2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <jroedel@suse.de>
4 * Leo Duran <leo.duran@amd.com>
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include <linux/ratelimit.h>
21 #include <linux/pci.h>
22 #include <linux/pci-ats.h>
23 #include <linux/bitmap.h>
24 #include <linux/slab.h>
25 #include <linux/debugfs.h>
26 #include <linux/scatterlist.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/iommu-helper.h>
29 #include <linux/iommu.h>
30 #include <linux/delay.h>
31 #include <linux/amd-iommu.h>
32 #include <linux/notifier.h>
33 #include <linux/export.h>
34 #include <linux/irq.h>
35 #include <linux/msi.h>
36 #include <linux/dma-contiguous.h>
37 #include <linux/irqdomain.h>
38 #include <linux/percpu.h>
39 #include <asm/irq_remapping.h>
40 #include <asm/io_apic.h>
42 #include <asm/hw_irq.h>
43 #include <asm/msidef.h>
44 #include <asm/proto.h>
45 #include <asm/iommu.h>
49 #include "amd_iommu_proto.h"
50 #include "amd_iommu_types.h"
51 #include "irq_remapping.h"
53 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
55 #define LOOP_TIMEOUT 100000
58 * This bitmap is used to advertise the page sizes our hardware support
59 * to the IOMMU core, which will then use this information to split
60 * physically contiguous memory regions it is mapping into page sizes
63 * 512GB Pages are not supported due to a hardware bug
65 #define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38))
67 static DEFINE_RWLOCK(amd_iommu_devtable_lock
);
69 /* List of all available dev_data structures */
70 static LIST_HEAD(dev_data_list
);
71 static DEFINE_SPINLOCK(dev_data_list_lock
);
73 LIST_HEAD(ioapic_map
);
77 * Domain for untranslated devices - only allocated
78 * if iommu=pt passed on kernel cmd line.
80 static const struct iommu_ops amd_iommu_ops
;
82 static ATOMIC_NOTIFIER_HEAD(ppr_notifier
);
83 int amd_iommu_max_glx_val
= -1;
85 static struct dma_map_ops amd_iommu_dma_ops
;
88 * This struct contains device specific data for the IOMMU
90 struct iommu_dev_data
{
91 struct list_head list
; /* For domain->dev_list */
92 struct list_head dev_data_list
; /* For global dev_data_list */
93 struct protection_domain
*domain
; /* Domain the device is bound to */
94 u16 devid
; /* PCI Device ID */
95 u16 alias
; /* Alias Device ID */
96 bool iommu_v2
; /* Device can make use of IOMMUv2 */
97 bool passthrough
; /* Device is identity mapped */
101 } ats
; /* ATS state */
102 bool pri_tlp
; /* PASID TLB required for
104 u32 errata
; /* Bitmap for errata to apply */
108 * general struct to manage commands send to an IOMMU
114 struct kmem_cache
*amd_iommu_irq_cache
;
116 static void update_domain(struct protection_domain
*domain
);
117 static int protection_domain_init(struct protection_domain
*domain
);
118 static void detach_device(struct device
*dev
);
121 * For dynamic growth the aperture size is split into ranges of 128MB of
122 * DMA address space each. This struct represents one such range.
124 struct aperture_range
{
126 spinlock_t bitmap_lock
;
128 /* address allocation bitmap */
129 unsigned long *bitmap
;
130 unsigned long offset
;
131 unsigned long next_bit
;
134 * Array of PTE pages for the aperture. In this array we save all the
135 * leaf pages of the domain page table used for the aperture. This way
136 * we don't need to walk the page table to find a specific PTE. We can
137 * just calculate its address in constant time.
143 * Data container for a dma_ops specific protection domain
145 struct dma_ops_domain
{
146 /* generic protection domain information */
147 struct protection_domain domain
;
149 /* size of the aperture for the mappings */
150 unsigned long aperture_size
;
152 /* aperture index we start searching for free addresses */
153 u32 __percpu
*next_index
;
155 /* address space relevant data */
156 struct aperture_range
*aperture
[APERTURE_MAX_RANGES
];
159 /****************************************************************************
163 ****************************************************************************/
165 static struct protection_domain
*to_pdomain(struct iommu_domain
*dom
)
167 return container_of(dom
, struct protection_domain
, domain
);
170 static inline u16
get_device_id(struct device
*dev
)
172 struct pci_dev
*pdev
= to_pci_dev(dev
);
174 return PCI_DEVID(pdev
->bus
->number
, pdev
->devfn
);
177 static struct iommu_dev_data
*alloc_dev_data(u16 devid
)
179 struct iommu_dev_data
*dev_data
;
182 dev_data
= kzalloc(sizeof(*dev_data
), GFP_KERNEL
);
186 dev_data
->devid
= devid
;
188 spin_lock_irqsave(&dev_data_list_lock
, flags
);
189 list_add_tail(&dev_data
->dev_data_list
, &dev_data_list
);
190 spin_unlock_irqrestore(&dev_data_list_lock
, flags
);
195 static struct iommu_dev_data
*search_dev_data(u16 devid
)
197 struct iommu_dev_data
*dev_data
;
200 spin_lock_irqsave(&dev_data_list_lock
, flags
);
201 list_for_each_entry(dev_data
, &dev_data_list
, dev_data_list
) {
202 if (dev_data
->devid
== devid
)
209 spin_unlock_irqrestore(&dev_data_list_lock
, flags
);
214 static int __last_alias(struct pci_dev
*pdev
, u16 alias
, void *data
)
216 *(u16
*)data
= alias
;
220 static u16
get_alias(struct device
*dev
)
222 struct pci_dev
*pdev
= to_pci_dev(dev
);
223 u16 devid
, ivrs_alias
, pci_alias
;
225 devid
= get_device_id(dev
);
226 ivrs_alias
= amd_iommu_alias_table
[devid
];
227 pci_for_each_dma_alias(pdev
, __last_alias
, &pci_alias
);
229 if (ivrs_alias
== pci_alias
)
235 * The IVRS is fairly reliable in telling us about aliases, but it
236 * can't know about every screwy device. If we don't have an IVRS
237 * reported alias, use the PCI reported alias. In that case we may
238 * still need to initialize the rlookup and dev_table entries if the
239 * alias is to a non-existent device.
241 if (ivrs_alias
== devid
) {
242 if (!amd_iommu_rlookup_table
[pci_alias
]) {
243 amd_iommu_rlookup_table
[pci_alias
] =
244 amd_iommu_rlookup_table
[devid
];
245 memcpy(amd_iommu_dev_table
[pci_alias
].data
,
246 amd_iommu_dev_table
[devid
].data
,
247 sizeof(amd_iommu_dev_table
[pci_alias
].data
));
253 pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
254 "for device %s[%04x:%04x], kernel reported alias "
255 "%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias
), PCI_SLOT(ivrs_alias
),
256 PCI_FUNC(ivrs_alias
), dev_name(dev
), pdev
->vendor
, pdev
->device
,
257 PCI_BUS_NUM(pci_alias
), PCI_SLOT(pci_alias
),
258 PCI_FUNC(pci_alias
));
261 * If we don't have a PCI DMA alias and the IVRS alias is on the same
262 * bus, then the IVRS table may know about a quirk that we don't.
264 if (pci_alias
== devid
&&
265 PCI_BUS_NUM(ivrs_alias
) == pdev
->bus
->number
) {
266 pdev
->dev_flags
|= PCI_DEV_FLAGS_DMA_ALIAS_DEVFN
;
267 pdev
->dma_alias_devfn
= ivrs_alias
& 0xff;
268 pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
269 PCI_SLOT(ivrs_alias
), PCI_FUNC(ivrs_alias
),
276 static struct iommu_dev_data
*find_dev_data(u16 devid
)
278 struct iommu_dev_data
*dev_data
;
280 dev_data
= search_dev_data(devid
);
282 if (dev_data
== NULL
)
283 dev_data
= alloc_dev_data(devid
);
288 static struct iommu_dev_data
*get_dev_data(struct device
*dev
)
290 return dev
->archdata
.iommu
;
293 static bool pci_iommuv2_capable(struct pci_dev
*pdev
)
295 static const int caps
[] = {
298 PCI_EXT_CAP_ID_PASID
,
302 for (i
= 0; i
< 3; ++i
) {
303 pos
= pci_find_ext_capability(pdev
, caps
[i
]);
311 static bool pdev_pri_erratum(struct pci_dev
*pdev
, u32 erratum
)
313 struct iommu_dev_data
*dev_data
;
315 dev_data
= get_dev_data(&pdev
->dev
);
317 return dev_data
->errata
& (1 << erratum
) ? true : false;
321 * This function actually applies the mapping to the page table of the
324 static void alloc_unity_mapping(struct dma_ops_domain
*dma_dom
,
325 struct unity_map_entry
*e
)
329 for (addr
= e
->address_start
; addr
< e
->address_end
;
331 if (addr
< dma_dom
->aperture_size
)
332 __set_bit(addr
>> PAGE_SHIFT
,
333 dma_dom
->aperture
[0]->bitmap
);
338 * Inits the unity mappings required for a specific device
340 static void init_unity_mappings_for_device(struct device
*dev
,
341 struct dma_ops_domain
*dma_dom
)
343 struct unity_map_entry
*e
;
346 devid
= get_device_id(dev
);
348 list_for_each_entry(e
, &amd_iommu_unity_map
, list
) {
349 if (!(devid
>= e
->devid_start
&& devid
<= e
->devid_end
))
351 alloc_unity_mapping(dma_dom
, e
);
356 * This function checks if the driver got a valid device from the caller to
357 * avoid dereferencing invalid pointers.
359 static bool check_device(struct device
*dev
)
363 if (!dev
|| !dev
->dma_mask
)
367 if (!dev_is_pci(dev
))
370 devid
= get_device_id(dev
);
372 /* Out of our scope? */
373 if (devid
> amd_iommu_last_bdf
)
376 if (amd_iommu_rlookup_table
[devid
] == NULL
)
382 static void init_iommu_group(struct device
*dev
)
384 struct dma_ops_domain
*dma_domain
;
385 struct iommu_domain
*domain
;
386 struct iommu_group
*group
;
388 group
= iommu_group_get_for_dev(dev
);
392 domain
= iommu_group_default_domain(group
);
396 dma_domain
= to_pdomain(domain
)->priv
;
398 init_unity_mappings_for_device(dev
, dma_domain
);
400 iommu_group_put(group
);
403 static int iommu_init_device(struct device
*dev
)
405 struct pci_dev
*pdev
= to_pci_dev(dev
);
406 struct iommu_dev_data
*dev_data
;
408 if (dev
->archdata
.iommu
)
411 dev_data
= find_dev_data(get_device_id(dev
));
415 dev_data
->alias
= get_alias(dev
);
417 if (pci_iommuv2_capable(pdev
)) {
418 struct amd_iommu
*iommu
;
420 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
421 dev_data
->iommu_v2
= iommu
->is_iommu_v2
;
424 dev
->archdata
.iommu
= dev_data
;
426 iommu_device_link(amd_iommu_rlookup_table
[dev_data
->devid
]->iommu_dev
,
432 static void iommu_ignore_device(struct device
*dev
)
436 devid
= get_device_id(dev
);
437 alias
= get_alias(dev
);
439 memset(&amd_iommu_dev_table
[devid
], 0, sizeof(struct dev_table_entry
));
440 memset(&amd_iommu_dev_table
[alias
], 0, sizeof(struct dev_table_entry
));
442 amd_iommu_rlookup_table
[devid
] = NULL
;
443 amd_iommu_rlookup_table
[alias
] = NULL
;
446 static void iommu_uninit_device(struct device
*dev
)
448 struct iommu_dev_data
*dev_data
= search_dev_data(get_device_id(dev
));
453 if (dev_data
->domain
)
456 iommu_device_unlink(amd_iommu_rlookup_table
[dev_data
->devid
]->iommu_dev
,
459 iommu_group_remove_device(dev
);
462 dev
->archdata
.dma_ops
= NULL
;
465 * We keep dev_data around for unplugged devices and reuse it when the
466 * device is re-plugged - not doing so would introduce a ton of races.
470 #ifdef CONFIG_AMD_IOMMU_STATS
473 * Initialization code for statistics collection
476 DECLARE_STATS_COUNTER(compl_wait
);
477 DECLARE_STATS_COUNTER(cnt_map_single
);
478 DECLARE_STATS_COUNTER(cnt_unmap_single
);
479 DECLARE_STATS_COUNTER(cnt_map_sg
);
480 DECLARE_STATS_COUNTER(cnt_unmap_sg
);
481 DECLARE_STATS_COUNTER(cnt_alloc_coherent
);
482 DECLARE_STATS_COUNTER(cnt_free_coherent
);
483 DECLARE_STATS_COUNTER(cross_page
);
484 DECLARE_STATS_COUNTER(domain_flush_single
);
485 DECLARE_STATS_COUNTER(domain_flush_all
);
486 DECLARE_STATS_COUNTER(alloced_io_mem
);
487 DECLARE_STATS_COUNTER(total_map_requests
);
488 DECLARE_STATS_COUNTER(complete_ppr
);
489 DECLARE_STATS_COUNTER(invalidate_iotlb
);
490 DECLARE_STATS_COUNTER(invalidate_iotlb_all
);
491 DECLARE_STATS_COUNTER(pri_requests
);
493 static struct dentry
*stats_dir
;
494 static struct dentry
*de_fflush
;
496 static void amd_iommu_stats_add(struct __iommu_counter
*cnt
)
498 if (stats_dir
== NULL
)
501 cnt
->dent
= debugfs_create_u64(cnt
->name
, 0444, stats_dir
,
505 static void amd_iommu_stats_init(void)
507 stats_dir
= debugfs_create_dir("amd-iommu", NULL
);
508 if (stats_dir
== NULL
)
511 de_fflush
= debugfs_create_bool("fullflush", 0444, stats_dir
,
512 &amd_iommu_unmap_flush
);
514 amd_iommu_stats_add(&compl_wait
);
515 amd_iommu_stats_add(&cnt_map_single
);
516 amd_iommu_stats_add(&cnt_unmap_single
);
517 amd_iommu_stats_add(&cnt_map_sg
);
518 amd_iommu_stats_add(&cnt_unmap_sg
);
519 amd_iommu_stats_add(&cnt_alloc_coherent
);
520 amd_iommu_stats_add(&cnt_free_coherent
);
521 amd_iommu_stats_add(&cross_page
);
522 amd_iommu_stats_add(&domain_flush_single
);
523 amd_iommu_stats_add(&domain_flush_all
);
524 amd_iommu_stats_add(&alloced_io_mem
);
525 amd_iommu_stats_add(&total_map_requests
);
526 amd_iommu_stats_add(&complete_ppr
);
527 amd_iommu_stats_add(&invalidate_iotlb
);
528 amd_iommu_stats_add(&invalidate_iotlb_all
);
529 amd_iommu_stats_add(&pri_requests
);
534 /****************************************************************************
536 * Interrupt handling functions
538 ****************************************************************************/
540 static void dump_dte_entry(u16 devid
)
544 for (i
= 0; i
< 4; ++i
)
545 pr_err("AMD-Vi: DTE[%d]: %016llx\n", i
,
546 amd_iommu_dev_table
[devid
].data
[i
]);
549 static void dump_command(unsigned long phys_addr
)
551 struct iommu_cmd
*cmd
= phys_to_virt(phys_addr
);
554 for (i
= 0; i
< 4; ++i
)
555 pr_err("AMD-Vi: CMD[%d]: %08x\n", i
, cmd
->data
[i
]);
558 static void iommu_print_event(struct amd_iommu
*iommu
, void *__evt
)
560 int type
, devid
, domid
, flags
;
561 volatile u32
*event
= __evt
;
566 type
= (event
[1] >> EVENT_TYPE_SHIFT
) & EVENT_TYPE_MASK
;
567 devid
= (event
[0] >> EVENT_DEVID_SHIFT
) & EVENT_DEVID_MASK
;
568 domid
= (event
[1] >> EVENT_DOMID_SHIFT
) & EVENT_DOMID_MASK
;
569 flags
= (event
[1] >> EVENT_FLAGS_SHIFT
) & EVENT_FLAGS_MASK
;
570 address
= (u64
)(((u64
)event
[3]) << 32) | event
[2];
573 /* Did we hit the erratum? */
574 if (++count
== LOOP_TIMEOUT
) {
575 pr_err("AMD-Vi: No event written to event log\n");
582 printk(KERN_ERR
"AMD-Vi: Event logged [");
585 case EVENT_TYPE_ILL_DEV
:
586 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
587 "address=0x%016llx flags=0x%04x]\n",
588 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
590 dump_dte_entry(devid
);
592 case EVENT_TYPE_IO_FAULT
:
593 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
594 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
595 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
596 domid
, address
, flags
);
598 case EVENT_TYPE_DEV_TAB_ERR
:
599 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
600 "address=0x%016llx flags=0x%04x]\n",
601 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
604 case EVENT_TYPE_PAGE_TAB_ERR
:
605 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
606 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
607 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
608 domid
, address
, flags
);
610 case EVENT_TYPE_ILL_CMD
:
611 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address
);
612 dump_command(address
);
614 case EVENT_TYPE_CMD_HARD_ERR
:
615 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
616 "flags=0x%04x]\n", address
, flags
);
618 case EVENT_TYPE_IOTLB_INV_TO
:
619 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
620 "address=0x%016llx]\n",
621 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
624 case EVENT_TYPE_INV_DEV_REQ
:
625 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
626 "address=0x%016llx flags=0x%04x]\n",
627 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
631 printk(KERN_ERR
"UNKNOWN type=0x%02x]\n", type
);
634 memset(__evt
, 0, 4 * sizeof(u32
));
637 static void iommu_poll_events(struct amd_iommu
*iommu
)
641 head
= readl(iommu
->mmio_base
+ MMIO_EVT_HEAD_OFFSET
);
642 tail
= readl(iommu
->mmio_base
+ MMIO_EVT_TAIL_OFFSET
);
644 while (head
!= tail
) {
645 iommu_print_event(iommu
, iommu
->evt_buf
+ head
);
646 head
= (head
+ EVENT_ENTRY_SIZE
) % EVT_BUFFER_SIZE
;
649 writel(head
, iommu
->mmio_base
+ MMIO_EVT_HEAD_OFFSET
);
652 static void iommu_handle_ppr_entry(struct amd_iommu
*iommu
, u64
*raw
)
654 struct amd_iommu_fault fault
;
656 INC_STATS_COUNTER(pri_requests
);
658 if (PPR_REQ_TYPE(raw
[0]) != PPR_REQ_FAULT
) {
659 pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
663 fault
.address
= raw
[1];
664 fault
.pasid
= PPR_PASID(raw
[0]);
665 fault
.device_id
= PPR_DEVID(raw
[0]);
666 fault
.tag
= PPR_TAG(raw
[0]);
667 fault
.flags
= PPR_FLAGS(raw
[0]);
669 atomic_notifier_call_chain(&ppr_notifier
, 0, &fault
);
672 static void iommu_poll_ppr_log(struct amd_iommu
*iommu
)
676 if (iommu
->ppr_log
== NULL
)
679 head
= readl(iommu
->mmio_base
+ MMIO_PPR_HEAD_OFFSET
);
680 tail
= readl(iommu
->mmio_base
+ MMIO_PPR_TAIL_OFFSET
);
682 while (head
!= tail
) {
687 raw
= (u64
*)(iommu
->ppr_log
+ head
);
690 * Hardware bug: Interrupt may arrive before the entry is
691 * written to memory. If this happens we need to wait for the
694 for (i
= 0; i
< LOOP_TIMEOUT
; ++i
) {
695 if (PPR_REQ_TYPE(raw
[0]) != 0)
700 /* Avoid memcpy function-call overhead */
705 * To detect the hardware bug we need to clear the entry
708 raw
[0] = raw
[1] = 0UL;
710 /* Update head pointer of hardware ring-buffer */
711 head
= (head
+ PPR_ENTRY_SIZE
) % PPR_LOG_SIZE
;
712 writel(head
, iommu
->mmio_base
+ MMIO_PPR_HEAD_OFFSET
);
714 /* Handle PPR entry */
715 iommu_handle_ppr_entry(iommu
, entry
);
717 /* Refresh ring-buffer information */
718 head
= readl(iommu
->mmio_base
+ MMIO_PPR_HEAD_OFFSET
);
719 tail
= readl(iommu
->mmio_base
+ MMIO_PPR_TAIL_OFFSET
);
723 irqreturn_t
amd_iommu_int_thread(int irq
, void *data
)
725 struct amd_iommu
*iommu
= (struct amd_iommu
*) data
;
726 u32 status
= readl(iommu
->mmio_base
+ MMIO_STATUS_OFFSET
);
728 while (status
& (MMIO_STATUS_EVT_INT_MASK
| MMIO_STATUS_PPR_INT_MASK
)) {
729 /* Enable EVT and PPR interrupts again */
730 writel((MMIO_STATUS_EVT_INT_MASK
| MMIO_STATUS_PPR_INT_MASK
),
731 iommu
->mmio_base
+ MMIO_STATUS_OFFSET
);
733 if (status
& MMIO_STATUS_EVT_INT_MASK
) {
734 pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
735 iommu_poll_events(iommu
);
738 if (status
& MMIO_STATUS_PPR_INT_MASK
) {
739 pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
740 iommu_poll_ppr_log(iommu
);
744 * Hardware bug: ERBT1312
745 * When re-enabling interrupt (by writing 1
746 * to clear the bit), the hardware might also try to set
747 * the interrupt bit in the event status register.
748 * In this scenario, the bit will be set, and disable
749 * subsequent interrupts.
751 * Workaround: The IOMMU driver should read back the
752 * status register and check if the interrupt bits are cleared.
753 * If not, driver will need to go through the interrupt handler
754 * again and re-clear the bits
756 status
= readl(iommu
->mmio_base
+ MMIO_STATUS_OFFSET
);
761 irqreturn_t
amd_iommu_int_handler(int irq
, void *data
)
763 return IRQ_WAKE_THREAD
;
766 /****************************************************************************
768 * IOMMU command queuing functions
770 ****************************************************************************/
772 static int wait_on_sem(volatile u64
*sem
)
776 while (*sem
== 0 && i
< LOOP_TIMEOUT
) {
781 if (i
== LOOP_TIMEOUT
) {
782 pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
789 static void copy_cmd_to_buffer(struct amd_iommu
*iommu
,
790 struct iommu_cmd
*cmd
,
795 target
= iommu
->cmd_buf
+ tail
;
796 tail
= (tail
+ sizeof(*cmd
)) % CMD_BUFFER_SIZE
;
798 /* Copy command to buffer */
799 memcpy(target
, cmd
, sizeof(*cmd
));
801 /* Tell the IOMMU about it */
802 writel(tail
, iommu
->mmio_base
+ MMIO_CMD_TAIL_OFFSET
);
805 static void build_completion_wait(struct iommu_cmd
*cmd
, u64 address
)
807 WARN_ON(address
& 0x7ULL
);
809 memset(cmd
, 0, sizeof(*cmd
));
810 cmd
->data
[0] = lower_32_bits(__pa(address
)) | CMD_COMPL_WAIT_STORE_MASK
;
811 cmd
->data
[1] = upper_32_bits(__pa(address
));
813 CMD_SET_TYPE(cmd
, CMD_COMPL_WAIT
);
816 static void build_inv_dte(struct iommu_cmd
*cmd
, u16 devid
)
818 memset(cmd
, 0, sizeof(*cmd
));
819 cmd
->data
[0] = devid
;
820 CMD_SET_TYPE(cmd
, CMD_INV_DEV_ENTRY
);
823 static void build_inv_iommu_pages(struct iommu_cmd
*cmd
, u64 address
,
824 size_t size
, u16 domid
, int pde
)
829 pages
= iommu_num_pages(address
, size
, PAGE_SIZE
);
834 * If we have to flush more than one page, flush all
835 * TLB entries for this domain
837 address
= CMD_INV_IOMMU_ALL_PAGES_ADDRESS
;
841 address
&= PAGE_MASK
;
843 memset(cmd
, 0, sizeof(*cmd
));
844 cmd
->data
[1] |= domid
;
845 cmd
->data
[2] = lower_32_bits(address
);
846 cmd
->data
[3] = upper_32_bits(address
);
847 CMD_SET_TYPE(cmd
, CMD_INV_IOMMU_PAGES
);
848 if (s
) /* size bit - we flush more than one 4kb page */
849 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK
;
850 if (pde
) /* PDE bit - we want to flush everything, not only the PTEs */
851 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK
;
854 static void build_inv_iotlb_pages(struct iommu_cmd
*cmd
, u16 devid
, int qdep
,
855 u64 address
, size_t size
)
860 pages
= iommu_num_pages(address
, size
, PAGE_SIZE
);
865 * If we have to flush more than one page, flush all
866 * TLB entries for this domain
868 address
= CMD_INV_IOMMU_ALL_PAGES_ADDRESS
;
872 address
&= PAGE_MASK
;
874 memset(cmd
, 0, sizeof(*cmd
));
875 cmd
->data
[0] = devid
;
876 cmd
->data
[0] |= (qdep
& 0xff) << 24;
877 cmd
->data
[1] = devid
;
878 cmd
->data
[2] = lower_32_bits(address
);
879 cmd
->data
[3] = upper_32_bits(address
);
880 CMD_SET_TYPE(cmd
, CMD_INV_IOTLB_PAGES
);
882 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK
;
885 static void build_inv_iommu_pasid(struct iommu_cmd
*cmd
, u16 domid
, int pasid
,
886 u64 address
, bool size
)
888 memset(cmd
, 0, sizeof(*cmd
));
890 address
&= ~(0xfffULL
);
892 cmd
->data
[0] = pasid
;
893 cmd
->data
[1] = domid
;
894 cmd
->data
[2] = lower_32_bits(address
);
895 cmd
->data
[3] = upper_32_bits(address
);
896 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK
;
897 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_GN_MASK
;
899 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK
;
900 CMD_SET_TYPE(cmd
, CMD_INV_IOMMU_PAGES
);
903 static void build_inv_iotlb_pasid(struct iommu_cmd
*cmd
, u16 devid
, int pasid
,
904 int qdep
, u64 address
, bool size
)
906 memset(cmd
, 0, sizeof(*cmd
));
908 address
&= ~(0xfffULL
);
910 cmd
->data
[0] = devid
;
911 cmd
->data
[0] |= ((pasid
>> 8) & 0xff) << 16;
912 cmd
->data
[0] |= (qdep
& 0xff) << 24;
913 cmd
->data
[1] = devid
;
914 cmd
->data
[1] |= (pasid
& 0xff) << 16;
915 cmd
->data
[2] = lower_32_bits(address
);
916 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_GN_MASK
;
917 cmd
->data
[3] = upper_32_bits(address
);
919 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK
;
920 CMD_SET_TYPE(cmd
, CMD_INV_IOTLB_PAGES
);
923 static void build_complete_ppr(struct iommu_cmd
*cmd
, u16 devid
, int pasid
,
924 int status
, int tag
, bool gn
)
926 memset(cmd
, 0, sizeof(*cmd
));
928 cmd
->data
[0] = devid
;
930 cmd
->data
[1] = pasid
;
931 cmd
->data
[2] = CMD_INV_IOMMU_PAGES_GN_MASK
;
933 cmd
->data
[3] = tag
& 0x1ff;
934 cmd
->data
[3] |= (status
& PPR_STATUS_MASK
) << PPR_STATUS_SHIFT
;
936 CMD_SET_TYPE(cmd
, CMD_COMPLETE_PPR
);
939 static void build_inv_all(struct iommu_cmd
*cmd
)
941 memset(cmd
, 0, sizeof(*cmd
));
942 CMD_SET_TYPE(cmd
, CMD_INV_ALL
);
945 static void build_inv_irt(struct iommu_cmd
*cmd
, u16 devid
)
947 memset(cmd
, 0, sizeof(*cmd
));
948 cmd
->data
[0] = devid
;
949 CMD_SET_TYPE(cmd
, CMD_INV_IRT
);
953 * Writes the command to the IOMMUs command buffer and informs the
954 * hardware about the new command.
956 static int iommu_queue_command_sync(struct amd_iommu
*iommu
,
957 struct iommu_cmd
*cmd
,
960 u32 left
, tail
, head
, next_tail
;
964 spin_lock_irqsave(&iommu
->lock
, flags
);
966 head
= readl(iommu
->mmio_base
+ MMIO_CMD_HEAD_OFFSET
);
967 tail
= readl(iommu
->mmio_base
+ MMIO_CMD_TAIL_OFFSET
);
968 next_tail
= (tail
+ sizeof(*cmd
)) % CMD_BUFFER_SIZE
;
969 left
= (head
- next_tail
) % CMD_BUFFER_SIZE
;
972 struct iommu_cmd sync_cmd
;
973 volatile u64 sem
= 0;
976 build_completion_wait(&sync_cmd
, (u64
)&sem
);
977 copy_cmd_to_buffer(iommu
, &sync_cmd
, tail
);
979 spin_unlock_irqrestore(&iommu
->lock
, flags
);
981 if ((ret
= wait_on_sem(&sem
)) != 0)
987 copy_cmd_to_buffer(iommu
, cmd
, tail
);
989 /* We need to sync now to make sure all commands are processed */
990 iommu
->need_sync
= sync
;
992 spin_unlock_irqrestore(&iommu
->lock
, flags
);
997 static int iommu_queue_command(struct amd_iommu
*iommu
, struct iommu_cmd
*cmd
)
999 return iommu_queue_command_sync(iommu
, cmd
, true);
1003 * This function queues a completion wait command into the command
1004 * buffer of an IOMMU
1006 static int iommu_completion_wait(struct amd_iommu
*iommu
)
1008 struct iommu_cmd cmd
;
1009 volatile u64 sem
= 0;
1012 if (!iommu
->need_sync
)
1015 build_completion_wait(&cmd
, (u64
)&sem
);
1017 ret
= iommu_queue_command_sync(iommu
, &cmd
, false);
1021 return wait_on_sem(&sem
);
1024 static int iommu_flush_dte(struct amd_iommu
*iommu
, u16 devid
)
1026 struct iommu_cmd cmd
;
1028 build_inv_dte(&cmd
, devid
);
1030 return iommu_queue_command(iommu
, &cmd
);
1033 static void iommu_flush_dte_all(struct amd_iommu
*iommu
)
1037 for (devid
= 0; devid
<= 0xffff; ++devid
)
1038 iommu_flush_dte(iommu
, devid
);
1040 iommu_completion_wait(iommu
);
1044 * This function uses heavy locking and may disable irqs for some time. But
1045 * this is no issue because it is only called during resume.
1047 static void iommu_flush_tlb_all(struct amd_iommu
*iommu
)
1051 for (dom_id
= 0; dom_id
<= 0xffff; ++dom_id
) {
1052 struct iommu_cmd cmd
;
1053 build_inv_iommu_pages(&cmd
, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS
,
1055 iommu_queue_command(iommu
, &cmd
);
1058 iommu_completion_wait(iommu
);
1061 static void iommu_flush_all(struct amd_iommu
*iommu
)
1063 struct iommu_cmd cmd
;
1065 build_inv_all(&cmd
);
1067 iommu_queue_command(iommu
, &cmd
);
1068 iommu_completion_wait(iommu
);
1071 static void iommu_flush_irt(struct amd_iommu
*iommu
, u16 devid
)
1073 struct iommu_cmd cmd
;
1075 build_inv_irt(&cmd
, devid
);
1077 iommu_queue_command(iommu
, &cmd
);
1080 static void iommu_flush_irt_all(struct amd_iommu
*iommu
)
1084 for (devid
= 0; devid
<= MAX_DEV_TABLE_ENTRIES
; devid
++)
1085 iommu_flush_irt(iommu
, devid
);
1087 iommu_completion_wait(iommu
);
1090 void iommu_flush_all_caches(struct amd_iommu
*iommu
)
1092 if (iommu_feature(iommu
, FEATURE_IA
)) {
1093 iommu_flush_all(iommu
);
1095 iommu_flush_dte_all(iommu
);
1096 iommu_flush_irt_all(iommu
);
1097 iommu_flush_tlb_all(iommu
);
1102 * Command send function for flushing on-device TLB
1104 static int device_flush_iotlb(struct iommu_dev_data
*dev_data
,
1105 u64 address
, size_t size
)
1107 struct amd_iommu
*iommu
;
1108 struct iommu_cmd cmd
;
1111 qdep
= dev_data
->ats
.qdep
;
1112 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
1114 build_inv_iotlb_pages(&cmd
, dev_data
->devid
, qdep
, address
, size
);
1116 return iommu_queue_command(iommu
, &cmd
);
1120 * Command send function for invalidating a device table entry
1122 static int device_flush_dte(struct iommu_dev_data
*dev_data
)
1124 struct amd_iommu
*iommu
;
1128 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
1129 alias
= dev_data
->alias
;
1131 ret
= iommu_flush_dte(iommu
, dev_data
->devid
);
1132 if (!ret
&& alias
!= dev_data
->devid
)
1133 ret
= iommu_flush_dte(iommu
, alias
);
1137 if (dev_data
->ats
.enabled
)
1138 ret
= device_flush_iotlb(dev_data
, 0, ~0UL);
1144 * TLB invalidation function which is called from the mapping functions.
1145 * It invalidates a single PTE if the range to flush is within a single
1146 * page. Otherwise it flushes the whole TLB of the IOMMU.
1148 static void __domain_flush_pages(struct protection_domain
*domain
,
1149 u64 address
, size_t size
, int pde
)
1151 struct iommu_dev_data
*dev_data
;
1152 struct iommu_cmd cmd
;
1155 build_inv_iommu_pages(&cmd
, address
, size
, domain
->id
, pde
);
1157 for (i
= 0; i
< amd_iommus_present
; ++i
) {
1158 if (!domain
->dev_iommu
[i
])
1162 * Devices of this domain are behind this IOMMU
1163 * We need a TLB flush
1165 ret
|= iommu_queue_command(amd_iommus
[i
], &cmd
);
1168 list_for_each_entry(dev_data
, &domain
->dev_list
, list
) {
1170 if (!dev_data
->ats
.enabled
)
1173 ret
|= device_flush_iotlb(dev_data
, address
, size
);
1179 static void domain_flush_pages(struct protection_domain
*domain
,
1180 u64 address
, size_t size
)
1182 __domain_flush_pages(domain
, address
, size
, 0);
1185 /* Flush the whole IO/TLB for a given protection domain */
1186 static void domain_flush_tlb(struct protection_domain
*domain
)
1188 __domain_flush_pages(domain
, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS
, 0);
1191 /* Flush the whole IO/TLB for a given protection domain - including PDE */
1192 static void domain_flush_tlb_pde(struct protection_domain
*domain
)
1194 __domain_flush_pages(domain
, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS
, 1);
1197 static void domain_flush_complete(struct protection_domain
*domain
)
1201 for (i
= 0; i
< amd_iommus_present
; ++i
) {
1202 if (!domain
->dev_iommu
[i
])
1206 * Devices of this domain are behind this IOMMU
1207 * We need to wait for completion of all commands.
1209 iommu_completion_wait(amd_iommus
[i
]);
1215 * This function flushes the DTEs for all devices in domain
1217 static void domain_flush_devices(struct protection_domain
*domain
)
1219 struct iommu_dev_data
*dev_data
;
1221 list_for_each_entry(dev_data
, &domain
->dev_list
, list
)
1222 device_flush_dte(dev_data
);
1225 /****************************************************************************
1227 * The functions below are used the create the page table mappings for
1228 * unity mapped regions.
1230 ****************************************************************************/
1233 * This function is used to add another level to an IO page table. Adding
1234 * another level increases the size of the address space by 9 bits to a size up
1237 static bool increase_address_space(struct protection_domain
*domain
,
1242 if (domain
->mode
== PAGE_MODE_6_LEVEL
)
1243 /* address space already 64 bit large */
1246 pte
= (void *)get_zeroed_page(gfp
);
1250 *pte
= PM_LEVEL_PDE(domain
->mode
,
1251 virt_to_phys(domain
->pt_root
));
1252 domain
->pt_root
= pte
;
1254 domain
->updated
= true;
1259 static u64
*alloc_pte(struct protection_domain
*domain
,
1260 unsigned long address
,
1261 unsigned long page_size
,
1268 BUG_ON(!is_power_of_2(page_size
));
1270 while (address
> PM_LEVEL_SIZE(domain
->mode
))
1271 increase_address_space(domain
, gfp
);
1273 level
= domain
->mode
- 1;
1274 pte
= &domain
->pt_root
[PM_LEVEL_INDEX(level
, address
)];
1275 address
= PAGE_SIZE_ALIGN(address
, page_size
);
1276 end_lvl
= PAGE_SIZE_LEVEL(page_size
);
1278 while (level
> end_lvl
) {
1283 if (!IOMMU_PTE_PRESENT(__pte
)) {
1284 page
= (u64
*)get_zeroed_page(gfp
);
1288 __npte
= PM_LEVEL_PDE(level
, virt_to_phys(page
));
1290 if (cmpxchg64(pte
, __pte
, __npte
)) {
1291 free_page((unsigned long)page
);
1296 /* No level skipping support yet */
1297 if (PM_PTE_LEVEL(*pte
) != level
)
1302 pte
= IOMMU_PTE_PAGE(*pte
);
1304 if (pte_page
&& level
== end_lvl
)
1307 pte
= &pte
[PM_LEVEL_INDEX(level
, address
)];
1314 * This function checks if there is a PTE for a given dma address. If
1315 * there is one, it returns the pointer to it.
1317 static u64
*fetch_pte(struct protection_domain
*domain
,
1318 unsigned long address
,
1319 unsigned long *page_size
)
1324 if (address
> PM_LEVEL_SIZE(domain
->mode
))
1327 level
= domain
->mode
- 1;
1328 pte
= &domain
->pt_root
[PM_LEVEL_INDEX(level
, address
)];
1329 *page_size
= PTE_LEVEL_PAGE_SIZE(level
);
1334 if (!IOMMU_PTE_PRESENT(*pte
))
1338 if (PM_PTE_LEVEL(*pte
) == 7 ||
1339 PM_PTE_LEVEL(*pte
) == 0)
1342 /* No level skipping support yet */
1343 if (PM_PTE_LEVEL(*pte
) != level
)
1348 /* Walk to the next level */
1349 pte
= IOMMU_PTE_PAGE(*pte
);
1350 pte
= &pte
[PM_LEVEL_INDEX(level
, address
)];
1351 *page_size
= PTE_LEVEL_PAGE_SIZE(level
);
1354 if (PM_PTE_LEVEL(*pte
) == 0x07) {
1355 unsigned long pte_mask
;
1358 * If we have a series of large PTEs, make
1359 * sure to return a pointer to the first one.
1361 *page_size
= pte_mask
= PTE_PAGE_SIZE(*pte
);
1362 pte_mask
= ~((PAGE_SIZE_PTE_COUNT(pte_mask
) << 3) - 1);
1363 pte
= (u64
*)(((unsigned long)pte
) & pte_mask
);
1370 * Generic mapping functions. It maps a physical address into a DMA
1371 * address space. It allocates the page table pages if necessary.
1372 * In the future it can be extended to a generic mapping function
1373 * supporting all features of AMD IOMMU page tables like level skipping
1374 * and full 64 bit address spaces.
1376 static int iommu_map_page(struct protection_domain
*dom
,
1377 unsigned long bus_addr
,
1378 unsigned long phys_addr
,
1380 unsigned long page_size
)
1385 BUG_ON(!IS_ALIGNED(bus_addr
, page_size
));
1386 BUG_ON(!IS_ALIGNED(phys_addr
, page_size
));
1388 if (!(prot
& IOMMU_PROT_MASK
))
1391 count
= PAGE_SIZE_PTE_COUNT(page_size
);
1392 pte
= alloc_pte(dom
, bus_addr
, page_size
, NULL
, GFP_KERNEL
);
1397 for (i
= 0; i
< count
; ++i
)
1398 if (IOMMU_PTE_PRESENT(pte
[i
]))
1402 __pte
= PAGE_SIZE_PTE(phys_addr
, page_size
);
1403 __pte
|= PM_LEVEL_ENC(7) | IOMMU_PTE_P
| IOMMU_PTE_FC
;
1405 __pte
= phys_addr
| IOMMU_PTE_P
| IOMMU_PTE_FC
;
1407 if (prot
& IOMMU_PROT_IR
)
1408 __pte
|= IOMMU_PTE_IR
;
1409 if (prot
& IOMMU_PROT_IW
)
1410 __pte
|= IOMMU_PTE_IW
;
1412 for (i
= 0; i
< count
; ++i
)
1420 static unsigned long iommu_unmap_page(struct protection_domain
*dom
,
1421 unsigned long bus_addr
,
1422 unsigned long page_size
)
1424 unsigned long long unmapped
;
1425 unsigned long unmap_size
;
1428 BUG_ON(!is_power_of_2(page_size
));
1432 while (unmapped
< page_size
) {
1434 pte
= fetch_pte(dom
, bus_addr
, &unmap_size
);
1439 count
= PAGE_SIZE_PTE_COUNT(unmap_size
);
1440 for (i
= 0; i
< count
; i
++)
1444 bus_addr
= (bus_addr
& ~(unmap_size
- 1)) + unmap_size
;
1445 unmapped
+= unmap_size
;
1448 BUG_ON(unmapped
&& !is_power_of_2(unmapped
));
1453 /****************************************************************************
1455 * The next functions belong to the address allocator for the dma_ops
1456 * interface functions. They work like the allocators in the other IOMMU
1457 * drivers. Its basically a bitmap which marks the allocated pages in
1458 * the aperture. Maybe it could be enhanced in the future to a more
1459 * efficient allocator.
1461 ****************************************************************************/
1464 * The address allocator core functions.
1466 * called with domain->lock held
1470 * Used to reserve address ranges in the aperture (e.g. for exclusion
1473 static void dma_ops_reserve_addresses(struct dma_ops_domain
*dom
,
1474 unsigned long start_page
,
1477 unsigned int i
, last_page
= dom
->aperture_size
>> PAGE_SHIFT
;
1479 if (start_page
+ pages
> last_page
)
1480 pages
= last_page
- start_page
;
1482 for (i
= start_page
; i
< start_page
+ pages
; ++i
) {
1483 int index
= i
/ APERTURE_RANGE_PAGES
;
1484 int page
= i
% APERTURE_RANGE_PAGES
;
1485 __set_bit(page
, dom
->aperture
[index
]->bitmap
);
1490 * This function is used to add a new aperture range to an existing
1491 * aperture in case of dma_ops domain allocation or address allocation
1494 static int alloc_new_range(struct dma_ops_domain
*dma_dom
,
1495 bool populate
, gfp_t gfp
)
1497 int index
= dma_dom
->aperture_size
>> APERTURE_RANGE_SHIFT
;
1498 unsigned long i
, old_size
, pte_pgsize
;
1499 struct aperture_range
*range
;
1500 struct amd_iommu
*iommu
;
1501 unsigned long flags
;
1503 #ifdef CONFIG_IOMMU_STRESS
1507 if (index
>= APERTURE_MAX_RANGES
)
1510 range
= kzalloc(sizeof(struct aperture_range
), gfp
);
1514 range
->bitmap
= (void *)get_zeroed_page(gfp
);
1518 range
->offset
= dma_dom
->aperture_size
;
1520 spin_lock_init(&range
->bitmap_lock
);
1523 unsigned long address
= dma_dom
->aperture_size
;
1524 int i
, num_ptes
= APERTURE_RANGE_PAGES
/ 512;
1525 u64
*pte
, *pte_page
;
1527 for (i
= 0; i
< num_ptes
; ++i
) {
1528 pte
= alloc_pte(&dma_dom
->domain
, address
, PAGE_SIZE
,
1533 range
->pte_pages
[i
] = pte_page
;
1535 address
+= APERTURE_RANGE_SIZE
/ 64;
1539 spin_lock_irqsave(&dma_dom
->domain
.lock
, flags
);
1541 /* First take the bitmap_lock and then publish the range */
1542 spin_lock(&range
->bitmap_lock
);
1544 old_size
= dma_dom
->aperture_size
;
1545 dma_dom
->aperture
[index
] = range
;
1546 dma_dom
->aperture_size
+= APERTURE_RANGE_SIZE
;
1548 /* Reserve address range used for MSI messages */
1549 if (old_size
< MSI_ADDR_BASE_LO
&&
1550 dma_dom
->aperture_size
> MSI_ADDR_BASE_LO
) {
1551 unsigned long spage
;
1554 pages
= iommu_num_pages(MSI_ADDR_BASE_LO
, 0x10000, PAGE_SIZE
);
1555 spage
= MSI_ADDR_BASE_LO
>> PAGE_SHIFT
;
1557 dma_ops_reserve_addresses(dma_dom
, spage
, pages
);
1560 /* Initialize the exclusion range if necessary */
1561 for_each_iommu(iommu
) {
1562 if (iommu
->exclusion_start
&&
1563 iommu
->exclusion_start
>= dma_dom
->aperture
[index
]->offset
1564 && iommu
->exclusion_start
< dma_dom
->aperture_size
) {
1565 unsigned long startpage
;
1566 int pages
= iommu_num_pages(iommu
->exclusion_start
,
1567 iommu
->exclusion_length
,
1569 startpage
= iommu
->exclusion_start
>> PAGE_SHIFT
;
1570 dma_ops_reserve_addresses(dma_dom
, startpage
, pages
);
1575 * Check for areas already mapped as present in the new aperture
1576 * range and mark those pages as reserved in the allocator. Such
1577 * mappings may already exist as a result of requested unity
1578 * mappings for devices.
1580 for (i
= dma_dom
->aperture
[index
]->offset
;
1581 i
< dma_dom
->aperture_size
;
1583 u64
*pte
= fetch_pte(&dma_dom
->domain
, i
, &pte_pgsize
);
1584 if (!pte
|| !IOMMU_PTE_PRESENT(*pte
))
1587 dma_ops_reserve_addresses(dma_dom
, i
>> PAGE_SHIFT
,
1591 update_domain(&dma_dom
->domain
);
1593 spin_unlock(&range
->bitmap_lock
);
1595 spin_unlock_irqrestore(&dma_dom
->domain
.lock
, flags
);
1600 update_domain(&dma_dom
->domain
);
1602 free_page((unsigned long)range
->bitmap
);
1609 static dma_addr_t
dma_ops_aperture_alloc(struct dma_ops_domain
*dom
,
1610 struct aperture_range
*range
,
1611 unsigned long pages
,
1612 unsigned long dma_mask
,
1613 unsigned long boundary_size
,
1614 unsigned long align_mask
,
1617 unsigned long offset
, limit
, flags
;
1621 offset
= range
->offset
>> PAGE_SHIFT
;
1622 limit
= iommu_device_max_index(APERTURE_RANGE_PAGES
, offset
,
1623 dma_mask
>> PAGE_SHIFT
);
1626 if (!spin_trylock_irqsave(&range
->bitmap_lock
, flags
))
1629 spin_lock_irqsave(&range
->bitmap_lock
, flags
);
1632 address
= iommu_area_alloc(range
->bitmap
, limit
, range
->next_bit
,
1633 pages
, offset
, boundary_size
, align_mask
);
1634 if (address
== -1) {
1635 /* Nothing found, retry one time */
1636 address
= iommu_area_alloc(range
->bitmap
, limit
,
1637 0, pages
, offset
, boundary_size
,
1643 range
->next_bit
= address
+ pages
;
1645 spin_unlock_irqrestore(&range
->bitmap_lock
, flags
);
1648 domain_flush_tlb(&dom
->domain
);
1649 domain_flush_complete(&dom
->domain
);
1655 static unsigned long dma_ops_area_alloc(struct device
*dev
,
1656 struct dma_ops_domain
*dom
,
1658 unsigned long align_mask
,
1661 unsigned long boundary_size
, mask
;
1662 unsigned long address
= -1;
1668 mask
= dma_get_seg_boundary(dev
);
1671 start
= this_cpu_read(*dom
->next_index
);
1673 /* Sanity check - is it really necessary? */
1674 if (unlikely(start
> APERTURE_MAX_RANGES
)) {
1676 this_cpu_write(*dom
->next_index
, 0);
1679 boundary_size
= mask
+ 1 ? ALIGN(mask
+ 1, PAGE_SIZE
) >> PAGE_SHIFT
:
1680 1UL << (BITS_PER_LONG
- PAGE_SHIFT
);
1682 for (i
= 0; i
< APERTURE_MAX_RANGES
; ++i
) {
1683 struct aperture_range
*range
;
1686 index
= (start
+ i
) % APERTURE_MAX_RANGES
;
1688 range
= dom
->aperture
[index
];
1690 if (!range
|| range
->offset
>= dma_mask
)
1693 address
= dma_ops_aperture_alloc(dom
, range
, pages
,
1694 dma_mask
, boundary_size
,
1696 if (address
!= -1) {
1697 address
= range
->offset
+ (address
<< PAGE_SHIFT
);
1698 this_cpu_write(*dom
->next_index
, index
);
1703 if (address
== -1 && first
) {
1713 static unsigned long dma_ops_alloc_addresses(struct device
*dev
,
1714 struct dma_ops_domain
*dom
,
1716 unsigned long align_mask
,
1719 unsigned long address
= -1;
1721 while (address
== -1) {
1722 address
= dma_ops_area_alloc(dev
, dom
, pages
,
1723 align_mask
, dma_mask
);
1725 if (address
== -1 && alloc_new_range(dom
, false, GFP_ATOMIC
))
1729 if (unlikely(address
== -1))
1730 address
= DMA_ERROR_CODE
;
1732 WARN_ON((address
+ (PAGE_SIZE
*pages
)) > dom
->aperture_size
);
1738 * The address free function.
1740 * called with domain->lock held
1742 static void dma_ops_free_addresses(struct dma_ops_domain
*dom
,
1743 unsigned long address
,
1746 unsigned i
= address
>> APERTURE_RANGE_SHIFT
;
1747 struct aperture_range
*range
= dom
->aperture
[i
];
1748 unsigned long flags
;
1750 BUG_ON(i
>= APERTURE_MAX_RANGES
|| range
== NULL
);
1752 #ifdef CONFIG_IOMMU_STRESS
1757 if (amd_iommu_unmap_flush
) {
1758 domain_flush_tlb(&dom
->domain
);
1759 domain_flush_complete(&dom
->domain
);
1762 address
= (address
% APERTURE_RANGE_SIZE
) >> PAGE_SHIFT
;
1764 spin_lock_irqsave(&range
->bitmap_lock
, flags
);
1765 if (address
+ pages
> range
->next_bit
)
1766 range
->next_bit
= address
+ pages
;
1767 bitmap_clear(range
->bitmap
, address
, pages
);
1768 spin_unlock_irqrestore(&range
->bitmap_lock
, flags
);
1772 /****************************************************************************
1774 * The next functions belong to the domain allocation. A domain is
1775 * allocated for every IOMMU as the default domain. If device isolation
1776 * is enabled, every device get its own domain. The most important thing
1777 * about domains is the page table mapping the DMA address space they
1780 ****************************************************************************/
1783 * This function adds a protection domain to the global protection domain list
1785 static void add_domain_to_list(struct protection_domain
*domain
)
1787 unsigned long flags
;
1789 spin_lock_irqsave(&amd_iommu_pd_lock
, flags
);
1790 list_add(&domain
->list
, &amd_iommu_pd_list
);
1791 spin_unlock_irqrestore(&amd_iommu_pd_lock
, flags
);
1795 * This function removes a protection domain to the global
1796 * protection domain list
1798 static void del_domain_from_list(struct protection_domain
*domain
)
1800 unsigned long flags
;
1802 spin_lock_irqsave(&amd_iommu_pd_lock
, flags
);
1803 list_del(&domain
->list
);
1804 spin_unlock_irqrestore(&amd_iommu_pd_lock
, flags
);
1807 static u16
domain_id_alloc(void)
1809 unsigned long flags
;
1812 write_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
1813 id
= find_first_zero_bit(amd_iommu_pd_alloc_bitmap
, MAX_DOMAIN_ID
);
1815 if (id
> 0 && id
< MAX_DOMAIN_ID
)
1816 __set_bit(id
, amd_iommu_pd_alloc_bitmap
);
1819 write_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
1824 static void domain_id_free(int id
)
1826 unsigned long flags
;
1828 write_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
1829 if (id
> 0 && id
< MAX_DOMAIN_ID
)
1830 __clear_bit(id
, amd_iommu_pd_alloc_bitmap
);
1831 write_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
1834 #define DEFINE_FREE_PT_FN(LVL, FN) \
1835 static void free_pt_##LVL (unsigned long __pt) \
1843 for (i = 0; i < 512; ++i) { \
1844 /* PTE present? */ \
1845 if (!IOMMU_PTE_PRESENT(pt[i])) \
1849 if (PM_PTE_LEVEL(pt[i]) == 0 || \
1850 PM_PTE_LEVEL(pt[i]) == 7) \
1853 p = (unsigned long)IOMMU_PTE_PAGE(pt[i]); \
1856 free_page((unsigned long)pt); \
1859 DEFINE_FREE_PT_FN(l2
, free_page
)
1860 DEFINE_FREE_PT_FN(l3
, free_pt_l2
)
1861 DEFINE_FREE_PT_FN(l4
, free_pt_l3
)
1862 DEFINE_FREE_PT_FN(l5
, free_pt_l4
)
1863 DEFINE_FREE_PT_FN(l6
, free_pt_l5
)
1865 static void free_pagetable(struct protection_domain
*domain
)
1867 unsigned long root
= (unsigned long)domain
->pt_root
;
1869 switch (domain
->mode
) {
1870 case PAGE_MODE_NONE
:
1872 case PAGE_MODE_1_LEVEL
:
1875 case PAGE_MODE_2_LEVEL
:
1878 case PAGE_MODE_3_LEVEL
:
1881 case PAGE_MODE_4_LEVEL
:
1884 case PAGE_MODE_5_LEVEL
:
1887 case PAGE_MODE_6_LEVEL
:
1895 static void free_gcr3_tbl_level1(u64
*tbl
)
1900 for (i
= 0; i
< 512; ++i
) {
1901 if (!(tbl
[i
] & GCR3_VALID
))
1904 ptr
= __va(tbl
[i
] & PAGE_MASK
);
1906 free_page((unsigned long)ptr
);
1910 static void free_gcr3_tbl_level2(u64
*tbl
)
1915 for (i
= 0; i
< 512; ++i
) {
1916 if (!(tbl
[i
] & GCR3_VALID
))
1919 ptr
= __va(tbl
[i
] & PAGE_MASK
);
1921 free_gcr3_tbl_level1(ptr
);
1925 static void free_gcr3_table(struct protection_domain
*domain
)
1927 if (domain
->glx
== 2)
1928 free_gcr3_tbl_level2(domain
->gcr3_tbl
);
1929 else if (domain
->glx
== 1)
1930 free_gcr3_tbl_level1(domain
->gcr3_tbl
);
1932 BUG_ON(domain
->glx
!= 0);
1934 free_page((unsigned long)domain
->gcr3_tbl
);
1938 * Free a domain, only used if something went wrong in the
1939 * allocation path and we need to free an already allocated page table
1941 static void dma_ops_domain_free(struct dma_ops_domain
*dom
)
1948 free_percpu(dom
->next_index
);
1950 del_domain_from_list(&dom
->domain
);
1952 free_pagetable(&dom
->domain
);
1954 for (i
= 0; i
< APERTURE_MAX_RANGES
; ++i
) {
1955 if (!dom
->aperture
[i
])
1957 free_page((unsigned long)dom
->aperture
[i
]->bitmap
);
1958 kfree(dom
->aperture
[i
]);
1964 static int dma_ops_domain_alloc_apertures(struct dma_ops_domain
*dma_dom
,
1967 int ret
, i
, apertures
;
1969 apertures
= dma_dom
->aperture_size
>> APERTURE_RANGE_SHIFT
;
1972 for (i
= apertures
; i
< max_apertures
; ++i
) {
1973 ret
= alloc_new_range(dma_dom
, false, GFP_KERNEL
);
1982 * Allocates a new protection domain usable for the dma_ops functions.
1983 * It also initializes the page table and the address allocator data
1984 * structures required for the dma_ops interface
1986 static struct dma_ops_domain
*dma_ops_domain_alloc(void)
1988 struct dma_ops_domain
*dma_dom
;
1991 dma_dom
= kzalloc(sizeof(struct dma_ops_domain
), GFP_KERNEL
);
1995 if (protection_domain_init(&dma_dom
->domain
))
1998 dma_dom
->next_index
= alloc_percpu(u32
);
1999 if (!dma_dom
->next_index
)
2002 dma_dom
->domain
.mode
= PAGE_MODE_2_LEVEL
;
2003 dma_dom
->domain
.pt_root
= (void *)get_zeroed_page(GFP_KERNEL
);
2004 dma_dom
->domain
.flags
= PD_DMA_OPS_MASK
;
2005 dma_dom
->domain
.priv
= dma_dom
;
2006 if (!dma_dom
->domain
.pt_root
)
2009 add_domain_to_list(&dma_dom
->domain
);
2011 if (alloc_new_range(dma_dom
, true, GFP_KERNEL
))
2015 * mark the first page as allocated so we never return 0 as
2016 * a valid dma-address. So we can use 0 as error value
2018 dma_dom
->aperture
[0]->bitmap
[0] = 1;
2020 for_each_possible_cpu(cpu
)
2021 *per_cpu_ptr(dma_dom
->next_index
, cpu
) = 0;
2026 dma_ops_domain_free(dma_dom
);
2032 * little helper function to check whether a given protection domain is a
2035 static bool dma_ops_domain(struct protection_domain
*domain
)
2037 return domain
->flags
& PD_DMA_OPS_MASK
;
2040 static void set_dte_entry(u16 devid
, struct protection_domain
*domain
, bool ats
)
2045 if (domain
->mode
!= PAGE_MODE_NONE
)
2046 pte_root
= virt_to_phys(domain
->pt_root
);
2048 pte_root
|= (domain
->mode
& DEV_ENTRY_MODE_MASK
)
2049 << DEV_ENTRY_MODE_SHIFT
;
2050 pte_root
|= IOMMU_PTE_IR
| IOMMU_PTE_IW
| IOMMU_PTE_P
| IOMMU_PTE_TV
;
2052 flags
= amd_iommu_dev_table
[devid
].data
[1];
2055 flags
|= DTE_FLAG_IOTLB
;
2057 if (domain
->flags
& PD_IOMMUV2_MASK
) {
2058 u64 gcr3
= __pa(domain
->gcr3_tbl
);
2059 u64 glx
= domain
->glx
;
2062 pte_root
|= DTE_FLAG_GV
;
2063 pte_root
|= (glx
& DTE_GLX_MASK
) << DTE_GLX_SHIFT
;
2065 /* First mask out possible old values for GCR3 table */
2066 tmp
= DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B
;
2069 tmp
= DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C
;
2072 /* Encode GCR3 table into DTE */
2073 tmp
= DTE_GCR3_VAL_A(gcr3
) << DTE_GCR3_SHIFT_A
;
2076 tmp
= DTE_GCR3_VAL_B(gcr3
) << DTE_GCR3_SHIFT_B
;
2079 tmp
= DTE_GCR3_VAL_C(gcr3
) << DTE_GCR3_SHIFT_C
;
2083 flags
&= ~(0xffffUL
);
2084 flags
|= domain
->id
;
2086 amd_iommu_dev_table
[devid
].data
[1] = flags
;
2087 amd_iommu_dev_table
[devid
].data
[0] = pte_root
;
2090 static void clear_dte_entry(u16 devid
)
2092 /* remove entry from the device table seen by the hardware */
2093 amd_iommu_dev_table
[devid
].data
[0] = IOMMU_PTE_P
| IOMMU_PTE_TV
;
2094 amd_iommu_dev_table
[devid
].data
[1] &= DTE_FLAG_MASK
;
2096 amd_iommu_apply_erratum_63(devid
);
2099 static void do_attach(struct iommu_dev_data
*dev_data
,
2100 struct protection_domain
*domain
)
2102 struct amd_iommu
*iommu
;
2106 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
2107 alias
= dev_data
->alias
;
2108 ats
= dev_data
->ats
.enabled
;
2110 /* Update data structures */
2111 dev_data
->domain
= domain
;
2112 list_add(&dev_data
->list
, &domain
->dev_list
);
2114 /* Do reference counting */
2115 domain
->dev_iommu
[iommu
->index
] += 1;
2116 domain
->dev_cnt
+= 1;
2118 /* Update device table */
2119 set_dte_entry(dev_data
->devid
, domain
, ats
);
2120 if (alias
!= dev_data
->devid
)
2121 set_dte_entry(alias
, domain
, ats
);
2123 device_flush_dte(dev_data
);
2126 static void do_detach(struct iommu_dev_data
*dev_data
)
2128 struct amd_iommu
*iommu
;
2132 * First check if the device is still attached. It might already
2133 * be detached from its domain because the generic
2134 * iommu_detach_group code detached it and we try again here in
2135 * our alias handling.
2137 if (!dev_data
->domain
)
2140 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
2141 alias
= dev_data
->alias
;
2143 /* decrease reference counters */
2144 dev_data
->domain
->dev_iommu
[iommu
->index
] -= 1;
2145 dev_data
->domain
->dev_cnt
-= 1;
2147 /* Update data structures */
2148 dev_data
->domain
= NULL
;
2149 list_del(&dev_data
->list
);
2150 clear_dte_entry(dev_data
->devid
);
2151 if (alias
!= dev_data
->devid
)
2152 clear_dte_entry(alias
);
2154 /* Flush the DTE entry */
2155 device_flush_dte(dev_data
);
2159 * If a device is not yet associated with a domain, this function does
2160 * assigns it visible for the hardware
2162 static int __attach_device(struct iommu_dev_data
*dev_data
,
2163 struct protection_domain
*domain
)
2168 * Must be called with IRQs disabled. Warn here to detect early
2171 WARN_ON(!irqs_disabled());
2174 spin_lock(&domain
->lock
);
2177 if (dev_data
->domain
!= NULL
)
2180 /* Attach alias group root */
2181 do_attach(dev_data
, domain
);
2188 spin_unlock(&domain
->lock
);
2194 static void pdev_iommuv2_disable(struct pci_dev
*pdev
)
2196 pci_disable_ats(pdev
);
2197 pci_disable_pri(pdev
);
2198 pci_disable_pasid(pdev
);
2201 /* FIXME: Change generic reset-function to do the same */
2202 static int pri_reset_while_enabled(struct pci_dev
*pdev
)
2207 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_PRI
);
2211 pci_read_config_word(pdev
, pos
+ PCI_PRI_CTRL
, &control
);
2212 control
|= PCI_PRI_CTRL_RESET
;
2213 pci_write_config_word(pdev
, pos
+ PCI_PRI_CTRL
, control
);
2218 static int pdev_iommuv2_enable(struct pci_dev
*pdev
)
2223 /* FIXME: Hardcode number of outstanding requests for now */
2225 if (pdev_pri_erratum(pdev
, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE
))
2227 reset_enable
= pdev_pri_erratum(pdev
, AMD_PRI_DEV_ERRATUM_ENABLE_RESET
);
2229 /* Only allow access to user-accessible pages */
2230 ret
= pci_enable_pasid(pdev
, 0);
2234 /* First reset the PRI state of the device */
2235 ret
= pci_reset_pri(pdev
);
2240 ret
= pci_enable_pri(pdev
, reqs
);
2245 ret
= pri_reset_while_enabled(pdev
);
2250 ret
= pci_enable_ats(pdev
, PAGE_SHIFT
);
2257 pci_disable_pri(pdev
);
2258 pci_disable_pasid(pdev
);
2263 /* FIXME: Move this to PCI code */
2264 #define PCI_PRI_TLP_OFF (1 << 15)
2266 static bool pci_pri_tlp_required(struct pci_dev
*pdev
)
2271 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_PRI
);
2275 pci_read_config_word(pdev
, pos
+ PCI_PRI_STATUS
, &status
);
2277 return (status
& PCI_PRI_TLP_OFF
) ? true : false;
2281 * If a device is not yet associated with a domain, this function
2282 * assigns it visible for the hardware
2284 static int attach_device(struct device
*dev
,
2285 struct protection_domain
*domain
)
2287 struct pci_dev
*pdev
= to_pci_dev(dev
);
2288 struct iommu_dev_data
*dev_data
;
2289 unsigned long flags
;
2292 dev_data
= get_dev_data(dev
);
2294 if (domain
->flags
& PD_IOMMUV2_MASK
) {
2295 if (!dev_data
->passthrough
)
2298 if (dev_data
->iommu_v2
) {
2299 if (pdev_iommuv2_enable(pdev
) != 0)
2302 dev_data
->ats
.enabled
= true;
2303 dev_data
->ats
.qdep
= pci_ats_queue_depth(pdev
);
2304 dev_data
->pri_tlp
= pci_pri_tlp_required(pdev
);
2306 } else if (amd_iommu_iotlb_sup
&&
2307 pci_enable_ats(pdev
, PAGE_SHIFT
) == 0) {
2308 dev_data
->ats
.enabled
= true;
2309 dev_data
->ats
.qdep
= pci_ats_queue_depth(pdev
);
2312 write_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
2313 ret
= __attach_device(dev_data
, domain
);
2314 write_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
2317 * We might boot into a crash-kernel here. The crashed kernel
2318 * left the caches in the IOMMU dirty. So we have to flush
2319 * here to evict all dirty stuff.
2321 domain_flush_tlb_pde(domain
);
2327 * Removes a device from a protection domain (unlocked)
2329 static void __detach_device(struct iommu_dev_data
*dev_data
)
2331 struct protection_domain
*domain
;
2334 * Must be called with IRQs disabled. Warn here to detect early
2337 WARN_ON(!irqs_disabled());
2339 if (WARN_ON(!dev_data
->domain
))
2342 domain
= dev_data
->domain
;
2344 spin_lock(&domain
->lock
);
2346 do_detach(dev_data
);
2348 spin_unlock(&domain
->lock
);
2352 * Removes a device from a protection domain (with devtable_lock held)
2354 static void detach_device(struct device
*dev
)
2356 struct protection_domain
*domain
;
2357 struct iommu_dev_data
*dev_data
;
2358 unsigned long flags
;
2360 dev_data
= get_dev_data(dev
);
2361 domain
= dev_data
->domain
;
2363 /* lock device table */
2364 write_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
2365 __detach_device(dev_data
);
2366 write_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
2368 if (domain
->flags
& PD_IOMMUV2_MASK
&& dev_data
->iommu_v2
)
2369 pdev_iommuv2_disable(to_pci_dev(dev
));
2370 else if (dev_data
->ats
.enabled
)
2371 pci_disable_ats(to_pci_dev(dev
));
2373 dev_data
->ats
.enabled
= false;
2376 static int amd_iommu_add_device(struct device
*dev
)
2378 struct iommu_dev_data
*dev_data
;
2379 struct iommu_domain
*domain
;
2380 struct amd_iommu
*iommu
;
2384 if (!check_device(dev
) || get_dev_data(dev
))
2387 devid
= get_device_id(dev
);
2388 iommu
= amd_iommu_rlookup_table
[devid
];
2390 ret
= iommu_init_device(dev
);
2392 if (ret
!= -ENOTSUPP
)
2393 pr_err("Failed to initialize device %s - trying to proceed anyway\n",
2396 iommu_ignore_device(dev
);
2397 dev
->archdata
.dma_ops
= &nommu_dma_ops
;
2400 init_iommu_group(dev
);
2402 dev_data
= get_dev_data(dev
);
2406 if (iommu_pass_through
|| dev_data
->iommu_v2
)
2407 iommu_request_dm_for_dev(dev
);
2409 /* Domains are initialized for this device - have a look what we ended up with */
2410 domain
= iommu_get_domain_for_dev(dev
);
2411 if (domain
->type
== IOMMU_DOMAIN_IDENTITY
)
2412 dev_data
->passthrough
= true;
2414 dev
->archdata
.dma_ops
= &amd_iommu_dma_ops
;
2417 iommu_completion_wait(iommu
);
2422 static void amd_iommu_remove_device(struct device
*dev
)
2424 struct amd_iommu
*iommu
;
2427 if (!check_device(dev
))
2430 devid
= get_device_id(dev
);
2431 iommu
= amd_iommu_rlookup_table
[devid
];
2433 iommu_uninit_device(dev
);
2434 iommu_completion_wait(iommu
);
2437 /*****************************************************************************
2439 * The next functions belong to the dma_ops mapping/unmapping code.
2441 *****************************************************************************/
2444 * In the dma_ops path we only have the struct device. This function
2445 * finds the corresponding IOMMU, the protection domain and the
2446 * requestor id for a given device.
2447 * If the device is not yet associated with a domain this is also done
2450 static struct protection_domain
*get_domain(struct device
*dev
)
2452 struct protection_domain
*domain
;
2453 struct iommu_domain
*io_domain
;
2455 if (!check_device(dev
))
2456 return ERR_PTR(-EINVAL
);
2458 io_domain
= iommu_get_domain_for_dev(dev
);
2462 domain
= to_pdomain(io_domain
);
2463 if (!dma_ops_domain(domain
))
2464 return ERR_PTR(-EBUSY
);
2469 static void update_device_table(struct protection_domain
*domain
)
2471 struct iommu_dev_data
*dev_data
;
2473 list_for_each_entry(dev_data
, &domain
->dev_list
, list
)
2474 set_dte_entry(dev_data
->devid
, domain
, dev_data
->ats
.enabled
);
2477 static void update_domain(struct protection_domain
*domain
)
2479 if (!domain
->updated
)
2482 update_device_table(domain
);
2484 domain_flush_devices(domain
);
2485 domain_flush_tlb_pde(domain
);
2487 domain
->updated
= false;
2491 * This function fetches the PTE for a given address in the aperture
2493 static u64
* dma_ops_get_pte(struct dma_ops_domain
*dom
,
2494 unsigned long address
)
2496 struct aperture_range
*aperture
;
2497 u64
*pte
, *pte_page
;
2499 aperture
= dom
->aperture
[APERTURE_RANGE_INDEX(address
)];
2503 pte
= aperture
->pte_pages
[APERTURE_PAGE_INDEX(address
)];
2505 pte
= alloc_pte(&dom
->domain
, address
, PAGE_SIZE
, &pte_page
,
2507 aperture
->pte_pages
[APERTURE_PAGE_INDEX(address
)] = pte_page
;
2509 pte
+= PM_LEVEL_INDEX(0, address
);
2511 update_domain(&dom
->domain
);
2517 * This is the generic map function. It maps one 4kb page at paddr to
2518 * the given address in the DMA address space for the domain.
2520 static dma_addr_t
dma_ops_domain_map(struct dma_ops_domain
*dom
,
2521 unsigned long address
,
2527 WARN_ON(address
> dom
->aperture_size
);
2531 pte
= dma_ops_get_pte(dom
, address
);
2533 return DMA_ERROR_CODE
;
2535 __pte
= paddr
| IOMMU_PTE_P
| IOMMU_PTE_FC
;
2537 if (direction
== DMA_TO_DEVICE
)
2538 __pte
|= IOMMU_PTE_IR
;
2539 else if (direction
== DMA_FROM_DEVICE
)
2540 __pte
|= IOMMU_PTE_IW
;
2541 else if (direction
== DMA_BIDIRECTIONAL
)
2542 __pte
|= IOMMU_PTE_IR
| IOMMU_PTE_IW
;
2548 return (dma_addr_t
)address
;
2552 * The generic unmapping function for on page in the DMA address space.
2554 static void dma_ops_domain_unmap(struct dma_ops_domain
*dom
,
2555 unsigned long address
)
2557 struct aperture_range
*aperture
;
2560 if (address
>= dom
->aperture_size
)
2563 aperture
= dom
->aperture
[APERTURE_RANGE_INDEX(address
)];
2567 pte
= aperture
->pte_pages
[APERTURE_PAGE_INDEX(address
)];
2571 pte
+= PM_LEVEL_INDEX(0, address
);
2573 WARN_ON_ONCE(!*pte
);
2579 * This function contains common code for mapping of a physically
2580 * contiguous memory region into DMA address space. It is used by all
2581 * mapping functions provided with this IOMMU driver.
2582 * Must be called with the domain lock held.
2584 static dma_addr_t
__map_single(struct device
*dev
,
2585 struct dma_ops_domain
*dma_dom
,
2592 dma_addr_t offset
= paddr
& ~PAGE_MASK
;
2593 dma_addr_t address
, start
, ret
;
2595 unsigned long align_mask
= 0;
2598 pages
= iommu_num_pages(paddr
, size
, PAGE_SIZE
);
2601 INC_STATS_COUNTER(total_map_requests
);
2604 INC_STATS_COUNTER(cross_page
);
2607 align_mask
= (1UL << get_order(size
)) - 1;
2609 address
= dma_ops_alloc_addresses(dev
, dma_dom
, pages
, align_mask
,
2612 if (address
== DMA_ERROR_CODE
)
2616 for (i
= 0; i
< pages
; ++i
) {
2617 ret
= dma_ops_domain_map(dma_dom
, start
, paddr
, dir
);
2618 if (ret
== DMA_ERROR_CODE
)
2626 ADD_STATS_COUNTER(alloced_io_mem
, size
);
2628 if (unlikely(amd_iommu_np_cache
)) {
2629 domain_flush_pages(&dma_dom
->domain
, address
, size
);
2630 domain_flush_complete(&dma_dom
->domain
);
2638 for (--i
; i
>= 0; --i
) {
2640 dma_ops_domain_unmap(dma_dom
, start
);
2643 dma_ops_free_addresses(dma_dom
, address
, pages
);
2645 return DMA_ERROR_CODE
;
2649 * Does the reverse of the __map_single function. Must be called with
2650 * the domain lock held too
2652 static void __unmap_single(struct dma_ops_domain
*dma_dom
,
2653 dma_addr_t dma_addr
,
2657 dma_addr_t flush_addr
;
2658 dma_addr_t i
, start
;
2661 if ((dma_addr
== DMA_ERROR_CODE
) ||
2662 (dma_addr
+ size
> dma_dom
->aperture_size
))
2665 flush_addr
= dma_addr
;
2666 pages
= iommu_num_pages(dma_addr
, size
, PAGE_SIZE
);
2667 dma_addr
&= PAGE_MASK
;
2670 for (i
= 0; i
< pages
; ++i
) {
2671 dma_ops_domain_unmap(dma_dom
, start
);
2675 SUB_STATS_COUNTER(alloced_io_mem
, size
);
2677 dma_ops_free_addresses(dma_dom
, dma_addr
, pages
);
2681 * The exported map_single function for dma_ops.
2683 static dma_addr_t
map_page(struct device
*dev
, struct page
*page
,
2684 unsigned long offset
, size_t size
,
2685 enum dma_data_direction dir
,
2686 struct dma_attrs
*attrs
)
2688 phys_addr_t paddr
= page_to_phys(page
) + offset
;
2689 struct protection_domain
*domain
;
2692 INC_STATS_COUNTER(cnt_map_single
);
2694 domain
= get_domain(dev
);
2695 if (PTR_ERR(domain
) == -EINVAL
)
2696 return (dma_addr_t
)paddr
;
2697 else if (IS_ERR(domain
))
2698 return DMA_ERROR_CODE
;
2700 dma_mask
= *dev
->dma_mask
;
2702 return __map_single(dev
, domain
->priv
, paddr
, size
, dir
, false,
2707 * The exported unmap_single function for dma_ops.
2709 static void unmap_page(struct device
*dev
, dma_addr_t dma_addr
, size_t size
,
2710 enum dma_data_direction dir
, struct dma_attrs
*attrs
)
2712 struct protection_domain
*domain
;
2714 INC_STATS_COUNTER(cnt_unmap_single
);
2716 domain
= get_domain(dev
);
2720 __unmap_single(domain
->priv
, dma_addr
, size
, dir
);
2724 * The exported map_sg function for dma_ops (handles scatter-gather
2727 static int map_sg(struct device
*dev
, struct scatterlist
*sglist
,
2728 int nelems
, enum dma_data_direction dir
,
2729 struct dma_attrs
*attrs
)
2731 struct protection_domain
*domain
;
2733 struct scatterlist
*s
;
2735 int mapped_elems
= 0;
2738 INC_STATS_COUNTER(cnt_map_sg
);
2740 domain
= get_domain(dev
);
2744 dma_mask
= *dev
->dma_mask
;
2746 for_each_sg(sglist
, s
, nelems
, i
) {
2749 s
->dma_address
= __map_single(dev
, domain
->priv
,
2750 paddr
, s
->length
, dir
, false,
2753 if (s
->dma_address
) {
2754 s
->dma_length
= s
->length
;
2760 return mapped_elems
;
2763 for_each_sg(sglist
, s
, mapped_elems
, i
) {
2765 __unmap_single(domain
->priv
, s
->dma_address
,
2766 s
->dma_length
, dir
);
2767 s
->dma_address
= s
->dma_length
= 0;
2774 * The exported map_sg function for dma_ops (handles scatter-gather
2777 static void unmap_sg(struct device
*dev
, struct scatterlist
*sglist
,
2778 int nelems
, enum dma_data_direction dir
,
2779 struct dma_attrs
*attrs
)
2781 struct protection_domain
*domain
;
2782 struct scatterlist
*s
;
2785 INC_STATS_COUNTER(cnt_unmap_sg
);
2787 domain
= get_domain(dev
);
2791 for_each_sg(sglist
, s
, nelems
, i
) {
2792 __unmap_single(domain
->priv
, s
->dma_address
,
2793 s
->dma_length
, dir
);
2794 s
->dma_address
= s
->dma_length
= 0;
2799 * The exported alloc_coherent function for dma_ops.
2801 static void *alloc_coherent(struct device
*dev
, size_t size
,
2802 dma_addr_t
*dma_addr
, gfp_t flag
,
2803 struct dma_attrs
*attrs
)
2805 u64 dma_mask
= dev
->coherent_dma_mask
;
2806 struct protection_domain
*domain
;
2809 INC_STATS_COUNTER(cnt_alloc_coherent
);
2811 domain
= get_domain(dev
);
2812 if (PTR_ERR(domain
) == -EINVAL
) {
2813 page
= alloc_pages(flag
, get_order(size
));
2814 *dma_addr
= page_to_phys(page
);
2815 return page_address(page
);
2816 } else if (IS_ERR(domain
))
2819 size
= PAGE_ALIGN(size
);
2820 dma_mask
= dev
->coherent_dma_mask
;
2821 flag
&= ~(__GFP_DMA
| __GFP_HIGHMEM
| __GFP_DMA32
);
2824 page
= alloc_pages(flag
| __GFP_NOWARN
, get_order(size
));
2826 if (!gfpflags_allow_blocking(flag
))
2829 page
= dma_alloc_from_contiguous(dev
, size
>> PAGE_SHIFT
,
2836 dma_mask
= *dev
->dma_mask
;
2838 *dma_addr
= __map_single(dev
, domain
->priv
, page_to_phys(page
),
2839 size
, DMA_BIDIRECTIONAL
, true, dma_mask
);
2841 if (*dma_addr
== DMA_ERROR_CODE
)
2844 return page_address(page
);
2848 if (!dma_release_from_contiguous(dev
, page
, size
>> PAGE_SHIFT
))
2849 __free_pages(page
, get_order(size
));
2855 * The exported free_coherent function for dma_ops.
2857 static void free_coherent(struct device
*dev
, size_t size
,
2858 void *virt_addr
, dma_addr_t dma_addr
,
2859 struct dma_attrs
*attrs
)
2861 struct protection_domain
*domain
;
2864 INC_STATS_COUNTER(cnt_free_coherent
);
2866 page
= virt_to_page(virt_addr
);
2867 size
= PAGE_ALIGN(size
);
2869 domain
= get_domain(dev
);
2873 __unmap_single(domain
->priv
, dma_addr
, size
, DMA_BIDIRECTIONAL
);
2876 if (!dma_release_from_contiguous(dev
, page
, size
>> PAGE_SHIFT
))
2877 __free_pages(page
, get_order(size
));
2881 * This function is called by the DMA layer to find out if we can handle a
2882 * particular device. It is part of the dma_ops.
2884 static int amd_iommu_dma_supported(struct device
*dev
, u64 mask
)
2886 return check_device(dev
);
2889 static int set_dma_mask(struct device
*dev
, u64 mask
)
2891 struct protection_domain
*domain
;
2892 int max_apertures
= 1;
2894 domain
= get_domain(dev
);
2896 return PTR_ERR(domain
);
2898 if (mask
== DMA_BIT_MASK(64))
2900 else if (mask
> DMA_BIT_MASK(32))
2904 * To prevent lock contention it doesn't make sense to allocate more
2905 * apertures than online cpus
2907 if (max_apertures
> num_online_cpus())
2908 max_apertures
= num_online_cpus();
2910 if (dma_ops_domain_alloc_apertures(domain
->priv
, max_apertures
))
2911 dev_err(dev
, "Can't allocate %d iommu apertures\n",
2917 static struct dma_map_ops amd_iommu_dma_ops
= {
2918 .alloc
= alloc_coherent
,
2919 .free
= free_coherent
,
2920 .map_page
= map_page
,
2921 .unmap_page
= unmap_page
,
2923 .unmap_sg
= unmap_sg
,
2924 .dma_supported
= amd_iommu_dma_supported
,
2925 .set_dma_mask
= set_dma_mask
,
2928 int __init
amd_iommu_init_api(void)
2930 return bus_set_iommu(&pci_bus_type
, &amd_iommu_ops
);
2933 int __init
amd_iommu_init_dma_ops(void)
2935 swiotlb
= iommu_pass_through
? 1 : 0;
2939 * In case we don't initialize SWIOTLB (actually the common case
2940 * when AMD IOMMU is enabled), make sure there are global
2941 * dma_ops set as a fall-back for devices not handled by this
2942 * driver (for example non-PCI devices).
2945 dma_ops
= &nommu_dma_ops
;
2947 amd_iommu_stats_init();
2949 if (amd_iommu_unmap_flush
)
2950 pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
2952 pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
2957 /*****************************************************************************
2959 * The following functions belong to the exported interface of AMD IOMMU
2961 * This interface allows access to lower level functions of the IOMMU
2962 * like protection domain handling and assignement of devices to domains
2963 * which is not possible with the dma_ops interface.
2965 *****************************************************************************/
2967 static void cleanup_domain(struct protection_domain
*domain
)
2969 struct iommu_dev_data
*entry
;
2970 unsigned long flags
;
2972 write_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
2974 while (!list_empty(&domain
->dev_list
)) {
2975 entry
= list_first_entry(&domain
->dev_list
,
2976 struct iommu_dev_data
, list
);
2977 __detach_device(entry
);
2980 write_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
2983 static void protection_domain_free(struct protection_domain
*domain
)
2988 del_domain_from_list(domain
);
2991 domain_id_free(domain
->id
);
2996 static int protection_domain_init(struct protection_domain
*domain
)
2998 spin_lock_init(&domain
->lock
);
2999 mutex_init(&domain
->api_lock
);
3000 domain
->id
= domain_id_alloc();
3003 INIT_LIST_HEAD(&domain
->dev_list
);
3008 static struct protection_domain
*protection_domain_alloc(void)
3010 struct protection_domain
*domain
;
3012 domain
= kzalloc(sizeof(*domain
), GFP_KERNEL
);
3016 if (protection_domain_init(domain
))
3019 add_domain_to_list(domain
);
3029 static struct iommu_domain
*amd_iommu_domain_alloc(unsigned type
)
3031 struct protection_domain
*pdomain
;
3032 struct dma_ops_domain
*dma_domain
;
3035 case IOMMU_DOMAIN_UNMANAGED
:
3036 pdomain
= protection_domain_alloc();
3040 pdomain
->mode
= PAGE_MODE_3_LEVEL
;
3041 pdomain
->pt_root
= (void *)get_zeroed_page(GFP_KERNEL
);
3042 if (!pdomain
->pt_root
) {
3043 protection_domain_free(pdomain
);
3047 pdomain
->domain
.geometry
.aperture_start
= 0;
3048 pdomain
->domain
.geometry
.aperture_end
= ~0ULL;
3049 pdomain
->domain
.geometry
.force_aperture
= true;
3052 case IOMMU_DOMAIN_DMA
:
3053 dma_domain
= dma_ops_domain_alloc();
3055 pr_err("AMD-Vi: Failed to allocate\n");
3058 pdomain
= &dma_domain
->domain
;
3060 case IOMMU_DOMAIN_IDENTITY
:
3061 pdomain
= protection_domain_alloc();
3065 pdomain
->mode
= PAGE_MODE_NONE
;
3071 return &pdomain
->domain
;
3074 static void amd_iommu_domain_free(struct iommu_domain
*dom
)
3076 struct protection_domain
*domain
;
3081 domain
= to_pdomain(dom
);
3083 if (domain
->dev_cnt
> 0)
3084 cleanup_domain(domain
);
3086 BUG_ON(domain
->dev_cnt
!= 0);
3088 if (domain
->mode
!= PAGE_MODE_NONE
)
3089 free_pagetable(domain
);
3091 if (domain
->flags
& PD_IOMMUV2_MASK
)
3092 free_gcr3_table(domain
);
3094 protection_domain_free(domain
);
3097 static void amd_iommu_detach_device(struct iommu_domain
*dom
,
3100 struct iommu_dev_data
*dev_data
= dev
->archdata
.iommu
;
3101 struct amd_iommu
*iommu
;
3104 if (!check_device(dev
))
3107 devid
= get_device_id(dev
);
3109 if (dev_data
->domain
!= NULL
)
3112 iommu
= amd_iommu_rlookup_table
[devid
];
3116 iommu_completion_wait(iommu
);
3119 static int amd_iommu_attach_device(struct iommu_domain
*dom
,
3122 struct protection_domain
*domain
= to_pdomain(dom
);
3123 struct iommu_dev_data
*dev_data
;
3124 struct amd_iommu
*iommu
;
3127 if (!check_device(dev
))
3130 dev_data
= dev
->archdata
.iommu
;
3132 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
3136 if (dev_data
->domain
)
3139 ret
= attach_device(dev
, domain
);
3141 iommu_completion_wait(iommu
);
3146 static int amd_iommu_map(struct iommu_domain
*dom
, unsigned long iova
,
3147 phys_addr_t paddr
, size_t page_size
, int iommu_prot
)
3149 struct protection_domain
*domain
= to_pdomain(dom
);
3153 if (domain
->mode
== PAGE_MODE_NONE
)
3156 if (iommu_prot
& IOMMU_READ
)
3157 prot
|= IOMMU_PROT_IR
;
3158 if (iommu_prot
& IOMMU_WRITE
)
3159 prot
|= IOMMU_PROT_IW
;
3161 mutex_lock(&domain
->api_lock
);
3162 ret
= iommu_map_page(domain
, iova
, paddr
, prot
, page_size
);
3163 mutex_unlock(&domain
->api_lock
);
3168 static size_t amd_iommu_unmap(struct iommu_domain
*dom
, unsigned long iova
,
3171 struct protection_domain
*domain
= to_pdomain(dom
);
3174 if (domain
->mode
== PAGE_MODE_NONE
)
3177 mutex_lock(&domain
->api_lock
);
3178 unmap_size
= iommu_unmap_page(domain
, iova
, page_size
);
3179 mutex_unlock(&domain
->api_lock
);
3181 domain_flush_tlb_pde(domain
);
3186 static phys_addr_t
amd_iommu_iova_to_phys(struct iommu_domain
*dom
,
3189 struct protection_domain
*domain
= to_pdomain(dom
);
3190 unsigned long offset_mask
, pte_pgsize
;
3193 if (domain
->mode
== PAGE_MODE_NONE
)
3196 pte
= fetch_pte(domain
, iova
, &pte_pgsize
);
3198 if (!pte
|| !IOMMU_PTE_PRESENT(*pte
))
3201 offset_mask
= pte_pgsize
- 1;
3202 __pte
= *pte
& PM_ADDR_MASK
;
3204 return (__pte
& ~offset_mask
) | (iova
& offset_mask
);
3207 static bool amd_iommu_capable(enum iommu_cap cap
)
3210 case IOMMU_CAP_CACHE_COHERENCY
:
3212 case IOMMU_CAP_INTR_REMAP
:
3213 return (irq_remapping_enabled
== 1);
3214 case IOMMU_CAP_NOEXEC
:
3221 static void amd_iommu_get_dm_regions(struct device
*dev
,
3222 struct list_head
*head
)
3224 struct unity_map_entry
*entry
;
3227 devid
= get_device_id(dev
);
3229 list_for_each_entry(entry
, &amd_iommu_unity_map
, list
) {
3230 struct iommu_dm_region
*region
;
3232 if (devid
< entry
->devid_start
|| devid
> entry
->devid_end
)
3235 region
= kzalloc(sizeof(*region
), GFP_KERNEL
);
3237 pr_err("Out of memory allocating dm-regions for %s\n",
3242 region
->start
= entry
->address_start
;
3243 region
->length
= entry
->address_end
- entry
->address_start
;
3244 if (entry
->prot
& IOMMU_PROT_IR
)
3245 region
->prot
|= IOMMU_READ
;
3246 if (entry
->prot
& IOMMU_PROT_IW
)
3247 region
->prot
|= IOMMU_WRITE
;
3249 list_add_tail(®ion
->list
, head
);
3253 static void amd_iommu_put_dm_regions(struct device
*dev
,
3254 struct list_head
*head
)
3256 struct iommu_dm_region
*entry
, *next
;
3258 list_for_each_entry_safe(entry
, next
, head
, list
)
3262 static const struct iommu_ops amd_iommu_ops
= {
3263 .capable
= amd_iommu_capable
,
3264 .domain_alloc
= amd_iommu_domain_alloc
,
3265 .domain_free
= amd_iommu_domain_free
,
3266 .attach_dev
= amd_iommu_attach_device
,
3267 .detach_dev
= amd_iommu_detach_device
,
3268 .map
= amd_iommu_map
,
3269 .unmap
= amd_iommu_unmap
,
3270 .map_sg
= default_iommu_map_sg
,
3271 .iova_to_phys
= amd_iommu_iova_to_phys
,
3272 .add_device
= amd_iommu_add_device
,
3273 .remove_device
= amd_iommu_remove_device
,
3274 .device_group
= pci_device_group
,
3275 .get_dm_regions
= amd_iommu_get_dm_regions
,
3276 .put_dm_regions
= amd_iommu_put_dm_regions
,
3277 .pgsize_bitmap
= AMD_IOMMU_PGSIZES
,
3280 /*****************************************************************************
3282 * The next functions do a basic initialization of IOMMU for pass through
3285 * In passthrough mode the IOMMU is initialized and enabled but not used for
3286 * DMA-API translation.
3288 *****************************************************************************/
3290 /* IOMMUv2 specific functions */
3291 int amd_iommu_register_ppr_notifier(struct notifier_block
*nb
)
3293 return atomic_notifier_chain_register(&ppr_notifier
, nb
);
3295 EXPORT_SYMBOL(amd_iommu_register_ppr_notifier
);
3297 int amd_iommu_unregister_ppr_notifier(struct notifier_block
*nb
)
3299 return atomic_notifier_chain_unregister(&ppr_notifier
, nb
);
3301 EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier
);
3303 void amd_iommu_domain_direct_map(struct iommu_domain
*dom
)
3305 struct protection_domain
*domain
= to_pdomain(dom
);
3306 unsigned long flags
;
3308 spin_lock_irqsave(&domain
->lock
, flags
);
3310 /* Update data structure */
3311 domain
->mode
= PAGE_MODE_NONE
;
3312 domain
->updated
= true;
3314 /* Make changes visible to IOMMUs */
3315 update_domain(domain
);
3317 /* Page-table is not visible to IOMMU anymore, so free it */
3318 free_pagetable(domain
);
3320 spin_unlock_irqrestore(&domain
->lock
, flags
);
3322 EXPORT_SYMBOL(amd_iommu_domain_direct_map
);
3324 int amd_iommu_domain_enable_v2(struct iommu_domain
*dom
, int pasids
)
3326 struct protection_domain
*domain
= to_pdomain(dom
);
3327 unsigned long flags
;
3330 if (pasids
<= 0 || pasids
> (PASID_MASK
+ 1))
3333 /* Number of GCR3 table levels required */
3334 for (levels
= 0; (pasids
- 1) & ~0x1ff; pasids
>>= 9)
3337 if (levels
> amd_iommu_max_glx_val
)
3340 spin_lock_irqsave(&domain
->lock
, flags
);
3343 * Save us all sanity checks whether devices already in the
3344 * domain support IOMMUv2. Just force that the domain has no
3345 * devices attached when it is switched into IOMMUv2 mode.
3348 if (domain
->dev_cnt
> 0 || domain
->flags
& PD_IOMMUV2_MASK
)
3352 domain
->gcr3_tbl
= (void *)get_zeroed_page(GFP_ATOMIC
);
3353 if (domain
->gcr3_tbl
== NULL
)
3356 domain
->glx
= levels
;
3357 domain
->flags
|= PD_IOMMUV2_MASK
;
3358 domain
->updated
= true;
3360 update_domain(domain
);
3365 spin_unlock_irqrestore(&domain
->lock
, flags
);
3369 EXPORT_SYMBOL(amd_iommu_domain_enable_v2
);
3371 static int __flush_pasid(struct protection_domain
*domain
, int pasid
,
3372 u64 address
, bool size
)
3374 struct iommu_dev_data
*dev_data
;
3375 struct iommu_cmd cmd
;
3378 if (!(domain
->flags
& PD_IOMMUV2_MASK
))
3381 build_inv_iommu_pasid(&cmd
, domain
->id
, pasid
, address
, size
);
3384 * IOMMU TLB needs to be flushed before Device TLB to
3385 * prevent device TLB refill from IOMMU TLB
3387 for (i
= 0; i
< amd_iommus_present
; ++i
) {
3388 if (domain
->dev_iommu
[i
] == 0)
3391 ret
= iommu_queue_command(amd_iommus
[i
], &cmd
);
3396 /* Wait until IOMMU TLB flushes are complete */
3397 domain_flush_complete(domain
);
3399 /* Now flush device TLBs */
3400 list_for_each_entry(dev_data
, &domain
->dev_list
, list
) {
3401 struct amd_iommu
*iommu
;
3405 There might be non-IOMMUv2 capable devices in an IOMMUv2
3408 if (!dev_data
->ats
.enabled
)
3411 qdep
= dev_data
->ats
.qdep
;
3412 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
3414 build_inv_iotlb_pasid(&cmd
, dev_data
->devid
, pasid
,
3415 qdep
, address
, size
);
3417 ret
= iommu_queue_command(iommu
, &cmd
);
3422 /* Wait until all device TLBs are flushed */
3423 domain_flush_complete(domain
);
3432 static int __amd_iommu_flush_page(struct protection_domain
*domain
, int pasid
,
3435 INC_STATS_COUNTER(invalidate_iotlb
);
3437 return __flush_pasid(domain
, pasid
, address
, false);
3440 int amd_iommu_flush_page(struct iommu_domain
*dom
, int pasid
,
3443 struct protection_domain
*domain
= to_pdomain(dom
);
3444 unsigned long flags
;
3447 spin_lock_irqsave(&domain
->lock
, flags
);
3448 ret
= __amd_iommu_flush_page(domain
, pasid
, address
);
3449 spin_unlock_irqrestore(&domain
->lock
, flags
);
3453 EXPORT_SYMBOL(amd_iommu_flush_page
);
3455 static int __amd_iommu_flush_tlb(struct protection_domain
*domain
, int pasid
)
3457 INC_STATS_COUNTER(invalidate_iotlb_all
);
3459 return __flush_pasid(domain
, pasid
, CMD_INV_IOMMU_ALL_PAGES_ADDRESS
,
3463 int amd_iommu_flush_tlb(struct iommu_domain
*dom
, int pasid
)
3465 struct protection_domain
*domain
= to_pdomain(dom
);
3466 unsigned long flags
;
3469 spin_lock_irqsave(&domain
->lock
, flags
);
3470 ret
= __amd_iommu_flush_tlb(domain
, pasid
);
3471 spin_unlock_irqrestore(&domain
->lock
, flags
);
3475 EXPORT_SYMBOL(amd_iommu_flush_tlb
);
3477 static u64
*__get_gcr3_pte(u64
*root
, int level
, int pasid
, bool alloc
)
3484 index
= (pasid
>> (9 * level
)) & 0x1ff;
3490 if (!(*pte
& GCR3_VALID
)) {
3494 root
= (void *)get_zeroed_page(GFP_ATOMIC
);
3498 *pte
= __pa(root
) | GCR3_VALID
;
3501 root
= __va(*pte
& PAGE_MASK
);
3509 static int __set_gcr3(struct protection_domain
*domain
, int pasid
,
3514 if (domain
->mode
!= PAGE_MODE_NONE
)
3517 pte
= __get_gcr3_pte(domain
->gcr3_tbl
, domain
->glx
, pasid
, true);
3521 *pte
= (cr3
& PAGE_MASK
) | GCR3_VALID
;
3523 return __amd_iommu_flush_tlb(domain
, pasid
);
3526 static int __clear_gcr3(struct protection_domain
*domain
, int pasid
)
3530 if (domain
->mode
!= PAGE_MODE_NONE
)
3533 pte
= __get_gcr3_pte(domain
->gcr3_tbl
, domain
->glx
, pasid
, false);
3539 return __amd_iommu_flush_tlb(domain
, pasid
);
3542 int amd_iommu_domain_set_gcr3(struct iommu_domain
*dom
, int pasid
,
3545 struct protection_domain
*domain
= to_pdomain(dom
);
3546 unsigned long flags
;
3549 spin_lock_irqsave(&domain
->lock
, flags
);
3550 ret
= __set_gcr3(domain
, pasid
, cr3
);
3551 spin_unlock_irqrestore(&domain
->lock
, flags
);
3555 EXPORT_SYMBOL(amd_iommu_domain_set_gcr3
);
3557 int amd_iommu_domain_clear_gcr3(struct iommu_domain
*dom
, int pasid
)
3559 struct protection_domain
*domain
= to_pdomain(dom
);
3560 unsigned long flags
;
3563 spin_lock_irqsave(&domain
->lock
, flags
);
3564 ret
= __clear_gcr3(domain
, pasid
);
3565 spin_unlock_irqrestore(&domain
->lock
, flags
);
3569 EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3
);
3571 int amd_iommu_complete_ppr(struct pci_dev
*pdev
, int pasid
,
3572 int status
, int tag
)
3574 struct iommu_dev_data
*dev_data
;
3575 struct amd_iommu
*iommu
;
3576 struct iommu_cmd cmd
;
3578 INC_STATS_COUNTER(complete_ppr
);
3580 dev_data
= get_dev_data(&pdev
->dev
);
3581 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
3583 build_complete_ppr(&cmd
, dev_data
->devid
, pasid
, status
,
3584 tag
, dev_data
->pri_tlp
);
3586 return iommu_queue_command(iommu
, &cmd
);
3588 EXPORT_SYMBOL(amd_iommu_complete_ppr
);
3590 struct iommu_domain
*amd_iommu_get_v2_domain(struct pci_dev
*pdev
)
3592 struct protection_domain
*pdomain
;
3594 pdomain
= get_domain(&pdev
->dev
);
3595 if (IS_ERR(pdomain
))
3598 /* Only return IOMMUv2 domains */
3599 if (!(pdomain
->flags
& PD_IOMMUV2_MASK
))
3602 return &pdomain
->domain
;
3604 EXPORT_SYMBOL(amd_iommu_get_v2_domain
);
3606 void amd_iommu_enable_device_erratum(struct pci_dev
*pdev
, u32 erratum
)
3608 struct iommu_dev_data
*dev_data
;
3610 if (!amd_iommu_v2_supported())
3613 dev_data
= get_dev_data(&pdev
->dev
);
3614 dev_data
->errata
|= (1 << erratum
);
3616 EXPORT_SYMBOL(amd_iommu_enable_device_erratum
);
3618 int amd_iommu_device_info(struct pci_dev
*pdev
,
3619 struct amd_iommu_device_info
*info
)
3624 if (pdev
== NULL
|| info
== NULL
)
3627 if (!amd_iommu_v2_supported())
3630 memset(info
, 0, sizeof(*info
));
3632 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_ATS
);
3634 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_ATS_SUP
;
3636 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_PRI
);
3638 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_PRI_SUP
;
3640 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_PASID
);
3644 max_pasids
= 1 << (9 * (amd_iommu_max_glx_val
+ 1));
3645 max_pasids
= min(max_pasids
, (1 << 20));
3647 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_PASID_SUP
;
3648 info
->max_pasids
= min(pci_max_pasids(pdev
), max_pasids
);
3650 features
= pci_pasid_features(pdev
);
3651 if (features
& PCI_PASID_CAP_EXEC
)
3652 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP
;
3653 if (features
& PCI_PASID_CAP_PRIV
)
3654 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP
;
3659 EXPORT_SYMBOL(amd_iommu_device_info
);
3661 #ifdef CONFIG_IRQ_REMAP
3663 /*****************************************************************************
3665 * Interrupt Remapping Implementation
3667 *****************************************************************************/
3685 u16 devid
; /* Device ID for IRTE table */
3686 u16 index
; /* Index into IRTE table*/
3689 struct amd_ir_data
{
3690 struct irq_2_irte irq_2_irte
;
3691 union irte irte_entry
;
3693 struct msi_msg msi_entry
;
3697 static struct irq_chip amd_ir_chip
;
3699 #define DTE_IRQ_PHYS_ADDR_MASK (((1ULL << 45)-1) << 6)
3700 #define DTE_IRQ_REMAP_INTCTL (2ULL << 60)
3701 #define DTE_IRQ_TABLE_LEN (8ULL << 1)
3702 #define DTE_IRQ_REMAP_ENABLE 1ULL
3704 static void set_dte_irq_entry(u16 devid
, struct irq_remap_table
*table
)
3708 dte
= amd_iommu_dev_table
[devid
].data
[2];
3709 dte
&= ~DTE_IRQ_PHYS_ADDR_MASK
;
3710 dte
|= virt_to_phys(table
->table
);
3711 dte
|= DTE_IRQ_REMAP_INTCTL
;
3712 dte
|= DTE_IRQ_TABLE_LEN
;
3713 dte
|= DTE_IRQ_REMAP_ENABLE
;
3715 amd_iommu_dev_table
[devid
].data
[2] = dte
;
3718 #define IRTE_ALLOCATED (~1U)
3720 static struct irq_remap_table
*get_irq_table(u16 devid
, bool ioapic
)
3722 struct irq_remap_table
*table
= NULL
;
3723 struct amd_iommu
*iommu
;
3724 unsigned long flags
;
3727 write_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
3729 iommu
= amd_iommu_rlookup_table
[devid
];
3733 table
= irq_lookup_table
[devid
];
3737 alias
= amd_iommu_alias_table
[devid
];
3738 table
= irq_lookup_table
[alias
];
3740 irq_lookup_table
[devid
] = table
;
3741 set_dte_irq_entry(devid
, table
);
3742 iommu_flush_dte(iommu
, devid
);
3746 /* Nothing there yet, allocate new irq remapping table */
3747 table
= kzalloc(sizeof(*table
), GFP_ATOMIC
);
3751 /* Initialize table spin-lock */
3752 spin_lock_init(&table
->lock
);
3755 /* Keep the first 32 indexes free for IOAPIC interrupts */
3756 table
->min_index
= 32;
3758 table
->table
= kmem_cache_alloc(amd_iommu_irq_cache
, GFP_ATOMIC
);
3759 if (!table
->table
) {
3765 memset(table
->table
, 0, MAX_IRQS_PER_TABLE
* sizeof(u32
));
3770 for (i
= 0; i
< 32; ++i
)
3771 table
->table
[i
] = IRTE_ALLOCATED
;
3774 irq_lookup_table
[devid
] = table
;
3775 set_dte_irq_entry(devid
, table
);
3776 iommu_flush_dte(iommu
, devid
);
3777 if (devid
!= alias
) {
3778 irq_lookup_table
[alias
] = table
;
3779 set_dte_irq_entry(alias
, table
);
3780 iommu_flush_dte(iommu
, alias
);
3784 iommu_completion_wait(iommu
);
3787 write_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
3792 static int alloc_irq_index(u16 devid
, int count
)
3794 struct irq_remap_table
*table
;
3795 unsigned long flags
;
3798 table
= get_irq_table(devid
, false);
3802 spin_lock_irqsave(&table
->lock
, flags
);
3804 /* Scan table for free entries */
3805 for (c
= 0, index
= table
->min_index
;
3806 index
< MAX_IRQS_PER_TABLE
;
3808 if (table
->table
[index
] == 0)
3815 table
->table
[index
- c
+ 1] = IRTE_ALLOCATED
;
3825 spin_unlock_irqrestore(&table
->lock
, flags
);
3830 static int modify_irte(u16 devid
, int index
, union irte irte
)
3832 struct irq_remap_table
*table
;
3833 struct amd_iommu
*iommu
;
3834 unsigned long flags
;
3836 iommu
= amd_iommu_rlookup_table
[devid
];
3840 table
= get_irq_table(devid
, false);
3844 spin_lock_irqsave(&table
->lock
, flags
);
3845 table
->table
[index
] = irte
.val
;
3846 spin_unlock_irqrestore(&table
->lock
, flags
);
3848 iommu_flush_irt(iommu
, devid
);
3849 iommu_completion_wait(iommu
);
3854 static void free_irte(u16 devid
, int index
)
3856 struct irq_remap_table
*table
;
3857 struct amd_iommu
*iommu
;
3858 unsigned long flags
;
3860 iommu
= amd_iommu_rlookup_table
[devid
];
3864 table
= get_irq_table(devid
, false);
3868 spin_lock_irqsave(&table
->lock
, flags
);
3869 table
->table
[index
] = 0;
3870 spin_unlock_irqrestore(&table
->lock
, flags
);
3872 iommu_flush_irt(iommu
, devid
);
3873 iommu_completion_wait(iommu
);
3876 static int get_devid(struct irq_alloc_info
*info
)
3880 switch (info
->type
) {
3881 case X86_IRQ_ALLOC_TYPE_IOAPIC
:
3882 devid
= get_ioapic_devid(info
->ioapic_id
);
3884 case X86_IRQ_ALLOC_TYPE_HPET
:
3885 devid
= get_hpet_devid(info
->hpet_id
);
3887 case X86_IRQ_ALLOC_TYPE_MSI
:
3888 case X86_IRQ_ALLOC_TYPE_MSIX
:
3889 devid
= get_device_id(&info
->msi_dev
->dev
);
3899 static struct irq_domain
*get_ir_irq_domain(struct irq_alloc_info
*info
)
3901 struct amd_iommu
*iommu
;
3907 devid
= get_devid(info
);
3909 iommu
= amd_iommu_rlookup_table
[devid
];
3911 return iommu
->ir_domain
;
3917 static struct irq_domain
*get_irq_domain(struct irq_alloc_info
*info
)
3919 struct amd_iommu
*iommu
;
3925 switch (info
->type
) {
3926 case X86_IRQ_ALLOC_TYPE_MSI
:
3927 case X86_IRQ_ALLOC_TYPE_MSIX
:
3928 devid
= get_device_id(&info
->msi_dev
->dev
);
3929 iommu
= amd_iommu_rlookup_table
[devid
];
3931 return iommu
->msi_domain
;
3940 struct irq_remap_ops amd_iommu_irq_ops
= {
3941 .prepare
= amd_iommu_prepare
,
3942 .enable
= amd_iommu_enable
,
3943 .disable
= amd_iommu_disable
,
3944 .reenable
= amd_iommu_reenable
,
3945 .enable_faulting
= amd_iommu_enable_faulting
,
3946 .get_ir_irq_domain
= get_ir_irq_domain
,
3947 .get_irq_domain
= get_irq_domain
,
3950 static void irq_remapping_prepare_irte(struct amd_ir_data
*data
,
3951 struct irq_cfg
*irq_cfg
,
3952 struct irq_alloc_info
*info
,
3953 int devid
, int index
, int sub_handle
)
3955 struct irq_2_irte
*irte_info
= &data
->irq_2_irte
;
3956 struct msi_msg
*msg
= &data
->msi_entry
;
3957 union irte
*irte
= &data
->irte_entry
;
3958 struct IO_APIC_route_entry
*entry
;
3960 data
->irq_2_irte
.devid
= devid
;
3961 data
->irq_2_irte
.index
= index
+ sub_handle
;
3963 /* Setup IRTE for IOMMU */
3965 irte
->fields
.vector
= irq_cfg
->vector
;
3966 irte
->fields
.int_type
= apic
->irq_delivery_mode
;
3967 irte
->fields
.destination
= irq_cfg
->dest_apicid
;
3968 irte
->fields
.dm
= apic
->irq_dest_mode
;
3969 irte
->fields
.valid
= 1;
3971 switch (info
->type
) {
3972 case X86_IRQ_ALLOC_TYPE_IOAPIC
:
3973 /* Setup IOAPIC entry */
3974 entry
= info
->ioapic_entry
;
3975 info
->ioapic_entry
= NULL
;
3976 memset(entry
, 0, sizeof(*entry
));
3977 entry
->vector
= index
;
3979 entry
->trigger
= info
->ioapic_trigger
;
3980 entry
->polarity
= info
->ioapic_polarity
;
3981 /* Mask level triggered irqs. */
3982 if (info
->ioapic_trigger
)
3986 case X86_IRQ_ALLOC_TYPE_HPET
:
3987 case X86_IRQ_ALLOC_TYPE_MSI
:
3988 case X86_IRQ_ALLOC_TYPE_MSIX
:
3989 msg
->address_hi
= MSI_ADDR_BASE_HI
;
3990 msg
->address_lo
= MSI_ADDR_BASE_LO
;
3991 msg
->data
= irte_info
->index
;
4000 static int irq_remapping_alloc(struct irq_domain
*domain
, unsigned int virq
,
4001 unsigned int nr_irqs
, void *arg
)
4003 struct irq_alloc_info
*info
= arg
;
4004 struct irq_data
*irq_data
;
4005 struct amd_ir_data
*data
;
4006 struct irq_cfg
*cfg
;
4012 if (nr_irqs
> 1 && info
->type
!= X86_IRQ_ALLOC_TYPE_MSI
&&
4013 info
->type
!= X86_IRQ_ALLOC_TYPE_MSIX
)
4017 * With IRQ remapping enabled, don't need contiguous CPU vectors
4018 * to support multiple MSI interrupts.
4020 if (info
->type
== X86_IRQ_ALLOC_TYPE_MSI
)
4021 info
->flags
&= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS
;
4023 devid
= get_devid(info
);
4027 ret
= irq_domain_alloc_irqs_parent(domain
, virq
, nr_irqs
, arg
);
4031 if (info
->type
== X86_IRQ_ALLOC_TYPE_IOAPIC
) {
4032 if (get_irq_table(devid
, true))
4033 index
= info
->ioapic_pin
;
4037 index
= alloc_irq_index(devid
, nr_irqs
);
4040 pr_warn("Failed to allocate IRTE\n");
4041 goto out_free_parent
;
4044 for (i
= 0; i
< nr_irqs
; i
++) {
4045 irq_data
= irq_domain_get_irq_data(domain
, virq
+ i
);
4046 cfg
= irqd_cfg(irq_data
);
4047 if (!irq_data
|| !cfg
) {
4053 data
= kzalloc(sizeof(*data
), GFP_KERNEL
);
4057 irq_data
->hwirq
= (devid
<< 16) + i
;
4058 irq_data
->chip_data
= data
;
4059 irq_data
->chip
= &amd_ir_chip
;
4060 irq_remapping_prepare_irte(data
, cfg
, info
, devid
, index
, i
);
4061 irq_set_status_flags(virq
+ i
, IRQ_MOVE_PCNTXT
);
4067 for (i
--; i
>= 0; i
--) {
4068 irq_data
= irq_domain_get_irq_data(domain
, virq
+ i
);
4070 kfree(irq_data
->chip_data
);
4072 for (i
= 0; i
< nr_irqs
; i
++)
4073 free_irte(devid
, index
+ i
);
4075 irq_domain_free_irqs_common(domain
, virq
, nr_irqs
);
4079 static void irq_remapping_free(struct irq_domain
*domain
, unsigned int virq
,
4080 unsigned int nr_irqs
)
4082 struct irq_2_irte
*irte_info
;
4083 struct irq_data
*irq_data
;
4084 struct amd_ir_data
*data
;
4087 for (i
= 0; i
< nr_irqs
; i
++) {
4088 irq_data
= irq_domain_get_irq_data(domain
, virq
+ i
);
4089 if (irq_data
&& irq_data
->chip_data
) {
4090 data
= irq_data
->chip_data
;
4091 irte_info
= &data
->irq_2_irte
;
4092 free_irte(irte_info
->devid
, irte_info
->index
);
4096 irq_domain_free_irqs_common(domain
, virq
, nr_irqs
);
4099 static void irq_remapping_activate(struct irq_domain
*domain
,
4100 struct irq_data
*irq_data
)
4102 struct amd_ir_data
*data
= irq_data
->chip_data
;
4103 struct irq_2_irte
*irte_info
= &data
->irq_2_irte
;
4105 modify_irte(irte_info
->devid
, irte_info
->index
, data
->irte_entry
);
4108 static void irq_remapping_deactivate(struct irq_domain
*domain
,
4109 struct irq_data
*irq_data
)
4111 struct amd_ir_data
*data
= irq_data
->chip_data
;
4112 struct irq_2_irte
*irte_info
= &data
->irq_2_irte
;
4116 modify_irte(irte_info
->devid
, irte_info
->index
, data
->irte_entry
);
4119 static struct irq_domain_ops amd_ir_domain_ops
= {
4120 .alloc
= irq_remapping_alloc
,
4121 .free
= irq_remapping_free
,
4122 .activate
= irq_remapping_activate
,
4123 .deactivate
= irq_remapping_deactivate
,
4126 static int amd_ir_set_affinity(struct irq_data
*data
,
4127 const struct cpumask
*mask
, bool force
)
4129 struct amd_ir_data
*ir_data
= data
->chip_data
;
4130 struct irq_2_irte
*irte_info
= &ir_data
->irq_2_irte
;
4131 struct irq_cfg
*cfg
= irqd_cfg(data
);
4132 struct irq_data
*parent
= data
->parent_data
;
4135 ret
= parent
->chip
->irq_set_affinity(parent
, mask
, force
);
4136 if (ret
< 0 || ret
== IRQ_SET_MASK_OK_DONE
)
4140 * Atomically updates the IRTE with the new destination, vector
4141 * and flushes the interrupt entry cache.
4143 ir_data
->irte_entry
.fields
.vector
= cfg
->vector
;
4144 ir_data
->irte_entry
.fields
.destination
= cfg
->dest_apicid
;
4145 modify_irte(irte_info
->devid
, irte_info
->index
, ir_data
->irte_entry
);
4148 * After this point, all the interrupts will start arriving
4149 * at the new destination. So, time to cleanup the previous
4150 * vector allocation.
4152 send_cleanup_vector(cfg
);
4154 return IRQ_SET_MASK_OK_DONE
;
4157 static void ir_compose_msi_msg(struct irq_data
*irq_data
, struct msi_msg
*msg
)
4159 struct amd_ir_data
*ir_data
= irq_data
->chip_data
;
4161 *msg
= ir_data
->msi_entry
;
4164 static struct irq_chip amd_ir_chip
= {
4165 .irq_ack
= ir_ack_apic_edge
,
4166 .irq_set_affinity
= amd_ir_set_affinity
,
4167 .irq_compose_msi_msg
= ir_compose_msi_msg
,
4170 int amd_iommu_create_irq_domain(struct amd_iommu
*iommu
)
4172 iommu
->ir_domain
= irq_domain_add_tree(NULL
, &amd_ir_domain_ops
, iommu
);
4173 if (!iommu
->ir_domain
)
4176 iommu
->ir_domain
->parent
= arch_get_ir_parent_domain();
4177 iommu
->msi_domain
= arch_create_msi_irq_domain(iommu
->ir_domain
);