tcp: fix lockdep splat in tcp_snd_una_update()
[linux/fpc-iii.git] / drivers / iommu / arm-smmu-v3.c
blob4ff73ff64e4903079b5f540dcac0cd5c3a17eb26
1 /*
2 * IOMMU API for ARM architected SMMUv3 implementations.
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
13 * You should have received a copy of the GNU General Public License
14 * along with this program. If not, see <http://www.gnu.org/licenses/>.
16 * Copyright (C) 2015 ARM Limited
18 * Author: Will Deacon <will.deacon@arm.com>
20 * This driver is powered by bad coffee and bombay mix.
23 #include <linux/delay.h>
24 #include <linux/dma-iommu.h>
25 #include <linux/err.h>
26 #include <linux/interrupt.h>
27 #include <linux/iommu.h>
28 #include <linux/iopoll.h>
29 #include <linux/module.h>
30 #include <linux/msi.h>
31 #include <linux/of.h>
32 #include <linux/of_address.h>
33 #include <linux/of_platform.h>
34 #include <linux/pci.h>
35 #include <linux/platform_device.h>
37 #include "io-pgtable.h"
39 /* MMIO registers */
40 #define ARM_SMMU_IDR0 0x0
41 #define IDR0_ST_LVL_SHIFT 27
42 #define IDR0_ST_LVL_MASK 0x3
43 #define IDR0_ST_LVL_2LVL (1 << IDR0_ST_LVL_SHIFT)
44 #define IDR0_STALL_MODEL_SHIFT 24
45 #define IDR0_STALL_MODEL_MASK 0x3
46 #define IDR0_STALL_MODEL_STALL (0 << IDR0_STALL_MODEL_SHIFT)
47 #define IDR0_STALL_MODEL_FORCE (2 << IDR0_STALL_MODEL_SHIFT)
48 #define IDR0_TTENDIAN_SHIFT 21
49 #define IDR0_TTENDIAN_MASK 0x3
50 #define IDR0_TTENDIAN_LE (2 << IDR0_TTENDIAN_SHIFT)
51 #define IDR0_TTENDIAN_BE (3 << IDR0_TTENDIAN_SHIFT)
52 #define IDR0_TTENDIAN_MIXED (0 << IDR0_TTENDIAN_SHIFT)
53 #define IDR0_CD2L (1 << 19)
54 #define IDR0_VMID16 (1 << 18)
55 #define IDR0_PRI (1 << 16)
56 #define IDR0_SEV (1 << 14)
57 #define IDR0_MSI (1 << 13)
58 #define IDR0_ASID16 (1 << 12)
59 #define IDR0_ATS (1 << 10)
60 #define IDR0_HYP (1 << 9)
61 #define IDR0_COHACC (1 << 4)
62 #define IDR0_TTF_SHIFT 2
63 #define IDR0_TTF_MASK 0x3
64 #define IDR0_TTF_AARCH64 (2 << IDR0_TTF_SHIFT)
65 #define IDR0_TTF_AARCH32_64 (3 << IDR0_TTF_SHIFT)
66 #define IDR0_S1P (1 << 1)
67 #define IDR0_S2P (1 << 0)
69 #define ARM_SMMU_IDR1 0x4
70 #define IDR1_TABLES_PRESET (1 << 30)
71 #define IDR1_QUEUES_PRESET (1 << 29)
72 #define IDR1_REL (1 << 28)
73 #define IDR1_CMDQ_SHIFT 21
74 #define IDR1_CMDQ_MASK 0x1f
75 #define IDR1_EVTQ_SHIFT 16
76 #define IDR1_EVTQ_MASK 0x1f
77 #define IDR1_PRIQ_SHIFT 11
78 #define IDR1_PRIQ_MASK 0x1f
79 #define IDR1_SSID_SHIFT 6
80 #define IDR1_SSID_MASK 0x1f
81 #define IDR1_SID_SHIFT 0
82 #define IDR1_SID_MASK 0x3f
84 #define ARM_SMMU_IDR5 0x14
85 #define IDR5_STALL_MAX_SHIFT 16
86 #define IDR5_STALL_MAX_MASK 0xffff
87 #define IDR5_GRAN64K (1 << 6)
88 #define IDR5_GRAN16K (1 << 5)
89 #define IDR5_GRAN4K (1 << 4)
90 #define IDR5_OAS_SHIFT 0
91 #define IDR5_OAS_MASK 0x7
92 #define IDR5_OAS_32_BIT (0 << IDR5_OAS_SHIFT)
93 #define IDR5_OAS_36_BIT (1 << IDR5_OAS_SHIFT)
94 #define IDR5_OAS_40_BIT (2 << IDR5_OAS_SHIFT)
95 #define IDR5_OAS_42_BIT (3 << IDR5_OAS_SHIFT)
96 #define IDR5_OAS_44_BIT (4 << IDR5_OAS_SHIFT)
97 #define IDR5_OAS_48_BIT (5 << IDR5_OAS_SHIFT)
99 #define ARM_SMMU_CR0 0x20
100 #define CR0_CMDQEN (1 << 3)
101 #define CR0_EVTQEN (1 << 2)
102 #define CR0_PRIQEN (1 << 1)
103 #define CR0_SMMUEN (1 << 0)
105 #define ARM_SMMU_CR0ACK 0x24
107 #define ARM_SMMU_CR1 0x28
108 #define CR1_SH_NSH 0
109 #define CR1_SH_OSH 2
110 #define CR1_SH_ISH 3
111 #define CR1_CACHE_NC 0
112 #define CR1_CACHE_WB 1
113 #define CR1_CACHE_WT 2
114 #define CR1_TABLE_SH_SHIFT 10
115 #define CR1_TABLE_OC_SHIFT 8
116 #define CR1_TABLE_IC_SHIFT 6
117 #define CR1_QUEUE_SH_SHIFT 4
118 #define CR1_QUEUE_OC_SHIFT 2
119 #define CR1_QUEUE_IC_SHIFT 0
121 #define ARM_SMMU_CR2 0x2c
122 #define CR2_PTM (1 << 2)
123 #define CR2_RECINVSID (1 << 1)
124 #define CR2_E2H (1 << 0)
126 #define ARM_SMMU_IRQ_CTRL 0x50
127 #define IRQ_CTRL_EVTQ_IRQEN (1 << 2)
128 #define IRQ_CTRL_PRIQ_IRQEN (1 << 1)
129 #define IRQ_CTRL_GERROR_IRQEN (1 << 0)
131 #define ARM_SMMU_IRQ_CTRLACK 0x54
133 #define ARM_SMMU_GERROR 0x60
134 #define GERROR_SFM_ERR (1 << 8)
135 #define GERROR_MSI_GERROR_ABT_ERR (1 << 7)
136 #define GERROR_MSI_PRIQ_ABT_ERR (1 << 6)
137 #define GERROR_MSI_EVTQ_ABT_ERR (1 << 5)
138 #define GERROR_MSI_CMDQ_ABT_ERR (1 << 4)
139 #define GERROR_PRIQ_ABT_ERR (1 << 3)
140 #define GERROR_EVTQ_ABT_ERR (1 << 2)
141 #define GERROR_CMDQ_ERR (1 << 0)
142 #define GERROR_ERR_MASK 0xfd
144 #define ARM_SMMU_GERRORN 0x64
146 #define ARM_SMMU_GERROR_IRQ_CFG0 0x68
147 #define ARM_SMMU_GERROR_IRQ_CFG1 0x70
148 #define ARM_SMMU_GERROR_IRQ_CFG2 0x74
150 #define ARM_SMMU_STRTAB_BASE 0x80
151 #define STRTAB_BASE_RA (1UL << 62)
152 #define STRTAB_BASE_ADDR_SHIFT 6
153 #define STRTAB_BASE_ADDR_MASK 0x3ffffffffffUL
155 #define ARM_SMMU_STRTAB_BASE_CFG 0x88
156 #define STRTAB_BASE_CFG_LOG2SIZE_SHIFT 0
157 #define STRTAB_BASE_CFG_LOG2SIZE_MASK 0x3f
158 #define STRTAB_BASE_CFG_SPLIT_SHIFT 6
159 #define STRTAB_BASE_CFG_SPLIT_MASK 0x1f
160 #define STRTAB_BASE_CFG_FMT_SHIFT 16
161 #define STRTAB_BASE_CFG_FMT_MASK 0x3
162 #define STRTAB_BASE_CFG_FMT_LINEAR (0 << STRTAB_BASE_CFG_FMT_SHIFT)
163 #define STRTAB_BASE_CFG_FMT_2LVL (1 << STRTAB_BASE_CFG_FMT_SHIFT)
165 #define ARM_SMMU_CMDQ_BASE 0x90
166 #define ARM_SMMU_CMDQ_PROD 0x98
167 #define ARM_SMMU_CMDQ_CONS 0x9c
169 #define ARM_SMMU_EVTQ_BASE 0xa0
170 #define ARM_SMMU_EVTQ_PROD 0x100a8
171 #define ARM_SMMU_EVTQ_CONS 0x100ac
172 #define ARM_SMMU_EVTQ_IRQ_CFG0 0xb0
173 #define ARM_SMMU_EVTQ_IRQ_CFG1 0xb8
174 #define ARM_SMMU_EVTQ_IRQ_CFG2 0xbc
176 #define ARM_SMMU_PRIQ_BASE 0xc0
177 #define ARM_SMMU_PRIQ_PROD 0x100c8
178 #define ARM_SMMU_PRIQ_CONS 0x100cc
179 #define ARM_SMMU_PRIQ_IRQ_CFG0 0xd0
180 #define ARM_SMMU_PRIQ_IRQ_CFG1 0xd8
181 #define ARM_SMMU_PRIQ_IRQ_CFG2 0xdc
183 /* Common MSI config fields */
184 #define MSI_CFG0_ADDR_SHIFT 2
185 #define MSI_CFG0_ADDR_MASK 0x3fffffffffffUL
186 #define MSI_CFG2_SH_SHIFT 4
187 #define MSI_CFG2_SH_NSH (0UL << MSI_CFG2_SH_SHIFT)
188 #define MSI_CFG2_SH_OSH (2UL << MSI_CFG2_SH_SHIFT)
189 #define MSI_CFG2_SH_ISH (3UL << MSI_CFG2_SH_SHIFT)
190 #define MSI_CFG2_MEMATTR_SHIFT 0
191 #define MSI_CFG2_MEMATTR_DEVICE_nGnRE (0x1 << MSI_CFG2_MEMATTR_SHIFT)
193 #define Q_IDX(q, p) ((p) & ((1 << (q)->max_n_shift) - 1))
194 #define Q_WRP(q, p) ((p) & (1 << (q)->max_n_shift))
195 #define Q_OVERFLOW_FLAG (1 << 31)
196 #define Q_OVF(q, p) ((p) & Q_OVERFLOW_FLAG)
197 #define Q_ENT(q, p) ((q)->base + \
198 Q_IDX(q, p) * (q)->ent_dwords)
200 #define Q_BASE_RWA (1UL << 62)
201 #define Q_BASE_ADDR_SHIFT 5
202 #define Q_BASE_ADDR_MASK 0xfffffffffffUL
203 #define Q_BASE_LOG2SIZE_SHIFT 0
204 #define Q_BASE_LOG2SIZE_MASK 0x1fUL
207 * Stream table.
209 * Linear: Enough to cover 1 << IDR1.SIDSIZE entries
210 * 2lvl: 128k L1 entries,
211 * 256 lazy entries per table (each table covers a PCI bus)
213 #define STRTAB_L1_SZ_SHIFT 20
214 #define STRTAB_SPLIT 8
216 #define STRTAB_L1_DESC_DWORDS 1
217 #define STRTAB_L1_DESC_SPAN_SHIFT 0
218 #define STRTAB_L1_DESC_SPAN_MASK 0x1fUL
219 #define STRTAB_L1_DESC_L2PTR_SHIFT 6
220 #define STRTAB_L1_DESC_L2PTR_MASK 0x3ffffffffffUL
222 #define STRTAB_STE_DWORDS 8
223 #define STRTAB_STE_0_V (1UL << 0)
224 #define STRTAB_STE_0_CFG_SHIFT 1
225 #define STRTAB_STE_0_CFG_MASK 0x7UL
226 #define STRTAB_STE_0_CFG_ABORT (0UL << STRTAB_STE_0_CFG_SHIFT)
227 #define STRTAB_STE_0_CFG_BYPASS (4UL << STRTAB_STE_0_CFG_SHIFT)
228 #define STRTAB_STE_0_CFG_S1_TRANS (5UL << STRTAB_STE_0_CFG_SHIFT)
229 #define STRTAB_STE_0_CFG_S2_TRANS (6UL << STRTAB_STE_0_CFG_SHIFT)
231 #define STRTAB_STE_0_S1FMT_SHIFT 4
232 #define STRTAB_STE_0_S1FMT_LINEAR (0UL << STRTAB_STE_0_S1FMT_SHIFT)
233 #define STRTAB_STE_0_S1CTXPTR_SHIFT 6
234 #define STRTAB_STE_0_S1CTXPTR_MASK 0x3ffffffffffUL
235 #define STRTAB_STE_0_S1CDMAX_SHIFT 59
236 #define STRTAB_STE_0_S1CDMAX_MASK 0x1fUL
238 #define STRTAB_STE_1_S1C_CACHE_NC 0UL
239 #define STRTAB_STE_1_S1C_CACHE_WBRA 1UL
240 #define STRTAB_STE_1_S1C_CACHE_WT 2UL
241 #define STRTAB_STE_1_S1C_CACHE_WB 3UL
242 #define STRTAB_STE_1_S1C_SH_NSH 0UL
243 #define STRTAB_STE_1_S1C_SH_OSH 2UL
244 #define STRTAB_STE_1_S1C_SH_ISH 3UL
245 #define STRTAB_STE_1_S1CIR_SHIFT 2
246 #define STRTAB_STE_1_S1COR_SHIFT 4
247 #define STRTAB_STE_1_S1CSH_SHIFT 6
249 #define STRTAB_STE_1_S1STALLD (1UL << 27)
251 #define STRTAB_STE_1_EATS_ABT 0UL
252 #define STRTAB_STE_1_EATS_TRANS 1UL
253 #define STRTAB_STE_1_EATS_S1CHK 2UL
254 #define STRTAB_STE_1_EATS_SHIFT 28
256 #define STRTAB_STE_1_STRW_NSEL1 0UL
257 #define STRTAB_STE_1_STRW_EL2 2UL
258 #define STRTAB_STE_1_STRW_SHIFT 30
260 #define STRTAB_STE_1_SHCFG_INCOMING 1UL
261 #define STRTAB_STE_1_SHCFG_SHIFT 44
263 #define STRTAB_STE_2_S2VMID_SHIFT 0
264 #define STRTAB_STE_2_S2VMID_MASK 0xffffUL
265 #define STRTAB_STE_2_VTCR_SHIFT 32
266 #define STRTAB_STE_2_VTCR_MASK 0x7ffffUL
267 #define STRTAB_STE_2_S2AA64 (1UL << 51)
268 #define STRTAB_STE_2_S2ENDI (1UL << 52)
269 #define STRTAB_STE_2_S2PTW (1UL << 54)
270 #define STRTAB_STE_2_S2R (1UL << 58)
272 #define STRTAB_STE_3_S2TTB_SHIFT 4
273 #define STRTAB_STE_3_S2TTB_MASK 0xfffffffffffUL
275 /* Context descriptor (stage-1 only) */
276 #define CTXDESC_CD_DWORDS 8
277 #define CTXDESC_CD_0_TCR_T0SZ_SHIFT 0
278 #define ARM64_TCR_T0SZ_SHIFT 0
279 #define ARM64_TCR_T0SZ_MASK 0x1fUL
280 #define CTXDESC_CD_0_TCR_TG0_SHIFT 6
281 #define ARM64_TCR_TG0_SHIFT 14
282 #define ARM64_TCR_TG0_MASK 0x3UL
283 #define CTXDESC_CD_0_TCR_IRGN0_SHIFT 8
284 #define ARM64_TCR_IRGN0_SHIFT 8
285 #define ARM64_TCR_IRGN0_MASK 0x3UL
286 #define CTXDESC_CD_0_TCR_ORGN0_SHIFT 10
287 #define ARM64_TCR_ORGN0_SHIFT 10
288 #define ARM64_TCR_ORGN0_MASK 0x3UL
289 #define CTXDESC_CD_0_TCR_SH0_SHIFT 12
290 #define ARM64_TCR_SH0_SHIFT 12
291 #define ARM64_TCR_SH0_MASK 0x3UL
292 #define CTXDESC_CD_0_TCR_EPD0_SHIFT 14
293 #define ARM64_TCR_EPD0_SHIFT 7
294 #define ARM64_TCR_EPD0_MASK 0x1UL
295 #define CTXDESC_CD_0_TCR_EPD1_SHIFT 30
296 #define ARM64_TCR_EPD1_SHIFT 23
297 #define ARM64_TCR_EPD1_MASK 0x1UL
299 #define CTXDESC_CD_0_ENDI (1UL << 15)
300 #define CTXDESC_CD_0_V (1UL << 31)
302 #define CTXDESC_CD_0_TCR_IPS_SHIFT 32
303 #define ARM64_TCR_IPS_SHIFT 32
304 #define ARM64_TCR_IPS_MASK 0x7UL
305 #define CTXDESC_CD_0_TCR_TBI0_SHIFT 38
306 #define ARM64_TCR_TBI0_SHIFT 37
307 #define ARM64_TCR_TBI0_MASK 0x1UL
309 #define CTXDESC_CD_0_AA64 (1UL << 41)
310 #define CTXDESC_CD_0_R (1UL << 45)
311 #define CTXDESC_CD_0_A (1UL << 46)
312 #define CTXDESC_CD_0_ASET_SHIFT 47
313 #define CTXDESC_CD_0_ASET_SHARED (0UL << CTXDESC_CD_0_ASET_SHIFT)
314 #define CTXDESC_CD_0_ASET_PRIVATE (1UL << CTXDESC_CD_0_ASET_SHIFT)
315 #define CTXDESC_CD_0_ASID_SHIFT 48
316 #define CTXDESC_CD_0_ASID_MASK 0xffffUL
318 #define CTXDESC_CD_1_TTB0_SHIFT 4
319 #define CTXDESC_CD_1_TTB0_MASK 0xfffffffffffUL
321 #define CTXDESC_CD_3_MAIR_SHIFT 0
323 /* Convert between AArch64 (CPU) TCR format and SMMU CD format */
324 #define ARM_SMMU_TCR2CD(tcr, fld) \
325 (((tcr) >> ARM64_TCR_##fld##_SHIFT & ARM64_TCR_##fld##_MASK) \
326 << CTXDESC_CD_0_TCR_##fld##_SHIFT)
328 /* Command queue */
329 #define CMDQ_ENT_DWORDS 2
330 #define CMDQ_MAX_SZ_SHIFT 8
332 #define CMDQ_ERR_SHIFT 24
333 #define CMDQ_ERR_MASK 0x7f
334 #define CMDQ_ERR_CERROR_NONE_IDX 0
335 #define CMDQ_ERR_CERROR_ILL_IDX 1
336 #define CMDQ_ERR_CERROR_ABT_IDX 2
338 #define CMDQ_0_OP_SHIFT 0
339 #define CMDQ_0_OP_MASK 0xffUL
340 #define CMDQ_0_SSV (1UL << 11)
342 #define CMDQ_PREFETCH_0_SID_SHIFT 32
343 #define CMDQ_PREFETCH_1_SIZE_SHIFT 0
344 #define CMDQ_PREFETCH_1_ADDR_MASK ~0xfffUL
346 #define CMDQ_CFGI_0_SID_SHIFT 32
347 #define CMDQ_CFGI_0_SID_MASK 0xffffffffUL
348 #define CMDQ_CFGI_1_LEAF (1UL << 0)
349 #define CMDQ_CFGI_1_RANGE_SHIFT 0
350 #define CMDQ_CFGI_1_RANGE_MASK 0x1fUL
352 #define CMDQ_TLBI_0_VMID_SHIFT 32
353 #define CMDQ_TLBI_0_ASID_SHIFT 48
354 #define CMDQ_TLBI_1_LEAF (1UL << 0)
355 #define CMDQ_TLBI_1_VA_MASK ~0xfffUL
356 #define CMDQ_TLBI_1_IPA_MASK 0xfffffffff000UL
358 #define CMDQ_PRI_0_SSID_SHIFT 12
359 #define CMDQ_PRI_0_SSID_MASK 0xfffffUL
360 #define CMDQ_PRI_0_SID_SHIFT 32
361 #define CMDQ_PRI_0_SID_MASK 0xffffffffUL
362 #define CMDQ_PRI_1_GRPID_SHIFT 0
363 #define CMDQ_PRI_1_GRPID_MASK 0x1ffUL
364 #define CMDQ_PRI_1_RESP_SHIFT 12
365 #define CMDQ_PRI_1_RESP_DENY (0UL << CMDQ_PRI_1_RESP_SHIFT)
366 #define CMDQ_PRI_1_RESP_FAIL (1UL << CMDQ_PRI_1_RESP_SHIFT)
367 #define CMDQ_PRI_1_RESP_SUCC (2UL << CMDQ_PRI_1_RESP_SHIFT)
369 #define CMDQ_SYNC_0_CS_SHIFT 12
370 #define CMDQ_SYNC_0_CS_NONE (0UL << CMDQ_SYNC_0_CS_SHIFT)
371 #define CMDQ_SYNC_0_CS_SEV (2UL << CMDQ_SYNC_0_CS_SHIFT)
373 /* Event queue */
374 #define EVTQ_ENT_DWORDS 4
375 #define EVTQ_MAX_SZ_SHIFT 7
377 #define EVTQ_0_ID_SHIFT 0
378 #define EVTQ_0_ID_MASK 0xffUL
380 /* PRI queue */
381 #define PRIQ_ENT_DWORDS 2
382 #define PRIQ_MAX_SZ_SHIFT 8
384 #define PRIQ_0_SID_SHIFT 0
385 #define PRIQ_0_SID_MASK 0xffffffffUL
386 #define PRIQ_0_SSID_SHIFT 32
387 #define PRIQ_0_SSID_MASK 0xfffffUL
388 #define PRIQ_0_PERM_PRIV (1UL << 58)
389 #define PRIQ_0_PERM_EXEC (1UL << 59)
390 #define PRIQ_0_PERM_READ (1UL << 60)
391 #define PRIQ_0_PERM_WRITE (1UL << 61)
392 #define PRIQ_0_PRG_LAST (1UL << 62)
393 #define PRIQ_0_SSID_V (1UL << 63)
395 #define PRIQ_1_PRG_IDX_SHIFT 0
396 #define PRIQ_1_PRG_IDX_MASK 0x1ffUL
397 #define PRIQ_1_ADDR_SHIFT 12
398 #define PRIQ_1_ADDR_MASK 0xfffffffffffffUL
400 /* High-level queue structures */
401 #define ARM_SMMU_POLL_TIMEOUT_US 100
403 static bool disable_bypass;
404 module_param_named(disable_bypass, disable_bypass, bool, S_IRUGO);
405 MODULE_PARM_DESC(disable_bypass,
406 "Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
408 enum pri_resp {
409 PRI_RESP_DENY,
410 PRI_RESP_FAIL,
411 PRI_RESP_SUCC,
414 enum arm_smmu_msi_index {
415 EVTQ_MSI_INDEX,
416 GERROR_MSI_INDEX,
417 PRIQ_MSI_INDEX,
418 ARM_SMMU_MAX_MSIS,
421 static phys_addr_t arm_smmu_msi_cfg[ARM_SMMU_MAX_MSIS][3] = {
422 [EVTQ_MSI_INDEX] = {
423 ARM_SMMU_EVTQ_IRQ_CFG0,
424 ARM_SMMU_EVTQ_IRQ_CFG1,
425 ARM_SMMU_EVTQ_IRQ_CFG2,
427 [GERROR_MSI_INDEX] = {
428 ARM_SMMU_GERROR_IRQ_CFG0,
429 ARM_SMMU_GERROR_IRQ_CFG1,
430 ARM_SMMU_GERROR_IRQ_CFG2,
432 [PRIQ_MSI_INDEX] = {
433 ARM_SMMU_PRIQ_IRQ_CFG0,
434 ARM_SMMU_PRIQ_IRQ_CFG1,
435 ARM_SMMU_PRIQ_IRQ_CFG2,
439 struct arm_smmu_cmdq_ent {
440 /* Common fields */
441 u8 opcode;
442 bool substream_valid;
444 /* Command-specific fields */
445 union {
446 #define CMDQ_OP_PREFETCH_CFG 0x1
447 struct {
448 u32 sid;
449 u8 size;
450 u64 addr;
451 } prefetch;
453 #define CMDQ_OP_CFGI_STE 0x3
454 #define CMDQ_OP_CFGI_ALL 0x4
455 struct {
456 u32 sid;
457 union {
458 bool leaf;
459 u8 span;
461 } cfgi;
463 #define CMDQ_OP_TLBI_NH_ASID 0x11
464 #define CMDQ_OP_TLBI_NH_VA 0x12
465 #define CMDQ_OP_TLBI_EL2_ALL 0x20
466 #define CMDQ_OP_TLBI_S12_VMALL 0x28
467 #define CMDQ_OP_TLBI_S2_IPA 0x2a
468 #define CMDQ_OP_TLBI_NSNH_ALL 0x30
469 struct {
470 u16 asid;
471 u16 vmid;
472 bool leaf;
473 u64 addr;
474 } tlbi;
476 #define CMDQ_OP_PRI_RESP 0x41
477 struct {
478 u32 sid;
479 u32 ssid;
480 u16 grpid;
481 enum pri_resp resp;
482 } pri;
484 #define CMDQ_OP_CMD_SYNC 0x46
488 struct arm_smmu_queue {
489 int irq; /* Wired interrupt */
491 __le64 *base;
492 dma_addr_t base_dma;
493 u64 q_base;
495 size_t ent_dwords;
496 u32 max_n_shift;
497 u32 prod;
498 u32 cons;
500 u32 __iomem *prod_reg;
501 u32 __iomem *cons_reg;
504 struct arm_smmu_cmdq {
505 struct arm_smmu_queue q;
506 spinlock_t lock;
509 struct arm_smmu_evtq {
510 struct arm_smmu_queue q;
511 u32 max_stalls;
514 struct arm_smmu_priq {
515 struct arm_smmu_queue q;
518 /* High-level stream table and context descriptor structures */
519 struct arm_smmu_strtab_l1_desc {
520 u8 span;
522 __le64 *l2ptr;
523 dma_addr_t l2ptr_dma;
526 struct arm_smmu_s1_cfg {
527 __le64 *cdptr;
528 dma_addr_t cdptr_dma;
530 struct arm_smmu_ctx_desc {
531 u16 asid;
532 u64 ttbr;
533 u64 tcr;
534 u64 mair;
535 } cd;
538 struct arm_smmu_s2_cfg {
539 u16 vmid;
540 u64 vttbr;
541 u64 vtcr;
544 struct arm_smmu_strtab_ent {
545 bool valid;
547 bool bypass; /* Overrides s1/s2 config */
548 struct arm_smmu_s1_cfg *s1_cfg;
549 struct arm_smmu_s2_cfg *s2_cfg;
552 struct arm_smmu_strtab_cfg {
553 __le64 *strtab;
554 dma_addr_t strtab_dma;
555 struct arm_smmu_strtab_l1_desc *l1_desc;
556 unsigned int num_l1_ents;
558 u64 strtab_base;
559 u32 strtab_base_cfg;
562 /* An SMMUv3 instance */
563 struct arm_smmu_device {
564 struct device *dev;
565 void __iomem *base;
567 #define ARM_SMMU_FEAT_2_LVL_STRTAB (1 << 0)
568 #define ARM_SMMU_FEAT_2_LVL_CDTAB (1 << 1)
569 #define ARM_SMMU_FEAT_TT_LE (1 << 2)
570 #define ARM_SMMU_FEAT_TT_BE (1 << 3)
571 #define ARM_SMMU_FEAT_PRI (1 << 4)
572 #define ARM_SMMU_FEAT_ATS (1 << 5)
573 #define ARM_SMMU_FEAT_SEV (1 << 6)
574 #define ARM_SMMU_FEAT_MSI (1 << 7)
575 #define ARM_SMMU_FEAT_COHERENCY (1 << 8)
576 #define ARM_SMMU_FEAT_TRANS_S1 (1 << 9)
577 #define ARM_SMMU_FEAT_TRANS_S2 (1 << 10)
578 #define ARM_SMMU_FEAT_STALLS (1 << 11)
579 #define ARM_SMMU_FEAT_HYP (1 << 12)
580 u32 features;
582 #define ARM_SMMU_OPT_SKIP_PREFETCH (1 << 0)
583 u32 options;
585 struct arm_smmu_cmdq cmdq;
586 struct arm_smmu_evtq evtq;
587 struct arm_smmu_priq priq;
589 int gerr_irq;
591 unsigned long ias; /* IPA */
592 unsigned long oas; /* PA */
594 #define ARM_SMMU_MAX_ASIDS (1 << 16)
595 unsigned int asid_bits;
596 DECLARE_BITMAP(asid_map, ARM_SMMU_MAX_ASIDS);
598 #define ARM_SMMU_MAX_VMIDS (1 << 16)
599 unsigned int vmid_bits;
600 DECLARE_BITMAP(vmid_map, ARM_SMMU_MAX_VMIDS);
602 unsigned int ssid_bits;
603 unsigned int sid_bits;
605 struct arm_smmu_strtab_cfg strtab_cfg;
608 /* SMMU private data for an IOMMU group */
609 struct arm_smmu_group {
610 struct arm_smmu_device *smmu;
611 struct arm_smmu_domain *domain;
612 int num_sids;
613 u32 *sids;
614 struct arm_smmu_strtab_ent ste;
617 /* SMMU private data for an IOMMU domain */
618 enum arm_smmu_domain_stage {
619 ARM_SMMU_DOMAIN_S1 = 0,
620 ARM_SMMU_DOMAIN_S2,
621 ARM_SMMU_DOMAIN_NESTED,
624 struct arm_smmu_domain {
625 struct arm_smmu_device *smmu;
626 struct mutex init_mutex; /* Protects smmu pointer */
628 struct io_pgtable_ops *pgtbl_ops;
629 spinlock_t pgtbl_lock;
631 enum arm_smmu_domain_stage stage;
632 union {
633 struct arm_smmu_s1_cfg s1_cfg;
634 struct arm_smmu_s2_cfg s2_cfg;
637 struct iommu_domain domain;
640 struct arm_smmu_option_prop {
641 u32 opt;
642 const char *prop;
645 static struct arm_smmu_option_prop arm_smmu_options[] = {
646 { ARM_SMMU_OPT_SKIP_PREFETCH, "hisilicon,broken-prefetch-cmd" },
647 { 0, NULL},
650 static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
652 return container_of(dom, struct arm_smmu_domain, domain);
655 static void parse_driver_options(struct arm_smmu_device *smmu)
657 int i = 0;
659 do {
660 if (of_property_read_bool(smmu->dev->of_node,
661 arm_smmu_options[i].prop)) {
662 smmu->options |= arm_smmu_options[i].opt;
663 dev_notice(smmu->dev, "option %s\n",
664 arm_smmu_options[i].prop);
666 } while (arm_smmu_options[++i].opt);
669 /* Low-level queue manipulation functions */
670 static bool queue_full(struct arm_smmu_queue *q)
672 return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
673 Q_WRP(q, q->prod) != Q_WRP(q, q->cons);
676 static bool queue_empty(struct arm_smmu_queue *q)
678 return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
679 Q_WRP(q, q->prod) == Q_WRP(q, q->cons);
682 static void queue_sync_cons(struct arm_smmu_queue *q)
684 q->cons = readl_relaxed(q->cons_reg);
687 static void queue_inc_cons(struct arm_smmu_queue *q)
689 u32 cons = (Q_WRP(q, q->cons) | Q_IDX(q, q->cons)) + 1;
691 q->cons = Q_OVF(q, q->cons) | Q_WRP(q, cons) | Q_IDX(q, cons);
692 writel(q->cons, q->cons_reg);
695 static int queue_sync_prod(struct arm_smmu_queue *q)
697 int ret = 0;
698 u32 prod = readl_relaxed(q->prod_reg);
700 if (Q_OVF(q, prod) != Q_OVF(q, q->prod))
701 ret = -EOVERFLOW;
703 q->prod = prod;
704 return ret;
707 static void queue_inc_prod(struct arm_smmu_queue *q)
709 u32 prod = (Q_WRP(q, q->prod) | Q_IDX(q, q->prod)) + 1;
711 q->prod = Q_OVF(q, q->prod) | Q_WRP(q, prod) | Q_IDX(q, prod);
712 writel(q->prod, q->prod_reg);
715 static bool __queue_cons_before(struct arm_smmu_queue *q, u32 until)
717 if (Q_WRP(q, q->cons) == Q_WRP(q, until))
718 return Q_IDX(q, q->cons) < Q_IDX(q, until);
720 return Q_IDX(q, q->cons) >= Q_IDX(q, until);
723 static int queue_poll_cons(struct arm_smmu_queue *q, u32 until, bool wfe)
725 ktime_t timeout = ktime_add_us(ktime_get(), ARM_SMMU_POLL_TIMEOUT_US);
727 while (queue_sync_cons(q), __queue_cons_before(q, until)) {
728 if (ktime_compare(ktime_get(), timeout) > 0)
729 return -ETIMEDOUT;
731 if (wfe) {
732 wfe();
733 } else {
734 cpu_relax();
735 udelay(1);
739 return 0;
742 static void queue_write(__le64 *dst, u64 *src, size_t n_dwords)
744 int i;
746 for (i = 0; i < n_dwords; ++i)
747 *dst++ = cpu_to_le64(*src++);
750 static int queue_insert_raw(struct arm_smmu_queue *q, u64 *ent)
752 if (queue_full(q))
753 return -ENOSPC;
755 queue_write(Q_ENT(q, q->prod), ent, q->ent_dwords);
756 queue_inc_prod(q);
757 return 0;
760 static void queue_read(__le64 *dst, u64 *src, size_t n_dwords)
762 int i;
764 for (i = 0; i < n_dwords; ++i)
765 *dst++ = le64_to_cpu(*src++);
768 static int queue_remove_raw(struct arm_smmu_queue *q, u64 *ent)
770 if (queue_empty(q))
771 return -EAGAIN;
773 queue_read(ent, Q_ENT(q, q->cons), q->ent_dwords);
774 queue_inc_cons(q);
775 return 0;
778 /* High-level queue accessors */
779 static int arm_smmu_cmdq_build_cmd(u64 *cmd, struct arm_smmu_cmdq_ent *ent)
781 memset(cmd, 0, CMDQ_ENT_DWORDS << 3);
782 cmd[0] |= (ent->opcode & CMDQ_0_OP_MASK) << CMDQ_0_OP_SHIFT;
784 switch (ent->opcode) {
785 case CMDQ_OP_TLBI_EL2_ALL:
786 case CMDQ_OP_TLBI_NSNH_ALL:
787 break;
788 case CMDQ_OP_PREFETCH_CFG:
789 cmd[0] |= (u64)ent->prefetch.sid << CMDQ_PREFETCH_0_SID_SHIFT;
790 cmd[1] |= ent->prefetch.size << CMDQ_PREFETCH_1_SIZE_SHIFT;
791 cmd[1] |= ent->prefetch.addr & CMDQ_PREFETCH_1_ADDR_MASK;
792 break;
793 case CMDQ_OP_CFGI_STE:
794 cmd[0] |= (u64)ent->cfgi.sid << CMDQ_CFGI_0_SID_SHIFT;
795 cmd[1] |= ent->cfgi.leaf ? CMDQ_CFGI_1_LEAF : 0;
796 break;
797 case CMDQ_OP_CFGI_ALL:
798 /* Cover the entire SID range */
799 cmd[1] |= CMDQ_CFGI_1_RANGE_MASK << CMDQ_CFGI_1_RANGE_SHIFT;
800 break;
801 case CMDQ_OP_TLBI_NH_VA:
802 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
803 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
804 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_VA_MASK;
805 break;
806 case CMDQ_OP_TLBI_S2_IPA:
807 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
808 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
809 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_IPA_MASK;
810 break;
811 case CMDQ_OP_TLBI_NH_ASID:
812 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
813 /* Fallthrough */
814 case CMDQ_OP_TLBI_S12_VMALL:
815 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
816 break;
817 case CMDQ_OP_PRI_RESP:
818 cmd[0] |= ent->substream_valid ? CMDQ_0_SSV : 0;
819 cmd[0] |= ent->pri.ssid << CMDQ_PRI_0_SSID_SHIFT;
820 cmd[0] |= (u64)ent->pri.sid << CMDQ_PRI_0_SID_SHIFT;
821 cmd[1] |= ent->pri.grpid << CMDQ_PRI_1_GRPID_SHIFT;
822 switch (ent->pri.resp) {
823 case PRI_RESP_DENY:
824 cmd[1] |= CMDQ_PRI_1_RESP_DENY;
825 break;
826 case PRI_RESP_FAIL:
827 cmd[1] |= CMDQ_PRI_1_RESP_FAIL;
828 break;
829 case PRI_RESP_SUCC:
830 cmd[1] |= CMDQ_PRI_1_RESP_SUCC;
831 break;
832 default:
833 return -EINVAL;
835 break;
836 case CMDQ_OP_CMD_SYNC:
837 cmd[0] |= CMDQ_SYNC_0_CS_SEV;
838 break;
839 default:
840 return -ENOENT;
843 return 0;
846 static void arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu)
848 static const char *cerror_str[] = {
849 [CMDQ_ERR_CERROR_NONE_IDX] = "No error",
850 [CMDQ_ERR_CERROR_ILL_IDX] = "Illegal command",
851 [CMDQ_ERR_CERROR_ABT_IDX] = "Abort on command fetch",
854 int i;
855 u64 cmd[CMDQ_ENT_DWORDS];
856 struct arm_smmu_queue *q = &smmu->cmdq.q;
857 u32 cons = readl_relaxed(q->cons_reg);
858 u32 idx = cons >> CMDQ_ERR_SHIFT & CMDQ_ERR_MASK;
859 struct arm_smmu_cmdq_ent cmd_sync = {
860 .opcode = CMDQ_OP_CMD_SYNC,
863 dev_err(smmu->dev, "CMDQ error (cons 0x%08x): %s\n", cons,
864 idx < ARRAY_SIZE(cerror_str) ? cerror_str[idx] : "Unknown");
866 switch (idx) {
867 case CMDQ_ERR_CERROR_ABT_IDX:
868 dev_err(smmu->dev, "retrying command fetch\n");
869 case CMDQ_ERR_CERROR_NONE_IDX:
870 return;
871 case CMDQ_ERR_CERROR_ILL_IDX:
872 /* Fallthrough */
873 default:
874 break;
878 * We may have concurrent producers, so we need to be careful
879 * not to touch any of the shadow cmdq state.
881 queue_read(cmd, Q_ENT(q, idx), q->ent_dwords);
882 dev_err(smmu->dev, "skipping command in error state:\n");
883 for (i = 0; i < ARRAY_SIZE(cmd); ++i)
884 dev_err(smmu->dev, "\t0x%016llx\n", (unsigned long long)cmd[i]);
886 /* Convert the erroneous command into a CMD_SYNC */
887 if (arm_smmu_cmdq_build_cmd(cmd, &cmd_sync)) {
888 dev_err(smmu->dev, "failed to convert to CMD_SYNC\n");
889 return;
892 queue_write(cmd, Q_ENT(q, idx), q->ent_dwords);
895 static void arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu,
896 struct arm_smmu_cmdq_ent *ent)
898 u32 until;
899 u64 cmd[CMDQ_ENT_DWORDS];
900 bool wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);
901 struct arm_smmu_queue *q = &smmu->cmdq.q;
903 if (arm_smmu_cmdq_build_cmd(cmd, ent)) {
904 dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n",
905 ent->opcode);
906 return;
909 spin_lock(&smmu->cmdq.lock);
910 while (until = q->prod + 1, queue_insert_raw(q, cmd) == -ENOSPC) {
912 * Keep the queue locked, otherwise the producer could wrap
913 * twice and we could see a future consumer pointer that looks
914 * like it's behind us.
916 if (queue_poll_cons(q, until, wfe))
917 dev_err_ratelimited(smmu->dev, "CMDQ timeout\n");
920 if (ent->opcode == CMDQ_OP_CMD_SYNC && queue_poll_cons(q, until, wfe))
921 dev_err_ratelimited(smmu->dev, "CMD_SYNC timeout\n");
922 spin_unlock(&smmu->cmdq.lock);
925 /* Context descriptor manipulation functions */
926 static u64 arm_smmu_cpu_tcr_to_cd(u64 tcr)
928 u64 val = 0;
930 /* Repack the TCR. Just care about TTBR0 for now */
931 val |= ARM_SMMU_TCR2CD(tcr, T0SZ);
932 val |= ARM_SMMU_TCR2CD(tcr, TG0);
933 val |= ARM_SMMU_TCR2CD(tcr, IRGN0);
934 val |= ARM_SMMU_TCR2CD(tcr, ORGN0);
935 val |= ARM_SMMU_TCR2CD(tcr, SH0);
936 val |= ARM_SMMU_TCR2CD(tcr, EPD0);
937 val |= ARM_SMMU_TCR2CD(tcr, EPD1);
938 val |= ARM_SMMU_TCR2CD(tcr, IPS);
939 val |= ARM_SMMU_TCR2CD(tcr, TBI0);
941 return val;
944 static void arm_smmu_write_ctx_desc(struct arm_smmu_device *smmu,
945 struct arm_smmu_s1_cfg *cfg)
947 u64 val;
950 * We don't need to issue any invalidation here, as we'll invalidate
951 * the STE when installing the new entry anyway.
953 val = arm_smmu_cpu_tcr_to_cd(cfg->cd.tcr) |
954 #ifdef __BIG_ENDIAN
955 CTXDESC_CD_0_ENDI |
956 #endif
957 CTXDESC_CD_0_R | CTXDESC_CD_0_A | CTXDESC_CD_0_ASET_PRIVATE |
958 CTXDESC_CD_0_AA64 | (u64)cfg->cd.asid << CTXDESC_CD_0_ASID_SHIFT |
959 CTXDESC_CD_0_V;
960 cfg->cdptr[0] = cpu_to_le64(val);
962 val = cfg->cd.ttbr & CTXDESC_CD_1_TTB0_MASK << CTXDESC_CD_1_TTB0_SHIFT;
963 cfg->cdptr[1] = cpu_to_le64(val);
965 cfg->cdptr[3] = cpu_to_le64(cfg->cd.mair << CTXDESC_CD_3_MAIR_SHIFT);
968 /* Stream table manipulation functions */
969 static void
970 arm_smmu_write_strtab_l1_desc(__le64 *dst, struct arm_smmu_strtab_l1_desc *desc)
972 u64 val = 0;
974 val |= (desc->span & STRTAB_L1_DESC_SPAN_MASK)
975 << STRTAB_L1_DESC_SPAN_SHIFT;
976 val |= desc->l2ptr_dma &
977 STRTAB_L1_DESC_L2PTR_MASK << STRTAB_L1_DESC_L2PTR_SHIFT;
979 *dst = cpu_to_le64(val);
982 static void arm_smmu_sync_ste_for_sid(struct arm_smmu_device *smmu, u32 sid)
984 struct arm_smmu_cmdq_ent cmd = {
985 .opcode = CMDQ_OP_CFGI_STE,
986 .cfgi = {
987 .sid = sid,
988 .leaf = true,
992 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
993 cmd.opcode = CMDQ_OP_CMD_SYNC;
994 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
997 static void arm_smmu_write_strtab_ent(struct arm_smmu_device *smmu, u32 sid,
998 __le64 *dst, struct arm_smmu_strtab_ent *ste)
1001 * This is hideously complicated, but we only really care about
1002 * three cases at the moment:
1004 * 1. Invalid (all zero) -> bypass (init)
1005 * 2. Bypass -> translation (attach)
1006 * 3. Translation -> bypass (detach)
1008 * Given that we can't update the STE atomically and the SMMU
1009 * doesn't read the thing in a defined order, that leaves us
1010 * with the following maintenance requirements:
1012 * 1. Update Config, return (init time STEs aren't live)
1013 * 2. Write everything apart from dword 0, sync, write dword 0, sync
1014 * 3. Update Config, sync
1016 u64 val = le64_to_cpu(dst[0]);
1017 bool ste_live = false;
1018 struct arm_smmu_cmdq_ent prefetch_cmd = {
1019 .opcode = CMDQ_OP_PREFETCH_CFG,
1020 .prefetch = {
1021 .sid = sid,
1025 if (val & STRTAB_STE_0_V) {
1026 u64 cfg;
1028 cfg = val & STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT;
1029 switch (cfg) {
1030 case STRTAB_STE_0_CFG_BYPASS:
1031 break;
1032 case STRTAB_STE_0_CFG_S1_TRANS:
1033 case STRTAB_STE_0_CFG_S2_TRANS:
1034 ste_live = true;
1035 break;
1036 default:
1037 BUG(); /* STE corruption */
1041 /* Nuke the existing Config, as we're going to rewrite it */
1042 val &= ~(STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT);
1044 if (ste->valid)
1045 val |= STRTAB_STE_0_V;
1046 else
1047 val &= ~STRTAB_STE_0_V;
1049 if (ste->bypass) {
1050 val |= disable_bypass ? STRTAB_STE_0_CFG_ABORT
1051 : STRTAB_STE_0_CFG_BYPASS;
1052 dst[0] = cpu_to_le64(val);
1053 dst[1] = cpu_to_le64(STRTAB_STE_1_SHCFG_INCOMING
1054 << STRTAB_STE_1_SHCFG_SHIFT);
1055 dst[2] = 0; /* Nuke the VMID */
1056 if (ste_live)
1057 arm_smmu_sync_ste_for_sid(smmu, sid);
1058 return;
1061 if (ste->s1_cfg) {
1062 BUG_ON(ste_live);
1063 dst[1] = cpu_to_le64(
1064 STRTAB_STE_1_S1C_CACHE_WBRA
1065 << STRTAB_STE_1_S1CIR_SHIFT |
1066 STRTAB_STE_1_S1C_CACHE_WBRA
1067 << STRTAB_STE_1_S1COR_SHIFT |
1068 STRTAB_STE_1_S1C_SH_ISH << STRTAB_STE_1_S1CSH_SHIFT |
1069 #ifdef CONFIG_PCI_ATS
1070 STRTAB_STE_1_EATS_TRANS << STRTAB_STE_1_EATS_SHIFT |
1071 #endif
1072 STRTAB_STE_1_STRW_NSEL1 << STRTAB_STE_1_STRW_SHIFT);
1074 if (smmu->features & ARM_SMMU_FEAT_STALLS)
1075 dst[1] |= cpu_to_le64(STRTAB_STE_1_S1STALLD);
1077 val |= (ste->s1_cfg->cdptr_dma & STRTAB_STE_0_S1CTXPTR_MASK
1078 << STRTAB_STE_0_S1CTXPTR_SHIFT) |
1079 STRTAB_STE_0_CFG_S1_TRANS;
1083 if (ste->s2_cfg) {
1084 BUG_ON(ste_live);
1085 dst[2] = cpu_to_le64(
1086 ste->s2_cfg->vmid << STRTAB_STE_2_S2VMID_SHIFT |
1087 (ste->s2_cfg->vtcr & STRTAB_STE_2_VTCR_MASK)
1088 << STRTAB_STE_2_VTCR_SHIFT |
1089 #ifdef __BIG_ENDIAN
1090 STRTAB_STE_2_S2ENDI |
1091 #endif
1092 STRTAB_STE_2_S2PTW | STRTAB_STE_2_S2AA64 |
1093 STRTAB_STE_2_S2R);
1095 dst[3] = cpu_to_le64(ste->s2_cfg->vttbr &
1096 STRTAB_STE_3_S2TTB_MASK << STRTAB_STE_3_S2TTB_SHIFT);
1098 val |= STRTAB_STE_0_CFG_S2_TRANS;
1101 arm_smmu_sync_ste_for_sid(smmu, sid);
1102 dst[0] = cpu_to_le64(val);
1103 arm_smmu_sync_ste_for_sid(smmu, sid);
1105 /* It's likely that we'll want to use the new STE soon */
1106 if (!(smmu->options & ARM_SMMU_OPT_SKIP_PREFETCH))
1107 arm_smmu_cmdq_issue_cmd(smmu, &prefetch_cmd);
1110 static void arm_smmu_init_bypass_stes(u64 *strtab, unsigned int nent)
1112 unsigned int i;
1113 struct arm_smmu_strtab_ent ste = {
1114 .valid = true,
1115 .bypass = true,
1118 for (i = 0; i < nent; ++i) {
1119 arm_smmu_write_strtab_ent(NULL, -1, strtab, &ste);
1120 strtab += STRTAB_STE_DWORDS;
1124 static int arm_smmu_init_l2_strtab(struct arm_smmu_device *smmu, u32 sid)
1126 size_t size;
1127 void *strtab;
1128 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1129 struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[sid >> STRTAB_SPLIT];
1131 if (desc->l2ptr)
1132 return 0;
1134 size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
1135 strtab = &cfg->strtab[(sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS];
1137 desc->span = STRTAB_SPLIT + 1;
1138 desc->l2ptr = dmam_alloc_coherent(smmu->dev, size, &desc->l2ptr_dma,
1139 GFP_KERNEL | __GFP_ZERO);
1140 if (!desc->l2ptr) {
1141 dev_err(smmu->dev,
1142 "failed to allocate l2 stream table for SID %u\n",
1143 sid);
1144 return -ENOMEM;
1147 arm_smmu_init_bypass_stes(desc->l2ptr, 1 << STRTAB_SPLIT);
1148 arm_smmu_write_strtab_l1_desc(strtab, desc);
1149 return 0;
1152 /* IRQ and event handlers */
1153 static irqreturn_t arm_smmu_evtq_thread(int irq, void *dev)
1155 int i;
1156 struct arm_smmu_device *smmu = dev;
1157 struct arm_smmu_queue *q = &smmu->evtq.q;
1158 u64 evt[EVTQ_ENT_DWORDS];
1160 while (!queue_remove_raw(q, evt)) {
1161 u8 id = evt[0] >> EVTQ_0_ID_SHIFT & EVTQ_0_ID_MASK;
1163 dev_info(smmu->dev, "event 0x%02x received:\n", id);
1164 for (i = 0; i < ARRAY_SIZE(evt); ++i)
1165 dev_info(smmu->dev, "\t0x%016llx\n",
1166 (unsigned long long)evt[i]);
1169 /* Sync our overflow flag, as we believe we're up to speed */
1170 q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1171 return IRQ_HANDLED;
1174 static irqreturn_t arm_smmu_evtq_handler(int irq, void *dev)
1176 irqreturn_t ret = IRQ_WAKE_THREAD;
1177 struct arm_smmu_device *smmu = dev;
1178 struct arm_smmu_queue *q = &smmu->evtq.q;
1181 * Not much we can do on overflow, so scream and pretend we're
1182 * trying harder.
1184 if (queue_sync_prod(q) == -EOVERFLOW)
1185 dev_err(smmu->dev, "EVTQ overflow detected -- events lost\n");
1186 else if (queue_empty(q))
1187 ret = IRQ_NONE;
1189 return ret;
1192 static irqreturn_t arm_smmu_priq_thread(int irq, void *dev)
1194 struct arm_smmu_device *smmu = dev;
1195 struct arm_smmu_queue *q = &smmu->priq.q;
1196 u64 evt[PRIQ_ENT_DWORDS];
1198 while (!queue_remove_raw(q, evt)) {
1199 u32 sid, ssid;
1200 u16 grpid;
1201 bool ssv, last;
1203 sid = evt[0] >> PRIQ_0_SID_SHIFT & PRIQ_0_SID_MASK;
1204 ssv = evt[0] & PRIQ_0_SSID_V;
1205 ssid = ssv ? evt[0] >> PRIQ_0_SSID_SHIFT & PRIQ_0_SSID_MASK : 0;
1206 last = evt[0] & PRIQ_0_PRG_LAST;
1207 grpid = evt[1] >> PRIQ_1_PRG_IDX_SHIFT & PRIQ_1_PRG_IDX_MASK;
1209 dev_info(smmu->dev, "unexpected PRI request received:\n");
1210 dev_info(smmu->dev,
1211 "\tsid 0x%08x.0x%05x: [%u%s] %sprivileged %s%s%s access at iova 0x%016llx\n",
1212 sid, ssid, grpid, last ? "L" : "",
1213 evt[0] & PRIQ_0_PERM_PRIV ? "" : "un",
1214 evt[0] & PRIQ_0_PERM_READ ? "R" : "",
1215 evt[0] & PRIQ_0_PERM_WRITE ? "W" : "",
1216 evt[0] & PRIQ_0_PERM_EXEC ? "X" : "",
1217 evt[1] & PRIQ_1_ADDR_MASK << PRIQ_1_ADDR_SHIFT);
1219 if (last) {
1220 struct arm_smmu_cmdq_ent cmd = {
1221 .opcode = CMDQ_OP_PRI_RESP,
1222 .substream_valid = ssv,
1223 .pri = {
1224 .sid = sid,
1225 .ssid = ssid,
1226 .grpid = grpid,
1227 .resp = PRI_RESP_DENY,
1231 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1235 /* Sync our overflow flag, as we believe we're up to speed */
1236 q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1237 return IRQ_HANDLED;
1240 static irqreturn_t arm_smmu_priq_handler(int irq, void *dev)
1242 irqreturn_t ret = IRQ_WAKE_THREAD;
1243 struct arm_smmu_device *smmu = dev;
1244 struct arm_smmu_queue *q = &smmu->priq.q;
1246 /* PRIQ overflow indicates a programming error */
1247 if (queue_sync_prod(q) == -EOVERFLOW)
1248 dev_err(smmu->dev, "PRIQ overflow detected -- requests lost\n");
1249 else if (queue_empty(q))
1250 ret = IRQ_NONE;
1252 return ret;
1255 static irqreturn_t arm_smmu_cmdq_sync_handler(int irq, void *dev)
1257 /* We don't actually use CMD_SYNC interrupts for anything */
1258 return IRQ_HANDLED;
1261 static int arm_smmu_device_disable(struct arm_smmu_device *smmu);
1263 static irqreturn_t arm_smmu_gerror_handler(int irq, void *dev)
1265 u32 gerror, gerrorn, active;
1266 struct arm_smmu_device *smmu = dev;
1268 gerror = readl_relaxed(smmu->base + ARM_SMMU_GERROR);
1269 gerrorn = readl_relaxed(smmu->base + ARM_SMMU_GERRORN);
1271 active = gerror ^ gerrorn;
1272 if (!(active & GERROR_ERR_MASK))
1273 return IRQ_NONE; /* No errors pending */
1275 dev_warn(smmu->dev,
1276 "unexpected global error reported (0x%08x), this could be serious\n",
1277 active);
1279 if (active & GERROR_SFM_ERR) {
1280 dev_err(smmu->dev, "device has entered Service Failure Mode!\n");
1281 arm_smmu_device_disable(smmu);
1284 if (active & GERROR_MSI_GERROR_ABT_ERR)
1285 dev_warn(smmu->dev, "GERROR MSI write aborted\n");
1287 if (active & GERROR_MSI_PRIQ_ABT_ERR) {
1288 dev_warn(smmu->dev, "PRIQ MSI write aborted\n");
1289 arm_smmu_priq_handler(irq, smmu->dev);
1292 if (active & GERROR_MSI_EVTQ_ABT_ERR) {
1293 dev_warn(smmu->dev, "EVTQ MSI write aborted\n");
1294 arm_smmu_evtq_handler(irq, smmu->dev);
1297 if (active & GERROR_MSI_CMDQ_ABT_ERR) {
1298 dev_warn(smmu->dev, "CMDQ MSI write aborted\n");
1299 arm_smmu_cmdq_sync_handler(irq, smmu->dev);
1302 if (active & GERROR_PRIQ_ABT_ERR)
1303 dev_err(smmu->dev, "PRIQ write aborted -- events may have been lost\n");
1305 if (active & GERROR_EVTQ_ABT_ERR)
1306 dev_err(smmu->dev, "EVTQ write aborted -- events may have been lost\n");
1308 if (active & GERROR_CMDQ_ERR)
1309 arm_smmu_cmdq_skip_err(smmu);
1311 writel(gerror, smmu->base + ARM_SMMU_GERRORN);
1312 return IRQ_HANDLED;
1315 /* IO_PGTABLE API */
1316 static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
1318 struct arm_smmu_cmdq_ent cmd;
1320 cmd.opcode = CMDQ_OP_CMD_SYNC;
1321 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1324 static void arm_smmu_tlb_sync(void *cookie)
1326 struct arm_smmu_domain *smmu_domain = cookie;
1327 __arm_smmu_tlb_sync(smmu_domain->smmu);
1330 static void arm_smmu_tlb_inv_context(void *cookie)
1332 struct arm_smmu_domain *smmu_domain = cookie;
1333 struct arm_smmu_device *smmu = smmu_domain->smmu;
1334 struct arm_smmu_cmdq_ent cmd;
1336 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1337 cmd.opcode = CMDQ_OP_TLBI_NH_ASID;
1338 cmd.tlbi.asid = smmu_domain->s1_cfg.cd.asid;
1339 cmd.tlbi.vmid = 0;
1340 } else {
1341 cmd.opcode = CMDQ_OP_TLBI_S12_VMALL;
1342 cmd.tlbi.vmid = smmu_domain->s2_cfg.vmid;
1345 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1346 __arm_smmu_tlb_sync(smmu);
1349 static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
1350 size_t granule, bool leaf, void *cookie)
1352 struct arm_smmu_domain *smmu_domain = cookie;
1353 struct arm_smmu_device *smmu = smmu_domain->smmu;
1354 struct arm_smmu_cmdq_ent cmd = {
1355 .tlbi = {
1356 .leaf = leaf,
1357 .addr = iova,
1361 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1362 cmd.opcode = CMDQ_OP_TLBI_NH_VA;
1363 cmd.tlbi.asid = smmu_domain->s1_cfg.cd.asid;
1364 } else {
1365 cmd.opcode = CMDQ_OP_TLBI_S2_IPA;
1366 cmd.tlbi.vmid = smmu_domain->s2_cfg.vmid;
1369 do {
1370 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1371 cmd.tlbi.addr += granule;
1372 } while (size -= granule);
1375 static struct iommu_gather_ops arm_smmu_gather_ops = {
1376 .tlb_flush_all = arm_smmu_tlb_inv_context,
1377 .tlb_add_flush = arm_smmu_tlb_inv_range_nosync,
1378 .tlb_sync = arm_smmu_tlb_sync,
1381 /* IOMMU API */
1382 static bool arm_smmu_capable(enum iommu_cap cap)
1384 switch (cap) {
1385 case IOMMU_CAP_CACHE_COHERENCY:
1386 return true;
1387 case IOMMU_CAP_INTR_REMAP:
1388 return true; /* MSIs are just memory writes */
1389 case IOMMU_CAP_NOEXEC:
1390 return true;
1391 default:
1392 return false;
1396 static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
1398 struct arm_smmu_domain *smmu_domain;
1400 if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
1401 return NULL;
1404 * Allocate the domain and initialise some of its data structures.
1405 * We can't really do anything meaningful until we've added a
1406 * master.
1408 smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
1409 if (!smmu_domain)
1410 return NULL;
1412 if (type == IOMMU_DOMAIN_DMA &&
1413 iommu_get_dma_cookie(&smmu_domain->domain)) {
1414 kfree(smmu_domain);
1415 return NULL;
1418 mutex_init(&smmu_domain->init_mutex);
1419 spin_lock_init(&smmu_domain->pgtbl_lock);
1420 return &smmu_domain->domain;
1423 static int arm_smmu_bitmap_alloc(unsigned long *map, int span)
1425 int idx, size = 1 << span;
1427 do {
1428 idx = find_first_zero_bit(map, size);
1429 if (idx == size)
1430 return -ENOSPC;
1431 } while (test_and_set_bit(idx, map));
1433 return idx;
1436 static void arm_smmu_bitmap_free(unsigned long *map, int idx)
1438 clear_bit(idx, map);
1441 static void arm_smmu_domain_free(struct iommu_domain *domain)
1443 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1444 struct arm_smmu_device *smmu = smmu_domain->smmu;
1446 iommu_put_dma_cookie(domain);
1447 free_io_pgtable_ops(smmu_domain->pgtbl_ops);
1449 /* Free the CD and ASID, if we allocated them */
1450 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1451 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1453 if (cfg->cdptr) {
1454 dmam_free_coherent(smmu_domain->smmu->dev,
1455 CTXDESC_CD_DWORDS << 3,
1456 cfg->cdptr,
1457 cfg->cdptr_dma);
1459 arm_smmu_bitmap_free(smmu->asid_map, cfg->cd.asid);
1461 } else {
1462 struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1463 if (cfg->vmid)
1464 arm_smmu_bitmap_free(smmu->vmid_map, cfg->vmid);
1467 kfree(smmu_domain);
1470 static int arm_smmu_domain_finalise_s1(struct arm_smmu_domain *smmu_domain,
1471 struct io_pgtable_cfg *pgtbl_cfg)
1473 int ret;
1474 int asid;
1475 struct arm_smmu_device *smmu = smmu_domain->smmu;
1476 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1478 asid = arm_smmu_bitmap_alloc(smmu->asid_map, smmu->asid_bits);
1479 if (IS_ERR_VALUE(asid))
1480 return asid;
1482 cfg->cdptr = dmam_alloc_coherent(smmu->dev, CTXDESC_CD_DWORDS << 3,
1483 &cfg->cdptr_dma,
1484 GFP_KERNEL | __GFP_ZERO);
1485 if (!cfg->cdptr) {
1486 dev_warn(smmu->dev, "failed to allocate context descriptor\n");
1487 ret = -ENOMEM;
1488 goto out_free_asid;
1491 cfg->cd.asid = (u16)asid;
1492 cfg->cd.ttbr = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
1493 cfg->cd.tcr = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
1494 cfg->cd.mair = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
1495 return 0;
1497 out_free_asid:
1498 arm_smmu_bitmap_free(smmu->asid_map, asid);
1499 return ret;
1502 static int arm_smmu_domain_finalise_s2(struct arm_smmu_domain *smmu_domain,
1503 struct io_pgtable_cfg *pgtbl_cfg)
1505 int vmid;
1506 struct arm_smmu_device *smmu = smmu_domain->smmu;
1507 struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1509 vmid = arm_smmu_bitmap_alloc(smmu->vmid_map, smmu->vmid_bits);
1510 if (IS_ERR_VALUE(vmid))
1511 return vmid;
1513 cfg->vmid = (u16)vmid;
1514 cfg->vttbr = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
1515 cfg->vtcr = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
1516 return 0;
1519 static struct iommu_ops arm_smmu_ops;
1521 static int arm_smmu_domain_finalise(struct iommu_domain *domain)
1523 int ret;
1524 unsigned long ias, oas;
1525 enum io_pgtable_fmt fmt;
1526 struct io_pgtable_cfg pgtbl_cfg;
1527 struct io_pgtable_ops *pgtbl_ops;
1528 int (*finalise_stage_fn)(struct arm_smmu_domain *,
1529 struct io_pgtable_cfg *);
1530 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1531 struct arm_smmu_device *smmu = smmu_domain->smmu;
1533 /* Restrict the stage to what we can actually support */
1534 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
1535 smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
1536 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
1537 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1539 switch (smmu_domain->stage) {
1540 case ARM_SMMU_DOMAIN_S1:
1541 ias = VA_BITS;
1542 oas = smmu->ias;
1543 fmt = ARM_64_LPAE_S1;
1544 finalise_stage_fn = arm_smmu_domain_finalise_s1;
1545 break;
1546 case ARM_SMMU_DOMAIN_NESTED:
1547 case ARM_SMMU_DOMAIN_S2:
1548 ias = smmu->ias;
1549 oas = smmu->oas;
1550 fmt = ARM_64_LPAE_S2;
1551 finalise_stage_fn = arm_smmu_domain_finalise_s2;
1552 break;
1553 default:
1554 return -EINVAL;
1557 pgtbl_cfg = (struct io_pgtable_cfg) {
1558 .pgsize_bitmap = arm_smmu_ops.pgsize_bitmap,
1559 .ias = ias,
1560 .oas = oas,
1561 .tlb = &arm_smmu_gather_ops,
1562 .iommu_dev = smmu->dev,
1565 pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
1566 if (!pgtbl_ops)
1567 return -ENOMEM;
1569 arm_smmu_ops.pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
1570 smmu_domain->pgtbl_ops = pgtbl_ops;
1572 ret = finalise_stage_fn(smmu_domain, &pgtbl_cfg);
1573 if (IS_ERR_VALUE(ret))
1574 free_io_pgtable_ops(pgtbl_ops);
1576 return ret;
1579 static struct arm_smmu_group *arm_smmu_group_get(struct device *dev)
1581 struct iommu_group *group;
1582 struct arm_smmu_group *smmu_group;
1584 group = iommu_group_get(dev);
1585 if (!group)
1586 return NULL;
1588 smmu_group = iommu_group_get_iommudata(group);
1589 iommu_group_put(group);
1590 return smmu_group;
1593 static __le64 *arm_smmu_get_step_for_sid(struct arm_smmu_device *smmu, u32 sid)
1595 __le64 *step;
1596 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1598 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1599 struct arm_smmu_strtab_l1_desc *l1_desc;
1600 int idx;
1602 /* Two-level walk */
1603 idx = (sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS;
1604 l1_desc = &cfg->l1_desc[idx];
1605 idx = (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS;
1606 step = &l1_desc->l2ptr[idx];
1607 } else {
1608 /* Simple linear lookup */
1609 step = &cfg->strtab[sid * STRTAB_STE_DWORDS];
1612 return step;
1615 static int arm_smmu_install_ste_for_group(struct arm_smmu_group *smmu_group)
1617 int i;
1618 struct arm_smmu_domain *smmu_domain = smmu_group->domain;
1619 struct arm_smmu_strtab_ent *ste = &smmu_group->ste;
1620 struct arm_smmu_device *smmu = smmu_group->smmu;
1622 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1623 ste->s1_cfg = &smmu_domain->s1_cfg;
1624 ste->s2_cfg = NULL;
1625 arm_smmu_write_ctx_desc(smmu, ste->s1_cfg);
1626 } else {
1627 ste->s1_cfg = NULL;
1628 ste->s2_cfg = &smmu_domain->s2_cfg;
1631 for (i = 0; i < smmu_group->num_sids; ++i) {
1632 u32 sid = smmu_group->sids[i];
1633 __le64 *step = arm_smmu_get_step_for_sid(smmu, sid);
1635 arm_smmu_write_strtab_ent(smmu, sid, step, ste);
1638 return 0;
1641 static void arm_smmu_detach_dev(struct device *dev)
1643 struct arm_smmu_group *smmu_group = arm_smmu_group_get(dev);
1645 smmu_group->ste.bypass = true;
1646 if (IS_ERR_VALUE(arm_smmu_install_ste_for_group(smmu_group)))
1647 dev_warn(dev, "failed to install bypass STE\n");
1649 smmu_group->domain = NULL;
1652 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1654 int ret = 0;
1655 struct arm_smmu_device *smmu;
1656 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1657 struct arm_smmu_group *smmu_group = arm_smmu_group_get(dev);
1659 if (!smmu_group)
1660 return -ENOENT;
1662 /* Already attached to a different domain? */
1663 if (smmu_group->domain && smmu_group->domain != smmu_domain)
1664 arm_smmu_detach_dev(dev);
1666 smmu = smmu_group->smmu;
1667 mutex_lock(&smmu_domain->init_mutex);
1669 if (!smmu_domain->smmu) {
1670 smmu_domain->smmu = smmu;
1671 ret = arm_smmu_domain_finalise(domain);
1672 if (ret) {
1673 smmu_domain->smmu = NULL;
1674 goto out_unlock;
1676 } else if (smmu_domain->smmu != smmu) {
1677 dev_err(dev,
1678 "cannot attach to SMMU %s (upstream of %s)\n",
1679 dev_name(smmu_domain->smmu->dev),
1680 dev_name(smmu->dev));
1681 ret = -ENXIO;
1682 goto out_unlock;
1685 /* Group already attached to this domain? */
1686 if (smmu_group->domain)
1687 goto out_unlock;
1689 smmu_group->domain = smmu_domain;
1692 * FIXME: This should always be "false" once we have IOMMU-backed
1693 * DMA ops for all devices behind the SMMU.
1695 smmu_group->ste.bypass = domain->type == IOMMU_DOMAIN_DMA;
1697 ret = arm_smmu_install_ste_for_group(smmu_group);
1698 if (IS_ERR_VALUE(ret))
1699 smmu_group->domain = NULL;
1701 out_unlock:
1702 mutex_unlock(&smmu_domain->init_mutex);
1703 return ret;
1706 static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1707 phys_addr_t paddr, size_t size, int prot)
1709 int ret;
1710 unsigned long flags;
1711 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1712 struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1714 if (!ops)
1715 return -ENODEV;
1717 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1718 ret = ops->map(ops, iova, paddr, size, prot);
1719 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1720 return ret;
1723 static size_t
1724 arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova, size_t size)
1726 size_t ret;
1727 unsigned long flags;
1728 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1729 struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1731 if (!ops)
1732 return 0;
1734 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1735 ret = ops->unmap(ops, iova, size);
1736 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1737 return ret;
1740 static phys_addr_t
1741 arm_smmu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
1743 phys_addr_t ret;
1744 unsigned long flags;
1745 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1746 struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1748 if (!ops)
1749 return 0;
1751 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1752 ret = ops->iova_to_phys(ops, iova);
1753 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1755 return ret;
1758 static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *sidp)
1760 *(u32 *)sidp = alias;
1761 return 0; /* Continue walking */
1764 static void __arm_smmu_release_pci_iommudata(void *data)
1766 kfree(data);
1769 static struct arm_smmu_device *arm_smmu_get_for_pci_dev(struct pci_dev *pdev)
1771 struct device_node *of_node;
1772 struct platform_device *smmu_pdev;
1773 struct arm_smmu_device *smmu = NULL;
1774 struct pci_bus *bus = pdev->bus;
1776 /* Walk up to the root bus */
1777 while (!pci_is_root_bus(bus))
1778 bus = bus->parent;
1780 /* Follow the "iommus" phandle from the host controller */
1781 of_node = of_parse_phandle(bus->bridge->parent->of_node, "iommus", 0);
1782 if (!of_node)
1783 return NULL;
1785 /* See if we can find an SMMU corresponding to the phandle */
1786 smmu_pdev = of_find_device_by_node(of_node);
1787 if (smmu_pdev)
1788 smmu = platform_get_drvdata(smmu_pdev);
1790 of_node_put(of_node);
1791 return smmu;
1794 static bool arm_smmu_sid_in_range(struct arm_smmu_device *smmu, u32 sid)
1796 unsigned long limit = smmu->strtab_cfg.num_l1_ents;
1798 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
1799 limit *= 1UL << STRTAB_SPLIT;
1801 return sid < limit;
1804 static int arm_smmu_add_device(struct device *dev)
1806 int i, ret;
1807 u32 sid, *sids;
1808 struct pci_dev *pdev;
1809 struct iommu_group *group;
1810 struct arm_smmu_group *smmu_group;
1811 struct arm_smmu_device *smmu;
1813 /* We only support PCI, for now */
1814 if (!dev_is_pci(dev))
1815 return -ENODEV;
1817 pdev = to_pci_dev(dev);
1818 group = iommu_group_get_for_dev(dev);
1819 if (IS_ERR(group))
1820 return PTR_ERR(group);
1822 smmu_group = iommu_group_get_iommudata(group);
1823 if (!smmu_group) {
1824 smmu = arm_smmu_get_for_pci_dev(pdev);
1825 if (!smmu) {
1826 ret = -ENOENT;
1827 goto out_remove_dev;
1830 smmu_group = kzalloc(sizeof(*smmu_group), GFP_KERNEL);
1831 if (!smmu_group) {
1832 ret = -ENOMEM;
1833 goto out_remove_dev;
1836 smmu_group->ste.valid = true;
1837 smmu_group->smmu = smmu;
1838 iommu_group_set_iommudata(group, smmu_group,
1839 __arm_smmu_release_pci_iommudata);
1840 } else {
1841 smmu = smmu_group->smmu;
1844 /* Assume SID == RID until firmware tells us otherwise */
1845 pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid, &sid);
1846 for (i = 0; i < smmu_group->num_sids; ++i) {
1847 /* If we already know about this SID, then we're done */
1848 if (smmu_group->sids[i] == sid)
1849 goto out_put_group;
1852 /* Check the SID is in range of the SMMU and our stream table */
1853 if (!arm_smmu_sid_in_range(smmu, sid)) {
1854 ret = -ERANGE;
1855 goto out_remove_dev;
1858 /* Ensure l2 strtab is initialised */
1859 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1860 ret = arm_smmu_init_l2_strtab(smmu, sid);
1861 if (ret)
1862 goto out_remove_dev;
1865 /* Resize the SID array for the group */
1866 smmu_group->num_sids++;
1867 sids = krealloc(smmu_group->sids, smmu_group->num_sids * sizeof(*sids),
1868 GFP_KERNEL);
1869 if (!sids) {
1870 smmu_group->num_sids--;
1871 ret = -ENOMEM;
1872 goto out_remove_dev;
1875 /* Add the new SID */
1876 sids[smmu_group->num_sids - 1] = sid;
1877 smmu_group->sids = sids;
1879 out_put_group:
1880 iommu_group_put(group);
1881 return 0;
1883 out_remove_dev:
1884 iommu_group_remove_device(dev);
1885 iommu_group_put(group);
1886 return ret;
1889 static void arm_smmu_remove_device(struct device *dev)
1891 iommu_group_remove_device(dev);
1894 static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
1895 enum iommu_attr attr, void *data)
1897 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1899 switch (attr) {
1900 case DOMAIN_ATTR_NESTING:
1901 *(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
1902 return 0;
1903 default:
1904 return -ENODEV;
1908 static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
1909 enum iommu_attr attr, void *data)
1911 int ret = 0;
1912 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1914 mutex_lock(&smmu_domain->init_mutex);
1916 switch (attr) {
1917 case DOMAIN_ATTR_NESTING:
1918 if (smmu_domain->smmu) {
1919 ret = -EPERM;
1920 goto out_unlock;
1923 if (*(int *)data)
1924 smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
1925 else
1926 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1928 break;
1929 default:
1930 ret = -ENODEV;
1933 out_unlock:
1934 mutex_unlock(&smmu_domain->init_mutex);
1935 return ret;
1938 static struct iommu_ops arm_smmu_ops = {
1939 .capable = arm_smmu_capable,
1940 .domain_alloc = arm_smmu_domain_alloc,
1941 .domain_free = arm_smmu_domain_free,
1942 .attach_dev = arm_smmu_attach_dev,
1943 .map = arm_smmu_map,
1944 .unmap = arm_smmu_unmap,
1945 .iova_to_phys = arm_smmu_iova_to_phys,
1946 .add_device = arm_smmu_add_device,
1947 .remove_device = arm_smmu_remove_device,
1948 .device_group = pci_device_group,
1949 .domain_get_attr = arm_smmu_domain_get_attr,
1950 .domain_set_attr = arm_smmu_domain_set_attr,
1951 .pgsize_bitmap = -1UL, /* Restricted during device attach */
1954 /* Probing and initialisation functions */
1955 static int arm_smmu_init_one_queue(struct arm_smmu_device *smmu,
1956 struct arm_smmu_queue *q,
1957 unsigned long prod_off,
1958 unsigned long cons_off,
1959 size_t dwords)
1961 size_t qsz = ((1 << q->max_n_shift) * dwords) << 3;
1963 q->base = dmam_alloc_coherent(smmu->dev, qsz, &q->base_dma, GFP_KERNEL);
1964 if (!q->base) {
1965 dev_err(smmu->dev, "failed to allocate queue (0x%zx bytes)\n",
1966 qsz);
1967 return -ENOMEM;
1970 q->prod_reg = smmu->base + prod_off;
1971 q->cons_reg = smmu->base + cons_off;
1972 q->ent_dwords = dwords;
1974 q->q_base = Q_BASE_RWA;
1975 q->q_base |= q->base_dma & Q_BASE_ADDR_MASK << Q_BASE_ADDR_SHIFT;
1976 q->q_base |= (q->max_n_shift & Q_BASE_LOG2SIZE_MASK)
1977 << Q_BASE_LOG2SIZE_SHIFT;
1979 q->prod = q->cons = 0;
1980 return 0;
1983 static int arm_smmu_init_queues(struct arm_smmu_device *smmu)
1985 int ret;
1987 /* cmdq */
1988 spin_lock_init(&smmu->cmdq.lock);
1989 ret = arm_smmu_init_one_queue(smmu, &smmu->cmdq.q, ARM_SMMU_CMDQ_PROD,
1990 ARM_SMMU_CMDQ_CONS, CMDQ_ENT_DWORDS);
1991 if (ret)
1992 return ret;
1994 /* evtq */
1995 ret = arm_smmu_init_one_queue(smmu, &smmu->evtq.q, ARM_SMMU_EVTQ_PROD,
1996 ARM_SMMU_EVTQ_CONS, EVTQ_ENT_DWORDS);
1997 if (ret)
1998 return ret;
2000 /* priq */
2001 if (!(smmu->features & ARM_SMMU_FEAT_PRI))
2002 return 0;
2004 return arm_smmu_init_one_queue(smmu, &smmu->priq.q, ARM_SMMU_PRIQ_PROD,
2005 ARM_SMMU_PRIQ_CONS, PRIQ_ENT_DWORDS);
2008 static int arm_smmu_init_l1_strtab(struct arm_smmu_device *smmu)
2010 unsigned int i;
2011 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2012 size_t size = sizeof(*cfg->l1_desc) * cfg->num_l1_ents;
2013 void *strtab = smmu->strtab_cfg.strtab;
2015 cfg->l1_desc = devm_kzalloc(smmu->dev, size, GFP_KERNEL);
2016 if (!cfg->l1_desc) {
2017 dev_err(smmu->dev, "failed to allocate l1 stream table desc\n");
2018 return -ENOMEM;
2021 for (i = 0; i < cfg->num_l1_ents; ++i) {
2022 arm_smmu_write_strtab_l1_desc(strtab, &cfg->l1_desc[i]);
2023 strtab += STRTAB_L1_DESC_DWORDS << 3;
2026 return 0;
2029 static int arm_smmu_init_strtab_2lvl(struct arm_smmu_device *smmu)
2031 void *strtab;
2032 u64 reg;
2033 u32 size, l1size;
2034 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2037 * If we can resolve everything with a single L2 table, then we
2038 * just need a single L1 descriptor. Otherwise, calculate the L1
2039 * size, capped to the SIDSIZE.
2041 if (smmu->sid_bits < STRTAB_SPLIT) {
2042 size = 0;
2043 } else {
2044 size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3);
2045 size = min(size, smmu->sid_bits - STRTAB_SPLIT);
2047 cfg->num_l1_ents = 1 << size;
2049 size += STRTAB_SPLIT;
2050 if (size < smmu->sid_bits)
2051 dev_warn(smmu->dev,
2052 "2-level strtab only covers %u/%u bits of SID\n",
2053 size, smmu->sid_bits);
2055 l1size = cfg->num_l1_ents * (STRTAB_L1_DESC_DWORDS << 3);
2056 strtab = dmam_alloc_coherent(smmu->dev, l1size, &cfg->strtab_dma,
2057 GFP_KERNEL | __GFP_ZERO);
2058 if (!strtab) {
2059 dev_err(smmu->dev,
2060 "failed to allocate l1 stream table (%u bytes)\n",
2061 size);
2062 return -ENOMEM;
2064 cfg->strtab = strtab;
2066 /* Configure strtab_base_cfg for 2 levels */
2067 reg = STRTAB_BASE_CFG_FMT_2LVL;
2068 reg |= (size & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2069 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2070 reg |= (STRTAB_SPLIT & STRTAB_BASE_CFG_SPLIT_MASK)
2071 << STRTAB_BASE_CFG_SPLIT_SHIFT;
2072 cfg->strtab_base_cfg = reg;
2074 return arm_smmu_init_l1_strtab(smmu);
2077 static int arm_smmu_init_strtab_linear(struct arm_smmu_device *smmu)
2079 void *strtab;
2080 u64 reg;
2081 u32 size;
2082 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2084 size = (1 << smmu->sid_bits) * (STRTAB_STE_DWORDS << 3);
2085 strtab = dmam_alloc_coherent(smmu->dev, size, &cfg->strtab_dma,
2086 GFP_KERNEL | __GFP_ZERO);
2087 if (!strtab) {
2088 dev_err(smmu->dev,
2089 "failed to allocate linear stream table (%u bytes)\n",
2090 size);
2091 return -ENOMEM;
2093 cfg->strtab = strtab;
2094 cfg->num_l1_ents = 1 << smmu->sid_bits;
2096 /* Configure strtab_base_cfg for a linear table covering all SIDs */
2097 reg = STRTAB_BASE_CFG_FMT_LINEAR;
2098 reg |= (smmu->sid_bits & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2099 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2100 cfg->strtab_base_cfg = reg;
2102 arm_smmu_init_bypass_stes(strtab, cfg->num_l1_ents);
2103 return 0;
2106 static int arm_smmu_init_strtab(struct arm_smmu_device *smmu)
2108 u64 reg;
2109 int ret;
2111 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
2112 ret = arm_smmu_init_strtab_2lvl(smmu);
2113 else
2114 ret = arm_smmu_init_strtab_linear(smmu);
2116 if (ret)
2117 return ret;
2119 /* Set the strtab base address */
2120 reg = smmu->strtab_cfg.strtab_dma &
2121 STRTAB_BASE_ADDR_MASK << STRTAB_BASE_ADDR_SHIFT;
2122 reg |= STRTAB_BASE_RA;
2123 smmu->strtab_cfg.strtab_base = reg;
2125 /* Allocate the first VMID for stage-2 bypass STEs */
2126 set_bit(0, smmu->vmid_map);
2127 return 0;
2130 static int arm_smmu_init_structures(struct arm_smmu_device *smmu)
2132 int ret;
2134 ret = arm_smmu_init_queues(smmu);
2135 if (ret)
2136 return ret;
2138 return arm_smmu_init_strtab(smmu);
2141 static int arm_smmu_write_reg_sync(struct arm_smmu_device *smmu, u32 val,
2142 unsigned int reg_off, unsigned int ack_off)
2144 u32 reg;
2146 writel_relaxed(val, smmu->base + reg_off);
2147 return readl_relaxed_poll_timeout(smmu->base + ack_off, reg, reg == val,
2148 1, ARM_SMMU_POLL_TIMEOUT_US);
2151 static void arm_smmu_free_msis(void *data)
2153 struct device *dev = data;
2154 platform_msi_domain_free_irqs(dev);
2157 static void arm_smmu_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
2159 phys_addr_t doorbell;
2160 struct device *dev = msi_desc_to_dev(desc);
2161 struct arm_smmu_device *smmu = dev_get_drvdata(dev);
2162 phys_addr_t *cfg = arm_smmu_msi_cfg[desc->platform.msi_index];
2164 doorbell = (((u64)msg->address_hi) << 32) | msg->address_lo;
2165 doorbell &= MSI_CFG0_ADDR_MASK << MSI_CFG0_ADDR_SHIFT;
2167 writeq_relaxed(doorbell, smmu->base + cfg[0]);
2168 writel_relaxed(msg->data, smmu->base + cfg[1]);
2169 writel_relaxed(MSI_CFG2_MEMATTR_DEVICE_nGnRE, smmu->base + cfg[2]);
2172 static void arm_smmu_setup_msis(struct arm_smmu_device *smmu)
2174 struct msi_desc *desc;
2175 int ret, nvec = ARM_SMMU_MAX_MSIS;
2176 struct device *dev = smmu->dev;
2178 /* Clear the MSI address regs */
2179 writeq_relaxed(0, smmu->base + ARM_SMMU_GERROR_IRQ_CFG0);
2180 writeq_relaxed(0, smmu->base + ARM_SMMU_EVTQ_IRQ_CFG0);
2182 if (smmu->features & ARM_SMMU_FEAT_PRI)
2183 writeq_relaxed(0, smmu->base + ARM_SMMU_PRIQ_IRQ_CFG0);
2184 else
2185 nvec--;
2187 if (!(smmu->features & ARM_SMMU_FEAT_MSI))
2188 return;
2190 /* Allocate MSIs for evtq, gerror and priq. Ignore cmdq */
2191 ret = platform_msi_domain_alloc_irqs(dev, nvec, arm_smmu_write_msi_msg);
2192 if (ret) {
2193 dev_warn(dev, "failed to allocate MSIs\n");
2194 return;
2197 for_each_msi_entry(desc, dev) {
2198 switch (desc->platform.msi_index) {
2199 case EVTQ_MSI_INDEX:
2200 smmu->evtq.q.irq = desc->irq;
2201 break;
2202 case GERROR_MSI_INDEX:
2203 smmu->gerr_irq = desc->irq;
2204 break;
2205 case PRIQ_MSI_INDEX:
2206 smmu->priq.q.irq = desc->irq;
2207 break;
2208 default: /* Unknown */
2209 continue;
2213 /* Add callback to free MSIs on teardown */
2214 devm_add_action(dev, arm_smmu_free_msis, dev);
2217 static int arm_smmu_setup_irqs(struct arm_smmu_device *smmu)
2219 int ret, irq;
2220 u32 irqen_flags = IRQ_CTRL_EVTQ_IRQEN | IRQ_CTRL_GERROR_IRQEN;
2222 /* Disable IRQs first */
2223 ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_IRQ_CTRL,
2224 ARM_SMMU_IRQ_CTRLACK);
2225 if (ret) {
2226 dev_err(smmu->dev, "failed to disable irqs\n");
2227 return ret;
2230 arm_smmu_setup_msis(smmu);
2232 /* Request interrupt lines */
2233 irq = smmu->evtq.q.irq;
2234 if (irq) {
2235 ret = devm_request_threaded_irq(smmu->dev, irq,
2236 arm_smmu_evtq_handler,
2237 arm_smmu_evtq_thread,
2238 0, "arm-smmu-v3-evtq", smmu);
2239 if (IS_ERR_VALUE(ret))
2240 dev_warn(smmu->dev, "failed to enable evtq irq\n");
2243 irq = smmu->cmdq.q.irq;
2244 if (irq) {
2245 ret = devm_request_irq(smmu->dev, irq,
2246 arm_smmu_cmdq_sync_handler, 0,
2247 "arm-smmu-v3-cmdq-sync", smmu);
2248 if (IS_ERR_VALUE(ret))
2249 dev_warn(smmu->dev, "failed to enable cmdq-sync irq\n");
2252 irq = smmu->gerr_irq;
2253 if (irq) {
2254 ret = devm_request_irq(smmu->dev, irq, arm_smmu_gerror_handler,
2255 0, "arm-smmu-v3-gerror", smmu);
2256 if (IS_ERR_VALUE(ret))
2257 dev_warn(smmu->dev, "failed to enable gerror irq\n");
2260 if (smmu->features & ARM_SMMU_FEAT_PRI) {
2261 irq = smmu->priq.q.irq;
2262 if (irq) {
2263 ret = devm_request_threaded_irq(smmu->dev, irq,
2264 arm_smmu_priq_handler,
2265 arm_smmu_priq_thread,
2266 0, "arm-smmu-v3-priq",
2267 smmu);
2268 if (IS_ERR_VALUE(ret))
2269 dev_warn(smmu->dev,
2270 "failed to enable priq irq\n");
2271 else
2272 irqen_flags |= IRQ_CTRL_PRIQ_IRQEN;
2276 /* Enable interrupt generation on the SMMU */
2277 ret = arm_smmu_write_reg_sync(smmu, irqen_flags,
2278 ARM_SMMU_IRQ_CTRL, ARM_SMMU_IRQ_CTRLACK);
2279 if (ret)
2280 dev_warn(smmu->dev, "failed to enable irqs\n");
2282 return 0;
2285 static int arm_smmu_device_disable(struct arm_smmu_device *smmu)
2287 int ret;
2289 ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_CR0, ARM_SMMU_CR0ACK);
2290 if (ret)
2291 dev_err(smmu->dev, "failed to clear cr0\n");
2293 return ret;
2296 static int arm_smmu_device_reset(struct arm_smmu_device *smmu)
2298 int ret;
2299 u32 reg, enables;
2300 struct arm_smmu_cmdq_ent cmd;
2302 /* Clear CR0 and sync (disables SMMU and queue processing) */
2303 reg = readl_relaxed(smmu->base + ARM_SMMU_CR0);
2304 if (reg & CR0_SMMUEN)
2305 dev_warn(smmu->dev, "SMMU currently enabled! Resetting...\n");
2307 ret = arm_smmu_device_disable(smmu);
2308 if (ret)
2309 return ret;
2311 /* CR1 (table and queue memory attributes) */
2312 reg = (CR1_SH_ISH << CR1_TABLE_SH_SHIFT) |
2313 (CR1_CACHE_WB << CR1_TABLE_OC_SHIFT) |
2314 (CR1_CACHE_WB << CR1_TABLE_IC_SHIFT) |
2315 (CR1_SH_ISH << CR1_QUEUE_SH_SHIFT) |
2316 (CR1_CACHE_WB << CR1_QUEUE_OC_SHIFT) |
2317 (CR1_CACHE_WB << CR1_QUEUE_IC_SHIFT);
2318 writel_relaxed(reg, smmu->base + ARM_SMMU_CR1);
2320 /* CR2 (random crap) */
2321 reg = CR2_PTM | CR2_RECINVSID | CR2_E2H;
2322 writel_relaxed(reg, smmu->base + ARM_SMMU_CR2);
2324 /* Stream table */
2325 writeq_relaxed(smmu->strtab_cfg.strtab_base,
2326 smmu->base + ARM_SMMU_STRTAB_BASE);
2327 writel_relaxed(smmu->strtab_cfg.strtab_base_cfg,
2328 smmu->base + ARM_SMMU_STRTAB_BASE_CFG);
2330 /* Command queue */
2331 writeq_relaxed(smmu->cmdq.q.q_base, smmu->base + ARM_SMMU_CMDQ_BASE);
2332 writel_relaxed(smmu->cmdq.q.prod, smmu->base + ARM_SMMU_CMDQ_PROD);
2333 writel_relaxed(smmu->cmdq.q.cons, smmu->base + ARM_SMMU_CMDQ_CONS);
2335 enables = CR0_CMDQEN;
2336 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2337 ARM_SMMU_CR0ACK);
2338 if (ret) {
2339 dev_err(smmu->dev, "failed to enable command queue\n");
2340 return ret;
2343 /* Invalidate any cached configuration */
2344 cmd.opcode = CMDQ_OP_CFGI_ALL;
2345 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2346 cmd.opcode = CMDQ_OP_CMD_SYNC;
2347 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2349 /* Invalidate any stale TLB entries */
2350 if (smmu->features & ARM_SMMU_FEAT_HYP) {
2351 cmd.opcode = CMDQ_OP_TLBI_EL2_ALL;
2352 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2355 cmd.opcode = CMDQ_OP_TLBI_NSNH_ALL;
2356 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2357 cmd.opcode = CMDQ_OP_CMD_SYNC;
2358 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2360 /* Event queue */
2361 writeq_relaxed(smmu->evtq.q.q_base, smmu->base + ARM_SMMU_EVTQ_BASE);
2362 writel_relaxed(smmu->evtq.q.prod, smmu->base + ARM_SMMU_EVTQ_PROD);
2363 writel_relaxed(smmu->evtq.q.cons, smmu->base + ARM_SMMU_EVTQ_CONS);
2365 enables |= CR0_EVTQEN;
2366 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2367 ARM_SMMU_CR0ACK);
2368 if (ret) {
2369 dev_err(smmu->dev, "failed to enable event queue\n");
2370 return ret;
2373 /* PRI queue */
2374 if (smmu->features & ARM_SMMU_FEAT_PRI) {
2375 writeq_relaxed(smmu->priq.q.q_base,
2376 smmu->base + ARM_SMMU_PRIQ_BASE);
2377 writel_relaxed(smmu->priq.q.prod,
2378 smmu->base + ARM_SMMU_PRIQ_PROD);
2379 writel_relaxed(smmu->priq.q.cons,
2380 smmu->base + ARM_SMMU_PRIQ_CONS);
2382 enables |= CR0_PRIQEN;
2383 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2384 ARM_SMMU_CR0ACK);
2385 if (ret) {
2386 dev_err(smmu->dev, "failed to enable PRI queue\n");
2387 return ret;
2391 ret = arm_smmu_setup_irqs(smmu);
2392 if (ret) {
2393 dev_err(smmu->dev, "failed to setup irqs\n");
2394 return ret;
2397 /* Enable the SMMU interface */
2398 enables |= CR0_SMMUEN;
2399 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2400 ARM_SMMU_CR0ACK);
2401 if (ret) {
2402 dev_err(smmu->dev, "failed to enable SMMU interface\n");
2403 return ret;
2406 return 0;
2409 static int arm_smmu_device_probe(struct arm_smmu_device *smmu)
2411 u32 reg;
2412 bool coherent;
2413 unsigned long pgsize_bitmap = 0;
2415 /* IDR0 */
2416 reg = readl_relaxed(smmu->base + ARM_SMMU_IDR0);
2418 /* 2-level structures */
2419 if ((reg & IDR0_ST_LVL_MASK << IDR0_ST_LVL_SHIFT) == IDR0_ST_LVL_2LVL)
2420 smmu->features |= ARM_SMMU_FEAT_2_LVL_STRTAB;
2422 if (reg & IDR0_CD2L)
2423 smmu->features |= ARM_SMMU_FEAT_2_LVL_CDTAB;
2426 * Translation table endianness.
2427 * We currently require the same endianness as the CPU, but this
2428 * could be changed later by adding a new IO_PGTABLE_QUIRK.
2430 switch (reg & IDR0_TTENDIAN_MASK << IDR0_TTENDIAN_SHIFT) {
2431 case IDR0_TTENDIAN_MIXED:
2432 smmu->features |= ARM_SMMU_FEAT_TT_LE | ARM_SMMU_FEAT_TT_BE;
2433 break;
2434 #ifdef __BIG_ENDIAN
2435 case IDR0_TTENDIAN_BE:
2436 smmu->features |= ARM_SMMU_FEAT_TT_BE;
2437 break;
2438 #else
2439 case IDR0_TTENDIAN_LE:
2440 smmu->features |= ARM_SMMU_FEAT_TT_LE;
2441 break;
2442 #endif
2443 default:
2444 dev_err(smmu->dev, "unknown/unsupported TT endianness!\n");
2445 return -ENXIO;
2448 /* Boolean feature flags */
2449 if (IS_ENABLED(CONFIG_PCI_PRI) && reg & IDR0_PRI)
2450 smmu->features |= ARM_SMMU_FEAT_PRI;
2452 if (IS_ENABLED(CONFIG_PCI_ATS) && reg & IDR0_ATS)
2453 smmu->features |= ARM_SMMU_FEAT_ATS;
2455 if (reg & IDR0_SEV)
2456 smmu->features |= ARM_SMMU_FEAT_SEV;
2458 if (reg & IDR0_MSI)
2459 smmu->features |= ARM_SMMU_FEAT_MSI;
2461 if (reg & IDR0_HYP)
2462 smmu->features |= ARM_SMMU_FEAT_HYP;
2465 * The dma-coherent property is used in preference to the ID
2466 * register, but warn on mismatch.
2468 coherent = of_dma_is_coherent(smmu->dev->of_node);
2469 if (coherent)
2470 smmu->features |= ARM_SMMU_FEAT_COHERENCY;
2472 if (!!(reg & IDR0_COHACC) != coherent)
2473 dev_warn(smmu->dev, "IDR0.COHACC overridden by dma-coherent property (%s)\n",
2474 coherent ? "true" : "false");
2476 switch (reg & IDR0_STALL_MODEL_MASK << IDR0_STALL_MODEL_SHIFT) {
2477 case IDR0_STALL_MODEL_STALL:
2478 /* Fallthrough */
2479 case IDR0_STALL_MODEL_FORCE:
2480 smmu->features |= ARM_SMMU_FEAT_STALLS;
2483 if (reg & IDR0_S1P)
2484 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
2486 if (reg & IDR0_S2P)
2487 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
2489 if (!(reg & (IDR0_S1P | IDR0_S2P))) {
2490 dev_err(smmu->dev, "no translation support!\n");
2491 return -ENXIO;
2494 /* We only support the AArch64 table format at present */
2495 switch (reg & IDR0_TTF_MASK << IDR0_TTF_SHIFT) {
2496 case IDR0_TTF_AARCH32_64:
2497 smmu->ias = 40;
2498 /* Fallthrough */
2499 case IDR0_TTF_AARCH64:
2500 break;
2501 default:
2502 dev_err(smmu->dev, "AArch64 table format not supported!\n");
2503 return -ENXIO;
2506 /* ASID/VMID sizes */
2507 smmu->asid_bits = reg & IDR0_ASID16 ? 16 : 8;
2508 smmu->vmid_bits = reg & IDR0_VMID16 ? 16 : 8;
2510 /* IDR1 */
2511 reg = readl_relaxed(smmu->base + ARM_SMMU_IDR1);
2512 if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) {
2513 dev_err(smmu->dev, "embedded implementation not supported\n");
2514 return -ENXIO;
2517 /* Queue sizes, capped at 4k */
2518 smmu->cmdq.q.max_n_shift = min((u32)CMDQ_MAX_SZ_SHIFT,
2519 reg >> IDR1_CMDQ_SHIFT & IDR1_CMDQ_MASK);
2520 if (!smmu->cmdq.q.max_n_shift) {
2521 /* Odd alignment restrictions on the base, so ignore for now */
2522 dev_err(smmu->dev, "unit-length command queue not supported\n");
2523 return -ENXIO;
2526 smmu->evtq.q.max_n_shift = min((u32)EVTQ_MAX_SZ_SHIFT,
2527 reg >> IDR1_EVTQ_SHIFT & IDR1_EVTQ_MASK);
2528 smmu->priq.q.max_n_shift = min((u32)PRIQ_MAX_SZ_SHIFT,
2529 reg >> IDR1_PRIQ_SHIFT & IDR1_PRIQ_MASK);
2531 /* SID/SSID sizes */
2532 smmu->ssid_bits = reg >> IDR1_SSID_SHIFT & IDR1_SSID_MASK;
2533 smmu->sid_bits = reg >> IDR1_SID_SHIFT & IDR1_SID_MASK;
2535 /* IDR5 */
2536 reg = readl_relaxed(smmu->base + ARM_SMMU_IDR5);
2538 /* Maximum number of outstanding stalls */
2539 smmu->evtq.max_stalls = reg >> IDR5_STALL_MAX_SHIFT
2540 & IDR5_STALL_MAX_MASK;
2542 /* Page sizes */
2543 if (reg & IDR5_GRAN64K)
2544 pgsize_bitmap |= SZ_64K | SZ_512M;
2545 if (reg & IDR5_GRAN16K)
2546 pgsize_bitmap |= SZ_16K | SZ_32M;
2547 if (reg & IDR5_GRAN4K)
2548 pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
2550 arm_smmu_ops.pgsize_bitmap &= pgsize_bitmap;
2552 /* Output address size */
2553 switch (reg & IDR5_OAS_MASK << IDR5_OAS_SHIFT) {
2554 case IDR5_OAS_32_BIT:
2555 smmu->oas = 32;
2556 break;
2557 case IDR5_OAS_36_BIT:
2558 smmu->oas = 36;
2559 break;
2560 case IDR5_OAS_40_BIT:
2561 smmu->oas = 40;
2562 break;
2563 case IDR5_OAS_42_BIT:
2564 smmu->oas = 42;
2565 break;
2566 case IDR5_OAS_44_BIT:
2567 smmu->oas = 44;
2568 break;
2569 default:
2570 dev_info(smmu->dev,
2571 "unknown output address size. Truncating to 48-bit\n");
2572 /* Fallthrough */
2573 case IDR5_OAS_48_BIT:
2574 smmu->oas = 48;
2577 /* Set the DMA mask for our table walker */
2578 if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(smmu->oas)))
2579 dev_warn(smmu->dev,
2580 "failed to set DMA mask for table walker\n");
2582 smmu->ias = max(smmu->ias, smmu->oas);
2584 dev_info(smmu->dev, "ias %lu-bit, oas %lu-bit (features 0x%08x)\n",
2585 smmu->ias, smmu->oas, smmu->features);
2586 return 0;
2589 static int arm_smmu_device_dt_probe(struct platform_device *pdev)
2591 int irq, ret;
2592 struct resource *res;
2593 struct arm_smmu_device *smmu;
2594 struct device *dev = &pdev->dev;
2596 smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
2597 if (!smmu) {
2598 dev_err(dev, "failed to allocate arm_smmu_device\n");
2599 return -ENOMEM;
2601 smmu->dev = dev;
2603 /* Base address */
2604 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2605 if (resource_size(res) + 1 < SZ_128K) {
2606 dev_err(dev, "MMIO region too small (%pr)\n", res);
2607 return -EINVAL;
2610 smmu->base = devm_ioremap_resource(dev, res);
2611 if (IS_ERR(smmu->base))
2612 return PTR_ERR(smmu->base);
2614 /* Interrupt lines */
2615 irq = platform_get_irq_byname(pdev, "eventq");
2616 if (irq > 0)
2617 smmu->evtq.q.irq = irq;
2619 irq = platform_get_irq_byname(pdev, "priq");
2620 if (irq > 0)
2621 smmu->priq.q.irq = irq;
2623 irq = platform_get_irq_byname(pdev, "cmdq-sync");
2624 if (irq > 0)
2625 smmu->cmdq.q.irq = irq;
2627 irq = platform_get_irq_byname(pdev, "gerror");
2628 if (irq > 0)
2629 smmu->gerr_irq = irq;
2631 parse_driver_options(smmu);
2633 /* Probe the h/w */
2634 ret = arm_smmu_device_probe(smmu);
2635 if (ret)
2636 return ret;
2638 /* Initialise in-memory data structures */
2639 ret = arm_smmu_init_structures(smmu);
2640 if (ret)
2641 return ret;
2643 /* Record our private device structure */
2644 platform_set_drvdata(pdev, smmu);
2646 /* Reset the device */
2647 return arm_smmu_device_reset(smmu);
2650 static int arm_smmu_device_remove(struct platform_device *pdev)
2652 struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
2654 arm_smmu_device_disable(smmu);
2655 return 0;
2658 static struct of_device_id arm_smmu_of_match[] = {
2659 { .compatible = "arm,smmu-v3", },
2660 { },
2662 MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
2664 static struct platform_driver arm_smmu_driver = {
2665 .driver = {
2666 .name = "arm-smmu-v3",
2667 .of_match_table = of_match_ptr(arm_smmu_of_match),
2669 .probe = arm_smmu_device_dt_probe,
2670 .remove = arm_smmu_device_remove,
2673 static int __init arm_smmu_init(void)
2675 struct device_node *np;
2676 int ret;
2678 np = of_find_matching_node(NULL, arm_smmu_of_match);
2679 if (!np)
2680 return 0;
2682 of_node_put(np);
2684 ret = platform_driver_register(&arm_smmu_driver);
2685 if (ret)
2686 return ret;
2688 return bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
2691 static void __exit arm_smmu_exit(void)
2693 return platform_driver_unregister(&arm_smmu_driver);
2696 subsys_initcall(arm_smmu_init);
2697 module_exit(arm_smmu_exit);
2699 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMUv3 implementations");
2700 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
2701 MODULE_LICENSE("GPL v2");