2 * fs/eventpoll.c (Efficient event retrieval implementation)
3 * Copyright (C) 2001,...,2009 Davide Libenzi
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * Davide Libenzi <davidel@xmailserver.org>
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/device.h>
37 #include <asm/uaccess.h>
40 #include <linux/atomic.h>
41 #include <linux/proc_fs.h>
42 #include <linux/seq_file.h>
43 #include <linux/compat.h>
44 #include <linux/rculist.h>
48 * There are three level of locking required by epoll :
52 * 3) ep->lock (spinlock)
54 * The acquire order is the one listed above, from 1 to 3.
55 * We need a spinlock (ep->lock) because we manipulate objects
56 * from inside the poll callback, that might be triggered from
57 * a wake_up() that in turn might be called from IRQ context.
58 * So we can't sleep inside the poll callback and hence we need
59 * a spinlock. During the event transfer loop (from kernel to
60 * user space) we could end up sleeping due a copy_to_user(), so
61 * we need a lock that will allow us to sleep. This lock is a
62 * mutex (ep->mtx). It is acquired during the event transfer loop,
63 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
64 * Then we also need a global mutex to serialize eventpoll_release_file()
66 * This mutex is acquired by ep_free() during the epoll file
67 * cleanup path and it is also acquired by eventpoll_release_file()
68 * if a file has been pushed inside an epoll set and it is then
69 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
70 * It is also acquired when inserting an epoll fd onto another epoll
71 * fd. We do this so that we walk the epoll tree and ensure that this
72 * insertion does not create a cycle of epoll file descriptors, which
73 * could lead to deadlock. We need a global mutex to prevent two
74 * simultaneous inserts (A into B and B into A) from racing and
75 * constructing a cycle without either insert observing that it is
77 * It is necessary to acquire multiple "ep->mtx"es at once in the
78 * case when one epoll fd is added to another. In this case, we
79 * always acquire the locks in the order of nesting (i.e. after
80 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
81 * before e2->mtx). Since we disallow cycles of epoll file
82 * descriptors, this ensures that the mutexes are well-ordered. In
83 * order to communicate this nesting to lockdep, when walking a tree
84 * of epoll file descriptors, we use the current recursion depth as
86 * It is possible to drop the "ep->mtx" and to use the global
87 * mutex "epmutex" (together with "ep->lock") to have it working,
88 * but having "ep->mtx" will make the interface more scalable.
89 * Events that require holding "epmutex" are very rare, while for
90 * normal operations the epoll private "ep->mtx" will guarantee
91 * a better scalability.
94 /* Epoll private bits inside the event mask */
95 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
97 #define EPOLLINOUT_BITS (POLLIN | POLLOUT)
99 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | POLLERR | POLLHUP | \
100 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
102 /* Maximum number of nesting allowed inside epoll sets */
103 #define EP_MAX_NESTS 4
105 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
107 #define EP_UNACTIVE_PTR ((void *) -1L)
109 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
111 struct epoll_filefd
{
117 * Structure used to track possible nested calls, for too deep recursions
120 struct nested_call_node
{
121 struct list_head llink
;
127 * This structure is used as collector for nested calls, to check for
128 * maximum recursion dept and loop cycles.
130 struct nested_calls
{
131 struct list_head tasks_call_list
;
136 * Each file descriptor added to the eventpoll interface will
137 * have an entry of this type linked to the "rbr" RB tree.
138 * Avoid increasing the size of this struct, there can be many thousands
139 * of these on a server and we do not want this to take another cache line.
143 /* RB tree node links this structure to the eventpoll RB tree */
145 /* Used to free the struct epitem */
149 /* List header used to link this structure to the eventpoll ready list */
150 struct list_head rdllink
;
153 * Works together "struct eventpoll"->ovflist in keeping the
154 * single linked chain of items.
158 /* The file descriptor information this item refers to */
159 struct epoll_filefd ffd
;
161 /* Number of active wait queue attached to poll operations */
164 /* List containing poll wait queues */
165 struct list_head pwqlist
;
167 /* The "container" of this item */
168 struct eventpoll
*ep
;
170 /* List header used to link this item to the "struct file" items list */
171 struct list_head fllink
;
173 /* wakeup_source used when EPOLLWAKEUP is set */
174 struct wakeup_source __rcu
*ws
;
176 /* The structure that describe the interested events and the source fd */
177 struct epoll_event event
;
181 * This structure is stored inside the "private_data" member of the file
182 * structure and represents the main data structure for the eventpoll
186 /* Protect the access to this structure */
190 * This mutex is used to ensure that files are not removed
191 * while epoll is using them. This is held during the event
192 * collection loop, the file cleanup path, the epoll file exit
193 * code and the ctl operations.
197 /* Wait queue used by sys_epoll_wait() */
198 wait_queue_head_t wq
;
200 /* Wait queue used by file->poll() */
201 wait_queue_head_t poll_wait
;
203 /* List of ready file descriptors */
204 struct list_head rdllist
;
206 /* RB tree root used to store monitored fd structs */
210 * This is a single linked list that chains all the "struct epitem" that
211 * happened while transferring ready events to userspace w/out
214 struct epitem
*ovflist
;
216 /* wakeup_source used when ep_scan_ready_list is running */
217 struct wakeup_source
*ws
;
219 /* The user that created the eventpoll descriptor */
220 struct user_struct
*user
;
224 /* used to optimize loop detection check */
226 struct list_head visited_list_link
;
229 /* Wait structure used by the poll hooks */
230 struct eppoll_entry
{
231 /* List header used to link this structure to the "struct epitem" */
232 struct list_head llink
;
234 /* The "base" pointer is set to the container "struct epitem" */
238 * Wait queue item that will be linked to the target file wait
243 /* The wait queue head that linked the "wait" wait queue item */
244 wait_queue_head_t
*whead
;
247 /* Wrapper struct used by poll queueing */
253 /* Used by the ep_send_events() function as callback private data */
254 struct ep_send_events_data
{
256 struct epoll_event __user
*events
;
260 * Configuration options available inside /proc/sys/fs/epoll/
262 /* Maximum number of epoll watched descriptors, per user */
263 static long max_user_watches __read_mostly
;
266 * This mutex is used to serialize ep_free() and eventpoll_release_file().
268 static DEFINE_MUTEX(epmutex
);
270 /* Used to check for epoll file descriptor inclusion loops */
271 static struct nested_calls poll_loop_ncalls
;
273 /* Used for safe wake up implementation */
274 static struct nested_calls poll_safewake_ncalls
;
276 /* Used to call file's f_op->poll() under the nested calls boundaries */
277 static struct nested_calls poll_readywalk_ncalls
;
279 /* Slab cache used to allocate "struct epitem" */
280 static struct kmem_cache
*epi_cache __read_mostly
;
282 /* Slab cache used to allocate "struct eppoll_entry" */
283 static struct kmem_cache
*pwq_cache __read_mostly
;
285 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */
286 static LIST_HEAD(visited_list
);
289 * List of files with newly added links, where we may need to limit the number
290 * of emanating paths. Protected by the epmutex.
292 static LIST_HEAD(tfile_check_list
);
296 #include <linux/sysctl.h>
299 static long long_max
= LONG_MAX
;
301 struct ctl_table epoll_table
[] = {
303 .procname
= "max_user_watches",
304 .data
= &max_user_watches
,
305 .maxlen
= sizeof(max_user_watches
),
307 .proc_handler
= proc_doulongvec_minmax
,
313 #endif /* CONFIG_SYSCTL */
315 static const struct file_operations eventpoll_fops
;
317 static inline int is_file_epoll(struct file
*f
)
319 return f
->f_op
== &eventpoll_fops
;
322 /* Setup the structure that is used as key for the RB tree */
323 static inline void ep_set_ffd(struct epoll_filefd
*ffd
,
324 struct file
*file
, int fd
)
330 /* Compare RB tree keys */
331 static inline int ep_cmp_ffd(struct epoll_filefd
*p1
,
332 struct epoll_filefd
*p2
)
334 return (p1
->file
> p2
->file
? +1:
335 (p1
->file
< p2
->file
? -1 : p1
->fd
- p2
->fd
));
338 /* Tells us if the item is currently linked */
339 static inline int ep_is_linked(struct list_head
*p
)
341 return !list_empty(p
);
344 static inline struct eppoll_entry
*ep_pwq_from_wait(wait_queue_t
*p
)
346 return container_of(p
, struct eppoll_entry
, wait
);
349 /* Get the "struct epitem" from a wait queue pointer */
350 static inline struct epitem
*ep_item_from_wait(wait_queue_t
*p
)
352 return container_of(p
, struct eppoll_entry
, wait
)->base
;
355 /* Get the "struct epitem" from an epoll queue wrapper */
356 static inline struct epitem
*ep_item_from_epqueue(poll_table
*p
)
358 return container_of(p
, struct ep_pqueue
, pt
)->epi
;
361 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
362 static inline int ep_op_has_event(int op
)
364 return op
!= EPOLL_CTL_DEL
;
367 /* Initialize the poll safe wake up structure */
368 static void ep_nested_calls_init(struct nested_calls
*ncalls
)
370 INIT_LIST_HEAD(&ncalls
->tasks_call_list
);
371 spin_lock_init(&ncalls
->lock
);
375 * ep_events_available - Checks if ready events might be available.
377 * @ep: Pointer to the eventpoll context.
379 * Returns: Returns a value different than zero if ready events are available,
382 static inline int ep_events_available(struct eventpoll
*ep
)
384 return !list_empty(&ep
->rdllist
) || ep
->ovflist
!= EP_UNACTIVE_PTR
;
388 * ep_call_nested - Perform a bound (possibly) nested call, by checking
389 * that the recursion limit is not exceeded, and that
390 * the same nested call (by the meaning of same cookie) is
393 * @ncalls: Pointer to the nested_calls structure to be used for this call.
394 * @max_nests: Maximum number of allowed nesting calls.
395 * @nproc: Nested call core function pointer.
396 * @priv: Opaque data to be passed to the @nproc callback.
397 * @cookie: Cookie to be used to identify this nested call.
398 * @ctx: This instance context.
400 * Returns: Returns the code returned by the @nproc callback, or -1 if
401 * the maximum recursion limit has been exceeded.
403 static int ep_call_nested(struct nested_calls
*ncalls
, int max_nests
,
404 int (*nproc
)(void *, void *, int), void *priv
,
405 void *cookie
, void *ctx
)
407 int error
, call_nests
= 0;
409 struct list_head
*lsthead
= &ncalls
->tasks_call_list
;
410 struct nested_call_node
*tncur
;
411 struct nested_call_node tnode
;
413 spin_lock_irqsave(&ncalls
->lock
, flags
);
416 * Try to see if the current task is already inside this wakeup call.
417 * We use a list here, since the population inside this set is always
420 list_for_each_entry(tncur
, lsthead
, llink
) {
421 if (tncur
->ctx
== ctx
&&
422 (tncur
->cookie
== cookie
|| ++call_nests
> max_nests
)) {
424 * Ops ... loop detected or maximum nest level reached.
425 * We abort this wake by breaking the cycle itself.
432 /* Add the current task and cookie to the list */
434 tnode
.cookie
= cookie
;
435 list_add(&tnode
.llink
, lsthead
);
437 spin_unlock_irqrestore(&ncalls
->lock
, flags
);
439 /* Call the nested function */
440 error
= (*nproc
)(priv
, cookie
, call_nests
);
442 /* Remove the current task from the list */
443 spin_lock_irqsave(&ncalls
->lock
, flags
);
444 list_del(&tnode
.llink
);
446 spin_unlock_irqrestore(&ncalls
->lock
, flags
);
452 * As described in commit 0ccf831cb lockdep: annotate epoll
453 * the use of wait queues used by epoll is done in a very controlled
454 * manner. Wake ups can nest inside each other, but are never done
455 * with the same locking. For example:
458 * efd1 = epoll_create();
459 * efd2 = epoll_create();
460 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
461 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
463 * When a packet arrives to the device underneath "dfd", the net code will
464 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
465 * callback wakeup entry on that queue, and the wake_up() performed by the
466 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
467 * (efd1) notices that it may have some event ready, so it needs to wake up
468 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
469 * that ends up in another wake_up(), after having checked about the
470 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
471 * avoid stack blasting.
473 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
474 * this special case of epoll.
476 #ifdef CONFIG_DEBUG_LOCK_ALLOC
477 static inline void ep_wake_up_nested(wait_queue_head_t
*wqueue
,
478 unsigned long events
, int subclass
)
482 spin_lock_irqsave_nested(&wqueue
->lock
, flags
, subclass
);
483 wake_up_locked_poll(wqueue
, events
);
484 spin_unlock_irqrestore(&wqueue
->lock
, flags
);
487 static inline void ep_wake_up_nested(wait_queue_head_t
*wqueue
,
488 unsigned long events
, int subclass
)
490 wake_up_poll(wqueue
, events
);
494 static int ep_poll_wakeup_proc(void *priv
, void *cookie
, int call_nests
)
496 ep_wake_up_nested((wait_queue_head_t
*) cookie
, POLLIN
,
502 * Perform a safe wake up of the poll wait list. The problem is that
503 * with the new callback'd wake up system, it is possible that the
504 * poll callback is reentered from inside the call to wake_up() done
505 * on the poll wait queue head. The rule is that we cannot reenter the
506 * wake up code from the same task more than EP_MAX_NESTS times,
507 * and we cannot reenter the same wait queue head at all. This will
508 * enable to have a hierarchy of epoll file descriptor of no more than
511 static void ep_poll_safewake(wait_queue_head_t
*wq
)
513 int this_cpu
= get_cpu();
515 ep_call_nested(&poll_safewake_ncalls
, EP_MAX_NESTS
,
516 ep_poll_wakeup_proc
, NULL
, wq
, (void *) (long) this_cpu
);
521 static void ep_remove_wait_queue(struct eppoll_entry
*pwq
)
523 wait_queue_head_t
*whead
;
527 * If it is cleared by POLLFREE, it should be rcu-safe.
528 * If we read NULL we need a barrier paired with
529 * smp_store_release() in ep_poll_callback(), otherwise
530 * we rely on whead->lock.
532 whead
= smp_load_acquire(&pwq
->whead
);
534 remove_wait_queue(whead
, &pwq
->wait
);
539 * This function unregisters poll callbacks from the associated file
540 * descriptor. Must be called with "mtx" held (or "epmutex" if called from
543 static void ep_unregister_pollwait(struct eventpoll
*ep
, struct epitem
*epi
)
545 struct list_head
*lsthead
= &epi
->pwqlist
;
546 struct eppoll_entry
*pwq
;
548 while (!list_empty(lsthead
)) {
549 pwq
= list_first_entry(lsthead
, struct eppoll_entry
, llink
);
551 list_del(&pwq
->llink
);
552 ep_remove_wait_queue(pwq
);
553 kmem_cache_free(pwq_cache
, pwq
);
557 /* call only when ep->mtx is held */
558 static inline struct wakeup_source
*ep_wakeup_source(struct epitem
*epi
)
560 return rcu_dereference_check(epi
->ws
, lockdep_is_held(&epi
->ep
->mtx
));
563 /* call only when ep->mtx is held */
564 static inline void ep_pm_stay_awake(struct epitem
*epi
)
566 struct wakeup_source
*ws
= ep_wakeup_source(epi
);
572 static inline bool ep_has_wakeup_source(struct epitem
*epi
)
574 return rcu_access_pointer(epi
->ws
) ? true : false;
577 /* call when ep->mtx cannot be held (ep_poll_callback) */
578 static inline void ep_pm_stay_awake_rcu(struct epitem
*epi
)
580 struct wakeup_source
*ws
;
583 ws
= rcu_dereference(epi
->ws
);
590 * ep_scan_ready_list - Scans the ready list in a way that makes possible for
591 * the scan code, to call f_op->poll(). Also allows for
592 * O(NumReady) performance.
594 * @ep: Pointer to the epoll private data structure.
595 * @sproc: Pointer to the scan callback.
596 * @priv: Private opaque data passed to the @sproc callback.
597 * @depth: The current depth of recursive f_op->poll calls.
598 * @ep_locked: caller already holds ep->mtx
600 * Returns: The same integer error code returned by the @sproc callback.
602 static int ep_scan_ready_list(struct eventpoll
*ep
,
603 int (*sproc
)(struct eventpoll
*,
604 struct list_head
*, void *),
605 void *priv
, int depth
, bool ep_locked
)
607 int error
, pwake
= 0;
609 struct epitem
*epi
, *nepi
;
613 * We need to lock this because we could be hit by
614 * eventpoll_release_file() and epoll_ctl().
618 mutex_lock_nested(&ep
->mtx
, depth
);
621 * Steal the ready list, and re-init the original one to the
622 * empty list. Also, set ep->ovflist to NULL so that events
623 * happening while looping w/out locks, are not lost. We cannot
624 * have the poll callback to queue directly on ep->rdllist,
625 * because we want the "sproc" callback to be able to do it
628 spin_lock_irqsave(&ep
->lock
, flags
);
629 list_splice_init(&ep
->rdllist
, &txlist
);
631 spin_unlock_irqrestore(&ep
->lock
, flags
);
634 * Now call the callback function.
636 error
= (*sproc
)(ep
, &txlist
, priv
);
638 spin_lock_irqsave(&ep
->lock
, flags
);
640 * During the time we spent inside the "sproc" callback, some
641 * other events might have been queued by the poll callback.
642 * We re-insert them inside the main ready-list here.
644 for (nepi
= ep
->ovflist
; (epi
= nepi
) != NULL
;
645 nepi
= epi
->next
, epi
->next
= EP_UNACTIVE_PTR
) {
647 * We need to check if the item is already in the list.
648 * During the "sproc" callback execution time, items are
649 * queued into ->ovflist but the "txlist" might already
650 * contain them, and the list_splice() below takes care of them.
652 if (!ep_is_linked(&epi
->rdllink
)) {
653 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
654 ep_pm_stay_awake(epi
);
658 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
659 * releasing the lock, events will be queued in the normal way inside
662 ep
->ovflist
= EP_UNACTIVE_PTR
;
665 * Quickly re-inject items left on "txlist".
667 list_splice(&txlist
, &ep
->rdllist
);
670 if (!list_empty(&ep
->rdllist
)) {
672 * Wake up (if active) both the eventpoll wait list and
673 * the ->poll() wait list (delayed after we release the lock).
675 if (waitqueue_active(&ep
->wq
))
676 wake_up_locked(&ep
->wq
);
677 if (waitqueue_active(&ep
->poll_wait
))
680 spin_unlock_irqrestore(&ep
->lock
, flags
);
683 mutex_unlock(&ep
->mtx
);
685 /* We have to call this outside the lock */
687 ep_poll_safewake(&ep
->poll_wait
);
692 static void epi_rcu_free(struct rcu_head
*head
)
694 struct epitem
*epi
= container_of(head
, struct epitem
, rcu
);
695 kmem_cache_free(epi_cache
, epi
);
699 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
700 * all the associated resources. Must be called with "mtx" held.
702 static int ep_remove(struct eventpoll
*ep
, struct epitem
*epi
)
705 struct file
*file
= epi
->ffd
.file
;
708 * Removes poll wait queue hooks. We _have_ to do this without holding
709 * the "ep->lock" otherwise a deadlock might occur. This because of the
710 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
711 * queue head lock when unregistering the wait queue. The wakeup callback
712 * will run by holding the wait queue head lock and will call our callback
713 * that will try to get "ep->lock".
715 ep_unregister_pollwait(ep
, epi
);
717 /* Remove the current item from the list of epoll hooks */
718 spin_lock(&file
->f_lock
);
719 list_del_rcu(&epi
->fllink
);
720 spin_unlock(&file
->f_lock
);
722 rb_erase(&epi
->rbn
, &ep
->rbr
);
724 spin_lock_irqsave(&ep
->lock
, flags
);
725 if (ep_is_linked(&epi
->rdllink
))
726 list_del_init(&epi
->rdllink
);
727 spin_unlock_irqrestore(&ep
->lock
, flags
);
729 wakeup_source_unregister(ep_wakeup_source(epi
));
731 * At this point it is safe to free the eventpoll item. Use the union
732 * field epi->rcu, since we are trying to minimize the size of
733 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
734 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
735 * use of the rbn field.
737 call_rcu(&epi
->rcu
, epi_rcu_free
);
739 atomic_long_dec(&ep
->user
->epoll_watches
);
744 static void ep_free(struct eventpoll
*ep
)
749 /* We need to release all tasks waiting for these file */
750 if (waitqueue_active(&ep
->poll_wait
))
751 ep_poll_safewake(&ep
->poll_wait
);
754 * We need to lock this because we could be hit by
755 * eventpoll_release_file() while we're freeing the "struct eventpoll".
756 * We do not need to hold "ep->mtx" here because the epoll file
757 * is on the way to be removed and no one has references to it
758 * anymore. The only hit might come from eventpoll_release_file() but
759 * holding "epmutex" is sufficient here.
761 mutex_lock(&epmutex
);
764 * Walks through the whole tree by unregistering poll callbacks.
766 for (rbp
= rb_first(&ep
->rbr
); rbp
; rbp
= rb_next(rbp
)) {
767 epi
= rb_entry(rbp
, struct epitem
, rbn
);
769 ep_unregister_pollwait(ep
, epi
);
774 * Walks through the whole tree by freeing each "struct epitem". At this
775 * point we are sure no poll callbacks will be lingering around, and also by
776 * holding "epmutex" we can be sure that no file cleanup code will hit
777 * us during this operation. So we can avoid the lock on "ep->lock".
778 * We do not need to lock ep->mtx, either, we only do it to prevent
781 mutex_lock(&ep
->mtx
);
782 while ((rbp
= rb_first(&ep
->rbr
)) != NULL
) {
783 epi
= rb_entry(rbp
, struct epitem
, rbn
);
787 mutex_unlock(&ep
->mtx
);
789 mutex_unlock(&epmutex
);
790 mutex_destroy(&ep
->mtx
);
792 wakeup_source_unregister(ep
->ws
);
796 static int ep_eventpoll_release(struct inode
*inode
, struct file
*file
)
798 struct eventpoll
*ep
= file
->private_data
;
806 static inline unsigned int ep_item_poll(struct epitem
*epi
, poll_table
*pt
)
808 pt
->_key
= epi
->event
.events
;
810 return epi
->ffd
.file
->f_op
->poll(epi
->ffd
.file
, pt
) & epi
->event
.events
;
813 static int ep_read_events_proc(struct eventpoll
*ep
, struct list_head
*head
,
816 struct epitem
*epi
, *tmp
;
819 init_poll_funcptr(&pt
, NULL
);
821 list_for_each_entry_safe(epi
, tmp
, head
, rdllink
) {
822 if (ep_item_poll(epi
, &pt
))
823 return POLLIN
| POLLRDNORM
;
826 * Item has been dropped into the ready list by the poll
827 * callback, but it's not actually ready, as far as
828 * caller requested events goes. We can remove it here.
830 __pm_relax(ep_wakeup_source(epi
));
831 list_del_init(&epi
->rdllink
);
838 static void ep_ptable_queue_proc(struct file
*file
, wait_queue_head_t
*whead
,
841 struct readyevents_arg
{
842 struct eventpoll
*ep
;
846 static int ep_poll_readyevents_proc(void *priv
, void *cookie
, int call_nests
)
848 struct readyevents_arg
*arg
= priv
;
850 return ep_scan_ready_list(arg
->ep
, ep_read_events_proc
, NULL
,
851 call_nests
+ 1, arg
->locked
);
854 static unsigned int ep_eventpoll_poll(struct file
*file
, poll_table
*wait
)
857 struct eventpoll
*ep
= file
->private_data
;
858 struct readyevents_arg arg
;
861 * During ep_insert() we already hold the ep->mtx for the tfile.
862 * Prevent re-aquisition.
864 arg
.locked
= wait
&& (wait
->_qproc
== ep_ptable_queue_proc
);
867 /* Insert inside our poll wait queue */
868 poll_wait(file
, &ep
->poll_wait
, wait
);
871 * Proceed to find out if wanted events are really available inside
872 * the ready list. This need to be done under ep_call_nested()
873 * supervision, since the call to f_op->poll() done on listed files
874 * could re-enter here.
876 pollflags
= ep_call_nested(&poll_readywalk_ncalls
, EP_MAX_NESTS
,
877 ep_poll_readyevents_proc
, &arg
, ep
, current
);
879 return pollflags
!= -1 ? pollflags
: 0;
882 #ifdef CONFIG_PROC_FS
883 static void ep_show_fdinfo(struct seq_file
*m
, struct file
*f
)
885 struct eventpoll
*ep
= f
->private_data
;
888 mutex_lock(&ep
->mtx
);
889 for (rbp
= rb_first(&ep
->rbr
); rbp
; rbp
= rb_next(rbp
)) {
890 struct epitem
*epi
= rb_entry(rbp
, struct epitem
, rbn
);
892 seq_printf(m
, "tfd: %8d events: %8x data: %16llx\n",
893 epi
->ffd
.fd
, epi
->event
.events
,
894 (long long)epi
->event
.data
);
895 if (seq_has_overflowed(m
))
898 mutex_unlock(&ep
->mtx
);
902 /* File callbacks that implement the eventpoll file behaviour */
903 static const struct file_operations eventpoll_fops
= {
904 #ifdef CONFIG_PROC_FS
905 .show_fdinfo
= ep_show_fdinfo
,
907 .release
= ep_eventpoll_release
,
908 .poll
= ep_eventpoll_poll
,
909 .llseek
= noop_llseek
,
913 * This is called from eventpoll_release() to unlink files from the eventpoll
914 * interface. We need to have this facility to cleanup correctly files that are
915 * closed without being removed from the eventpoll interface.
917 void eventpoll_release_file(struct file
*file
)
919 struct eventpoll
*ep
;
920 struct epitem
*epi
, *next
;
923 * We don't want to get "file->f_lock" because it is not
924 * necessary. It is not necessary because we're in the "struct file"
925 * cleanup path, and this means that no one is using this file anymore.
926 * So, for example, epoll_ctl() cannot hit here since if we reach this
927 * point, the file counter already went to zero and fget() would fail.
928 * The only hit might come from ep_free() but by holding the mutex
929 * will correctly serialize the operation. We do need to acquire
930 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
931 * from anywhere but ep_free().
933 * Besides, ep_remove() acquires the lock, so we can't hold it here.
935 mutex_lock(&epmutex
);
936 list_for_each_entry_safe(epi
, next
, &file
->f_ep_links
, fllink
) {
938 mutex_lock_nested(&ep
->mtx
, 0);
940 mutex_unlock(&ep
->mtx
);
942 mutex_unlock(&epmutex
);
945 static int ep_alloc(struct eventpoll
**pep
)
948 struct user_struct
*user
;
949 struct eventpoll
*ep
;
951 user
= get_current_user();
953 ep
= kzalloc(sizeof(*ep
), GFP_KERNEL
);
957 spin_lock_init(&ep
->lock
);
958 mutex_init(&ep
->mtx
);
959 init_waitqueue_head(&ep
->wq
);
960 init_waitqueue_head(&ep
->poll_wait
);
961 INIT_LIST_HEAD(&ep
->rdllist
);
963 ep
->ovflist
= EP_UNACTIVE_PTR
;
976 * Search the file inside the eventpoll tree. The RB tree operations
977 * are protected by the "mtx" mutex, and ep_find() must be called with
980 static struct epitem
*ep_find(struct eventpoll
*ep
, struct file
*file
, int fd
)
984 struct epitem
*epi
, *epir
= NULL
;
985 struct epoll_filefd ffd
;
987 ep_set_ffd(&ffd
, file
, fd
);
988 for (rbp
= ep
->rbr
.rb_node
; rbp
; ) {
989 epi
= rb_entry(rbp
, struct epitem
, rbn
);
990 kcmp
= ep_cmp_ffd(&ffd
, &epi
->ffd
);
1005 * This is the callback that is passed to the wait queue wakeup
1006 * mechanism. It is called by the stored file descriptors when they
1007 * have events to report.
1009 static int ep_poll_callback(wait_queue_t
*wait
, unsigned mode
, int sync
, void *key
)
1012 unsigned long flags
;
1013 struct epitem
*epi
= ep_item_from_wait(wait
);
1014 struct eventpoll
*ep
= epi
->ep
;
1017 spin_lock_irqsave(&ep
->lock
, flags
);
1020 * If the event mask does not contain any poll(2) event, we consider the
1021 * descriptor to be disabled. This condition is likely the effect of the
1022 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1023 * until the next EPOLL_CTL_MOD will be issued.
1025 if (!(epi
->event
.events
& ~EP_PRIVATE_BITS
))
1029 * Check the events coming with the callback. At this stage, not
1030 * every device reports the events in the "key" parameter of the
1031 * callback. We need to be able to handle both cases here, hence the
1032 * test for "key" != NULL before the event match test.
1034 if (key
&& !((unsigned long) key
& epi
->event
.events
))
1038 * If we are transferring events to userspace, we can hold no locks
1039 * (because we're accessing user memory, and because of linux f_op->poll()
1040 * semantics). All the events that happen during that period of time are
1041 * chained in ep->ovflist and requeued later on.
1043 if (unlikely(ep
->ovflist
!= EP_UNACTIVE_PTR
)) {
1044 if (epi
->next
== EP_UNACTIVE_PTR
) {
1045 epi
->next
= ep
->ovflist
;
1049 * Activate ep->ws since epi->ws may get
1050 * deactivated at any time.
1052 __pm_stay_awake(ep
->ws
);
1059 /* If this file is already in the ready list we exit soon */
1060 if (!ep_is_linked(&epi
->rdllink
)) {
1061 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
1062 ep_pm_stay_awake_rcu(epi
);
1066 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1069 if (waitqueue_active(&ep
->wq
)) {
1070 if ((epi
->event
.events
& EPOLLEXCLUSIVE
) &&
1071 !((unsigned long)key
& POLLFREE
)) {
1072 switch ((unsigned long)key
& EPOLLINOUT_BITS
) {
1074 if (epi
->event
.events
& POLLIN
)
1078 if (epi
->event
.events
& POLLOUT
)
1086 wake_up_locked(&ep
->wq
);
1088 if (waitqueue_active(&ep
->poll_wait
))
1092 spin_unlock_irqrestore(&ep
->lock
, flags
);
1094 /* We have to call this outside the lock */
1096 ep_poll_safewake(&ep
->poll_wait
);
1098 if (!(epi
->event
.events
& EPOLLEXCLUSIVE
))
1101 if ((unsigned long)key
& POLLFREE
) {
1103 * If we race with ep_remove_wait_queue() it can miss
1104 * ->whead = NULL and do another remove_wait_queue() after
1105 * us, so we can't use __remove_wait_queue().
1107 list_del_init(&wait
->task_list
);
1109 * ->whead != NULL protects us from the race with ep_free()
1110 * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1111 * held by the caller. Once we nullify it, nothing protects
1112 * ep/epi or even wait.
1114 smp_store_release(&ep_pwq_from_wait(wait
)->whead
, NULL
);
1121 * This is the callback that is used to add our wait queue to the
1122 * target file wakeup lists.
1124 static void ep_ptable_queue_proc(struct file
*file
, wait_queue_head_t
*whead
,
1127 struct epitem
*epi
= ep_item_from_epqueue(pt
);
1128 struct eppoll_entry
*pwq
;
1130 if (epi
->nwait
>= 0 && (pwq
= kmem_cache_alloc(pwq_cache
, GFP_KERNEL
))) {
1131 init_waitqueue_func_entry(&pwq
->wait
, ep_poll_callback
);
1134 if (epi
->event
.events
& EPOLLEXCLUSIVE
)
1135 add_wait_queue_exclusive(whead
, &pwq
->wait
);
1137 add_wait_queue(whead
, &pwq
->wait
);
1138 list_add_tail(&pwq
->llink
, &epi
->pwqlist
);
1141 /* We have to signal that an error occurred */
1146 static void ep_rbtree_insert(struct eventpoll
*ep
, struct epitem
*epi
)
1149 struct rb_node
**p
= &ep
->rbr
.rb_node
, *parent
= NULL
;
1150 struct epitem
*epic
;
1154 epic
= rb_entry(parent
, struct epitem
, rbn
);
1155 kcmp
= ep_cmp_ffd(&epi
->ffd
, &epic
->ffd
);
1157 p
= &parent
->rb_right
;
1159 p
= &parent
->rb_left
;
1161 rb_link_node(&epi
->rbn
, parent
, p
);
1162 rb_insert_color(&epi
->rbn
, &ep
->rbr
);
1167 #define PATH_ARR_SIZE 5
1169 * These are the number paths of length 1 to 5, that we are allowing to emanate
1170 * from a single file of interest. For example, we allow 1000 paths of length
1171 * 1, to emanate from each file of interest. This essentially represents the
1172 * potential wakeup paths, which need to be limited in order to avoid massive
1173 * uncontrolled wakeup storms. The common use case should be a single ep which
1174 * is connected to n file sources. In this case each file source has 1 path
1175 * of length 1. Thus, the numbers below should be more than sufficient. These
1176 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1177 * and delete can't add additional paths. Protected by the epmutex.
1179 static const int path_limits
[PATH_ARR_SIZE
] = { 1000, 500, 100, 50, 10 };
1180 static int path_count
[PATH_ARR_SIZE
];
1182 static int path_count_inc(int nests
)
1184 /* Allow an arbitrary number of depth 1 paths */
1188 if (++path_count
[nests
] > path_limits
[nests
])
1193 static void path_count_init(void)
1197 for (i
= 0; i
< PATH_ARR_SIZE
; i
++)
1201 static int reverse_path_check_proc(void *priv
, void *cookie
, int call_nests
)
1204 struct file
*file
= priv
;
1205 struct file
*child_file
;
1208 /* CTL_DEL can remove links here, but that can't increase our count */
1210 list_for_each_entry_rcu(epi
, &file
->f_ep_links
, fllink
) {
1211 child_file
= epi
->ep
->file
;
1212 if (is_file_epoll(child_file
)) {
1213 if (list_empty(&child_file
->f_ep_links
)) {
1214 if (path_count_inc(call_nests
)) {
1219 error
= ep_call_nested(&poll_loop_ncalls
,
1221 reverse_path_check_proc
,
1222 child_file
, child_file
,
1228 printk(KERN_ERR
"reverse_path_check_proc: "
1229 "file is not an ep!\n");
1237 * reverse_path_check - The tfile_check_list is list of file *, which have
1238 * links that are proposed to be newly added. We need to
1239 * make sure that those added links don't add too many
1240 * paths such that we will spend all our time waking up
1241 * eventpoll objects.
1243 * Returns: Returns zero if the proposed links don't create too many paths,
1246 static int reverse_path_check(void)
1249 struct file
*current_file
;
1251 /* let's call this for all tfiles */
1252 list_for_each_entry(current_file
, &tfile_check_list
, f_tfile_llink
) {
1254 error
= ep_call_nested(&poll_loop_ncalls
, EP_MAX_NESTS
,
1255 reverse_path_check_proc
, current_file
,
1256 current_file
, current
);
1263 static int ep_create_wakeup_source(struct epitem
*epi
)
1266 struct wakeup_source
*ws
;
1269 epi
->ep
->ws
= wakeup_source_register("eventpoll");
1274 name
= epi
->ffd
.file
->f_path
.dentry
->d_name
.name
;
1275 ws
= wakeup_source_register(name
);
1279 rcu_assign_pointer(epi
->ws
, ws
);
1284 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1285 static noinline
void ep_destroy_wakeup_source(struct epitem
*epi
)
1287 struct wakeup_source
*ws
= ep_wakeup_source(epi
);
1289 RCU_INIT_POINTER(epi
->ws
, NULL
);
1292 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1293 * used internally by wakeup_source_remove, too (called by
1294 * wakeup_source_unregister), so we cannot use call_rcu
1297 wakeup_source_unregister(ws
);
1301 * Must be called with "mtx" held.
1303 static int ep_insert(struct eventpoll
*ep
, struct epoll_event
*event
,
1304 struct file
*tfile
, int fd
, int full_check
)
1306 int error
, revents
, pwake
= 0;
1307 unsigned long flags
;
1310 struct ep_pqueue epq
;
1312 user_watches
= atomic_long_read(&ep
->user
->epoll_watches
);
1313 if (unlikely(user_watches
>= max_user_watches
))
1315 if (!(epi
= kmem_cache_alloc(epi_cache
, GFP_KERNEL
)))
1318 /* Item initialization follow here ... */
1319 INIT_LIST_HEAD(&epi
->rdllink
);
1320 INIT_LIST_HEAD(&epi
->fllink
);
1321 INIT_LIST_HEAD(&epi
->pwqlist
);
1323 ep_set_ffd(&epi
->ffd
, tfile
, fd
);
1324 epi
->event
= *event
;
1326 epi
->next
= EP_UNACTIVE_PTR
;
1327 if (epi
->event
.events
& EPOLLWAKEUP
) {
1328 error
= ep_create_wakeup_source(epi
);
1330 goto error_create_wakeup_source
;
1332 RCU_INIT_POINTER(epi
->ws
, NULL
);
1335 /* Initialize the poll table using the queue callback */
1337 init_poll_funcptr(&epq
.pt
, ep_ptable_queue_proc
);
1340 * Attach the item to the poll hooks and get current event bits.
1341 * We can safely use the file* here because its usage count has
1342 * been increased by the caller of this function. Note that after
1343 * this operation completes, the poll callback can start hitting
1346 revents
= ep_item_poll(epi
, &epq
.pt
);
1349 * We have to check if something went wrong during the poll wait queue
1350 * install process. Namely an allocation for a wait queue failed due
1351 * high memory pressure.
1355 goto error_unregister
;
1357 /* Add the current item to the list of active epoll hook for this file */
1358 spin_lock(&tfile
->f_lock
);
1359 list_add_tail_rcu(&epi
->fllink
, &tfile
->f_ep_links
);
1360 spin_unlock(&tfile
->f_lock
);
1363 * Add the current item to the RB tree. All RB tree operations are
1364 * protected by "mtx", and ep_insert() is called with "mtx" held.
1366 ep_rbtree_insert(ep
, epi
);
1368 /* now check if we've created too many backpaths */
1370 if (full_check
&& reverse_path_check())
1371 goto error_remove_epi
;
1373 /* We have to drop the new item inside our item list to keep track of it */
1374 spin_lock_irqsave(&ep
->lock
, flags
);
1376 /* If the file is already "ready" we drop it inside the ready list */
1377 if ((revents
& event
->events
) && !ep_is_linked(&epi
->rdllink
)) {
1378 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
1379 ep_pm_stay_awake(epi
);
1381 /* Notify waiting tasks that events are available */
1382 if (waitqueue_active(&ep
->wq
))
1383 wake_up_locked(&ep
->wq
);
1384 if (waitqueue_active(&ep
->poll_wait
))
1388 spin_unlock_irqrestore(&ep
->lock
, flags
);
1390 atomic_long_inc(&ep
->user
->epoll_watches
);
1392 /* We have to call this outside the lock */
1394 ep_poll_safewake(&ep
->poll_wait
);
1399 spin_lock(&tfile
->f_lock
);
1400 list_del_rcu(&epi
->fllink
);
1401 spin_unlock(&tfile
->f_lock
);
1403 rb_erase(&epi
->rbn
, &ep
->rbr
);
1406 ep_unregister_pollwait(ep
, epi
);
1409 * We need to do this because an event could have been arrived on some
1410 * allocated wait queue. Note that we don't care about the ep->ovflist
1411 * list, since that is used/cleaned only inside a section bound by "mtx".
1412 * And ep_insert() is called with "mtx" held.
1414 spin_lock_irqsave(&ep
->lock
, flags
);
1415 if (ep_is_linked(&epi
->rdllink
))
1416 list_del_init(&epi
->rdllink
);
1417 spin_unlock_irqrestore(&ep
->lock
, flags
);
1419 wakeup_source_unregister(ep_wakeup_source(epi
));
1421 error_create_wakeup_source
:
1422 kmem_cache_free(epi_cache
, epi
);
1428 * Modify the interest event mask by dropping an event if the new mask
1429 * has a match in the current file status. Must be called with "mtx" held.
1431 static int ep_modify(struct eventpoll
*ep
, struct epitem
*epi
, struct epoll_event
*event
)
1434 unsigned int revents
;
1437 init_poll_funcptr(&pt
, NULL
);
1440 * Set the new event interest mask before calling f_op->poll();
1441 * otherwise we might miss an event that happens between the
1442 * f_op->poll() call and the new event set registering.
1444 epi
->event
.events
= event
->events
; /* need barrier below */
1445 epi
->event
.data
= event
->data
; /* protected by mtx */
1446 if (epi
->event
.events
& EPOLLWAKEUP
) {
1447 if (!ep_has_wakeup_source(epi
))
1448 ep_create_wakeup_source(epi
);
1449 } else if (ep_has_wakeup_source(epi
)) {
1450 ep_destroy_wakeup_source(epi
);
1454 * The following barrier has two effects:
1456 * 1) Flush epi changes above to other CPUs. This ensures
1457 * we do not miss events from ep_poll_callback if an
1458 * event occurs immediately after we call f_op->poll().
1459 * We need this because we did not take ep->lock while
1460 * changing epi above (but ep_poll_callback does take
1463 * 2) We also need to ensure we do not miss _past_ events
1464 * when calling f_op->poll(). This barrier also
1465 * pairs with the barrier in wq_has_sleeper (see
1466 * comments for wq_has_sleeper).
1468 * This barrier will now guarantee ep_poll_callback or f_op->poll
1469 * (or both) will notice the readiness of an item.
1474 * Get current event bits. We can safely use the file* here because
1475 * its usage count has been increased by the caller of this function.
1477 revents
= ep_item_poll(epi
, &pt
);
1480 * If the item is "hot" and it is not registered inside the ready
1481 * list, push it inside.
1483 if (revents
& event
->events
) {
1484 spin_lock_irq(&ep
->lock
);
1485 if (!ep_is_linked(&epi
->rdllink
)) {
1486 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
1487 ep_pm_stay_awake(epi
);
1489 /* Notify waiting tasks that events are available */
1490 if (waitqueue_active(&ep
->wq
))
1491 wake_up_locked(&ep
->wq
);
1492 if (waitqueue_active(&ep
->poll_wait
))
1495 spin_unlock_irq(&ep
->lock
);
1498 /* We have to call this outside the lock */
1500 ep_poll_safewake(&ep
->poll_wait
);
1505 static int ep_send_events_proc(struct eventpoll
*ep
, struct list_head
*head
,
1508 struct ep_send_events_data
*esed
= priv
;
1510 unsigned int revents
;
1512 struct epoll_event __user
*uevent
;
1513 struct wakeup_source
*ws
;
1516 init_poll_funcptr(&pt
, NULL
);
1519 * We can loop without lock because we are passed a task private list.
1520 * Items cannot vanish during the loop because ep_scan_ready_list() is
1521 * holding "mtx" during this call.
1523 for (eventcnt
= 0, uevent
= esed
->events
;
1524 !list_empty(head
) && eventcnt
< esed
->maxevents
;) {
1525 epi
= list_first_entry(head
, struct epitem
, rdllink
);
1528 * Activate ep->ws before deactivating epi->ws to prevent
1529 * triggering auto-suspend here (in case we reactive epi->ws
1532 * This could be rearranged to delay the deactivation of epi->ws
1533 * instead, but then epi->ws would temporarily be out of sync
1534 * with ep_is_linked().
1536 ws
= ep_wakeup_source(epi
);
1539 __pm_stay_awake(ep
->ws
);
1543 list_del_init(&epi
->rdllink
);
1545 revents
= ep_item_poll(epi
, &pt
);
1548 * If the event mask intersect the caller-requested one,
1549 * deliver the event to userspace. Again, ep_scan_ready_list()
1550 * is holding "mtx", so no operations coming from userspace
1551 * can change the item.
1554 if (__put_user(revents
, &uevent
->events
) ||
1555 __put_user(epi
->event
.data
, &uevent
->data
)) {
1556 list_add(&epi
->rdllink
, head
);
1557 ep_pm_stay_awake(epi
);
1558 return eventcnt
? eventcnt
: -EFAULT
;
1562 if (epi
->event
.events
& EPOLLONESHOT
)
1563 epi
->event
.events
&= EP_PRIVATE_BITS
;
1564 else if (!(epi
->event
.events
& EPOLLET
)) {
1566 * If this file has been added with Level
1567 * Trigger mode, we need to insert back inside
1568 * the ready list, so that the next call to
1569 * epoll_wait() will check again the events
1570 * availability. At this point, no one can insert
1571 * into ep->rdllist besides us. The epoll_ctl()
1572 * callers are locked out by
1573 * ep_scan_ready_list() holding "mtx" and the
1574 * poll callback will queue them in ep->ovflist.
1576 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
1577 ep_pm_stay_awake(epi
);
1585 static int ep_send_events(struct eventpoll
*ep
,
1586 struct epoll_event __user
*events
, int maxevents
)
1588 struct ep_send_events_data esed
;
1590 esed
.maxevents
= maxevents
;
1591 esed
.events
= events
;
1593 return ep_scan_ready_list(ep
, ep_send_events_proc
, &esed
, 0, false);
1596 static inline struct timespec64
ep_set_mstimeout(long ms
)
1598 struct timespec64 now
, ts
= {
1599 .tv_sec
= ms
/ MSEC_PER_SEC
,
1600 .tv_nsec
= NSEC_PER_MSEC
* (ms
% MSEC_PER_SEC
),
1603 ktime_get_ts64(&now
);
1604 return timespec64_add_safe(now
, ts
);
1608 * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1611 * @ep: Pointer to the eventpoll context.
1612 * @events: Pointer to the userspace buffer where the ready events should be
1614 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1615 * @timeout: Maximum timeout for the ready events fetch operation, in
1616 * milliseconds. If the @timeout is zero, the function will not block,
1617 * while if the @timeout is less than zero, the function will block
1618 * until at least one event has been retrieved (or an error
1621 * Returns: Returns the number of ready events which have been fetched, or an
1622 * error code, in case of error.
1624 static int ep_poll(struct eventpoll
*ep
, struct epoll_event __user
*events
,
1625 int maxevents
, long timeout
)
1627 int res
= 0, eavail
, timed_out
= 0;
1628 unsigned long flags
;
1631 ktime_t expires
, *to
= NULL
;
1634 struct timespec64 end_time
= ep_set_mstimeout(timeout
);
1636 slack
= select_estimate_accuracy(&end_time
);
1638 *to
= timespec64_to_ktime(end_time
);
1639 } else if (timeout
== 0) {
1641 * Avoid the unnecessary trip to the wait queue loop, if the
1642 * caller specified a non blocking operation.
1645 spin_lock_irqsave(&ep
->lock
, flags
);
1650 spin_lock_irqsave(&ep
->lock
, flags
);
1652 if (!ep_events_available(ep
)) {
1654 * We don't have any available event to return to the caller.
1655 * We need to sleep here, and we will be wake up by
1656 * ep_poll_callback() when events will become available.
1658 init_waitqueue_entry(&wait
, current
);
1659 __add_wait_queue_exclusive(&ep
->wq
, &wait
);
1663 * We don't want to sleep if the ep_poll_callback() sends us
1664 * a wakeup in between. That's why we set the task state
1665 * to TASK_INTERRUPTIBLE before doing the checks.
1667 set_current_state(TASK_INTERRUPTIBLE
);
1668 if (ep_events_available(ep
) || timed_out
)
1670 if (signal_pending(current
)) {
1675 spin_unlock_irqrestore(&ep
->lock
, flags
);
1676 if (!schedule_hrtimeout_range(to
, slack
, HRTIMER_MODE_ABS
))
1679 spin_lock_irqsave(&ep
->lock
, flags
);
1682 __remove_wait_queue(&ep
->wq
, &wait
);
1683 __set_current_state(TASK_RUNNING
);
1686 /* Is it worth to try to dig for events ? */
1687 eavail
= ep_events_available(ep
);
1689 spin_unlock_irqrestore(&ep
->lock
, flags
);
1692 * Try to transfer events to user space. In case we get 0 events and
1693 * there's still timeout left over, we go trying again in search of
1696 if (!res
&& eavail
&&
1697 !(res
= ep_send_events(ep
, events
, maxevents
)) && !timed_out
)
1704 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1705 * API, to verify that adding an epoll file inside another
1706 * epoll structure, does not violate the constraints, in
1707 * terms of closed loops, or too deep chains (which can
1708 * result in excessive stack usage).
1710 * @priv: Pointer to the epoll file to be currently checked.
1711 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1712 * data structure pointer.
1713 * @call_nests: Current dept of the @ep_call_nested() call stack.
1715 * Returns: Returns zero if adding the epoll @file inside current epoll
1716 * structure @ep does not violate the constraints, or -1 otherwise.
1718 static int ep_loop_check_proc(void *priv
, void *cookie
, int call_nests
)
1721 struct file
*file
= priv
;
1722 struct eventpoll
*ep
= file
->private_data
;
1723 struct eventpoll
*ep_tovisit
;
1724 struct rb_node
*rbp
;
1727 mutex_lock_nested(&ep
->mtx
, call_nests
+ 1);
1729 list_add(&ep
->visited_list_link
, &visited_list
);
1730 for (rbp
= rb_first(&ep
->rbr
); rbp
; rbp
= rb_next(rbp
)) {
1731 epi
= rb_entry(rbp
, struct epitem
, rbn
);
1732 if (unlikely(is_file_epoll(epi
->ffd
.file
))) {
1733 ep_tovisit
= epi
->ffd
.file
->private_data
;
1734 if (ep_tovisit
->visited
)
1736 error
= ep_call_nested(&poll_loop_ncalls
, EP_MAX_NESTS
,
1737 ep_loop_check_proc
, epi
->ffd
.file
,
1738 ep_tovisit
, current
);
1743 * If we've reached a file that is not associated with
1744 * an ep, then we need to check if the newly added
1745 * links are going to add too many wakeup paths. We do
1746 * this by adding it to the tfile_check_list, if it's
1747 * not already there, and calling reverse_path_check()
1748 * during ep_insert().
1750 if (list_empty(&epi
->ffd
.file
->f_tfile_llink
))
1751 list_add(&epi
->ffd
.file
->f_tfile_llink
,
1755 mutex_unlock(&ep
->mtx
);
1761 * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1762 * another epoll file (represented by @ep) does not create
1763 * closed loops or too deep chains.
1765 * @ep: Pointer to the epoll private data structure.
1766 * @file: Pointer to the epoll file to be checked.
1768 * Returns: Returns zero if adding the epoll @file inside current epoll
1769 * structure @ep does not violate the constraints, or -1 otherwise.
1771 static int ep_loop_check(struct eventpoll
*ep
, struct file
*file
)
1774 struct eventpoll
*ep_cur
, *ep_next
;
1776 ret
= ep_call_nested(&poll_loop_ncalls
, EP_MAX_NESTS
,
1777 ep_loop_check_proc
, file
, ep
, current
);
1778 /* clear visited list */
1779 list_for_each_entry_safe(ep_cur
, ep_next
, &visited_list
,
1780 visited_list_link
) {
1781 ep_cur
->visited
= 0;
1782 list_del(&ep_cur
->visited_list_link
);
1787 static void clear_tfile_check_list(void)
1791 /* first clear the tfile_check_list */
1792 while (!list_empty(&tfile_check_list
)) {
1793 file
= list_first_entry(&tfile_check_list
, struct file
,
1795 list_del_init(&file
->f_tfile_llink
);
1797 INIT_LIST_HEAD(&tfile_check_list
);
1801 * Open an eventpoll file descriptor.
1803 SYSCALL_DEFINE1(epoll_create1
, int, flags
)
1806 struct eventpoll
*ep
= NULL
;
1809 /* Check the EPOLL_* constant for consistency. */
1810 BUILD_BUG_ON(EPOLL_CLOEXEC
!= O_CLOEXEC
);
1812 if (flags
& ~EPOLL_CLOEXEC
)
1815 * Create the internal data structure ("struct eventpoll").
1817 error
= ep_alloc(&ep
);
1821 * Creates all the items needed to setup an eventpoll file. That is,
1822 * a file structure and a free file descriptor.
1824 fd
= get_unused_fd_flags(O_RDWR
| (flags
& O_CLOEXEC
));
1829 file
= anon_inode_getfile("[eventpoll]", &eventpoll_fops
, ep
,
1830 O_RDWR
| (flags
& O_CLOEXEC
));
1832 error
= PTR_ERR(file
);
1836 fd_install(fd
, file
);
1846 SYSCALL_DEFINE1(epoll_create
, int, size
)
1851 return sys_epoll_create1(0);
1855 * The following function implements the controller interface for
1856 * the eventpoll file that enables the insertion/removal/change of
1857 * file descriptors inside the interest set.
1859 SYSCALL_DEFINE4(epoll_ctl
, int, epfd
, int, op
, int, fd
,
1860 struct epoll_event __user
*, event
)
1865 struct eventpoll
*ep
;
1867 struct epoll_event epds
;
1868 struct eventpoll
*tep
= NULL
;
1871 if (ep_op_has_event(op
) &&
1872 copy_from_user(&epds
, event
, sizeof(struct epoll_event
)))
1880 /* Get the "struct file *" for the target file */
1885 /* The target file descriptor must support poll */
1887 if (!tf
.file
->f_op
->poll
)
1888 goto error_tgt_fput
;
1890 /* Check if EPOLLWAKEUP is allowed */
1891 if (ep_op_has_event(op
))
1892 ep_take_care_of_epollwakeup(&epds
);
1895 * We have to check that the file structure underneath the file descriptor
1896 * the user passed to us _is_ an eventpoll file. And also we do not permit
1897 * adding an epoll file descriptor inside itself.
1900 if (f
.file
== tf
.file
|| !is_file_epoll(f
.file
))
1901 goto error_tgt_fput
;
1904 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
1905 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
1906 * Also, we do not currently supported nested exclusive wakeups.
1908 if (epds
.events
& EPOLLEXCLUSIVE
) {
1909 if (op
== EPOLL_CTL_MOD
)
1910 goto error_tgt_fput
;
1911 if (op
== EPOLL_CTL_ADD
&& (is_file_epoll(tf
.file
) ||
1912 (epds
.events
& ~EPOLLEXCLUSIVE_OK_BITS
)))
1913 goto error_tgt_fput
;
1917 * At this point it is safe to assume that the "private_data" contains
1918 * our own data structure.
1920 ep
= f
.file
->private_data
;
1923 * When we insert an epoll file descriptor, inside another epoll file
1924 * descriptor, there is the change of creating closed loops, which are
1925 * better be handled here, than in more critical paths. While we are
1926 * checking for loops we also determine the list of files reachable
1927 * and hang them on the tfile_check_list, so we can check that we
1928 * haven't created too many possible wakeup paths.
1930 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
1931 * the epoll file descriptor is attaching directly to a wakeup source,
1932 * unless the epoll file descriptor is nested. The purpose of taking the
1933 * 'epmutex' on add is to prevent complex toplogies such as loops and
1934 * deep wakeup paths from forming in parallel through multiple
1935 * EPOLL_CTL_ADD operations.
1937 mutex_lock_nested(&ep
->mtx
, 0);
1938 if (op
== EPOLL_CTL_ADD
) {
1939 if (!list_empty(&f
.file
->f_ep_links
) ||
1940 is_file_epoll(tf
.file
)) {
1942 mutex_unlock(&ep
->mtx
);
1943 mutex_lock(&epmutex
);
1944 if (is_file_epoll(tf
.file
)) {
1946 if (ep_loop_check(ep
, tf
.file
) != 0) {
1947 clear_tfile_check_list();
1948 goto error_tgt_fput
;
1951 list_add(&tf
.file
->f_tfile_llink
,
1953 mutex_lock_nested(&ep
->mtx
, 0);
1954 if (is_file_epoll(tf
.file
)) {
1955 tep
= tf
.file
->private_data
;
1956 mutex_lock_nested(&tep
->mtx
, 1);
1962 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
1963 * above, we can be sure to be able to use the item looked up by
1964 * ep_find() till we release the mutex.
1966 epi
= ep_find(ep
, tf
.file
, fd
);
1972 epds
.events
|= POLLERR
| POLLHUP
;
1973 error
= ep_insert(ep
, &epds
, tf
.file
, fd
, full_check
);
1977 clear_tfile_check_list();
1981 error
= ep_remove(ep
, epi
);
1987 if (!(epi
->event
.events
& EPOLLEXCLUSIVE
)) {
1988 epds
.events
|= POLLERR
| POLLHUP
;
1989 error
= ep_modify(ep
, epi
, &epds
);
1996 mutex_unlock(&tep
->mtx
);
1997 mutex_unlock(&ep
->mtx
);
2001 mutex_unlock(&epmutex
);
2012 * Implement the event wait interface for the eventpoll file. It is the kernel
2013 * part of the user space epoll_wait(2).
2015 SYSCALL_DEFINE4(epoll_wait
, int, epfd
, struct epoll_event __user
*, events
,
2016 int, maxevents
, int, timeout
)
2020 struct eventpoll
*ep
;
2022 /* The maximum number of event must be greater than zero */
2023 if (maxevents
<= 0 || maxevents
> EP_MAX_EVENTS
)
2026 /* Verify that the area passed by the user is writeable */
2027 if (!access_ok(VERIFY_WRITE
, events
, maxevents
* sizeof(struct epoll_event
)))
2030 /* Get the "struct file *" for the eventpoll file */
2036 * We have to check that the file structure underneath the fd
2037 * the user passed to us _is_ an eventpoll file.
2040 if (!is_file_epoll(f
.file
))
2044 * At this point it is safe to assume that the "private_data" contains
2045 * our own data structure.
2047 ep
= f
.file
->private_data
;
2049 /* Time to fish for events ... */
2050 error
= ep_poll(ep
, events
, maxevents
, timeout
);
2058 * Implement the event wait interface for the eventpoll file. It is the kernel
2059 * part of the user space epoll_pwait(2).
2061 SYSCALL_DEFINE6(epoll_pwait
, int, epfd
, struct epoll_event __user
*, events
,
2062 int, maxevents
, int, timeout
, const sigset_t __user
*, sigmask
,
2066 sigset_t ksigmask
, sigsaved
;
2069 * If the caller wants a certain signal mask to be set during the wait,
2073 if (sigsetsize
!= sizeof(sigset_t
))
2075 if (copy_from_user(&ksigmask
, sigmask
, sizeof(ksigmask
)))
2077 sigsaved
= current
->blocked
;
2078 set_current_blocked(&ksigmask
);
2081 error
= sys_epoll_wait(epfd
, events
, maxevents
, timeout
);
2084 * If we changed the signal mask, we need to restore the original one.
2085 * In case we've got a signal while waiting, we do not restore the
2086 * signal mask yet, and we allow do_signal() to deliver the signal on
2087 * the way back to userspace, before the signal mask is restored.
2090 if (error
== -EINTR
) {
2091 memcpy(¤t
->saved_sigmask
, &sigsaved
,
2093 set_restore_sigmask();
2095 set_current_blocked(&sigsaved
);
2101 #ifdef CONFIG_COMPAT
2102 COMPAT_SYSCALL_DEFINE6(epoll_pwait
, int, epfd
,
2103 struct epoll_event __user
*, events
,
2104 int, maxevents
, int, timeout
,
2105 const compat_sigset_t __user
*, sigmask
,
2106 compat_size_t
, sigsetsize
)
2109 compat_sigset_t csigmask
;
2110 sigset_t ksigmask
, sigsaved
;
2113 * If the caller wants a certain signal mask to be set during the wait,
2117 if (sigsetsize
!= sizeof(compat_sigset_t
))
2119 if (copy_from_user(&csigmask
, sigmask
, sizeof(csigmask
)))
2121 sigset_from_compat(&ksigmask
, &csigmask
);
2122 sigsaved
= current
->blocked
;
2123 set_current_blocked(&ksigmask
);
2126 err
= sys_epoll_wait(epfd
, events
, maxevents
, timeout
);
2129 * If we changed the signal mask, we need to restore the original one.
2130 * In case we've got a signal while waiting, we do not restore the
2131 * signal mask yet, and we allow do_signal() to deliver the signal on
2132 * the way back to userspace, before the signal mask is restored.
2135 if (err
== -EINTR
) {
2136 memcpy(¤t
->saved_sigmask
, &sigsaved
,
2138 set_restore_sigmask();
2140 set_current_blocked(&sigsaved
);
2147 static int __init
eventpoll_init(void)
2153 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2155 max_user_watches
= (((si
.totalram
- si
.totalhigh
) / 25) << PAGE_SHIFT
) /
2157 BUG_ON(max_user_watches
< 0);
2160 * Initialize the structure used to perform epoll file descriptor
2161 * inclusion loops checks.
2163 ep_nested_calls_init(&poll_loop_ncalls
);
2165 /* Initialize the structure used to perform safe poll wait head wake ups */
2166 ep_nested_calls_init(&poll_safewake_ncalls
);
2168 /* Initialize the structure used to perform file's f_op->poll() calls */
2169 ep_nested_calls_init(&poll_readywalk_ncalls
);
2172 * We can have many thousands of epitems, so prevent this from
2173 * using an extra cache line on 64-bit (and smaller) CPUs
2175 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem
) > 128);
2177 /* Allocates slab cache used to allocate "struct epitem" items */
2178 epi_cache
= kmem_cache_create("eventpoll_epi", sizeof(struct epitem
),
2179 0, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
, NULL
);
2181 /* Allocates slab cache used to allocate "struct eppoll_entry" */
2182 pwq_cache
= kmem_cache_create("eventpoll_pwq",
2183 sizeof(struct eppoll_entry
), 0, SLAB_PANIC
, NULL
);
2187 fs_initcall(eventpoll_init
);