target directories,
2217 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2219 static void __d_move(struct dentry * dentry, struct dentry * target)
2221 if (!dentry->d_inode)
2222 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2224 BUG_ON(d_ancestor(dentry, target));
2225 BUG_ON(d_ancestor(target, dentry));
2227 dentry_lock_for_move(dentry, target);
2229 write_seqcount_begin(&dentry->d_seq);
2230 write_seqcount_begin(&target->d_seq);
2232 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2235 * Move the dentry to the target hash queue. Don't bother checking
2236 * for the same hash queue because of how unlikely it is.
2238 __d_drop(dentry);
2239 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2241 /* Unhash the target: dput() will then get rid of it */
2242 __d_drop(target);
2244 list_del(&dentry->d_u.d_child);
2245 list_del(&target->d_u.d_child);
2247 /* Switch the names.. */
2248 switch_names(dentry, target);
2249 swap(dentry->d_name.hash, target->d_name.hash);
2251 /* ... and switch the parents */
2252 if (IS_ROOT(dentry)) {
2253 dentry->d_parent = target->d_parent;
2254 target->d_parent = target;
2255 INIT_LIST_HEAD(&target->d_u.d_child);
2256 } else {
2257 swap(dentry->d_parent, target->d_parent);
2259 /* And add them back to the (new) parent lists */
2260 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
2263 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2265 write_seqcount_end(&target->d_seq);
2266 write_seqcount_end(&dentry->d_seq);
2268 dentry_unlock_parents_for_move(dentry, target);
2269 spin_unlock(&target->d_lock);
2270 fsnotify_d_move(dentry);
2271 spin_unlock(&dentry->d_lock);
2275 * d_move - move a dentry
2276 * @dentry: entry to move
2277 * @target: new dentry
2279 * Update the dcache to reflect the move of a file name. Negative
2280 * dcache entries should not be moved in this way. See the locking
2281 * requirements for __d_move.
2283 void d_move(struct dentry *dentry, struct dentry *target)
2285 write_seqlock(&rename_lock);
2286 __d_move(dentry, target);
2287 write_sequnlock(&rename_lock);
2289 EXPORT_SYMBOL(d_move);
2292 * d_ancestor - search for an ancestor
2293 * @p1: ancestor dentry
2294 * @p2: child dentry
2296 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2297 * an ancestor of p2, else NULL.
2299 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2301 struct dentry *p;
2303 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2304 if (p->d_parent == p1)
2305 return p;
2307 return NULL;
2311 * This helper attempts to cope with remotely renamed directories
2313 * It assumes that the caller is already holding
2314 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2316 * Note: If ever the locking in lock_rename() changes, then please
2317 * remember to update this too...
2319 static struct dentry *__d_unalias(struct inode *inode,
2320 struct dentry *dentry, struct dentry *alias)
2322 struct mutex *m1 = NULL, *m2 = NULL;
2323 struct dentry *ret;
2325 /* If alias and dentry share a parent, then no extra locks required */
2326 if (alias->d_parent == dentry->d_parent)
2327 goto out_unalias;
2329 /* See lock_rename() */
2330 ret = ERR_PTR(-EBUSY);
2331 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2332 goto out_err;
2333 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2334 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2335 goto out_err;
2336 m2 = &alias->d_parent->d_inode->i_mutex;
2337 out_unalias:
2338 __d_move(alias, dentry);
2339 ret = alias;
2340 out_err:
2341 spin_unlock(&inode->i_lock);
2342 if (m2)
2343 mutex_unlock(m2);
2344 if (m1)
2345 mutex_unlock(m1);
2346 return ret;
2350 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2351 * named dentry in place of the dentry to be replaced.
2352 * returns with anon->d_lock held!
2354 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2356 struct dentry *dparent, *aparent;
2358 dentry_lock_for_move(anon, dentry);
2360 write_seqcount_begin(&dentry->d_seq);
2361 write_seqcount_begin(&anon->d_seq);
2363 dparent = dentry->d_parent;
2364 aparent = anon->d_parent;
2366 switch_names(dentry, anon);
2367 swap(dentry->d_name.hash, anon->d_name.hash);
2369 dentry->d_parent = (aparent == anon) ? dentry : aparent;
2370 list_del(&dentry->d_u.d_child);
2371 if (!IS_ROOT(dentry))
2372 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2373 else
2374 INIT_LIST_HEAD(&dentry->d_u.d_child);
2376 anon->d_parent = (dparent == dentry) ? anon : dparent;
2377 list_del(&anon->d_u.d_child);
2378 if (!IS_ROOT(anon))
2379 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
2380 else
2381 INIT_LIST_HEAD(&anon->d_u.d_child);
2383 write_seqcount_end(&dentry->d_seq);
2384 write_seqcount_end(&anon->d_seq);
2386 dentry_unlock_parents_for_move(anon, dentry);
2387 spin_unlock(&dentry->d_lock);
2389 /* anon->d_lock still locked, returns locked */
2390 anon->d_flags &= ~DCACHE_DISCONNECTED;
2394 * d_materialise_unique - introduce an inode into the tree
2395 * @dentry: candidate dentry
2396 * @inode: inode to bind to the dentry, to which aliases may be attached
2398 * Introduces an dentry into the tree, substituting an extant disconnected
2399 * root directory alias in its place if there is one. Caller must hold the
2400 * i_mutex of the parent directory.
2402 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2404 struct dentry *actual;
2406 BUG_ON(!d_unhashed(dentry));
2408 if (!inode) {
2409 actual = dentry;
2410 __d_instantiate(dentry, NULL);
2411 d_rehash(actual);
2412 goto out_nolock;
2415 spin_lock(&inode->i_lock);
2417 if (S_ISDIR(inode->i_mode)) {
2418 struct dentry *alias;
2420 /* Does an aliased dentry already exist? */
2421 alias = __d_find_alias(inode, 0);
2422 if (alias) {
2423 actual = alias;
2424 write_seqlock(&rename_lock);
2426 if (d_ancestor(alias, dentry)) {
2427 /* Check for loops */
2428 actual = ERR_PTR(-ELOOP);
2429 spin_unlock(&inode->i_lock);
2430 } else if (IS_ROOT(alias)) {
2431 /* Is this an anonymous mountpoint that we
2432 * could splice into our tree? */
2433 __d_materialise_dentry(dentry, alias);
2434 write_sequnlock(&rename_lock);
2435 __d_drop(alias);
2436 goto found;
2437 } else {
2438 /* Nope, but we must(!) avoid directory
2439 * aliasing. This drops inode->i_lock */
2440 actual = __d_unalias(inode, dentry, alias);
2442 write_sequnlock(&rename_lock);
2443 if (IS_ERR(actual)) {
2444 if (PTR_ERR(actual) == -ELOOP)
2445 pr_warn_ratelimited(
2446 "VFS: Lookup of '%s' in %s %s"
2447 " would have caused loop\n",
2448 dentry->d_name.name,
2449 inode->i_sb->s_type->name,
2450 inode->i_sb->s_id);
2451 dput(alias);
2453 goto out_nolock;
2457 /* Add a unique reference */
2458 actual = __d_instantiate_unique(dentry, inode);
2459 if (!actual)
2460 actual = dentry;
2461 else
2462 BUG_ON(!d_unhashed(actual));
2464 spin_lock(&actual->d_lock);
2465 found:
2466 _d_rehash(actual);
2467 spin_unlock(&actual->d_lock);
2468 spin_unlock(&inode->i_lock);
2469 out_nolock:
2470 if (actual == dentry) {
2471 security_d_instantiate(dentry, inode);
2472 return NULL;
2475 iput(inode);
2476 return actual;
2478 EXPORT_SYMBOL_GPL(d_materialise_unique);
2480 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2482 *buflen -= namelen;
2483 if (*buflen < 0)
2484 return -ENAMETOOLONG;
2485 *buffer -= namelen;
2486 memcpy(*buffer, str, namelen);
2487 return 0;
2490 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2492 return prepend(buffer, buflen, name->name, name->len);
2496 * prepend_path - Prepend path string to a buffer
2497 * @path: the dentry/vfsmount to report
2498 * @root: root vfsmnt/dentry
2499 * @buffer: pointer to the end of the buffer
2500 * @buflen: pointer to buffer length
2502 * Caller holds the rename_lock.
2504 static int prepend_path(const struct path *path,
2505 const struct path *root,
2506 char **buffer, int *buflen)
2508 struct dentry *dentry = path->dentry;
2509 struct vfsmount *vfsmnt = path->mnt;
2510 struct mount *mnt = real_mount(vfsmnt);
2511 bool slash = false;
2512 int error = 0;
2514 br_read_lock(vfsmount_lock);
2515 while (dentry != root->dentry || vfsmnt != root->mnt) {
2516 struct dentry * parent;
2518 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2519 /* Global root? */
2520 if (!mnt_has_parent(mnt))
2521 goto global_root;
2522 dentry = mnt->mnt_mountpoint;
2523 mnt = mnt->mnt_parent;
2524 vfsmnt = &mnt->mnt;
2525 continue;
2527 parent = dentry->d_parent;
2528 prefetch(parent);
2529 spin_lock(&dentry->d_lock);
2530 error = prepend_name(buffer, buflen, &dentry->d_name);
2531 spin_unlock(&dentry->d_lock);
2532 if (!error)
2533 error = prepend(buffer, buflen, "/", 1);
2534 if (error)
2535 break;
2537 slash = true;
2538 dentry = parent;
2541 if (!error && !slash)
2542 error = prepend(buffer, buflen, "/", 1);
2544 out:
2545 br_read_unlock(vfsmount_lock);
2546 return error;
2548 global_root:
2550 * Filesystems needing to implement special "root names"
2551 * should do so with ->d_dname()
2553 if (IS_ROOT(dentry) &&
2554 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2555 WARN(1, "Root dentry has weird name <%.*s>\n",
2556 (int) dentry->d_name.len, dentry->d_name.name);
2558 if (!slash)
2559 error = prepend(buffer, buflen, "/", 1);
2560 if (!error)
2561 error = real_mount(vfsmnt)->mnt_ns ? 1 : 2;
2562 goto out;
2566 * __d_path - return the path of a dentry
2567 * @path: the dentry/vfsmount to report
2568 * @root: root vfsmnt/dentry
2569 * @buf: buffer to return value in
2570 * @buflen: buffer length
2572 * Convert a dentry into an ASCII path name.
2574 * Returns a pointer into the buffer or an error code if the
2575 * path was too long.
2577 * "buflen" should be positive.
2579 * If the path is not reachable from the supplied root, return %NULL.
2581 char *__d_path(const struct path *path,
2582 const struct path *root,
2583 char *buf, int buflen)
2585 char *res = buf + buflen;
2586 int error;
2588 prepend(&res, &buflen, "\0", 1);
2589 write_seqlock(&rename_lock);
2590 error = prepend_path(path, root, &res, &buflen);
2591 write_sequnlock(&rename_lock);
2593 if (error < 0)
2594 return ERR_PTR(error);
2595 if (error > 0)
2596 return NULL;
2597 return res;
2600 char *d_absolute_path(const struct path *path,
2601 char *buf, int buflen)
2603 struct path root = {};
2604 char *res = buf + buflen;
2605 int error;
2607 prepend(&res, &buflen, "\0", 1);
2608 write_seqlock(&rename_lock);
2609 error = prepend_path(path, &root, &res, &buflen);
2610 write_sequnlock(&rename_lock);
2612 if (error > 1)
2613 error = -EINVAL;
2614 if (error < 0)
2615 return ERR_PTR(error);
2616 return res;
2620 * same as __d_path but appends "(deleted)" for unlinked files.
2622 static int path_with_deleted(const struct path *path,
2623 const struct path *root,
2624 char **buf, int *buflen)
2626 prepend(buf, buflen, "\0", 1);
2627 if (d_unlinked(path->dentry)) {
2628 int error = prepend(buf, buflen, " (deleted)", 10);
2629 if (error)
2630 return error;
2633 return prepend_path(path, root, buf, buflen);
2636 static int prepend_unreachable(char **buffer, int *buflen)
2638 return prepend(buffer, buflen, "(unreachable)", 13);
2642 * d_path - return the path of a dentry
2643 * @path: path to report
2644 * @buf: buffer to return value in
2645 * @buflen: buffer length
2647 * Convert a dentry into an ASCII path name. If the entry has been deleted
2648 * the string " (deleted)" is appended. Note that this is ambiguous.
2650 * Returns a pointer into the buffer or an error code if the path was
2651 * too long. Note: Callers should use the returned pointer, not the passed
2652 * in buffer, to use the name! The implementation often starts at an offset
2653 * into the buffer, and may leave 0 bytes at the start.
2655 * "buflen" should be positive.
2657 char *d_path(const struct path *path, char *buf, int buflen)
2659 char *res = buf + buflen;
2660 struct path root;
2661 int error;
2664 * We have various synthetic filesystems that never get mounted. On
2665 * these filesystems dentries are never used for lookup purposes, and
2666 * thus don't need to be hashed. They also don't need a name until a
2667 * user wants to identify the object in /proc/pid/fd/. The little hack
2668 * below allows us to generate a name for these objects on demand:
2670 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2671 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2673 get_fs_root(current->fs, &root);
2674 write_seqlock(&rename_lock);
2675 error = path_with_deleted(path, &root, &res, &buflen);
2676 if (error < 0)
2677 res = ERR_PTR(error);
2678 write_sequnlock(&rename_lock);
2679 path_put(&root);
2680 return res;
2682 EXPORT_SYMBOL(d_path);
2685 * d_path_with_unreachable - return the path of a dentry
2686 * @path: path to report
2687 * @buf: buffer to return value in
2688 * @buflen: buffer length
2690 * The difference from d_path() is that this prepends "(unreachable)"
2691 * to paths which are unreachable from the current process' root.
2693 char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
2695 char *res = buf + buflen;
2696 struct path root;
2697 int error;
2699 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2700 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2702 get_fs_root(current->fs, &root);
2703 write_seqlock(&rename_lock);
2704 error = path_with_deleted(path, &root, &res, &buflen);
2705 if (error > 0)
2706 error = prepend_unreachable(&res, &buflen);
2707 write_sequnlock(&rename_lock);
2708 path_put(&root);
2709 if (error)
2710 res = ERR_PTR(error);
2712 return res;
2716 * Helper function for dentry_operations.d_dname() members
2718 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2719 const char *fmt, ...)
2721 va_list args;
2722 char temp[64];
2723 int sz;
2725 va_start(args, fmt);
2726 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2727 va_end(args);
2729 if (sz > sizeof(temp) || sz > buflen)
2730 return ERR_PTR(-ENAMETOOLONG);
2732 buffer += buflen - sz;
2733 return memcpy(buffer, temp, sz);
2737 * Write full pathname from the root of the filesystem into the buffer.
2739 static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
2741 char *end = buf + buflen;
2742 char *retval;
2744 prepend(&end, &buflen, "\0", 1);
2745 if (buflen < 1)
2746 goto Elong;
2747 /* Get '/' right */
2748 retval = end-1;
2749 *retval = '/';
2751 while (!IS_ROOT(dentry)) {
2752 struct dentry *parent = dentry->d_parent;
2753 int error;
2755 prefetch(parent);
2756 spin_lock(&dentry->d_lock);
2757 error = prepend_name(&end, &buflen, &dentry->d_name);
2758 spin_unlock(&dentry->d_lock);
2759 if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
2760 goto Elong;
2762 retval = end;
2763 dentry = parent;
2765 return retval;
2766 Elong:
2767 return ERR_PTR(-ENAMETOOLONG);
2770 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2772 char *retval;
2774 write_seqlock(&rename_lock);
2775 retval = __dentry_path(dentry, buf, buflen);
2776 write_sequnlock(&rename_lock);
2778 return retval;
2780 EXPORT_SYMBOL(dentry_path_raw);
2782 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2784 char *p = NULL;
2785 char *retval;
2787 write_seqlock(&rename_lock);
2788 if (d_unlinked(dentry)) {
2789 p = buf + buflen;
2790 if (prepend(&p, &buflen, "//deleted", 10) != 0)
2791 goto Elong;
2792 buflen++;
2794 retval = __dentry_path(dentry, buf, buflen);
2795 write_sequnlock(&rename_lock);
2796 if (!IS_ERR(retval) && p)
2797 *p = '/'; /* restore '/' overriden with '\0' */
2798 return retval;
2799 Elong:
2800 return ERR_PTR(-ENAMETOOLONG);
2804 * NOTE! The user-level library version returns a
2805 * character pointer. The kernel system call just
2806 * returns the length of the buffer filled (which
2807 * includes the ending '\0' character), or a negative
2808 * error value. So libc would do something like
2810 * char *getcwd(char * buf, size_t size)
2812 * int retval;
2814 * retval = sys_getcwd(buf, size);
2815 * if (retval >= 0)
2816 * return buf;
2817 * errno = -retval;
2818 * return NULL;
2821 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
2823 int error;
2824 struct path pwd, root;
2825 char *page = (char *) __get_free_page(GFP_USER);
2827 if (!page)
2828 return -ENOMEM;
2830 get_fs_root_and_pwd(current->fs, &root, &pwd);
2832 error = -ENOENT;
2833 write_seqlock(&rename_lock);
2834 if (!d_unlinked(pwd.dentry)) {
2835 unsigned long len;
2836 char *cwd = page + PAGE_SIZE;
2837 int buflen = PAGE_SIZE;
2839 prepend(&cwd, &buflen, "\0", 1);
2840 error = prepend_path(&pwd, &root, &cwd, &buflen);
2841 write_sequnlock(&rename_lock);
2843 if (error < 0)
2844 goto out;
2846 /* Unreachable from current root */
2847 if (error > 0) {
2848 error = prepend_unreachable(&cwd, &buflen);
2849 if (error)
2850 goto out;
2853 error = -ERANGE;
2854 len = PAGE_SIZE + page - cwd;
2855 if (len <= size) {
2856 error = len;
2857 if (copy_to_user(buf, cwd, len))
2858 error = -EFAULT;
2860 } else {
2861 write_sequnlock(&rename_lock);
2864 out:
2865 path_put(&pwd);
2866 path_put(&root);
2867 free_page((unsigned long) page);
2868 return error;
2872 * Test whether new_dentry is a subdirectory of old_dentry.
2874 * Trivially implemented using the dcache structure
2878 * is_subdir - is new dentry a subdirectory of old_dentry
2879 * @new_dentry: new dentry
2880 * @old_dentry: old dentry
2882 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2883 * Returns 0 otherwise.
2884 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2887 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2889 int result;
2890 unsigned seq;
2892 if (new_dentry == old_dentry)
2893 return 1;
2895 do {
2896 /* for restarting inner loop in case of seq retry */
2897 seq = read_seqbegin(&rename_lock);
2899 * Need rcu_readlock to protect against the d_parent trashing
2900 * due to d_move
2902 rcu_read_lock();
2903 if (d_ancestor(old_dentry, new_dentry))
2904 result = 1;
2905 else
2906 result = 0;
2907 rcu_read_unlock();
2908 } while (read_seqretry(&rename_lock, seq));
2910 return result;
2913 void d_genocide(struct dentry *root)
2915 struct dentry *this_parent;
2916 struct list_head *next;
2917 unsigned seq;
2918 int locked = 0;
2920 seq = read_seqbegin(&rename_lock);
2921 again:
2922 this_parent = root;
2923 spin_lock(&this_parent->d_lock);
2924 repeat:
2925 next = this_parent->d_subdirs.next;
2926 resume:
2927 while (next != &this_parent->d_subdirs) {
2928 struct list_head *tmp = next;
2929 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2930 next = tmp->next;
2932 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2933 if (d_unhashed(dentry) || !dentry->d_inode) {
2934 spin_unlock(&dentry->d_lock);
2935 continue;
2937 if (!list_empty(&dentry->d_subdirs)) {
2938 spin_unlock(&this_parent->d_lock);
2939 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
2940 this_parent = dentry;
2941 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
2942 goto repeat;
2944 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2945 dentry->d_flags |= DCACHE_GENOCIDE;
2946 dentry->d_count--;
2948 spin_unlock(&dentry->d_lock);
2950 if (this_parent != root) {
2951 struct dentry *child = this_parent;
2952 if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
2953 this_parent->d_flags |= DCACHE_GENOCIDE;
2954 this_parent->d_count--;
2956 this_parent = try_to_ascend(this_parent, locked, seq);
2957 if (!this_parent)
2958 goto rename_retry;
2959 next = child->d_u.d_child.next;
2960 goto resume;
2962 spin_unlock(&this_parent->d_lock);
2963 if (!locked && read_seqretry(&rename_lock, seq))
2964 goto rename_retry;
2965 if (locked)
2966 write_sequnlock(&rename_lock);
2967 return;
2969 rename_retry:
2970 if (locked)
2971 goto again;
2972 locked = 1;
2973 write_seqlock(&rename_lock);
2974 goto again;
2978 * find_inode_number - check for dentry with name
2979 * @dir: directory to check
2980 * @name: Name to find.
2982 * Check whether a dentry already exists for the given name,
2983 * and return the inode number if it has an inode. Otherwise
2984 * 0 is returned.
2986 * This routine is used to post-process directory listings for
2987 * filesystems using synthetic inode numbers, and is necessary
2988 * to keep getcwd() working.
2991 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2993 struct dentry * dentry;
2994 ino_t ino = 0;
2996 dentry = d_hash_and_lookup(dir, name);
2997 if (dentry) {
2998 if (dentry->d_inode)
2999 ino = dentry->d_inode->i_ino;
3000 dput(dentry);
3002 return ino;
3004 EXPORT_SYMBOL(find_inode_number);
3006 static __initdata unsigned long dhash_entries;
3007 static int __init set_dhash_entries(char *str)
3009 if (!str)
3010 return 0;
3011 dhash_entries = simple_strtoul(str, &str, 0);
3012 return 1;
3014 __setup("dhash_entries=", set_dhash_entries);
3016 static void __init dcache_init_early(void)
3018 unsigned int loop;
3020 /* If hashes are distributed across NUMA nodes, defer
3021 * hash allocation until vmalloc space is available.
3023 if (hashdist)
3024 return;
3026 dentry_hashtable =
3027 alloc_large_system_hash("Dentry cache",
3028 sizeof(struct hlist_bl_head),
3029 dhash_entries,
3031 HASH_EARLY,
3032 &d_hash_shift,
3033 &d_hash_mask,
3036 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3037 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3040 static void __init dcache_init(void)
3042 unsigned int loop;
3045 * A constructor could be added for stable state like the lists,
3046 * but it is probably not worth it because of the cache nature
3047 * of the dcache.
3049 dentry_cache = KMEM_CACHE(dentry,
3050 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3052 /* Hash may have been set up in dcache_init_early */
3053 if (!hashdist)
3054 return;
3056 dentry_hashtable =
3057 alloc_large_system_hash("Dentry cache",
3058 sizeof(struct hlist_bl_head),
3059 dhash_entries,
3062 &d_hash_shift,
3063 &d_hash_mask,
3066 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3067 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3070 /* SLAB cache for __getname() consumers */
3071 struct kmem_cache *names_cachep __read_mostly;
3072 EXPORT_SYMBOL(names_cachep);
3074 EXPORT_SYMBOL(d_genocide);
3076 void __init vfs_caches_init_early(void)
3078 dcache_init_early();
3079 inode_init_early();
3082 void __init vfs_caches_init(unsigned long mempages)
3084 unsigned long reserve;
3086 /* Base hash sizes on available memory, with a reserve equal to
3087 150% of current kernel size */
3089 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3090 mempages -= reserve;
3092 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3093 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3095 dcache_init();
3096 inode_init();
3097 files_init(mempages);
3098 mnt_init();
3099 bdev_cache_init();
3100 chrdev_init();