tcp: fix lockdep splat in tcp_snd_una_update()
[linux/fpc-iii.git] / drivers / dma / fsldma.c
blobaac85c30c2cf6fc64669841c5b6abb5317df1b94
1 /*
2 * Freescale MPC85xx, MPC83xx DMA Engine support
4 * Copyright (C) 2007-2010 Freescale Semiconductor, Inc. All rights reserved.
6 * Author:
7 * Zhang Wei <wei.zhang@freescale.com>, Jul 2007
8 * Ebony Zhu <ebony.zhu@freescale.com>, May 2007
10 * Description:
11 * DMA engine driver for Freescale MPC8540 DMA controller, which is
12 * also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
13 * The support for MPC8349 DMA controller is also added.
15 * This driver instructs the DMA controller to issue the PCI Read Multiple
16 * command for PCI read operations, instead of using the default PCI Read Line
17 * command. Please be aware that this setting may result in read pre-fetching
18 * on some platforms.
20 * This is free software; you can redistribute it and/or modify
21 * it under the terms of the GNU General Public License as published by
22 * the Free Software Foundation; either version 2 of the License, or
23 * (at your option) any later version.
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/pci.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/dmaengine.h>
33 #include <linux/delay.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/dmapool.h>
36 #include <linux/of_address.h>
37 #include <linux/of_irq.h>
38 #include <linux/of_platform.h>
39 #include <linux/fsldma.h>
40 #include "dmaengine.h"
41 #include "fsldma.h"
43 #define chan_dbg(chan, fmt, arg...) \
44 dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
45 #define chan_err(chan, fmt, arg...) \
46 dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
48 static const char msg_ld_oom[] = "No free memory for link descriptor";
51 * Register Helpers
54 static void set_sr(struct fsldma_chan *chan, u32 val)
56 DMA_OUT(chan, &chan->regs->sr, val, 32);
59 static u32 get_sr(struct fsldma_chan *chan)
61 return DMA_IN(chan, &chan->regs->sr, 32);
64 static void set_mr(struct fsldma_chan *chan, u32 val)
66 DMA_OUT(chan, &chan->regs->mr, val, 32);
69 static u32 get_mr(struct fsldma_chan *chan)
71 return DMA_IN(chan, &chan->regs->mr, 32);
74 static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr)
76 DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64);
79 static dma_addr_t get_cdar(struct fsldma_chan *chan)
81 return DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN;
84 static void set_bcr(struct fsldma_chan *chan, u32 val)
86 DMA_OUT(chan, &chan->regs->bcr, val, 32);
89 static u32 get_bcr(struct fsldma_chan *chan)
91 return DMA_IN(chan, &chan->regs->bcr, 32);
95 * Descriptor Helpers
98 static void set_desc_cnt(struct fsldma_chan *chan,
99 struct fsl_dma_ld_hw *hw, u32 count)
101 hw->count = CPU_TO_DMA(chan, count, 32);
104 static void set_desc_src(struct fsldma_chan *chan,
105 struct fsl_dma_ld_hw *hw, dma_addr_t src)
107 u64 snoop_bits;
109 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
110 ? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
111 hw->src_addr = CPU_TO_DMA(chan, snoop_bits | src, 64);
114 static void set_desc_dst(struct fsldma_chan *chan,
115 struct fsl_dma_ld_hw *hw, dma_addr_t dst)
117 u64 snoop_bits;
119 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
120 ? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
121 hw->dst_addr = CPU_TO_DMA(chan, snoop_bits | dst, 64);
124 static void set_desc_next(struct fsldma_chan *chan,
125 struct fsl_dma_ld_hw *hw, dma_addr_t next)
127 u64 snoop_bits;
129 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
130 ? FSL_DMA_SNEN : 0;
131 hw->next_ln_addr = CPU_TO_DMA(chan, snoop_bits | next, 64);
134 static void set_ld_eol(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
136 u64 snoop_bits;
138 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
139 ? FSL_DMA_SNEN : 0;
141 desc->hw.next_ln_addr = CPU_TO_DMA(chan,
142 DMA_TO_CPU(chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL
143 | snoop_bits, 64);
147 * DMA Engine Hardware Control Helpers
150 static void dma_init(struct fsldma_chan *chan)
152 /* Reset the channel */
153 set_mr(chan, 0);
155 switch (chan->feature & FSL_DMA_IP_MASK) {
156 case FSL_DMA_IP_85XX:
157 /* Set the channel to below modes:
158 * EIE - Error interrupt enable
159 * EOLNIE - End of links interrupt enable
160 * BWC - Bandwidth sharing among channels
162 set_mr(chan, FSL_DMA_MR_BWC | FSL_DMA_MR_EIE
163 | FSL_DMA_MR_EOLNIE);
164 break;
165 case FSL_DMA_IP_83XX:
166 /* Set the channel to below modes:
167 * EOTIE - End-of-transfer interrupt enable
168 * PRC_RM - PCI read multiple
170 set_mr(chan, FSL_DMA_MR_EOTIE | FSL_DMA_MR_PRC_RM);
171 break;
175 static int dma_is_idle(struct fsldma_chan *chan)
177 u32 sr = get_sr(chan);
178 return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
182 * Start the DMA controller
184 * Preconditions:
185 * - the CDAR register must point to the start descriptor
186 * - the MRn[CS] bit must be cleared
188 static void dma_start(struct fsldma_chan *chan)
190 u32 mode;
192 mode = get_mr(chan);
194 if (chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
195 set_bcr(chan, 0);
196 mode |= FSL_DMA_MR_EMP_EN;
197 } else {
198 mode &= ~FSL_DMA_MR_EMP_EN;
201 if (chan->feature & FSL_DMA_CHAN_START_EXT) {
202 mode |= FSL_DMA_MR_EMS_EN;
203 } else {
204 mode &= ~FSL_DMA_MR_EMS_EN;
205 mode |= FSL_DMA_MR_CS;
208 set_mr(chan, mode);
211 static void dma_halt(struct fsldma_chan *chan)
213 u32 mode;
214 int i;
216 /* read the mode register */
217 mode = get_mr(chan);
220 * The 85xx controller supports channel abort, which will stop
221 * the current transfer. On 83xx, this bit is the transfer error
222 * mask bit, which should not be changed.
224 if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
225 mode |= FSL_DMA_MR_CA;
226 set_mr(chan, mode);
228 mode &= ~FSL_DMA_MR_CA;
231 /* stop the DMA controller */
232 mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN);
233 set_mr(chan, mode);
235 /* wait for the DMA controller to become idle */
236 for (i = 0; i < 100; i++) {
237 if (dma_is_idle(chan))
238 return;
240 udelay(10);
243 if (!dma_is_idle(chan))
244 chan_err(chan, "DMA halt timeout!\n");
248 * fsl_chan_set_src_loop_size - Set source address hold transfer size
249 * @chan : Freescale DMA channel
250 * @size : Address loop size, 0 for disable loop
252 * The set source address hold transfer size. The source
253 * address hold or loop transfer size is when the DMA transfer
254 * data from source address (SA), if the loop size is 4, the DMA will
255 * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
256 * SA + 1 ... and so on.
258 static void fsl_chan_set_src_loop_size(struct fsldma_chan *chan, int size)
260 u32 mode;
262 mode = get_mr(chan);
264 switch (size) {
265 case 0:
266 mode &= ~FSL_DMA_MR_SAHE;
267 break;
268 case 1:
269 case 2:
270 case 4:
271 case 8:
272 mode |= FSL_DMA_MR_SAHE | (__ilog2(size) << 14);
273 break;
276 set_mr(chan, mode);
280 * fsl_chan_set_dst_loop_size - Set destination address hold transfer size
281 * @chan : Freescale DMA channel
282 * @size : Address loop size, 0 for disable loop
284 * The set destination address hold transfer size. The destination
285 * address hold or loop transfer size is when the DMA transfer
286 * data to destination address (TA), if the loop size is 4, the DMA will
287 * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
288 * TA + 1 ... and so on.
290 static void fsl_chan_set_dst_loop_size(struct fsldma_chan *chan, int size)
292 u32 mode;
294 mode = get_mr(chan);
296 switch (size) {
297 case 0:
298 mode &= ~FSL_DMA_MR_DAHE;
299 break;
300 case 1:
301 case 2:
302 case 4:
303 case 8:
304 mode |= FSL_DMA_MR_DAHE | (__ilog2(size) << 16);
305 break;
308 set_mr(chan, mode);
312 * fsl_chan_set_request_count - Set DMA Request Count for external control
313 * @chan : Freescale DMA channel
314 * @size : Number of bytes to transfer in a single request
316 * The Freescale DMA channel can be controlled by the external signal DREQ#.
317 * The DMA request count is how many bytes are allowed to transfer before
318 * pausing the channel, after which a new assertion of DREQ# resumes channel
319 * operation.
321 * A size of 0 disables external pause control. The maximum size is 1024.
323 static void fsl_chan_set_request_count(struct fsldma_chan *chan, int size)
325 u32 mode;
327 BUG_ON(size > 1024);
329 mode = get_mr(chan);
330 mode |= (__ilog2(size) << 24) & 0x0f000000;
332 set_mr(chan, mode);
336 * fsl_chan_toggle_ext_pause - Toggle channel external pause status
337 * @chan : Freescale DMA channel
338 * @enable : 0 is disabled, 1 is enabled.
340 * The Freescale DMA channel can be controlled by the external signal DREQ#.
341 * The DMA Request Count feature should be used in addition to this feature
342 * to set the number of bytes to transfer before pausing the channel.
344 static void fsl_chan_toggle_ext_pause(struct fsldma_chan *chan, int enable)
346 if (enable)
347 chan->feature |= FSL_DMA_CHAN_PAUSE_EXT;
348 else
349 chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT;
353 * fsl_chan_toggle_ext_start - Toggle channel external start status
354 * @chan : Freescale DMA channel
355 * @enable : 0 is disabled, 1 is enabled.
357 * If enable the external start, the channel can be started by an
358 * external DMA start pin. So the dma_start() does not start the
359 * transfer immediately. The DMA channel will wait for the
360 * control pin asserted.
362 static void fsl_chan_toggle_ext_start(struct fsldma_chan *chan, int enable)
364 if (enable)
365 chan->feature |= FSL_DMA_CHAN_START_EXT;
366 else
367 chan->feature &= ~FSL_DMA_CHAN_START_EXT;
370 int fsl_dma_external_start(struct dma_chan *dchan, int enable)
372 struct fsldma_chan *chan;
374 if (!dchan)
375 return -EINVAL;
377 chan = to_fsl_chan(dchan);
379 fsl_chan_toggle_ext_start(chan, enable);
380 return 0;
382 EXPORT_SYMBOL_GPL(fsl_dma_external_start);
384 static void append_ld_queue(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
386 struct fsl_desc_sw *tail = to_fsl_desc(chan->ld_pending.prev);
388 if (list_empty(&chan->ld_pending))
389 goto out_splice;
392 * Add the hardware descriptor to the chain of hardware descriptors
393 * that already exists in memory.
395 * This will un-set the EOL bit of the existing transaction, and the
396 * last link in this transaction will become the EOL descriptor.
398 set_desc_next(chan, &tail->hw, desc->async_tx.phys);
401 * Add the software descriptor and all children to the list
402 * of pending transactions
404 out_splice:
405 list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
408 static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
410 struct fsldma_chan *chan = to_fsl_chan(tx->chan);
411 struct fsl_desc_sw *desc = tx_to_fsl_desc(tx);
412 struct fsl_desc_sw *child;
413 dma_cookie_t cookie = -EINVAL;
415 spin_lock_bh(&chan->desc_lock);
417 #ifdef CONFIG_PM
418 if (unlikely(chan->pm_state != RUNNING)) {
419 chan_dbg(chan, "cannot submit due to suspend\n");
420 spin_unlock_bh(&chan->desc_lock);
421 return -1;
423 #endif
426 * assign cookies to all of the software descriptors
427 * that make up this transaction
429 list_for_each_entry(child, &desc->tx_list, node) {
430 cookie = dma_cookie_assign(&child->async_tx);
433 /* put this transaction onto the tail of the pending queue */
434 append_ld_queue(chan, desc);
436 spin_unlock_bh(&chan->desc_lock);
438 return cookie;
442 * fsl_dma_free_descriptor - Free descriptor from channel's DMA pool.
443 * @chan : Freescale DMA channel
444 * @desc: descriptor to be freed
446 static void fsl_dma_free_descriptor(struct fsldma_chan *chan,
447 struct fsl_desc_sw *desc)
449 list_del(&desc->node);
450 chan_dbg(chan, "LD %p free\n", desc);
451 dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
455 * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
456 * @chan : Freescale DMA channel
458 * Return - The descriptor allocated. NULL for failed.
460 static struct fsl_desc_sw *fsl_dma_alloc_descriptor(struct fsldma_chan *chan)
462 struct fsl_desc_sw *desc;
463 dma_addr_t pdesc;
465 desc = dma_pool_alloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
466 if (!desc) {
467 chan_dbg(chan, "out of memory for link descriptor\n");
468 return NULL;
471 memset(desc, 0, sizeof(*desc));
472 INIT_LIST_HEAD(&desc->tx_list);
473 dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
474 desc->async_tx.tx_submit = fsl_dma_tx_submit;
475 desc->async_tx.phys = pdesc;
477 chan_dbg(chan, "LD %p allocated\n", desc);
479 return desc;
483 * fsldma_clean_completed_descriptor - free all descriptors which
484 * has been completed and acked
485 * @chan: Freescale DMA channel
487 * This function is used on all completed and acked descriptors.
488 * All descriptors should only be freed in this function.
490 static void fsldma_clean_completed_descriptor(struct fsldma_chan *chan)
492 struct fsl_desc_sw *desc, *_desc;
494 /* Run the callback for each descriptor, in order */
495 list_for_each_entry_safe(desc, _desc, &chan->ld_completed, node)
496 if (async_tx_test_ack(&desc->async_tx))
497 fsl_dma_free_descriptor(chan, desc);
501 * fsldma_run_tx_complete_actions - cleanup a single link descriptor
502 * @chan: Freescale DMA channel
503 * @desc: descriptor to cleanup and free
504 * @cookie: Freescale DMA transaction identifier
506 * This function is used on a descriptor which has been executed by the DMA
507 * controller. It will run any callbacks, submit any dependencies.
509 static dma_cookie_t fsldma_run_tx_complete_actions(struct fsldma_chan *chan,
510 struct fsl_desc_sw *desc, dma_cookie_t cookie)
512 struct dma_async_tx_descriptor *txd = &desc->async_tx;
513 dma_cookie_t ret = cookie;
515 BUG_ON(txd->cookie < 0);
517 if (txd->cookie > 0) {
518 ret = txd->cookie;
520 /* Run the link descriptor callback function */
521 if (txd->callback) {
522 chan_dbg(chan, "LD %p callback\n", desc);
523 txd->callback(txd->callback_param);
526 dma_descriptor_unmap(txd);
529 /* Run any dependencies */
530 dma_run_dependencies(txd);
532 return ret;
536 * fsldma_clean_running_descriptor - move the completed descriptor from
537 * ld_running to ld_completed
538 * @chan: Freescale DMA channel
539 * @desc: the descriptor which is completed
541 * Free the descriptor directly if acked by async_tx api, or move it to
542 * queue ld_completed.
544 static void fsldma_clean_running_descriptor(struct fsldma_chan *chan,
545 struct fsl_desc_sw *desc)
547 /* Remove from the list of transactions */
548 list_del(&desc->node);
551 * the client is allowed to attach dependent operations
552 * until 'ack' is set
554 if (!async_tx_test_ack(&desc->async_tx)) {
556 * Move this descriptor to the list of descriptors which is
557 * completed, but still awaiting the 'ack' bit to be set.
559 list_add_tail(&desc->node, &chan->ld_completed);
560 return;
563 dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
567 * fsl_chan_xfer_ld_queue - transfer any pending transactions
568 * @chan : Freescale DMA channel
570 * HARDWARE STATE: idle
571 * LOCKING: must hold chan->desc_lock
573 static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan)
575 struct fsl_desc_sw *desc;
578 * If the list of pending descriptors is empty, then we
579 * don't need to do any work at all
581 if (list_empty(&chan->ld_pending)) {
582 chan_dbg(chan, "no pending LDs\n");
583 return;
587 * The DMA controller is not idle, which means that the interrupt
588 * handler will start any queued transactions when it runs after
589 * this transaction finishes
591 if (!chan->idle) {
592 chan_dbg(chan, "DMA controller still busy\n");
593 return;
597 * If there are some link descriptors which have not been
598 * transferred, we need to start the controller
602 * Move all elements from the queue of pending transactions
603 * onto the list of running transactions
605 chan_dbg(chan, "idle, starting controller\n");
606 desc = list_first_entry(&chan->ld_pending, struct fsl_desc_sw, node);
607 list_splice_tail_init(&chan->ld_pending, &chan->ld_running);
610 * The 85xx DMA controller doesn't clear the channel start bit
611 * automatically at the end of a transfer. Therefore we must clear
612 * it in software before starting the transfer.
614 if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
615 u32 mode;
617 mode = get_mr(chan);
618 mode &= ~FSL_DMA_MR_CS;
619 set_mr(chan, mode);
623 * Program the descriptor's address into the DMA controller,
624 * then start the DMA transaction
626 set_cdar(chan, desc->async_tx.phys);
627 get_cdar(chan);
629 dma_start(chan);
630 chan->idle = false;
634 * fsldma_cleanup_descriptors - cleanup link descriptors which are completed
635 * and move them to ld_completed to free until flag 'ack' is set
636 * @chan: Freescale DMA channel
638 * This function is used on descriptors which have been executed by the DMA
639 * controller. It will run any callbacks, submit any dependencies, then
640 * free these descriptors if flag 'ack' is set.
642 static void fsldma_cleanup_descriptors(struct fsldma_chan *chan)
644 struct fsl_desc_sw *desc, *_desc;
645 dma_cookie_t cookie = 0;
646 dma_addr_t curr_phys = get_cdar(chan);
647 int seen_current = 0;
649 fsldma_clean_completed_descriptor(chan);
651 /* Run the callback for each descriptor, in order */
652 list_for_each_entry_safe(desc, _desc, &chan->ld_running, node) {
654 * do not advance past the current descriptor loaded into the
655 * hardware channel, subsequent descriptors are either in
656 * process or have not been submitted
658 if (seen_current)
659 break;
662 * stop the search if we reach the current descriptor and the
663 * channel is busy
665 if (desc->async_tx.phys == curr_phys) {
666 seen_current = 1;
667 if (!dma_is_idle(chan))
668 break;
671 cookie = fsldma_run_tx_complete_actions(chan, desc, cookie);
673 fsldma_clean_running_descriptor(chan, desc);
677 * Start any pending transactions automatically
679 * In the ideal case, we keep the DMA controller busy while we go
680 * ahead and free the descriptors below.
682 fsl_chan_xfer_ld_queue(chan);
684 if (cookie > 0)
685 chan->common.completed_cookie = cookie;
689 * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
690 * @chan : Freescale DMA channel
692 * This function will create a dma pool for descriptor allocation.
694 * Return - The number of descriptors allocated.
696 static int fsl_dma_alloc_chan_resources(struct dma_chan *dchan)
698 struct fsldma_chan *chan = to_fsl_chan(dchan);
700 /* Has this channel already been allocated? */
701 if (chan->desc_pool)
702 return 1;
705 * We need the descriptor to be aligned to 32bytes
706 * for meeting FSL DMA specification requirement.
708 chan->desc_pool = dma_pool_create(chan->name, chan->dev,
709 sizeof(struct fsl_desc_sw),
710 __alignof__(struct fsl_desc_sw), 0);
711 if (!chan->desc_pool) {
712 chan_err(chan, "unable to allocate descriptor pool\n");
713 return -ENOMEM;
716 /* there is at least one descriptor free to be allocated */
717 return 1;
721 * fsldma_free_desc_list - Free all descriptors in a queue
722 * @chan: Freescae DMA channel
723 * @list: the list to free
725 * LOCKING: must hold chan->desc_lock
727 static void fsldma_free_desc_list(struct fsldma_chan *chan,
728 struct list_head *list)
730 struct fsl_desc_sw *desc, *_desc;
732 list_for_each_entry_safe(desc, _desc, list, node)
733 fsl_dma_free_descriptor(chan, desc);
736 static void fsldma_free_desc_list_reverse(struct fsldma_chan *chan,
737 struct list_head *list)
739 struct fsl_desc_sw *desc, *_desc;
741 list_for_each_entry_safe_reverse(desc, _desc, list, node)
742 fsl_dma_free_descriptor(chan, desc);
746 * fsl_dma_free_chan_resources - Free all resources of the channel.
747 * @chan : Freescale DMA channel
749 static void fsl_dma_free_chan_resources(struct dma_chan *dchan)
751 struct fsldma_chan *chan = to_fsl_chan(dchan);
753 chan_dbg(chan, "free all channel resources\n");
754 spin_lock_bh(&chan->desc_lock);
755 fsldma_cleanup_descriptors(chan);
756 fsldma_free_desc_list(chan, &chan->ld_pending);
757 fsldma_free_desc_list(chan, &chan->ld_running);
758 fsldma_free_desc_list(chan, &chan->ld_completed);
759 spin_unlock_bh(&chan->desc_lock);
761 dma_pool_destroy(chan->desc_pool);
762 chan->desc_pool = NULL;
765 static struct dma_async_tx_descriptor *
766 fsl_dma_prep_memcpy(struct dma_chan *dchan,
767 dma_addr_t dma_dst, dma_addr_t dma_src,
768 size_t len, unsigned long flags)
770 struct fsldma_chan *chan;
771 struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
772 size_t copy;
774 if (!dchan)
775 return NULL;
777 if (!len)
778 return NULL;
780 chan = to_fsl_chan(dchan);
782 do {
784 /* Allocate the link descriptor from DMA pool */
785 new = fsl_dma_alloc_descriptor(chan);
786 if (!new) {
787 chan_err(chan, "%s\n", msg_ld_oom);
788 goto fail;
791 copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT);
793 set_desc_cnt(chan, &new->hw, copy);
794 set_desc_src(chan, &new->hw, dma_src);
795 set_desc_dst(chan, &new->hw, dma_dst);
797 if (!first)
798 first = new;
799 else
800 set_desc_next(chan, &prev->hw, new->async_tx.phys);
802 new->async_tx.cookie = 0;
803 async_tx_ack(&new->async_tx);
805 prev = new;
806 len -= copy;
807 dma_src += copy;
808 dma_dst += copy;
810 /* Insert the link descriptor to the LD ring */
811 list_add_tail(&new->node, &first->tx_list);
812 } while (len);
814 new->async_tx.flags = flags; /* client is in control of this ack */
815 new->async_tx.cookie = -EBUSY;
817 /* Set End-of-link to the last link descriptor of new list */
818 set_ld_eol(chan, new);
820 return &first->async_tx;
822 fail:
823 if (!first)
824 return NULL;
826 fsldma_free_desc_list_reverse(chan, &first->tx_list);
827 return NULL;
830 static struct dma_async_tx_descriptor *fsl_dma_prep_sg(struct dma_chan *dchan,
831 struct scatterlist *dst_sg, unsigned int dst_nents,
832 struct scatterlist *src_sg, unsigned int src_nents,
833 unsigned long flags)
835 struct fsl_desc_sw *first = NULL, *prev = NULL, *new = NULL;
836 struct fsldma_chan *chan = to_fsl_chan(dchan);
837 size_t dst_avail, src_avail;
838 dma_addr_t dst, src;
839 size_t len;
841 /* basic sanity checks */
842 if (dst_nents == 0 || src_nents == 0)
843 return NULL;
845 if (dst_sg == NULL || src_sg == NULL)
846 return NULL;
849 * TODO: should we check that both scatterlists have the same
850 * TODO: number of bytes in total? Is that really an error?
853 /* get prepared for the loop */
854 dst_avail = sg_dma_len(dst_sg);
855 src_avail = sg_dma_len(src_sg);
857 /* run until we are out of scatterlist entries */
858 while (true) {
860 /* create the largest transaction possible */
861 len = min_t(size_t, src_avail, dst_avail);
862 len = min_t(size_t, len, FSL_DMA_BCR_MAX_CNT);
863 if (len == 0)
864 goto fetch;
866 dst = sg_dma_address(dst_sg) + sg_dma_len(dst_sg) - dst_avail;
867 src = sg_dma_address(src_sg) + sg_dma_len(src_sg) - src_avail;
869 /* allocate and populate the descriptor */
870 new = fsl_dma_alloc_descriptor(chan);
871 if (!new) {
872 chan_err(chan, "%s\n", msg_ld_oom);
873 goto fail;
876 set_desc_cnt(chan, &new->hw, len);
877 set_desc_src(chan, &new->hw, src);
878 set_desc_dst(chan, &new->hw, dst);
880 if (!first)
881 first = new;
882 else
883 set_desc_next(chan, &prev->hw, new->async_tx.phys);
885 new->async_tx.cookie = 0;
886 async_tx_ack(&new->async_tx);
887 prev = new;
889 /* Insert the link descriptor to the LD ring */
890 list_add_tail(&new->node, &first->tx_list);
892 /* update metadata */
893 dst_avail -= len;
894 src_avail -= len;
896 fetch:
897 /* fetch the next dst scatterlist entry */
898 if (dst_avail == 0) {
900 /* no more entries: we're done */
901 if (dst_nents == 0)
902 break;
904 /* fetch the next entry: if there are no more: done */
905 dst_sg = sg_next(dst_sg);
906 if (dst_sg == NULL)
907 break;
909 dst_nents--;
910 dst_avail = sg_dma_len(dst_sg);
913 /* fetch the next src scatterlist entry */
914 if (src_avail == 0) {
916 /* no more entries: we're done */
917 if (src_nents == 0)
918 break;
920 /* fetch the next entry: if there are no more: done */
921 src_sg = sg_next(src_sg);
922 if (src_sg == NULL)
923 break;
925 src_nents--;
926 src_avail = sg_dma_len(src_sg);
930 new->async_tx.flags = flags; /* client is in control of this ack */
931 new->async_tx.cookie = -EBUSY;
933 /* Set End-of-link to the last link descriptor of new list */
934 set_ld_eol(chan, new);
936 return &first->async_tx;
938 fail:
939 if (!first)
940 return NULL;
942 fsldma_free_desc_list_reverse(chan, &first->tx_list);
943 return NULL;
946 static int fsl_dma_device_terminate_all(struct dma_chan *dchan)
948 struct fsldma_chan *chan;
950 if (!dchan)
951 return -EINVAL;
953 chan = to_fsl_chan(dchan);
955 spin_lock_bh(&chan->desc_lock);
957 /* Halt the DMA engine */
958 dma_halt(chan);
960 /* Remove and free all of the descriptors in the LD queue */
961 fsldma_free_desc_list(chan, &chan->ld_pending);
962 fsldma_free_desc_list(chan, &chan->ld_running);
963 fsldma_free_desc_list(chan, &chan->ld_completed);
964 chan->idle = true;
966 spin_unlock_bh(&chan->desc_lock);
967 return 0;
970 static int fsl_dma_device_config(struct dma_chan *dchan,
971 struct dma_slave_config *config)
973 struct fsldma_chan *chan;
974 int size;
976 if (!dchan)
977 return -EINVAL;
979 chan = to_fsl_chan(dchan);
981 /* make sure the channel supports setting burst size */
982 if (!chan->set_request_count)
983 return -ENXIO;
985 /* we set the controller burst size depending on direction */
986 if (config->direction == DMA_MEM_TO_DEV)
987 size = config->dst_addr_width * config->dst_maxburst;
988 else
989 size = config->src_addr_width * config->src_maxburst;
991 chan->set_request_count(chan, size);
992 return 0;
997 * fsl_dma_memcpy_issue_pending - Issue the DMA start command
998 * @chan : Freescale DMA channel
1000 static void fsl_dma_memcpy_issue_pending(struct dma_chan *dchan)
1002 struct fsldma_chan *chan = to_fsl_chan(dchan);
1004 spin_lock_bh(&chan->desc_lock);
1005 fsl_chan_xfer_ld_queue(chan);
1006 spin_unlock_bh(&chan->desc_lock);
1010 * fsl_tx_status - Determine the DMA status
1011 * @chan : Freescale DMA channel
1013 static enum dma_status fsl_tx_status(struct dma_chan *dchan,
1014 dma_cookie_t cookie,
1015 struct dma_tx_state *txstate)
1017 struct fsldma_chan *chan = to_fsl_chan(dchan);
1018 enum dma_status ret;
1020 ret = dma_cookie_status(dchan, cookie, txstate);
1021 if (ret == DMA_COMPLETE)
1022 return ret;
1024 spin_lock_bh(&chan->desc_lock);
1025 fsldma_cleanup_descriptors(chan);
1026 spin_unlock_bh(&chan->desc_lock);
1028 return dma_cookie_status(dchan, cookie, txstate);
1031 /*----------------------------------------------------------------------------*/
1032 /* Interrupt Handling */
1033 /*----------------------------------------------------------------------------*/
1035 static irqreturn_t fsldma_chan_irq(int irq, void *data)
1037 struct fsldma_chan *chan = data;
1038 u32 stat;
1040 /* save and clear the status register */
1041 stat = get_sr(chan);
1042 set_sr(chan, stat);
1043 chan_dbg(chan, "irq: stat = 0x%x\n", stat);
1045 /* check that this was really our device */
1046 stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
1047 if (!stat)
1048 return IRQ_NONE;
1050 if (stat & FSL_DMA_SR_TE)
1051 chan_err(chan, "Transfer Error!\n");
1054 * Programming Error
1055 * The DMA_INTERRUPT async_tx is a NULL transfer, which will
1056 * trigger a PE interrupt.
1058 if (stat & FSL_DMA_SR_PE) {
1059 chan_dbg(chan, "irq: Programming Error INT\n");
1060 stat &= ~FSL_DMA_SR_PE;
1061 if (get_bcr(chan) != 0)
1062 chan_err(chan, "Programming Error!\n");
1066 * For MPC8349, EOCDI event need to update cookie
1067 * and start the next transfer if it exist.
1069 if (stat & FSL_DMA_SR_EOCDI) {
1070 chan_dbg(chan, "irq: End-of-Chain link INT\n");
1071 stat &= ~FSL_DMA_SR_EOCDI;
1075 * If it current transfer is the end-of-transfer,
1076 * we should clear the Channel Start bit for
1077 * prepare next transfer.
1079 if (stat & FSL_DMA_SR_EOLNI) {
1080 chan_dbg(chan, "irq: End-of-link INT\n");
1081 stat &= ~FSL_DMA_SR_EOLNI;
1084 /* check that the DMA controller is really idle */
1085 if (!dma_is_idle(chan))
1086 chan_err(chan, "irq: controller not idle!\n");
1088 /* check that we handled all of the bits */
1089 if (stat)
1090 chan_err(chan, "irq: unhandled sr 0x%08x\n", stat);
1093 * Schedule the tasklet to handle all cleanup of the current
1094 * transaction. It will start a new transaction if there is
1095 * one pending.
1097 tasklet_schedule(&chan->tasklet);
1098 chan_dbg(chan, "irq: Exit\n");
1099 return IRQ_HANDLED;
1102 static void dma_do_tasklet(unsigned long data)
1104 struct fsldma_chan *chan = (struct fsldma_chan *)data;
1106 chan_dbg(chan, "tasklet entry\n");
1108 spin_lock_bh(&chan->desc_lock);
1110 /* the hardware is now idle and ready for more */
1111 chan->idle = true;
1113 /* Run all cleanup for descriptors which have been completed */
1114 fsldma_cleanup_descriptors(chan);
1116 spin_unlock_bh(&chan->desc_lock);
1118 chan_dbg(chan, "tasklet exit\n");
1121 static irqreturn_t fsldma_ctrl_irq(int irq, void *data)
1123 struct fsldma_device *fdev = data;
1124 struct fsldma_chan *chan;
1125 unsigned int handled = 0;
1126 u32 gsr, mask;
1127 int i;
1129 gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->regs)
1130 : in_le32(fdev->regs);
1131 mask = 0xff000000;
1132 dev_dbg(fdev->dev, "IRQ: gsr 0x%.8x\n", gsr);
1134 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1135 chan = fdev->chan[i];
1136 if (!chan)
1137 continue;
1139 if (gsr & mask) {
1140 dev_dbg(fdev->dev, "IRQ: chan %d\n", chan->id);
1141 fsldma_chan_irq(irq, chan);
1142 handled++;
1145 gsr &= ~mask;
1146 mask >>= 8;
1149 return IRQ_RETVAL(handled);
1152 static void fsldma_free_irqs(struct fsldma_device *fdev)
1154 struct fsldma_chan *chan;
1155 int i;
1157 if (fdev->irq != NO_IRQ) {
1158 dev_dbg(fdev->dev, "free per-controller IRQ\n");
1159 free_irq(fdev->irq, fdev);
1160 return;
1163 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1164 chan = fdev->chan[i];
1165 if (chan && chan->irq != NO_IRQ) {
1166 chan_dbg(chan, "free per-channel IRQ\n");
1167 free_irq(chan->irq, chan);
1172 static int fsldma_request_irqs(struct fsldma_device *fdev)
1174 struct fsldma_chan *chan;
1175 int ret;
1176 int i;
1178 /* if we have a per-controller IRQ, use that */
1179 if (fdev->irq != NO_IRQ) {
1180 dev_dbg(fdev->dev, "request per-controller IRQ\n");
1181 ret = request_irq(fdev->irq, fsldma_ctrl_irq, IRQF_SHARED,
1182 "fsldma-controller", fdev);
1183 return ret;
1186 /* no per-controller IRQ, use the per-channel IRQs */
1187 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1188 chan = fdev->chan[i];
1189 if (!chan)
1190 continue;
1192 if (chan->irq == NO_IRQ) {
1193 chan_err(chan, "interrupts property missing in device tree\n");
1194 ret = -ENODEV;
1195 goto out_unwind;
1198 chan_dbg(chan, "request per-channel IRQ\n");
1199 ret = request_irq(chan->irq, fsldma_chan_irq, IRQF_SHARED,
1200 "fsldma-chan", chan);
1201 if (ret) {
1202 chan_err(chan, "unable to request per-channel IRQ\n");
1203 goto out_unwind;
1207 return 0;
1209 out_unwind:
1210 for (/* none */; i >= 0; i--) {
1211 chan = fdev->chan[i];
1212 if (!chan)
1213 continue;
1215 if (chan->irq == NO_IRQ)
1216 continue;
1218 free_irq(chan->irq, chan);
1221 return ret;
1224 /*----------------------------------------------------------------------------*/
1225 /* OpenFirmware Subsystem */
1226 /*----------------------------------------------------------------------------*/
1228 static int fsl_dma_chan_probe(struct fsldma_device *fdev,
1229 struct device_node *node, u32 feature, const char *compatible)
1231 struct fsldma_chan *chan;
1232 struct resource res;
1233 int err;
1235 /* alloc channel */
1236 chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1237 if (!chan) {
1238 dev_err(fdev->dev, "no free memory for DMA channels!\n");
1239 err = -ENOMEM;
1240 goto out_return;
1243 /* ioremap registers for use */
1244 chan->regs = of_iomap(node, 0);
1245 if (!chan->regs) {
1246 dev_err(fdev->dev, "unable to ioremap registers\n");
1247 err = -ENOMEM;
1248 goto out_free_chan;
1251 err = of_address_to_resource(node, 0, &res);
1252 if (err) {
1253 dev_err(fdev->dev, "unable to find 'reg' property\n");
1254 goto out_iounmap_regs;
1257 chan->feature = feature;
1258 if (!fdev->feature)
1259 fdev->feature = chan->feature;
1262 * If the DMA device's feature is different than the feature
1263 * of its channels, report the bug
1265 WARN_ON(fdev->feature != chan->feature);
1267 chan->dev = fdev->dev;
1268 chan->id = (res.start & 0xfff) < 0x300 ?
1269 ((res.start - 0x100) & 0xfff) >> 7 :
1270 ((res.start - 0x200) & 0xfff) >> 7;
1271 if (chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) {
1272 dev_err(fdev->dev, "too many channels for device\n");
1273 err = -EINVAL;
1274 goto out_iounmap_regs;
1277 fdev->chan[chan->id] = chan;
1278 tasklet_init(&chan->tasklet, dma_do_tasklet, (unsigned long)chan);
1279 snprintf(chan->name, sizeof(chan->name), "chan%d", chan->id);
1281 /* Initialize the channel */
1282 dma_init(chan);
1284 /* Clear cdar registers */
1285 set_cdar(chan, 0);
1287 switch (chan->feature & FSL_DMA_IP_MASK) {
1288 case FSL_DMA_IP_85XX:
1289 chan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
1290 case FSL_DMA_IP_83XX:
1291 chan->toggle_ext_start = fsl_chan_toggle_ext_start;
1292 chan->set_src_loop_size = fsl_chan_set_src_loop_size;
1293 chan->set_dst_loop_size = fsl_chan_set_dst_loop_size;
1294 chan->set_request_count = fsl_chan_set_request_count;
1297 spin_lock_init(&chan->desc_lock);
1298 INIT_LIST_HEAD(&chan->ld_pending);
1299 INIT_LIST_HEAD(&chan->ld_running);
1300 INIT_LIST_HEAD(&chan->ld_completed);
1301 chan->idle = true;
1302 #ifdef CONFIG_PM
1303 chan->pm_state = RUNNING;
1304 #endif
1306 chan->common.device = &fdev->common;
1307 dma_cookie_init(&chan->common);
1309 /* find the IRQ line, if it exists in the device tree */
1310 chan->irq = irq_of_parse_and_map(node, 0);
1312 /* Add the channel to DMA device channel list */
1313 list_add_tail(&chan->common.device_node, &fdev->common.channels);
1315 dev_info(fdev->dev, "#%d (%s), irq %d\n", chan->id, compatible,
1316 chan->irq != NO_IRQ ? chan->irq : fdev->irq);
1318 return 0;
1320 out_iounmap_regs:
1321 iounmap(chan->regs);
1322 out_free_chan:
1323 kfree(chan);
1324 out_return:
1325 return err;
1328 static void fsl_dma_chan_remove(struct fsldma_chan *chan)
1330 irq_dispose_mapping(chan->irq);
1331 list_del(&chan->common.device_node);
1332 iounmap(chan->regs);
1333 kfree(chan);
1336 static int fsldma_of_probe(struct platform_device *op)
1338 struct fsldma_device *fdev;
1339 struct device_node *child;
1340 int err;
1342 fdev = kzalloc(sizeof(*fdev), GFP_KERNEL);
1343 if (!fdev) {
1344 dev_err(&op->dev, "No enough memory for 'priv'\n");
1345 err = -ENOMEM;
1346 goto out_return;
1349 fdev->dev = &op->dev;
1350 INIT_LIST_HEAD(&fdev->common.channels);
1352 /* ioremap the registers for use */
1353 fdev->regs = of_iomap(op->dev.of_node, 0);
1354 if (!fdev->regs) {
1355 dev_err(&op->dev, "unable to ioremap registers\n");
1356 err = -ENOMEM;
1357 goto out_free_fdev;
1360 /* map the channel IRQ if it exists, but don't hookup the handler yet */
1361 fdev->irq = irq_of_parse_and_map(op->dev.of_node, 0);
1363 dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
1364 dma_cap_set(DMA_SG, fdev->common.cap_mask);
1365 dma_cap_set(DMA_SLAVE, fdev->common.cap_mask);
1366 fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
1367 fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
1368 fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
1369 fdev->common.device_prep_dma_sg = fsl_dma_prep_sg;
1370 fdev->common.device_tx_status = fsl_tx_status;
1371 fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
1372 fdev->common.device_config = fsl_dma_device_config;
1373 fdev->common.device_terminate_all = fsl_dma_device_terminate_all;
1374 fdev->common.dev = &op->dev;
1376 fdev->common.src_addr_widths = FSL_DMA_BUSWIDTHS;
1377 fdev->common.dst_addr_widths = FSL_DMA_BUSWIDTHS;
1378 fdev->common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1379 fdev->common.residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
1381 dma_set_mask(&(op->dev), DMA_BIT_MASK(36));
1383 platform_set_drvdata(op, fdev);
1386 * We cannot use of_platform_bus_probe() because there is no
1387 * of_platform_bus_remove(). Instead, we manually instantiate every DMA
1388 * channel object.
1390 for_each_child_of_node(op->dev.of_node, child) {
1391 if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) {
1392 fsl_dma_chan_probe(fdev, child,
1393 FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN,
1394 "fsl,eloplus-dma-channel");
1397 if (of_device_is_compatible(child, "fsl,elo-dma-channel")) {
1398 fsl_dma_chan_probe(fdev, child,
1399 FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN,
1400 "fsl,elo-dma-channel");
1405 * Hookup the IRQ handler(s)
1407 * If we have a per-controller interrupt, we prefer that to the
1408 * per-channel interrupts to reduce the number of shared interrupt
1409 * handlers on the same IRQ line
1411 err = fsldma_request_irqs(fdev);
1412 if (err) {
1413 dev_err(fdev->dev, "unable to request IRQs\n");
1414 goto out_free_fdev;
1417 dma_async_device_register(&fdev->common);
1418 return 0;
1420 out_free_fdev:
1421 irq_dispose_mapping(fdev->irq);
1422 kfree(fdev);
1423 out_return:
1424 return err;
1427 static int fsldma_of_remove(struct platform_device *op)
1429 struct fsldma_device *fdev;
1430 unsigned int i;
1432 fdev = platform_get_drvdata(op);
1433 dma_async_device_unregister(&fdev->common);
1435 fsldma_free_irqs(fdev);
1437 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1438 if (fdev->chan[i])
1439 fsl_dma_chan_remove(fdev->chan[i]);
1442 iounmap(fdev->regs);
1443 kfree(fdev);
1445 return 0;
1448 #ifdef CONFIG_PM
1449 static int fsldma_suspend_late(struct device *dev)
1451 struct platform_device *pdev = to_platform_device(dev);
1452 struct fsldma_device *fdev = platform_get_drvdata(pdev);
1453 struct fsldma_chan *chan;
1454 int i;
1456 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1457 chan = fdev->chan[i];
1458 if (!chan)
1459 continue;
1461 spin_lock_bh(&chan->desc_lock);
1462 if (unlikely(!chan->idle))
1463 goto out;
1464 chan->regs_save.mr = get_mr(chan);
1465 chan->pm_state = SUSPENDED;
1466 spin_unlock_bh(&chan->desc_lock);
1468 return 0;
1470 out:
1471 for (; i >= 0; i--) {
1472 chan = fdev->chan[i];
1473 if (!chan)
1474 continue;
1475 chan->pm_state = RUNNING;
1476 spin_unlock_bh(&chan->desc_lock);
1478 return -EBUSY;
1481 static int fsldma_resume_early(struct device *dev)
1483 struct platform_device *pdev = to_platform_device(dev);
1484 struct fsldma_device *fdev = platform_get_drvdata(pdev);
1485 struct fsldma_chan *chan;
1486 u32 mode;
1487 int i;
1489 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1490 chan = fdev->chan[i];
1491 if (!chan)
1492 continue;
1494 spin_lock_bh(&chan->desc_lock);
1495 mode = chan->regs_save.mr
1496 & ~FSL_DMA_MR_CS & ~FSL_DMA_MR_CC & ~FSL_DMA_MR_CA;
1497 set_mr(chan, mode);
1498 chan->pm_state = RUNNING;
1499 spin_unlock_bh(&chan->desc_lock);
1502 return 0;
1505 static const struct dev_pm_ops fsldma_pm_ops = {
1506 .suspend_late = fsldma_suspend_late,
1507 .resume_early = fsldma_resume_early,
1509 #endif
1511 static const struct of_device_id fsldma_of_ids[] = {
1512 { .compatible = "fsl,elo3-dma", },
1513 { .compatible = "fsl,eloplus-dma", },
1514 { .compatible = "fsl,elo-dma", },
1517 MODULE_DEVICE_TABLE(of, fsldma_of_ids);
1519 static struct platform_driver fsldma_of_driver = {
1520 .driver = {
1521 .name = "fsl-elo-dma",
1522 .of_match_table = fsldma_of_ids,
1523 #ifdef CONFIG_PM
1524 .pm = &fsldma_pm_ops,
1525 #endif
1527 .probe = fsldma_of_probe,
1528 .remove = fsldma_of_remove,
1531 /*----------------------------------------------------------------------------*/
1532 /* Module Init / Exit */
1533 /*----------------------------------------------------------------------------*/
1535 static __init int fsldma_init(void)
1537 pr_info("Freescale Elo series DMA driver\n");
1538 return platform_driver_register(&fsldma_of_driver);
1541 static void __exit fsldma_exit(void)
1543 platform_driver_unregister(&fsldma_of_driver);
1546 subsys_initcall(fsldma_init);
1547 module_exit(fsldma_exit);
1549 MODULE_DESCRIPTION("Freescale Elo series DMA driver");
1550 MODULE_LICENSE("GPL");