tcp: fix lockdep splat in tcp_snd_una_update()
[linux/fpc-iii.git] / drivers / media / i2c / smiapp / smiapp-core.c
bloba215efe7a8bac0ec3972d41e0b23cd7bffd336d2
1 /*
2 * drivers/media/i2c/smiapp/smiapp-core.c
4 * Generic driver for SMIA/SMIA++ compliant camera modules
6 * Copyright (C) 2010--2012 Nokia Corporation
7 * Contact: Sakari Ailus <sakari.ailus@iki.fi>
9 * Based on smiapp driver by Vimarsh Zutshi
10 * Based on jt8ev1.c by Vimarsh Zutshi
11 * Based on smia-sensor.c by Tuukka Toivonen <tuukkat76@gmail.com>
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License
15 * version 2 as published by the Free Software Foundation.
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
23 #include <linux/clk.h>
24 #include <linux/delay.h>
25 #include <linux/device.h>
26 #include <linux/gpio.h>
27 #include <linux/module.h>
28 #include <linux/of_gpio.h>
29 #include <linux/regulator/consumer.h>
30 #include <linux/slab.h>
31 #include <linux/smiapp.h>
32 #include <linux/v4l2-mediabus.h>
33 #include <media/v4l2-device.h>
34 #include <media/v4l2-of.h>
36 #include "smiapp.h"
38 #define SMIAPP_ALIGN_DIM(dim, flags) \
39 ((flags) & V4L2_SEL_FLAG_GE \
40 ? ALIGN((dim), 2) \
41 : (dim) & ~1)
44 * smiapp_module_idents - supported camera modules
46 static const struct smiapp_module_ident smiapp_module_idents[] = {
47 SMIAPP_IDENT_L(0x01, 0x022b, -1, "vs6555"),
48 SMIAPP_IDENT_L(0x01, 0x022e, -1, "vw6558"),
49 SMIAPP_IDENT_L(0x07, 0x7698, -1, "ovm7698"),
50 SMIAPP_IDENT_L(0x0b, 0x4242, -1, "smiapp-003"),
51 SMIAPP_IDENT_L(0x0c, 0x208a, -1, "tcm8330md"),
52 SMIAPP_IDENT_LQ(0x0c, 0x2134, -1, "tcm8500md", &smiapp_tcm8500md_quirk),
53 SMIAPP_IDENT_L(0x0c, 0x213e, -1, "et8en2"),
54 SMIAPP_IDENT_L(0x0c, 0x2184, -1, "tcm8580md"),
55 SMIAPP_IDENT_LQ(0x0c, 0x560f, -1, "jt8ew9", &smiapp_jt8ew9_quirk),
56 SMIAPP_IDENT_LQ(0x10, 0x4141, -1, "jt8ev1", &smiapp_jt8ev1_quirk),
57 SMIAPP_IDENT_LQ(0x10, 0x4241, -1, "imx125es", &smiapp_imx125es_quirk),
62 * Dynamic Capability Identification
66 static int smiapp_read_frame_fmt(struct smiapp_sensor *sensor)
68 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
69 u32 fmt_model_type, fmt_model_subtype, ncol_desc, nrow_desc;
70 unsigned int i;
71 int rval;
72 int line_count = 0;
73 int embedded_start = -1, embedded_end = -1;
74 int image_start = 0;
76 rval = smiapp_read(sensor, SMIAPP_REG_U8_FRAME_FORMAT_MODEL_TYPE,
77 &fmt_model_type);
78 if (rval)
79 return rval;
81 rval = smiapp_read(sensor, SMIAPP_REG_U8_FRAME_FORMAT_MODEL_SUBTYPE,
82 &fmt_model_subtype);
83 if (rval)
84 return rval;
86 ncol_desc = (fmt_model_subtype
87 & SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NCOLS_MASK)
88 >> SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NCOLS_SHIFT;
89 nrow_desc = fmt_model_subtype
90 & SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NROWS_MASK;
92 dev_dbg(&client->dev, "format_model_type %s\n",
93 fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_2BYTE
94 ? "2 byte" :
95 fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_4BYTE
96 ? "4 byte" : "is simply bad");
98 for (i = 0; i < ncol_desc + nrow_desc; i++) {
99 u32 desc;
100 u32 pixelcode;
101 u32 pixels;
102 char *which;
103 char *what;
105 if (fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_2BYTE) {
106 rval = smiapp_read(
107 sensor,
108 SMIAPP_REG_U16_FRAME_FORMAT_DESCRIPTOR_2(i),
109 &desc);
110 if (rval)
111 return rval;
113 pixelcode =
114 (desc
115 & SMIAPP_FRAME_FORMAT_DESC_2_PIXELCODE_MASK)
116 >> SMIAPP_FRAME_FORMAT_DESC_2_PIXELCODE_SHIFT;
117 pixels = desc & SMIAPP_FRAME_FORMAT_DESC_2_PIXELS_MASK;
118 } else if (fmt_model_type
119 == SMIAPP_FRAME_FORMAT_MODEL_TYPE_4BYTE) {
120 rval = smiapp_read(
121 sensor,
122 SMIAPP_REG_U32_FRAME_FORMAT_DESCRIPTOR_4(i),
123 &desc);
124 if (rval)
125 return rval;
127 pixelcode =
128 (desc
129 & SMIAPP_FRAME_FORMAT_DESC_4_PIXELCODE_MASK)
130 >> SMIAPP_FRAME_FORMAT_DESC_4_PIXELCODE_SHIFT;
131 pixels = desc & SMIAPP_FRAME_FORMAT_DESC_4_PIXELS_MASK;
132 } else {
133 dev_dbg(&client->dev,
134 "invalid frame format model type %d\n",
135 fmt_model_type);
136 return -EINVAL;
139 if (i < ncol_desc)
140 which = "columns";
141 else
142 which = "rows";
144 switch (pixelcode) {
145 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_EMBEDDED:
146 what = "embedded";
147 break;
148 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_DUMMY:
149 what = "dummy";
150 break;
151 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_BLACK:
152 what = "black";
153 break;
154 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_DARK:
155 what = "dark";
156 break;
157 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_VISIBLE:
158 what = "visible";
159 break;
160 default:
161 what = "invalid";
162 dev_dbg(&client->dev, "pixelcode %d\n", pixelcode);
163 break;
166 dev_dbg(&client->dev, "%s pixels: %d %s\n",
167 what, pixels, which);
169 if (i < ncol_desc)
170 continue;
172 /* Handle row descriptors */
173 if (pixelcode
174 == SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_EMBEDDED) {
175 embedded_start = line_count;
176 } else {
177 if (pixelcode == SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_VISIBLE
178 || pixels >= sensor->limits[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES] / 2)
179 image_start = line_count;
180 if (embedded_start != -1 && embedded_end == -1)
181 embedded_end = line_count;
183 line_count += pixels;
186 if (embedded_start == -1 || embedded_end == -1) {
187 embedded_start = 0;
188 embedded_end = 0;
191 dev_dbg(&client->dev, "embedded data from lines %d to %d\n",
192 embedded_start, embedded_end);
193 dev_dbg(&client->dev, "image data starts at line %d\n", image_start);
195 return 0;
198 static int smiapp_pll_configure(struct smiapp_sensor *sensor)
200 struct smiapp_pll *pll = &sensor->pll;
201 int rval;
203 rval = smiapp_write(
204 sensor, SMIAPP_REG_U16_VT_PIX_CLK_DIV, pll->vt.pix_clk_div);
205 if (rval < 0)
206 return rval;
208 rval = smiapp_write(
209 sensor, SMIAPP_REG_U16_VT_SYS_CLK_DIV, pll->vt.sys_clk_div);
210 if (rval < 0)
211 return rval;
213 rval = smiapp_write(
214 sensor, SMIAPP_REG_U16_PRE_PLL_CLK_DIV, pll->pre_pll_clk_div);
215 if (rval < 0)
216 return rval;
218 rval = smiapp_write(
219 sensor, SMIAPP_REG_U16_PLL_MULTIPLIER, pll->pll_multiplier);
220 if (rval < 0)
221 return rval;
223 /* Lane op clock ratio does not apply here. */
224 rval = smiapp_write(
225 sensor, SMIAPP_REG_U32_REQUESTED_LINK_BIT_RATE_MBPS,
226 DIV_ROUND_UP(pll->op.sys_clk_freq_hz, 1000000 / 256 / 256));
227 if (rval < 0 || sensor->minfo.smiapp_profile == SMIAPP_PROFILE_0)
228 return rval;
230 rval = smiapp_write(
231 sensor, SMIAPP_REG_U16_OP_PIX_CLK_DIV, pll->op.pix_clk_div);
232 if (rval < 0)
233 return rval;
235 return smiapp_write(
236 sensor, SMIAPP_REG_U16_OP_SYS_CLK_DIV, pll->op.sys_clk_div);
239 static int smiapp_pll_try(struct smiapp_sensor *sensor,
240 struct smiapp_pll *pll)
242 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
243 struct smiapp_pll_limits lim = {
244 .min_pre_pll_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_PRE_PLL_CLK_DIV],
245 .max_pre_pll_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_PRE_PLL_CLK_DIV],
246 .min_pll_ip_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_PLL_IP_FREQ_HZ],
247 .max_pll_ip_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_PLL_IP_FREQ_HZ],
248 .min_pll_multiplier = sensor->limits[SMIAPP_LIMIT_MIN_PLL_MULTIPLIER],
249 .max_pll_multiplier = sensor->limits[SMIAPP_LIMIT_MAX_PLL_MULTIPLIER],
250 .min_pll_op_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_PLL_OP_FREQ_HZ],
251 .max_pll_op_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_PLL_OP_FREQ_HZ],
253 .op.min_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_DIV],
254 .op.max_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_DIV],
255 .op.min_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_DIV],
256 .op.max_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_DIV],
257 .op.min_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_FREQ_HZ],
258 .op.max_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_FREQ_HZ],
259 .op.min_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_FREQ_HZ],
260 .op.max_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_FREQ_HZ],
262 .vt.min_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_VT_SYS_CLK_DIV],
263 .vt.max_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_VT_SYS_CLK_DIV],
264 .vt.min_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_VT_PIX_CLK_DIV],
265 .vt.max_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_VT_PIX_CLK_DIV],
266 .vt.min_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_VT_SYS_CLK_FREQ_HZ],
267 .vt.max_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_VT_SYS_CLK_FREQ_HZ],
268 .vt.min_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_VT_PIX_CLK_FREQ_HZ],
269 .vt.max_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_VT_PIX_CLK_FREQ_HZ],
271 .min_line_length_pck_bin = sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN],
272 .min_line_length_pck = sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK],
275 return smiapp_pll_calculate(&client->dev, &lim, pll);
278 static int smiapp_pll_update(struct smiapp_sensor *sensor)
280 struct smiapp_pll *pll = &sensor->pll;
281 int rval;
283 pll->binning_horizontal = sensor->binning_horizontal;
284 pll->binning_vertical = sensor->binning_vertical;
285 pll->link_freq =
286 sensor->link_freq->qmenu_int[sensor->link_freq->val];
287 pll->scale_m = sensor->scale_m;
288 pll->bits_per_pixel = sensor->csi_format->compressed;
290 rval = smiapp_pll_try(sensor, pll);
291 if (rval < 0)
292 return rval;
294 __v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate_parray,
295 pll->pixel_rate_pixel_array);
296 __v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate_csi, pll->pixel_rate_csi);
298 return 0;
304 * V4L2 Controls handling
308 static void __smiapp_update_exposure_limits(struct smiapp_sensor *sensor)
310 struct v4l2_ctrl *ctrl = sensor->exposure;
311 int max;
313 max = sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
314 + sensor->vblank->val
315 - sensor->limits[SMIAPP_LIMIT_COARSE_INTEGRATION_TIME_MAX_MARGIN];
317 __v4l2_ctrl_modify_range(ctrl, ctrl->minimum, max, ctrl->step, max);
321 * Order matters.
323 * 1. Bits-per-pixel, descending.
324 * 2. Bits-per-pixel compressed, descending.
325 * 3. Pixel order, same as in pixel_order_str. Formats for all four pixel
326 * orders must be defined.
328 static const struct smiapp_csi_data_format smiapp_csi_data_formats[] = {
329 { MEDIA_BUS_FMT_SGRBG12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_GRBG, },
330 { MEDIA_BUS_FMT_SRGGB12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_RGGB, },
331 { MEDIA_BUS_FMT_SBGGR12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_BGGR, },
332 { MEDIA_BUS_FMT_SGBRG12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_GBRG, },
333 { MEDIA_BUS_FMT_SGRBG10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_GRBG, },
334 { MEDIA_BUS_FMT_SRGGB10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_RGGB, },
335 { MEDIA_BUS_FMT_SBGGR10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_BGGR, },
336 { MEDIA_BUS_FMT_SGBRG10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_GBRG, },
337 { MEDIA_BUS_FMT_SGRBG10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_GRBG, },
338 { MEDIA_BUS_FMT_SRGGB10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_RGGB, },
339 { MEDIA_BUS_FMT_SBGGR10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_BGGR, },
340 { MEDIA_BUS_FMT_SGBRG10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_GBRG, },
341 { MEDIA_BUS_FMT_SGRBG8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_GRBG, },
342 { MEDIA_BUS_FMT_SRGGB8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_RGGB, },
343 { MEDIA_BUS_FMT_SBGGR8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_BGGR, },
344 { MEDIA_BUS_FMT_SGBRG8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_GBRG, },
347 static const char *pixel_order_str[] = { "GRBG", "RGGB", "BGGR", "GBRG" };
349 #define to_csi_format_idx(fmt) (((unsigned long)(fmt) \
350 - (unsigned long)smiapp_csi_data_formats) \
351 / sizeof(*smiapp_csi_data_formats))
353 static u32 smiapp_pixel_order(struct smiapp_sensor *sensor)
355 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
356 int flip = 0;
358 if (sensor->hflip) {
359 if (sensor->hflip->val)
360 flip |= SMIAPP_IMAGE_ORIENTATION_HFLIP;
362 if (sensor->vflip->val)
363 flip |= SMIAPP_IMAGE_ORIENTATION_VFLIP;
366 flip ^= sensor->hvflip_inv_mask;
368 dev_dbg(&client->dev, "flip %d\n", flip);
369 return sensor->default_pixel_order ^ flip;
372 static void smiapp_update_mbus_formats(struct smiapp_sensor *sensor)
374 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
375 unsigned int csi_format_idx =
376 to_csi_format_idx(sensor->csi_format) & ~3;
377 unsigned int internal_csi_format_idx =
378 to_csi_format_idx(sensor->internal_csi_format) & ~3;
379 unsigned int pixel_order = smiapp_pixel_order(sensor);
381 sensor->mbus_frame_fmts =
382 sensor->default_mbus_frame_fmts << pixel_order;
383 sensor->csi_format =
384 &smiapp_csi_data_formats[csi_format_idx + pixel_order];
385 sensor->internal_csi_format =
386 &smiapp_csi_data_formats[internal_csi_format_idx
387 + pixel_order];
389 BUG_ON(max(internal_csi_format_idx, csi_format_idx) + pixel_order
390 >= ARRAY_SIZE(smiapp_csi_data_formats));
392 dev_dbg(&client->dev, "new pixel order %s\n",
393 pixel_order_str[pixel_order]);
396 static const char * const smiapp_test_patterns[] = {
397 "Disabled",
398 "Solid Colour",
399 "Eight Vertical Colour Bars",
400 "Colour Bars With Fade to Grey",
401 "Pseudorandom Sequence (PN9)",
404 static int smiapp_set_ctrl(struct v4l2_ctrl *ctrl)
406 struct smiapp_sensor *sensor =
407 container_of(ctrl->handler, struct smiapp_subdev, ctrl_handler)
408 ->sensor;
409 u32 orient = 0;
410 int exposure;
411 int rval;
413 switch (ctrl->id) {
414 case V4L2_CID_ANALOGUE_GAIN:
415 return smiapp_write(
416 sensor,
417 SMIAPP_REG_U16_ANALOGUE_GAIN_CODE_GLOBAL, ctrl->val);
419 case V4L2_CID_EXPOSURE:
420 return smiapp_write(
421 sensor,
422 SMIAPP_REG_U16_COARSE_INTEGRATION_TIME, ctrl->val);
424 case V4L2_CID_HFLIP:
425 case V4L2_CID_VFLIP:
426 if (sensor->streaming)
427 return -EBUSY;
429 if (sensor->hflip->val)
430 orient |= SMIAPP_IMAGE_ORIENTATION_HFLIP;
432 if (sensor->vflip->val)
433 orient |= SMIAPP_IMAGE_ORIENTATION_VFLIP;
435 orient ^= sensor->hvflip_inv_mask;
436 rval = smiapp_write(sensor,
437 SMIAPP_REG_U8_IMAGE_ORIENTATION,
438 orient);
439 if (rval < 0)
440 return rval;
442 smiapp_update_mbus_formats(sensor);
444 return 0;
446 case V4L2_CID_VBLANK:
447 exposure = sensor->exposure->val;
449 __smiapp_update_exposure_limits(sensor);
451 if (exposure > sensor->exposure->maximum) {
452 sensor->exposure->val =
453 sensor->exposure->maximum;
454 rval = smiapp_set_ctrl(
455 sensor->exposure);
456 if (rval < 0)
457 return rval;
460 return smiapp_write(
461 sensor, SMIAPP_REG_U16_FRAME_LENGTH_LINES,
462 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
463 + ctrl->val);
465 case V4L2_CID_HBLANK:
466 return smiapp_write(
467 sensor, SMIAPP_REG_U16_LINE_LENGTH_PCK,
468 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width
469 + ctrl->val);
471 case V4L2_CID_LINK_FREQ:
472 if (sensor->streaming)
473 return -EBUSY;
475 return smiapp_pll_update(sensor);
477 case V4L2_CID_TEST_PATTERN: {
478 unsigned int i;
480 for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++)
481 v4l2_ctrl_activate(
482 sensor->test_data[i],
483 ctrl->val ==
484 V4L2_SMIAPP_TEST_PATTERN_MODE_SOLID_COLOUR);
486 return smiapp_write(
487 sensor, SMIAPP_REG_U16_TEST_PATTERN_MODE, ctrl->val);
490 case V4L2_CID_TEST_PATTERN_RED:
491 return smiapp_write(
492 sensor, SMIAPP_REG_U16_TEST_DATA_RED, ctrl->val);
494 case V4L2_CID_TEST_PATTERN_GREENR:
495 return smiapp_write(
496 sensor, SMIAPP_REG_U16_TEST_DATA_GREENR, ctrl->val);
498 case V4L2_CID_TEST_PATTERN_BLUE:
499 return smiapp_write(
500 sensor, SMIAPP_REG_U16_TEST_DATA_BLUE, ctrl->val);
502 case V4L2_CID_TEST_PATTERN_GREENB:
503 return smiapp_write(
504 sensor, SMIAPP_REG_U16_TEST_DATA_GREENB, ctrl->val);
506 case V4L2_CID_PIXEL_RATE:
507 /* For v4l2_ctrl_s_ctrl_int64() used internally. */
508 return 0;
510 default:
511 return -EINVAL;
515 static const struct v4l2_ctrl_ops smiapp_ctrl_ops = {
516 .s_ctrl = smiapp_set_ctrl,
519 static int smiapp_init_controls(struct smiapp_sensor *sensor)
521 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
522 int rval;
524 rval = v4l2_ctrl_handler_init(&sensor->pixel_array->ctrl_handler, 12);
525 if (rval)
526 return rval;
528 sensor->pixel_array->ctrl_handler.lock = &sensor->mutex;
530 sensor->analog_gain = v4l2_ctrl_new_std(
531 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
532 V4L2_CID_ANALOGUE_GAIN,
533 sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MIN],
534 sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MAX],
535 max(sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_STEP], 1U),
536 sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MIN]);
538 /* Exposure limits will be updated soon, use just something here. */
539 sensor->exposure = v4l2_ctrl_new_std(
540 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
541 V4L2_CID_EXPOSURE, 0, 0, 1, 0);
543 sensor->hflip = v4l2_ctrl_new_std(
544 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
545 V4L2_CID_HFLIP, 0, 1, 1, 0);
546 sensor->vflip = v4l2_ctrl_new_std(
547 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
548 V4L2_CID_VFLIP, 0, 1, 1, 0);
550 sensor->vblank = v4l2_ctrl_new_std(
551 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
552 V4L2_CID_VBLANK, 0, 1, 1, 0);
554 if (sensor->vblank)
555 sensor->vblank->flags |= V4L2_CTRL_FLAG_UPDATE;
557 sensor->hblank = v4l2_ctrl_new_std(
558 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
559 V4L2_CID_HBLANK, 0, 1, 1, 0);
561 if (sensor->hblank)
562 sensor->hblank->flags |= V4L2_CTRL_FLAG_UPDATE;
564 sensor->pixel_rate_parray = v4l2_ctrl_new_std(
565 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
566 V4L2_CID_PIXEL_RATE, 1, INT_MAX, 1, 1);
568 v4l2_ctrl_new_std_menu_items(&sensor->pixel_array->ctrl_handler,
569 &smiapp_ctrl_ops, V4L2_CID_TEST_PATTERN,
570 ARRAY_SIZE(smiapp_test_patterns) - 1,
571 0, 0, smiapp_test_patterns);
573 if (sensor->pixel_array->ctrl_handler.error) {
574 dev_err(&client->dev,
575 "pixel array controls initialization failed (%d)\n",
576 sensor->pixel_array->ctrl_handler.error);
577 return sensor->pixel_array->ctrl_handler.error;
580 sensor->pixel_array->sd.ctrl_handler =
581 &sensor->pixel_array->ctrl_handler;
583 v4l2_ctrl_cluster(2, &sensor->hflip);
585 rval = v4l2_ctrl_handler_init(&sensor->src->ctrl_handler, 0);
586 if (rval)
587 return rval;
589 sensor->src->ctrl_handler.lock = &sensor->mutex;
591 sensor->pixel_rate_csi = v4l2_ctrl_new_std(
592 &sensor->src->ctrl_handler, &smiapp_ctrl_ops,
593 V4L2_CID_PIXEL_RATE, 1, INT_MAX, 1, 1);
595 if (sensor->src->ctrl_handler.error) {
596 dev_err(&client->dev,
597 "src controls initialization failed (%d)\n",
598 sensor->src->ctrl_handler.error);
599 return sensor->src->ctrl_handler.error;
602 sensor->src->sd.ctrl_handler = &sensor->src->ctrl_handler;
604 return 0;
608 * For controls that require information on available media bus codes
609 * and linke frequencies.
611 static int smiapp_init_late_controls(struct smiapp_sensor *sensor)
613 unsigned long *valid_link_freqs = &sensor->valid_link_freqs[
614 sensor->csi_format->compressed - SMIAPP_COMPRESSED_BASE];
615 unsigned int max, i;
617 for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++) {
618 int max_value = (1 << sensor->csi_format->width) - 1;
620 sensor->test_data[i] = v4l2_ctrl_new_std(
621 &sensor->pixel_array->ctrl_handler,
622 &smiapp_ctrl_ops, V4L2_CID_TEST_PATTERN_RED + i,
623 0, max_value, 1, max_value);
626 for (max = 0; sensor->platform_data->op_sys_clock[max + 1]; max++);
628 sensor->link_freq = v4l2_ctrl_new_int_menu(
629 &sensor->src->ctrl_handler, &smiapp_ctrl_ops,
630 V4L2_CID_LINK_FREQ, __fls(*valid_link_freqs),
631 __ffs(*valid_link_freqs), sensor->platform_data->op_sys_clock);
633 return sensor->src->ctrl_handler.error;
636 static void smiapp_free_controls(struct smiapp_sensor *sensor)
638 unsigned int i;
640 for (i = 0; i < sensor->ssds_used; i++)
641 v4l2_ctrl_handler_free(&sensor->ssds[i].ctrl_handler);
644 static int smiapp_get_limits(struct smiapp_sensor *sensor, int const *limit,
645 unsigned int n)
647 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
648 unsigned int i;
649 u32 val;
650 int rval;
652 for (i = 0; i < n; i++) {
653 rval = smiapp_read(
654 sensor, smiapp_reg_limits[limit[i]].addr, &val);
655 if (rval)
656 return rval;
657 sensor->limits[limit[i]] = val;
658 dev_dbg(&client->dev, "0x%8.8x \"%s\" = %u, 0x%x\n",
659 smiapp_reg_limits[limit[i]].addr,
660 smiapp_reg_limits[limit[i]].what, val, val);
663 return 0;
666 static int smiapp_get_all_limits(struct smiapp_sensor *sensor)
668 unsigned int i;
669 int rval;
671 for (i = 0; i < SMIAPP_LIMIT_LAST; i++) {
672 rval = smiapp_get_limits(sensor, &i, 1);
673 if (rval < 0)
674 return rval;
677 if (sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] == 0)
678 smiapp_replace_limit(sensor, SMIAPP_LIMIT_SCALER_N_MIN, 16);
680 return 0;
683 static int smiapp_get_limits_binning(struct smiapp_sensor *sensor)
685 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
686 static u32 const limits[] = {
687 SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN,
688 SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES_BIN,
689 SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN,
690 SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK_BIN,
691 SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN,
692 SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MIN_BIN,
693 SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MAX_MARGIN_BIN,
695 static u32 const limits_replace[] = {
696 SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES,
697 SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES,
698 SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK,
699 SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK,
700 SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK,
701 SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MIN,
702 SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MAX_MARGIN,
704 unsigned int i;
705 int rval;
707 if (sensor->limits[SMIAPP_LIMIT_BINNING_CAPABILITY] ==
708 SMIAPP_BINNING_CAPABILITY_NO) {
709 for (i = 0; i < ARRAY_SIZE(limits); i++)
710 sensor->limits[limits[i]] =
711 sensor->limits[limits_replace[i]];
713 return 0;
716 rval = smiapp_get_limits(sensor, limits, ARRAY_SIZE(limits));
717 if (rval < 0)
718 return rval;
721 * Sanity check whether the binning limits are valid. If not,
722 * use the non-binning ones.
724 if (sensor->limits[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN]
725 && sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN]
726 && sensor->limits[SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN])
727 return 0;
729 for (i = 0; i < ARRAY_SIZE(limits); i++) {
730 dev_dbg(&client->dev,
731 "replace limit 0x%8.8x \"%s\" = %d, 0x%x\n",
732 smiapp_reg_limits[limits[i]].addr,
733 smiapp_reg_limits[limits[i]].what,
734 sensor->limits[limits_replace[i]],
735 sensor->limits[limits_replace[i]]);
736 sensor->limits[limits[i]] =
737 sensor->limits[limits_replace[i]];
740 return 0;
743 static int smiapp_get_mbus_formats(struct smiapp_sensor *sensor)
745 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
746 struct smiapp_pll *pll = &sensor->pll;
747 unsigned int type, n;
748 unsigned int i, pixel_order;
749 int rval;
751 rval = smiapp_read(
752 sensor, SMIAPP_REG_U8_DATA_FORMAT_MODEL_TYPE, &type);
753 if (rval)
754 return rval;
756 dev_dbg(&client->dev, "data_format_model_type %d\n", type);
758 rval = smiapp_read(sensor, SMIAPP_REG_U8_PIXEL_ORDER,
759 &pixel_order);
760 if (rval)
761 return rval;
763 if (pixel_order >= ARRAY_SIZE(pixel_order_str)) {
764 dev_dbg(&client->dev, "bad pixel order %d\n", pixel_order);
765 return -EINVAL;
768 dev_dbg(&client->dev, "pixel order %d (%s)\n", pixel_order,
769 pixel_order_str[pixel_order]);
771 switch (type) {
772 case SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL:
773 n = SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL_N;
774 break;
775 case SMIAPP_DATA_FORMAT_MODEL_TYPE_EXTENDED:
776 n = SMIAPP_DATA_FORMAT_MODEL_TYPE_EXTENDED_N;
777 break;
778 default:
779 return -EINVAL;
782 sensor->default_pixel_order = pixel_order;
783 sensor->mbus_frame_fmts = 0;
785 for (i = 0; i < n; i++) {
786 unsigned int fmt, j;
788 rval = smiapp_read(
789 sensor,
790 SMIAPP_REG_U16_DATA_FORMAT_DESCRIPTOR(i), &fmt);
791 if (rval)
792 return rval;
794 dev_dbg(&client->dev, "%u: bpp %u, compressed %u\n",
795 i, fmt >> 8, (u8)fmt);
797 for (j = 0; j < ARRAY_SIZE(smiapp_csi_data_formats); j++) {
798 const struct smiapp_csi_data_format *f =
799 &smiapp_csi_data_formats[j];
801 if (f->pixel_order != SMIAPP_PIXEL_ORDER_GRBG)
802 continue;
804 if (f->width != fmt >> 8 || f->compressed != (u8)fmt)
805 continue;
807 dev_dbg(&client->dev, "jolly good! %d\n", j);
809 sensor->default_mbus_frame_fmts |= 1 << j;
813 /* Figure out which BPP values can be used with which formats. */
814 pll->binning_horizontal = 1;
815 pll->binning_vertical = 1;
816 pll->scale_m = sensor->scale_m;
818 for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) {
819 const struct smiapp_csi_data_format *f =
820 &smiapp_csi_data_formats[i];
821 unsigned long *valid_link_freqs =
822 &sensor->valid_link_freqs[
823 f->compressed - SMIAPP_COMPRESSED_BASE];
824 unsigned int j;
826 BUG_ON(f->compressed < SMIAPP_COMPRESSED_BASE);
827 BUG_ON(f->compressed > SMIAPP_COMPRESSED_MAX);
829 if (!(sensor->default_mbus_frame_fmts & 1 << i))
830 continue;
832 pll->bits_per_pixel = f->compressed;
834 for (j = 0; sensor->platform_data->op_sys_clock[j]; j++) {
835 pll->link_freq = sensor->platform_data->op_sys_clock[j];
837 rval = smiapp_pll_try(sensor, pll);
838 dev_dbg(&client->dev, "link freq %u Hz, bpp %u %s\n",
839 pll->link_freq, pll->bits_per_pixel,
840 rval ? "not ok" : "ok");
841 if (rval)
842 continue;
844 set_bit(j, valid_link_freqs);
847 if (!*valid_link_freqs) {
848 dev_info(&client->dev,
849 "no valid link frequencies for %u bpp\n",
850 f->compressed);
851 sensor->default_mbus_frame_fmts &= ~BIT(i);
852 continue;
855 if (!sensor->csi_format
856 || f->width > sensor->csi_format->width
857 || (f->width == sensor->csi_format->width
858 && f->compressed > sensor->csi_format->compressed)) {
859 sensor->csi_format = f;
860 sensor->internal_csi_format = f;
864 if (!sensor->csi_format) {
865 dev_err(&client->dev, "no supported mbus code found\n");
866 return -EINVAL;
869 smiapp_update_mbus_formats(sensor);
871 return 0;
874 static void smiapp_update_blanking(struct smiapp_sensor *sensor)
876 struct v4l2_ctrl *vblank = sensor->vblank;
877 struct v4l2_ctrl *hblank = sensor->hblank;
878 int min, max;
880 min = max_t(int,
881 sensor->limits[SMIAPP_LIMIT_MIN_FRAME_BLANKING_LINES],
882 sensor->limits[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN] -
883 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height);
884 max = sensor->limits[SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES_BIN] -
885 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height;
887 __v4l2_ctrl_modify_range(vblank, min, max, vblank->step, min);
889 min = max_t(int,
890 sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN] -
891 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width,
892 sensor->limits[SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN]);
893 max = sensor->limits[SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK_BIN] -
894 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width;
896 __v4l2_ctrl_modify_range(hblank, min, max, hblank->step, min);
898 __smiapp_update_exposure_limits(sensor);
901 static int smiapp_update_mode(struct smiapp_sensor *sensor)
903 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
904 unsigned int binning_mode;
905 int rval;
907 dev_dbg(&client->dev, "frame size: %dx%d\n",
908 sensor->src->crop[SMIAPP_PAD_SRC].width,
909 sensor->src->crop[SMIAPP_PAD_SRC].height);
910 dev_dbg(&client->dev, "csi format width: %d\n",
911 sensor->csi_format->width);
913 /* Binning has to be set up here; it affects limits */
914 if (sensor->binning_horizontal == 1 &&
915 sensor->binning_vertical == 1) {
916 binning_mode = 0;
917 } else {
918 u8 binning_type =
919 (sensor->binning_horizontal << 4)
920 | sensor->binning_vertical;
922 rval = smiapp_write(
923 sensor, SMIAPP_REG_U8_BINNING_TYPE, binning_type);
924 if (rval < 0)
925 return rval;
927 binning_mode = 1;
929 rval = smiapp_write(sensor, SMIAPP_REG_U8_BINNING_MODE, binning_mode);
930 if (rval < 0)
931 return rval;
933 /* Get updated limits due to binning */
934 rval = smiapp_get_limits_binning(sensor);
935 if (rval < 0)
936 return rval;
938 rval = smiapp_pll_update(sensor);
939 if (rval < 0)
940 return rval;
942 /* Output from pixel array, including blanking */
943 smiapp_update_blanking(sensor);
945 dev_dbg(&client->dev, "vblank\t\t%d\n", sensor->vblank->val);
946 dev_dbg(&client->dev, "hblank\t\t%d\n", sensor->hblank->val);
948 dev_dbg(&client->dev, "real timeperframe\t100/%d\n",
949 sensor->pll.pixel_rate_pixel_array /
950 ((sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width
951 + sensor->hblank->val) *
952 (sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
953 + sensor->vblank->val) / 100));
955 return 0;
960 * SMIA++ NVM handling
963 static int smiapp_read_nvm(struct smiapp_sensor *sensor,
964 unsigned char *nvm)
966 u32 i, s, p, np, v;
967 int rval = 0, rval2;
969 np = sensor->nvm_size / SMIAPP_NVM_PAGE_SIZE;
970 for (p = 0; p < np; p++) {
971 rval = smiapp_write(
972 sensor,
973 SMIAPP_REG_U8_DATA_TRANSFER_IF_1_PAGE_SELECT, p);
974 if (rval)
975 goto out;
977 rval = smiapp_write(sensor,
978 SMIAPP_REG_U8_DATA_TRANSFER_IF_1_CTRL,
979 SMIAPP_DATA_TRANSFER_IF_1_CTRL_EN |
980 SMIAPP_DATA_TRANSFER_IF_1_CTRL_RD_EN);
981 if (rval)
982 goto out;
984 for (i = 0; i < 1000; i++) {
985 rval = smiapp_read(
986 sensor,
987 SMIAPP_REG_U8_DATA_TRANSFER_IF_1_STATUS, &s);
989 if (rval)
990 goto out;
992 if (s & SMIAPP_DATA_TRANSFER_IF_1_STATUS_RD_READY)
993 break;
995 if (--i == 0) {
996 rval = -ETIMEDOUT;
997 goto out;
1002 for (i = 0; i < SMIAPP_NVM_PAGE_SIZE; i++) {
1003 rval = smiapp_read(
1004 sensor,
1005 SMIAPP_REG_U8_DATA_TRANSFER_IF_1_DATA_0 + i,
1006 &v);
1007 if (rval)
1008 goto out;
1010 *nvm++ = v;
1014 out:
1015 rval2 = smiapp_write(sensor, SMIAPP_REG_U8_DATA_TRANSFER_IF_1_CTRL, 0);
1016 if (rval < 0)
1017 return rval;
1018 else
1019 return rval2;
1024 * SMIA++ CCI address control
1027 static int smiapp_change_cci_addr(struct smiapp_sensor *sensor)
1029 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1030 int rval;
1031 u32 val;
1033 client->addr = sensor->platform_data->i2c_addr_dfl;
1035 rval = smiapp_write(sensor,
1036 SMIAPP_REG_U8_CCI_ADDRESS_CONTROL,
1037 sensor->platform_data->i2c_addr_alt << 1);
1038 if (rval)
1039 return rval;
1041 client->addr = sensor->platform_data->i2c_addr_alt;
1043 /* verify addr change went ok */
1044 rval = smiapp_read(sensor, SMIAPP_REG_U8_CCI_ADDRESS_CONTROL, &val);
1045 if (rval)
1046 return rval;
1048 if (val != sensor->platform_data->i2c_addr_alt << 1)
1049 return -ENODEV;
1051 return 0;
1056 * SMIA++ Mode Control
1059 static int smiapp_setup_flash_strobe(struct smiapp_sensor *sensor)
1061 struct smiapp_flash_strobe_parms *strobe_setup;
1062 unsigned int ext_freq = sensor->platform_data->ext_clk;
1063 u32 tmp;
1064 u32 strobe_adjustment;
1065 u32 strobe_width_high_rs;
1066 int rval;
1068 strobe_setup = sensor->platform_data->strobe_setup;
1071 * How to calculate registers related to strobe length. Please
1072 * do not change, or if you do at least know what you're
1073 * doing. :-)
1075 * Sakari Ailus <sakari.ailus@iki.fi> 2010-10-25
1077 * flash_strobe_length [us] / 10^6 = (tFlash_strobe_width_ctrl
1078 * / EXTCLK freq [Hz]) * flash_strobe_adjustment
1080 * tFlash_strobe_width_ctrl E N, [1 - 0xffff]
1081 * flash_strobe_adjustment E N, [1 - 0xff]
1083 * The formula above is written as below to keep it on one
1084 * line:
1086 * l / 10^6 = w / e * a
1088 * Let's mark w * a by x:
1090 * x = w * a
1092 * Thus, we get:
1094 * x = l * e / 10^6
1096 * The strobe width must be at least as long as requested,
1097 * thus rounding upwards is needed.
1099 * x = (l * e + 10^6 - 1) / 10^6
1100 * -----------------------------
1102 * Maximum possible accuracy is wanted at all times. Thus keep
1103 * a as small as possible.
1105 * Calculate a, assuming maximum w, with rounding upwards:
1107 * a = (x + (2^16 - 1) - 1) / (2^16 - 1)
1108 * -------------------------------------
1110 * Thus, we also get w, with that a, with rounding upwards:
1112 * w = (x + a - 1) / a
1113 * -------------------
1115 * To get limits:
1117 * x E [1, (2^16 - 1) * (2^8 - 1)]
1119 * Substituting maximum x to the original formula (with rounding),
1120 * the maximum l is thus
1122 * (2^16 - 1) * (2^8 - 1) * 10^6 = l * e + 10^6 - 1
1124 * l = (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / e
1125 * --------------------------------------------------
1127 * flash_strobe_length must be clamped between 1 and
1128 * (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / EXTCLK freq.
1130 * Then,
1132 * flash_strobe_adjustment = ((flash_strobe_length *
1133 * EXTCLK freq + 10^6 - 1) / 10^6 + (2^16 - 1) - 1) / (2^16 - 1)
1135 * tFlash_strobe_width_ctrl = ((flash_strobe_length *
1136 * EXTCLK freq + 10^6 - 1) / 10^6 +
1137 * flash_strobe_adjustment - 1) / flash_strobe_adjustment
1139 tmp = div_u64(1000000ULL * ((1 << 16) - 1) * ((1 << 8) - 1) -
1140 1000000 + 1, ext_freq);
1141 strobe_setup->strobe_width_high_us =
1142 clamp_t(u32, strobe_setup->strobe_width_high_us, 1, tmp);
1144 tmp = div_u64(((u64)strobe_setup->strobe_width_high_us * (u64)ext_freq +
1145 1000000 - 1), 1000000ULL);
1146 strobe_adjustment = (tmp + (1 << 16) - 1 - 1) / ((1 << 16) - 1);
1147 strobe_width_high_rs = (tmp + strobe_adjustment - 1) /
1148 strobe_adjustment;
1150 rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_MODE_RS,
1151 strobe_setup->mode);
1152 if (rval < 0)
1153 goto out;
1155 rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_STROBE_ADJUSTMENT,
1156 strobe_adjustment);
1157 if (rval < 0)
1158 goto out;
1160 rval = smiapp_write(
1161 sensor, SMIAPP_REG_U16_TFLASH_STROBE_WIDTH_HIGH_RS_CTRL,
1162 strobe_width_high_rs);
1163 if (rval < 0)
1164 goto out;
1166 rval = smiapp_write(sensor, SMIAPP_REG_U16_TFLASH_STROBE_DELAY_RS_CTRL,
1167 strobe_setup->strobe_delay);
1168 if (rval < 0)
1169 goto out;
1171 rval = smiapp_write(sensor, SMIAPP_REG_U16_FLASH_STROBE_START_POINT,
1172 strobe_setup->stobe_start_point);
1173 if (rval < 0)
1174 goto out;
1176 rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_TRIGGER_RS,
1177 strobe_setup->trigger);
1179 out:
1180 sensor->platform_data->strobe_setup->trigger = 0;
1182 return rval;
1185 /* -----------------------------------------------------------------------------
1186 * Power management
1189 static int smiapp_power_on(struct smiapp_sensor *sensor)
1191 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1192 unsigned int sleep;
1193 int rval;
1195 rval = regulator_enable(sensor->vana);
1196 if (rval) {
1197 dev_err(&client->dev, "failed to enable vana regulator\n");
1198 return rval;
1200 usleep_range(1000, 1000);
1202 if (sensor->platform_data->set_xclk)
1203 rval = sensor->platform_data->set_xclk(
1204 &sensor->src->sd, sensor->platform_data->ext_clk);
1205 else
1206 rval = clk_prepare_enable(sensor->ext_clk);
1207 if (rval < 0) {
1208 dev_dbg(&client->dev, "failed to enable xclk\n");
1209 goto out_xclk_fail;
1211 usleep_range(1000, 1000);
1213 if (gpio_is_valid(sensor->platform_data->xshutdown))
1214 gpio_set_value(sensor->platform_data->xshutdown, 1);
1216 sleep = SMIAPP_RESET_DELAY(sensor->platform_data->ext_clk);
1217 usleep_range(sleep, sleep);
1220 * Failures to respond to the address change command have been noticed.
1221 * Those failures seem to be caused by the sensor requiring a longer
1222 * boot time than advertised. An additional 10ms delay seems to work
1223 * around the issue, but the SMIA++ I2C write retry hack makes the delay
1224 * unnecessary. The failures need to be investigated to find a proper
1225 * fix, and a delay will likely need to be added here if the I2C write
1226 * retry hack is reverted before the root cause of the boot time issue
1227 * is found.
1230 if (sensor->platform_data->i2c_addr_alt) {
1231 rval = smiapp_change_cci_addr(sensor);
1232 if (rval) {
1233 dev_err(&client->dev, "cci address change error\n");
1234 goto out_cci_addr_fail;
1238 rval = smiapp_write(sensor, SMIAPP_REG_U8_SOFTWARE_RESET,
1239 SMIAPP_SOFTWARE_RESET);
1240 if (rval < 0) {
1241 dev_err(&client->dev, "software reset failed\n");
1242 goto out_cci_addr_fail;
1245 if (sensor->platform_data->i2c_addr_alt) {
1246 rval = smiapp_change_cci_addr(sensor);
1247 if (rval) {
1248 dev_err(&client->dev, "cci address change error\n");
1249 goto out_cci_addr_fail;
1253 rval = smiapp_write(sensor, SMIAPP_REG_U16_COMPRESSION_MODE,
1254 SMIAPP_COMPRESSION_MODE_SIMPLE_PREDICTOR);
1255 if (rval) {
1256 dev_err(&client->dev, "compression mode set failed\n");
1257 goto out_cci_addr_fail;
1260 rval = smiapp_write(
1261 sensor, SMIAPP_REG_U16_EXTCLK_FREQUENCY_MHZ,
1262 sensor->platform_data->ext_clk / (1000000 / (1 << 8)));
1263 if (rval) {
1264 dev_err(&client->dev, "extclk frequency set failed\n");
1265 goto out_cci_addr_fail;
1268 rval = smiapp_write(sensor, SMIAPP_REG_U8_CSI_LANE_MODE,
1269 sensor->platform_data->lanes - 1);
1270 if (rval) {
1271 dev_err(&client->dev, "csi lane mode set failed\n");
1272 goto out_cci_addr_fail;
1275 rval = smiapp_write(sensor, SMIAPP_REG_U8_FAST_STANDBY_CTRL,
1276 SMIAPP_FAST_STANDBY_CTRL_IMMEDIATE);
1277 if (rval) {
1278 dev_err(&client->dev, "fast standby set failed\n");
1279 goto out_cci_addr_fail;
1282 rval = smiapp_write(sensor, SMIAPP_REG_U8_CSI_SIGNALLING_MODE,
1283 sensor->platform_data->csi_signalling_mode);
1284 if (rval) {
1285 dev_err(&client->dev, "csi signalling mode set failed\n");
1286 goto out_cci_addr_fail;
1289 /* DPHY control done by sensor based on requested link rate */
1290 rval = smiapp_write(sensor, SMIAPP_REG_U8_DPHY_CTRL,
1291 SMIAPP_DPHY_CTRL_UI);
1292 if (rval < 0)
1293 return rval;
1295 rval = smiapp_call_quirk(sensor, post_poweron);
1296 if (rval) {
1297 dev_err(&client->dev, "post_poweron quirks failed\n");
1298 goto out_cci_addr_fail;
1301 /* Are we still initialising...? If yes, return here. */
1302 if (!sensor->pixel_array)
1303 return 0;
1305 rval = v4l2_ctrl_handler_setup(
1306 &sensor->pixel_array->ctrl_handler);
1307 if (rval)
1308 goto out_cci_addr_fail;
1310 rval = v4l2_ctrl_handler_setup(&sensor->src->ctrl_handler);
1311 if (rval)
1312 goto out_cci_addr_fail;
1314 mutex_lock(&sensor->mutex);
1315 rval = smiapp_update_mode(sensor);
1316 mutex_unlock(&sensor->mutex);
1317 if (rval < 0)
1318 goto out_cci_addr_fail;
1320 return 0;
1322 out_cci_addr_fail:
1323 if (gpio_is_valid(sensor->platform_data->xshutdown))
1324 gpio_set_value(sensor->platform_data->xshutdown, 0);
1325 if (sensor->platform_data->set_xclk)
1326 sensor->platform_data->set_xclk(&sensor->src->sd, 0);
1327 else
1328 clk_disable_unprepare(sensor->ext_clk);
1330 out_xclk_fail:
1331 regulator_disable(sensor->vana);
1332 return rval;
1335 static void smiapp_power_off(struct smiapp_sensor *sensor)
1338 * Currently power/clock to lens are enable/disabled separately
1339 * but they are essentially the same signals. So if the sensor is
1340 * powered off while the lens is powered on the sensor does not
1341 * really see a power off and next time the cci address change
1342 * will fail. So do a soft reset explicitly here.
1344 if (sensor->platform_data->i2c_addr_alt)
1345 smiapp_write(sensor,
1346 SMIAPP_REG_U8_SOFTWARE_RESET,
1347 SMIAPP_SOFTWARE_RESET);
1349 if (gpio_is_valid(sensor->platform_data->xshutdown))
1350 gpio_set_value(sensor->platform_data->xshutdown, 0);
1351 if (sensor->platform_data->set_xclk)
1352 sensor->platform_data->set_xclk(&sensor->src->sd, 0);
1353 else
1354 clk_disable_unprepare(sensor->ext_clk);
1355 usleep_range(5000, 5000);
1356 regulator_disable(sensor->vana);
1357 sensor->streaming = false;
1360 static int smiapp_set_power(struct v4l2_subdev *subdev, int on)
1362 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1363 int ret = 0;
1365 mutex_lock(&sensor->power_mutex);
1367 if (on && !sensor->power_count) {
1368 /* Power on and perform initialisation. */
1369 ret = smiapp_power_on(sensor);
1370 if (ret < 0)
1371 goto out;
1372 } else if (!on && sensor->power_count == 1) {
1373 smiapp_power_off(sensor);
1376 /* Update the power count. */
1377 sensor->power_count += on ? 1 : -1;
1378 WARN_ON(sensor->power_count < 0);
1380 out:
1381 mutex_unlock(&sensor->power_mutex);
1382 return ret;
1385 /* -----------------------------------------------------------------------------
1386 * Video stream management
1389 static int smiapp_start_streaming(struct smiapp_sensor *sensor)
1391 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1392 int rval;
1394 mutex_lock(&sensor->mutex);
1396 rval = smiapp_write(sensor, SMIAPP_REG_U16_CSI_DATA_FORMAT,
1397 (sensor->csi_format->width << 8) |
1398 sensor->csi_format->compressed);
1399 if (rval)
1400 goto out;
1402 rval = smiapp_pll_configure(sensor);
1403 if (rval)
1404 goto out;
1406 /* Analog crop start coordinates */
1407 rval = smiapp_write(sensor, SMIAPP_REG_U16_X_ADDR_START,
1408 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].left);
1409 if (rval < 0)
1410 goto out;
1412 rval = smiapp_write(sensor, SMIAPP_REG_U16_Y_ADDR_START,
1413 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].top);
1414 if (rval < 0)
1415 goto out;
1417 /* Analog crop end coordinates */
1418 rval = smiapp_write(
1419 sensor, SMIAPP_REG_U16_X_ADDR_END,
1420 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].left
1421 + sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width - 1);
1422 if (rval < 0)
1423 goto out;
1425 rval = smiapp_write(
1426 sensor, SMIAPP_REG_U16_Y_ADDR_END,
1427 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].top
1428 + sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height - 1);
1429 if (rval < 0)
1430 goto out;
1433 * Output from pixel array, including blanking, is set using
1434 * controls below. No need to set here.
1437 /* Digital crop */
1438 if (sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY]
1439 == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
1440 rval = smiapp_write(
1441 sensor, SMIAPP_REG_U16_DIGITAL_CROP_X_OFFSET,
1442 sensor->scaler->crop[SMIAPP_PAD_SINK].left);
1443 if (rval < 0)
1444 goto out;
1446 rval = smiapp_write(
1447 sensor, SMIAPP_REG_U16_DIGITAL_CROP_Y_OFFSET,
1448 sensor->scaler->crop[SMIAPP_PAD_SINK].top);
1449 if (rval < 0)
1450 goto out;
1452 rval = smiapp_write(
1453 sensor, SMIAPP_REG_U16_DIGITAL_CROP_IMAGE_WIDTH,
1454 sensor->scaler->crop[SMIAPP_PAD_SINK].width);
1455 if (rval < 0)
1456 goto out;
1458 rval = smiapp_write(
1459 sensor, SMIAPP_REG_U16_DIGITAL_CROP_IMAGE_HEIGHT,
1460 sensor->scaler->crop[SMIAPP_PAD_SINK].height);
1461 if (rval < 0)
1462 goto out;
1465 /* Scaling */
1466 if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
1467 != SMIAPP_SCALING_CAPABILITY_NONE) {
1468 rval = smiapp_write(sensor, SMIAPP_REG_U16_SCALING_MODE,
1469 sensor->scaling_mode);
1470 if (rval < 0)
1471 goto out;
1473 rval = smiapp_write(sensor, SMIAPP_REG_U16_SCALE_M,
1474 sensor->scale_m);
1475 if (rval < 0)
1476 goto out;
1479 /* Output size from sensor */
1480 rval = smiapp_write(sensor, SMIAPP_REG_U16_X_OUTPUT_SIZE,
1481 sensor->src->crop[SMIAPP_PAD_SRC].width);
1482 if (rval < 0)
1483 goto out;
1484 rval = smiapp_write(sensor, SMIAPP_REG_U16_Y_OUTPUT_SIZE,
1485 sensor->src->crop[SMIAPP_PAD_SRC].height);
1486 if (rval < 0)
1487 goto out;
1489 if ((sensor->limits[SMIAPP_LIMIT_FLASH_MODE_CAPABILITY] &
1490 (SMIAPP_FLASH_MODE_CAPABILITY_SINGLE_STROBE |
1491 SMIAPP_FLASH_MODE_CAPABILITY_MULTIPLE_STROBE)) &&
1492 sensor->platform_data->strobe_setup != NULL &&
1493 sensor->platform_data->strobe_setup->trigger != 0) {
1494 rval = smiapp_setup_flash_strobe(sensor);
1495 if (rval)
1496 goto out;
1499 rval = smiapp_call_quirk(sensor, pre_streamon);
1500 if (rval) {
1501 dev_err(&client->dev, "pre_streamon quirks failed\n");
1502 goto out;
1505 rval = smiapp_write(sensor, SMIAPP_REG_U8_MODE_SELECT,
1506 SMIAPP_MODE_SELECT_STREAMING);
1508 out:
1509 mutex_unlock(&sensor->mutex);
1511 return rval;
1514 static int smiapp_stop_streaming(struct smiapp_sensor *sensor)
1516 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1517 int rval;
1519 mutex_lock(&sensor->mutex);
1520 rval = smiapp_write(sensor, SMIAPP_REG_U8_MODE_SELECT,
1521 SMIAPP_MODE_SELECT_SOFTWARE_STANDBY);
1522 if (rval)
1523 goto out;
1525 rval = smiapp_call_quirk(sensor, post_streamoff);
1526 if (rval)
1527 dev_err(&client->dev, "post_streamoff quirks failed\n");
1529 out:
1530 mutex_unlock(&sensor->mutex);
1531 return rval;
1534 /* -----------------------------------------------------------------------------
1535 * V4L2 subdev video operations
1538 static int smiapp_set_stream(struct v4l2_subdev *subdev, int enable)
1540 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1541 int rval;
1543 if (sensor->streaming == enable)
1544 return 0;
1546 if (enable) {
1547 sensor->streaming = true;
1548 rval = smiapp_start_streaming(sensor);
1549 if (rval < 0)
1550 sensor->streaming = false;
1551 } else {
1552 rval = smiapp_stop_streaming(sensor);
1553 sensor->streaming = false;
1556 return rval;
1559 static int smiapp_enum_mbus_code(struct v4l2_subdev *subdev,
1560 struct v4l2_subdev_pad_config *cfg,
1561 struct v4l2_subdev_mbus_code_enum *code)
1563 struct i2c_client *client = v4l2_get_subdevdata(subdev);
1564 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1565 unsigned int i;
1566 int idx = -1;
1567 int rval = -EINVAL;
1569 mutex_lock(&sensor->mutex);
1571 dev_err(&client->dev, "subdev %s, pad %d, index %d\n",
1572 subdev->name, code->pad, code->index);
1574 if (subdev != &sensor->src->sd || code->pad != SMIAPP_PAD_SRC) {
1575 if (code->index)
1576 goto out;
1578 code->code = sensor->internal_csi_format->code;
1579 rval = 0;
1580 goto out;
1583 for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) {
1584 if (sensor->mbus_frame_fmts & (1 << i))
1585 idx++;
1587 if (idx == code->index) {
1588 code->code = smiapp_csi_data_formats[i].code;
1589 dev_err(&client->dev, "found index %d, i %d, code %x\n",
1590 code->index, i, code->code);
1591 rval = 0;
1592 break;
1596 out:
1597 mutex_unlock(&sensor->mutex);
1599 return rval;
1602 static u32 __smiapp_get_mbus_code(struct v4l2_subdev *subdev,
1603 unsigned int pad)
1605 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1607 if (subdev == &sensor->src->sd && pad == SMIAPP_PAD_SRC)
1608 return sensor->csi_format->code;
1609 else
1610 return sensor->internal_csi_format->code;
1613 static int __smiapp_get_format(struct v4l2_subdev *subdev,
1614 struct v4l2_subdev_pad_config *cfg,
1615 struct v4l2_subdev_format *fmt)
1617 struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1619 if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) {
1620 fmt->format = *v4l2_subdev_get_try_format(subdev, cfg, fmt->pad);
1621 } else {
1622 struct v4l2_rect *r;
1624 if (fmt->pad == ssd->source_pad)
1625 r = &ssd->crop[ssd->source_pad];
1626 else
1627 r = &ssd->sink_fmt;
1629 fmt->format.code = __smiapp_get_mbus_code(subdev, fmt->pad);
1630 fmt->format.width = r->width;
1631 fmt->format.height = r->height;
1632 fmt->format.field = V4L2_FIELD_NONE;
1635 return 0;
1638 static int smiapp_get_format(struct v4l2_subdev *subdev,
1639 struct v4l2_subdev_pad_config *cfg,
1640 struct v4l2_subdev_format *fmt)
1642 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1643 int rval;
1645 mutex_lock(&sensor->mutex);
1646 rval = __smiapp_get_format(subdev, cfg, fmt);
1647 mutex_unlock(&sensor->mutex);
1649 return rval;
1652 static void smiapp_get_crop_compose(struct v4l2_subdev *subdev,
1653 struct v4l2_subdev_pad_config *cfg,
1654 struct v4l2_rect **crops,
1655 struct v4l2_rect **comps, int which)
1657 struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1658 unsigned int i;
1660 if (which == V4L2_SUBDEV_FORMAT_ACTIVE) {
1661 if (crops)
1662 for (i = 0; i < subdev->entity.num_pads; i++)
1663 crops[i] = &ssd->crop[i];
1664 if (comps)
1665 *comps = &ssd->compose;
1666 } else {
1667 if (crops) {
1668 for (i = 0; i < subdev->entity.num_pads; i++) {
1669 crops[i] = v4l2_subdev_get_try_crop(subdev, cfg, i);
1670 BUG_ON(!crops[i]);
1673 if (comps) {
1674 *comps = v4l2_subdev_get_try_compose(subdev, cfg,
1675 SMIAPP_PAD_SINK);
1676 BUG_ON(!*comps);
1681 /* Changes require propagation only on sink pad. */
1682 static void smiapp_propagate(struct v4l2_subdev *subdev,
1683 struct v4l2_subdev_pad_config *cfg, int which,
1684 int target)
1686 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1687 struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1688 struct v4l2_rect *comp, *crops[SMIAPP_PADS];
1690 smiapp_get_crop_compose(subdev, cfg, crops, &comp, which);
1692 switch (target) {
1693 case V4L2_SEL_TGT_CROP:
1694 comp->width = crops[SMIAPP_PAD_SINK]->width;
1695 comp->height = crops[SMIAPP_PAD_SINK]->height;
1696 if (which == V4L2_SUBDEV_FORMAT_ACTIVE) {
1697 if (ssd == sensor->scaler) {
1698 sensor->scale_m =
1699 sensor->limits[
1700 SMIAPP_LIMIT_SCALER_N_MIN];
1701 sensor->scaling_mode =
1702 SMIAPP_SCALING_MODE_NONE;
1703 } else if (ssd == sensor->binner) {
1704 sensor->binning_horizontal = 1;
1705 sensor->binning_vertical = 1;
1708 /* Fall through */
1709 case V4L2_SEL_TGT_COMPOSE:
1710 *crops[SMIAPP_PAD_SRC] = *comp;
1711 break;
1712 default:
1713 BUG();
1717 static const struct smiapp_csi_data_format
1718 *smiapp_validate_csi_data_format(struct smiapp_sensor *sensor, u32 code)
1720 const struct smiapp_csi_data_format *csi_format = sensor->csi_format;
1721 unsigned int i;
1723 for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) {
1724 if (sensor->mbus_frame_fmts & (1 << i)
1725 && smiapp_csi_data_formats[i].code == code)
1726 return &smiapp_csi_data_formats[i];
1729 return csi_format;
1732 static int smiapp_set_format_source(struct v4l2_subdev *subdev,
1733 struct v4l2_subdev_pad_config *cfg,
1734 struct v4l2_subdev_format *fmt)
1736 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1737 const struct smiapp_csi_data_format *csi_format,
1738 *old_csi_format = sensor->csi_format;
1739 unsigned long *valid_link_freqs;
1740 u32 code = fmt->format.code;
1741 unsigned int i;
1742 int rval;
1744 rval = __smiapp_get_format(subdev, cfg, fmt);
1745 if (rval)
1746 return rval;
1749 * Media bus code is changeable on src subdev's source pad. On
1750 * other source pads we just get format here.
1752 if (subdev != &sensor->src->sd)
1753 return 0;
1755 csi_format = smiapp_validate_csi_data_format(sensor, code);
1757 fmt->format.code = csi_format->code;
1759 if (fmt->which != V4L2_SUBDEV_FORMAT_ACTIVE)
1760 return 0;
1762 sensor->csi_format = csi_format;
1764 if (csi_format->width != old_csi_format->width)
1765 for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++)
1766 __v4l2_ctrl_modify_range(
1767 sensor->test_data[i], 0,
1768 (1 << csi_format->width) - 1, 1, 0);
1770 if (csi_format->compressed == old_csi_format->compressed)
1771 return 0;
1773 valid_link_freqs =
1774 &sensor->valid_link_freqs[sensor->csi_format->compressed
1775 - SMIAPP_COMPRESSED_BASE];
1777 __v4l2_ctrl_modify_range(
1778 sensor->link_freq, 0,
1779 __fls(*valid_link_freqs), ~*valid_link_freqs,
1780 __ffs(*valid_link_freqs));
1782 return smiapp_pll_update(sensor);
1785 static int smiapp_set_format(struct v4l2_subdev *subdev,
1786 struct v4l2_subdev_pad_config *cfg,
1787 struct v4l2_subdev_format *fmt)
1789 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1790 struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1791 struct v4l2_rect *crops[SMIAPP_PADS];
1793 mutex_lock(&sensor->mutex);
1795 if (fmt->pad == ssd->source_pad) {
1796 int rval;
1798 rval = smiapp_set_format_source(subdev, cfg, fmt);
1800 mutex_unlock(&sensor->mutex);
1802 return rval;
1805 /* Sink pad. Width and height are changeable here. */
1806 fmt->format.code = __smiapp_get_mbus_code(subdev, fmt->pad);
1807 fmt->format.width &= ~1;
1808 fmt->format.height &= ~1;
1809 fmt->format.field = V4L2_FIELD_NONE;
1811 fmt->format.width =
1812 clamp(fmt->format.width,
1813 sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE],
1814 sensor->limits[SMIAPP_LIMIT_MAX_X_OUTPUT_SIZE]);
1815 fmt->format.height =
1816 clamp(fmt->format.height,
1817 sensor->limits[SMIAPP_LIMIT_MIN_Y_OUTPUT_SIZE],
1818 sensor->limits[SMIAPP_LIMIT_MAX_Y_OUTPUT_SIZE]);
1820 smiapp_get_crop_compose(subdev, cfg, crops, NULL, fmt->which);
1822 crops[ssd->sink_pad]->left = 0;
1823 crops[ssd->sink_pad]->top = 0;
1824 crops[ssd->sink_pad]->width = fmt->format.width;
1825 crops[ssd->sink_pad]->height = fmt->format.height;
1826 if (fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE)
1827 ssd->sink_fmt = *crops[ssd->sink_pad];
1828 smiapp_propagate(subdev, cfg, fmt->which,
1829 V4L2_SEL_TGT_CROP);
1831 mutex_unlock(&sensor->mutex);
1833 return 0;
1837 * Calculate goodness of scaled image size compared to expected image
1838 * size and flags provided.
1840 #define SCALING_GOODNESS 100000
1841 #define SCALING_GOODNESS_EXTREME 100000000
1842 static int scaling_goodness(struct v4l2_subdev *subdev, int w, int ask_w,
1843 int h, int ask_h, u32 flags)
1845 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1846 struct i2c_client *client = v4l2_get_subdevdata(subdev);
1847 int val = 0;
1849 w &= ~1;
1850 ask_w &= ~1;
1851 h &= ~1;
1852 ask_h &= ~1;
1854 if (flags & V4L2_SEL_FLAG_GE) {
1855 if (w < ask_w)
1856 val -= SCALING_GOODNESS;
1857 if (h < ask_h)
1858 val -= SCALING_GOODNESS;
1861 if (flags & V4L2_SEL_FLAG_LE) {
1862 if (w > ask_w)
1863 val -= SCALING_GOODNESS;
1864 if (h > ask_h)
1865 val -= SCALING_GOODNESS;
1868 val -= abs(w - ask_w);
1869 val -= abs(h - ask_h);
1871 if (w < sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE])
1872 val -= SCALING_GOODNESS_EXTREME;
1874 dev_dbg(&client->dev, "w %d ask_w %d h %d ask_h %d goodness %d\n",
1875 w, ask_h, h, ask_h, val);
1877 return val;
1880 static void smiapp_set_compose_binner(struct v4l2_subdev *subdev,
1881 struct v4l2_subdev_pad_config *cfg,
1882 struct v4l2_subdev_selection *sel,
1883 struct v4l2_rect **crops,
1884 struct v4l2_rect *comp)
1886 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1887 unsigned int i;
1888 unsigned int binh = 1, binv = 1;
1889 int best = scaling_goodness(
1890 subdev,
1891 crops[SMIAPP_PAD_SINK]->width, sel->r.width,
1892 crops[SMIAPP_PAD_SINK]->height, sel->r.height, sel->flags);
1894 for (i = 0; i < sensor->nbinning_subtypes; i++) {
1895 int this = scaling_goodness(
1896 subdev,
1897 crops[SMIAPP_PAD_SINK]->width
1898 / sensor->binning_subtypes[i].horizontal,
1899 sel->r.width,
1900 crops[SMIAPP_PAD_SINK]->height
1901 / sensor->binning_subtypes[i].vertical,
1902 sel->r.height, sel->flags);
1904 if (this > best) {
1905 binh = sensor->binning_subtypes[i].horizontal;
1906 binv = sensor->binning_subtypes[i].vertical;
1907 best = this;
1910 if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
1911 sensor->binning_vertical = binv;
1912 sensor->binning_horizontal = binh;
1915 sel->r.width = (crops[SMIAPP_PAD_SINK]->width / binh) & ~1;
1916 sel->r.height = (crops[SMIAPP_PAD_SINK]->height / binv) & ~1;
1920 * Calculate best scaling ratio and mode for given output resolution.
1922 * Try all of these: horizontal ratio, vertical ratio and smallest
1923 * size possible (horizontally).
1925 * Also try whether horizontal scaler or full scaler gives a better
1926 * result.
1928 static void smiapp_set_compose_scaler(struct v4l2_subdev *subdev,
1929 struct v4l2_subdev_pad_config *cfg,
1930 struct v4l2_subdev_selection *sel,
1931 struct v4l2_rect **crops,
1932 struct v4l2_rect *comp)
1934 struct i2c_client *client = v4l2_get_subdevdata(subdev);
1935 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1936 u32 min, max, a, b, max_m;
1937 u32 scale_m = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN];
1938 int mode = SMIAPP_SCALING_MODE_HORIZONTAL;
1939 u32 try[4];
1940 u32 ntry = 0;
1941 unsigned int i;
1942 int best = INT_MIN;
1944 sel->r.width = min_t(unsigned int, sel->r.width,
1945 crops[SMIAPP_PAD_SINK]->width);
1946 sel->r.height = min_t(unsigned int, sel->r.height,
1947 crops[SMIAPP_PAD_SINK]->height);
1949 a = crops[SMIAPP_PAD_SINK]->width
1950 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] / sel->r.width;
1951 b = crops[SMIAPP_PAD_SINK]->height
1952 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] / sel->r.height;
1953 max_m = crops[SMIAPP_PAD_SINK]->width
1954 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN]
1955 / sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE];
1957 a = clamp(a, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN],
1958 sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX]);
1959 b = clamp(b, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN],
1960 sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX]);
1961 max_m = clamp(max_m, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN],
1962 sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX]);
1964 dev_dbg(&client->dev, "scaling: a %d b %d max_m %d\n", a, b, max_m);
1966 min = min(max_m, min(a, b));
1967 max = min(max_m, max(a, b));
1969 try[ntry] = min;
1970 ntry++;
1971 if (min != max) {
1972 try[ntry] = max;
1973 ntry++;
1975 if (max != max_m) {
1976 try[ntry] = min + 1;
1977 ntry++;
1978 if (min != max) {
1979 try[ntry] = max + 1;
1980 ntry++;
1984 for (i = 0; i < ntry; i++) {
1985 int this = scaling_goodness(
1986 subdev,
1987 crops[SMIAPP_PAD_SINK]->width
1988 / try[i]
1989 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN],
1990 sel->r.width,
1991 crops[SMIAPP_PAD_SINK]->height,
1992 sel->r.height,
1993 sel->flags);
1995 dev_dbg(&client->dev, "trying factor %d (%d)\n", try[i], i);
1997 if (this > best) {
1998 scale_m = try[i];
1999 mode = SMIAPP_SCALING_MODE_HORIZONTAL;
2000 best = this;
2003 if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
2004 == SMIAPP_SCALING_CAPABILITY_HORIZONTAL)
2005 continue;
2007 this = scaling_goodness(
2008 subdev, crops[SMIAPP_PAD_SINK]->width
2009 / try[i]
2010 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN],
2011 sel->r.width,
2012 crops[SMIAPP_PAD_SINK]->height
2013 / try[i]
2014 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN],
2015 sel->r.height,
2016 sel->flags);
2018 if (this > best) {
2019 scale_m = try[i];
2020 mode = SMIAPP_SCALING_MODE_BOTH;
2021 best = this;
2025 sel->r.width =
2026 (crops[SMIAPP_PAD_SINK]->width
2027 / scale_m
2028 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN]) & ~1;
2029 if (mode == SMIAPP_SCALING_MODE_BOTH)
2030 sel->r.height =
2031 (crops[SMIAPP_PAD_SINK]->height
2032 / scale_m
2033 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN])
2034 & ~1;
2035 else
2036 sel->r.height = crops[SMIAPP_PAD_SINK]->height;
2038 if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2039 sensor->scale_m = scale_m;
2040 sensor->scaling_mode = mode;
2043 /* We're only called on source pads. This function sets scaling. */
2044 static int smiapp_set_compose(struct v4l2_subdev *subdev,
2045 struct v4l2_subdev_pad_config *cfg,
2046 struct v4l2_subdev_selection *sel)
2048 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2049 struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
2050 struct v4l2_rect *comp, *crops[SMIAPP_PADS];
2052 smiapp_get_crop_compose(subdev, cfg, crops, &comp, sel->which);
2054 sel->r.top = 0;
2055 sel->r.left = 0;
2057 if (ssd == sensor->binner)
2058 smiapp_set_compose_binner(subdev, cfg, sel, crops, comp);
2059 else
2060 smiapp_set_compose_scaler(subdev, cfg, sel, crops, comp);
2062 *comp = sel->r;
2063 smiapp_propagate(subdev, cfg, sel->which,
2064 V4L2_SEL_TGT_COMPOSE);
2066 if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE)
2067 return smiapp_update_mode(sensor);
2069 return 0;
2072 static int __smiapp_sel_supported(struct v4l2_subdev *subdev,
2073 struct v4l2_subdev_selection *sel)
2075 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2076 struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
2078 /* We only implement crop in three places. */
2079 switch (sel->target) {
2080 case V4L2_SEL_TGT_CROP:
2081 case V4L2_SEL_TGT_CROP_BOUNDS:
2082 if (ssd == sensor->pixel_array
2083 && sel->pad == SMIAPP_PA_PAD_SRC)
2084 return 0;
2085 if (ssd == sensor->src
2086 && sel->pad == SMIAPP_PAD_SRC)
2087 return 0;
2088 if (ssd == sensor->scaler
2089 && sel->pad == SMIAPP_PAD_SINK
2090 && sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY]
2091 == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP)
2092 return 0;
2093 return -EINVAL;
2094 case V4L2_SEL_TGT_NATIVE_SIZE:
2095 if (ssd == sensor->pixel_array
2096 && sel->pad == SMIAPP_PA_PAD_SRC)
2097 return 0;
2098 return -EINVAL;
2099 case V4L2_SEL_TGT_COMPOSE:
2100 case V4L2_SEL_TGT_COMPOSE_BOUNDS:
2101 if (sel->pad == ssd->source_pad)
2102 return -EINVAL;
2103 if (ssd == sensor->binner)
2104 return 0;
2105 if (ssd == sensor->scaler
2106 && sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
2107 != SMIAPP_SCALING_CAPABILITY_NONE)
2108 return 0;
2109 /* Fall through */
2110 default:
2111 return -EINVAL;
2115 static int smiapp_set_crop(struct v4l2_subdev *subdev,
2116 struct v4l2_subdev_pad_config *cfg,
2117 struct v4l2_subdev_selection *sel)
2119 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2120 struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
2121 struct v4l2_rect *src_size, *crops[SMIAPP_PADS];
2122 struct v4l2_rect _r;
2124 smiapp_get_crop_compose(subdev, cfg, crops, NULL, sel->which);
2126 if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2127 if (sel->pad == ssd->sink_pad)
2128 src_size = &ssd->sink_fmt;
2129 else
2130 src_size = &ssd->compose;
2131 } else {
2132 if (sel->pad == ssd->sink_pad) {
2133 _r.left = 0;
2134 _r.top = 0;
2135 _r.width = v4l2_subdev_get_try_format(subdev, cfg, sel->pad)
2136 ->width;
2137 _r.height = v4l2_subdev_get_try_format(subdev, cfg, sel->pad)
2138 ->height;
2139 src_size = &_r;
2140 } else {
2141 src_size =
2142 v4l2_subdev_get_try_compose(
2143 subdev, cfg, ssd->sink_pad);
2147 if (ssd == sensor->src && sel->pad == SMIAPP_PAD_SRC) {
2148 sel->r.left = 0;
2149 sel->r.top = 0;
2152 sel->r.width = min(sel->r.width, src_size->width);
2153 sel->r.height = min(sel->r.height, src_size->height);
2155 sel->r.left = min_t(int, sel->r.left, src_size->width - sel->r.width);
2156 sel->r.top = min_t(int, sel->r.top, src_size->height - sel->r.height);
2158 *crops[sel->pad] = sel->r;
2160 if (ssd != sensor->pixel_array && sel->pad == SMIAPP_PAD_SINK)
2161 smiapp_propagate(subdev, cfg, sel->which,
2162 V4L2_SEL_TGT_CROP);
2164 return 0;
2167 static int __smiapp_get_selection(struct v4l2_subdev *subdev,
2168 struct v4l2_subdev_pad_config *cfg,
2169 struct v4l2_subdev_selection *sel)
2171 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2172 struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
2173 struct v4l2_rect *comp, *crops[SMIAPP_PADS];
2174 struct v4l2_rect sink_fmt;
2175 int ret;
2177 ret = __smiapp_sel_supported(subdev, sel);
2178 if (ret)
2179 return ret;
2181 smiapp_get_crop_compose(subdev, cfg, crops, &comp, sel->which);
2183 if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2184 sink_fmt = ssd->sink_fmt;
2185 } else {
2186 struct v4l2_mbus_framefmt *fmt =
2187 v4l2_subdev_get_try_format(subdev, cfg, ssd->sink_pad);
2189 sink_fmt.left = 0;
2190 sink_fmt.top = 0;
2191 sink_fmt.width = fmt->width;
2192 sink_fmt.height = fmt->height;
2195 switch (sel->target) {
2196 case V4L2_SEL_TGT_CROP_BOUNDS:
2197 case V4L2_SEL_TGT_NATIVE_SIZE:
2198 if (ssd == sensor->pixel_array) {
2199 sel->r.left = sel->r.top = 0;
2200 sel->r.width =
2201 sensor->limits[SMIAPP_LIMIT_X_ADDR_MAX] + 1;
2202 sel->r.height =
2203 sensor->limits[SMIAPP_LIMIT_Y_ADDR_MAX] + 1;
2204 } else if (sel->pad == ssd->sink_pad) {
2205 sel->r = sink_fmt;
2206 } else {
2207 sel->r = *comp;
2209 break;
2210 case V4L2_SEL_TGT_CROP:
2211 case V4L2_SEL_TGT_COMPOSE_BOUNDS:
2212 sel->r = *crops[sel->pad];
2213 break;
2214 case V4L2_SEL_TGT_COMPOSE:
2215 sel->r = *comp;
2216 break;
2219 return 0;
2222 static int smiapp_get_selection(struct v4l2_subdev *subdev,
2223 struct v4l2_subdev_pad_config *cfg,
2224 struct v4l2_subdev_selection *sel)
2226 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2227 int rval;
2229 mutex_lock(&sensor->mutex);
2230 rval = __smiapp_get_selection(subdev, cfg, sel);
2231 mutex_unlock(&sensor->mutex);
2233 return rval;
2235 static int smiapp_set_selection(struct v4l2_subdev *subdev,
2236 struct v4l2_subdev_pad_config *cfg,
2237 struct v4l2_subdev_selection *sel)
2239 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2240 int ret;
2242 ret = __smiapp_sel_supported(subdev, sel);
2243 if (ret)
2244 return ret;
2246 mutex_lock(&sensor->mutex);
2248 sel->r.left = max(0, sel->r.left & ~1);
2249 sel->r.top = max(0, sel->r.top & ~1);
2250 sel->r.width = SMIAPP_ALIGN_DIM(sel->r.width, sel->flags);
2251 sel->r.height = SMIAPP_ALIGN_DIM(sel->r.height, sel->flags);
2253 sel->r.width = max_t(unsigned int,
2254 sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE],
2255 sel->r.width);
2256 sel->r.height = max_t(unsigned int,
2257 sensor->limits[SMIAPP_LIMIT_MIN_Y_OUTPUT_SIZE],
2258 sel->r.height);
2260 switch (sel->target) {
2261 case V4L2_SEL_TGT_CROP:
2262 ret = smiapp_set_crop(subdev, cfg, sel);
2263 break;
2264 case V4L2_SEL_TGT_COMPOSE:
2265 ret = smiapp_set_compose(subdev, cfg, sel);
2266 break;
2267 default:
2268 ret = -EINVAL;
2271 mutex_unlock(&sensor->mutex);
2272 return ret;
2275 static int smiapp_get_skip_frames(struct v4l2_subdev *subdev, u32 *frames)
2277 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2279 *frames = sensor->frame_skip;
2280 return 0;
2283 /* -----------------------------------------------------------------------------
2284 * sysfs attributes
2287 static ssize_t
2288 smiapp_sysfs_nvm_read(struct device *dev, struct device_attribute *attr,
2289 char *buf)
2291 struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
2292 struct i2c_client *client = v4l2_get_subdevdata(subdev);
2293 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2294 unsigned int nbytes;
2296 if (!sensor->dev_init_done)
2297 return -EBUSY;
2299 if (!sensor->nvm_size) {
2300 /* NVM not read yet - read it now */
2301 sensor->nvm_size = sensor->platform_data->nvm_size;
2302 if (smiapp_set_power(subdev, 1) < 0)
2303 return -ENODEV;
2304 if (smiapp_read_nvm(sensor, sensor->nvm)) {
2305 dev_err(&client->dev, "nvm read failed\n");
2306 return -ENODEV;
2308 smiapp_set_power(subdev, 0);
2311 * NVM is still way below a PAGE_SIZE, so we can safely
2312 * assume this for now.
2314 nbytes = min_t(unsigned int, sensor->nvm_size, PAGE_SIZE);
2315 memcpy(buf, sensor->nvm, nbytes);
2317 return nbytes;
2319 static DEVICE_ATTR(nvm, S_IRUGO, smiapp_sysfs_nvm_read, NULL);
2321 static ssize_t
2322 smiapp_sysfs_ident_read(struct device *dev, struct device_attribute *attr,
2323 char *buf)
2325 struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
2326 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2327 struct smiapp_module_info *minfo = &sensor->minfo;
2329 return snprintf(buf, PAGE_SIZE, "%2.2x%4.4x%2.2x\n",
2330 minfo->manufacturer_id, minfo->model_id,
2331 minfo->revision_number_major) + 1;
2334 static DEVICE_ATTR(ident, S_IRUGO, smiapp_sysfs_ident_read, NULL);
2336 /* -----------------------------------------------------------------------------
2337 * V4L2 subdev core operations
2340 static int smiapp_identify_module(struct smiapp_sensor *sensor)
2342 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
2343 struct smiapp_module_info *minfo = &sensor->minfo;
2344 unsigned int i;
2345 int rval = 0;
2347 minfo->name = SMIAPP_NAME;
2349 /* Module info */
2350 rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_MANUFACTURER_ID,
2351 &minfo->manufacturer_id);
2352 if (!rval)
2353 rval = smiapp_read_8only(sensor, SMIAPP_REG_U16_MODEL_ID,
2354 &minfo->model_id);
2355 if (!rval)
2356 rval = smiapp_read_8only(sensor,
2357 SMIAPP_REG_U8_REVISION_NUMBER_MAJOR,
2358 &minfo->revision_number_major);
2359 if (!rval)
2360 rval = smiapp_read_8only(sensor,
2361 SMIAPP_REG_U8_REVISION_NUMBER_MINOR,
2362 &minfo->revision_number_minor);
2363 if (!rval)
2364 rval = smiapp_read_8only(sensor,
2365 SMIAPP_REG_U8_MODULE_DATE_YEAR,
2366 &minfo->module_year);
2367 if (!rval)
2368 rval = smiapp_read_8only(sensor,
2369 SMIAPP_REG_U8_MODULE_DATE_MONTH,
2370 &minfo->module_month);
2371 if (!rval)
2372 rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_MODULE_DATE_DAY,
2373 &minfo->module_day);
2375 /* Sensor info */
2376 if (!rval)
2377 rval = smiapp_read_8only(sensor,
2378 SMIAPP_REG_U8_SENSOR_MANUFACTURER_ID,
2379 &minfo->sensor_manufacturer_id);
2380 if (!rval)
2381 rval = smiapp_read_8only(sensor,
2382 SMIAPP_REG_U16_SENSOR_MODEL_ID,
2383 &minfo->sensor_model_id);
2384 if (!rval)
2385 rval = smiapp_read_8only(sensor,
2386 SMIAPP_REG_U8_SENSOR_REVISION_NUMBER,
2387 &minfo->sensor_revision_number);
2388 if (!rval)
2389 rval = smiapp_read_8only(sensor,
2390 SMIAPP_REG_U8_SENSOR_FIRMWARE_VERSION,
2391 &minfo->sensor_firmware_version);
2393 /* SMIA */
2394 if (!rval)
2395 rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_SMIA_VERSION,
2396 &minfo->smia_version);
2397 if (!rval)
2398 rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_SMIAPP_VERSION,
2399 &minfo->smiapp_version);
2401 if (rval) {
2402 dev_err(&client->dev, "sensor detection failed\n");
2403 return -ENODEV;
2406 dev_dbg(&client->dev, "module 0x%2.2x-0x%4.4x\n",
2407 minfo->manufacturer_id, minfo->model_id);
2409 dev_dbg(&client->dev,
2410 "module revision 0x%2.2x-0x%2.2x date %2.2d-%2.2d-%2.2d\n",
2411 minfo->revision_number_major, minfo->revision_number_minor,
2412 minfo->module_year, minfo->module_month, minfo->module_day);
2414 dev_dbg(&client->dev, "sensor 0x%2.2x-0x%4.4x\n",
2415 minfo->sensor_manufacturer_id, minfo->sensor_model_id);
2417 dev_dbg(&client->dev,
2418 "sensor revision 0x%2.2x firmware version 0x%2.2x\n",
2419 minfo->sensor_revision_number, minfo->sensor_firmware_version);
2421 dev_dbg(&client->dev, "smia version %2.2d smiapp version %2.2d\n",
2422 minfo->smia_version, minfo->smiapp_version);
2425 * Some modules have bad data in the lvalues below. Hope the
2426 * rvalues have better stuff. The lvalues are module
2427 * parameters whereas the rvalues are sensor parameters.
2429 if (!minfo->manufacturer_id && !minfo->model_id) {
2430 minfo->manufacturer_id = minfo->sensor_manufacturer_id;
2431 minfo->model_id = minfo->sensor_model_id;
2432 minfo->revision_number_major = minfo->sensor_revision_number;
2435 for (i = 0; i < ARRAY_SIZE(smiapp_module_idents); i++) {
2436 if (smiapp_module_idents[i].manufacturer_id
2437 != minfo->manufacturer_id)
2438 continue;
2439 if (smiapp_module_idents[i].model_id != minfo->model_id)
2440 continue;
2441 if (smiapp_module_idents[i].flags
2442 & SMIAPP_MODULE_IDENT_FLAG_REV_LE) {
2443 if (smiapp_module_idents[i].revision_number_major
2444 < minfo->revision_number_major)
2445 continue;
2446 } else {
2447 if (smiapp_module_idents[i].revision_number_major
2448 != minfo->revision_number_major)
2449 continue;
2452 minfo->name = smiapp_module_idents[i].name;
2453 minfo->quirk = smiapp_module_idents[i].quirk;
2454 break;
2457 if (i >= ARRAY_SIZE(smiapp_module_idents))
2458 dev_warn(&client->dev,
2459 "no quirks for this module; let's hope it's fully compliant\n");
2461 dev_dbg(&client->dev, "the sensor is called %s, ident %2.2x%4.4x%2.2x\n",
2462 minfo->name, minfo->manufacturer_id, minfo->model_id,
2463 minfo->revision_number_major);
2465 return 0;
2468 static const struct v4l2_subdev_ops smiapp_ops;
2469 static const struct v4l2_subdev_internal_ops smiapp_internal_ops;
2470 static const struct media_entity_operations smiapp_entity_ops;
2472 static int smiapp_register_subdevs(struct smiapp_sensor *sensor)
2474 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
2475 struct smiapp_subdev *ssds[] = {
2476 sensor->scaler,
2477 sensor->binner,
2478 sensor->pixel_array,
2480 unsigned int i;
2481 int rval;
2483 for (i = 0; i < SMIAPP_SUBDEVS - 1; i++) {
2484 struct smiapp_subdev *this = ssds[i + 1];
2485 struct smiapp_subdev *last = ssds[i];
2487 if (!last)
2488 continue;
2490 rval = media_entity_pads_init(&this->sd.entity,
2491 this->npads, this->pads);
2492 if (rval) {
2493 dev_err(&client->dev,
2494 "media_entity_pads_init failed\n");
2495 return rval;
2498 rval = v4l2_device_register_subdev(sensor->src->sd.v4l2_dev,
2499 &this->sd);
2500 if (rval) {
2501 dev_err(&client->dev,
2502 "v4l2_device_register_subdev failed\n");
2503 return rval;
2506 rval = media_create_pad_link(&this->sd.entity,
2507 this->source_pad,
2508 &last->sd.entity,
2509 last->sink_pad,
2510 MEDIA_LNK_FL_ENABLED |
2511 MEDIA_LNK_FL_IMMUTABLE);
2512 if (rval) {
2513 dev_err(&client->dev,
2514 "media_create_pad_link failed\n");
2515 return rval;
2519 return 0;
2522 static void smiapp_cleanup(struct smiapp_sensor *sensor)
2524 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
2526 device_remove_file(&client->dev, &dev_attr_nvm);
2527 device_remove_file(&client->dev, &dev_attr_ident);
2529 smiapp_free_controls(sensor);
2532 static int smiapp_init(struct smiapp_sensor *sensor)
2534 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
2535 struct smiapp_pll *pll = &sensor->pll;
2536 struct smiapp_subdev *last = NULL;
2537 unsigned int i;
2538 int rval;
2540 sensor->vana = devm_regulator_get(&client->dev, "vana");
2541 if (IS_ERR(sensor->vana)) {
2542 dev_err(&client->dev, "could not get regulator for vana\n");
2543 return PTR_ERR(sensor->vana);
2546 if (!sensor->platform_data->set_xclk) {
2547 sensor->ext_clk = devm_clk_get(&client->dev, NULL);
2548 if (IS_ERR(sensor->ext_clk)) {
2549 dev_err(&client->dev, "could not get clock\n");
2550 return PTR_ERR(sensor->ext_clk);
2553 rval = clk_set_rate(sensor->ext_clk,
2554 sensor->platform_data->ext_clk);
2555 if (rval < 0) {
2556 dev_err(&client->dev,
2557 "unable to set clock freq to %u\n",
2558 sensor->platform_data->ext_clk);
2559 return rval;
2563 if (gpio_is_valid(sensor->platform_data->xshutdown)) {
2564 rval = devm_gpio_request_one(
2565 &client->dev, sensor->platform_data->xshutdown, 0,
2566 "SMIA++ xshutdown");
2567 if (rval < 0) {
2568 dev_err(&client->dev,
2569 "unable to acquire reset gpio %d\n",
2570 sensor->platform_data->xshutdown);
2571 return rval;
2575 rval = smiapp_power_on(sensor);
2576 if (rval)
2577 return -ENODEV;
2579 rval = smiapp_identify_module(sensor);
2580 if (rval) {
2581 rval = -ENODEV;
2582 goto out_power_off;
2585 rval = smiapp_get_all_limits(sensor);
2586 if (rval) {
2587 rval = -ENODEV;
2588 goto out_power_off;
2592 * Handle Sensor Module orientation on the board.
2594 * The application of H-FLIP and V-FLIP on the sensor is modified by
2595 * the sensor orientation on the board.
2597 * For SMIAPP_BOARD_SENSOR_ORIENT_180 the default behaviour is to set
2598 * both H-FLIP and V-FLIP for normal operation which also implies
2599 * that a set/unset operation for user space HFLIP and VFLIP v4l2
2600 * controls will need to be internally inverted.
2602 * Rotation also changes the bayer pattern.
2604 if (sensor->platform_data->module_board_orient ==
2605 SMIAPP_MODULE_BOARD_ORIENT_180)
2606 sensor->hvflip_inv_mask = SMIAPP_IMAGE_ORIENTATION_HFLIP |
2607 SMIAPP_IMAGE_ORIENTATION_VFLIP;
2609 rval = smiapp_call_quirk(sensor, limits);
2610 if (rval) {
2611 dev_err(&client->dev, "limits quirks failed\n");
2612 goto out_power_off;
2615 if (sensor->limits[SMIAPP_LIMIT_BINNING_CAPABILITY]) {
2616 u32 val;
2618 rval = smiapp_read(sensor,
2619 SMIAPP_REG_U8_BINNING_SUBTYPES, &val);
2620 if (rval < 0) {
2621 rval = -ENODEV;
2622 goto out_power_off;
2624 sensor->nbinning_subtypes = min_t(u8, val,
2625 SMIAPP_BINNING_SUBTYPES);
2627 for (i = 0; i < sensor->nbinning_subtypes; i++) {
2628 rval = smiapp_read(
2629 sensor, SMIAPP_REG_U8_BINNING_TYPE_n(i), &val);
2630 if (rval < 0) {
2631 rval = -ENODEV;
2632 goto out_power_off;
2634 sensor->binning_subtypes[i] =
2635 *(struct smiapp_binning_subtype *)&val;
2637 dev_dbg(&client->dev, "binning %xx%x\n",
2638 sensor->binning_subtypes[i].horizontal,
2639 sensor->binning_subtypes[i].vertical);
2642 sensor->binning_horizontal = 1;
2643 sensor->binning_vertical = 1;
2645 if (device_create_file(&client->dev, &dev_attr_ident) != 0) {
2646 dev_err(&client->dev, "sysfs ident entry creation failed\n");
2647 rval = -ENOENT;
2648 goto out_power_off;
2650 /* SMIA++ NVM initialization - it will be read from the sensor
2651 * when it is first requested by userspace.
2653 if (sensor->minfo.smiapp_version && sensor->platform_data->nvm_size) {
2654 sensor->nvm = devm_kzalloc(&client->dev,
2655 sensor->platform_data->nvm_size, GFP_KERNEL);
2656 if (sensor->nvm == NULL) {
2657 dev_err(&client->dev, "nvm buf allocation failed\n");
2658 rval = -ENOMEM;
2659 goto out_cleanup;
2662 if (device_create_file(&client->dev, &dev_attr_nvm) != 0) {
2663 dev_err(&client->dev, "sysfs nvm entry failed\n");
2664 rval = -EBUSY;
2665 goto out_cleanup;
2669 /* We consider this as profile 0 sensor if any of these are zero. */
2670 if (!sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_DIV] ||
2671 !sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_DIV] ||
2672 !sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_DIV] ||
2673 !sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_DIV]) {
2674 sensor->minfo.smiapp_profile = SMIAPP_PROFILE_0;
2675 } else if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
2676 != SMIAPP_SCALING_CAPABILITY_NONE) {
2677 if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
2678 == SMIAPP_SCALING_CAPABILITY_HORIZONTAL)
2679 sensor->minfo.smiapp_profile = SMIAPP_PROFILE_1;
2680 else
2681 sensor->minfo.smiapp_profile = SMIAPP_PROFILE_2;
2682 sensor->scaler = &sensor->ssds[sensor->ssds_used];
2683 sensor->ssds_used++;
2684 } else if (sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY]
2685 == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
2686 sensor->scaler = &sensor->ssds[sensor->ssds_used];
2687 sensor->ssds_used++;
2689 sensor->binner = &sensor->ssds[sensor->ssds_used];
2690 sensor->ssds_used++;
2691 sensor->pixel_array = &sensor->ssds[sensor->ssds_used];
2692 sensor->ssds_used++;
2694 sensor->scale_m = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN];
2696 /* prepare PLL configuration input values */
2697 pll->bus_type = SMIAPP_PLL_BUS_TYPE_CSI2;
2698 pll->csi2.lanes = sensor->platform_data->lanes;
2699 pll->ext_clk_freq_hz = sensor->platform_data->ext_clk;
2700 pll->scale_n = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN];
2701 /* Profile 0 sensors have no separate OP clock branch. */
2702 if (sensor->minfo.smiapp_profile == SMIAPP_PROFILE_0)
2703 pll->flags |= SMIAPP_PLL_FLAG_NO_OP_CLOCKS;
2705 for (i = 0; i < SMIAPP_SUBDEVS; i++) {
2706 struct {
2707 struct smiapp_subdev *ssd;
2708 char *name;
2709 } const __this[] = {
2710 { sensor->scaler, "scaler", },
2711 { sensor->binner, "binner", },
2712 { sensor->pixel_array, "pixel array", },
2713 }, *_this = &__this[i];
2714 struct smiapp_subdev *this = _this->ssd;
2716 if (!this)
2717 continue;
2719 if (this != sensor->src)
2720 v4l2_subdev_init(&this->sd, &smiapp_ops);
2722 this->sensor = sensor;
2724 if (this == sensor->pixel_array) {
2725 this->npads = 1;
2726 } else {
2727 this->npads = 2;
2728 this->source_pad = 1;
2731 snprintf(this->sd.name,
2732 sizeof(this->sd.name), "%s %s %d-%4.4x",
2733 sensor->minfo.name, _this->name,
2734 i2c_adapter_id(client->adapter), client->addr);
2736 this->sink_fmt.width =
2737 sensor->limits[SMIAPP_LIMIT_X_ADDR_MAX] + 1;
2738 this->sink_fmt.height =
2739 sensor->limits[SMIAPP_LIMIT_Y_ADDR_MAX] + 1;
2740 this->compose.width = this->sink_fmt.width;
2741 this->compose.height = this->sink_fmt.height;
2742 this->crop[this->source_pad] = this->compose;
2743 this->pads[this->source_pad].flags = MEDIA_PAD_FL_SOURCE;
2744 if (this != sensor->pixel_array) {
2745 this->crop[this->sink_pad] = this->compose;
2746 this->pads[this->sink_pad].flags = MEDIA_PAD_FL_SINK;
2749 this->sd.entity.ops = &smiapp_entity_ops;
2751 if (last == NULL) {
2752 last = this;
2753 continue;
2756 this->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
2757 this->sd.internal_ops = &smiapp_internal_ops;
2758 this->sd.owner = THIS_MODULE;
2759 v4l2_set_subdevdata(&this->sd, client);
2761 last = this;
2764 dev_dbg(&client->dev, "profile %d\n", sensor->minfo.smiapp_profile);
2766 sensor->pixel_array->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR;
2768 /* final steps */
2769 smiapp_read_frame_fmt(sensor);
2770 rval = smiapp_init_controls(sensor);
2771 if (rval < 0)
2772 goto out_cleanup;
2774 rval = smiapp_call_quirk(sensor, init);
2775 if (rval)
2776 goto out_cleanup;
2778 rval = smiapp_get_mbus_formats(sensor);
2779 if (rval) {
2780 rval = -ENODEV;
2781 goto out_cleanup;
2784 rval = smiapp_init_late_controls(sensor);
2785 if (rval) {
2786 rval = -ENODEV;
2787 goto out_cleanup;
2790 mutex_lock(&sensor->mutex);
2791 rval = smiapp_update_mode(sensor);
2792 mutex_unlock(&sensor->mutex);
2793 if (rval) {
2794 dev_err(&client->dev, "update mode failed\n");
2795 goto out_cleanup;
2798 sensor->streaming = false;
2799 sensor->dev_init_done = true;
2801 smiapp_power_off(sensor);
2803 return 0;
2805 out_cleanup:
2806 smiapp_cleanup(sensor);
2808 out_power_off:
2809 smiapp_power_off(sensor);
2810 return rval;
2813 static int smiapp_registered(struct v4l2_subdev *subdev)
2815 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2816 struct i2c_client *client = v4l2_get_subdevdata(subdev);
2817 int rval;
2819 if (!client->dev.of_node) {
2820 rval = smiapp_init(sensor);
2821 if (rval)
2822 return rval;
2825 rval = smiapp_register_subdevs(sensor);
2826 if (rval)
2827 smiapp_cleanup(sensor);
2829 return rval;
2832 static int smiapp_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
2834 struct smiapp_subdev *ssd = to_smiapp_subdev(sd);
2835 struct smiapp_sensor *sensor = ssd->sensor;
2836 u32 mbus_code =
2837 smiapp_csi_data_formats[smiapp_pixel_order(sensor)].code;
2838 unsigned int i;
2840 mutex_lock(&sensor->mutex);
2842 for (i = 0; i < ssd->npads; i++) {
2843 struct v4l2_mbus_framefmt *try_fmt =
2844 v4l2_subdev_get_try_format(sd, fh->pad, i);
2845 struct v4l2_rect *try_crop = v4l2_subdev_get_try_crop(sd, fh->pad, i);
2846 struct v4l2_rect *try_comp;
2848 try_fmt->width = sensor->limits[SMIAPP_LIMIT_X_ADDR_MAX] + 1;
2849 try_fmt->height = sensor->limits[SMIAPP_LIMIT_Y_ADDR_MAX] + 1;
2850 try_fmt->code = mbus_code;
2851 try_fmt->field = V4L2_FIELD_NONE;
2853 try_crop->top = 0;
2854 try_crop->left = 0;
2855 try_crop->width = try_fmt->width;
2856 try_crop->height = try_fmt->height;
2858 if (ssd != sensor->pixel_array)
2859 continue;
2861 try_comp = v4l2_subdev_get_try_compose(sd, fh->pad, i);
2862 *try_comp = *try_crop;
2865 mutex_unlock(&sensor->mutex);
2867 return smiapp_set_power(sd, 1);
2870 static int smiapp_close(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
2872 return smiapp_set_power(sd, 0);
2875 static const struct v4l2_subdev_video_ops smiapp_video_ops = {
2876 .s_stream = smiapp_set_stream,
2879 static const struct v4l2_subdev_core_ops smiapp_core_ops = {
2880 .s_power = smiapp_set_power,
2883 static const struct v4l2_subdev_pad_ops smiapp_pad_ops = {
2884 .enum_mbus_code = smiapp_enum_mbus_code,
2885 .get_fmt = smiapp_get_format,
2886 .set_fmt = smiapp_set_format,
2887 .get_selection = smiapp_get_selection,
2888 .set_selection = smiapp_set_selection,
2891 static const struct v4l2_subdev_sensor_ops smiapp_sensor_ops = {
2892 .g_skip_frames = smiapp_get_skip_frames,
2895 static const struct v4l2_subdev_ops smiapp_ops = {
2896 .core = &smiapp_core_ops,
2897 .video = &smiapp_video_ops,
2898 .pad = &smiapp_pad_ops,
2899 .sensor = &smiapp_sensor_ops,
2902 static const struct media_entity_operations smiapp_entity_ops = {
2903 .link_validate = v4l2_subdev_link_validate,
2906 static const struct v4l2_subdev_internal_ops smiapp_internal_src_ops = {
2907 .registered = smiapp_registered,
2908 .open = smiapp_open,
2909 .close = smiapp_close,
2912 static const struct v4l2_subdev_internal_ops smiapp_internal_ops = {
2913 .open = smiapp_open,
2914 .close = smiapp_close,
2917 /* -----------------------------------------------------------------------------
2918 * I2C Driver
2921 #ifdef CONFIG_PM
2923 static int smiapp_suspend(struct device *dev)
2925 struct i2c_client *client = to_i2c_client(dev);
2926 struct v4l2_subdev *subdev = i2c_get_clientdata(client);
2927 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2928 bool streaming;
2930 BUG_ON(mutex_is_locked(&sensor->mutex));
2932 if (sensor->power_count == 0)
2933 return 0;
2935 if (sensor->streaming)
2936 smiapp_stop_streaming(sensor);
2938 streaming = sensor->streaming;
2940 smiapp_power_off(sensor);
2942 /* save state for resume */
2943 sensor->streaming = streaming;
2945 return 0;
2948 static int smiapp_resume(struct device *dev)
2950 struct i2c_client *client = to_i2c_client(dev);
2951 struct v4l2_subdev *subdev = i2c_get_clientdata(client);
2952 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2953 int rval;
2955 if (sensor->power_count == 0)
2956 return 0;
2958 rval = smiapp_power_on(sensor);
2959 if (rval)
2960 return rval;
2962 if (sensor->streaming)
2963 rval = smiapp_start_streaming(sensor);
2965 return rval;
2968 #else
2970 #define smiapp_suspend NULL
2971 #define smiapp_resume NULL
2973 #endif /* CONFIG_PM */
2975 static struct smiapp_platform_data *smiapp_get_pdata(struct device *dev)
2977 struct smiapp_platform_data *pdata;
2978 struct v4l2_of_endpoint *bus_cfg;
2979 struct device_node *ep;
2980 int i;
2981 int rval;
2983 if (!dev->of_node)
2984 return dev->platform_data;
2986 ep = of_graph_get_next_endpoint(dev->of_node, NULL);
2987 if (!ep)
2988 return NULL;
2990 bus_cfg = v4l2_of_alloc_parse_endpoint(ep);
2991 if (IS_ERR(bus_cfg))
2992 goto out_err;
2994 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2995 if (!pdata)
2996 goto out_err;
2998 switch (bus_cfg->bus_type) {
2999 case V4L2_MBUS_CSI2:
3000 pdata->csi_signalling_mode = SMIAPP_CSI_SIGNALLING_MODE_CSI2;
3001 break;
3002 /* FIXME: add CCP2 support. */
3003 default:
3004 goto out_err;
3007 pdata->lanes = bus_cfg->bus.mipi_csi2.num_data_lanes;
3008 dev_dbg(dev, "lanes %u\n", pdata->lanes);
3010 /* xshutdown GPIO is optional */
3011 pdata->xshutdown = of_get_named_gpio(dev->of_node, "reset-gpios", 0);
3013 /* NVM size is not mandatory */
3014 of_property_read_u32(dev->of_node, "nokia,nvm-size",
3015 &pdata->nvm_size);
3017 rval = of_property_read_u32(dev->of_node, "clock-frequency",
3018 &pdata->ext_clk);
3019 if (rval) {
3020 dev_warn(dev, "can't get clock-frequency\n");
3021 goto out_err;
3024 dev_dbg(dev, "reset %d, nvm %d, clk %d, csi %d\n", pdata->xshutdown,
3025 pdata->nvm_size, pdata->ext_clk, pdata->csi_signalling_mode);
3027 if (!bus_cfg->nr_of_link_frequencies) {
3028 dev_warn(dev, "no link frequencies defined\n");
3029 goto out_err;
3032 pdata->op_sys_clock = devm_kcalloc(
3033 dev, bus_cfg->nr_of_link_frequencies + 1 /* guardian */,
3034 sizeof(*pdata->op_sys_clock), GFP_KERNEL);
3035 if (!pdata->op_sys_clock) {
3036 rval = -ENOMEM;
3037 goto out_err;
3040 for (i = 0; i < bus_cfg->nr_of_link_frequencies; i++) {
3041 pdata->op_sys_clock[i] = bus_cfg->link_frequencies[i];
3042 dev_dbg(dev, "freq %d: %lld\n", i, pdata->op_sys_clock[i]);
3045 v4l2_of_free_endpoint(bus_cfg);
3046 of_node_put(ep);
3047 return pdata;
3049 out_err:
3050 v4l2_of_free_endpoint(bus_cfg);
3051 of_node_put(ep);
3052 return NULL;
3055 static int smiapp_probe(struct i2c_client *client,
3056 const struct i2c_device_id *devid)
3058 struct smiapp_sensor *sensor;
3059 struct smiapp_platform_data *pdata = smiapp_get_pdata(&client->dev);
3060 int rval;
3062 if (pdata == NULL)
3063 return -ENODEV;
3065 sensor = devm_kzalloc(&client->dev, sizeof(*sensor), GFP_KERNEL);
3066 if (sensor == NULL)
3067 return -ENOMEM;
3069 sensor->platform_data = pdata;
3070 mutex_init(&sensor->mutex);
3071 mutex_init(&sensor->power_mutex);
3072 sensor->src = &sensor->ssds[sensor->ssds_used];
3074 v4l2_i2c_subdev_init(&sensor->src->sd, client, &smiapp_ops);
3075 sensor->src->sd.internal_ops = &smiapp_internal_src_ops;
3076 sensor->src->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
3077 sensor->src->sensor = sensor;
3079 sensor->src->pads[0].flags = MEDIA_PAD_FL_SOURCE;
3080 rval = media_entity_pads_init(&sensor->src->sd.entity, 2,
3081 sensor->src->pads);
3082 if (rval < 0)
3083 return rval;
3085 if (client->dev.of_node) {
3086 rval = smiapp_init(sensor);
3087 if (rval)
3088 goto out_media_entity_cleanup;
3091 rval = v4l2_async_register_subdev(&sensor->src->sd);
3092 if (rval < 0)
3093 goto out_media_entity_cleanup;
3095 return 0;
3097 out_media_entity_cleanup:
3098 media_entity_cleanup(&sensor->src->sd.entity);
3100 return rval;
3103 static int smiapp_remove(struct i2c_client *client)
3105 struct v4l2_subdev *subdev = i2c_get_clientdata(client);
3106 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
3107 unsigned int i;
3109 v4l2_async_unregister_subdev(subdev);
3111 if (sensor->power_count) {
3112 if (gpio_is_valid(sensor->platform_data->xshutdown))
3113 gpio_set_value(sensor->platform_data->xshutdown, 0);
3114 if (sensor->platform_data->set_xclk)
3115 sensor->platform_data->set_xclk(&sensor->src->sd, 0);
3116 else
3117 clk_disable_unprepare(sensor->ext_clk);
3118 sensor->power_count = 0;
3121 for (i = 0; i < sensor->ssds_used; i++) {
3122 v4l2_device_unregister_subdev(&sensor->ssds[i].sd);
3123 media_entity_cleanup(&sensor->ssds[i].sd.entity);
3125 smiapp_cleanup(sensor);
3127 return 0;
3130 static const struct of_device_id smiapp_of_table[] = {
3131 { .compatible = "nokia,smia" },
3132 { },
3134 MODULE_DEVICE_TABLE(of, smiapp_of_table);
3136 static const struct i2c_device_id smiapp_id_table[] = {
3137 { SMIAPP_NAME, 0 },
3138 { },
3140 MODULE_DEVICE_TABLE(i2c, smiapp_id_table);
3142 static const struct dev_pm_ops smiapp_pm_ops = {
3143 .suspend = smiapp_suspend,
3144 .resume = smiapp_resume,
3147 static struct i2c_driver smiapp_i2c_driver = {
3148 .driver = {
3149 .of_match_table = smiapp_of_table,
3150 .name = SMIAPP_NAME,
3151 .pm = &smiapp_pm_ops,
3153 .probe = smiapp_probe,
3154 .remove = smiapp_remove,
3155 .id_table = smiapp_id_table,
3158 module_i2c_driver(smiapp_i2c_driver);
3160 MODULE_AUTHOR("Sakari Ailus <sakari.ailus@iki.fi>");
3161 MODULE_DESCRIPTION("Generic SMIA/SMIA++ camera module driver");
3162 MODULE_LICENSE("GPL");