1 #include <linux/ceph/ceph_debug.h>
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
9 #include <linux/nsproxy.h>
10 #include <linux/sched/mm.h>
11 #include <linux/slab.h>
12 #include <linux/socket.h>
13 #include <linux/string.h>
15 #include <linux/bio.h>
16 #endif /* CONFIG_BLOCK */
17 #include <linux/dns_resolver.h>
20 #include <linux/ceph/ceph_features.h>
21 #include <linux/ceph/libceph.h>
22 #include <linux/ceph/messenger.h>
23 #include <linux/ceph/decode.h>
24 #include <linux/ceph/pagelist.h>
25 #include <linux/export.h>
28 * Ceph uses the messenger to exchange ceph_msg messages with other
29 * hosts in the system. The messenger provides ordered and reliable
30 * delivery. We tolerate TCP disconnects by reconnecting (with
31 * exponential backoff) in the case of a fault (disconnection, bad
32 * crc, protocol error). Acks allow sent messages to be discarded by
37 * We track the state of the socket on a given connection using
38 * values defined below. The transition to a new socket state is
39 * handled by a function which verifies we aren't coming from an
43 * | NEW* | transient initial state
45 * | con_sock_state_init()
48 * | CLOSED | initialized, but no socket (and no
49 * ---------- TCP connection)
51 * | \ con_sock_state_connecting()
52 * | ----------------------
54 * + con_sock_state_closed() \
55 * |+--------------------------- \
58 * | | CLOSING | socket event; \ \
59 * | ----------- await close \ \
62 * | + con_sock_state_closing() \ |
64 * | / --------------- | |
67 * | / -----------------| CONNECTING | socket created, TCP
68 * | | / -------------- connect initiated
69 * | | | con_sock_state_connected()
72 * | CONNECTED | TCP connection established
75 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
78 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
79 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
80 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
81 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
82 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
87 #define CON_STATE_CLOSED 1 /* -> PREOPEN */
88 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */
89 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */
90 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */
91 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */
92 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */
95 * ceph_connection flag bits
97 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop
98 * messages on errors */
99 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */
100 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */
101 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */
102 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */
104 static bool con_flag_valid(unsigned long con_flag
)
107 case CON_FLAG_LOSSYTX
:
108 case CON_FLAG_KEEPALIVE_PENDING
:
109 case CON_FLAG_WRITE_PENDING
:
110 case CON_FLAG_SOCK_CLOSED
:
111 case CON_FLAG_BACKOFF
:
118 static void con_flag_clear(struct ceph_connection
*con
, unsigned long con_flag
)
120 BUG_ON(!con_flag_valid(con_flag
));
122 clear_bit(con_flag
, &con
->flags
);
125 static void con_flag_set(struct ceph_connection
*con
, unsigned long con_flag
)
127 BUG_ON(!con_flag_valid(con_flag
));
129 set_bit(con_flag
, &con
->flags
);
132 static bool con_flag_test(struct ceph_connection
*con
, unsigned long con_flag
)
134 BUG_ON(!con_flag_valid(con_flag
));
136 return test_bit(con_flag
, &con
->flags
);
139 static bool con_flag_test_and_clear(struct ceph_connection
*con
,
140 unsigned long con_flag
)
142 BUG_ON(!con_flag_valid(con_flag
));
144 return test_and_clear_bit(con_flag
, &con
->flags
);
147 static bool con_flag_test_and_set(struct ceph_connection
*con
,
148 unsigned long con_flag
)
150 BUG_ON(!con_flag_valid(con_flag
));
152 return test_and_set_bit(con_flag
, &con
->flags
);
155 /* Slab caches for frequently-allocated structures */
157 static struct kmem_cache
*ceph_msg_cache
;
158 static struct kmem_cache
*ceph_msg_data_cache
;
160 /* static tag bytes (protocol control messages) */
161 static char tag_msg
= CEPH_MSGR_TAG_MSG
;
162 static char tag_ack
= CEPH_MSGR_TAG_ACK
;
163 static char tag_keepalive
= CEPH_MSGR_TAG_KEEPALIVE
;
164 static char tag_keepalive2
= CEPH_MSGR_TAG_KEEPALIVE2
;
166 #ifdef CONFIG_LOCKDEP
167 static struct lock_class_key socket_class
;
171 * When skipping (ignoring) a block of input we read it into a "skip
172 * buffer," which is this many bytes in size.
174 #define SKIP_BUF_SIZE 1024
176 static void queue_con(struct ceph_connection
*con
);
177 static void cancel_con(struct ceph_connection
*con
);
178 static void ceph_con_workfn(struct work_struct
*);
179 static void con_fault(struct ceph_connection
*con
);
182 * Nicely render a sockaddr as a string. An array of formatted
183 * strings is used, to approximate reentrancy.
185 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
186 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
187 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
188 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
190 static char addr_str
[ADDR_STR_COUNT
][MAX_ADDR_STR_LEN
];
191 static atomic_t addr_str_seq
= ATOMIC_INIT(0);
193 static struct page
*zero_page
; /* used in certain error cases */
195 const char *ceph_pr_addr(const struct sockaddr_storage
*ss
)
199 struct sockaddr_in
*in4
= (struct sockaddr_in
*) ss
;
200 struct sockaddr_in6
*in6
= (struct sockaddr_in6
*) ss
;
202 i
= atomic_inc_return(&addr_str_seq
) & ADDR_STR_COUNT_MASK
;
205 switch (ss
->ss_family
) {
207 snprintf(s
, MAX_ADDR_STR_LEN
, "%pI4:%hu", &in4
->sin_addr
,
208 ntohs(in4
->sin_port
));
212 snprintf(s
, MAX_ADDR_STR_LEN
, "[%pI6c]:%hu", &in6
->sin6_addr
,
213 ntohs(in6
->sin6_port
));
217 snprintf(s
, MAX_ADDR_STR_LEN
, "(unknown sockaddr family %hu)",
223 EXPORT_SYMBOL(ceph_pr_addr
);
225 static void encode_my_addr(struct ceph_messenger
*msgr
)
227 memcpy(&msgr
->my_enc_addr
, &msgr
->inst
.addr
, sizeof(msgr
->my_enc_addr
));
228 ceph_encode_addr(&msgr
->my_enc_addr
);
232 * work queue for all reading and writing to/from the socket.
234 static struct workqueue_struct
*ceph_msgr_wq
;
236 static int ceph_msgr_slab_init(void)
238 BUG_ON(ceph_msg_cache
);
239 ceph_msg_cache
= KMEM_CACHE(ceph_msg
, 0);
243 BUG_ON(ceph_msg_data_cache
);
244 ceph_msg_data_cache
= KMEM_CACHE(ceph_msg_data
, 0);
245 if (ceph_msg_data_cache
)
248 kmem_cache_destroy(ceph_msg_cache
);
249 ceph_msg_cache
= NULL
;
254 static void ceph_msgr_slab_exit(void)
256 BUG_ON(!ceph_msg_data_cache
);
257 kmem_cache_destroy(ceph_msg_data_cache
);
258 ceph_msg_data_cache
= NULL
;
260 BUG_ON(!ceph_msg_cache
);
261 kmem_cache_destroy(ceph_msg_cache
);
262 ceph_msg_cache
= NULL
;
265 static void _ceph_msgr_exit(void)
268 destroy_workqueue(ceph_msgr_wq
);
272 BUG_ON(zero_page
== NULL
);
276 ceph_msgr_slab_exit();
279 int ceph_msgr_init(void)
281 if (ceph_msgr_slab_init())
284 BUG_ON(zero_page
!= NULL
);
285 zero_page
= ZERO_PAGE(0);
289 * The number of active work items is limited by the number of
290 * connections, so leave @max_active at default.
292 ceph_msgr_wq
= alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM
, 0);
296 pr_err("msgr_init failed to create workqueue\n");
301 EXPORT_SYMBOL(ceph_msgr_init
);
303 void ceph_msgr_exit(void)
305 BUG_ON(ceph_msgr_wq
== NULL
);
309 EXPORT_SYMBOL(ceph_msgr_exit
);
311 void ceph_msgr_flush(void)
313 flush_workqueue(ceph_msgr_wq
);
315 EXPORT_SYMBOL(ceph_msgr_flush
);
317 /* Connection socket state transition functions */
319 static void con_sock_state_init(struct ceph_connection
*con
)
323 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CLOSED
);
324 if (WARN_ON(old_state
!= CON_SOCK_STATE_NEW
))
325 printk("%s: unexpected old state %d\n", __func__
, old_state
);
326 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
327 CON_SOCK_STATE_CLOSED
);
330 static void con_sock_state_connecting(struct ceph_connection
*con
)
334 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CONNECTING
);
335 if (WARN_ON(old_state
!= CON_SOCK_STATE_CLOSED
))
336 printk("%s: unexpected old state %d\n", __func__
, old_state
);
337 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
338 CON_SOCK_STATE_CONNECTING
);
341 static void con_sock_state_connected(struct ceph_connection
*con
)
345 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CONNECTED
);
346 if (WARN_ON(old_state
!= CON_SOCK_STATE_CONNECTING
))
347 printk("%s: unexpected old state %d\n", __func__
, old_state
);
348 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
349 CON_SOCK_STATE_CONNECTED
);
352 static void con_sock_state_closing(struct ceph_connection
*con
)
356 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CLOSING
);
357 if (WARN_ON(old_state
!= CON_SOCK_STATE_CONNECTING
&&
358 old_state
!= CON_SOCK_STATE_CONNECTED
&&
359 old_state
!= CON_SOCK_STATE_CLOSING
))
360 printk("%s: unexpected old state %d\n", __func__
, old_state
);
361 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
362 CON_SOCK_STATE_CLOSING
);
365 static void con_sock_state_closed(struct ceph_connection
*con
)
369 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CLOSED
);
370 if (WARN_ON(old_state
!= CON_SOCK_STATE_CONNECTED
&&
371 old_state
!= CON_SOCK_STATE_CLOSING
&&
372 old_state
!= CON_SOCK_STATE_CONNECTING
&&
373 old_state
!= CON_SOCK_STATE_CLOSED
))
374 printk("%s: unexpected old state %d\n", __func__
, old_state
);
375 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
376 CON_SOCK_STATE_CLOSED
);
380 * socket callback functions
383 /* data available on socket, or listen socket received a connect */
384 static void ceph_sock_data_ready(struct sock
*sk
)
386 struct ceph_connection
*con
= sk
->sk_user_data
;
387 if (atomic_read(&con
->msgr
->stopping
)) {
391 if (sk
->sk_state
!= TCP_CLOSE_WAIT
) {
392 dout("%s on %p state = %lu, queueing work\n", __func__
,
398 /* socket has buffer space for writing */
399 static void ceph_sock_write_space(struct sock
*sk
)
401 struct ceph_connection
*con
= sk
->sk_user_data
;
403 /* only queue to workqueue if there is data we want to write,
404 * and there is sufficient space in the socket buffer to accept
405 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
406 * doesn't get called again until try_write() fills the socket
407 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
408 * and net/core/stream.c:sk_stream_write_space().
410 if (con_flag_test(con
, CON_FLAG_WRITE_PENDING
)) {
411 if (sk_stream_is_writeable(sk
)) {
412 dout("%s %p queueing write work\n", __func__
, con
);
413 clear_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
417 dout("%s %p nothing to write\n", __func__
, con
);
421 /* socket's state has changed */
422 static void ceph_sock_state_change(struct sock
*sk
)
424 struct ceph_connection
*con
= sk
->sk_user_data
;
426 dout("%s %p state = %lu sk_state = %u\n", __func__
,
427 con
, con
->state
, sk
->sk_state
);
429 switch (sk
->sk_state
) {
431 dout("%s TCP_CLOSE\n", __func__
);
433 dout("%s TCP_CLOSE_WAIT\n", __func__
);
434 con_sock_state_closing(con
);
435 con_flag_set(con
, CON_FLAG_SOCK_CLOSED
);
438 case TCP_ESTABLISHED
:
439 dout("%s TCP_ESTABLISHED\n", __func__
);
440 con_sock_state_connected(con
);
443 default: /* Everything else is uninteresting */
449 * set up socket callbacks
451 static void set_sock_callbacks(struct socket
*sock
,
452 struct ceph_connection
*con
)
454 struct sock
*sk
= sock
->sk
;
455 sk
->sk_user_data
= con
;
456 sk
->sk_data_ready
= ceph_sock_data_ready
;
457 sk
->sk_write_space
= ceph_sock_write_space
;
458 sk
->sk_state_change
= ceph_sock_state_change
;
467 * initiate connection to a remote socket.
469 static int ceph_tcp_connect(struct ceph_connection
*con
)
471 struct sockaddr_storage
*paddr
= &con
->peer_addr
.in_addr
;
473 unsigned int noio_flag
;
478 /* sock_create_kern() allocates with GFP_KERNEL */
479 noio_flag
= memalloc_noio_save();
480 ret
= sock_create_kern(read_pnet(&con
->msgr
->net
), paddr
->ss_family
,
481 SOCK_STREAM
, IPPROTO_TCP
, &sock
);
482 memalloc_noio_restore(noio_flag
);
485 sock
->sk
->sk_allocation
= GFP_NOFS
;
487 #ifdef CONFIG_LOCKDEP
488 lockdep_set_class(&sock
->sk
->sk_lock
, &socket_class
);
491 set_sock_callbacks(sock
, con
);
493 dout("connect %s\n", ceph_pr_addr(&con
->peer_addr
.in_addr
));
495 con_sock_state_connecting(con
);
496 ret
= sock
->ops
->connect(sock
, (struct sockaddr
*)paddr
, sizeof(*paddr
),
498 if (ret
== -EINPROGRESS
) {
499 dout("connect %s EINPROGRESS sk_state = %u\n",
500 ceph_pr_addr(&con
->peer_addr
.in_addr
),
502 } else if (ret
< 0) {
503 pr_err("connect %s error %d\n",
504 ceph_pr_addr(&con
->peer_addr
.in_addr
), ret
);
509 if (ceph_test_opt(from_msgr(con
->msgr
), TCP_NODELAY
)) {
512 ret
= kernel_setsockopt(sock
, SOL_TCP
, TCP_NODELAY
,
513 (char *)&optval
, sizeof(optval
));
515 pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d",
523 static int ceph_tcp_recvmsg(struct socket
*sock
, void *buf
, size_t len
)
525 struct kvec iov
= {buf
, len
};
526 struct msghdr msg
= { .msg_flags
= MSG_DONTWAIT
| MSG_NOSIGNAL
};
529 iov_iter_kvec(&msg
.msg_iter
, READ
| ITER_KVEC
, &iov
, 1, len
);
530 r
= sock_recvmsg(sock
, &msg
, msg
.msg_flags
);
536 static int ceph_tcp_recvpage(struct socket
*sock
, struct page
*page
,
537 int page_offset
, size_t length
)
539 struct bio_vec bvec
= {
541 .bv_offset
= page_offset
,
544 struct msghdr msg
= { .msg_flags
= MSG_DONTWAIT
| MSG_NOSIGNAL
};
547 BUG_ON(page_offset
+ length
> PAGE_SIZE
);
548 iov_iter_bvec(&msg
.msg_iter
, READ
| ITER_BVEC
, &bvec
, 1, length
);
549 r
= sock_recvmsg(sock
, &msg
, msg
.msg_flags
);
556 * write something. @more is true if caller will be sending more data
559 static int ceph_tcp_sendmsg(struct socket
*sock
, struct kvec
*iov
,
560 size_t kvlen
, size_t len
, int more
)
562 struct msghdr msg
= { .msg_flags
= MSG_DONTWAIT
| MSG_NOSIGNAL
};
566 msg
.msg_flags
|= MSG_MORE
;
568 msg
.msg_flags
|= MSG_EOR
; /* superfluous, but what the hell */
570 r
= kernel_sendmsg(sock
, &msg
, iov
, kvlen
, len
);
576 static int __ceph_tcp_sendpage(struct socket
*sock
, struct page
*page
,
577 int offset
, size_t size
, bool more
)
579 int flags
= MSG_DONTWAIT
| MSG_NOSIGNAL
| (more
? MSG_MORE
: MSG_EOR
);
582 ret
= kernel_sendpage(sock
, page
, offset
, size
, flags
);
589 static int ceph_tcp_sendpage(struct socket
*sock
, struct page
*page
,
590 int offset
, size_t size
, bool more
)
592 struct msghdr msg
= { .msg_flags
= MSG_DONTWAIT
| MSG_NOSIGNAL
};
596 /* sendpage cannot properly handle pages with page_count == 0,
597 * we need to fallback to sendmsg if that's the case */
598 if (page_count(page
) >= 1)
599 return __ceph_tcp_sendpage(sock
, page
, offset
, size
, more
);
602 bvec
.bv_offset
= offset
;
606 msg
.msg_flags
|= MSG_MORE
;
608 msg
.msg_flags
|= MSG_EOR
; /* superfluous, but what the hell */
610 iov_iter_bvec(&msg
.msg_iter
, WRITE
| ITER_BVEC
, &bvec
, 1, size
);
611 ret
= sock_sendmsg(sock
, &msg
);
619 * Shutdown/close the socket for the given connection.
621 static int con_close_socket(struct ceph_connection
*con
)
625 dout("con_close_socket on %p sock %p\n", con
, con
->sock
);
627 rc
= con
->sock
->ops
->shutdown(con
->sock
, SHUT_RDWR
);
628 sock_release(con
->sock
);
633 * Forcibly clear the SOCK_CLOSED flag. It gets set
634 * independent of the connection mutex, and we could have
635 * received a socket close event before we had the chance to
636 * shut the socket down.
638 con_flag_clear(con
, CON_FLAG_SOCK_CLOSED
);
640 con_sock_state_closed(con
);
645 * Reset a connection. Discard all incoming and outgoing messages
646 * and clear *_seq state.
648 static void ceph_msg_remove(struct ceph_msg
*msg
)
650 list_del_init(&msg
->list_head
);
654 static void ceph_msg_remove_list(struct list_head
*head
)
656 while (!list_empty(head
)) {
657 struct ceph_msg
*msg
= list_first_entry(head
, struct ceph_msg
,
659 ceph_msg_remove(msg
);
663 static void reset_connection(struct ceph_connection
*con
)
665 /* reset connection, out_queue, msg_ and connect_seq */
666 /* discard existing out_queue and msg_seq */
667 dout("reset_connection %p\n", con
);
668 ceph_msg_remove_list(&con
->out_queue
);
669 ceph_msg_remove_list(&con
->out_sent
);
672 BUG_ON(con
->in_msg
->con
!= con
);
673 ceph_msg_put(con
->in_msg
);
677 con
->connect_seq
= 0;
680 BUG_ON(con
->out_msg
->con
!= con
);
681 ceph_msg_put(con
->out_msg
);
685 con
->in_seq_acked
= 0;
691 * mark a peer down. drop any open connections.
693 void ceph_con_close(struct ceph_connection
*con
)
695 mutex_lock(&con
->mutex
);
696 dout("con_close %p peer %s\n", con
,
697 ceph_pr_addr(&con
->peer_addr
.in_addr
));
698 con
->state
= CON_STATE_CLOSED
;
700 con_flag_clear(con
, CON_FLAG_LOSSYTX
); /* so we retry next connect */
701 con_flag_clear(con
, CON_FLAG_KEEPALIVE_PENDING
);
702 con_flag_clear(con
, CON_FLAG_WRITE_PENDING
);
703 con_flag_clear(con
, CON_FLAG_BACKOFF
);
705 reset_connection(con
);
706 con
->peer_global_seq
= 0;
708 con_close_socket(con
);
709 mutex_unlock(&con
->mutex
);
711 EXPORT_SYMBOL(ceph_con_close
);
714 * Reopen a closed connection, with a new peer address.
716 void ceph_con_open(struct ceph_connection
*con
,
717 __u8 entity_type
, __u64 entity_num
,
718 struct ceph_entity_addr
*addr
)
720 mutex_lock(&con
->mutex
);
721 dout("con_open %p %s\n", con
, ceph_pr_addr(&addr
->in_addr
));
723 WARN_ON(con
->state
!= CON_STATE_CLOSED
);
724 con
->state
= CON_STATE_PREOPEN
;
726 con
->peer_name
.type
= (__u8
) entity_type
;
727 con
->peer_name
.num
= cpu_to_le64(entity_num
);
729 memcpy(&con
->peer_addr
, addr
, sizeof(*addr
));
730 con
->delay
= 0; /* reset backoff memory */
731 mutex_unlock(&con
->mutex
);
734 EXPORT_SYMBOL(ceph_con_open
);
737 * return true if this connection ever successfully opened
739 bool ceph_con_opened(struct ceph_connection
*con
)
741 return con
->connect_seq
> 0;
745 * initialize a new connection.
747 void ceph_con_init(struct ceph_connection
*con
, void *private,
748 const struct ceph_connection_operations
*ops
,
749 struct ceph_messenger
*msgr
)
751 dout("con_init %p\n", con
);
752 memset(con
, 0, sizeof(*con
));
753 con
->private = private;
757 con_sock_state_init(con
);
759 mutex_init(&con
->mutex
);
760 INIT_LIST_HEAD(&con
->out_queue
);
761 INIT_LIST_HEAD(&con
->out_sent
);
762 INIT_DELAYED_WORK(&con
->work
, ceph_con_workfn
);
764 con
->state
= CON_STATE_CLOSED
;
766 EXPORT_SYMBOL(ceph_con_init
);
770 * We maintain a global counter to order connection attempts. Get
771 * a unique seq greater than @gt.
773 static u32
get_global_seq(struct ceph_messenger
*msgr
, u32 gt
)
777 spin_lock(&msgr
->global_seq_lock
);
778 if (msgr
->global_seq
< gt
)
779 msgr
->global_seq
= gt
;
780 ret
= ++msgr
->global_seq
;
781 spin_unlock(&msgr
->global_seq_lock
);
785 static void con_out_kvec_reset(struct ceph_connection
*con
)
787 BUG_ON(con
->out_skip
);
789 con
->out_kvec_left
= 0;
790 con
->out_kvec_bytes
= 0;
791 con
->out_kvec_cur
= &con
->out_kvec
[0];
794 static void con_out_kvec_add(struct ceph_connection
*con
,
795 size_t size
, void *data
)
797 int index
= con
->out_kvec_left
;
799 BUG_ON(con
->out_skip
);
800 BUG_ON(index
>= ARRAY_SIZE(con
->out_kvec
));
802 con
->out_kvec
[index
].iov_len
= size
;
803 con
->out_kvec
[index
].iov_base
= data
;
804 con
->out_kvec_left
++;
805 con
->out_kvec_bytes
+= size
;
809 * Chop off a kvec from the end. Return residual number of bytes for
810 * that kvec, i.e. how many bytes would have been written if the kvec
813 static int con_out_kvec_skip(struct ceph_connection
*con
)
815 int off
= con
->out_kvec_cur
- con
->out_kvec
;
818 if (con
->out_kvec_bytes
> 0) {
819 skip
= con
->out_kvec
[off
+ con
->out_kvec_left
- 1].iov_len
;
820 BUG_ON(con
->out_kvec_bytes
< skip
);
821 BUG_ON(!con
->out_kvec_left
);
822 con
->out_kvec_bytes
-= skip
;
823 con
->out_kvec_left
--;
832 * For a bio data item, a piece is whatever remains of the next
833 * entry in the current bio iovec, or the first entry in the next
836 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor
*cursor
,
839 struct ceph_msg_data
*data
= cursor
->data
;
842 BUG_ON(data
->type
!= CEPH_MSG_DATA_BIO
);
847 cursor
->resid
= min(length
, data
->bio_length
);
849 cursor
->bvec_iter
= bio
->bi_iter
;
851 cursor
->resid
<= bio_iter_len(bio
, cursor
->bvec_iter
);
854 static struct page
*ceph_msg_data_bio_next(struct ceph_msg_data_cursor
*cursor
,
858 struct ceph_msg_data
*data
= cursor
->data
;
860 struct bio_vec bio_vec
;
862 BUG_ON(data
->type
!= CEPH_MSG_DATA_BIO
);
867 bio_vec
= bio_iter_iovec(bio
, cursor
->bvec_iter
);
869 *page_offset
= (size_t) bio_vec
.bv_offset
;
870 BUG_ON(*page_offset
>= PAGE_SIZE
);
871 if (cursor
->last_piece
) /* pagelist offset is always 0 */
872 *length
= cursor
->resid
;
874 *length
= (size_t) bio_vec
.bv_len
;
875 BUG_ON(*length
> cursor
->resid
);
876 BUG_ON(*page_offset
+ *length
> PAGE_SIZE
);
878 return bio_vec
.bv_page
;
881 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor
*cursor
,
885 struct bio_vec bio_vec
;
887 BUG_ON(cursor
->data
->type
!= CEPH_MSG_DATA_BIO
);
892 bio_vec
= bio_iter_iovec(bio
, cursor
->bvec_iter
);
894 /* Advance the cursor offset */
896 BUG_ON(cursor
->resid
< bytes
);
897 cursor
->resid
-= bytes
;
899 bio_advance_iter(bio
, &cursor
->bvec_iter
, bytes
);
901 if (bytes
< bio_vec
.bv_len
)
902 return false; /* more bytes to process in this segment */
904 /* Move on to the next segment, and possibly the next bio */
906 if (!cursor
->bvec_iter
.bi_size
) {
910 cursor
->bvec_iter
= bio
->bi_iter
;
912 memset(&cursor
->bvec_iter
, 0,
913 sizeof(cursor
->bvec_iter
));
916 if (!cursor
->last_piece
) {
917 BUG_ON(!cursor
->resid
);
919 /* A short read is OK, so use <= rather than == */
920 if (cursor
->resid
<= bio_iter_len(bio
, cursor
->bvec_iter
))
921 cursor
->last_piece
= true;
926 #endif /* CONFIG_BLOCK */
929 * For a page array, a piece comes from the first page in the array
930 * that has not already been fully consumed.
932 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor
*cursor
,
935 struct ceph_msg_data
*data
= cursor
->data
;
938 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGES
);
940 BUG_ON(!data
->pages
);
941 BUG_ON(!data
->length
);
943 cursor
->resid
= min(length
, data
->length
);
944 page_count
= calc_pages_for(data
->alignment
, (u64
)data
->length
);
945 cursor
->page_offset
= data
->alignment
& ~PAGE_MASK
;
946 cursor
->page_index
= 0;
947 BUG_ON(page_count
> (int)USHRT_MAX
);
948 cursor
->page_count
= (unsigned short)page_count
;
949 BUG_ON(length
> SIZE_MAX
- cursor
->page_offset
);
950 cursor
->last_piece
= cursor
->page_offset
+ cursor
->resid
<= PAGE_SIZE
;
954 ceph_msg_data_pages_next(struct ceph_msg_data_cursor
*cursor
,
955 size_t *page_offset
, size_t *length
)
957 struct ceph_msg_data
*data
= cursor
->data
;
959 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGES
);
961 BUG_ON(cursor
->page_index
>= cursor
->page_count
);
962 BUG_ON(cursor
->page_offset
>= PAGE_SIZE
);
964 *page_offset
= cursor
->page_offset
;
965 if (cursor
->last_piece
)
966 *length
= cursor
->resid
;
968 *length
= PAGE_SIZE
- *page_offset
;
970 return data
->pages
[cursor
->page_index
];
973 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor
*cursor
,
976 BUG_ON(cursor
->data
->type
!= CEPH_MSG_DATA_PAGES
);
978 BUG_ON(cursor
->page_offset
+ bytes
> PAGE_SIZE
);
980 /* Advance the cursor page offset */
982 cursor
->resid
-= bytes
;
983 cursor
->page_offset
= (cursor
->page_offset
+ bytes
) & ~PAGE_MASK
;
984 if (!bytes
|| cursor
->page_offset
)
985 return false; /* more bytes to process in the current page */
988 return false; /* no more data */
990 /* Move on to the next page; offset is already at 0 */
992 BUG_ON(cursor
->page_index
>= cursor
->page_count
);
993 cursor
->page_index
++;
994 cursor
->last_piece
= cursor
->resid
<= PAGE_SIZE
;
1000 * For a pagelist, a piece is whatever remains to be consumed in the
1001 * first page in the list, or the front of the next page.
1004 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor
*cursor
,
1007 struct ceph_msg_data
*data
= cursor
->data
;
1008 struct ceph_pagelist
*pagelist
;
1011 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGELIST
);
1013 pagelist
= data
->pagelist
;
1017 return; /* pagelist can be assigned but empty */
1019 BUG_ON(list_empty(&pagelist
->head
));
1020 page
= list_first_entry(&pagelist
->head
, struct page
, lru
);
1022 cursor
->resid
= min(length
, pagelist
->length
);
1023 cursor
->page
= page
;
1025 cursor
->last_piece
= cursor
->resid
<= PAGE_SIZE
;
1028 static struct page
*
1029 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor
*cursor
,
1030 size_t *page_offset
, size_t *length
)
1032 struct ceph_msg_data
*data
= cursor
->data
;
1033 struct ceph_pagelist
*pagelist
;
1035 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGELIST
);
1037 pagelist
= data
->pagelist
;
1040 BUG_ON(!cursor
->page
);
1041 BUG_ON(cursor
->offset
+ cursor
->resid
!= pagelist
->length
);
1043 /* offset of first page in pagelist is always 0 */
1044 *page_offset
= cursor
->offset
& ~PAGE_MASK
;
1045 if (cursor
->last_piece
)
1046 *length
= cursor
->resid
;
1048 *length
= PAGE_SIZE
- *page_offset
;
1050 return cursor
->page
;
1053 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor
*cursor
,
1056 struct ceph_msg_data
*data
= cursor
->data
;
1057 struct ceph_pagelist
*pagelist
;
1059 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGELIST
);
1061 pagelist
= data
->pagelist
;
1064 BUG_ON(cursor
->offset
+ cursor
->resid
!= pagelist
->length
);
1065 BUG_ON((cursor
->offset
& ~PAGE_MASK
) + bytes
> PAGE_SIZE
);
1067 /* Advance the cursor offset */
1069 cursor
->resid
-= bytes
;
1070 cursor
->offset
+= bytes
;
1071 /* offset of first page in pagelist is always 0 */
1072 if (!bytes
|| cursor
->offset
& ~PAGE_MASK
)
1073 return false; /* more bytes to process in the current page */
1076 return false; /* no more data */
1078 /* Move on to the next page */
1080 BUG_ON(list_is_last(&cursor
->page
->lru
, &pagelist
->head
));
1081 cursor
->page
= list_next_entry(cursor
->page
, lru
);
1082 cursor
->last_piece
= cursor
->resid
<= PAGE_SIZE
;
1088 * Message data is handled (sent or received) in pieces, where each
1089 * piece resides on a single page. The network layer might not
1090 * consume an entire piece at once. A data item's cursor keeps
1091 * track of which piece is next to process and how much remains to
1092 * be processed in that piece. It also tracks whether the current
1093 * piece is the last one in the data item.
1095 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor
*cursor
)
1097 size_t length
= cursor
->total_resid
;
1099 switch (cursor
->data
->type
) {
1100 case CEPH_MSG_DATA_PAGELIST
:
1101 ceph_msg_data_pagelist_cursor_init(cursor
, length
);
1103 case CEPH_MSG_DATA_PAGES
:
1104 ceph_msg_data_pages_cursor_init(cursor
, length
);
1107 case CEPH_MSG_DATA_BIO
:
1108 ceph_msg_data_bio_cursor_init(cursor
, length
);
1110 #endif /* CONFIG_BLOCK */
1111 case CEPH_MSG_DATA_NONE
:
1116 cursor
->need_crc
= true;
1119 static void ceph_msg_data_cursor_init(struct ceph_msg
*msg
, size_t length
)
1121 struct ceph_msg_data_cursor
*cursor
= &msg
->cursor
;
1122 struct ceph_msg_data
*data
;
1125 BUG_ON(length
> msg
->data_length
);
1126 BUG_ON(list_empty(&msg
->data
));
1128 cursor
->data_head
= &msg
->data
;
1129 cursor
->total_resid
= length
;
1130 data
= list_first_entry(&msg
->data
, struct ceph_msg_data
, links
);
1131 cursor
->data
= data
;
1133 __ceph_msg_data_cursor_init(cursor
);
1137 * Return the page containing the next piece to process for a given
1138 * data item, and supply the page offset and length of that piece.
1139 * Indicate whether this is the last piece in this data item.
1141 static struct page
*ceph_msg_data_next(struct ceph_msg_data_cursor
*cursor
,
1142 size_t *page_offset
, size_t *length
,
1147 switch (cursor
->data
->type
) {
1148 case CEPH_MSG_DATA_PAGELIST
:
1149 page
= ceph_msg_data_pagelist_next(cursor
, page_offset
, length
);
1151 case CEPH_MSG_DATA_PAGES
:
1152 page
= ceph_msg_data_pages_next(cursor
, page_offset
, length
);
1155 case CEPH_MSG_DATA_BIO
:
1156 page
= ceph_msg_data_bio_next(cursor
, page_offset
, length
);
1158 #endif /* CONFIG_BLOCK */
1159 case CEPH_MSG_DATA_NONE
:
1165 BUG_ON(*page_offset
+ *length
> PAGE_SIZE
);
1168 *last_piece
= cursor
->last_piece
;
1174 * Returns true if the result moves the cursor on to the next piece
1177 static bool ceph_msg_data_advance(struct ceph_msg_data_cursor
*cursor
,
1182 BUG_ON(bytes
> cursor
->resid
);
1183 switch (cursor
->data
->type
) {
1184 case CEPH_MSG_DATA_PAGELIST
:
1185 new_piece
= ceph_msg_data_pagelist_advance(cursor
, bytes
);
1187 case CEPH_MSG_DATA_PAGES
:
1188 new_piece
= ceph_msg_data_pages_advance(cursor
, bytes
);
1191 case CEPH_MSG_DATA_BIO
:
1192 new_piece
= ceph_msg_data_bio_advance(cursor
, bytes
);
1194 #endif /* CONFIG_BLOCK */
1195 case CEPH_MSG_DATA_NONE
:
1200 cursor
->total_resid
-= bytes
;
1202 if (!cursor
->resid
&& cursor
->total_resid
) {
1203 WARN_ON(!cursor
->last_piece
);
1204 BUG_ON(list_is_last(&cursor
->data
->links
, cursor
->data_head
));
1205 cursor
->data
= list_next_entry(cursor
->data
, links
);
1206 __ceph_msg_data_cursor_init(cursor
);
1209 cursor
->need_crc
= new_piece
;
1214 static size_t sizeof_footer(struct ceph_connection
*con
)
1216 return (con
->peer_features
& CEPH_FEATURE_MSG_AUTH
) ?
1217 sizeof(struct ceph_msg_footer
) :
1218 sizeof(struct ceph_msg_footer_old
);
1221 static void prepare_message_data(struct ceph_msg
*msg
, u32 data_len
)
1226 /* Initialize data cursor */
1228 ceph_msg_data_cursor_init(msg
, (size_t)data_len
);
1232 * Prepare footer for currently outgoing message, and finish things
1233 * off. Assumes out_kvec* are already valid.. we just add on to the end.
1235 static void prepare_write_message_footer(struct ceph_connection
*con
)
1237 struct ceph_msg
*m
= con
->out_msg
;
1239 m
->footer
.flags
|= CEPH_MSG_FOOTER_COMPLETE
;
1241 dout("prepare_write_message_footer %p\n", con
);
1242 con_out_kvec_add(con
, sizeof_footer(con
), &m
->footer
);
1243 if (con
->peer_features
& CEPH_FEATURE_MSG_AUTH
) {
1244 if (con
->ops
->sign_message
)
1245 con
->ops
->sign_message(m
);
1249 m
->old_footer
.flags
= m
->footer
.flags
;
1251 con
->out_more
= m
->more_to_follow
;
1252 con
->out_msg_done
= true;
1256 * Prepare headers for the next outgoing message.
1258 static void prepare_write_message(struct ceph_connection
*con
)
1263 con_out_kvec_reset(con
);
1264 con
->out_msg_done
= false;
1266 /* Sneak an ack in there first? If we can get it into the same
1267 * TCP packet that's a good thing. */
1268 if (con
->in_seq
> con
->in_seq_acked
) {
1269 con
->in_seq_acked
= con
->in_seq
;
1270 con_out_kvec_add(con
, sizeof (tag_ack
), &tag_ack
);
1271 con
->out_temp_ack
= cpu_to_le64(con
->in_seq_acked
);
1272 con_out_kvec_add(con
, sizeof (con
->out_temp_ack
),
1273 &con
->out_temp_ack
);
1276 BUG_ON(list_empty(&con
->out_queue
));
1277 m
= list_first_entry(&con
->out_queue
, struct ceph_msg
, list_head
);
1279 BUG_ON(m
->con
!= con
);
1281 /* put message on sent list */
1283 list_move_tail(&m
->list_head
, &con
->out_sent
);
1286 * only assign outgoing seq # if we haven't sent this message
1287 * yet. if it is requeued, resend with it's original seq.
1289 if (m
->needs_out_seq
) {
1290 m
->hdr
.seq
= cpu_to_le64(++con
->out_seq
);
1291 m
->needs_out_seq
= false;
1293 WARN_ON(m
->data_length
!= le32_to_cpu(m
->hdr
.data_len
));
1295 dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1296 m
, con
->out_seq
, le16_to_cpu(m
->hdr
.type
),
1297 le32_to_cpu(m
->hdr
.front_len
), le32_to_cpu(m
->hdr
.middle_len
),
1299 BUG_ON(le32_to_cpu(m
->hdr
.front_len
) != m
->front
.iov_len
);
1301 /* tag + hdr + front + middle */
1302 con_out_kvec_add(con
, sizeof (tag_msg
), &tag_msg
);
1303 con_out_kvec_add(con
, sizeof(con
->out_hdr
), &con
->out_hdr
);
1304 con_out_kvec_add(con
, m
->front
.iov_len
, m
->front
.iov_base
);
1307 con_out_kvec_add(con
, m
->middle
->vec
.iov_len
,
1308 m
->middle
->vec
.iov_base
);
1310 /* fill in hdr crc and finalize hdr */
1311 crc
= crc32c(0, &m
->hdr
, offsetof(struct ceph_msg_header
, crc
));
1312 con
->out_msg
->hdr
.crc
= cpu_to_le32(crc
);
1313 memcpy(&con
->out_hdr
, &con
->out_msg
->hdr
, sizeof(con
->out_hdr
));
1315 /* fill in front and middle crc, footer */
1316 crc
= crc32c(0, m
->front
.iov_base
, m
->front
.iov_len
);
1317 con
->out_msg
->footer
.front_crc
= cpu_to_le32(crc
);
1319 crc
= crc32c(0, m
->middle
->vec
.iov_base
,
1320 m
->middle
->vec
.iov_len
);
1321 con
->out_msg
->footer
.middle_crc
= cpu_to_le32(crc
);
1323 con
->out_msg
->footer
.middle_crc
= 0;
1324 dout("%s front_crc %u middle_crc %u\n", __func__
,
1325 le32_to_cpu(con
->out_msg
->footer
.front_crc
),
1326 le32_to_cpu(con
->out_msg
->footer
.middle_crc
));
1327 con
->out_msg
->footer
.flags
= 0;
1329 /* is there a data payload? */
1330 con
->out_msg
->footer
.data_crc
= 0;
1331 if (m
->data_length
) {
1332 prepare_message_data(con
->out_msg
, m
->data_length
);
1333 con
->out_more
= 1; /* data + footer will follow */
1335 /* no, queue up footer too and be done */
1336 prepare_write_message_footer(con
);
1339 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1345 static void prepare_write_ack(struct ceph_connection
*con
)
1347 dout("prepare_write_ack %p %llu -> %llu\n", con
,
1348 con
->in_seq_acked
, con
->in_seq
);
1349 con
->in_seq_acked
= con
->in_seq
;
1351 con_out_kvec_reset(con
);
1353 con_out_kvec_add(con
, sizeof (tag_ack
), &tag_ack
);
1355 con
->out_temp_ack
= cpu_to_le64(con
->in_seq_acked
);
1356 con_out_kvec_add(con
, sizeof (con
->out_temp_ack
),
1357 &con
->out_temp_ack
);
1359 con
->out_more
= 1; /* more will follow.. eventually.. */
1360 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1364 * Prepare to share the seq during handshake
1366 static void prepare_write_seq(struct ceph_connection
*con
)
1368 dout("prepare_write_seq %p %llu -> %llu\n", con
,
1369 con
->in_seq_acked
, con
->in_seq
);
1370 con
->in_seq_acked
= con
->in_seq
;
1372 con_out_kvec_reset(con
);
1374 con
->out_temp_ack
= cpu_to_le64(con
->in_seq_acked
);
1375 con_out_kvec_add(con
, sizeof (con
->out_temp_ack
),
1376 &con
->out_temp_ack
);
1378 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1382 * Prepare to write keepalive byte.
1384 static void prepare_write_keepalive(struct ceph_connection
*con
)
1386 dout("prepare_write_keepalive %p\n", con
);
1387 con_out_kvec_reset(con
);
1388 if (con
->peer_features
& CEPH_FEATURE_MSGR_KEEPALIVE2
) {
1389 struct timespec now
= CURRENT_TIME
;
1391 con_out_kvec_add(con
, sizeof(tag_keepalive2
), &tag_keepalive2
);
1392 ceph_encode_timespec(&con
->out_temp_keepalive2
, &now
);
1393 con_out_kvec_add(con
, sizeof(con
->out_temp_keepalive2
),
1394 &con
->out_temp_keepalive2
);
1396 con_out_kvec_add(con
, sizeof(tag_keepalive
), &tag_keepalive
);
1398 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1402 * Connection negotiation.
1405 static struct ceph_auth_handshake
*get_connect_authorizer(struct ceph_connection
*con
,
1408 struct ceph_auth_handshake
*auth
;
1410 if (!con
->ops
->get_authorizer
) {
1411 con
->out_connect
.authorizer_protocol
= CEPH_AUTH_UNKNOWN
;
1412 con
->out_connect
.authorizer_len
= 0;
1416 auth
= con
->ops
->get_authorizer(con
, auth_proto
, con
->auth_retry
);
1420 con
->auth_reply_buf
= auth
->authorizer_reply_buf
;
1421 con
->auth_reply_buf_len
= auth
->authorizer_reply_buf_len
;
1426 * We connected to a peer and are saying hello.
1428 static void prepare_write_banner(struct ceph_connection
*con
)
1430 con_out_kvec_add(con
, strlen(CEPH_BANNER
), CEPH_BANNER
);
1431 con_out_kvec_add(con
, sizeof (con
->msgr
->my_enc_addr
),
1432 &con
->msgr
->my_enc_addr
);
1435 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1438 static int prepare_write_connect(struct ceph_connection
*con
)
1440 unsigned int global_seq
= get_global_seq(con
->msgr
, 0);
1443 struct ceph_auth_handshake
*auth
;
1445 switch (con
->peer_name
.type
) {
1446 case CEPH_ENTITY_TYPE_MON
:
1447 proto
= CEPH_MONC_PROTOCOL
;
1449 case CEPH_ENTITY_TYPE_OSD
:
1450 proto
= CEPH_OSDC_PROTOCOL
;
1452 case CEPH_ENTITY_TYPE_MDS
:
1453 proto
= CEPH_MDSC_PROTOCOL
;
1459 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con
,
1460 con
->connect_seq
, global_seq
, proto
);
1462 con
->out_connect
.features
=
1463 cpu_to_le64(from_msgr(con
->msgr
)->supported_features
);
1464 con
->out_connect
.host_type
= cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT
);
1465 con
->out_connect
.connect_seq
= cpu_to_le32(con
->connect_seq
);
1466 con
->out_connect
.global_seq
= cpu_to_le32(global_seq
);
1467 con
->out_connect
.protocol_version
= cpu_to_le32(proto
);
1468 con
->out_connect
.flags
= 0;
1470 auth_proto
= CEPH_AUTH_UNKNOWN
;
1471 auth
= get_connect_authorizer(con
, &auth_proto
);
1473 return PTR_ERR(auth
);
1475 con
->out_connect
.authorizer_protocol
= cpu_to_le32(auth_proto
);
1476 con
->out_connect
.authorizer_len
= auth
?
1477 cpu_to_le32(auth
->authorizer_buf_len
) : 0;
1479 con_out_kvec_add(con
, sizeof (con
->out_connect
),
1481 if (auth
&& auth
->authorizer_buf_len
)
1482 con_out_kvec_add(con
, auth
->authorizer_buf_len
,
1483 auth
->authorizer_buf
);
1486 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1492 * write as much of pending kvecs to the socket as we can.
1494 * 0 -> socket full, but more to do
1497 static int write_partial_kvec(struct ceph_connection
*con
)
1501 dout("write_partial_kvec %p %d left\n", con
, con
->out_kvec_bytes
);
1502 while (con
->out_kvec_bytes
> 0) {
1503 ret
= ceph_tcp_sendmsg(con
->sock
, con
->out_kvec_cur
,
1504 con
->out_kvec_left
, con
->out_kvec_bytes
,
1508 con
->out_kvec_bytes
-= ret
;
1509 if (con
->out_kvec_bytes
== 0)
1512 /* account for full iov entries consumed */
1513 while (ret
>= con
->out_kvec_cur
->iov_len
) {
1514 BUG_ON(!con
->out_kvec_left
);
1515 ret
-= con
->out_kvec_cur
->iov_len
;
1516 con
->out_kvec_cur
++;
1517 con
->out_kvec_left
--;
1519 /* and for a partially-consumed entry */
1521 con
->out_kvec_cur
->iov_len
-= ret
;
1522 con
->out_kvec_cur
->iov_base
+= ret
;
1525 con
->out_kvec_left
= 0;
1528 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con
,
1529 con
->out_kvec_bytes
, con
->out_kvec_left
, ret
);
1530 return ret
; /* done! */
1533 static u32
ceph_crc32c_page(u32 crc
, struct page
*page
,
1534 unsigned int page_offset
,
1535 unsigned int length
)
1540 BUG_ON(kaddr
== NULL
);
1541 crc
= crc32c(crc
, kaddr
+ page_offset
, length
);
1547 * Write as much message data payload as we can. If we finish, queue
1549 * 1 -> done, footer is now queued in out_kvec[].
1550 * 0 -> socket full, but more to do
1553 static int write_partial_message_data(struct ceph_connection
*con
)
1555 struct ceph_msg
*msg
= con
->out_msg
;
1556 struct ceph_msg_data_cursor
*cursor
= &msg
->cursor
;
1557 bool do_datacrc
= !ceph_test_opt(from_msgr(con
->msgr
), NOCRC
);
1560 dout("%s %p msg %p\n", __func__
, con
, msg
);
1562 if (list_empty(&msg
->data
))
1566 * Iterate through each page that contains data to be
1567 * written, and send as much as possible for each.
1569 * If we are calculating the data crc (the default), we will
1570 * need to map the page. If we have no pages, they have
1571 * been revoked, so use the zero page.
1573 crc
= do_datacrc
? le32_to_cpu(msg
->footer
.data_crc
) : 0;
1574 while (cursor
->resid
) {
1582 page
= ceph_msg_data_next(cursor
, &page_offset
, &length
,
1584 ret
= ceph_tcp_sendpage(con
->sock
, page
, page_offset
,
1585 length
, !last_piece
);
1588 msg
->footer
.data_crc
= cpu_to_le32(crc
);
1592 if (do_datacrc
&& cursor
->need_crc
)
1593 crc
= ceph_crc32c_page(crc
, page
, page_offset
, length
);
1594 need_crc
= ceph_msg_data_advance(cursor
, (size_t)ret
);
1597 dout("%s %p msg %p done\n", __func__
, con
, msg
);
1599 /* prepare and queue up footer, too */
1601 msg
->footer
.data_crc
= cpu_to_le32(crc
);
1603 msg
->footer
.flags
|= CEPH_MSG_FOOTER_NOCRC
;
1604 con_out_kvec_reset(con
);
1605 prepare_write_message_footer(con
);
1607 return 1; /* must return > 0 to indicate success */
1613 static int write_partial_skip(struct ceph_connection
*con
)
1617 dout("%s %p %d left\n", __func__
, con
, con
->out_skip
);
1618 while (con
->out_skip
> 0) {
1619 size_t size
= min(con
->out_skip
, (int) PAGE_SIZE
);
1621 ret
= ceph_tcp_sendpage(con
->sock
, zero_page
, 0, size
, true);
1624 con
->out_skip
-= ret
;
1632 * Prepare to read connection handshake, or an ack.
1634 static void prepare_read_banner(struct ceph_connection
*con
)
1636 dout("prepare_read_banner %p\n", con
);
1637 con
->in_base_pos
= 0;
1640 static void prepare_read_connect(struct ceph_connection
*con
)
1642 dout("prepare_read_connect %p\n", con
);
1643 con
->in_base_pos
= 0;
1646 static void prepare_read_ack(struct ceph_connection
*con
)
1648 dout("prepare_read_ack %p\n", con
);
1649 con
->in_base_pos
= 0;
1652 static void prepare_read_seq(struct ceph_connection
*con
)
1654 dout("prepare_read_seq %p\n", con
);
1655 con
->in_base_pos
= 0;
1656 con
->in_tag
= CEPH_MSGR_TAG_SEQ
;
1659 static void prepare_read_tag(struct ceph_connection
*con
)
1661 dout("prepare_read_tag %p\n", con
);
1662 con
->in_base_pos
= 0;
1663 con
->in_tag
= CEPH_MSGR_TAG_READY
;
1666 static void prepare_read_keepalive_ack(struct ceph_connection
*con
)
1668 dout("prepare_read_keepalive_ack %p\n", con
);
1669 con
->in_base_pos
= 0;
1673 * Prepare to read a message.
1675 static int prepare_read_message(struct ceph_connection
*con
)
1677 dout("prepare_read_message %p\n", con
);
1678 BUG_ON(con
->in_msg
!= NULL
);
1679 con
->in_base_pos
= 0;
1680 con
->in_front_crc
= con
->in_middle_crc
= con
->in_data_crc
= 0;
1685 static int read_partial(struct ceph_connection
*con
,
1686 int end
, int size
, void *object
)
1688 while (con
->in_base_pos
< end
) {
1689 int left
= end
- con
->in_base_pos
;
1690 int have
= size
- left
;
1691 int ret
= ceph_tcp_recvmsg(con
->sock
, object
+ have
, left
);
1694 con
->in_base_pos
+= ret
;
1701 * Read all or part of the connect-side handshake on a new connection
1703 static int read_partial_banner(struct ceph_connection
*con
)
1709 dout("read_partial_banner %p at %d\n", con
, con
->in_base_pos
);
1712 size
= strlen(CEPH_BANNER
);
1714 ret
= read_partial(con
, end
, size
, con
->in_banner
);
1718 size
= sizeof (con
->actual_peer_addr
);
1720 ret
= read_partial(con
, end
, size
, &con
->actual_peer_addr
);
1724 size
= sizeof (con
->peer_addr_for_me
);
1726 ret
= read_partial(con
, end
, size
, &con
->peer_addr_for_me
);
1734 static int read_partial_connect(struct ceph_connection
*con
)
1740 dout("read_partial_connect %p at %d\n", con
, con
->in_base_pos
);
1742 size
= sizeof (con
->in_reply
);
1744 ret
= read_partial(con
, end
, size
, &con
->in_reply
);
1748 size
= le32_to_cpu(con
->in_reply
.authorizer_len
);
1750 ret
= read_partial(con
, end
, size
, con
->auth_reply_buf
);
1754 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1755 con
, (int)con
->in_reply
.tag
,
1756 le32_to_cpu(con
->in_reply
.connect_seq
),
1757 le32_to_cpu(con
->in_reply
.global_seq
));
1764 * Verify the hello banner looks okay.
1766 static int verify_hello(struct ceph_connection
*con
)
1768 if (memcmp(con
->in_banner
, CEPH_BANNER
, strlen(CEPH_BANNER
))) {
1769 pr_err("connect to %s got bad banner\n",
1770 ceph_pr_addr(&con
->peer_addr
.in_addr
));
1771 con
->error_msg
= "protocol error, bad banner";
1777 static bool addr_is_blank(struct sockaddr_storage
*ss
)
1779 struct in_addr
*addr
= &((struct sockaddr_in
*)ss
)->sin_addr
;
1780 struct in6_addr
*addr6
= &((struct sockaddr_in6
*)ss
)->sin6_addr
;
1782 switch (ss
->ss_family
) {
1784 return addr
->s_addr
== htonl(INADDR_ANY
);
1786 return ipv6_addr_any(addr6
);
1792 static int addr_port(struct sockaddr_storage
*ss
)
1794 switch (ss
->ss_family
) {
1796 return ntohs(((struct sockaddr_in
*)ss
)->sin_port
);
1798 return ntohs(((struct sockaddr_in6
*)ss
)->sin6_port
);
1803 static void addr_set_port(struct sockaddr_storage
*ss
, int p
)
1805 switch (ss
->ss_family
) {
1807 ((struct sockaddr_in
*)ss
)->sin_port
= htons(p
);
1810 ((struct sockaddr_in6
*)ss
)->sin6_port
= htons(p
);
1816 * Unlike other *_pton function semantics, zero indicates success.
1818 static int ceph_pton(const char *str
, size_t len
, struct sockaddr_storage
*ss
,
1819 char delim
, const char **ipend
)
1821 struct sockaddr_in
*in4
= (struct sockaddr_in
*) ss
;
1822 struct sockaddr_in6
*in6
= (struct sockaddr_in6
*) ss
;
1824 memset(ss
, 0, sizeof(*ss
));
1826 if (in4_pton(str
, len
, (u8
*)&in4
->sin_addr
.s_addr
, delim
, ipend
)) {
1827 ss
->ss_family
= AF_INET
;
1831 if (in6_pton(str
, len
, (u8
*)&in6
->sin6_addr
.s6_addr
, delim
, ipend
)) {
1832 ss
->ss_family
= AF_INET6
;
1840 * Extract hostname string and resolve using kernel DNS facility.
1842 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1843 static int ceph_dns_resolve_name(const char *name
, size_t namelen
,
1844 struct sockaddr_storage
*ss
, char delim
, const char **ipend
)
1846 const char *end
, *delim_p
;
1847 char *colon_p
, *ip_addr
= NULL
;
1851 * The end of the hostname occurs immediately preceding the delimiter or
1852 * the port marker (':') where the delimiter takes precedence.
1854 delim_p
= memchr(name
, delim
, namelen
);
1855 colon_p
= memchr(name
, ':', namelen
);
1857 if (delim_p
&& colon_p
)
1858 end
= delim_p
< colon_p
? delim_p
: colon_p
;
1859 else if (!delim_p
&& colon_p
)
1863 if (!end
) /* case: hostname:/ */
1864 end
= name
+ namelen
;
1870 /* do dns_resolve upcall */
1871 ip_len
= dns_query(NULL
, name
, end
- name
, NULL
, &ip_addr
, NULL
);
1873 ret
= ceph_pton(ip_addr
, ip_len
, ss
, -1, NULL
);
1881 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end
- name
), name
,
1882 ret
, ret
? "failed" : ceph_pr_addr(ss
));
1887 static inline int ceph_dns_resolve_name(const char *name
, size_t namelen
,
1888 struct sockaddr_storage
*ss
, char delim
, const char **ipend
)
1895 * Parse a server name (IP or hostname). If a valid IP address is not found
1896 * then try to extract a hostname to resolve using userspace DNS upcall.
1898 static int ceph_parse_server_name(const char *name
, size_t namelen
,
1899 struct sockaddr_storage
*ss
, char delim
, const char **ipend
)
1903 ret
= ceph_pton(name
, namelen
, ss
, delim
, ipend
);
1905 ret
= ceph_dns_resolve_name(name
, namelen
, ss
, delim
, ipend
);
1911 * Parse an ip[:port] list into an addr array. Use the default
1912 * monitor port if a port isn't specified.
1914 int ceph_parse_ips(const char *c
, const char *end
,
1915 struct ceph_entity_addr
*addr
,
1916 int max_count
, int *count
)
1918 int i
, ret
= -EINVAL
;
1921 dout("parse_ips on '%.*s'\n", (int)(end
-c
), c
);
1922 for (i
= 0; i
< max_count
; i
++) {
1924 struct sockaddr_storage
*ss
= &addr
[i
].in_addr
;
1933 ret
= ceph_parse_server_name(p
, end
- p
, ss
, delim
, &ipend
);
1942 dout("missing matching ']'\n");
1949 if (p
< end
&& *p
== ':') {
1952 while (p
< end
&& *p
>= '0' && *p
<= '9') {
1953 port
= (port
* 10) + (*p
- '0');
1957 port
= CEPH_MON_PORT
;
1958 else if (port
> 65535)
1961 port
= CEPH_MON_PORT
;
1964 addr_set_port(ss
, port
);
1966 dout("parse_ips got %s\n", ceph_pr_addr(ss
));
1983 pr_err("parse_ips bad ip '%.*s'\n", (int)(end
- c
), c
);
1986 EXPORT_SYMBOL(ceph_parse_ips
);
1988 static int process_banner(struct ceph_connection
*con
)
1990 dout("process_banner on %p\n", con
);
1992 if (verify_hello(con
) < 0)
1995 ceph_decode_addr(&con
->actual_peer_addr
);
1996 ceph_decode_addr(&con
->peer_addr_for_me
);
1999 * Make sure the other end is who we wanted. note that the other
2000 * end may not yet know their ip address, so if it's 0.0.0.0, give
2001 * them the benefit of the doubt.
2003 if (memcmp(&con
->peer_addr
, &con
->actual_peer_addr
,
2004 sizeof(con
->peer_addr
)) != 0 &&
2005 !(addr_is_blank(&con
->actual_peer_addr
.in_addr
) &&
2006 con
->actual_peer_addr
.nonce
== con
->peer_addr
.nonce
)) {
2007 pr_warn("wrong peer, want %s/%d, got %s/%d\n",
2008 ceph_pr_addr(&con
->peer_addr
.in_addr
),
2009 (int)le32_to_cpu(con
->peer_addr
.nonce
),
2010 ceph_pr_addr(&con
->actual_peer_addr
.in_addr
),
2011 (int)le32_to_cpu(con
->actual_peer_addr
.nonce
));
2012 con
->error_msg
= "wrong peer at address";
2017 * did we learn our address?
2019 if (addr_is_blank(&con
->msgr
->inst
.addr
.in_addr
)) {
2020 int port
= addr_port(&con
->msgr
->inst
.addr
.in_addr
);
2022 memcpy(&con
->msgr
->inst
.addr
.in_addr
,
2023 &con
->peer_addr_for_me
.in_addr
,
2024 sizeof(con
->peer_addr_for_me
.in_addr
));
2025 addr_set_port(&con
->msgr
->inst
.addr
.in_addr
, port
);
2026 encode_my_addr(con
->msgr
);
2027 dout("process_banner learned my addr is %s\n",
2028 ceph_pr_addr(&con
->msgr
->inst
.addr
.in_addr
));
2034 static int process_connect(struct ceph_connection
*con
)
2036 u64 sup_feat
= from_msgr(con
->msgr
)->supported_features
;
2037 u64 req_feat
= from_msgr(con
->msgr
)->required_features
;
2038 u64 server_feat
= ceph_sanitize_features(
2039 le64_to_cpu(con
->in_reply
.features
));
2042 dout("process_connect on %p tag %d\n", con
, (int)con
->in_tag
);
2044 if (con
->auth_reply_buf
) {
2046 * Any connection that defines ->get_authorizer()
2047 * should also define ->verify_authorizer_reply().
2048 * See get_connect_authorizer().
2050 ret
= con
->ops
->verify_authorizer_reply(con
);
2052 con
->error_msg
= "bad authorize reply";
2057 switch (con
->in_reply
.tag
) {
2058 case CEPH_MSGR_TAG_FEATURES
:
2059 pr_err("%s%lld %s feature set mismatch,"
2060 " my %llx < server's %llx, missing %llx\n",
2061 ENTITY_NAME(con
->peer_name
),
2062 ceph_pr_addr(&con
->peer_addr
.in_addr
),
2063 sup_feat
, server_feat
, server_feat
& ~sup_feat
);
2064 con
->error_msg
= "missing required protocol features";
2065 reset_connection(con
);
2068 case CEPH_MSGR_TAG_BADPROTOVER
:
2069 pr_err("%s%lld %s protocol version mismatch,"
2070 " my %d != server's %d\n",
2071 ENTITY_NAME(con
->peer_name
),
2072 ceph_pr_addr(&con
->peer_addr
.in_addr
),
2073 le32_to_cpu(con
->out_connect
.protocol_version
),
2074 le32_to_cpu(con
->in_reply
.protocol_version
));
2075 con
->error_msg
= "protocol version mismatch";
2076 reset_connection(con
);
2079 case CEPH_MSGR_TAG_BADAUTHORIZER
:
2081 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con
,
2083 if (con
->auth_retry
== 2) {
2084 con
->error_msg
= "connect authorization failure";
2087 con_out_kvec_reset(con
);
2088 ret
= prepare_write_connect(con
);
2091 prepare_read_connect(con
);
2094 case CEPH_MSGR_TAG_RESETSESSION
:
2096 * If we connected with a large connect_seq but the peer
2097 * has no record of a session with us (no connection, or
2098 * connect_seq == 0), they will send RESETSESION to indicate
2099 * that they must have reset their session, and may have
2102 dout("process_connect got RESET peer seq %u\n",
2103 le32_to_cpu(con
->in_reply
.connect_seq
));
2104 pr_err("%s%lld %s connection reset\n",
2105 ENTITY_NAME(con
->peer_name
),
2106 ceph_pr_addr(&con
->peer_addr
.in_addr
));
2107 reset_connection(con
);
2108 con_out_kvec_reset(con
);
2109 ret
= prepare_write_connect(con
);
2112 prepare_read_connect(con
);
2114 /* Tell ceph about it. */
2115 mutex_unlock(&con
->mutex
);
2116 pr_info("reset on %s%lld\n", ENTITY_NAME(con
->peer_name
));
2117 if (con
->ops
->peer_reset
)
2118 con
->ops
->peer_reset(con
);
2119 mutex_lock(&con
->mutex
);
2120 if (con
->state
!= CON_STATE_NEGOTIATING
)
2124 case CEPH_MSGR_TAG_RETRY_SESSION
:
2126 * If we sent a smaller connect_seq than the peer has, try
2127 * again with a larger value.
2129 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2130 le32_to_cpu(con
->out_connect
.connect_seq
),
2131 le32_to_cpu(con
->in_reply
.connect_seq
));
2132 con
->connect_seq
= le32_to_cpu(con
->in_reply
.connect_seq
);
2133 con_out_kvec_reset(con
);
2134 ret
= prepare_write_connect(con
);
2137 prepare_read_connect(con
);
2140 case CEPH_MSGR_TAG_RETRY_GLOBAL
:
2142 * If we sent a smaller global_seq than the peer has, try
2143 * again with a larger value.
2145 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2146 con
->peer_global_seq
,
2147 le32_to_cpu(con
->in_reply
.global_seq
));
2148 get_global_seq(con
->msgr
,
2149 le32_to_cpu(con
->in_reply
.global_seq
));
2150 con_out_kvec_reset(con
);
2151 ret
= prepare_write_connect(con
);
2154 prepare_read_connect(con
);
2157 case CEPH_MSGR_TAG_SEQ
:
2158 case CEPH_MSGR_TAG_READY
:
2159 if (req_feat
& ~server_feat
) {
2160 pr_err("%s%lld %s protocol feature mismatch,"
2161 " my required %llx > server's %llx, need %llx\n",
2162 ENTITY_NAME(con
->peer_name
),
2163 ceph_pr_addr(&con
->peer_addr
.in_addr
),
2164 req_feat
, server_feat
, req_feat
& ~server_feat
);
2165 con
->error_msg
= "missing required protocol features";
2166 reset_connection(con
);
2170 WARN_ON(con
->state
!= CON_STATE_NEGOTIATING
);
2171 con
->state
= CON_STATE_OPEN
;
2172 con
->auth_retry
= 0; /* we authenticated; clear flag */
2173 con
->peer_global_seq
= le32_to_cpu(con
->in_reply
.global_seq
);
2175 con
->peer_features
= server_feat
;
2176 dout("process_connect got READY gseq %d cseq %d (%d)\n",
2177 con
->peer_global_seq
,
2178 le32_to_cpu(con
->in_reply
.connect_seq
),
2180 WARN_ON(con
->connect_seq
!=
2181 le32_to_cpu(con
->in_reply
.connect_seq
));
2183 if (con
->in_reply
.flags
& CEPH_MSG_CONNECT_LOSSY
)
2184 con_flag_set(con
, CON_FLAG_LOSSYTX
);
2186 con
->delay
= 0; /* reset backoff memory */
2188 if (con
->in_reply
.tag
== CEPH_MSGR_TAG_SEQ
) {
2189 prepare_write_seq(con
);
2190 prepare_read_seq(con
);
2192 prepare_read_tag(con
);
2196 case CEPH_MSGR_TAG_WAIT
:
2198 * If there is a connection race (we are opening
2199 * connections to each other), one of us may just have
2200 * to WAIT. This shouldn't happen if we are the
2203 con
->error_msg
= "protocol error, got WAIT as client";
2207 con
->error_msg
= "protocol error, garbage tag during connect";
2215 * read (part of) an ack
2217 static int read_partial_ack(struct ceph_connection
*con
)
2219 int size
= sizeof (con
->in_temp_ack
);
2222 return read_partial(con
, end
, size
, &con
->in_temp_ack
);
2226 * We can finally discard anything that's been acked.
2228 static void process_ack(struct ceph_connection
*con
)
2231 u64 ack
= le64_to_cpu(con
->in_temp_ack
);
2234 while (!list_empty(&con
->out_sent
)) {
2235 m
= list_first_entry(&con
->out_sent
, struct ceph_msg
,
2237 seq
= le64_to_cpu(m
->hdr
.seq
);
2240 dout("got ack for seq %llu type %d at %p\n", seq
,
2241 le16_to_cpu(m
->hdr
.type
), m
);
2242 m
->ack_stamp
= jiffies
;
2245 prepare_read_tag(con
);
2249 static int read_partial_message_section(struct ceph_connection
*con
,
2250 struct kvec
*section
,
2251 unsigned int sec_len
, u32
*crc
)
2257 while (section
->iov_len
< sec_len
) {
2258 BUG_ON(section
->iov_base
== NULL
);
2259 left
= sec_len
- section
->iov_len
;
2260 ret
= ceph_tcp_recvmsg(con
->sock
, (char *)section
->iov_base
+
2261 section
->iov_len
, left
);
2264 section
->iov_len
+= ret
;
2266 if (section
->iov_len
== sec_len
)
2267 *crc
= crc32c(0, section
->iov_base
, section
->iov_len
);
2272 static int read_partial_msg_data(struct ceph_connection
*con
)
2274 struct ceph_msg
*msg
= con
->in_msg
;
2275 struct ceph_msg_data_cursor
*cursor
= &msg
->cursor
;
2276 bool do_datacrc
= !ceph_test_opt(from_msgr(con
->msgr
), NOCRC
);
2284 if (list_empty(&msg
->data
))
2288 crc
= con
->in_data_crc
;
2289 while (cursor
->resid
) {
2290 page
= ceph_msg_data_next(cursor
, &page_offset
, &length
, NULL
);
2291 ret
= ceph_tcp_recvpage(con
->sock
, page
, page_offset
, length
);
2294 con
->in_data_crc
= crc
;
2300 crc
= ceph_crc32c_page(crc
, page
, page_offset
, ret
);
2301 (void) ceph_msg_data_advance(cursor
, (size_t)ret
);
2304 con
->in_data_crc
= crc
;
2306 return 1; /* must return > 0 to indicate success */
2310 * read (part of) a message.
2312 static int ceph_con_in_msg_alloc(struct ceph_connection
*con
, int *skip
);
2314 static int read_partial_message(struct ceph_connection
*con
)
2316 struct ceph_msg
*m
= con
->in_msg
;
2320 unsigned int front_len
, middle_len
, data_len
;
2321 bool do_datacrc
= !ceph_test_opt(from_msgr(con
->msgr
), NOCRC
);
2322 bool need_sign
= (con
->peer_features
& CEPH_FEATURE_MSG_AUTH
);
2326 dout("read_partial_message con %p msg %p\n", con
, m
);
2329 size
= sizeof (con
->in_hdr
);
2331 ret
= read_partial(con
, end
, size
, &con
->in_hdr
);
2335 crc
= crc32c(0, &con
->in_hdr
, offsetof(struct ceph_msg_header
, crc
));
2336 if (cpu_to_le32(crc
) != con
->in_hdr
.crc
) {
2337 pr_err("read_partial_message bad hdr crc %u != expected %u\n",
2338 crc
, con
->in_hdr
.crc
);
2342 front_len
= le32_to_cpu(con
->in_hdr
.front_len
);
2343 if (front_len
> CEPH_MSG_MAX_FRONT_LEN
)
2345 middle_len
= le32_to_cpu(con
->in_hdr
.middle_len
);
2346 if (middle_len
> CEPH_MSG_MAX_MIDDLE_LEN
)
2348 data_len
= le32_to_cpu(con
->in_hdr
.data_len
);
2349 if (data_len
> CEPH_MSG_MAX_DATA_LEN
)
2353 seq
= le64_to_cpu(con
->in_hdr
.seq
);
2354 if ((s64
)seq
- (s64
)con
->in_seq
< 1) {
2355 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2356 ENTITY_NAME(con
->peer_name
),
2357 ceph_pr_addr(&con
->peer_addr
.in_addr
),
2358 seq
, con
->in_seq
+ 1);
2359 con
->in_base_pos
= -front_len
- middle_len
- data_len
-
2361 con
->in_tag
= CEPH_MSGR_TAG_READY
;
2363 } else if ((s64
)seq
- (s64
)con
->in_seq
> 1) {
2364 pr_err("read_partial_message bad seq %lld expected %lld\n",
2365 seq
, con
->in_seq
+ 1);
2366 con
->error_msg
= "bad message sequence # for incoming message";
2370 /* allocate message? */
2374 dout("got hdr type %d front %d data %d\n", con
->in_hdr
.type
,
2375 front_len
, data_len
);
2376 ret
= ceph_con_in_msg_alloc(con
, &skip
);
2380 BUG_ON(!con
->in_msg
^ skip
);
2382 /* skip this message */
2383 dout("alloc_msg said skip message\n");
2384 con
->in_base_pos
= -front_len
- middle_len
- data_len
-
2386 con
->in_tag
= CEPH_MSGR_TAG_READY
;
2391 BUG_ON(!con
->in_msg
);
2392 BUG_ON(con
->in_msg
->con
!= con
);
2394 m
->front
.iov_len
= 0; /* haven't read it yet */
2396 m
->middle
->vec
.iov_len
= 0;
2398 /* prepare for data payload, if any */
2401 prepare_message_data(con
->in_msg
, data_len
);
2405 ret
= read_partial_message_section(con
, &m
->front
, front_len
,
2406 &con
->in_front_crc
);
2412 ret
= read_partial_message_section(con
, &m
->middle
->vec
,
2414 &con
->in_middle_crc
);
2421 ret
= read_partial_msg_data(con
);
2427 size
= sizeof_footer(con
);
2429 ret
= read_partial(con
, end
, size
, &m
->footer
);
2434 m
->footer
.flags
= m
->old_footer
.flags
;
2438 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2439 m
, front_len
, m
->footer
.front_crc
, middle_len
,
2440 m
->footer
.middle_crc
, data_len
, m
->footer
.data_crc
);
2443 if (con
->in_front_crc
!= le32_to_cpu(m
->footer
.front_crc
)) {
2444 pr_err("read_partial_message %p front crc %u != exp. %u\n",
2445 m
, con
->in_front_crc
, m
->footer
.front_crc
);
2448 if (con
->in_middle_crc
!= le32_to_cpu(m
->footer
.middle_crc
)) {
2449 pr_err("read_partial_message %p middle crc %u != exp %u\n",
2450 m
, con
->in_middle_crc
, m
->footer
.middle_crc
);
2454 (m
->footer
.flags
& CEPH_MSG_FOOTER_NOCRC
) == 0 &&
2455 con
->in_data_crc
!= le32_to_cpu(m
->footer
.data_crc
)) {
2456 pr_err("read_partial_message %p data crc %u != exp. %u\n", m
,
2457 con
->in_data_crc
, le32_to_cpu(m
->footer
.data_crc
));
2461 if (need_sign
&& con
->ops
->check_message_signature
&&
2462 con
->ops
->check_message_signature(m
)) {
2463 pr_err("read_partial_message %p signature check failed\n", m
);
2467 return 1; /* done! */
2471 * Process message. This happens in the worker thread. The callback should
2472 * be careful not to do anything that waits on other incoming messages or it
2475 static void process_message(struct ceph_connection
*con
)
2477 struct ceph_msg
*msg
= con
->in_msg
;
2479 BUG_ON(con
->in_msg
->con
!= con
);
2482 /* if first message, set peer_name */
2483 if (con
->peer_name
.type
== 0)
2484 con
->peer_name
= msg
->hdr
.src
;
2487 mutex_unlock(&con
->mutex
);
2489 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2490 msg
, le64_to_cpu(msg
->hdr
.seq
),
2491 ENTITY_NAME(msg
->hdr
.src
),
2492 le16_to_cpu(msg
->hdr
.type
),
2493 ceph_msg_type_name(le16_to_cpu(msg
->hdr
.type
)),
2494 le32_to_cpu(msg
->hdr
.front_len
),
2495 le32_to_cpu(msg
->hdr
.data_len
),
2496 con
->in_front_crc
, con
->in_middle_crc
, con
->in_data_crc
);
2497 con
->ops
->dispatch(con
, msg
);
2499 mutex_lock(&con
->mutex
);
2502 static int read_keepalive_ack(struct ceph_connection
*con
)
2504 struct ceph_timespec ceph_ts
;
2505 size_t size
= sizeof(ceph_ts
);
2506 int ret
= read_partial(con
, size
, size
, &ceph_ts
);
2509 ceph_decode_timespec(&con
->last_keepalive_ack
, &ceph_ts
);
2510 prepare_read_tag(con
);
2515 * Write something to the socket. Called in a worker thread when the
2516 * socket appears to be writeable and we have something ready to send.
2518 static int try_write(struct ceph_connection
*con
)
2522 dout("try_write start %p state %lu\n", con
, con
->state
);
2525 dout("try_write out_kvec_bytes %d\n", con
->out_kvec_bytes
);
2527 /* open the socket first? */
2528 if (con
->state
== CON_STATE_PREOPEN
) {
2530 con
->state
= CON_STATE_CONNECTING
;
2532 con_out_kvec_reset(con
);
2533 prepare_write_banner(con
);
2534 prepare_read_banner(con
);
2536 BUG_ON(con
->in_msg
);
2537 con
->in_tag
= CEPH_MSGR_TAG_READY
;
2538 dout("try_write initiating connect on %p new state %lu\n",
2540 ret
= ceph_tcp_connect(con
);
2542 con
->error_msg
= "connect error";
2548 /* kvec data queued? */
2549 if (con
->out_kvec_left
) {
2550 ret
= write_partial_kvec(con
);
2554 if (con
->out_skip
) {
2555 ret
= write_partial_skip(con
);
2562 if (con
->out_msg_done
) {
2563 ceph_msg_put(con
->out_msg
);
2564 con
->out_msg
= NULL
; /* we're done with this one */
2568 ret
= write_partial_message_data(con
);
2570 goto more_kvec
; /* we need to send the footer, too! */
2574 dout("try_write write_partial_message_data err %d\n",
2581 if (con
->state
== CON_STATE_OPEN
) {
2582 if (con_flag_test_and_clear(con
, CON_FLAG_KEEPALIVE_PENDING
)) {
2583 prepare_write_keepalive(con
);
2586 /* is anything else pending? */
2587 if (!list_empty(&con
->out_queue
)) {
2588 prepare_write_message(con
);
2591 if (con
->in_seq
> con
->in_seq_acked
) {
2592 prepare_write_ack(con
);
2597 /* Nothing to do! */
2598 con_flag_clear(con
, CON_FLAG_WRITE_PENDING
);
2599 dout("try_write nothing else to write.\n");
2602 dout("try_write done on %p ret %d\n", con
, ret
);
2609 * Read what we can from the socket.
2611 static int try_read(struct ceph_connection
*con
)
2616 dout("try_read start on %p state %lu\n", con
, con
->state
);
2617 if (con
->state
!= CON_STATE_CONNECTING
&&
2618 con
->state
!= CON_STATE_NEGOTIATING
&&
2619 con
->state
!= CON_STATE_OPEN
)
2624 dout("try_read tag %d in_base_pos %d\n", (int)con
->in_tag
,
2627 if (con
->state
== CON_STATE_CONNECTING
) {
2628 dout("try_read connecting\n");
2629 ret
= read_partial_banner(con
);
2632 ret
= process_banner(con
);
2636 con
->state
= CON_STATE_NEGOTIATING
;
2639 * Received banner is good, exchange connection info.
2640 * Do not reset out_kvec, as sending our banner raced
2641 * with receiving peer banner after connect completed.
2643 ret
= prepare_write_connect(con
);
2646 prepare_read_connect(con
);
2648 /* Send connection info before awaiting response */
2652 if (con
->state
== CON_STATE_NEGOTIATING
) {
2653 dout("try_read negotiating\n");
2654 ret
= read_partial_connect(con
);
2657 ret
= process_connect(con
);
2663 WARN_ON(con
->state
!= CON_STATE_OPEN
);
2665 if (con
->in_base_pos
< 0) {
2667 * skipping + discarding content.
2669 * FIXME: there must be a better way to do this!
2671 static char buf
[SKIP_BUF_SIZE
];
2672 int skip
= min((int) sizeof (buf
), -con
->in_base_pos
);
2674 dout("skipping %d / %d bytes\n", skip
, -con
->in_base_pos
);
2675 ret
= ceph_tcp_recvmsg(con
->sock
, buf
, skip
);
2678 con
->in_base_pos
+= ret
;
2679 if (con
->in_base_pos
)
2682 if (con
->in_tag
== CEPH_MSGR_TAG_READY
) {
2686 ret
= ceph_tcp_recvmsg(con
->sock
, &con
->in_tag
, 1);
2689 dout("try_read got tag %d\n", (int)con
->in_tag
);
2690 switch (con
->in_tag
) {
2691 case CEPH_MSGR_TAG_MSG
:
2692 prepare_read_message(con
);
2694 case CEPH_MSGR_TAG_ACK
:
2695 prepare_read_ack(con
);
2697 case CEPH_MSGR_TAG_KEEPALIVE2_ACK
:
2698 prepare_read_keepalive_ack(con
);
2700 case CEPH_MSGR_TAG_CLOSE
:
2701 con_close_socket(con
);
2702 con
->state
= CON_STATE_CLOSED
;
2708 if (con
->in_tag
== CEPH_MSGR_TAG_MSG
) {
2709 ret
= read_partial_message(con
);
2713 con
->error_msg
= "bad crc/signature";
2719 con
->error_msg
= "io error";
2724 if (con
->in_tag
== CEPH_MSGR_TAG_READY
)
2726 process_message(con
);
2727 if (con
->state
== CON_STATE_OPEN
)
2728 prepare_read_tag(con
);
2731 if (con
->in_tag
== CEPH_MSGR_TAG_ACK
||
2732 con
->in_tag
== CEPH_MSGR_TAG_SEQ
) {
2734 * the final handshake seq exchange is semantically
2735 * equivalent to an ACK
2737 ret
= read_partial_ack(con
);
2743 if (con
->in_tag
== CEPH_MSGR_TAG_KEEPALIVE2_ACK
) {
2744 ret
= read_keepalive_ack(con
);
2751 dout("try_read done on %p ret %d\n", con
, ret
);
2755 pr_err("try_read bad con->in_tag = %d\n", (int)con
->in_tag
);
2756 con
->error_msg
= "protocol error, garbage tag";
2763 * Atomically queue work on a connection after the specified delay.
2764 * Bump @con reference to avoid races with connection teardown.
2765 * Returns 0 if work was queued, or an error code otherwise.
2767 static int queue_con_delay(struct ceph_connection
*con
, unsigned long delay
)
2769 if (!con
->ops
->get(con
)) {
2770 dout("%s %p ref count 0\n", __func__
, con
);
2774 if (!queue_delayed_work(ceph_msgr_wq
, &con
->work
, delay
)) {
2775 dout("%s %p - already queued\n", __func__
, con
);
2780 dout("%s %p %lu\n", __func__
, con
, delay
);
2784 static void queue_con(struct ceph_connection
*con
)
2786 (void) queue_con_delay(con
, 0);
2789 static void cancel_con(struct ceph_connection
*con
)
2791 if (cancel_delayed_work(&con
->work
)) {
2792 dout("%s %p\n", __func__
, con
);
2797 static bool con_sock_closed(struct ceph_connection
*con
)
2799 if (!con_flag_test_and_clear(con
, CON_FLAG_SOCK_CLOSED
))
2803 case CON_STATE_ ## x: \
2804 con->error_msg = "socket closed (con state " #x ")"; \
2807 switch (con
->state
) {
2815 pr_warn("%s con %p unrecognized state %lu\n",
2816 __func__
, con
, con
->state
);
2817 con
->error_msg
= "unrecognized con state";
2826 static bool con_backoff(struct ceph_connection
*con
)
2830 if (!con_flag_test_and_clear(con
, CON_FLAG_BACKOFF
))
2833 ret
= queue_con_delay(con
, round_jiffies_relative(con
->delay
));
2835 dout("%s: con %p FAILED to back off %lu\n", __func__
,
2837 BUG_ON(ret
== -ENOENT
);
2838 con_flag_set(con
, CON_FLAG_BACKOFF
);
2844 /* Finish fault handling; con->mutex must *not* be held here */
2846 static void con_fault_finish(struct ceph_connection
*con
)
2848 dout("%s %p\n", __func__
, con
);
2851 * in case we faulted due to authentication, invalidate our
2852 * current tickets so that we can get new ones.
2854 if (con
->auth_retry
) {
2855 dout("auth_retry %d, invalidating\n", con
->auth_retry
);
2856 if (con
->ops
->invalidate_authorizer
)
2857 con
->ops
->invalidate_authorizer(con
);
2858 con
->auth_retry
= 0;
2861 if (con
->ops
->fault
)
2862 con
->ops
->fault(con
);
2866 * Do some work on a connection. Drop a connection ref when we're done.
2868 static void ceph_con_workfn(struct work_struct
*work
)
2870 struct ceph_connection
*con
= container_of(work
, struct ceph_connection
,
2874 mutex_lock(&con
->mutex
);
2878 if ((fault
= con_sock_closed(con
))) {
2879 dout("%s: con %p SOCK_CLOSED\n", __func__
, con
);
2882 if (con_backoff(con
)) {
2883 dout("%s: con %p BACKOFF\n", __func__
, con
);
2886 if (con
->state
== CON_STATE_STANDBY
) {
2887 dout("%s: con %p STANDBY\n", __func__
, con
);
2890 if (con
->state
== CON_STATE_CLOSED
) {
2891 dout("%s: con %p CLOSED\n", __func__
, con
);
2895 if (con
->state
== CON_STATE_PREOPEN
) {
2896 dout("%s: con %p PREOPEN\n", __func__
, con
);
2900 ret
= try_read(con
);
2904 if (!con
->error_msg
)
2905 con
->error_msg
= "socket error on read";
2910 ret
= try_write(con
);
2914 if (!con
->error_msg
)
2915 con
->error_msg
= "socket error on write";
2919 break; /* If we make it to here, we're done */
2923 mutex_unlock(&con
->mutex
);
2926 con_fault_finish(con
);
2932 * Generic error/fault handler. A retry mechanism is used with
2933 * exponential backoff
2935 static void con_fault(struct ceph_connection
*con
)
2937 dout("fault %p state %lu to peer %s\n",
2938 con
, con
->state
, ceph_pr_addr(&con
->peer_addr
.in_addr
));
2940 pr_warn("%s%lld %s %s\n", ENTITY_NAME(con
->peer_name
),
2941 ceph_pr_addr(&con
->peer_addr
.in_addr
), con
->error_msg
);
2942 con
->error_msg
= NULL
;
2944 WARN_ON(con
->state
!= CON_STATE_CONNECTING
&&
2945 con
->state
!= CON_STATE_NEGOTIATING
&&
2946 con
->state
!= CON_STATE_OPEN
);
2948 con_close_socket(con
);
2950 if (con_flag_test(con
, CON_FLAG_LOSSYTX
)) {
2951 dout("fault on LOSSYTX channel, marking CLOSED\n");
2952 con
->state
= CON_STATE_CLOSED
;
2957 BUG_ON(con
->in_msg
->con
!= con
);
2958 ceph_msg_put(con
->in_msg
);
2962 /* Requeue anything that hasn't been acked */
2963 list_splice_init(&con
->out_sent
, &con
->out_queue
);
2965 /* If there are no messages queued or keepalive pending, place
2966 * the connection in a STANDBY state */
2967 if (list_empty(&con
->out_queue
) &&
2968 !con_flag_test(con
, CON_FLAG_KEEPALIVE_PENDING
)) {
2969 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con
);
2970 con_flag_clear(con
, CON_FLAG_WRITE_PENDING
);
2971 con
->state
= CON_STATE_STANDBY
;
2973 /* retry after a delay. */
2974 con
->state
= CON_STATE_PREOPEN
;
2975 if (con
->delay
== 0)
2976 con
->delay
= BASE_DELAY_INTERVAL
;
2977 else if (con
->delay
< MAX_DELAY_INTERVAL
)
2979 con_flag_set(con
, CON_FLAG_BACKOFF
);
2987 * initialize a new messenger instance
2989 void ceph_messenger_init(struct ceph_messenger
*msgr
,
2990 struct ceph_entity_addr
*myaddr
)
2992 spin_lock_init(&msgr
->global_seq_lock
);
2995 msgr
->inst
.addr
= *myaddr
;
2997 /* select a random nonce */
2998 msgr
->inst
.addr
.type
= 0;
2999 get_random_bytes(&msgr
->inst
.addr
.nonce
, sizeof(msgr
->inst
.addr
.nonce
));
3000 encode_my_addr(msgr
);
3002 atomic_set(&msgr
->stopping
, 0);
3003 write_pnet(&msgr
->net
, get_net(current
->nsproxy
->net_ns
));
3005 dout("%s %p\n", __func__
, msgr
);
3007 EXPORT_SYMBOL(ceph_messenger_init
);
3009 void ceph_messenger_fini(struct ceph_messenger
*msgr
)
3011 put_net(read_pnet(&msgr
->net
));
3013 EXPORT_SYMBOL(ceph_messenger_fini
);
3015 static void msg_con_set(struct ceph_msg
*msg
, struct ceph_connection
*con
)
3018 msg
->con
->ops
->put(msg
->con
);
3020 msg
->con
= con
? con
->ops
->get(con
) : NULL
;
3021 BUG_ON(msg
->con
!= con
);
3024 static void clear_standby(struct ceph_connection
*con
)
3026 /* come back from STANDBY? */
3027 if (con
->state
== CON_STATE_STANDBY
) {
3028 dout("clear_standby %p and ++connect_seq\n", con
);
3029 con
->state
= CON_STATE_PREOPEN
;
3031 WARN_ON(con_flag_test(con
, CON_FLAG_WRITE_PENDING
));
3032 WARN_ON(con_flag_test(con
, CON_FLAG_KEEPALIVE_PENDING
));
3037 * Queue up an outgoing message on the given connection.
3039 void ceph_con_send(struct ceph_connection
*con
, struct ceph_msg
*msg
)
3042 msg
->hdr
.src
= con
->msgr
->inst
.name
;
3043 BUG_ON(msg
->front
.iov_len
!= le32_to_cpu(msg
->hdr
.front_len
));
3044 msg
->needs_out_seq
= true;
3046 mutex_lock(&con
->mutex
);
3048 if (con
->state
== CON_STATE_CLOSED
) {
3049 dout("con_send %p closed, dropping %p\n", con
, msg
);
3051 mutex_unlock(&con
->mutex
);
3055 msg_con_set(msg
, con
);
3057 BUG_ON(!list_empty(&msg
->list_head
));
3058 list_add_tail(&msg
->list_head
, &con
->out_queue
);
3059 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg
,
3060 ENTITY_NAME(con
->peer_name
), le16_to_cpu(msg
->hdr
.type
),
3061 ceph_msg_type_name(le16_to_cpu(msg
->hdr
.type
)),
3062 le32_to_cpu(msg
->hdr
.front_len
),
3063 le32_to_cpu(msg
->hdr
.middle_len
),
3064 le32_to_cpu(msg
->hdr
.data_len
));
3067 mutex_unlock(&con
->mutex
);
3069 /* if there wasn't anything waiting to send before, queue
3071 if (con_flag_test_and_set(con
, CON_FLAG_WRITE_PENDING
) == 0)
3074 EXPORT_SYMBOL(ceph_con_send
);
3077 * Revoke a message that was previously queued for send
3079 void ceph_msg_revoke(struct ceph_msg
*msg
)
3081 struct ceph_connection
*con
= msg
->con
;
3084 dout("%s msg %p null con\n", __func__
, msg
);
3085 return; /* Message not in our possession */
3088 mutex_lock(&con
->mutex
);
3089 if (!list_empty(&msg
->list_head
)) {
3090 dout("%s %p msg %p - was on queue\n", __func__
, con
, msg
);
3091 list_del_init(&msg
->list_head
);
3096 if (con
->out_msg
== msg
) {
3097 BUG_ON(con
->out_skip
);
3099 if (con
->out_msg_done
) {
3100 con
->out_skip
+= con_out_kvec_skip(con
);
3102 BUG_ON(!msg
->data_length
);
3103 con
->out_skip
+= sizeof_footer(con
);
3105 /* data, middle, front */
3106 if (msg
->data_length
)
3107 con
->out_skip
+= msg
->cursor
.total_resid
;
3109 con
->out_skip
+= con_out_kvec_skip(con
);
3110 con
->out_skip
+= con_out_kvec_skip(con
);
3112 dout("%s %p msg %p - was sending, will write %d skip %d\n",
3113 __func__
, con
, msg
, con
->out_kvec_bytes
, con
->out_skip
);
3115 con
->out_msg
= NULL
;
3119 mutex_unlock(&con
->mutex
);
3123 * Revoke a message that we may be reading data into
3125 void ceph_msg_revoke_incoming(struct ceph_msg
*msg
)
3127 struct ceph_connection
*con
= msg
->con
;
3130 dout("%s msg %p null con\n", __func__
, msg
);
3131 return; /* Message not in our possession */
3134 mutex_lock(&con
->mutex
);
3135 if (con
->in_msg
== msg
) {
3136 unsigned int front_len
= le32_to_cpu(con
->in_hdr
.front_len
);
3137 unsigned int middle_len
= le32_to_cpu(con
->in_hdr
.middle_len
);
3138 unsigned int data_len
= le32_to_cpu(con
->in_hdr
.data_len
);
3140 /* skip rest of message */
3141 dout("%s %p msg %p revoked\n", __func__
, con
, msg
);
3142 con
->in_base_pos
= con
->in_base_pos
-
3143 sizeof(struct ceph_msg_header
) -
3147 sizeof(struct ceph_msg_footer
);
3148 ceph_msg_put(con
->in_msg
);
3150 con
->in_tag
= CEPH_MSGR_TAG_READY
;
3153 dout("%s %p in_msg %p msg %p no-op\n",
3154 __func__
, con
, con
->in_msg
, msg
);
3156 mutex_unlock(&con
->mutex
);
3160 * Queue a keepalive byte to ensure the tcp connection is alive.
3162 void ceph_con_keepalive(struct ceph_connection
*con
)
3164 dout("con_keepalive %p\n", con
);
3165 mutex_lock(&con
->mutex
);
3167 mutex_unlock(&con
->mutex
);
3168 if (con_flag_test_and_set(con
, CON_FLAG_KEEPALIVE_PENDING
) == 0 &&
3169 con_flag_test_and_set(con
, CON_FLAG_WRITE_PENDING
) == 0)
3172 EXPORT_SYMBOL(ceph_con_keepalive
);
3174 bool ceph_con_keepalive_expired(struct ceph_connection
*con
,
3175 unsigned long interval
)
3178 (con
->peer_features
& CEPH_FEATURE_MSGR_KEEPALIVE2
)) {
3179 struct timespec now
= CURRENT_TIME
;
3181 jiffies_to_timespec(interval
, &ts
);
3182 ts
= timespec_add(con
->last_keepalive_ack
, ts
);
3183 return timespec_compare(&now
, &ts
) >= 0;
3188 static struct ceph_msg_data
*ceph_msg_data_create(enum ceph_msg_data_type type
)
3190 struct ceph_msg_data
*data
;
3192 if (WARN_ON(!ceph_msg_data_type_valid(type
)))
3195 data
= kmem_cache_zalloc(ceph_msg_data_cache
, GFP_NOFS
);
3198 INIT_LIST_HEAD(&data
->links
);
3203 static void ceph_msg_data_destroy(struct ceph_msg_data
*data
)
3208 WARN_ON(!list_empty(&data
->links
));
3209 if (data
->type
== CEPH_MSG_DATA_PAGELIST
)
3210 ceph_pagelist_release(data
->pagelist
);
3211 kmem_cache_free(ceph_msg_data_cache
, data
);
3214 void ceph_msg_data_add_pages(struct ceph_msg
*msg
, struct page
**pages
,
3215 size_t length
, size_t alignment
)
3217 struct ceph_msg_data
*data
;
3222 data
= ceph_msg_data_create(CEPH_MSG_DATA_PAGES
);
3224 data
->pages
= pages
;
3225 data
->length
= length
;
3226 data
->alignment
= alignment
& ~PAGE_MASK
;
3228 list_add_tail(&data
->links
, &msg
->data
);
3229 msg
->data_length
+= length
;
3231 EXPORT_SYMBOL(ceph_msg_data_add_pages
);
3233 void ceph_msg_data_add_pagelist(struct ceph_msg
*msg
,
3234 struct ceph_pagelist
*pagelist
)
3236 struct ceph_msg_data
*data
;
3239 BUG_ON(!pagelist
->length
);
3241 data
= ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST
);
3243 data
->pagelist
= pagelist
;
3245 list_add_tail(&data
->links
, &msg
->data
);
3246 msg
->data_length
+= pagelist
->length
;
3248 EXPORT_SYMBOL(ceph_msg_data_add_pagelist
);
3251 void ceph_msg_data_add_bio(struct ceph_msg
*msg
, struct bio
*bio
,
3254 struct ceph_msg_data
*data
;
3258 data
= ceph_msg_data_create(CEPH_MSG_DATA_BIO
);
3261 data
->bio_length
= length
;
3263 list_add_tail(&data
->links
, &msg
->data
);
3264 msg
->data_length
+= length
;
3266 EXPORT_SYMBOL(ceph_msg_data_add_bio
);
3267 #endif /* CONFIG_BLOCK */
3270 * construct a new message with given type, size
3271 * the new msg has a ref count of 1.
3273 struct ceph_msg
*ceph_msg_new(int type
, int front_len
, gfp_t flags
,
3278 m
= kmem_cache_zalloc(ceph_msg_cache
, flags
);
3282 m
->hdr
.type
= cpu_to_le16(type
);
3283 m
->hdr
.priority
= cpu_to_le16(CEPH_MSG_PRIO_DEFAULT
);
3284 m
->hdr
.front_len
= cpu_to_le32(front_len
);
3286 INIT_LIST_HEAD(&m
->list_head
);
3287 kref_init(&m
->kref
);
3288 INIT_LIST_HEAD(&m
->data
);
3292 m
->front
.iov_base
= ceph_kvmalloc(front_len
, flags
);
3293 if (m
->front
.iov_base
== NULL
) {
3294 dout("ceph_msg_new can't allocate %d bytes\n",
3299 m
->front
.iov_base
= NULL
;
3301 m
->front_alloc_len
= m
->front
.iov_len
= front_len
;
3303 dout("ceph_msg_new %p front %d\n", m
, front_len
);
3310 pr_err("msg_new can't create type %d front %d\n", type
,
3314 dout("msg_new can't create type %d front %d\n", type
,
3319 EXPORT_SYMBOL(ceph_msg_new
);
3322 * Allocate "middle" portion of a message, if it is needed and wasn't
3323 * allocated by alloc_msg. This allows us to read a small fixed-size
3324 * per-type header in the front and then gracefully fail (i.e.,
3325 * propagate the error to the caller based on info in the front) when
3326 * the middle is too large.
3328 static int ceph_alloc_middle(struct ceph_connection
*con
, struct ceph_msg
*msg
)
3330 int type
= le16_to_cpu(msg
->hdr
.type
);
3331 int middle_len
= le32_to_cpu(msg
->hdr
.middle_len
);
3333 dout("alloc_middle %p type %d %s middle_len %d\n", msg
, type
,
3334 ceph_msg_type_name(type
), middle_len
);
3335 BUG_ON(!middle_len
);
3336 BUG_ON(msg
->middle
);
3338 msg
->middle
= ceph_buffer_new(middle_len
, GFP_NOFS
);
3345 * Allocate a message for receiving an incoming message on a
3346 * connection, and save the result in con->in_msg. Uses the
3347 * connection's private alloc_msg op if available.
3349 * Returns 0 on success, or a negative error code.
3351 * On success, if we set *skip = 1:
3352 * - the next message should be skipped and ignored.
3353 * - con->in_msg == NULL
3354 * or if we set *skip = 0:
3355 * - con->in_msg is non-null.
3356 * On error (ENOMEM, EAGAIN, ...),
3357 * - con->in_msg == NULL
3359 static int ceph_con_in_msg_alloc(struct ceph_connection
*con
, int *skip
)
3361 struct ceph_msg_header
*hdr
= &con
->in_hdr
;
3362 int middle_len
= le32_to_cpu(hdr
->middle_len
);
3363 struct ceph_msg
*msg
;
3366 BUG_ON(con
->in_msg
!= NULL
);
3367 BUG_ON(!con
->ops
->alloc_msg
);
3369 mutex_unlock(&con
->mutex
);
3370 msg
= con
->ops
->alloc_msg(con
, hdr
, skip
);
3371 mutex_lock(&con
->mutex
);
3372 if (con
->state
!= CON_STATE_OPEN
) {
3379 msg_con_set(msg
, con
);
3383 * Null message pointer means either we should skip
3384 * this message or we couldn't allocate memory. The
3385 * former is not an error.
3390 con
->error_msg
= "error allocating memory for incoming message";
3393 memcpy(&con
->in_msg
->hdr
, &con
->in_hdr
, sizeof(con
->in_hdr
));
3395 if (middle_len
&& !con
->in_msg
->middle
) {
3396 ret
= ceph_alloc_middle(con
, con
->in_msg
);
3398 ceph_msg_put(con
->in_msg
);
3408 * Free a generically kmalloc'd message.
3410 static void ceph_msg_free(struct ceph_msg
*m
)
3412 dout("%s %p\n", __func__
, m
);
3413 kvfree(m
->front
.iov_base
);
3414 kmem_cache_free(ceph_msg_cache
, m
);
3417 static void ceph_msg_release(struct kref
*kref
)
3419 struct ceph_msg
*m
= container_of(kref
, struct ceph_msg
, kref
);
3420 struct ceph_msg_data
*data
, *next
;
3422 dout("%s %p\n", __func__
, m
);
3423 WARN_ON(!list_empty(&m
->list_head
));
3425 msg_con_set(m
, NULL
);
3427 /* drop middle, data, if any */
3429 ceph_buffer_put(m
->middle
);
3433 list_for_each_entry_safe(data
, next
, &m
->data
, links
) {
3434 list_del_init(&data
->links
);
3435 ceph_msg_data_destroy(data
);
3440 ceph_msgpool_put(m
->pool
, m
);
3445 struct ceph_msg
*ceph_msg_get(struct ceph_msg
*msg
)
3447 dout("%s %p (was %d)\n", __func__
, msg
,
3448 kref_read(&msg
->kref
));
3449 kref_get(&msg
->kref
);
3452 EXPORT_SYMBOL(ceph_msg_get
);
3454 void ceph_msg_put(struct ceph_msg
*msg
)
3456 dout("%s %p (was %d)\n", __func__
, msg
,
3457 kref_read(&msg
->kref
));
3458 kref_put(&msg
->kref
, ceph_msg_release
);
3460 EXPORT_SYMBOL(ceph_msg_put
);
3462 void ceph_msg_dump(struct ceph_msg
*msg
)
3464 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg
,
3465 msg
->front_alloc_len
, msg
->data_length
);
3466 print_hex_dump(KERN_DEBUG
, "header: ",
3467 DUMP_PREFIX_OFFSET
, 16, 1,
3468 &msg
->hdr
, sizeof(msg
->hdr
), true);
3469 print_hex_dump(KERN_DEBUG
, " front: ",
3470 DUMP_PREFIX_OFFSET
, 16, 1,
3471 msg
->front
.iov_base
, msg
->front
.iov_len
, true);
3473 print_hex_dump(KERN_DEBUG
, "middle: ",
3474 DUMP_PREFIX_OFFSET
, 16, 1,
3475 msg
->middle
->vec
.iov_base
,
3476 msg
->middle
->vec
.iov_len
, true);
3477 print_hex_dump(KERN_DEBUG
, "footer: ",
3478 DUMP_PREFIX_OFFSET
, 16, 1,
3479 &msg
->footer
, sizeof(msg
->footer
), true);
3481 EXPORT_SYMBOL(ceph_msg_dump
);