tcp: fix lockdep splat in tcp_snd_una_update()
[linux/fpc-iii.git] / drivers / power / ab8500_fg.c
blob5a36cf88578ac18a9305b1398ed888020dbefa0c
1 /*
2 * Copyright (C) ST-Ericsson AB 2012
4 * Main and Back-up battery management driver.
6 * Note: Backup battery management is required in case of Li-Ion battery and not
7 * for capacitive battery. HREF boards have capacitive battery and hence backup
8 * battery management is not used and the supported code is available in this
9 * driver.
11 * License Terms: GNU General Public License v2
12 * Author:
13 * Johan Palsson <johan.palsson@stericsson.com>
14 * Karl Komierowski <karl.komierowski@stericsson.com>
15 * Arun R Murthy <arun.murthy@stericsson.com>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/device.h>
21 #include <linux/interrupt.h>
22 #include <linux/platform_device.h>
23 #include <linux/power_supply.h>
24 #include <linux/kobject.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/time.h>
28 #include <linux/time64.h>
29 #include <linux/of.h>
30 #include <linux/completion.h>
31 #include <linux/mfd/core.h>
32 #include <linux/mfd/abx500.h>
33 #include <linux/mfd/abx500/ab8500.h>
34 #include <linux/mfd/abx500/ab8500-bm.h>
35 #include <linux/mfd/abx500/ab8500-gpadc.h>
36 #include <linux/kernel.h>
38 #define MILLI_TO_MICRO 1000
39 #define FG_LSB_IN_MA 1627
40 #define QLSB_NANO_AMP_HOURS_X10 1071
41 #define INS_CURR_TIMEOUT (3 * HZ)
43 #define SEC_TO_SAMPLE(S) (S * 4)
45 #define NBR_AVG_SAMPLES 20
47 #define LOW_BAT_CHECK_INTERVAL (HZ / 16) /* 62.5 ms */
49 #define VALID_CAPACITY_SEC (45 * 60) /* 45 minutes */
50 #define BATT_OK_MIN 2360 /* mV */
51 #define BATT_OK_INCREMENT 50 /* mV */
52 #define BATT_OK_MAX_NR_INCREMENTS 0xE
54 /* FG constants */
55 #define BATT_OVV 0x01
57 #define interpolate(x, x1, y1, x2, y2) \
58 ((y1) + ((((y2) - (y1)) * ((x) - (x1))) / ((x2) - (x1))));
60 /**
61 * struct ab8500_fg_interrupts - ab8500 fg interupts
62 * @name: name of the interrupt
63 * @isr function pointer to the isr
65 struct ab8500_fg_interrupts {
66 char *name;
67 irqreturn_t (*isr)(int irq, void *data);
70 enum ab8500_fg_discharge_state {
71 AB8500_FG_DISCHARGE_INIT,
72 AB8500_FG_DISCHARGE_INITMEASURING,
73 AB8500_FG_DISCHARGE_INIT_RECOVERY,
74 AB8500_FG_DISCHARGE_RECOVERY,
75 AB8500_FG_DISCHARGE_READOUT_INIT,
76 AB8500_FG_DISCHARGE_READOUT,
77 AB8500_FG_DISCHARGE_WAKEUP,
80 static char *discharge_state[] = {
81 "DISCHARGE_INIT",
82 "DISCHARGE_INITMEASURING",
83 "DISCHARGE_INIT_RECOVERY",
84 "DISCHARGE_RECOVERY",
85 "DISCHARGE_READOUT_INIT",
86 "DISCHARGE_READOUT",
87 "DISCHARGE_WAKEUP",
90 enum ab8500_fg_charge_state {
91 AB8500_FG_CHARGE_INIT,
92 AB8500_FG_CHARGE_READOUT,
95 static char *charge_state[] = {
96 "CHARGE_INIT",
97 "CHARGE_READOUT",
100 enum ab8500_fg_calibration_state {
101 AB8500_FG_CALIB_INIT,
102 AB8500_FG_CALIB_WAIT,
103 AB8500_FG_CALIB_END,
106 struct ab8500_fg_avg_cap {
107 int avg;
108 int samples[NBR_AVG_SAMPLES];
109 time64_t time_stamps[NBR_AVG_SAMPLES];
110 int pos;
111 int nbr_samples;
112 int sum;
115 struct ab8500_fg_cap_scaling {
116 bool enable;
117 int cap_to_scale[2];
118 int disable_cap_level;
119 int scaled_cap;
122 struct ab8500_fg_battery_capacity {
123 int max_mah_design;
124 int max_mah;
125 int mah;
126 int permille;
127 int level;
128 int prev_mah;
129 int prev_percent;
130 int prev_level;
131 int user_mah;
132 struct ab8500_fg_cap_scaling cap_scale;
135 struct ab8500_fg_flags {
136 bool fg_enabled;
137 bool conv_done;
138 bool charging;
139 bool fully_charged;
140 bool force_full;
141 bool low_bat_delay;
142 bool low_bat;
143 bool bat_ovv;
144 bool batt_unknown;
145 bool calibrate;
146 bool user_cap;
147 bool batt_id_received;
150 struct inst_curr_result_list {
151 struct list_head list;
152 int *result;
156 * struct ab8500_fg - ab8500 FG device information
157 * @dev: Pointer to the structure device
158 * @node: a list of AB8500 FGs, hence prepared for reentrance
159 * @irq holds the CCEOC interrupt number
160 * @vbat: Battery voltage in mV
161 * @vbat_nom: Nominal battery voltage in mV
162 * @inst_curr: Instantenous battery current in mA
163 * @avg_curr: Average battery current in mA
164 * @bat_temp battery temperature
165 * @fg_samples: Number of samples used in the FG accumulation
166 * @accu_charge: Accumulated charge from the last conversion
167 * @recovery_cnt: Counter for recovery mode
168 * @high_curr_cnt: Counter for high current mode
169 * @init_cnt: Counter for init mode
170 * @low_bat_cnt Counter for number of consecutive low battery measures
171 * @nbr_cceoc_irq_cnt Counter for number of CCEOC irqs received since enabled
172 * @recovery_needed: Indicate if recovery is needed
173 * @high_curr_mode: Indicate if we're in high current mode
174 * @init_capacity: Indicate if initial capacity measuring should be done
175 * @turn_off_fg: True if fg was off before current measurement
176 * @calib_state State during offset calibration
177 * @discharge_state: Current discharge state
178 * @charge_state: Current charge state
179 * @ab8500_fg_started Completion struct used for the instant current start
180 * @ab8500_fg_complete Completion struct used for the instant current reading
181 * @flags: Structure for information about events triggered
182 * @bat_cap: Structure for battery capacity specific parameters
183 * @avg_cap: Average capacity filter
184 * @parent: Pointer to the struct ab8500
185 * @gpadc: Pointer to the struct gpadc
186 * @bm: Platform specific battery management information
187 * @fg_psy: Structure that holds the FG specific battery properties
188 * @fg_wq: Work queue for running the FG algorithm
189 * @fg_periodic_work: Work to run the FG algorithm periodically
190 * @fg_low_bat_work: Work to check low bat condition
191 * @fg_reinit_work Work used to reset and reinitialise the FG algorithm
192 * @fg_work: Work to run the FG algorithm instantly
193 * @fg_acc_cur_work: Work to read the FG accumulator
194 * @fg_check_hw_failure_work: Work for checking HW state
195 * @cc_lock: Mutex for locking the CC
196 * @fg_kobject: Structure of type kobject
198 struct ab8500_fg {
199 struct device *dev;
200 struct list_head node;
201 int irq;
202 int vbat;
203 int vbat_nom;
204 int inst_curr;
205 int avg_curr;
206 int bat_temp;
207 int fg_samples;
208 int accu_charge;
209 int recovery_cnt;
210 int high_curr_cnt;
211 int init_cnt;
212 int low_bat_cnt;
213 int nbr_cceoc_irq_cnt;
214 bool recovery_needed;
215 bool high_curr_mode;
216 bool init_capacity;
217 bool turn_off_fg;
218 enum ab8500_fg_calibration_state calib_state;
219 enum ab8500_fg_discharge_state discharge_state;
220 enum ab8500_fg_charge_state charge_state;
221 struct completion ab8500_fg_started;
222 struct completion ab8500_fg_complete;
223 struct ab8500_fg_flags flags;
224 struct ab8500_fg_battery_capacity bat_cap;
225 struct ab8500_fg_avg_cap avg_cap;
226 struct ab8500 *parent;
227 struct ab8500_gpadc *gpadc;
228 struct abx500_bm_data *bm;
229 struct power_supply *fg_psy;
230 struct workqueue_struct *fg_wq;
231 struct delayed_work fg_periodic_work;
232 struct delayed_work fg_low_bat_work;
233 struct delayed_work fg_reinit_work;
234 struct work_struct fg_work;
235 struct work_struct fg_acc_cur_work;
236 struct delayed_work fg_check_hw_failure_work;
237 struct mutex cc_lock;
238 struct kobject fg_kobject;
240 static LIST_HEAD(ab8500_fg_list);
243 * ab8500_fg_get() - returns a reference to the primary AB8500 fuel gauge
244 * (i.e. the first fuel gauge in the instance list)
246 struct ab8500_fg *ab8500_fg_get(void)
248 struct ab8500_fg *fg;
250 if (list_empty(&ab8500_fg_list))
251 return NULL;
253 fg = list_first_entry(&ab8500_fg_list, struct ab8500_fg, node);
254 return fg;
257 /* Main battery properties */
258 static enum power_supply_property ab8500_fg_props[] = {
259 POWER_SUPPLY_PROP_VOLTAGE_NOW,
260 POWER_SUPPLY_PROP_CURRENT_NOW,
261 POWER_SUPPLY_PROP_CURRENT_AVG,
262 POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
263 POWER_SUPPLY_PROP_ENERGY_FULL,
264 POWER_SUPPLY_PROP_ENERGY_NOW,
265 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
266 POWER_SUPPLY_PROP_CHARGE_FULL,
267 POWER_SUPPLY_PROP_CHARGE_NOW,
268 POWER_SUPPLY_PROP_CAPACITY,
269 POWER_SUPPLY_PROP_CAPACITY_LEVEL,
273 * This array maps the raw hex value to lowbat voltage used by the AB8500
274 * Values taken from the UM0836
276 static int ab8500_fg_lowbat_voltage_map[] = {
277 2300 ,
278 2325 ,
279 2350 ,
280 2375 ,
281 2400 ,
282 2425 ,
283 2450 ,
284 2475 ,
285 2500 ,
286 2525 ,
287 2550 ,
288 2575 ,
289 2600 ,
290 2625 ,
291 2650 ,
292 2675 ,
293 2700 ,
294 2725 ,
295 2750 ,
296 2775 ,
297 2800 ,
298 2825 ,
299 2850 ,
300 2875 ,
301 2900 ,
302 2925 ,
303 2950 ,
304 2975 ,
305 3000 ,
306 3025 ,
307 3050 ,
308 3075 ,
309 3100 ,
310 3125 ,
311 3150 ,
312 3175 ,
313 3200 ,
314 3225 ,
315 3250 ,
316 3275 ,
317 3300 ,
318 3325 ,
319 3350 ,
320 3375 ,
321 3400 ,
322 3425 ,
323 3450 ,
324 3475 ,
325 3500 ,
326 3525 ,
327 3550 ,
328 3575 ,
329 3600 ,
330 3625 ,
331 3650 ,
332 3675 ,
333 3700 ,
334 3725 ,
335 3750 ,
336 3775 ,
337 3800 ,
338 3825 ,
339 3850 ,
340 3850 ,
343 static u8 ab8500_volt_to_regval(int voltage)
345 int i;
347 if (voltage < ab8500_fg_lowbat_voltage_map[0])
348 return 0;
350 for (i = 0; i < ARRAY_SIZE(ab8500_fg_lowbat_voltage_map); i++) {
351 if (voltage < ab8500_fg_lowbat_voltage_map[i])
352 return (u8) i - 1;
355 /* If not captured above, return index of last element */
356 return (u8) ARRAY_SIZE(ab8500_fg_lowbat_voltage_map) - 1;
360 * ab8500_fg_is_low_curr() - Low or high current mode
361 * @di: pointer to the ab8500_fg structure
362 * @curr: the current to base or our decision on
364 * Low current mode if the current consumption is below a certain threshold
366 static int ab8500_fg_is_low_curr(struct ab8500_fg *di, int curr)
369 * We want to know if we're in low current mode
371 if (curr > -di->bm->fg_params->high_curr_threshold)
372 return true;
373 else
374 return false;
378 * ab8500_fg_add_cap_sample() - Add capacity to average filter
379 * @di: pointer to the ab8500_fg structure
380 * @sample: the capacity in mAh to add to the filter
382 * A capacity is added to the filter and a new mean capacity is calculated and
383 * returned
385 static int ab8500_fg_add_cap_sample(struct ab8500_fg *di, int sample)
387 struct timespec64 ts64;
388 struct ab8500_fg_avg_cap *avg = &di->avg_cap;
390 getnstimeofday64(&ts64);
392 do {
393 avg->sum += sample - avg->samples[avg->pos];
394 avg->samples[avg->pos] = sample;
395 avg->time_stamps[avg->pos] = ts64.tv_sec;
396 avg->pos++;
398 if (avg->pos == NBR_AVG_SAMPLES)
399 avg->pos = 0;
401 if (avg->nbr_samples < NBR_AVG_SAMPLES)
402 avg->nbr_samples++;
405 * Check the time stamp for each sample. If too old,
406 * replace with latest sample
408 } while (ts64.tv_sec - VALID_CAPACITY_SEC > avg->time_stamps[avg->pos]);
410 avg->avg = avg->sum / avg->nbr_samples;
412 return avg->avg;
416 * ab8500_fg_clear_cap_samples() - Clear average filter
417 * @di: pointer to the ab8500_fg structure
419 * The capacity filter is is reset to zero.
421 static void ab8500_fg_clear_cap_samples(struct ab8500_fg *di)
423 int i;
424 struct ab8500_fg_avg_cap *avg = &di->avg_cap;
426 avg->pos = 0;
427 avg->nbr_samples = 0;
428 avg->sum = 0;
429 avg->avg = 0;
431 for (i = 0; i < NBR_AVG_SAMPLES; i++) {
432 avg->samples[i] = 0;
433 avg->time_stamps[i] = 0;
438 * ab8500_fg_fill_cap_sample() - Fill average filter
439 * @di: pointer to the ab8500_fg structure
440 * @sample: the capacity in mAh to fill the filter with
442 * The capacity filter is filled with a capacity in mAh
444 static void ab8500_fg_fill_cap_sample(struct ab8500_fg *di, int sample)
446 int i;
447 struct timespec64 ts64;
448 struct ab8500_fg_avg_cap *avg = &di->avg_cap;
450 getnstimeofday64(&ts64);
452 for (i = 0; i < NBR_AVG_SAMPLES; i++) {
453 avg->samples[i] = sample;
454 avg->time_stamps[i] = ts64.tv_sec;
457 avg->pos = 0;
458 avg->nbr_samples = NBR_AVG_SAMPLES;
459 avg->sum = sample * NBR_AVG_SAMPLES;
460 avg->avg = sample;
464 * ab8500_fg_coulomb_counter() - enable coulomb counter
465 * @di: pointer to the ab8500_fg structure
466 * @enable: enable/disable
468 * Enable/Disable coulomb counter.
469 * On failure returns negative value.
471 static int ab8500_fg_coulomb_counter(struct ab8500_fg *di, bool enable)
473 int ret = 0;
474 mutex_lock(&di->cc_lock);
475 if (enable) {
476 /* To be able to reprogram the number of samples, we have to
477 * first stop the CC and then enable it again */
478 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
479 AB8500_RTC_CC_CONF_REG, 0x00);
480 if (ret)
481 goto cc_err;
483 /* Program the samples */
484 ret = abx500_set_register_interruptible(di->dev,
485 AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU,
486 di->fg_samples);
487 if (ret)
488 goto cc_err;
490 /* Start the CC */
491 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
492 AB8500_RTC_CC_CONF_REG,
493 (CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA));
494 if (ret)
495 goto cc_err;
497 di->flags.fg_enabled = true;
498 } else {
499 /* Clear any pending read requests */
500 ret = abx500_mask_and_set_register_interruptible(di->dev,
501 AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
502 (RESET_ACCU | READ_REQ), 0);
503 if (ret)
504 goto cc_err;
506 ret = abx500_set_register_interruptible(di->dev,
507 AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU_CTRL, 0);
508 if (ret)
509 goto cc_err;
511 /* Stop the CC */
512 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
513 AB8500_RTC_CC_CONF_REG, 0);
514 if (ret)
515 goto cc_err;
517 di->flags.fg_enabled = false;
520 dev_dbg(di->dev, " CC enabled: %d Samples: %d\n",
521 enable, di->fg_samples);
523 mutex_unlock(&di->cc_lock);
525 return ret;
526 cc_err:
527 dev_err(di->dev, "%s Enabling coulomb counter failed\n", __func__);
528 mutex_unlock(&di->cc_lock);
529 return ret;
533 * ab8500_fg_inst_curr_start() - start battery instantaneous current
534 * @di: pointer to the ab8500_fg structure
536 * Returns 0 or error code
537 * Note: This is part "one" and has to be called before
538 * ab8500_fg_inst_curr_finalize()
540 int ab8500_fg_inst_curr_start(struct ab8500_fg *di)
542 u8 reg_val;
543 int ret;
545 mutex_lock(&di->cc_lock);
547 di->nbr_cceoc_irq_cnt = 0;
548 ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
549 AB8500_RTC_CC_CONF_REG, &reg_val);
550 if (ret < 0)
551 goto fail;
553 if (!(reg_val & CC_PWR_UP_ENA)) {
554 dev_dbg(di->dev, "%s Enable FG\n", __func__);
555 di->turn_off_fg = true;
557 /* Program the samples */
558 ret = abx500_set_register_interruptible(di->dev,
559 AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU,
560 SEC_TO_SAMPLE(10));
561 if (ret)
562 goto fail;
564 /* Start the CC */
565 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
566 AB8500_RTC_CC_CONF_REG,
567 (CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA));
568 if (ret)
569 goto fail;
570 } else {
571 di->turn_off_fg = false;
574 /* Return and WFI */
575 reinit_completion(&di->ab8500_fg_started);
576 reinit_completion(&di->ab8500_fg_complete);
577 enable_irq(di->irq);
579 /* Note: cc_lock is still locked */
580 return 0;
581 fail:
582 mutex_unlock(&di->cc_lock);
583 return ret;
587 * ab8500_fg_inst_curr_started() - check if fg conversion has started
588 * @di: pointer to the ab8500_fg structure
590 * Returns 1 if conversion started, 0 if still waiting
592 int ab8500_fg_inst_curr_started(struct ab8500_fg *di)
594 return completion_done(&di->ab8500_fg_started);
598 * ab8500_fg_inst_curr_done() - check if fg conversion is done
599 * @di: pointer to the ab8500_fg structure
601 * Returns 1 if conversion done, 0 if still waiting
603 int ab8500_fg_inst_curr_done(struct ab8500_fg *di)
605 return completion_done(&di->ab8500_fg_complete);
609 * ab8500_fg_inst_curr_finalize() - battery instantaneous current
610 * @di: pointer to the ab8500_fg structure
611 * @res: battery instantenous current(on success)
613 * Returns 0 or an error code
614 * Note: This is part "two" and has to be called at earliest 250 ms
615 * after ab8500_fg_inst_curr_start()
617 int ab8500_fg_inst_curr_finalize(struct ab8500_fg *di, int *res)
619 u8 low, high;
620 int val;
621 int ret;
622 unsigned long timeout;
624 if (!completion_done(&di->ab8500_fg_complete)) {
625 timeout = wait_for_completion_timeout(
626 &di->ab8500_fg_complete,
627 INS_CURR_TIMEOUT);
628 dev_dbg(di->dev, "Finalize time: %d ms\n",
629 jiffies_to_msecs(INS_CURR_TIMEOUT - timeout));
630 if (!timeout) {
631 ret = -ETIME;
632 disable_irq(di->irq);
633 di->nbr_cceoc_irq_cnt = 0;
634 dev_err(di->dev, "completion timed out [%d]\n",
635 __LINE__);
636 goto fail;
640 disable_irq(di->irq);
641 di->nbr_cceoc_irq_cnt = 0;
643 ret = abx500_mask_and_set_register_interruptible(di->dev,
644 AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
645 READ_REQ, READ_REQ);
647 /* 100uS between read request and read is needed */
648 usleep_range(100, 100);
650 /* Read CC Sample conversion value Low and high */
651 ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
652 AB8500_GASG_CC_SMPL_CNVL_REG, &low);
653 if (ret < 0)
654 goto fail;
656 ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
657 AB8500_GASG_CC_SMPL_CNVH_REG, &high);
658 if (ret < 0)
659 goto fail;
662 * negative value for Discharging
663 * convert 2's compliment into decimal
665 if (high & 0x10)
666 val = (low | (high << 8) | 0xFFFFE000);
667 else
668 val = (low | (high << 8));
671 * Convert to unit value in mA
672 * Full scale input voltage is
673 * 63.160mV => LSB = 63.160mV/(4096*res) = 1.542mA
674 * Given a 250ms conversion cycle time the LSB corresponds
675 * to 107.1 nAh. Convert to current by dividing by the conversion
676 * time in hours (250ms = 1 / (3600 * 4)h)
677 * 107.1nAh assumes 10mOhm, but fg_res is in 0.1mOhm
679 val = (val * QLSB_NANO_AMP_HOURS_X10 * 36 * 4) /
680 (1000 * di->bm->fg_res);
682 if (di->turn_off_fg) {
683 dev_dbg(di->dev, "%s Disable FG\n", __func__);
685 /* Clear any pending read requests */
686 ret = abx500_set_register_interruptible(di->dev,
687 AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, 0);
688 if (ret)
689 goto fail;
691 /* Stop the CC */
692 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
693 AB8500_RTC_CC_CONF_REG, 0);
694 if (ret)
695 goto fail;
697 mutex_unlock(&di->cc_lock);
698 (*res) = val;
700 return 0;
701 fail:
702 mutex_unlock(&di->cc_lock);
703 return ret;
707 * ab8500_fg_inst_curr_blocking() - battery instantaneous current
708 * @di: pointer to the ab8500_fg structure
709 * @res: battery instantenous current(on success)
711 * Returns 0 else error code
713 int ab8500_fg_inst_curr_blocking(struct ab8500_fg *di)
715 int ret;
716 unsigned long timeout;
717 int res = 0;
719 ret = ab8500_fg_inst_curr_start(di);
720 if (ret) {
721 dev_err(di->dev, "Failed to initialize fg_inst\n");
722 return 0;
725 /* Wait for CC to actually start */
726 if (!completion_done(&di->ab8500_fg_started)) {
727 timeout = wait_for_completion_timeout(
728 &di->ab8500_fg_started,
729 INS_CURR_TIMEOUT);
730 dev_dbg(di->dev, "Start time: %d ms\n",
731 jiffies_to_msecs(INS_CURR_TIMEOUT - timeout));
732 if (!timeout) {
733 ret = -ETIME;
734 dev_err(di->dev, "completion timed out [%d]\n",
735 __LINE__);
736 goto fail;
740 ret = ab8500_fg_inst_curr_finalize(di, &res);
741 if (ret) {
742 dev_err(di->dev, "Failed to finalize fg_inst\n");
743 return 0;
746 dev_dbg(di->dev, "%s instant current: %d", __func__, res);
747 return res;
748 fail:
749 disable_irq(di->irq);
750 mutex_unlock(&di->cc_lock);
751 return ret;
755 * ab8500_fg_acc_cur_work() - average battery current
756 * @work: pointer to the work_struct structure
758 * Updated the average battery current obtained from the
759 * coulomb counter.
761 static void ab8500_fg_acc_cur_work(struct work_struct *work)
763 int val;
764 int ret;
765 u8 low, med, high;
767 struct ab8500_fg *di = container_of(work,
768 struct ab8500_fg, fg_acc_cur_work);
770 mutex_lock(&di->cc_lock);
771 ret = abx500_set_register_interruptible(di->dev, AB8500_GAS_GAUGE,
772 AB8500_GASG_CC_NCOV_ACCU_CTRL, RD_NCONV_ACCU_REQ);
773 if (ret)
774 goto exit;
776 ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
777 AB8500_GASG_CC_NCOV_ACCU_LOW, &low);
778 if (ret < 0)
779 goto exit;
781 ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
782 AB8500_GASG_CC_NCOV_ACCU_MED, &med);
783 if (ret < 0)
784 goto exit;
786 ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
787 AB8500_GASG_CC_NCOV_ACCU_HIGH, &high);
788 if (ret < 0)
789 goto exit;
791 /* Check for sign bit in case of negative value, 2's compliment */
792 if (high & 0x10)
793 val = (low | (med << 8) | (high << 16) | 0xFFE00000);
794 else
795 val = (low | (med << 8) | (high << 16));
798 * Convert to uAh
799 * Given a 250ms conversion cycle time the LSB corresponds
800 * to 112.9 nAh.
801 * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm
803 di->accu_charge = (val * QLSB_NANO_AMP_HOURS_X10) /
804 (100 * di->bm->fg_res);
807 * Convert to unit value in mA
808 * by dividing by the conversion
809 * time in hours (= samples / (3600 * 4)h)
810 * and multiply with 1000
812 di->avg_curr = (val * QLSB_NANO_AMP_HOURS_X10 * 36) /
813 (1000 * di->bm->fg_res * (di->fg_samples / 4));
815 di->flags.conv_done = true;
817 mutex_unlock(&di->cc_lock);
819 queue_work(di->fg_wq, &di->fg_work);
821 dev_dbg(di->dev, "fg_res: %d, fg_samples: %d, gasg: %d, accu_charge: %d \n",
822 di->bm->fg_res, di->fg_samples, val, di->accu_charge);
823 return;
824 exit:
825 dev_err(di->dev,
826 "Failed to read or write gas gauge registers\n");
827 mutex_unlock(&di->cc_lock);
828 queue_work(di->fg_wq, &di->fg_work);
832 * ab8500_fg_bat_voltage() - get battery voltage
833 * @di: pointer to the ab8500_fg structure
835 * Returns battery voltage(on success) else error code
837 static int ab8500_fg_bat_voltage(struct ab8500_fg *di)
839 int vbat;
840 static int prev;
842 vbat = ab8500_gpadc_convert(di->gpadc, MAIN_BAT_V);
843 if (vbat < 0) {
844 dev_err(di->dev,
845 "%s gpadc conversion failed, using previous value\n",
846 __func__);
847 return prev;
850 prev = vbat;
851 return vbat;
855 * ab8500_fg_volt_to_capacity() - Voltage based capacity
856 * @di: pointer to the ab8500_fg structure
857 * @voltage: The voltage to convert to a capacity
859 * Returns battery capacity in per mille based on voltage
861 static int ab8500_fg_volt_to_capacity(struct ab8500_fg *di, int voltage)
863 int i, tbl_size;
864 const struct abx500_v_to_cap *tbl;
865 int cap = 0;
867 tbl = di->bm->bat_type[di->bm->batt_id].v_to_cap_tbl,
868 tbl_size = di->bm->bat_type[di->bm->batt_id].n_v_cap_tbl_elements;
870 for (i = 0; i < tbl_size; ++i) {
871 if (voltage > tbl[i].voltage)
872 break;
875 if ((i > 0) && (i < tbl_size)) {
876 cap = interpolate(voltage,
877 tbl[i].voltage,
878 tbl[i].capacity * 10,
879 tbl[i-1].voltage,
880 tbl[i-1].capacity * 10);
881 } else if (i == 0) {
882 cap = 1000;
883 } else {
884 cap = 0;
887 dev_dbg(di->dev, "%s Vbat: %d, Cap: %d per mille",
888 __func__, voltage, cap);
890 return cap;
894 * ab8500_fg_uncomp_volt_to_capacity() - Uncompensated voltage based capacity
895 * @di: pointer to the ab8500_fg structure
897 * Returns battery capacity based on battery voltage that is not compensated
898 * for the voltage drop due to the load
900 static int ab8500_fg_uncomp_volt_to_capacity(struct ab8500_fg *di)
902 di->vbat = ab8500_fg_bat_voltage(di);
903 return ab8500_fg_volt_to_capacity(di, di->vbat);
907 * ab8500_fg_battery_resistance() - Returns the battery inner resistance
908 * @di: pointer to the ab8500_fg structure
910 * Returns battery inner resistance added with the fuel gauge resistor value
911 * to get the total resistance in the whole link from gnd to bat+ node.
913 static int ab8500_fg_battery_resistance(struct ab8500_fg *di)
915 int i, tbl_size;
916 const struct batres_vs_temp *tbl;
917 int resist = 0;
919 tbl = di->bm->bat_type[di->bm->batt_id].batres_tbl;
920 tbl_size = di->bm->bat_type[di->bm->batt_id].n_batres_tbl_elements;
922 for (i = 0; i < tbl_size; ++i) {
923 if (di->bat_temp / 10 > tbl[i].temp)
924 break;
927 if ((i > 0) && (i < tbl_size)) {
928 resist = interpolate(di->bat_temp / 10,
929 tbl[i].temp,
930 tbl[i].resist,
931 tbl[i-1].temp,
932 tbl[i-1].resist);
933 } else if (i == 0) {
934 resist = tbl[0].resist;
935 } else {
936 resist = tbl[tbl_size - 1].resist;
939 dev_dbg(di->dev, "%s Temp: %d battery internal resistance: %d"
940 " fg resistance %d, total: %d (mOhm)\n",
941 __func__, di->bat_temp, resist, di->bm->fg_res / 10,
942 (di->bm->fg_res / 10) + resist);
944 /* fg_res variable is in 0.1mOhm */
945 resist += di->bm->fg_res / 10;
947 return resist;
951 * ab8500_fg_load_comp_volt_to_capacity() - Load compensated voltage based capacity
952 * @di: pointer to the ab8500_fg structure
954 * Returns battery capacity based on battery voltage that is load compensated
955 * for the voltage drop
957 static int ab8500_fg_load_comp_volt_to_capacity(struct ab8500_fg *di)
959 int vbat_comp, res;
960 int i = 0;
961 int vbat = 0;
963 ab8500_fg_inst_curr_start(di);
965 do {
966 vbat += ab8500_fg_bat_voltage(di);
967 i++;
968 usleep_range(5000, 6000);
969 } while (!ab8500_fg_inst_curr_done(di));
971 ab8500_fg_inst_curr_finalize(di, &di->inst_curr);
973 di->vbat = vbat / i;
974 res = ab8500_fg_battery_resistance(di);
976 /* Use Ohms law to get the load compensated voltage */
977 vbat_comp = di->vbat - (di->inst_curr * res) / 1000;
979 dev_dbg(di->dev, "%s Measured Vbat: %dmV,Compensated Vbat %dmV, "
980 "R: %dmOhm, Current: %dmA Vbat Samples: %d\n",
981 __func__, di->vbat, vbat_comp, res, di->inst_curr, i);
983 return ab8500_fg_volt_to_capacity(di, vbat_comp);
987 * ab8500_fg_convert_mah_to_permille() - Capacity in mAh to permille
988 * @di: pointer to the ab8500_fg structure
989 * @cap_mah: capacity in mAh
991 * Converts capacity in mAh to capacity in permille
993 static int ab8500_fg_convert_mah_to_permille(struct ab8500_fg *di, int cap_mah)
995 return (cap_mah * 1000) / di->bat_cap.max_mah_design;
999 * ab8500_fg_convert_permille_to_mah() - Capacity in permille to mAh
1000 * @di: pointer to the ab8500_fg structure
1001 * @cap_pm: capacity in permille
1003 * Converts capacity in permille to capacity in mAh
1005 static int ab8500_fg_convert_permille_to_mah(struct ab8500_fg *di, int cap_pm)
1007 return cap_pm * di->bat_cap.max_mah_design / 1000;
1011 * ab8500_fg_convert_mah_to_uwh() - Capacity in mAh to uWh
1012 * @di: pointer to the ab8500_fg structure
1013 * @cap_mah: capacity in mAh
1015 * Converts capacity in mAh to capacity in uWh
1017 static int ab8500_fg_convert_mah_to_uwh(struct ab8500_fg *di, int cap_mah)
1019 u64 div_res;
1020 u32 div_rem;
1022 div_res = ((u64) cap_mah) * ((u64) di->vbat_nom);
1023 div_rem = do_div(div_res, 1000);
1025 /* Make sure to round upwards if necessary */
1026 if (div_rem >= 1000 / 2)
1027 div_res++;
1029 return (int) div_res;
1033 * ab8500_fg_calc_cap_charging() - Calculate remaining capacity while charging
1034 * @di: pointer to the ab8500_fg structure
1036 * Return the capacity in mAh based on previous calculated capcity and the FG
1037 * accumulator register value. The filter is filled with this capacity
1039 static int ab8500_fg_calc_cap_charging(struct ab8500_fg *di)
1041 dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n",
1042 __func__,
1043 di->bat_cap.mah,
1044 di->accu_charge);
1046 /* Capacity should not be less than 0 */
1047 if (di->bat_cap.mah + di->accu_charge > 0)
1048 di->bat_cap.mah += di->accu_charge;
1049 else
1050 di->bat_cap.mah = 0;
1052 * We force capacity to 100% once when the algorithm
1053 * reports that it's full.
1055 if (di->bat_cap.mah >= di->bat_cap.max_mah_design ||
1056 di->flags.force_full) {
1057 di->bat_cap.mah = di->bat_cap.max_mah_design;
1060 ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1061 di->bat_cap.permille =
1062 ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1064 /* We need to update battery voltage and inst current when charging */
1065 di->vbat = ab8500_fg_bat_voltage(di);
1066 di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1068 return di->bat_cap.mah;
1072 * ab8500_fg_calc_cap_discharge_voltage() - Capacity in discharge with voltage
1073 * @di: pointer to the ab8500_fg structure
1074 * @comp: if voltage should be load compensated before capacity calc
1076 * Return the capacity in mAh based on the battery voltage. The voltage can
1077 * either be load compensated or not. This value is added to the filter and a
1078 * new mean value is calculated and returned.
1080 static int ab8500_fg_calc_cap_discharge_voltage(struct ab8500_fg *di, bool comp)
1082 int permille, mah;
1084 if (comp)
1085 permille = ab8500_fg_load_comp_volt_to_capacity(di);
1086 else
1087 permille = ab8500_fg_uncomp_volt_to_capacity(di);
1089 mah = ab8500_fg_convert_permille_to_mah(di, permille);
1091 di->bat_cap.mah = ab8500_fg_add_cap_sample(di, mah);
1092 di->bat_cap.permille =
1093 ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1095 return di->bat_cap.mah;
1099 * ab8500_fg_calc_cap_discharge_fg() - Capacity in discharge with FG
1100 * @di: pointer to the ab8500_fg structure
1102 * Return the capacity in mAh based on previous calculated capcity and the FG
1103 * accumulator register value. This value is added to the filter and a
1104 * new mean value is calculated and returned.
1106 static int ab8500_fg_calc_cap_discharge_fg(struct ab8500_fg *di)
1108 int permille_volt, permille;
1110 dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n",
1111 __func__,
1112 di->bat_cap.mah,
1113 di->accu_charge);
1115 /* Capacity should not be less than 0 */
1116 if (di->bat_cap.mah + di->accu_charge > 0)
1117 di->bat_cap.mah += di->accu_charge;
1118 else
1119 di->bat_cap.mah = 0;
1121 if (di->bat_cap.mah >= di->bat_cap.max_mah_design)
1122 di->bat_cap.mah = di->bat_cap.max_mah_design;
1125 * Check against voltage based capacity. It can not be lower
1126 * than what the uncompensated voltage says
1128 permille = ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1129 permille_volt = ab8500_fg_uncomp_volt_to_capacity(di);
1131 if (permille < permille_volt) {
1132 di->bat_cap.permille = permille_volt;
1133 di->bat_cap.mah = ab8500_fg_convert_permille_to_mah(di,
1134 di->bat_cap.permille);
1136 dev_dbg(di->dev, "%s voltage based: perm %d perm_volt %d\n",
1137 __func__,
1138 permille,
1139 permille_volt);
1141 ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1142 } else {
1143 ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1144 di->bat_cap.permille =
1145 ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1148 return di->bat_cap.mah;
1152 * ab8500_fg_capacity_level() - Get the battery capacity level
1153 * @di: pointer to the ab8500_fg structure
1155 * Get the battery capacity level based on the capacity in percent
1157 static int ab8500_fg_capacity_level(struct ab8500_fg *di)
1159 int ret, percent;
1161 percent = DIV_ROUND_CLOSEST(di->bat_cap.permille, 10);
1163 if (percent <= di->bm->cap_levels->critical ||
1164 di->flags.low_bat)
1165 ret = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1166 else if (percent <= di->bm->cap_levels->low)
1167 ret = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
1168 else if (percent <= di->bm->cap_levels->normal)
1169 ret = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
1170 else if (percent <= di->bm->cap_levels->high)
1171 ret = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
1172 else
1173 ret = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1175 return ret;
1179 * ab8500_fg_calculate_scaled_capacity() - Capacity scaling
1180 * @di: pointer to the ab8500_fg structure
1182 * Calculates the capacity to be shown to upper layers. Scales the capacity
1183 * to have 100% as a reference from the actual capacity upon removal of charger
1184 * when charging is in maintenance mode.
1186 static int ab8500_fg_calculate_scaled_capacity(struct ab8500_fg *di)
1188 struct ab8500_fg_cap_scaling *cs = &di->bat_cap.cap_scale;
1189 int capacity = di->bat_cap.prev_percent;
1191 if (!cs->enable)
1192 return capacity;
1195 * As long as we are in fully charge mode scale the capacity
1196 * to show 100%.
1198 if (di->flags.fully_charged) {
1199 cs->cap_to_scale[0] = 100;
1200 cs->cap_to_scale[1] =
1201 max(capacity, di->bm->fg_params->maint_thres);
1202 dev_dbg(di->dev, "Scale cap with %d/%d\n",
1203 cs->cap_to_scale[0], cs->cap_to_scale[1]);
1206 /* Calculates the scaled capacity. */
1207 if ((cs->cap_to_scale[0] != cs->cap_to_scale[1])
1208 && (cs->cap_to_scale[1] > 0))
1209 capacity = min(100,
1210 DIV_ROUND_CLOSEST(di->bat_cap.prev_percent *
1211 cs->cap_to_scale[0],
1212 cs->cap_to_scale[1]));
1214 if (di->flags.charging) {
1215 if (capacity < cs->disable_cap_level) {
1216 cs->disable_cap_level = capacity;
1217 dev_dbg(di->dev, "Cap to stop scale lowered %d%%\n",
1218 cs->disable_cap_level);
1219 } else if (!di->flags.fully_charged) {
1220 if (di->bat_cap.prev_percent >=
1221 cs->disable_cap_level) {
1222 dev_dbg(di->dev, "Disabling scaled capacity\n");
1223 cs->enable = false;
1224 capacity = di->bat_cap.prev_percent;
1225 } else {
1226 dev_dbg(di->dev,
1227 "Waiting in cap to level %d%%\n",
1228 cs->disable_cap_level);
1229 capacity = cs->disable_cap_level;
1234 return capacity;
1238 * ab8500_fg_update_cap_scalers() - Capacity scaling
1239 * @di: pointer to the ab8500_fg structure
1241 * To be called when state change from charge<->discharge to update
1242 * the capacity scalers.
1244 static void ab8500_fg_update_cap_scalers(struct ab8500_fg *di)
1246 struct ab8500_fg_cap_scaling *cs = &di->bat_cap.cap_scale;
1248 if (!cs->enable)
1249 return;
1250 if (di->flags.charging) {
1251 di->bat_cap.cap_scale.disable_cap_level =
1252 di->bat_cap.cap_scale.scaled_cap;
1253 dev_dbg(di->dev, "Cap to stop scale at charge %d%%\n",
1254 di->bat_cap.cap_scale.disable_cap_level);
1255 } else {
1256 if (cs->scaled_cap != 100) {
1257 cs->cap_to_scale[0] = cs->scaled_cap;
1258 cs->cap_to_scale[1] = di->bat_cap.prev_percent;
1259 } else {
1260 cs->cap_to_scale[0] = 100;
1261 cs->cap_to_scale[1] =
1262 max(di->bat_cap.prev_percent,
1263 di->bm->fg_params->maint_thres);
1266 dev_dbg(di->dev, "Cap to scale at discharge %d/%d\n",
1267 cs->cap_to_scale[0], cs->cap_to_scale[1]);
1272 * ab8500_fg_check_capacity_limits() - Check if capacity has changed
1273 * @di: pointer to the ab8500_fg structure
1274 * @init: capacity is allowed to go up in init mode
1276 * Check if capacity or capacity limit has changed and notify the system
1277 * about it using the power_supply framework
1279 static void ab8500_fg_check_capacity_limits(struct ab8500_fg *di, bool init)
1281 bool changed = false;
1282 int percent = DIV_ROUND_CLOSEST(di->bat_cap.permille, 10);
1284 di->bat_cap.level = ab8500_fg_capacity_level(di);
1286 if (di->bat_cap.level != di->bat_cap.prev_level) {
1288 * We do not allow reported capacity level to go up
1289 * unless we're charging or if we're in init
1291 if (!(!di->flags.charging && di->bat_cap.level >
1292 di->bat_cap.prev_level) || init) {
1293 dev_dbg(di->dev, "level changed from %d to %d\n",
1294 di->bat_cap.prev_level,
1295 di->bat_cap.level);
1296 di->bat_cap.prev_level = di->bat_cap.level;
1297 changed = true;
1298 } else {
1299 dev_dbg(di->dev, "level not allowed to go up "
1300 "since no charger is connected: %d to %d\n",
1301 di->bat_cap.prev_level,
1302 di->bat_cap.level);
1307 * If we have received the LOW_BAT IRQ, set capacity to 0 to initiate
1308 * shutdown
1310 if (di->flags.low_bat) {
1311 dev_dbg(di->dev, "Battery low, set capacity to 0\n");
1312 di->bat_cap.prev_percent = 0;
1313 di->bat_cap.permille = 0;
1314 percent = 0;
1315 di->bat_cap.prev_mah = 0;
1316 di->bat_cap.mah = 0;
1317 changed = true;
1318 } else if (di->flags.fully_charged) {
1320 * We report 100% if algorithm reported fully charged
1321 * and show 100% during maintenance charging (scaling).
1323 if (di->flags.force_full) {
1324 di->bat_cap.prev_percent = percent;
1325 di->bat_cap.prev_mah = di->bat_cap.mah;
1327 changed = true;
1329 if (!di->bat_cap.cap_scale.enable &&
1330 di->bm->capacity_scaling) {
1331 di->bat_cap.cap_scale.enable = true;
1332 di->bat_cap.cap_scale.cap_to_scale[0] = 100;
1333 di->bat_cap.cap_scale.cap_to_scale[1] =
1334 di->bat_cap.prev_percent;
1335 di->bat_cap.cap_scale.disable_cap_level = 100;
1337 } else if (di->bat_cap.prev_percent != percent) {
1338 dev_dbg(di->dev,
1339 "battery reported full "
1340 "but capacity dropping: %d\n",
1341 percent);
1342 di->bat_cap.prev_percent = percent;
1343 di->bat_cap.prev_mah = di->bat_cap.mah;
1345 changed = true;
1347 } else if (di->bat_cap.prev_percent != percent) {
1348 if (percent == 0) {
1350 * We will not report 0% unless we've got
1351 * the LOW_BAT IRQ, no matter what the FG
1352 * algorithm says.
1354 di->bat_cap.prev_percent = 1;
1355 percent = 1;
1357 changed = true;
1358 } else if (!(!di->flags.charging &&
1359 percent > di->bat_cap.prev_percent) || init) {
1361 * We do not allow reported capacity to go up
1362 * unless we're charging or if we're in init
1364 dev_dbg(di->dev,
1365 "capacity changed from %d to %d (%d)\n",
1366 di->bat_cap.prev_percent,
1367 percent,
1368 di->bat_cap.permille);
1369 di->bat_cap.prev_percent = percent;
1370 di->bat_cap.prev_mah = di->bat_cap.mah;
1372 changed = true;
1373 } else {
1374 dev_dbg(di->dev, "capacity not allowed to go up since "
1375 "no charger is connected: %d to %d (%d)\n",
1376 di->bat_cap.prev_percent,
1377 percent,
1378 di->bat_cap.permille);
1382 if (changed) {
1383 if (di->bm->capacity_scaling) {
1384 di->bat_cap.cap_scale.scaled_cap =
1385 ab8500_fg_calculate_scaled_capacity(di);
1387 dev_info(di->dev, "capacity=%d (%d)\n",
1388 di->bat_cap.prev_percent,
1389 di->bat_cap.cap_scale.scaled_cap);
1391 power_supply_changed(di->fg_psy);
1392 if (di->flags.fully_charged && di->flags.force_full) {
1393 dev_dbg(di->dev, "Battery full, notifying.\n");
1394 di->flags.force_full = false;
1395 sysfs_notify(&di->fg_kobject, NULL, "charge_full");
1397 sysfs_notify(&di->fg_kobject, NULL, "charge_now");
1401 static void ab8500_fg_charge_state_to(struct ab8500_fg *di,
1402 enum ab8500_fg_charge_state new_state)
1404 dev_dbg(di->dev, "Charge state from %d [%s] to %d [%s]\n",
1405 di->charge_state,
1406 charge_state[di->charge_state],
1407 new_state,
1408 charge_state[new_state]);
1410 di->charge_state = new_state;
1413 static void ab8500_fg_discharge_state_to(struct ab8500_fg *di,
1414 enum ab8500_fg_discharge_state new_state)
1416 dev_dbg(di->dev, "Disharge state from %d [%s] to %d [%s]\n",
1417 di->discharge_state,
1418 discharge_state[di->discharge_state],
1419 new_state,
1420 discharge_state[new_state]);
1422 di->discharge_state = new_state;
1426 * ab8500_fg_algorithm_charging() - FG algorithm for when charging
1427 * @di: pointer to the ab8500_fg structure
1429 * Battery capacity calculation state machine for when we're charging
1431 static void ab8500_fg_algorithm_charging(struct ab8500_fg *di)
1434 * If we change to discharge mode
1435 * we should start with recovery
1437 if (di->discharge_state != AB8500_FG_DISCHARGE_INIT_RECOVERY)
1438 ab8500_fg_discharge_state_to(di,
1439 AB8500_FG_DISCHARGE_INIT_RECOVERY);
1441 switch (di->charge_state) {
1442 case AB8500_FG_CHARGE_INIT:
1443 di->fg_samples = SEC_TO_SAMPLE(
1444 di->bm->fg_params->accu_charging);
1446 ab8500_fg_coulomb_counter(di, true);
1447 ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_READOUT);
1449 break;
1451 case AB8500_FG_CHARGE_READOUT:
1453 * Read the FG and calculate the new capacity
1455 mutex_lock(&di->cc_lock);
1456 if (!di->flags.conv_done && !di->flags.force_full) {
1457 /* Wasn't the CC IRQ that got us here */
1458 mutex_unlock(&di->cc_lock);
1459 dev_dbg(di->dev, "%s CC conv not done\n",
1460 __func__);
1462 break;
1464 di->flags.conv_done = false;
1465 mutex_unlock(&di->cc_lock);
1467 ab8500_fg_calc_cap_charging(di);
1469 break;
1471 default:
1472 break;
1475 /* Check capacity limits */
1476 ab8500_fg_check_capacity_limits(di, false);
1479 static void force_capacity(struct ab8500_fg *di)
1481 int cap;
1483 ab8500_fg_clear_cap_samples(di);
1484 cap = di->bat_cap.user_mah;
1485 if (cap > di->bat_cap.max_mah_design) {
1486 dev_dbg(di->dev, "Remaining cap %d can't be bigger than total"
1487 " %d\n", cap, di->bat_cap.max_mah_design);
1488 cap = di->bat_cap.max_mah_design;
1490 ab8500_fg_fill_cap_sample(di, di->bat_cap.user_mah);
1491 di->bat_cap.permille = ab8500_fg_convert_mah_to_permille(di, cap);
1492 di->bat_cap.mah = cap;
1493 ab8500_fg_check_capacity_limits(di, true);
1496 static bool check_sysfs_capacity(struct ab8500_fg *di)
1498 int cap, lower, upper;
1499 int cap_permille;
1501 cap = di->bat_cap.user_mah;
1503 cap_permille = ab8500_fg_convert_mah_to_permille(di,
1504 di->bat_cap.user_mah);
1506 lower = di->bat_cap.permille - di->bm->fg_params->user_cap_limit * 10;
1507 upper = di->bat_cap.permille + di->bm->fg_params->user_cap_limit * 10;
1509 if (lower < 0)
1510 lower = 0;
1511 /* 1000 is permille, -> 100 percent */
1512 if (upper > 1000)
1513 upper = 1000;
1515 dev_dbg(di->dev, "Capacity limits:"
1516 " (Lower: %d User: %d Upper: %d) [user: %d, was: %d]\n",
1517 lower, cap_permille, upper, cap, di->bat_cap.mah);
1519 /* If within limits, use the saved capacity and exit estimation...*/
1520 if (cap_permille > lower && cap_permille < upper) {
1521 dev_dbg(di->dev, "OK! Using users cap %d uAh now\n", cap);
1522 force_capacity(di);
1523 return true;
1525 dev_dbg(di->dev, "Capacity from user out of limits, ignoring");
1526 return false;
1530 * ab8500_fg_algorithm_discharging() - FG algorithm for when discharging
1531 * @di: pointer to the ab8500_fg structure
1533 * Battery capacity calculation state machine for when we're discharging
1535 static void ab8500_fg_algorithm_discharging(struct ab8500_fg *di)
1537 int sleep_time;
1539 /* If we change to charge mode we should start with init */
1540 if (di->charge_state != AB8500_FG_CHARGE_INIT)
1541 ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
1543 switch (di->discharge_state) {
1544 case AB8500_FG_DISCHARGE_INIT:
1545 /* We use the FG IRQ to work on */
1546 di->init_cnt = 0;
1547 di->fg_samples = SEC_TO_SAMPLE(di->bm->fg_params->init_timer);
1548 ab8500_fg_coulomb_counter(di, true);
1549 ab8500_fg_discharge_state_to(di,
1550 AB8500_FG_DISCHARGE_INITMEASURING);
1552 /* Intentional fallthrough */
1553 case AB8500_FG_DISCHARGE_INITMEASURING:
1555 * Discard a number of samples during startup.
1556 * After that, use compensated voltage for a few
1557 * samples to get an initial capacity.
1558 * Then go to READOUT
1560 sleep_time = di->bm->fg_params->init_timer;
1562 /* Discard the first [x] seconds */
1563 if (di->init_cnt > di->bm->fg_params->init_discard_time) {
1564 ab8500_fg_calc_cap_discharge_voltage(di, true);
1566 ab8500_fg_check_capacity_limits(di, true);
1569 di->init_cnt += sleep_time;
1570 if (di->init_cnt > di->bm->fg_params->init_total_time)
1571 ab8500_fg_discharge_state_to(di,
1572 AB8500_FG_DISCHARGE_READOUT_INIT);
1574 break;
1576 case AB8500_FG_DISCHARGE_INIT_RECOVERY:
1577 di->recovery_cnt = 0;
1578 di->recovery_needed = true;
1579 ab8500_fg_discharge_state_to(di,
1580 AB8500_FG_DISCHARGE_RECOVERY);
1582 /* Intentional fallthrough */
1584 case AB8500_FG_DISCHARGE_RECOVERY:
1585 sleep_time = di->bm->fg_params->recovery_sleep_timer;
1588 * We should check the power consumption
1589 * If low, go to READOUT (after x min) or
1590 * RECOVERY_SLEEP if time left.
1591 * If high, go to READOUT
1593 di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1595 if (ab8500_fg_is_low_curr(di, di->inst_curr)) {
1596 if (di->recovery_cnt >
1597 di->bm->fg_params->recovery_total_time) {
1598 di->fg_samples = SEC_TO_SAMPLE(
1599 di->bm->fg_params->accu_high_curr);
1600 ab8500_fg_coulomb_counter(di, true);
1601 ab8500_fg_discharge_state_to(di,
1602 AB8500_FG_DISCHARGE_READOUT);
1603 di->recovery_needed = false;
1604 } else {
1605 queue_delayed_work(di->fg_wq,
1606 &di->fg_periodic_work,
1607 sleep_time * HZ);
1609 di->recovery_cnt += sleep_time;
1610 } else {
1611 di->fg_samples = SEC_TO_SAMPLE(
1612 di->bm->fg_params->accu_high_curr);
1613 ab8500_fg_coulomb_counter(di, true);
1614 ab8500_fg_discharge_state_to(di,
1615 AB8500_FG_DISCHARGE_READOUT);
1617 break;
1619 case AB8500_FG_DISCHARGE_READOUT_INIT:
1620 di->fg_samples = SEC_TO_SAMPLE(
1621 di->bm->fg_params->accu_high_curr);
1622 ab8500_fg_coulomb_counter(di, true);
1623 ab8500_fg_discharge_state_to(di,
1624 AB8500_FG_DISCHARGE_READOUT);
1625 break;
1627 case AB8500_FG_DISCHARGE_READOUT:
1628 di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1630 if (ab8500_fg_is_low_curr(di, di->inst_curr)) {
1631 /* Detect mode change */
1632 if (di->high_curr_mode) {
1633 di->high_curr_mode = false;
1634 di->high_curr_cnt = 0;
1637 if (di->recovery_needed) {
1638 ab8500_fg_discharge_state_to(di,
1639 AB8500_FG_DISCHARGE_INIT_RECOVERY);
1641 queue_delayed_work(di->fg_wq,
1642 &di->fg_periodic_work, 0);
1644 break;
1647 ab8500_fg_calc_cap_discharge_voltage(di, true);
1648 } else {
1649 mutex_lock(&di->cc_lock);
1650 if (!di->flags.conv_done) {
1651 /* Wasn't the CC IRQ that got us here */
1652 mutex_unlock(&di->cc_lock);
1653 dev_dbg(di->dev, "%s CC conv not done\n",
1654 __func__);
1656 break;
1658 di->flags.conv_done = false;
1659 mutex_unlock(&di->cc_lock);
1661 /* Detect mode change */
1662 if (!di->high_curr_mode) {
1663 di->high_curr_mode = true;
1664 di->high_curr_cnt = 0;
1667 di->high_curr_cnt +=
1668 di->bm->fg_params->accu_high_curr;
1669 if (di->high_curr_cnt >
1670 di->bm->fg_params->high_curr_time)
1671 di->recovery_needed = true;
1673 ab8500_fg_calc_cap_discharge_fg(di);
1676 ab8500_fg_check_capacity_limits(di, false);
1678 break;
1680 case AB8500_FG_DISCHARGE_WAKEUP:
1681 ab8500_fg_calc_cap_discharge_voltage(di, true);
1683 di->fg_samples = SEC_TO_SAMPLE(
1684 di->bm->fg_params->accu_high_curr);
1685 ab8500_fg_coulomb_counter(di, true);
1686 ab8500_fg_discharge_state_to(di,
1687 AB8500_FG_DISCHARGE_READOUT);
1689 ab8500_fg_check_capacity_limits(di, false);
1691 break;
1693 default:
1694 break;
1699 * ab8500_fg_algorithm_calibrate() - Internal columb counter offset calibration
1700 * @di: pointer to the ab8500_fg structure
1703 static void ab8500_fg_algorithm_calibrate(struct ab8500_fg *di)
1705 int ret;
1707 switch (di->calib_state) {
1708 case AB8500_FG_CALIB_INIT:
1709 dev_dbg(di->dev, "Calibration ongoing...\n");
1711 ret = abx500_mask_and_set_register_interruptible(di->dev,
1712 AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1713 CC_INT_CAL_N_AVG_MASK, CC_INT_CAL_SAMPLES_8);
1714 if (ret < 0)
1715 goto err;
1717 ret = abx500_mask_and_set_register_interruptible(di->dev,
1718 AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1719 CC_INTAVGOFFSET_ENA, CC_INTAVGOFFSET_ENA);
1720 if (ret < 0)
1721 goto err;
1722 di->calib_state = AB8500_FG_CALIB_WAIT;
1723 break;
1724 case AB8500_FG_CALIB_END:
1725 ret = abx500_mask_and_set_register_interruptible(di->dev,
1726 AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1727 CC_MUXOFFSET, CC_MUXOFFSET);
1728 if (ret < 0)
1729 goto err;
1730 di->flags.calibrate = false;
1731 dev_dbg(di->dev, "Calibration done...\n");
1732 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1733 break;
1734 case AB8500_FG_CALIB_WAIT:
1735 dev_dbg(di->dev, "Calibration WFI\n");
1736 default:
1737 break;
1739 return;
1740 err:
1741 /* Something went wrong, don't calibrate then */
1742 dev_err(di->dev, "failed to calibrate the CC\n");
1743 di->flags.calibrate = false;
1744 di->calib_state = AB8500_FG_CALIB_INIT;
1745 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1749 * ab8500_fg_algorithm() - Entry point for the FG algorithm
1750 * @di: pointer to the ab8500_fg structure
1752 * Entry point for the battery capacity calculation state machine
1754 static void ab8500_fg_algorithm(struct ab8500_fg *di)
1756 if (di->flags.calibrate)
1757 ab8500_fg_algorithm_calibrate(di);
1758 else {
1759 if (di->flags.charging)
1760 ab8500_fg_algorithm_charging(di);
1761 else
1762 ab8500_fg_algorithm_discharging(di);
1765 dev_dbg(di->dev, "[FG_DATA] %d %d %d %d %d %d %d %d %d %d "
1766 "%d %d %d %d %d %d %d\n",
1767 di->bat_cap.max_mah_design,
1768 di->bat_cap.max_mah,
1769 di->bat_cap.mah,
1770 di->bat_cap.permille,
1771 di->bat_cap.level,
1772 di->bat_cap.prev_mah,
1773 di->bat_cap.prev_percent,
1774 di->bat_cap.prev_level,
1775 di->vbat,
1776 di->inst_curr,
1777 di->avg_curr,
1778 di->accu_charge,
1779 di->flags.charging,
1780 di->charge_state,
1781 di->discharge_state,
1782 di->high_curr_mode,
1783 di->recovery_needed);
1787 * ab8500_fg_periodic_work() - Run the FG state machine periodically
1788 * @work: pointer to the work_struct structure
1790 * Work queue function for periodic work
1792 static void ab8500_fg_periodic_work(struct work_struct *work)
1794 struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1795 fg_periodic_work.work);
1797 if (di->init_capacity) {
1798 /* Get an initial capacity calculation */
1799 ab8500_fg_calc_cap_discharge_voltage(di, true);
1800 ab8500_fg_check_capacity_limits(di, true);
1801 di->init_capacity = false;
1803 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1804 } else if (di->flags.user_cap) {
1805 if (check_sysfs_capacity(di)) {
1806 ab8500_fg_check_capacity_limits(di, true);
1807 if (di->flags.charging)
1808 ab8500_fg_charge_state_to(di,
1809 AB8500_FG_CHARGE_INIT);
1810 else
1811 ab8500_fg_discharge_state_to(di,
1812 AB8500_FG_DISCHARGE_READOUT_INIT);
1814 di->flags.user_cap = false;
1815 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1816 } else
1817 ab8500_fg_algorithm(di);
1822 * ab8500_fg_check_hw_failure_work() - Check OVV_BAT condition
1823 * @work: pointer to the work_struct structure
1825 * Work queue function for checking the OVV_BAT condition
1827 static void ab8500_fg_check_hw_failure_work(struct work_struct *work)
1829 int ret;
1830 u8 reg_value;
1832 struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1833 fg_check_hw_failure_work.work);
1836 * If we have had a battery over-voltage situation,
1837 * check ovv-bit to see if it should be reset.
1839 ret = abx500_get_register_interruptible(di->dev,
1840 AB8500_CHARGER, AB8500_CH_STAT_REG,
1841 &reg_value);
1842 if (ret < 0) {
1843 dev_err(di->dev, "%s ab8500 read failed\n", __func__);
1844 return;
1846 if ((reg_value & BATT_OVV) == BATT_OVV) {
1847 if (!di->flags.bat_ovv) {
1848 dev_dbg(di->dev, "Battery OVV\n");
1849 di->flags.bat_ovv = true;
1850 power_supply_changed(di->fg_psy);
1852 /* Not yet recovered from ovv, reschedule this test */
1853 queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work,
1854 HZ);
1855 } else {
1856 dev_dbg(di->dev, "Battery recovered from OVV\n");
1857 di->flags.bat_ovv = false;
1858 power_supply_changed(di->fg_psy);
1863 * ab8500_fg_low_bat_work() - Check LOW_BAT condition
1864 * @work: pointer to the work_struct structure
1866 * Work queue function for checking the LOW_BAT condition
1868 static void ab8500_fg_low_bat_work(struct work_struct *work)
1870 int vbat;
1872 struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1873 fg_low_bat_work.work);
1875 vbat = ab8500_fg_bat_voltage(di);
1877 /* Check if LOW_BAT still fulfilled */
1878 if (vbat < di->bm->fg_params->lowbat_threshold) {
1879 /* Is it time to shut down? */
1880 if (di->low_bat_cnt < 1) {
1881 di->flags.low_bat = true;
1882 dev_warn(di->dev, "Shut down pending...\n");
1883 } else {
1885 * Else we need to re-schedule this check to be able to detect
1886 * if the voltage increases again during charging or
1887 * due to decreasing load.
1889 di->low_bat_cnt--;
1890 dev_warn(di->dev, "Battery voltage still LOW\n");
1891 queue_delayed_work(di->fg_wq, &di->fg_low_bat_work,
1892 round_jiffies(LOW_BAT_CHECK_INTERVAL));
1894 } else {
1895 di->flags.low_bat_delay = false;
1896 di->low_bat_cnt = 10;
1897 dev_warn(di->dev, "Battery voltage OK again\n");
1900 /* This is needed to dispatch LOW_BAT */
1901 ab8500_fg_check_capacity_limits(di, false);
1905 * ab8500_fg_battok_calc - calculate the bit pattern corresponding
1906 * to the target voltage.
1907 * @di: pointer to the ab8500_fg structure
1908 * @target target voltage
1910 * Returns bit pattern closest to the target voltage
1911 * valid return values are 0-14. (0-BATT_OK_MAX_NR_INCREMENTS)
1914 static int ab8500_fg_battok_calc(struct ab8500_fg *di, int target)
1916 if (target > BATT_OK_MIN +
1917 (BATT_OK_INCREMENT * BATT_OK_MAX_NR_INCREMENTS))
1918 return BATT_OK_MAX_NR_INCREMENTS;
1919 if (target < BATT_OK_MIN)
1920 return 0;
1921 return (target - BATT_OK_MIN) / BATT_OK_INCREMENT;
1925 * ab8500_fg_battok_init_hw_register - init battok levels
1926 * @di: pointer to the ab8500_fg structure
1930 static int ab8500_fg_battok_init_hw_register(struct ab8500_fg *di)
1932 int selected;
1933 int sel0;
1934 int sel1;
1935 int cbp_sel0;
1936 int cbp_sel1;
1937 int ret;
1938 int new_val;
1940 sel0 = di->bm->fg_params->battok_falling_th_sel0;
1941 sel1 = di->bm->fg_params->battok_raising_th_sel1;
1943 cbp_sel0 = ab8500_fg_battok_calc(di, sel0);
1944 cbp_sel1 = ab8500_fg_battok_calc(di, sel1);
1946 selected = BATT_OK_MIN + cbp_sel0 * BATT_OK_INCREMENT;
1948 if (selected != sel0)
1949 dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n",
1950 sel0, selected, cbp_sel0);
1952 selected = BATT_OK_MIN + cbp_sel1 * BATT_OK_INCREMENT;
1954 if (selected != sel1)
1955 dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n",
1956 sel1, selected, cbp_sel1);
1958 new_val = cbp_sel0 | (cbp_sel1 << 4);
1960 dev_dbg(di->dev, "using: %x %d %d\n", new_val, cbp_sel0, cbp_sel1);
1961 ret = abx500_set_register_interruptible(di->dev, AB8500_SYS_CTRL2_BLOCK,
1962 AB8500_BATT_OK_REG, new_val);
1963 return ret;
1967 * ab8500_fg_instant_work() - Run the FG state machine instantly
1968 * @work: pointer to the work_struct structure
1970 * Work queue function for instant work
1972 static void ab8500_fg_instant_work(struct work_struct *work)
1974 struct ab8500_fg *di = container_of(work, struct ab8500_fg, fg_work);
1976 ab8500_fg_algorithm(di);
1980 * ab8500_fg_cc_data_end_handler() - end of data conversion isr.
1981 * @irq: interrupt number
1982 * @_di: pointer to the ab8500_fg structure
1984 * Returns IRQ status(IRQ_HANDLED)
1986 static irqreturn_t ab8500_fg_cc_data_end_handler(int irq, void *_di)
1988 struct ab8500_fg *di = _di;
1989 if (!di->nbr_cceoc_irq_cnt) {
1990 di->nbr_cceoc_irq_cnt++;
1991 complete(&di->ab8500_fg_started);
1992 } else {
1993 di->nbr_cceoc_irq_cnt = 0;
1994 complete(&di->ab8500_fg_complete);
1996 return IRQ_HANDLED;
2000 * ab8500_fg_cc_int_calib_handler () - end of calibration isr.
2001 * @irq: interrupt number
2002 * @_di: pointer to the ab8500_fg structure
2004 * Returns IRQ status(IRQ_HANDLED)
2006 static irqreturn_t ab8500_fg_cc_int_calib_handler(int irq, void *_di)
2008 struct ab8500_fg *di = _di;
2009 di->calib_state = AB8500_FG_CALIB_END;
2010 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2011 return IRQ_HANDLED;
2015 * ab8500_fg_cc_convend_handler() - isr to get battery avg current.
2016 * @irq: interrupt number
2017 * @_di: pointer to the ab8500_fg structure
2019 * Returns IRQ status(IRQ_HANDLED)
2021 static irqreturn_t ab8500_fg_cc_convend_handler(int irq, void *_di)
2023 struct ab8500_fg *di = _di;
2025 queue_work(di->fg_wq, &di->fg_acc_cur_work);
2027 return IRQ_HANDLED;
2031 * ab8500_fg_batt_ovv_handler() - Battery OVV occured
2032 * @irq: interrupt number
2033 * @_di: pointer to the ab8500_fg structure
2035 * Returns IRQ status(IRQ_HANDLED)
2037 static irqreturn_t ab8500_fg_batt_ovv_handler(int irq, void *_di)
2039 struct ab8500_fg *di = _di;
2041 dev_dbg(di->dev, "Battery OVV\n");
2043 /* Schedule a new HW failure check */
2044 queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work, 0);
2046 return IRQ_HANDLED;
2050 * ab8500_fg_lowbatf_handler() - Battery voltage is below LOW threshold
2051 * @irq: interrupt number
2052 * @_di: pointer to the ab8500_fg structure
2054 * Returns IRQ status(IRQ_HANDLED)
2056 static irqreturn_t ab8500_fg_lowbatf_handler(int irq, void *_di)
2058 struct ab8500_fg *di = _di;
2060 /* Initiate handling in ab8500_fg_low_bat_work() if not already initiated. */
2061 if (!di->flags.low_bat_delay) {
2062 dev_warn(di->dev, "Battery voltage is below LOW threshold\n");
2063 di->flags.low_bat_delay = true;
2065 * Start a timer to check LOW_BAT again after some time
2066 * This is done to avoid shutdown on single voltage dips
2068 queue_delayed_work(di->fg_wq, &di->fg_low_bat_work,
2069 round_jiffies(LOW_BAT_CHECK_INTERVAL));
2071 return IRQ_HANDLED;
2075 * ab8500_fg_get_property() - get the fg properties
2076 * @psy: pointer to the power_supply structure
2077 * @psp: pointer to the power_supply_property structure
2078 * @val: pointer to the power_supply_propval union
2080 * This function gets called when an application tries to get the
2081 * fg properties by reading the sysfs files.
2082 * voltage_now: battery voltage
2083 * current_now: battery instant current
2084 * current_avg: battery average current
2085 * charge_full_design: capacity where battery is considered full
2086 * charge_now: battery capacity in nAh
2087 * capacity: capacity in percent
2088 * capacity_level: capacity level
2090 * Returns error code in case of failure else 0 on success
2092 static int ab8500_fg_get_property(struct power_supply *psy,
2093 enum power_supply_property psp,
2094 union power_supply_propval *val)
2096 struct ab8500_fg *di = power_supply_get_drvdata(psy);
2099 * If battery is identified as unknown and charging of unknown
2100 * batteries is disabled, we always report 100% capacity and
2101 * capacity level UNKNOWN, since we can't calculate
2102 * remaining capacity
2105 switch (psp) {
2106 case POWER_SUPPLY_PROP_VOLTAGE_NOW:
2107 if (di->flags.bat_ovv)
2108 val->intval = BATT_OVV_VALUE * 1000;
2109 else
2110 val->intval = di->vbat * 1000;
2111 break;
2112 case POWER_SUPPLY_PROP_CURRENT_NOW:
2113 val->intval = di->inst_curr * 1000;
2114 break;
2115 case POWER_SUPPLY_PROP_CURRENT_AVG:
2116 val->intval = di->avg_curr * 1000;
2117 break;
2118 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
2119 val->intval = ab8500_fg_convert_mah_to_uwh(di,
2120 di->bat_cap.max_mah_design);
2121 break;
2122 case POWER_SUPPLY_PROP_ENERGY_FULL:
2123 val->intval = ab8500_fg_convert_mah_to_uwh(di,
2124 di->bat_cap.max_mah);
2125 break;
2126 case POWER_SUPPLY_PROP_ENERGY_NOW:
2127 if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2128 di->flags.batt_id_received)
2129 val->intval = ab8500_fg_convert_mah_to_uwh(di,
2130 di->bat_cap.max_mah);
2131 else
2132 val->intval = ab8500_fg_convert_mah_to_uwh(di,
2133 di->bat_cap.prev_mah);
2134 break;
2135 case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
2136 val->intval = di->bat_cap.max_mah_design;
2137 break;
2138 case POWER_SUPPLY_PROP_CHARGE_FULL:
2139 val->intval = di->bat_cap.max_mah;
2140 break;
2141 case POWER_SUPPLY_PROP_CHARGE_NOW:
2142 if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2143 di->flags.batt_id_received)
2144 val->intval = di->bat_cap.max_mah;
2145 else
2146 val->intval = di->bat_cap.prev_mah;
2147 break;
2148 case POWER_SUPPLY_PROP_CAPACITY:
2149 if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2150 di->flags.batt_id_received)
2151 val->intval = 100;
2152 else
2153 val->intval = di->bat_cap.prev_percent;
2154 break;
2155 case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
2156 if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2157 di->flags.batt_id_received)
2158 val->intval = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
2159 else
2160 val->intval = di->bat_cap.prev_level;
2161 break;
2162 default:
2163 return -EINVAL;
2165 return 0;
2168 static int ab8500_fg_get_ext_psy_data(struct device *dev, void *data)
2170 struct power_supply *psy;
2171 struct power_supply *ext = dev_get_drvdata(dev);
2172 const char **supplicants = (const char **)ext->supplied_to;
2173 struct ab8500_fg *di;
2174 union power_supply_propval ret;
2175 int j;
2177 psy = (struct power_supply *)data;
2178 di = power_supply_get_drvdata(psy);
2181 * For all psy where the name of your driver
2182 * appears in any supplied_to
2184 j = match_string(supplicants, ext->num_supplicants, psy->desc->name);
2185 if (j < 0)
2186 return 0;
2188 /* Go through all properties for the psy */
2189 for (j = 0; j < ext->desc->num_properties; j++) {
2190 enum power_supply_property prop;
2191 prop = ext->desc->properties[j];
2193 if (power_supply_get_property(ext, prop, &ret))
2194 continue;
2196 switch (prop) {
2197 case POWER_SUPPLY_PROP_STATUS:
2198 switch (ext->desc->type) {
2199 case POWER_SUPPLY_TYPE_BATTERY:
2200 switch (ret.intval) {
2201 case POWER_SUPPLY_STATUS_UNKNOWN:
2202 case POWER_SUPPLY_STATUS_DISCHARGING:
2203 case POWER_SUPPLY_STATUS_NOT_CHARGING:
2204 if (!di->flags.charging)
2205 break;
2206 di->flags.charging = false;
2207 di->flags.fully_charged = false;
2208 if (di->bm->capacity_scaling)
2209 ab8500_fg_update_cap_scalers(di);
2210 queue_work(di->fg_wq, &di->fg_work);
2211 break;
2212 case POWER_SUPPLY_STATUS_FULL:
2213 if (di->flags.fully_charged)
2214 break;
2215 di->flags.fully_charged = true;
2216 di->flags.force_full = true;
2217 /* Save current capacity as maximum */
2218 di->bat_cap.max_mah = di->bat_cap.mah;
2219 queue_work(di->fg_wq, &di->fg_work);
2220 break;
2221 case POWER_SUPPLY_STATUS_CHARGING:
2222 if (di->flags.charging &&
2223 !di->flags.fully_charged)
2224 break;
2225 di->flags.charging = true;
2226 di->flags.fully_charged = false;
2227 if (di->bm->capacity_scaling)
2228 ab8500_fg_update_cap_scalers(di);
2229 queue_work(di->fg_wq, &di->fg_work);
2230 break;
2232 default:
2233 break;
2235 break;
2236 case POWER_SUPPLY_PROP_TECHNOLOGY:
2237 switch (ext->desc->type) {
2238 case POWER_SUPPLY_TYPE_BATTERY:
2239 if (!di->flags.batt_id_received &&
2240 di->bm->batt_id != BATTERY_UNKNOWN) {
2241 const struct abx500_battery_type *b;
2243 b = &(di->bm->bat_type[di->bm->batt_id]);
2245 di->flags.batt_id_received = true;
2247 di->bat_cap.max_mah_design =
2248 MILLI_TO_MICRO *
2249 b->charge_full_design;
2251 di->bat_cap.max_mah =
2252 di->bat_cap.max_mah_design;
2254 di->vbat_nom = b->nominal_voltage;
2257 if (ret.intval)
2258 di->flags.batt_unknown = false;
2259 else
2260 di->flags.batt_unknown = true;
2261 break;
2262 default:
2263 break;
2265 break;
2266 case POWER_SUPPLY_PROP_TEMP:
2267 switch (ext->desc->type) {
2268 case POWER_SUPPLY_TYPE_BATTERY:
2269 if (di->flags.batt_id_received)
2270 di->bat_temp = ret.intval;
2271 break;
2272 default:
2273 break;
2275 break;
2276 default:
2277 break;
2280 return 0;
2284 * ab8500_fg_init_hw_registers() - Set up FG related registers
2285 * @di: pointer to the ab8500_fg structure
2287 * Set up battery OVV, low battery voltage registers
2289 static int ab8500_fg_init_hw_registers(struct ab8500_fg *di)
2291 int ret;
2293 /* Set VBAT OVV threshold */
2294 ret = abx500_mask_and_set_register_interruptible(di->dev,
2295 AB8500_CHARGER,
2296 AB8500_BATT_OVV,
2297 BATT_OVV_TH_4P75,
2298 BATT_OVV_TH_4P75);
2299 if (ret) {
2300 dev_err(di->dev, "failed to set BATT_OVV\n");
2301 goto out;
2304 /* Enable VBAT OVV detection */
2305 ret = abx500_mask_and_set_register_interruptible(di->dev,
2306 AB8500_CHARGER,
2307 AB8500_BATT_OVV,
2308 BATT_OVV_ENA,
2309 BATT_OVV_ENA);
2310 if (ret) {
2311 dev_err(di->dev, "failed to enable BATT_OVV\n");
2312 goto out;
2315 /* Low Battery Voltage */
2316 ret = abx500_set_register_interruptible(di->dev,
2317 AB8500_SYS_CTRL2_BLOCK,
2318 AB8500_LOW_BAT_REG,
2319 ab8500_volt_to_regval(
2320 di->bm->fg_params->lowbat_threshold) << 1 |
2321 LOW_BAT_ENABLE);
2322 if (ret) {
2323 dev_err(di->dev, "%s write failed\n", __func__);
2324 goto out;
2327 /* Battery OK threshold */
2328 ret = ab8500_fg_battok_init_hw_register(di);
2329 if (ret) {
2330 dev_err(di->dev, "BattOk init write failed.\n");
2331 goto out;
2334 if (((is_ab8505(di->parent) || is_ab9540(di->parent)) &&
2335 abx500_get_chip_id(di->dev) >= AB8500_CUT2P0)
2336 || is_ab8540(di->parent)) {
2337 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2338 AB8505_RTC_PCUT_MAX_TIME_REG, di->bm->fg_params->pcut_max_time);
2340 if (ret) {
2341 dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_MAX_TIME_REG\n", __func__);
2342 goto out;
2345 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2346 AB8505_RTC_PCUT_FLAG_TIME_REG, di->bm->fg_params->pcut_flag_time);
2348 if (ret) {
2349 dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_FLAG_TIME_REG\n", __func__);
2350 goto out;
2353 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2354 AB8505_RTC_PCUT_RESTART_REG, di->bm->fg_params->pcut_max_restart);
2356 if (ret) {
2357 dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_RESTART_REG\n", __func__);
2358 goto out;
2361 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2362 AB8505_RTC_PCUT_DEBOUNCE_REG, di->bm->fg_params->pcut_debounce_time);
2364 if (ret) {
2365 dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_DEBOUNCE_REG\n", __func__);
2366 goto out;
2369 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2370 AB8505_RTC_PCUT_CTL_STATUS_REG, di->bm->fg_params->pcut_enable);
2372 if (ret) {
2373 dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_CTL_STATUS_REG\n", __func__);
2374 goto out;
2377 out:
2378 return ret;
2382 * ab8500_fg_external_power_changed() - callback for power supply changes
2383 * @psy: pointer to the structure power_supply
2385 * This function is the entry point of the pointer external_power_changed
2386 * of the structure power_supply.
2387 * This function gets executed when there is a change in any external power
2388 * supply that this driver needs to be notified of.
2390 static void ab8500_fg_external_power_changed(struct power_supply *psy)
2392 struct ab8500_fg *di = power_supply_get_drvdata(psy);
2394 class_for_each_device(power_supply_class, NULL,
2395 di->fg_psy, ab8500_fg_get_ext_psy_data);
2399 * abab8500_fg_reinit_work() - work to reset the FG algorithm
2400 * @work: pointer to the work_struct structure
2402 * Used to reset the current battery capacity to be able to
2403 * retrigger a new voltage base capacity calculation. For
2404 * test and verification purpose.
2406 static void ab8500_fg_reinit_work(struct work_struct *work)
2408 struct ab8500_fg *di = container_of(work, struct ab8500_fg,
2409 fg_reinit_work.work);
2411 if (di->flags.calibrate == false) {
2412 dev_dbg(di->dev, "Resetting FG state machine to init.\n");
2413 ab8500_fg_clear_cap_samples(di);
2414 ab8500_fg_calc_cap_discharge_voltage(di, true);
2415 ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
2416 ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT);
2417 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2419 } else {
2420 dev_err(di->dev, "Residual offset calibration ongoing "
2421 "retrying..\n");
2422 /* Wait one second until next try*/
2423 queue_delayed_work(di->fg_wq, &di->fg_reinit_work,
2424 round_jiffies(1));
2428 /* Exposure to the sysfs interface */
2430 struct ab8500_fg_sysfs_entry {
2431 struct attribute attr;
2432 ssize_t (*show)(struct ab8500_fg *, char *);
2433 ssize_t (*store)(struct ab8500_fg *, const char *, size_t);
2436 static ssize_t charge_full_show(struct ab8500_fg *di, char *buf)
2438 return sprintf(buf, "%d\n", di->bat_cap.max_mah);
2441 static ssize_t charge_full_store(struct ab8500_fg *di, const char *buf,
2442 size_t count)
2444 unsigned long charge_full;
2445 ssize_t ret;
2447 ret = kstrtoul(buf, 10, &charge_full);
2449 dev_dbg(di->dev, "Ret %zd charge_full %lu", ret, charge_full);
2451 if (!ret) {
2452 di->bat_cap.max_mah = (int) charge_full;
2453 ret = count;
2455 return ret;
2458 static ssize_t charge_now_show(struct ab8500_fg *di, char *buf)
2460 return sprintf(buf, "%d\n", di->bat_cap.prev_mah);
2463 static ssize_t charge_now_store(struct ab8500_fg *di, const char *buf,
2464 size_t count)
2466 unsigned long charge_now;
2467 ssize_t ret;
2469 ret = kstrtoul(buf, 10, &charge_now);
2471 dev_dbg(di->dev, "Ret %zd charge_now %lu was %d",
2472 ret, charge_now, di->bat_cap.prev_mah);
2474 if (!ret) {
2475 di->bat_cap.user_mah = (int) charge_now;
2476 di->flags.user_cap = true;
2477 ret = count;
2478 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2480 return ret;
2483 static struct ab8500_fg_sysfs_entry charge_full_attr =
2484 __ATTR(charge_full, 0644, charge_full_show, charge_full_store);
2486 static struct ab8500_fg_sysfs_entry charge_now_attr =
2487 __ATTR(charge_now, 0644, charge_now_show, charge_now_store);
2489 static ssize_t
2490 ab8500_fg_show(struct kobject *kobj, struct attribute *attr, char *buf)
2492 struct ab8500_fg_sysfs_entry *entry;
2493 struct ab8500_fg *di;
2495 entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr);
2496 di = container_of(kobj, struct ab8500_fg, fg_kobject);
2498 if (!entry->show)
2499 return -EIO;
2501 return entry->show(di, buf);
2503 static ssize_t
2504 ab8500_fg_store(struct kobject *kobj, struct attribute *attr, const char *buf,
2505 size_t count)
2507 struct ab8500_fg_sysfs_entry *entry;
2508 struct ab8500_fg *di;
2510 entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr);
2511 di = container_of(kobj, struct ab8500_fg, fg_kobject);
2513 if (!entry->store)
2514 return -EIO;
2516 return entry->store(di, buf, count);
2519 static const struct sysfs_ops ab8500_fg_sysfs_ops = {
2520 .show = ab8500_fg_show,
2521 .store = ab8500_fg_store,
2524 static struct attribute *ab8500_fg_attrs[] = {
2525 &charge_full_attr.attr,
2526 &charge_now_attr.attr,
2527 NULL,
2530 static struct kobj_type ab8500_fg_ktype = {
2531 .sysfs_ops = &ab8500_fg_sysfs_ops,
2532 .default_attrs = ab8500_fg_attrs,
2536 * ab8500_chargalg_sysfs_exit() - de-init of sysfs entry
2537 * @di: pointer to the struct ab8500_chargalg
2539 * This function removes the entry in sysfs.
2541 static void ab8500_fg_sysfs_exit(struct ab8500_fg *di)
2543 kobject_del(&di->fg_kobject);
2547 * ab8500_chargalg_sysfs_init() - init of sysfs entry
2548 * @di: pointer to the struct ab8500_chargalg
2550 * This function adds an entry in sysfs.
2551 * Returns error code in case of failure else 0(on success)
2553 static int ab8500_fg_sysfs_init(struct ab8500_fg *di)
2555 int ret = 0;
2557 ret = kobject_init_and_add(&di->fg_kobject,
2558 &ab8500_fg_ktype,
2559 NULL, "battery");
2560 if (ret < 0)
2561 dev_err(di->dev, "failed to create sysfs entry\n");
2563 return ret;
2566 static ssize_t ab8505_powercut_flagtime_read(struct device *dev,
2567 struct device_attribute *attr,
2568 char *buf)
2570 int ret;
2571 u8 reg_value;
2572 struct power_supply *psy = dev_get_drvdata(dev);
2573 struct ab8500_fg *di = power_supply_get_drvdata(psy);
2575 ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2576 AB8505_RTC_PCUT_FLAG_TIME_REG, &reg_value);
2578 if (ret < 0) {
2579 dev_err(dev, "Failed to read AB8505_RTC_PCUT_FLAG_TIME_REG\n");
2580 goto fail;
2583 return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7F));
2585 fail:
2586 return ret;
2589 static ssize_t ab8505_powercut_flagtime_write(struct device *dev,
2590 struct device_attribute *attr,
2591 const char *buf, size_t count)
2593 int ret;
2594 long unsigned reg_value;
2595 struct power_supply *psy = dev_get_drvdata(dev);
2596 struct ab8500_fg *di = power_supply_get_drvdata(psy);
2598 reg_value = simple_strtoul(buf, NULL, 10);
2600 if (reg_value > 0x7F) {
2601 dev_err(dev, "Incorrect parameter, echo 0 (1.98s) - 127 (15.625ms) for flagtime\n");
2602 goto fail;
2605 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2606 AB8505_RTC_PCUT_FLAG_TIME_REG, (u8)reg_value);
2608 if (ret < 0)
2609 dev_err(dev, "Failed to set AB8505_RTC_PCUT_FLAG_TIME_REG\n");
2611 fail:
2612 return count;
2615 static ssize_t ab8505_powercut_maxtime_read(struct device *dev,
2616 struct device_attribute *attr,
2617 char *buf)
2619 int ret;
2620 u8 reg_value;
2621 struct power_supply *psy = dev_get_drvdata(dev);
2622 struct ab8500_fg *di = power_supply_get_drvdata(psy);
2624 ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2625 AB8505_RTC_PCUT_MAX_TIME_REG, &reg_value);
2627 if (ret < 0) {
2628 dev_err(dev, "Failed to read AB8505_RTC_PCUT_MAX_TIME_REG\n");
2629 goto fail;
2632 return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7F));
2634 fail:
2635 return ret;
2639 static ssize_t ab8505_powercut_maxtime_write(struct device *dev,
2640 struct device_attribute *attr,
2641 const char *buf, size_t count)
2643 int ret;
2644 int reg_value;
2645 struct power_supply *psy = dev_get_drvdata(dev);
2646 struct ab8500_fg *di = power_supply_get_drvdata(psy);
2648 reg_value = simple_strtoul(buf, NULL, 10);
2649 if (reg_value > 0x7F) {
2650 dev_err(dev, "Incorrect parameter, echo 0 (0.0s) - 127 (1.98s) for maxtime\n");
2651 goto fail;
2654 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2655 AB8505_RTC_PCUT_MAX_TIME_REG, (u8)reg_value);
2657 if (ret < 0)
2658 dev_err(dev, "Failed to set AB8505_RTC_PCUT_MAX_TIME_REG\n");
2660 fail:
2661 return count;
2664 static ssize_t ab8505_powercut_restart_read(struct device *dev,
2665 struct device_attribute *attr,
2666 char *buf)
2668 int ret;
2669 u8 reg_value;
2670 struct power_supply *psy = dev_get_drvdata(dev);
2671 struct ab8500_fg *di = power_supply_get_drvdata(psy);
2673 ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2674 AB8505_RTC_PCUT_RESTART_REG, &reg_value);
2676 if (ret < 0) {
2677 dev_err(dev, "Failed to read AB8505_RTC_PCUT_RESTART_REG\n");
2678 goto fail;
2681 return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0xF));
2683 fail:
2684 return ret;
2687 static ssize_t ab8505_powercut_restart_write(struct device *dev,
2688 struct device_attribute *attr,
2689 const char *buf, size_t count)
2691 int ret;
2692 int reg_value;
2693 struct power_supply *psy = dev_get_drvdata(dev);
2694 struct ab8500_fg *di = power_supply_get_drvdata(psy);
2696 reg_value = simple_strtoul(buf, NULL, 10);
2697 if (reg_value > 0xF) {
2698 dev_err(dev, "Incorrect parameter, echo 0 - 15 for number of restart\n");
2699 goto fail;
2702 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2703 AB8505_RTC_PCUT_RESTART_REG, (u8)reg_value);
2705 if (ret < 0)
2706 dev_err(dev, "Failed to set AB8505_RTC_PCUT_RESTART_REG\n");
2708 fail:
2709 return count;
2713 static ssize_t ab8505_powercut_timer_read(struct device *dev,
2714 struct device_attribute *attr,
2715 char *buf)
2717 int ret;
2718 u8 reg_value;
2719 struct power_supply *psy = dev_get_drvdata(dev);
2720 struct ab8500_fg *di = power_supply_get_drvdata(psy);
2722 ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2723 AB8505_RTC_PCUT_TIME_REG, &reg_value);
2725 if (ret < 0) {
2726 dev_err(dev, "Failed to read AB8505_RTC_PCUT_TIME_REG\n");
2727 goto fail;
2730 return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7F));
2732 fail:
2733 return ret;
2736 static ssize_t ab8505_powercut_restart_counter_read(struct device *dev,
2737 struct device_attribute *attr,
2738 char *buf)
2740 int ret;
2741 u8 reg_value;
2742 struct power_supply *psy = dev_get_drvdata(dev);
2743 struct ab8500_fg *di = power_supply_get_drvdata(psy);
2745 ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2746 AB8505_RTC_PCUT_RESTART_REG, &reg_value);
2748 if (ret < 0) {
2749 dev_err(dev, "Failed to read AB8505_RTC_PCUT_RESTART_REG\n");
2750 goto fail;
2753 return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0xF0) >> 4);
2755 fail:
2756 return ret;
2759 static ssize_t ab8505_powercut_read(struct device *dev,
2760 struct device_attribute *attr,
2761 char *buf)
2763 int ret;
2764 u8 reg_value;
2765 struct power_supply *psy = dev_get_drvdata(dev);
2766 struct ab8500_fg *di = power_supply_get_drvdata(psy);
2768 ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2769 AB8505_RTC_PCUT_CTL_STATUS_REG, &reg_value);
2771 if (ret < 0)
2772 goto fail;
2774 return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x1));
2776 fail:
2777 return ret;
2780 static ssize_t ab8505_powercut_write(struct device *dev,
2781 struct device_attribute *attr,
2782 const char *buf, size_t count)
2784 int ret;
2785 int reg_value;
2786 struct power_supply *psy = dev_get_drvdata(dev);
2787 struct ab8500_fg *di = power_supply_get_drvdata(psy);
2789 reg_value = simple_strtoul(buf, NULL, 10);
2790 if (reg_value > 0x1) {
2791 dev_err(dev, "Incorrect parameter, echo 0/1 to disable/enable Pcut feature\n");
2792 goto fail;
2795 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2796 AB8505_RTC_PCUT_CTL_STATUS_REG, (u8)reg_value);
2798 if (ret < 0)
2799 dev_err(dev, "Failed to set AB8505_RTC_PCUT_CTL_STATUS_REG\n");
2801 fail:
2802 return count;
2805 static ssize_t ab8505_powercut_flag_read(struct device *dev,
2806 struct device_attribute *attr,
2807 char *buf)
2810 int ret;
2811 u8 reg_value;
2812 struct power_supply *psy = dev_get_drvdata(dev);
2813 struct ab8500_fg *di = power_supply_get_drvdata(psy);
2815 ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2816 AB8505_RTC_PCUT_CTL_STATUS_REG, &reg_value);
2818 if (ret < 0) {
2819 dev_err(dev, "Failed to read AB8505_RTC_PCUT_CTL_STATUS_REG\n");
2820 goto fail;
2823 return scnprintf(buf, PAGE_SIZE, "%d\n", ((reg_value & 0x10) >> 4));
2825 fail:
2826 return ret;
2829 static ssize_t ab8505_powercut_debounce_read(struct device *dev,
2830 struct device_attribute *attr,
2831 char *buf)
2833 int ret;
2834 u8 reg_value;
2835 struct power_supply *psy = dev_get_drvdata(dev);
2836 struct ab8500_fg *di = power_supply_get_drvdata(psy);
2838 ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2839 AB8505_RTC_PCUT_DEBOUNCE_REG, &reg_value);
2841 if (ret < 0) {
2842 dev_err(dev, "Failed to read AB8505_RTC_PCUT_DEBOUNCE_REG\n");
2843 goto fail;
2846 return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7));
2848 fail:
2849 return ret;
2852 static ssize_t ab8505_powercut_debounce_write(struct device *dev,
2853 struct device_attribute *attr,
2854 const char *buf, size_t count)
2856 int ret;
2857 int reg_value;
2858 struct power_supply *psy = dev_get_drvdata(dev);
2859 struct ab8500_fg *di = power_supply_get_drvdata(psy);
2861 reg_value = simple_strtoul(buf, NULL, 10);
2862 if (reg_value > 0x7) {
2863 dev_err(dev, "Incorrect parameter, echo 0 to 7 for debounce setting\n");
2864 goto fail;
2867 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2868 AB8505_RTC_PCUT_DEBOUNCE_REG, (u8)reg_value);
2870 if (ret < 0)
2871 dev_err(dev, "Failed to set AB8505_RTC_PCUT_DEBOUNCE_REG\n");
2873 fail:
2874 return count;
2877 static ssize_t ab8505_powercut_enable_status_read(struct device *dev,
2878 struct device_attribute *attr,
2879 char *buf)
2881 int ret;
2882 u8 reg_value;
2883 struct power_supply *psy = dev_get_drvdata(dev);
2884 struct ab8500_fg *di = power_supply_get_drvdata(psy);
2886 ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2887 AB8505_RTC_PCUT_CTL_STATUS_REG, &reg_value);
2889 if (ret < 0) {
2890 dev_err(dev, "Failed to read AB8505_RTC_PCUT_CTL_STATUS_REG\n");
2891 goto fail;
2894 return scnprintf(buf, PAGE_SIZE, "%d\n", ((reg_value & 0x20) >> 5));
2896 fail:
2897 return ret;
2900 static struct device_attribute ab8505_fg_sysfs_psy_attrs[] = {
2901 __ATTR(powercut_flagtime, (S_IRUGO | S_IWUSR | S_IWGRP),
2902 ab8505_powercut_flagtime_read, ab8505_powercut_flagtime_write),
2903 __ATTR(powercut_maxtime, (S_IRUGO | S_IWUSR | S_IWGRP),
2904 ab8505_powercut_maxtime_read, ab8505_powercut_maxtime_write),
2905 __ATTR(powercut_restart_max, (S_IRUGO | S_IWUSR | S_IWGRP),
2906 ab8505_powercut_restart_read, ab8505_powercut_restart_write),
2907 __ATTR(powercut_timer, S_IRUGO, ab8505_powercut_timer_read, NULL),
2908 __ATTR(powercut_restart_counter, S_IRUGO,
2909 ab8505_powercut_restart_counter_read, NULL),
2910 __ATTR(powercut_enable, (S_IRUGO | S_IWUSR | S_IWGRP),
2911 ab8505_powercut_read, ab8505_powercut_write),
2912 __ATTR(powercut_flag, S_IRUGO, ab8505_powercut_flag_read, NULL),
2913 __ATTR(powercut_debounce_time, (S_IRUGO | S_IWUSR | S_IWGRP),
2914 ab8505_powercut_debounce_read, ab8505_powercut_debounce_write),
2915 __ATTR(powercut_enable_status, S_IRUGO,
2916 ab8505_powercut_enable_status_read, NULL),
2919 static int ab8500_fg_sysfs_psy_create_attrs(struct ab8500_fg *di)
2921 unsigned int i;
2923 if (((is_ab8505(di->parent) || is_ab9540(di->parent)) &&
2924 abx500_get_chip_id(di->dev) >= AB8500_CUT2P0)
2925 || is_ab8540(di->parent)) {
2926 for (i = 0; i < ARRAY_SIZE(ab8505_fg_sysfs_psy_attrs); i++)
2927 if (device_create_file(&di->fg_psy->dev,
2928 &ab8505_fg_sysfs_psy_attrs[i]))
2929 goto sysfs_psy_create_attrs_failed_ab8505;
2931 return 0;
2932 sysfs_psy_create_attrs_failed_ab8505:
2933 dev_err(&di->fg_psy->dev, "Failed creating sysfs psy attrs for ab8505.\n");
2934 while (i--)
2935 device_remove_file(&di->fg_psy->dev,
2936 &ab8505_fg_sysfs_psy_attrs[i]);
2938 return -EIO;
2941 static void ab8500_fg_sysfs_psy_remove_attrs(struct ab8500_fg *di)
2943 unsigned int i;
2945 if (((is_ab8505(di->parent) || is_ab9540(di->parent)) &&
2946 abx500_get_chip_id(di->dev) >= AB8500_CUT2P0)
2947 || is_ab8540(di->parent)) {
2948 for (i = 0; i < ARRAY_SIZE(ab8505_fg_sysfs_psy_attrs); i++)
2949 (void)device_remove_file(&di->fg_psy->dev,
2950 &ab8505_fg_sysfs_psy_attrs[i]);
2954 /* Exposure to the sysfs interface <<END>> */
2956 #if defined(CONFIG_PM)
2957 static int ab8500_fg_resume(struct platform_device *pdev)
2959 struct ab8500_fg *di = platform_get_drvdata(pdev);
2962 * Change state if we're not charging. If we're charging we will wake
2963 * up on the FG IRQ
2965 if (!di->flags.charging) {
2966 ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_WAKEUP);
2967 queue_work(di->fg_wq, &di->fg_work);
2970 return 0;
2973 static int ab8500_fg_suspend(struct platform_device *pdev,
2974 pm_message_t state)
2976 struct ab8500_fg *di = platform_get_drvdata(pdev);
2978 flush_delayed_work(&di->fg_periodic_work);
2979 flush_work(&di->fg_work);
2980 flush_work(&di->fg_acc_cur_work);
2981 flush_delayed_work(&di->fg_reinit_work);
2982 flush_delayed_work(&di->fg_low_bat_work);
2983 flush_delayed_work(&di->fg_check_hw_failure_work);
2986 * If the FG is enabled we will disable it before going to suspend
2987 * only if we're not charging
2989 if (di->flags.fg_enabled && !di->flags.charging)
2990 ab8500_fg_coulomb_counter(di, false);
2992 return 0;
2994 #else
2995 #define ab8500_fg_suspend NULL
2996 #define ab8500_fg_resume NULL
2997 #endif
2999 static int ab8500_fg_remove(struct platform_device *pdev)
3001 int ret = 0;
3002 struct ab8500_fg *di = platform_get_drvdata(pdev);
3004 list_del(&di->node);
3006 /* Disable coulomb counter */
3007 ret = ab8500_fg_coulomb_counter(di, false);
3008 if (ret)
3009 dev_err(di->dev, "failed to disable coulomb counter\n");
3011 destroy_workqueue(di->fg_wq);
3012 ab8500_fg_sysfs_exit(di);
3014 flush_scheduled_work();
3015 ab8500_fg_sysfs_psy_remove_attrs(di);
3016 power_supply_unregister(di->fg_psy);
3017 return ret;
3020 /* ab8500 fg driver interrupts and their respective isr */
3021 static struct ab8500_fg_interrupts ab8500_fg_irq_th[] = {
3022 {"NCONV_ACCU", ab8500_fg_cc_convend_handler},
3023 {"BATT_OVV", ab8500_fg_batt_ovv_handler},
3024 {"LOW_BAT_F", ab8500_fg_lowbatf_handler},
3025 {"CC_INT_CALIB", ab8500_fg_cc_int_calib_handler},
3028 static struct ab8500_fg_interrupts ab8500_fg_irq_bh[] = {
3029 {"CCEOC", ab8500_fg_cc_data_end_handler},
3032 static char *supply_interface[] = {
3033 "ab8500_chargalg",
3034 "ab8500_usb",
3037 static const struct power_supply_desc ab8500_fg_desc = {
3038 .name = "ab8500_fg",
3039 .type = POWER_SUPPLY_TYPE_BATTERY,
3040 .properties = ab8500_fg_props,
3041 .num_properties = ARRAY_SIZE(ab8500_fg_props),
3042 .get_property = ab8500_fg_get_property,
3043 .external_power_changed = ab8500_fg_external_power_changed,
3046 static int ab8500_fg_probe(struct platform_device *pdev)
3048 struct device_node *np = pdev->dev.of_node;
3049 struct abx500_bm_data *plat = pdev->dev.platform_data;
3050 struct power_supply_config psy_cfg = {};
3051 struct ab8500_fg *di;
3052 int i, irq;
3053 int ret = 0;
3055 di = devm_kzalloc(&pdev->dev, sizeof(*di), GFP_KERNEL);
3056 if (!di) {
3057 dev_err(&pdev->dev, "%s no mem for ab8500_fg\n", __func__);
3058 return -ENOMEM;
3061 if (!plat) {
3062 dev_err(&pdev->dev, "no battery management data supplied\n");
3063 return -EINVAL;
3065 di->bm = plat;
3067 if (np) {
3068 ret = ab8500_bm_of_probe(&pdev->dev, np, di->bm);
3069 if (ret) {
3070 dev_err(&pdev->dev, "failed to get battery information\n");
3071 return ret;
3075 mutex_init(&di->cc_lock);
3077 /* get parent data */
3078 di->dev = &pdev->dev;
3079 di->parent = dev_get_drvdata(pdev->dev.parent);
3080 di->gpadc = ab8500_gpadc_get("ab8500-gpadc.0");
3082 psy_cfg.supplied_to = supply_interface;
3083 psy_cfg.num_supplicants = ARRAY_SIZE(supply_interface);
3084 psy_cfg.drv_data = di;
3086 di->bat_cap.max_mah_design = MILLI_TO_MICRO *
3087 di->bm->bat_type[di->bm->batt_id].charge_full_design;
3089 di->bat_cap.max_mah = di->bat_cap.max_mah_design;
3091 di->vbat_nom = di->bm->bat_type[di->bm->batt_id].nominal_voltage;
3093 di->init_capacity = true;
3095 ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
3096 ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT);
3098 /* Create a work queue for running the FG algorithm */
3099 di->fg_wq = create_singlethread_workqueue("ab8500_fg_wq");
3100 if (di->fg_wq == NULL) {
3101 dev_err(di->dev, "failed to create work queue\n");
3102 return -ENOMEM;
3105 /* Init work for running the fg algorithm instantly */
3106 INIT_WORK(&di->fg_work, ab8500_fg_instant_work);
3108 /* Init work for getting the battery accumulated current */
3109 INIT_WORK(&di->fg_acc_cur_work, ab8500_fg_acc_cur_work);
3111 /* Init work for reinitialising the fg algorithm */
3112 INIT_DEFERRABLE_WORK(&di->fg_reinit_work,
3113 ab8500_fg_reinit_work);
3115 /* Work delayed Queue to run the state machine */
3116 INIT_DEFERRABLE_WORK(&di->fg_periodic_work,
3117 ab8500_fg_periodic_work);
3119 /* Work to check low battery condition */
3120 INIT_DEFERRABLE_WORK(&di->fg_low_bat_work,
3121 ab8500_fg_low_bat_work);
3123 /* Init work for HW failure check */
3124 INIT_DEFERRABLE_WORK(&di->fg_check_hw_failure_work,
3125 ab8500_fg_check_hw_failure_work);
3127 /* Reset battery low voltage flag */
3128 di->flags.low_bat = false;
3130 /* Initialize low battery counter */
3131 di->low_bat_cnt = 10;
3133 /* Initialize OVV, and other registers */
3134 ret = ab8500_fg_init_hw_registers(di);
3135 if (ret) {
3136 dev_err(di->dev, "failed to initialize registers\n");
3137 goto free_inst_curr_wq;
3140 /* Consider battery unknown until we're informed otherwise */
3141 di->flags.batt_unknown = true;
3142 di->flags.batt_id_received = false;
3144 /* Register FG power supply class */
3145 di->fg_psy = power_supply_register(di->dev, &ab8500_fg_desc, &psy_cfg);
3146 if (IS_ERR(di->fg_psy)) {
3147 dev_err(di->dev, "failed to register FG psy\n");
3148 ret = PTR_ERR(di->fg_psy);
3149 goto free_inst_curr_wq;
3152 di->fg_samples = SEC_TO_SAMPLE(di->bm->fg_params->init_timer);
3153 ab8500_fg_coulomb_counter(di, true);
3156 * Initialize completion used to notify completion and start
3157 * of inst current
3159 init_completion(&di->ab8500_fg_started);
3160 init_completion(&di->ab8500_fg_complete);
3162 /* Register primary interrupt handlers */
3163 for (i = 0; i < ARRAY_SIZE(ab8500_fg_irq_th); i++) {
3164 irq = platform_get_irq_byname(pdev, ab8500_fg_irq_th[i].name);
3165 ret = request_irq(irq, ab8500_fg_irq_th[i].isr,
3166 IRQF_SHARED | IRQF_NO_SUSPEND,
3167 ab8500_fg_irq_th[i].name, di);
3169 if (ret != 0) {
3170 dev_err(di->dev, "failed to request %s IRQ %d: %d\n",
3171 ab8500_fg_irq_th[i].name, irq, ret);
3172 goto free_irq;
3174 dev_dbg(di->dev, "Requested %s IRQ %d: %d\n",
3175 ab8500_fg_irq_th[i].name, irq, ret);
3178 /* Register threaded interrupt handler */
3179 irq = platform_get_irq_byname(pdev, ab8500_fg_irq_bh[0].name);
3180 ret = request_threaded_irq(irq, NULL, ab8500_fg_irq_bh[0].isr,
3181 IRQF_SHARED | IRQF_NO_SUSPEND | IRQF_ONESHOT,
3182 ab8500_fg_irq_bh[0].name, di);
3184 if (ret != 0) {
3185 dev_err(di->dev, "failed to request %s IRQ %d: %d\n",
3186 ab8500_fg_irq_bh[0].name, irq, ret);
3187 goto free_irq;
3189 dev_dbg(di->dev, "Requested %s IRQ %d: %d\n",
3190 ab8500_fg_irq_bh[0].name, irq, ret);
3192 di->irq = platform_get_irq_byname(pdev, "CCEOC");
3193 disable_irq(di->irq);
3194 di->nbr_cceoc_irq_cnt = 0;
3196 platform_set_drvdata(pdev, di);
3198 ret = ab8500_fg_sysfs_init(di);
3199 if (ret) {
3200 dev_err(di->dev, "failed to create sysfs entry\n");
3201 goto free_irq;
3204 ret = ab8500_fg_sysfs_psy_create_attrs(di);
3205 if (ret) {
3206 dev_err(di->dev, "failed to create FG psy\n");
3207 ab8500_fg_sysfs_exit(di);
3208 goto free_irq;
3211 /* Calibrate the fg first time */
3212 di->flags.calibrate = true;
3213 di->calib_state = AB8500_FG_CALIB_INIT;
3215 /* Use room temp as default value until we get an update from driver. */
3216 di->bat_temp = 210;
3218 /* Run the FG algorithm */
3219 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
3221 list_add_tail(&di->node, &ab8500_fg_list);
3223 return ret;
3225 free_irq:
3226 power_supply_unregister(di->fg_psy);
3228 /* We also have to free all registered irqs */
3229 for (i = 0; i < ARRAY_SIZE(ab8500_fg_irq_th); i++) {
3230 irq = platform_get_irq_byname(pdev, ab8500_fg_irq_th[i].name);
3231 free_irq(irq, di);
3233 irq = platform_get_irq_byname(pdev, ab8500_fg_irq_bh[0].name);
3234 free_irq(irq, di);
3235 free_inst_curr_wq:
3236 destroy_workqueue(di->fg_wq);
3237 return ret;
3240 static const struct of_device_id ab8500_fg_match[] = {
3241 { .compatible = "stericsson,ab8500-fg", },
3242 { },
3245 static struct platform_driver ab8500_fg_driver = {
3246 .probe = ab8500_fg_probe,
3247 .remove = ab8500_fg_remove,
3248 .suspend = ab8500_fg_suspend,
3249 .resume = ab8500_fg_resume,
3250 .driver = {
3251 .name = "ab8500-fg",
3252 .of_match_table = ab8500_fg_match,
3256 static int __init ab8500_fg_init(void)
3258 return platform_driver_register(&ab8500_fg_driver);
3261 static void __exit ab8500_fg_exit(void)
3263 platform_driver_unregister(&ab8500_fg_driver);
3266 subsys_initcall_sync(ab8500_fg_init);
3267 module_exit(ab8500_fg_exit);
3269 MODULE_LICENSE("GPL v2");
3270 MODULE_AUTHOR("Johan Palsson, Karl Komierowski");
3271 MODULE_ALIAS("platform:ab8500-fg");
3272 MODULE_DESCRIPTION("AB8500 Fuel Gauge driver");