ASoC: intel: cht_bsw_max98090_ti: Add pmc_plt_clk_0 quirk for Chromebook Gnawty
[linux/fpc-iii.git] / fs / dax.c
blob3a2682a6c8324c915257767f438346159173871d
1 /*
2 * fs/dax.c - Direct Access filesystem code
3 * Copyright (c) 2013-2014 Intel Corporation
4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/sched.h>
29 #include <linux/sched/signal.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/iomap.h>
36 #include "internal.h"
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/fs_dax.h>
41 /* We choose 4096 entries - same as per-zone page wait tables */
42 #define DAX_WAIT_TABLE_BITS 12
43 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
45 /* The 'colour' (ie low bits) within a PMD of a page offset. */
46 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
47 #define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT)
49 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
51 static int __init init_dax_wait_table(void)
53 int i;
55 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
56 init_waitqueue_head(wait_table + i);
57 return 0;
59 fs_initcall(init_dax_wait_table);
62 * We use lowest available bit in exceptional entry for locking, one bit for
63 * the entry size (PMD) and two more to tell us if the entry is a zero page or
64 * an empty entry that is just used for locking. In total four special bits.
66 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
67 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
68 * block allocation.
70 #define RADIX_DAX_SHIFT (RADIX_TREE_EXCEPTIONAL_SHIFT + 4)
71 #define RADIX_DAX_ENTRY_LOCK (1 << RADIX_TREE_EXCEPTIONAL_SHIFT)
72 #define RADIX_DAX_PMD (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 1))
73 #define RADIX_DAX_ZERO_PAGE (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 2))
74 #define RADIX_DAX_EMPTY (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 3))
76 static unsigned long dax_radix_pfn(void *entry)
78 return (unsigned long)entry >> RADIX_DAX_SHIFT;
81 static void *dax_radix_locked_entry(unsigned long pfn, unsigned long flags)
83 return (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY | flags |
84 (pfn << RADIX_DAX_SHIFT) | RADIX_DAX_ENTRY_LOCK);
87 static unsigned int dax_radix_order(void *entry)
89 if ((unsigned long)entry & RADIX_DAX_PMD)
90 return PMD_SHIFT - PAGE_SHIFT;
91 return 0;
94 static int dax_is_pmd_entry(void *entry)
96 return (unsigned long)entry & RADIX_DAX_PMD;
99 static int dax_is_pte_entry(void *entry)
101 return !((unsigned long)entry & RADIX_DAX_PMD);
104 static int dax_is_zero_entry(void *entry)
106 return (unsigned long)entry & RADIX_DAX_ZERO_PAGE;
109 static int dax_is_empty_entry(void *entry)
111 return (unsigned long)entry & RADIX_DAX_EMPTY;
115 * DAX radix tree locking
117 struct exceptional_entry_key {
118 struct address_space *mapping;
119 pgoff_t entry_start;
122 struct wait_exceptional_entry_queue {
123 wait_queue_entry_t wait;
124 struct exceptional_entry_key key;
127 static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping,
128 pgoff_t index, void *entry, struct exceptional_entry_key *key)
130 unsigned long hash;
133 * If 'entry' is a PMD, align the 'index' that we use for the wait
134 * queue to the start of that PMD. This ensures that all offsets in
135 * the range covered by the PMD map to the same bit lock.
137 if (dax_is_pmd_entry(entry))
138 index &= ~PG_PMD_COLOUR;
140 key->mapping = mapping;
141 key->entry_start = index;
143 hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS);
144 return wait_table + hash;
147 static int wake_exceptional_entry_func(wait_queue_entry_t *wait, unsigned int mode,
148 int sync, void *keyp)
150 struct exceptional_entry_key *key = keyp;
151 struct wait_exceptional_entry_queue *ewait =
152 container_of(wait, struct wait_exceptional_entry_queue, wait);
154 if (key->mapping != ewait->key.mapping ||
155 key->entry_start != ewait->key.entry_start)
156 return 0;
157 return autoremove_wake_function(wait, mode, sync, NULL);
161 * @entry may no longer be the entry at the index in the mapping.
162 * The important information it's conveying is whether the entry at
163 * this index used to be a PMD entry.
165 static void dax_wake_mapping_entry_waiter(struct address_space *mapping,
166 pgoff_t index, void *entry, bool wake_all)
168 struct exceptional_entry_key key;
169 wait_queue_head_t *wq;
171 wq = dax_entry_waitqueue(mapping, index, entry, &key);
174 * Checking for locked entry and prepare_to_wait_exclusive() happens
175 * under the i_pages lock, ditto for entry handling in our callers.
176 * So at this point all tasks that could have seen our entry locked
177 * must be in the waitqueue and the following check will see them.
179 if (waitqueue_active(wq))
180 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
184 * Check whether the given slot is locked. Must be called with the i_pages
185 * lock held.
187 static inline int slot_locked(struct address_space *mapping, void **slot)
189 unsigned long entry = (unsigned long)
190 radix_tree_deref_slot_protected(slot, &mapping->i_pages.xa_lock);
191 return entry & RADIX_DAX_ENTRY_LOCK;
195 * Mark the given slot as locked. Must be called with the i_pages lock held.
197 static inline void *lock_slot(struct address_space *mapping, void **slot)
199 unsigned long entry = (unsigned long)
200 radix_tree_deref_slot_protected(slot, &mapping->i_pages.xa_lock);
202 entry |= RADIX_DAX_ENTRY_LOCK;
203 radix_tree_replace_slot(&mapping->i_pages, slot, (void *)entry);
204 return (void *)entry;
208 * Mark the given slot as unlocked. Must be called with the i_pages lock held.
210 static inline void *unlock_slot(struct address_space *mapping, void **slot)
212 unsigned long entry = (unsigned long)
213 radix_tree_deref_slot_protected(slot, &mapping->i_pages.xa_lock);
215 entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK;
216 radix_tree_replace_slot(&mapping->i_pages, slot, (void *)entry);
217 return (void *)entry;
220 static void put_unlocked_mapping_entry(struct address_space *mapping,
221 pgoff_t index, void *entry);
224 * Lookup entry in radix tree, wait for it to become unlocked if it is
225 * exceptional entry and return it. The caller must call
226 * put_unlocked_mapping_entry() when he decided not to lock the entry or
227 * put_locked_mapping_entry() when he locked the entry and now wants to
228 * unlock it.
230 * Must be called with the i_pages lock held.
232 static void *__get_unlocked_mapping_entry(struct address_space *mapping,
233 pgoff_t index, void ***slotp, bool (*wait_fn)(void))
235 void *entry, **slot;
236 struct wait_exceptional_entry_queue ewait;
237 wait_queue_head_t *wq;
239 init_wait(&ewait.wait);
240 ewait.wait.func = wake_exceptional_entry_func;
242 for (;;) {
243 bool revalidate;
245 entry = __radix_tree_lookup(&mapping->i_pages, index, NULL,
246 &slot);
247 if (!entry ||
248 WARN_ON_ONCE(!radix_tree_exceptional_entry(entry)) ||
249 !slot_locked(mapping, slot)) {
250 if (slotp)
251 *slotp = slot;
252 return entry;
255 wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key);
256 prepare_to_wait_exclusive(wq, &ewait.wait,
257 TASK_UNINTERRUPTIBLE);
258 xa_unlock_irq(&mapping->i_pages);
259 revalidate = wait_fn();
260 finish_wait(wq, &ewait.wait);
261 xa_lock_irq(&mapping->i_pages);
262 if (revalidate) {
263 put_unlocked_mapping_entry(mapping, index, entry);
264 return ERR_PTR(-EAGAIN);
269 static bool entry_wait(void)
271 schedule();
273 * Never return an ERR_PTR() from
274 * __get_unlocked_mapping_entry(), just keep looping.
276 return false;
279 static void *get_unlocked_mapping_entry(struct address_space *mapping,
280 pgoff_t index, void ***slotp)
282 return __get_unlocked_mapping_entry(mapping, index, slotp, entry_wait);
285 static void unlock_mapping_entry(struct address_space *mapping, pgoff_t index)
287 void *entry, **slot;
289 xa_lock_irq(&mapping->i_pages);
290 entry = __radix_tree_lookup(&mapping->i_pages, index, NULL, &slot);
291 if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry) ||
292 !slot_locked(mapping, slot))) {
293 xa_unlock_irq(&mapping->i_pages);
294 return;
296 unlock_slot(mapping, slot);
297 xa_unlock_irq(&mapping->i_pages);
298 dax_wake_mapping_entry_waiter(mapping, index, entry, false);
301 static void put_locked_mapping_entry(struct address_space *mapping,
302 pgoff_t index)
304 unlock_mapping_entry(mapping, index);
308 * Called when we are done with radix tree entry we looked up via
309 * get_unlocked_mapping_entry() and which we didn't lock in the end.
311 static void put_unlocked_mapping_entry(struct address_space *mapping,
312 pgoff_t index, void *entry)
314 if (!entry)
315 return;
317 /* We have to wake up next waiter for the radix tree entry lock */
318 dax_wake_mapping_entry_waiter(mapping, index, entry, false);
321 static unsigned long dax_entry_size(void *entry)
323 if (dax_is_zero_entry(entry))
324 return 0;
325 else if (dax_is_empty_entry(entry))
326 return 0;
327 else if (dax_is_pmd_entry(entry))
328 return PMD_SIZE;
329 else
330 return PAGE_SIZE;
333 static unsigned long dax_radix_end_pfn(void *entry)
335 return dax_radix_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
339 * Iterate through all mapped pfns represented by an entry, i.e. skip
340 * 'empty' and 'zero' entries.
342 #define for_each_mapped_pfn(entry, pfn) \
343 for (pfn = dax_radix_pfn(entry); \
344 pfn < dax_radix_end_pfn(entry); pfn++)
347 * TODO: for reflink+dax we need a way to associate a single page with
348 * multiple address_space instances at different linear_page_index()
349 * offsets.
351 static void dax_associate_entry(void *entry, struct address_space *mapping,
352 struct vm_area_struct *vma, unsigned long address)
354 unsigned long size = dax_entry_size(entry), pfn, index;
355 int i = 0;
357 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
358 return;
360 index = linear_page_index(vma, address & ~(size - 1));
361 for_each_mapped_pfn(entry, pfn) {
362 struct page *page = pfn_to_page(pfn);
364 WARN_ON_ONCE(page->mapping);
365 page->mapping = mapping;
366 page->index = index + i++;
370 static void dax_disassociate_entry(void *entry, struct address_space *mapping,
371 bool trunc)
373 unsigned long pfn;
375 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
376 return;
378 for_each_mapped_pfn(entry, pfn) {
379 struct page *page = pfn_to_page(pfn);
381 WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
382 WARN_ON_ONCE(page->mapping && page->mapping != mapping);
383 page->mapping = NULL;
384 page->index = 0;
388 static struct page *dax_busy_page(void *entry)
390 unsigned long pfn;
392 for_each_mapped_pfn(entry, pfn) {
393 struct page *page = pfn_to_page(pfn);
395 if (page_ref_count(page) > 1)
396 return page;
398 return NULL;
401 static bool entry_wait_revalidate(void)
403 rcu_read_unlock();
404 schedule();
405 rcu_read_lock();
408 * Tell __get_unlocked_mapping_entry() to take a break, we need
409 * to revalidate page->mapping after dropping locks
411 return true;
414 bool dax_lock_mapping_entry(struct page *page)
416 pgoff_t index;
417 struct inode *inode;
418 bool did_lock = false;
419 void *entry = NULL, **slot;
420 struct address_space *mapping;
422 rcu_read_lock();
423 for (;;) {
424 mapping = READ_ONCE(page->mapping);
426 if (!mapping || !dax_mapping(mapping))
427 break;
430 * In the device-dax case there's no need to lock, a
431 * struct dev_pagemap pin is sufficient to keep the
432 * inode alive, and we assume we have dev_pagemap pin
433 * otherwise we would not have a valid pfn_to_page()
434 * translation.
436 inode = mapping->host;
437 if (S_ISCHR(inode->i_mode)) {
438 did_lock = true;
439 break;
442 xa_lock_irq(&mapping->i_pages);
443 if (mapping != page->mapping) {
444 xa_unlock_irq(&mapping->i_pages);
445 continue;
447 index = page->index;
449 entry = __get_unlocked_mapping_entry(mapping, index, &slot,
450 entry_wait_revalidate);
451 if (!entry) {
452 xa_unlock_irq(&mapping->i_pages);
453 break;
454 } else if (IS_ERR(entry)) {
455 xa_unlock_irq(&mapping->i_pages);
456 WARN_ON_ONCE(PTR_ERR(entry) != -EAGAIN);
457 continue;
459 lock_slot(mapping, slot);
460 did_lock = true;
461 xa_unlock_irq(&mapping->i_pages);
462 break;
464 rcu_read_unlock();
466 return did_lock;
469 void dax_unlock_mapping_entry(struct page *page)
471 struct address_space *mapping = page->mapping;
472 struct inode *inode = mapping->host;
474 if (S_ISCHR(inode->i_mode))
475 return;
477 unlock_mapping_entry(mapping, page->index);
481 * Find radix tree entry at given index. If it points to an exceptional entry,
482 * return it with the radix tree entry locked. If the radix tree doesn't
483 * contain given index, create an empty exceptional entry for the index and
484 * return with it locked.
486 * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will
487 * either return that locked entry or will return an error. This error will
488 * happen if there are any 4k entries within the 2MiB range that we are
489 * requesting.
491 * We always favor 4k entries over 2MiB entries. There isn't a flow where we
492 * evict 4k entries in order to 'upgrade' them to a 2MiB entry. A 2MiB
493 * insertion will fail if it finds any 4k entries already in the tree, and a
494 * 4k insertion will cause an existing 2MiB entry to be unmapped and
495 * downgraded to 4k entries. This happens for both 2MiB huge zero pages as
496 * well as 2MiB empty entries.
498 * The exception to this downgrade path is for 2MiB DAX PMD entries that have
499 * real storage backing them. We will leave these real 2MiB DAX entries in
500 * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry.
502 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
503 * persistent memory the benefit is doubtful. We can add that later if we can
504 * show it helps.
506 static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index,
507 unsigned long size_flag)
509 bool pmd_downgrade = false; /* splitting 2MiB entry into 4k entries? */
510 void *entry, **slot;
512 restart:
513 xa_lock_irq(&mapping->i_pages);
514 entry = get_unlocked_mapping_entry(mapping, index, &slot);
516 if (WARN_ON_ONCE(entry && !radix_tree_exceptional_entry(entry))) {
517 entry = ERR_PTR(-EIO);
518 goto out_unlock;
521 if (entry) {
522 if (size_flag & RADIX_DAX_PMD) {
523 if (dax_is_pte_entry(entry)) {
524 put_unlocked_mapping_entry(mapping, index,
525 entry);
526 entry = ERR_PTR(-EEXIST);
527 goto out_unlock;
529 } else { /* trying to grab a PTE entry */
530 if (dax_is_pmd_entry(entry) &&
531 (dax_is_zero_entry(entry) ||
532 dax_is_empty_entry(entry))) {
533 pmd_downgrade = true;
538 /* No entry for given index? Make sure radix tree is big enough. */
539 if (!entry || pmd_downgrade) {
540 int err;
542 if (pmd_downgrade) {
544 * Make sure 'entry' remains valid while we drop
545 * the i_pages lock.
547 entry = lock_slot(mapping, slot);
550 xa_unlock_irq(&mapping->i_pages);
552 * Besides huge zero pages the only other thing that gets
553 * downgraded are empty entries which don't need to be
554 * unmapped.
556 if (pmd_downgrade && dax_is_zero_entry(entry))
557 unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
558 PG_PMD_NR, false);
560 err = radix_tree_preload(
561 mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM);
562 if (err) {
563 if (pmd_downgrade)
564 put_locked_mapping_entry(mapping, index);
565 return ERR_PTR(err);
567 xa_lock_irq(&mapping->i_pages);
569 if (!entry) {
571 * We needed to drop the i_pages lock while calling
572 * radix_tree_preload() and we didn't have an entry to
573 * lock. See if another thread inserted an entry at
574 * our index during this time.
576 entry = __radix_tree_lookup(&mapping->i_pages, index,
577 NULL, &slot);
578 if (entry) {
579 radix_tree_preload_end();
580 xa_unlock_irq(&mapping->i_pages);
581 goto restart;
585 if (pmd_downgrade) {
586 dax_disassociate_entry(entry, mapping, false);
587 radix_tree_delete(&mapping->i_pages, index);
588 mapping->nrexceptional--;
589 dax_wake_mapping_entry_waiter(mapping, index, entry,
590 true);
593 entry = dax_radix_locked_entry(0, size_flag | RADIX_DAX_EMPTY);
595 err = __radix_tree_insert(&mapping->i_pages, index,
596 dax_radix_order(entry), entry);
597 radix_tree_preload_end();
598 if (err) {
599 xa_unlock_irq(&mapping->i_pages);
601 * Our insertion of a DAX entry failed, most likely
602 * because we were inserting a PMD entry and it
603 * collided with a PTE sized entry at a different
604 * index in the PMD range. We haven't inserted
605 * anything into the radix tree and have no waiters to
606 * wake.
608 return ERR_PTR(err);
610 /* Good, we have inserted empty locked entry into the tree. */
611 mapping->nrexceptional++;
612 xa_unlock_irq(&mapping->i_pages);
613 return entry;
615 entry = lock_slot(mapping, slot);
616 out_unlock:
617 xa_unlock_irq(&mapping->i_pages);
618 return entry;
622 * dax_layout_busy_page - find first pinned page in @mapping
623 * @mapping: address space to scan for a page with ref count > 1
625 * DAX requires ZONE_DEVICE mapped pages. These pages are never
626 * 'onlined' to the page allocator so they are considered idle when
627 * page->count == 1. A filesystem uses this interface to determine if
628 * any page in the mapping is busy, i.e. for DMA, or other
629 * get_user_pages() usages.
631 * It is expected that the filesystem is holding locks to block the
632 * establishment of new mappings in this address_space. I.e. it expects
633 * to be able to run unmap_mapping_range() and subsequently not race
634 * mapping_mapped() becoming true.
636 struct page *dax_layout_busy_page(struct address_space *mapping)
638 pgoff_t indices[PAGEVEC_SIZE];
639 struct page *page = NULL;
640 struct pagevec pvec;
641 pgoff_t index, end;
642 unsigned i;
645 * In the 'limited' case get_user_pages() for dax is disabled.
647 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
648 return NULL;
650 if (!dax_mapping(mapping) || !mapping_mapped(mapping))
651 return NULL;
653 pagevec_init(&pvec);
654 index = 0;
655 end = -1;
658 * If we race get_user_pages_fast() here either we'll see the
659 * elevated page count in the pagevec_lookup and wait, or
660 * get_user_pages_fast() will see that the page it took a reference
661 * against is no longer mapped in the page tables and bail to the
662 * get_user_pages() slow path. The slow path is protected by
663 * pte_lock() and pmd_lock(). New references are not taken without
664 * holding those locks, and unmap_mapping_range() will not zero the
665 * pte or pmd without holding the respective lock, so we are
666 * guaranteed to either see new references or prevent new
667 * references from being established.
669 unmap_mapping_range(mapping, 0, 0, 1);
671 while (index < end && pagevec_lookup_entries(&pvec, mapping, index,
672 min(end - index, (pgoff_t)PAGEVEC_SIZE),
673 indices)) {
674 pgoff_t nr_pages = 1;
676 for (i = 0; i < pagevec_count(&pvec); i++) {
677 struct page *pvec_ent = pvec.pages[i];
678 void *entry;
680 index = indices[i];
681 if (index >= end)
682 break;
684 if (WARN_ON_ONCE(
685 !radix_tree_exceptional_entry(pvec_ent)))
686 continue;
688 xa_lock_irq(&mapping->i_pages);
689 entry = get_unlocked_mapping_entry(mapping, index, NULL);
690 if (entry) {
691 page = dax_busy_page(entry);
693 * Account for multi-order entries at
694 * the end of the pagevec.
696 if (i + 1 >= pagevec_count(&pvec))
697 nr_pages = 1UL << dax_radix_order(entry);
699 put_unlocked_mapping_entry(mapping, index, entry);
700 xa_unlock_irq(&mapping->i_pages);
701 if (page)
702 break;
706 * We don't expect normal struct page entries to exist in our
707 * tree, but we keep these pagevec calls so that this code is
708 * consistent with the common pattern for handling pagevecs
709 * throughout the kernel.
711 pagevec_remove_exceptionals(&pvec);
712 pagevec_release(&pvec);
713 index += nr_pages;
715 if (page)
716 break;
718 return page;
720 EXPORT_SYMBOL_GPL(dax_layout_busy_page);
722 static int __dax_invalidate_mapping_entry(struct address_space *mapping,
723 pgoff_t index, bool trunc)
725 int ret = 0;
726 void *entry;
727 struct radix_tree_root *pages = &mapping->i_pages;
729 xa_lock_irq(pages);
730 entry = get_unlocked_mapping_entry(mapping, index, NULL);
731 if (!entry || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry)))
732 goto out;
733 if (!trunc &&
734 (radix_tree_tag_get(pages, index, PAGECACHE_TAG_DIRTY) ||
735 radix_tree_tag_get(pages, index, PAGECACHE_TAG_TOWRITE)))
736 goto out;
737 dax_disassociate_entry(entry, mapping, trunc);
738 radix_tree_delete(pages, index);
739 mapping->nrexceptional--;
740 ret = 1;
741 out:
742 put_unlocked_mapping_entry(mapping, index, entry);
743 xa_unlock_irq(pages);
744 return ret;
747 * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
748 * entry to get unlocked before deleting it.
750 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
752 int ret = __dax_invalidate_mapping_entry(mapping, index, true);
755 * This gets called from truncate / punch_hole path. As such, the caller
756 * must hold locks protecting against concurrent modifications of the
757 * radix tree (usually fs-private i_mmap_sem for writing). Since the
758 * caller has seen exceptional entry for this index, we better find it
759 * at that index as well...
761 WARN_ON_ONCE(!ret);
762 return ret;
766 * Invalidate exceptional DAX entry if it is clean.
768 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
769 pgoff_t index)
771 return __dax_invalidate_mapping_entry(mapping, index, false);
774 static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
775 sector_t sector, size_t size, struct page *to,
776 unsigned long vaddr)
778 void *vto, *kaddr;
779 pgoff_t pgoff;
780 long rc;
781 int id;
783 rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
784 if (rc)
785 return rc;
787 id = dax_read_lock();
788 rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, NULL);
789 if (rc < 0) {
790 dax_read_unlock(id);
791 return rc;
793 vto = kmap_atomic(to);
794 copy_user_page(vto, (void __force *)kaddr, vaddr, to);
795 kunmap_atomic(vto);
796 dax_read_unlock(id);
797 return 0;
801 * By this point grab_mapping_entry() has ensured that we have a locked entry
802 * of the appropriate size so we don't have to worry about downgrading PMDs to
803 * PTEs. If we happen to be trying to insert a PTE and there is a PMD
804 * already in the tree, we will skip the insertion and just dirty the PMD as
805 * appropriate.
807 static void *dax_insert_mapping_entry(struct address_space *mapping,
808 struct vm_fault *vmf,
809 void *entry, pfn_t pfn_t,
810 unsigned long flags, bool dirty)
812 struct radix_tree_root *pages = &mapping->i_pages;
813 unsigned long pfn = pfn_t_to_pfn(pfn_t);
814 pgoff_t index = vmf->pgoff;
815 void *new_entry;
817 if (dirty)
818 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
820 if (dax_is_zero_entry(entry) && !(flags & RADIX_DAX_ZERO_PAGE)) {
821 /* we are replacing a zero page with block mapping */
822 if (dax_is_pmd_entry(entry))
823 unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
824 PG_PMD_NR, false);
825 else /* pte entry */
826 unmap_mapping_pages(mapping, vmf->pgoff, 1, false);
829 xa_lock_irq(pages);
830 new_entry = dax_radix_locked_entry(pfn, flags);
831 if (dax_entry_size(entry) != dax_entry_size(new_entry)) {
832 dax_disassociate_entry(entry, mapping, false);
833 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
836 if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
838 * Only swap our new entry into the radix tree if the current
839 * entry is a zero page or an empty entry. If a normal PTE or
840 * PMD entry is already in the tree, we leave it alone. This
841 * means that if we are trying to insert a PTE and the
842 * existing entry is a PMD, we will just leave the PMD in the
843 * tree and dirty it if necessary.
845 struct radix_tree_node *node;
846 void **slot;
847 void *ret;
849 ret = __radix_tree_lookup(pages, index, &node, &slot);
850 WARN_ON_ONCE(ret != entry);
851 __radix_tree_replace(pages, node, slot,
852 new_entry, NULL);
853 entry = new_entry;
856 if (dirty)
857 radix_tree_tag_set(pages, index, PAGECACHE_TAG_DIRTY);
859 xa_unlock_irq(pages);
860 return entry;
863 static inline unsigned long
864 pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
866 unsigned long address;
868 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
869 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
870 return address;
873 /* Walk all mappings of a given index of a file and writeprotect them */
874 static void dax_mapping_entry_mkclean(struct address_space *mapping,
875 pgoff_t index, unsigned long pfn)
877 struct vm_area_struct *vma;
878 pte_t pte, *ptep = NULL;
879 pmd_t *pmdp = NULL;
880 spinlock_t *ptl;
882 i_mmap_lock_read(mapping);
883 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
884 unsigned long address, start, end;
886 cond_resched();
888 if (!(vma->vm_flags & VM_SHARED))
889 continue;
891 address = pgoff_address(index, vma);
894 * Note because we provide start/end to follow_pte_pmd it will
895 * call mmu_notifier_invalidate_range_start() on our behalf
896 * before taking any lock.
898 if (follow_pte_pmd(vma->vm_mm, address, &start, &end, &ptep, &pmdp, &ptl))
899 continue;
902 * No need to call mmu_notifier_invalidate_range() as we are
903 * downgrading page table protection not changing it to point
904 * to a new page.
906 * See Documentation/vm/mmu_notifier.rst
908 if (pmdp) {
909 #ifdef CONFIG_FS_DAX_PMD
910 pmd_t pmd;
912 if (pfn != pmd_pfn(*pmdp))
913 goto unlock_pmd;
914 if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
915 goto unlock_pmd;
917 flush_cache_page(vma, address, pfn);
918 pmd = pmdp_huge_clear_flush(vma, address, pmdp);
919 pmd = pmd_wrprotect(pmd);
920 pmd = pmd_mkclean(pmd);
921 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
922 unlock_pmd:
923 #endif
924 spin_unlock(ptl);
925 } else {
926 if (pfn != pte_pfn(*ptep))
927 goto unlock_pte;
928 if (!pte_dirty(*ptep) && !pte_write(*ptep))
929 goto unlock_pte;
931 flush_cache_page(vma, address, pfn);
932 pte = ptep_clear_flush(vma, address, ptep);
933 pte = pte_wrprotect(pte);
934 pte = pte_mkclean(pte);
935 set_pte_at(vma->vm_mm, address, ptep, pte);
936 unlock_pte:
937 pte_unmap_unlock(ptep, ptl);
940 mmu_notifier_invalidate_range_end(vma->vm_mm, start, end);
942 i_mmap_unlock_read(mapping);
945 static int dax_writeback_one(struct dax_device *dax_dev,
946 struct address_space *mapping, pgoff_t index, void *entry)
948 struct radix_tree_root *pages = &mapping->i_pages;
949 void *entry2, **slot;
950 unsigned long pfn;
951 long ret = 0;
952 size_t size;
955 * A page got tagged dirty in DAX mapping? Something is seriously
956 * wrong.
958 if (WARN_ON(!radix_tree_exceptional_entry(entry)))
959 return -EIO;
961 xa_lock_irq(pages);
962 entry2 = get_unlocked_mapping_entry(mapping, index, &slot);
963 /* Entry got punched out / reallocated? */
964 if (!entry2 || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry2)))
965 goto put_unlocked;
967 * Entry got reallocated elsewhere? No need to writeback. We have to
968 * compare pfns as we must not bail out due to difference in lockbit
969 * or entry type.
971 if (dax_radix_pfn(entry2) != dax_radix_pfn(entry))
972 goto put_unlocked;
973 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
974 dax_is_zero_entry(entry))) {
975 ret = -EIO;
976 goto put_unlocked;
979 /* Another fsync thread may have already written back this entry */
980 if (!radix_tree_tag_get(pages, index, PAGECACHE_TAG_TOWRITE))
981 goto put_unlocked;
982 /* Lock the entry to serialize with page faults */
983 entry = lock_slot(mapping, slot);
985 * We can clear the tag now but we have to be careful so that concurrent
986 * dax_writeback_one() calls for the same index cannot finish before we
987 * actually flush the caches. This is achieved as the calls will look
988 * at the entry only under the i_pages lock and once they do that
989 * they will see the entry locked and wait for it to unlock.
991 radix_tree_tag_clear(pages, index, PAGECACHE_TAG_TOWRITE);
992 xa_unlock_irq(pages);
995 * Even if dax_writeback_mapping_range() was given a wbc->range_start
996 * in the middle of a PMD, the 'index' we are given will be aligned to
997 * the start index of the PMD, as will the pfn we pull from 'entry'.
998 * This allows us to flush for PMD_SIZE and not have to worry about
999 * partial PMD writebacks.
1001 pfn = dax_radix_pfn(entry);
1002 size = PAGE_SIZE << dax_radix_order(entry);
1004 dax_mapping_entry_mkclean(mapping, index, pfn);
1005 dax_flush(dax_dev, page_address(pfn_to_page(pfn)), size);
1007 * After we have flushed the cache, we can clear the dirty tag. There
1008 * cannot be new dirty data in the pfn after the flush has completed as
1009 * the pfn mappings are writeprotected and fault waits for mapping
1010 * entry lock.
1012 xa_lock_irq(pages);
1013 radix_tree_tag_clear(pages, index, PAGECACHE_TAG_DIRTY);
1014 xa_unlock_irq(pages);
1015 trace_dax_writeback_one(mapping->host, index, size >> PAGE_SHIFT);
1016 put_locked_mapping_entry(mapping, index);
1017 return ret;
1019 put_unlocked:
1020 put_unlocked_mapping_entry(mapping, index, entry2);
1021 xa_unlock_irq(pages);
1022 return ret;
1026 * Flush the mapping to the persistent domain within the byte range of [start,
1027 * end]. This is required by data integrity operations to ensure file data is
1028 * on persistent storage prior to completion of the operation.
1030 int dax_writeback_mapping_range(struct address_space *mapping,
1031 struct block_device *bdev, struct writeback_control *wbc)
1033 struct inode *inode = mapping->host;
1034 pgoff_t start_index, end_index;
1035 pgoff_t indices[PAGEVEC_SIZE];
1036 struct dax_device *dax_dev;
1037 struct pagevec pvec;
1038 bool done = false;
1039 int i, ret = 0;
1041 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
1042 return -EIO;
1044 if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
1045 return 0;
1047 dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
1048 if (!dax_dev)
1049 return -EIO;
1051 start_index = wbc->range_start >> PAGE_SHIFT;
1052 end_index = wbc->range_end >> PAGE_SHIFT;
1054 trace_dax_writeback_range(inode, start_index, end_index);
1056 tag_pages_for_writeback(mapping, start_index, end_index);
1058 pagevec_init(&pvec);
1059 while (!done) {
1060 pvec.nr = find_get_entries_tag(mapping, start_index,
1061 PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
1062 pvec.pages, indices);
1064 if (pvec.nr == 0)
1065 break;
1067 for (i = 0; i < pvec.nr; i++) {
1068 if (indices[i] > end_index) {
1069 done = true;
1070 break;
1073 ret = dax_writeback_one(dax_dev, mapping, indices[i],
1074 pvec.pages[i]);
1075 if (ret < 0) {
1076 mapping_set_error(mapping, ret);
1077 goto out;
1080 start_index = indices[pvec.nr - 1] + 1;
1082 out:
1083 put_dax(dax_dev);
1084 trace_dax_writeback_range_done(inode, start_index, end_index);
1085 return (ret < 0 ? ret : 0);
1087 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
1089 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
1091 return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
1094 static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
1095 pfn_t *pfnp)
1097 const sector_t sector = dax_iomap_sector(iomap, pos);
1098 pgoff_t pgoff;
1099 int id, rc;
1100 long length;
1102 rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
1103 if (rc)
1104 return rc;
1105 id = dax_read_lock();
1106 length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
1107 NULL, pfnp);
1108 if (length < 0) {
1109 rc = length;
1110 goto out;
1112 rc = -EINVAL;
1113 if (PFN_PHYS(length) < size)
1114 goto out;
1115 if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1116 goto out;
1117 /* For larger pages we need devmap */
1118 if (length > 1 && !pfn_t_devmap(*pfnp))
1119 goto out;
1120 rc = 0;
1121 out:
1122 dax_read_unlock(id);
1123 return rc;
1127 * The user has performed a load from a hole in the file. Allocating a new
1128 * page in the file would cause excessive storage usage for workloads with
1129 * sparse files. Instead we insert a read-only mapping of the 4k zero page.
1130 * If this page is ever written to we will re-fault and change the mapping to
1131 * point to real DAX storage instead.
1133 static vm_fault_t dax_load_hole(struct address_space *mapping, void *entry,
1134 struct vm_fault *vmf)
1136 struct inode *inode = mapping->host;
1137 unsigned long vaddr = vmf->address;
1138 pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1139 vm_fault_t ret;
1141 dax_insert_mapping_entry(mapping, vmf, entry, pfn, RADIX_DAX_ZERO_PAGE,
1142 false);
1143 ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1144 trace_dax_load_hole(inode, vmf, ret);
1145 return ret;
1148 static bool dax_range_is_aligned(struct block_device *bdev,
1149 unsigned int offset, unsigned int length)
1151 unsigned short sector_size = bdev_logical_block_size(bdev);
1153 if (!IS_ALIGNED(offset, sector_size))
1154 return false;
1155 if (!IS_ALIGNED(length, sector_size))
1156 return false;
1158 return true;
1161 int __dax_zero_page_range(struct block_device *bdev,
1162 struct dax_device *dax_dev, sector_t sector,
1163 unsigned int offset, unsigned int size)
1165 if (dax_range_is_aligned(bdev, offset, size)) {
1166 sector_t start_sector = sector + (offset >> 9);
1168 return blkdev_issue_zeroout(bdev, start_sector,
1169 size >> 9, GFP_NOFS, 0);
1170 } else {
1171 pgoff_t pgoff;
1172 long rc, id;
1173 void *kaddr;
1175 rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
1176 if (rc)
1177 return rc;
1179 id = dax_read_lock();
1180 rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr, NULL);
1181 if (rc < 0) {
1182 dax_read_unlock(id);
1183 return rc;
1185 memset(kaddr + offset, 0, size);
1186 dax_flush(dax_dev, kaddr + offset, size);
1187 dax_read_unlock(id);
1189 return 0;
1191 EXPORT_SYMBOL_GPL(__dax_zero_page_range);
1193 static loff_t
1194 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1195 struct iomap *iomap)
1197 struct block_device *bdev = iomap->bdev;
1198 struct dax_device *dax_dev = iomap->dax_dev;
1199 struct iov_iter *iter = data;
1200 loff_t end = pos + length, done = 0;
1201 ssize_t ret = 0;
1202 size_t xfer;
1203 int id;
1205 if (iov_iter_rw(iter) == READ) {
1206 end = min(end, i_size_read(inode));
1207 if (pos >= end)
1208 return 0;
1210 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1211 return iov_iter_zero(min(length, end - pos), iter);
1214 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1215 return -EIO;
1218 * Write can allocate block for an area which has a hole page mapped
1219 * into page tables. We have to tear down these mappings so that data
1220 * written by write(2) is visible in mmap.
1222 if (iomap->flags & IOMAP_F_NEW) {
1223 invalidate_inode_pages2_range(inode->i_mapping,
1224 pos >> PAGE_SHIFT,
1225 (end - 1) >> PAGE_SHIFT);
1228 id = dax_read_lock();
1229 while (pos < end) {
1230 unsigned offset = pos & (PAGE_SIZE - 1);
1231 const size_t size = ALIGN(length + offset, PAGE_SIZE);
1232 const sector_t sector = dax_iomap_sector(iomap, pos);
1233 ssize_t map_len;
1234 pgoff_t pgoff;
1235 void *kaddr;
1237 if (fatal_signal_pending(current)) {
1238 ret = -EINTR;
1239 break;
1242 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1243 if (ret)
1244 break;
1246 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1247 &kaddr, NULL);
1248 if (map_len < 0) {
1249 ret = map_len;
1250 break;
1253 map_len = PFN_PHYS(map_len);
1254 kaddr += offset;
1255 map_len -= offset;
1256 if (map_len > end - pos)
1257 map_len = end - pos;
1260 * The userspace address for the memory copy has already been
1261 * validated via access_ok() in either vfs_read() or
1262 * vfs_write(), depending on which operation we are doing.
1264 if (iov_iter_rw(iter) == WRITE)
1265 xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1266 map_len, iter);
1267 else
1268 xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1269 map_len, iter);
1271 pos += xfer;
1272 length -= xfer;
1273 done += xfer;
1275 if (xfer == 0)
1276 ret = -EFAULT;
1277 if (xfer < map_len)
1278 break;
1280 dax_read_unlock(id);
1282 return done ? done : ret;
1286 * dax_iomap_rw - Perform I/O to a DAX file
1287 * @iocb: The control block for this I/O
1288 * @iter: The addresses to do I/O from or to
1289 * @ops: iomap ops passed from the file system
1291 * This function performs read and write operations to directly mapped
1292 * persistent memory. The callers needs to take care of read/write exclusion
1293 * and evicting any page cache pages in the region under I/O.
1295 ssize_t
1296 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1297 const struct iomap_ops *ops)
1299 struct address_space *mapping = iocb->ki_filp->f_mapping;
1300 struct inode *inode = mapping->host;
1301 loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1302 unsigned flags = 0;
1304 if (iov_iter_rw(iter) == WRITE) {
1305 lockdep_assert_held_exclusive(&inode->i_rwsem);
1306 flags |= IOMAP_WRITE;
1307 } else {
1308 lockdep_assert_held(&inode->i_rwsem);
1311 while (iov_iter_count(iter)) {
1312 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1313 iter, dax_iomap_actor);
1314 if (ret <= 0)
1315 break;
1316 pos += ret;
1317 done += ret;
1320 iocb->ki_pos += done;
1321 return done ? done : ret;
1323 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1325 static vm_fault_t dax_fault_return(int error)
1327 if (error == 0)
1328 return VM_FAULT_NOPAGE;
1329 if (error == -ENOMEM)
1330 return VM_FAULT_OOM;
1331 return VM_FAULT_SIGBUS;
1335 * MAP_SYNC on a dax mapping guarantees dirty metadata is
1336 * flushed on write-faults (non-cow), but not read-faults.
1338 static bool dax_fault_is_synchronous(unsigned long flags,
1339 struct vm_area_struct *vma, struct iomap *iomap)
1341 return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1342 && (iomap->flags & IOMAP_F_DIRTY);
1345 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1346 int *iomap_errp, const struct iomap_ops *ops)
1348 struct vm_area_struct *vma = vmf->vma;
1349 struct address_space *mapping = vma->vm_file->f_mapping;
1350 struct inode *inode = mapping->host;
1351 unsigned long vaddr = vmf->address;
1352 loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1353 struct iomap iomap = { 0 };
1354 unsigned flags = IOMAP_FAULT;
1355 int error, major = 0;
1356 bool write = vmf->flags & FAULT_FLAG_WRITE;
1357 bool sync;
1358 vm_fault_t ret = 0;
1359 void *entry;
1360 pfn_t pfn;
1362 trace_dax_pte_fault(inode, vmf, ret);
1364 * Check whether offset isn't beyond end of file now. Caller is supposed
1365 * to hold locks serializing us with truncate / punch hole so this is
1366 * a reliable test.
1368 if (pos >= i_size_read(inode)) {
1369 ret = VM_FAULT_SIGBUS;
1370 goto out;
1373 if (write && !vmf->cow_page)
1374 flags |= IOMAP_WRITE;
1376 entry = grab_mapping_entry(mapping, vmf->pgoff, 0);
1377 if (IS_ERR(entry)) {
1378 ret = dax_fault_return(PTR_ERR(entry));
1379 goto out;
1383 * It is possible, particularly with mixed reads & writes to private
1384 * mappings, that we have raced with a PMD fault that overlaps with
1385 * the PTE we need to set up. If so just return and the fault will be
1386 * retried.
1388 if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1389 ret = VM_FAULT_NOPAGE;
1390 goto unlock_entry;
1394 * Note that we don't bother to use iomap_apply here: DAX required
1395 * the file system block size to be equal the page size, which means
1396 * that we never have to deal with more than a single extent here.
1398 error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1399 if (iomap_errp)
1400 *iomap_errp = error;
1401 if (error) {
1402 ret = dax_fault_return(error);
1403 goto unlock_entry;
1405 if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1406 error = -EIO; /* fs corruption? */
1407 goto error_finish_iomap;
1410 if (vmf->cow_page) {
1411 sector_t sector = dax_iomap_sector(&iomap, pos);
1413 switch (iomap.type) {
1414 case IOMAP_HOLE:
1415 case IOMAP_UNWRITTEN:
1416 clear_user_highpage(vmf->cow_page, vaddr);
1417 break;
1418 case IOMAP_MAPPED:
1419 error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1420 sector, PAGE_SIZE, vmf->cow_page, vaddr);
1421 break;
1422 default:
1423 WARN_ON_ONCE(1);
1424 error = -EIO;
1425 break;
1428 if (error)
1429 goto error_finish_iomap;
1431 __SetPageUptodate(vmf->cow_page);
1432 ret = finish_fault(vmf);
1433 if (!ret)
1434 ret = VM_FAULT_DONE_COW;
1435 goto finish_iomap;
1438 sync = dax_fault_is_synchronous(flags, vma, &iomap);
1440 switch (iomap.type) {
1441 case IOMAP_MAPPED:
1442 if (iomap.flags & IOMAP_F_NEW) {
1443 count_vm_event(PGMAJFAULT);
1444 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
1445 major = VM_FAULT_MAJOR;
1447 error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1448 if (error < 0)
1449 goto error_finish_iomap;
1451 entry = dax_insert_mapping_entry(mapping, vmf, entry, pfn,
1452 0, write && !sync);
1455 * If we are doing synchronous page fault and inode needs fsync,
1456 * we can insert PTE into page tables only after that happens.
1457 * Skip insertion for now and return the pfn so that caller can
1458 * insert it after fsync is done.
1460 if (sync) {
1461 if (WARN_ON_ONCE(!pfnp)) {
1462 error = -EIO;
1463 goto error_finish_iomap;
1465 *pfnp = pfn;
1466 ret = VM_FAULT_NEEDDSYNC | major;
1467 goto finish_iomap;
1469 trace_dax_insert_mapping(inode, vmf, entry);
1470 if (write)
1471 ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn);
1472 else
1473 ret = vmf_insert_mixed(vma, vaddr, pfn);
1475 goto finish_iomap;
1476 case IOMAP_UNWRITTEN:
1477 case IOMAP_HOLE:
1478 if (!write) {
1479 ret = dax_load_hole(mapping, entry, vmf);
1480 goto finish_iomap;
1482 /*FALLTHRU*/
1483 default:
1484 WARN_ON_ONCE(1);
1485 error = -EIO;
1486 break;
1489 error_finish_iomap:
1490 ret = dax_fault_return(error);
1491 finish_iomap:
1492 if (ops->iomap_end) {
1493 int copied = PAGE_SIZE;
1495 if (ret & VM_FAULT_ERROR)
1496 copied = 0;
1498 * The fault is done by now and there's no way back (other
1499 * thread may be already happily using PTE we have installed).
1500 * Just ignore error from ->iomap_end since we cannot do much
1501 * with it.
1503 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1505 unlock_entry:
1506 put_locked_mapping_entry(mapping, vmf->pgoff);
1507 out:
1508 trace_dax_pte_fault_done(inode, vmf, ret);
1509 return ret | major;
1512 #ifdef CONFIG_FS_DAX_PMD
1513 static vm_fault_t dax_pmd_load_hole(struct vm_fault *vmf, struct iomap *iomap,
1514 void *entry)
1516 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1517 unsigned long pmd_addr = vmf->address & PMD_MASK;
1518 struct inode *inode = mapping->host;
1519 struct page *zero_page;
1520 void *ret = NULL;
1521 spinlock_t *ptl;
1522 pmd_t pmd_entry;
1523 pfn_t pfn;
1525 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1527 if (unlikely(!zero_page))
1528 goto fallback;
1530 pfn = page_to_pfn_t(zero_page);
1531 ret = dax_insert_mapping_entry(mapping, vmf, entry, pfn,
1532 RADIX_DAX_PMD | RADIX_DAX_ZERO_PAGE, false);
1534 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1535 if (!pmd_none(*(vmf->pmd))) {
1536 spin_unlock(ptl);
1537 goto fallback;
1540 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1541 pmd_entry = pmd_mkhuge(pmd_entry);
1542 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1543 spin_unlock(ptl);
1544 trace_dax_pmd_load_hole(inode, vmf, zero_page, ret);
1545 return VM_FAULT_NOPAGE;
1547 fallback:
1548 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, ret);
1549 return VM_FAULT_FALLBACK;
1552 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1553 const struct iomap_ops *ops)
1555 struct vm_area_struct *vma = vmf->vma;
1556 struct address_space *mapping = vma->vm_file->f_mapping;
1557 unsigned long pmd_addr = vmf->address & PMD_MASK;
1558 bool write = vmf->flags & FAULT_FLAG_WRITE;
1559 bool sync;
1560 unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1561 struct inode *inode = mapping->host;
1562 vm_fault_t result = VM_FAULT_FALLBACK;
1563 struct iomap iomap = { 0 };
1564 pgoff_t max_pgoff, pgoff;
1565 void *entry;
1566 loff_t pos;
1567 int error;
1568 pfn_t pfn;
1571 * Check whether offset isn't beyond end of file now. Caller is
1572 * supposed to hold locks serializing us with truncate / punch hole so
1573 * this is a reliable test.
1575 pgoff = linear_page_index(vma, pmd_addr);
1576 max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1578 trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1581 * Make sure that the faulting address's PMD offset (color) matches
1582 * the PMD offset from the start of the file. This is necessary so
1583 * that a PMD range in the page table overlaps exactly with a PMD
1584 * range in the radix tree.
1586 if ((vmf->pgoff & PG_PMD_COLOUR) !=
1587 ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1588 goto fallback;
1590 /* Fall back to PTEs if we're going to COW */
1591 if (write && !(vma->vm_flags & VM_SHARED))
1592 goto fallback;
1594 /* If the PMD would extend outside the VMA */
1595 if (pmd_addr < vma->vm_start)
1596 goto fallback;
1597 if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1598 goto fallback;
1600 if (pgoff >= max_pgoff) {
1601 result = VM_FAULT_SIGBUS;
1602 goto out;
1605 /* If the PMD would extend beyond the file size */
1606 if ((pgoff | PG_PMD_COLOUR) >= max_pgoff)
1607 goto fallback;
1610 * grab_mapping_entry() will make sure we get a 2MiB empty entry, a
1611 * 2MiB zero page entry or a DAX PMD. If it can't (because a 4k page
1612 * is already in the tree, for instance), it will return -EEXIST and
1613 * we just fall back to 4k entries.
1615 entry = grab_mapping_entry(mapping, pgoff, RADIX_DAX_PMD);
1616 if (IS_ERR(entry))
1617 goto fallback;
1620 * It is possible, particularly with mixed reads & writes to private
1621 * mappings, that we have raced with a PTE fault that overlaps with
1622 * the PMD we need to set up. If so just return and the fault will be
1623 * retried.
1625 if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1626 !pmd_devmap(*vmf->pmd)) {
1627 result = 0;
1628 goto unlock_entry;
1632 * Note that we don't use iomap_apply here. We aren't doing I/O, only
1633 * setting up a mapping, so really we're using iomap_begin() as a way
1634 * to look up our filesystem block.
1636 pos = (loff_t)pgoff << PAGE_SHIFT;
1637 error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1638 if (error)
1639 goto unlock_entry;
1641 if (iomap.offset + iomap.length < pos + PMD_SIZE)
1642 goto finish_iomap;
1644 sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
1646 switch (iomap.type) {
1647 case IOMAP_MAPPED:
1648 error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1649 if (error < 0)
1650 goto finish_iomap;
1652 entry = dax_insert_mapping_entry(mapping, vmf, entry, pfn,
1653 RADIX_DAX_PMD, write && !sync);
1656 * If we are doing synchronous page fault and inode needs fsync,
1657 * we can insert PMD into page tables only after that happens.
1658 * Skip insertion for now and return the pfn so that caller can
1659 * insert it after fsync is done.
1661 if (sync) {
1662 if (WARN_ON_ONCE(!pfnp))
1663 goto finish_iomap;
1664 *pfnp = pfn;
1665 result = VM_FAULT_NEEDDSYNC;
1666 goto finish_iomap;
1669 trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
1670 result = vmf_insert_pfn_pmd(vma, vmf->address, vmf->pmd, pfn,
1671 write);
1672 break;
1673 case IOMAP_UNWRITTEN:
1674 case IOMAP_HOLE:
1675 if (WARN_ON_ONCE(write))
1676 break;
1677 result = dax_pmd_load_hole(vmf, &iomap, entry);
1678 break;
1679 default:
1680 WARN_ON_ONCE(1);
1681 break;
1684 finish_iomap:
1685 if (ops->iomap_end) {
1686 int copied = PMD_SIZE;
1688 if (result == VM_FAULT_FALLBACK)
1689 copied = 0;
1691 * The fault is done by now and there's no way back (other
1692 * thread may be already happily using PMD we have installed).
1693 * Just ignore error from ->iomap_end since we cannot do much
1694 * with it.
1696 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1697 &iomap);
1699 unlock_entry:
1700 put_locked_mapping_entry(mapping, pgoff);
1701 fallback:
1702 if (result == VM_FAULT_FALLBACK) {
1703 split_huge_pmd(vma, vmf->pmd, vmf->address);
1704 count_vm_event(THP_FAULT_FALLBACK);
1706 out:
1707 trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1708 return result;
1710 #else
1711 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1712 const struct iomap_ops *ops)
1714 return VM_FAULT_FALLBACK;
1716 #endif /* CONFIG_FS_DAX_PMD */
1719 * dax_iomap_fault - handle a page fault on a DAX file
1720 * @vmf: The description of the fault
1721 * @pe_size: Size of the page to fault in
1722 * @pfnp: PFN to insert for synchronous faults if fsync is required
1723 * @iomap_errp: Storage for detailed error code in case of error
1724 * @ops: Iomap ops passed from the file system
1726 * When a page fault occurs, filesystems may call this helper in
1727 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1728 * has done all the necessary locking for page fault to proceed
1729 * successfully.
1731 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1732 pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1734 switch (pe_size) {
1735 case PE_SIZE_PTE:
1736 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1737 case PE_SIZE_PMD:
1738 return dax_iomap_pmd_fault(vmf, pfnp, ops);
1739 default:
1740 return VM_FAULT_FALLBACK;
1743 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1746 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1747 * @vmf: The description of the fault
1748 * @pe_size: Size of entry to be inserted
1749 * @pfn: PFN to insert
1751 * This function inserts writeable PTE or PMD entry into page tables for mmaped
1752 * DAX file. It takes care of marking corresponding radix tree entry as dirty
1753 * as well.
1755 static vm_fault_t dax_insert_pfn_mkwrite(struct vm_fault *vmf,
1756 enum page_entry_size pe_size,
1757 pfn_t pfn)
1759 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1760 void *entry, **slot;
1761 pgoff_t index = vmf->pgoff;
1762 vm_fault_t ret;
1764 xa_lock_irq(&mapping->i_pages);
1765 entry = get_unlocked_mapping_entry(mapping, index, &slot);
1766 /* Did we race with someone splitting entry or so? */
1767 if (!entry ||
1768 (pe_size == PE_SIZE_PTE && !dax_is_pte_entry(entry)) ||
1769 (pe_size == PE_SIZE_PMD && !dax_is_pmd_entry(entry))) {
1770 put_unlocked_mapping_entry(mapping, index, entry);
1771 xa_unlock_irq(&mapping->i_pages);
1772 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1773 VM_FAULT_NOPAGE);
1774 return VM_FAULT_NOPAGE;
1776 radix_tree_tag_set(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY);
1777 entry = lock_slot(mapping, slot);
1778 xa_unlock_irq(&mapping->i_pages);
1779 switch (pe_size) {
1780 case PE_SIZE_PTE:
1781 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1782 break;
1783 #ifdef CONFIG_FS_DAX_PMD
1784 case PE_SIZE_PMD:
1785 ret = vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd,
1786 pfn, true);
1787 break;
1788 #endif
1789 default:
1790 ret = VM_FAULT_FALLBACK;
1792 put_locked_mapping_entry(mapping, index);
1793 trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1794 return ret;
1798 * dax_finish_sync_fault - finish synchronous page fault
1799 * @vmf: The description of the fault
1800 * @pe_size: Size of entry to be inserted
1801 * @pfn: PFN to insert
1803 * This function ensures that the file range touched by the page fault is
1804 * stored persistently on the media and handles inserting of appropriate page
1805 * table entry.
1807 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1808 enum page_entry_size pe_size, pfn_t pfn)
1810 int err;
1811 loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1812 size_t len = 0;
1814 if (pe_size == PE_SIZE_PTE)
1815 len = PAGE_SIZE;
1816 else if (pe_size == PE_SIZE_PMD)
1817 len = PMD_SIZE;
1818 else
1819 WARN_ON_ONCE(1);
1820 err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1821 if (err)
1822 return VM_FAULT_SIGBUS;
1823 return dax_insert_pfn_mkwrite(vmf, pe_size, pfn);
1825 EXPORT_SYMBOL_GPL(dax_finish_sync_fault);