2 * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
4 * (C) Copyright 2014, 2015 Linaro Ltd.
5 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
12 * CPPC describes a few methods for controlling CPU performance using
13 * information from a per CPU table called CPC. This table is described in
14 * the ACPI v5.0+ specification. The table consists of a list of
15 * registers which may be memory mapped or hardware registers and also may
16 * include some static integer values.
18 * CPU performance is on an abstract continuous scale as against a discretized
19 * P-state scale which is tied to CPU frequency only. In brief, the basic
22 * - OS makes a CPU performance request. (Can provide min and max bounds)
24 * - Platform (such as BMC) is free to optimize request within requested bounds
25 * depending on power/thermal budgets etc.
27 * - Platform conveys its decision back to OS
29 * The communication between OS and platform occurs through another medium
30 * called (PCC) Platform Communication Channel. This is a generic mailbox like
31 * mechanism which includes doorbell semantics to indicate register updates.
32 * See drivers/mailbox/pcc.c for details on PCC.
34 * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
35 * above specifications.
38 #define pr_fmt(fmt) "ACPI CPPC: " fmt
40 #include <linux/cpufreq.h>
41 #include <linux/delay.h>
42 #include <linux/ktime.h>
43 #include <linux/rwsem.h>
44 #include <linux/wait.h>
46 #include <acpi/cppc_acpi.h>
48 struct cppc_pcc_data
{
49 struct mbox_chan
*pcc_channel
;
50 void __iomem
*pcc_comm_addr
;
52 bool pcc_channel_acquired
;
54 unsigned int pcc_mpar
, pcc_mrtt
, pcc_nominal
;
56 bool pending_pcc_write_cmd
; /* Any pending/batched PCC write cmds? */
57 bool platform_owns_pcc
; /* Ownership of PCC subspace */
58 unsigned int pcc_write_cnt
; /* Running count of PCC write commands */
61 * Lock to provide controlled access to the PCC channel.
63 * For performance critical usecases(currently cppc_set_perf)
64 * We need to take read_lock and check if channel belongs to OSPM
65 * before reading or writing to PCC subspace
66 * We need to take write_lock before transferring the channel
67 * ownership to the platform via a Doorbell
68 * This allows us to batch a number of CPPC requests if they happen
69 * to originate in about the same time
71 * For non-performance critical usecases(init)
72 * Take write_lock for all purposes which gives exclusive access
74 struct rw_semaphore pcc_lock
;
76 /* Wait queue for CPUs whose requests were batched */
77 wait_queue_head_t pcc_write_wait_q
;
80 /* Structure to represent the single PCC channel */
81 static struct cppc_pcc_data pcc_data
= {
82 .pcc_subspace_idx
= -1,
83 .platform_owns_pcc
= true,
87 * The cpc_desc structure contains the ACPI register details
88 * as described in the per CPU _CPC tables. The details
89 * include the type of register (e.g. PCC, System IO, FFH etc.)
90 * and destination addresses which lets us READ/WRITE CPU performance
91 * information using the appropriate I/O methods.
93 static DEFINE_PER_CPU(struct cpc_desc
*, cpc_desc_ptr
);
95 /* pcc mapped address + header size + offset within PCC subspace */
96 #define GET_PCC_VADDR(offs) (pcc_data.pcc_comm_addr + 0x8 + (offs))
98 /* Check if a CPC register is in PCC */
99 #define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
100 (cpc)->cpc_entry.reg.space_id == \
101 ACPI_ADR_SPACE_PLATFORM_COMM)
103 /* Evalutes to True if reg is a NULL register descriptor */
104 #define IS_NULL_REG(reg) ((reg)->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY && \
105 (reg)->address == 0 && \
106 (reg)->bit_width == 0 && \
107 (reg)->bit_offset == 0 && \
108 (reg)->access_width == 0)
110 /* Evalutes to True if an optional cpc field is supported */
111 #define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ? \
112 !!(cpc)->cpc_entry.int_value : \
113 !IS_NULL_REG(&(cpc)->cpc_entry.reg))
115 * Arbitrary Retries in case the remote processor is slow to respond
116 * to PCC commands. Keeping it high enough to cover emulators where
117 * the processors run painfully slow.
119 #define NUM_RETRIES 500
122 struct attribute attr
;
123 ssize_t (*show
)(struct kobject
*kobj
,
124 struct attribute
*attr
, char *buf
);
125 ssize_t (*store
)(struct kobject
*kobj
,
126 struct attribute
*attr
, const char *c
, ssize_t count
);
129 #define define_one_cppc_ro(_name) \
130 static struct cppc_attr _name = \
131 __ATTR(_name, 0444, show_##_name, NULL)
133 #define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
135 #define show_cppc_data(access_fn, struct_name, member_name) \
136 static ssize_t show_##member_name(struct kobject *kobj, \
137 struct attribute *attr, char *buf) \
139 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj); \
140 struct struct_name st_name = {0}; \
143 ret = access_fn(cpc_ptr->cpu_id, &st_name); \
147 return scnprintf(buf, PAGE_SIZE, "%llu\n", \
148 (u64)st_name.member_name); \
150 define_one_cppc_ro(member_name)
152 show_cppc_data(cppc_get_perf_caps
, cppc_perf_caps
, highest_perf
);
153 show_cppc_data(cppc_get_perf_caps
, cppc_perf_caps
, lowest_perf
);
154 show_cppc_data(cppc_get_perf_caps
, cppc_perf_caps
, nominal_perf
);
155 show_cppc_data(cppc_get_perf_caps
, cppc_perf_caps
, lowest_nonlinear_perf
);
156 show_cppc_data(cppc_get_perf_ctrs
, cppc_perf_fb_ctrs
, reference_perf
);
157 show_cppc_data(cppc_get_perf_ctrs
, cppc_perf_fb_ctrs
, wraparound_time
);
159 static ssize_t
show_feedback_ctrs(struct kobject
*kobj
,
160 struct attribute
*attr
, char *buf
)
162 struct cpc_desc
*cpc_ptr
= to_cpc_desc(kobj
);
163 struct cppc_perf_fb_ctrs fb_ctrs
= {0};
166 ret
= cppc_get_perf_ctrs(cpc_ptr
->cpu_id
, &fb_ctrs
);
170 return scnprintf(buf
, PAGE_SIZE
, "ref:%llu del:%llu\n",
171 fb_ctrs
.reference
, fb_ctrs
.delivered
);
173 define_one_cppc_ro(feedback_ctrs
);
175 static struct attribute
*cppc_attrs
[] = {
177 &reference_perf
.attr
,
178 &wraparound_time
.attr
,
181 &lowest_nonlinear_perf
.attr
,
186 static struct kobj_type cppc_ktype
= {
187 .sysfs_ops
= &kobj_sysfs_ops
,
188 .default_attrs
= cppc_attrs
,
191 static int check_pcc_chan(bool chk_err_bit
)
193 int ret
= -EIO
, status
= 0;
194 struct acpi_pcct_shared_memory __iomem
*generic_comm_base
= pcc_data
.pcc_comm_addr
;
195 ktime_t next_deadline
= ktime_add(ktime_get(), pcc_data
.deadline
);
197 if (!pcc_data
.platform_owns_pcc
)
200 /* Retry in case the remote processor was too slow to catch up. */
201 while (!ktime_after(ktime_get(), next_deadline
)) {
203 * Per spec, prior to boot the PCC space wil be initialized by
204 * platform and should have set the command completion bit when
205 * PCC can be used by OSPM
207 status
= readw_relaxed(&generic_comm_base
->status
);
208 if (status
& PCC_CMD_COMPLETE_MASK
) {
210 if (chk_err_bit
&& (status
& PCC_ERROR_MASK
))
215 * Reducing the bus traffic in case this loop takes longer than
222 pcc_data
.platform_owns_pcc
= false;
224 pr_err("PCC check channel failed. Status=%x\n", status
);
230 * This function transfers the ownership of the PCC to the platform
231 * So it must be called while holding write_lock(pcc_lock)
233 static int send_pcc_cmd(u16 cmd
)
236 struct acpi_pcct_shared_memory
*generic_comm_base
=
237 (struct acpi_pcct_shared_memory
*) pcc_data
.pcc_comm_addr
;
238 static ktime_t last_cmd_cmpl_time
, last_mpar_reset
;
239 static int mpar_count
;
240 unsigned int time_delta
;
243 * For CMD_WRITE we know for a fact the caller should have checked
244 * the channel before writing to PCC space
246 if (cmd
== CMD_READ
) {
248 * If there are pending cpc_writes, then we stole the channel
249 * before write completion, so first send a WRITE command to
252 if (pcc_data
.pending_pcc_write_cmd
)
253 send_pcc_cmd(CMD_WRITE
);
255 ret
= check_pcc_chan(false);
258 } else /* CMD_WRITE */
259 pcc_data
.pending_pcc_write_cmd
= FALSE
;
262 * Handle the Minimum Request Turnaround Time(MRTT)
263 * "The minimum amount of time that OSPM must wait after the completion
264 * of a command before issuing the next command, in microseconds"
266 if (pcc_data
.pcc_mrtt
) {
267 time_delta
= ktime_us_delta(ktime_get(), last_cmd_cmpl_time
);
268 if (pcc_data
.pcc_mrtt
> time_delta
)
269 udelay(pcc_data
.pcc_mrtt
- time_delta
);
273 * Handle the non-zero Maximum Periodic Access Rate(MPAR)
274 * "The maximum number of periodic requests that the subspace channel can
275 * support, reported in commands per minute. 0 indicates no limitation."
277 * This parameter should be ideally zero or large enough so that it can
278 * handle maximum number of requests that all the cores in the system can
279 * collectively generate. If it is not, we will follow the spec and just
280 * not send the request to the platform after hitting the MPAR limit in
283 if (pcc_data
.pcc_mpar
) {
284 if (mpar_count
== 0) {
285 time_delta
= ktime_ms_delta(ktime_get(), last_mpar_reset
);
286 if (time_delta
< 60 * MSEC_PER_SEC
) {
287 pr_debug("PCC cmd not sent due to MPAR limit");
291 last_mpar_reset
= ktime_get();
292 mpar_count
= pcc_data
.pcc_mpar
;
297 /* Write to the shared comm region. */
298 writew_relaxed(cmd
, &generic_comm_base
->command
);
300 /* Flip CMD COMPLETE bit */
301 writew_relaxed(0, &generic_comm_base
->status
);
303 pcc_data
.platform_owns_pcc
= true;
306 ret
= mbox_send_message(pcc_data
.pcc_channel
, &cmd
);
308 pr_err("Err sending PCC mbox message. cmd:%d, ret:%d\n",
313 /* wait for completion and check for PCC errro bit */
314 ret
= check_pcc_chan(true);
316 if (pcc_data
.pcc_mrtt
)
317 last_cmd_cmpl_time
= ktime_get();
319 if (pcc_data
.pcc_channel
->mbox
->txdone_irq
)
320 mbox_chan_txdone(pcc_data
.pcc_channel
, ret
);
322 mbox_client_txdone(pcc_data
.pcc_channel
, ret
);
325 if (cmd
== CMD_WRITE
) {
327 for_each_possible_cpu(i
) {
328 struct cpc_desc
*desc
= per_cpu(cpc_desc_ptr
, i
);
332 if (desc
->write_cmd_id
== pcc_data
.pcc_write_cnt
)
333 desc
->write_cmd_status
= ret
;
336 pcc_data
.pcc_write_cnt
++;
337 wake_up_all(&pcc_data
.pcc_write_wait_q
);
343 static void cppc_chan_tx_done(struct mbox_client
*cl
, void *msg
, int ret
)
346 pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
349 pr_debug("TX completed. CMD sent:%x, ret:%d\n",
353 struct mbox_client cppc_mbox_cl
= {
354 .tx_done
= cppc_chan_tx_done
,
355 .knows_txdone
= true,
358 static int acpi_get_psd(struct cpc_desc
*cpc_ptr
, acpi_handle handle
)
360 int result
= -EFAULT
;
361 acpi_status status
= AE_OK
;
362 struct acpi_buffer buffer
= {ACPI_ALLOCATE_BUFFER
, NULL
};
363 struct acpi_buffer format
= {sizeof("NNNNN"), "NNNNN"};
364 struct acpi_buffer state
= {0, NULL
};
365 union acpi_object
*psd
= NULL
;
366 struct acpi_psd_package
*pdomain
;
368 status
= acpi_evaluate_object_typed(handle
, "_PSD", NULL
, &buffer
,
370 if (ACPI_FAILURE(status
))
373 psd
= buffer
.pointer
;
374 if (!psd
|| psd
->package
.count
!= 1) {
375 pr_debug("Invalid _PSD data\n");
379 pdomain
= &(cpc_ptr
->domain_info
);
381 state
.length
= sizeof(struct acpi_psd_package
);
382 state
.pointer
= pdomain
;
384 status
= acpi_extract_package(&(psd
->package
.elements
[0]),
386 if (ACPI_FAILURE(status
)) {
387 pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr
->cpu_id
);
391 if (pdomain
->num_entries
!= ACPI_PSD_REV0_ENTRIES
) {
392 pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr
->cpu_id
);
396 if (pdomain
->revision
!= ACPI_PSD_REV0_REVISION
) {
397 pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr
->cpu_id
);
401 if (pdomain
->coord_type
!= DOMAIN_COORD_TYPE_SW_ALL
&&
402 pdomain
->coord_type
!= DOMAIN_COORD_TYPE_SW_ANY
&&
403 pdomain
->coord_type
!= DOMAIN_COORD_TYPE_HW_ALL
) {
404 pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr
->cpu_id
);
410 kfree(buffer
.pointer
);
415 * acpi_get_psd_map - Map the CPUs in a common freq domain.
416 * @all_cpu_data: Ptrs to CPU specific CPPC data including PSD info.
418 * Return: 0 for success or negative value for err.
420 int acpi_get_psd_map(struct cppc_cpudata
**all_cpu_data
)
425 cpumask_var_t covered_cpus
;
426 struct cppc_cpudata
*pr
, *match_pr
;
427 struct acpi_psd_package
*pdomain
;
428 struct acpi_psd_package
*match_pdomain
;
429 struct cpc_desc
*cpc_ptr
, *match_cpc_ptr
;
431 if (!zalloc_cpumask_var(&covered_cpus
, GFP_KERNEL
))
435 * Now that we have _PSD data from all CPUs, lets setup P-state
438 for_each_possible_cpu(i
) {
439 pr
= all_cpu_data
[i
];
443 if (cpumask_test_cpu(i
, covered_cpus
))
446 cpc_ptr
= per_cpu(cpc_desc_ptr
, i
);
452 pdomain
= &(cpc_ptr
->domain_info
);
453 cpumask_set_cpu(i
, pr
->shared_cpu_map
);
454 cpumask_set_cpu(i
, covered_cpus
);
455 if (pdomain
->num_processors
<= 1)
458 /* Validate the Domain info */
459 count_target
= pdomain
->num_processors
;
460 if (pdomain
->coord_type
== DOMAIN_COORD_TYPE_SW_ALL
)
461 pr
->shared_type
= CPUFREQ_SHARED_TYPE_ALL
;
462 else if (pdomain
->coord_type
== DOMAIN_COORD_TYPE_HW_ALL
)
463 pr
->shared_type
= CPUFREQ_SHARED_TYPE_HW
;
464 else if (pdomain
->coord_type
== DOMAIN_COORD_TYPE_SW_ANY
)
465 pr
->shared_type
= CPUFREQ_SHARED_TYPE_ANY
;
467 for_each_possible_cpu(j
) {
471 match_cpc_ptr
= per_cpu(cpc_desc_ptr
, j
);
472 if (!match_cpc_ptr
) {
477 match_pdomain
= &(match_cpc_ptr
->domain_info
);
478 if (match_pdomain
->domain
!= pdomain
->domain
)
481 /* Here i and j are in the same domain */
482 if (match_pdomain
->num_processors
!= count_target
) {
487 if (pdomain
->coord_type
!= match_pdomain
->coord_type
) {
492 cpumask_set_cpu(j
, covered_cpus
);
493 cpumask_set_cpu(j
, pr
->shared_cpu_map
);
496 for_each_possible_cpu(j
) {
500 match_pr
= all_cpu_data
[j
];
504 match_cpc_ptr
= per_cpu(cpc_desc_ptr
, j
);
505 if (!match_cpc_ptr
) {
510 match_pdomain
= &(match_cpc_ptr
->domain_info
);
511 if (match_pdomain
->domain
!= pdomain
->domain
)
514 match_pr
->shared_type
= pr
->shared_type
;
515 cpumask_copy(match_pr
->shared_cpu_map
,
521 for_each_possible_cpu(i
) {
522 pr
= all_cpu_data
[i
];
526 /* Assume no coordination on any error parsing domain info */
528 cpumask_clear(pr
->shared_cpu_map
);
529 cpumask_set_cpu(i
, pr
->shared_cpu_map
);
530 pr
->shared_type
= CPUFREQ_SHARED_TYPE_ALL
;
534 free_cpumask_var(covered_cpus
);
537 EXPORT_SYMBOL_GPL(acpi_get_psd_map
);
539 static int register_pcc_channel(int pcc_subspace_idx
)
541 struct acpi_pcct_hw_reduced
*cppc_ss
;
544 if (pcc_subspace_idx
>= 0) {
545 pcc_data
.pcc_channel
= pcc_mbox_request_channel(&cppc_mbox_cl
,
548 if (IS_ERR(pcc_data
.pcc_channel
)) {
549 pr_err("Failed to find PCC communication channel\n");
554 * The PCC mailbox controller driver should
555 * have parsed the PCCT (global table of all
556 * PCC channels) and stored pointers to the
557 * subspace communication region in con_priv.
559 cppc_ss
= (pcc_data
.pcc_channel
)->con_priv
;
562 pr_err("No PCC subspace found for CPPC\n");
567 * cppc_ss->latency is just a Nominal value. In reality
568 * the remote processor could be much slower to reply.
569 * So add an arbitrary amount of wait on top of Nominal.
571 usecs_lat
= NUM_RETRIES
* cppc_ss
->latency
;
572 pcc_data
.deadline
= ns_to_ktime(usecs_lat
* NSEC_PER_USEC
);
573 pcc_data
.pcc_mrtt
= cppc_ss
->min_turnaround_time
;
574 pcc_data
.pcc_mpar
= cppc_ss
->max_access_rate
;
575 pcc_data
.pcc_nominal
= cppc_ss
->latency
;
577 pcc_data
.pcc_comm_addr
= acpi_os_ioremap(cppc_ss
->base_address
, cppc_ss
->length
);
578 if (!pcc_data
.pcc_comm_addr
) {
579 pr_err("Failed to ioremap PCC comm region mem\n");
583 /* Set flag so that we dont come here for each CPU. */
584 pcc_data
.pcc_channel_acquired
= true;
591 * cpc_ffh_supported() - check if FFH reading supported
593 * Check if the architecture has support for functional fixed hardware
594 * read/write capability.
596 * Return: true for supported, false for not supported
598 bool __weak
cpc_ffh_supported(void)
604 * An example CPC table looks like the following.
606 * Name(_CPC, Package()
612 * ResourceTemplate(){Register(PCC, 32, 0, 0x120, 2)},
613 * // Highest Performance
614 * ResourceTemplate(){Register(PCC, 32, 0, 0x124, 2)},
615 * // Nominal Performance
616 * ResourceTemplate(){Register(PCC, 32, 0, 0x128, 2)},
617 * // Lowest Nonlinear Performance
618 * ResourceTemplate(){Register(PCC, 32, 0, 0x12C, 2)},
619 * // Lowest Performance
620 * ResourceTemplate(){Register(PCC, 32, 0, 0x130, 2)},
621 * // Guaranteed Performance Register
622 * ResourceTemplate(){Register(PCC, 32, 0, 0x110, 2)},
623 * // Desired Performance Register
624 * ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},
630 * Each Register() encodes how to access that specific register.
631 * e.g. a sample PCC entry has the following encoding:
635 * AddressSpaceKeyword
639 * //RegisterBitOffset
643 * //AccessSize (subspace ID)
650 * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
651 * @pr: Ptr to acpi_processor containing this CPUs logical Id.
653 * Return: 0 for success or negative value for err.
655 int acpi_cppc_processor_probe(struct acpi_processor
*pr
)
657 struct acpi_buffer output
= {ACPI_ALLOCATE_BUFFER
, NULL
};
658 union acpi_object
*out_obj
, *cpc_obj
;
659 struct cpc_desc
*cpc_ptr
;
660 struct cpc_reg
*gas_t
;
661 struct device
*cpu_dev
;
662 acpi_handle handle
= pr
->handle
;
663 unsigned int num_ent
, i
, cpc_rev
;
667 /* Parse the ACPI _CPC table for this cpu. */
668 status
= acpi_evaluate_object_typed(handle
, "_CPC", NULL
, &output
,
670 if (ACPI_FAILURE(status
)) {
675 out_obj
= (union acpi_object
*) output
.pointer
;
677 cpc_ptr
= kzalloc(sizeof(struct cpc_desc
), GFP_KERNEL
);
683 /* First entry is NumEntries. */
684 cpc_obj
= &out_obj
->package
.elements
[0];
685 if (cpc_obj
->type
== ACPI_TYPE_INTEGER
) {
686 num_ent
= cpc_obj
->integer
.value
;
688 pr_debug("Unexpected entry type(%d) for NumEntries\n",
693 /* Only support CPPCv2. Bail otherwise. */
694 if (num_ent
!= CPPC_NUM_ENT
) {
695 pr_debug("Firmware exports %d entries. Expected: %d\n",
696 num_ent
, CPPC_NUM_ENT
);
700 cpc_ptr
->num_entries
= num_ent
;
702 /* Second entry should be revision. */
703 cpc_obj
= &out_obj
->package
.elements
[1];
704 if (cpc_obj
->type
== ACPI_TYPE_INTEGER
) {
705 cpc_rev
= cpc_obj
->integer
.value
;
707 pr_debug("Unexpected entry type(%d) for Revision\n",
712 if (cpc_rev
!= CPPC_REV
) {
713 pr_debug("Firmware exports revision:%d. Expected:%d\n",
718 /* Iterate through remaining entries in _CPC */
719 for (i
= 2; i
< num_ent
; i
++) {
720 cpc_obj
= &out_obj
->package
.elements
[i
];
722 if (cpc_obj
->type
== ACPI_TYPE_INTEGER
) {
723 cpc_ptr
->cpc_regs
[i
-2].type
= ACPI_TYPE_INTEGER
;
724 cpc_ptr
->cpc_regs
[i
-2].cpc_entry
.int_value
= cpc_obj
->integer
.value
;
725 } else if (cpc_obj
->type
== ACPI_TYPE_BUFFER
) {
726 gas_t
= (struct cpc_reg
*)
727 cpc_obj
->buffer
.pointer
;
730 * The PCC Subspace index is encoded inside
731 * the CPC table entries. The same PCC index
732 * will be used for all the PCC entries,
733 * so extract it only once.
735 if (gas_t
->space_id
== ACPI_ADR_SPACE_PLATFORM_COMM
) {
736 if (pcc_data
.pcc_subspace_idx
< 0)
737 pcc_data
.pcc_subspace_idx
= gas_t
->access_width
;
738 else if (pcc_data
.pcc_subspace_idx
!= gas_t
->access_width
) {
739 pr_debug("Mismatched PCC ids.\n");
742 } else if (gas_t
->space_id
== ACPI_ADR_SPACE_SYSTEM_MEMORY
) {
743 if (gas_t
->address
) {
746 addr
= ioremap(gas_t
->address
, gas_t
->bit_width
/8);
749 cpc_ptr
->cpc_regs
[i
-2].sys_mem_vaddr
= addr
;
752 if (gas_t
->space_id
!= ACPI_ADR_SPACE_FIXED_HARDWARE
|| !cpc_ffh_supported()) {
753 /* Support only PCC ,SYS MEM and FFH type regs */
754 pr_debug("Unsupported register type: %d\n", gas_t
->space_id
);
759 cpc_ptr
->cpc_regs
[i
-2].type
= ACPI_TYPE_BUFFER
;
760 memcpy(&cpc_ptr
->cpc_regs
[i
-2].cpc_entry
.reg
, gas_t
, sizeof(*gas_t
));
762 pr_debug("Err in entry:%d in CPC table of CPU:%d \n", i
, pr
->id
);
766 /* Store CPU Logical ID */
767 cpc_ptr
->cpu_id
= pr
->id
;
769 /* Parse PSD data for this CPU */
770 ret
= acpi_get_psd(cpc_ptr
, handle
);
774 /* Register PCC channel once for all CPUs. */
775 if (!pcc_data
.pcc_channel_acquired
) {
776 ret
= register_pcc_channel(pcc_data
.pcc_subspace_idx
);
780 init_rwsem(&pcc_data
.pcc_lock
);
781 init_waitqueue_head(&pcc_data
.pcc_write_wait_q
);
784 /* Everything looks okay */
785 pr_debug("Parsed CPC struct for CPU: %d\n", pr
->id
);
787 /* Add per logical CPU nodes for reading its feedback counters. */
788 cpu_dev
= get_cpu_device(pr
->id
);
794 /* Plug PSD data into this CPUs CPC descriptor. */
795 per_cpu(cpc_desc_ptr
, pr
->id
) = cpc_ptr
;
797 ret
= kobject_init_and_add(&cpc_ptr
->kobj
, &cppc_ktype
, &cpu_dev
->kobj
,
800 per_cpu(cpc_desc_ptr
, pr
->id
) = NULL
;
804 kfree(output
.pointer
);
808 /* Free all the mapped sys mem areas for this CPU */
809 for (i
= 2; i
< cpc_ptr
->num_entries
; i
++) {
810 void __iomem
*addr
= cpc_ptr
->cpc_regs
[i
-2].sys_mem_vaddr
;
818 kfree(output
.pointer
);
821 EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe
);
824 * acpi_cppc_processor_exit - Cleanup CPC structs.
825 * @pr: Ptr to acpi_processor containing this CPUs logical Id.
829 void acpi_cppc_processor_exit(struct acpi_processor
*pr
)
831 struct cpc_desc
*cpc_ptr
;
835 cpc_ptr
= per_cpu(cpc_desc_ptr
, pr
->id
);
839 /* Free all the mapped sys mem areas for this CPU */
840 for (i
= 2; i
< cpc_ptr
->num_entries
; i
++) {
841 addr
= cpc_ptr
->cpc_regs
[i
-2].sys_mem_vaddr
;
846 kobject_put(&cpc_ptr
->kobj
);
849 EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit
);
852 * cpc_read_ffh() - Read FFH register
853 * @cpunum: cpu number to read
854 * @reg: cppc register information
855 * @val: place holder for return value
857 * Read bit_width bits from a specified address and bit_offset
859 * Return: 0 for success and error code
861 int __weak
cpc_read_ffh(int cpunum
, struct cpc_reg
*reg
, u64
*val
)
867 * cpc_write_ffh() - Write FFH register
868 * @cpunum: cpu number to write
869 * @reg: cppc register information
870 * @val: value to write
872 * Write value of bit_width bits to a specified address and bit_offset
874 * Return: 0 for success and error code
876 int __weak
cpc_write_ffh(int cpunum
, struct cpc_reg
*reg
, u64 val
)
882 * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
883 * as fast as possible. We have already mapped the PCC subspace during init, so
884 * we can directly write to it.
887 static int cpc_read(int cpu
, struct cpc_register_resource
*reg_res
, u64
*val
)
890 void __iomem
*vaddr
= 0;
891 struct cpc_reg
*reg
= ®_res
->cpc_entry
.reg
;
893 if (reg_res
->type
== ACPI_TYPE_INTEGER
) {
894 *val
= reg_res
->cpc_entry
.int_value
;
899 if (reg
->space_id
== ACPI_ADR_SPACE_PLATFORM_COMM
)
900 vaddr
= GET_PCC_VADDR(reg
->address
);
901 else if (reg
->space_id
== ACPI_ADR_SPACE_SYSTEM_MEMORY
)
902 vaddr
= reg_res
->sys_mem_vaddr
;
903 else if (reg
->space_id
== ACPI_ADR_SPACE_FIXED_HARDWARE
)
904 return cpc_read_ffh(cpu
, reg
, val
);
906 return acpi_os_read_memory((acpi_physical_address
)reg
->address
,
907 val
, reg
->bit_width
);
909 switch (reg
->bit_width
) {
911 *val
= readb_relaxed(vaddr
);
914 *val
= readw_relaxed(vaddr
);
917 *val
= readl_relaxed(vaddr
);
920 *val
= readq_relaxed(vaddr
);
923 pr_debug("Error: Cannot read %u bit width from PCC\n",
931 static int cpc_write(int cpu
, struct cpc_register_resource
*reg_res
, u64 val
)
934 void __iomem
*vaddr
= 0;
935 struct cpc_reg
*reg
= ®_res
->cpc_entry
.reg
;
937 if (reg
->space_id
== ACPI_ADR_SPACE_PLATFORM_COMM
)
938 vaddr
= GET_PCC_VADDR(reg
->address
);
939 else if (reg
->space_id
== ACPI_ADR_SPACE_SYSTEM_MEMORY
)
940 vaddr
= reg_res
->sys_mem_vaddr
;
941 else if (reg
->space_id
== ACPI_ADR_SPACE_FIXED_HARDWARE
)
942 return cpc_write_ffh(cpu
, reg
, val
);
944 return acpi_os_write_memory((acpi_physical_address
)reg
->address
,
945 val
, reg
->bit_width
);
947 switch (reg
->bit_width
) {
949 writeb_relaxed(val
, vaddr
);
952 writew_relaxed(val
, vaddr
);
955 writel_relaxed(val
, vaddr
);
958 writeq_relaxed(val
, vaddr
);
961 pr_debug("Error: Cannot write %u bit width to PCC\n",
971 * cppc_get_perf_caps - Get a CPUs performance capabilities.
972 * @cpunum: CPU from which to get capabilities info.
973 * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
975 * Return: 0 for success with perf_caps populated else -ERRNO.
977 int cppc_get_perf_caps(int cpunum
, struct cppc_perf_caps
*perf_caps
)
979 struct cpc_desc
*cpc_desc
= per_cpu(cpc_desc_ptr
, cpunum
);
980 struct cpc_register_resource
*highest_reg
, *lowest_reg
,
981 *lowest_non_linear_reg
, *nominal_reg
;
982 u64 high
, low
, nom
, min_nonlinear
;
983 int ret
= 0, regs_in_pcc
= 0;
986 pr_debug("No CPC descriptor for CPU:%d\n", cpunum
);
990 highest_reg
= &cpc_desc
->cpc_regs
[HIGHEST_PERF
];
991 lowest_reg
= &cpc_desc
->cpc_regs
[LOWEST_PERF
];
992 lowest_non_linear_reg
= &cpc_desc
->cpc_regs
[LOW_NON_LINEAR_PERF
];
993 nominal_reg
= &cpc_desc
->cpc_regs
[NOMINAL_PERF
];
995 /* Are any of the regs PCC ?*/
996 if (CPC_IN_PCC(highest_reg
) || CPC_IN_PCC(lowest_reg
) ||
997 CPC_IN_PCC(lowest_non_linear_reg
) || CPC_IN_PCC(nominal_reg
)) {
999 down_write(&pcc_data
.pcc_lock
);
1000 /* Ring doorbell once to update PCC subspace */
1001 if (send_pcc_cmd(CMD_READ
) < 0) {
1007 cpc_read(cpunum
, highest_reg
, &high
);
1008 perf_caps
->highest_perf
= high
;
1010 cpc_read(cpunum
, lowest_reg
, &low
);
1011 perf_caps
->lowest_perf
= low
;
1013 cpc_read(cpunum
, nominal_reg
, &nom
);
1014 perf_caps
->nominal_perf
= nom
;
1016 cpc_read(cpunum
, lowest_non_linear_reg
, &min_nonlinear
);
1017 perf_caps
->lowest_nonlinear_perf
= min_nonlinear
;
1019 if (!high
|| !low
|| !nom
|| !min_nonlinear
)
1024 up_write(&pcc_data
.pcc_lock
);
1027 EXPORT_SYMBOL_GPL(cppc_get_perf_caps
);
1030 * cppc_get_perf_ctrs - Read a CPUs performance feedback counters.
1031 * @cpunum: CPU from which to read counters.
1032 * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1034 * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1036 int cppc_get_perf_ctrs(int cpunum
, struct cppc_perf_fb_ctrs
*perf_fb_ctrs
)
1038 struct cpc_desc
*cpc_desc
= per_cpu(cpc_desc_ptr
, cpunum
);
1039 struct cpc_register_resource
*delivered_reg
, *reference_reg
,
1040 *ref_perf_reg
, *ctr_wrap_reg
;
1041 u64 delivered
, reference
, ref_perf
, ctr_wrap_time
;
1042 int ret
= 0, regs_in_pcc
= 0;
1045 pr_debug("No CPC descriptor for CPU:%d\n", cpunum
);
1049 delivered_reg
= &cpc_desc
->cpc_regs
[DELIVERED_CTR
];
1050 reference_reg
= &cpc_desc
->cpc_regs
[REFERENCE_CTR
];
1051 ref_perf_reg
= &cpc_desc
->cpc_regs
[REFERENCE_PERF
];
1052 ctr_wrap_reg
= &cpc_desc
->cpc_regs
[CTR_WRAP_TIME
];
1055 * If refernce perf register is not supported then we should
1056 * use the nominal perf value
1058 if (!CPC_SUPPORTED(ref_perf_reg
))
1059 ref_perf_reg
= &cpc_desc
->cpc_regs
[NOMINAL_PERF
];
1061 /* Are any of the regs PCC ?*/
1062 if (CPC_IN_PCC(delivered_reg
) || CPC_IN_PCC(reference_reg
) ||
1063 CPC_IN_PCC(ctr_wrap_reg
) || CPC_IN_PCC(ref_perf_reg
)) {
1064 down_write(&pcc_data
.pcc_lock
);
1066 /* Ring doorbell once to update PCC subspace */
1067 if (send_pcc_cmd(CMD_READ
) < 0) {
1073 cpc_read(cpunum
, delivered_reg
, &delivered
);
1074 cpc_read(cpunum
, reference_reg
, &reference
);
1075 cpc_read(cpunum
, ref_perf_reg
, &ref_perf
);
1078 * Per spec, if ctr_wrap_time optional register is unsupported, then the
1079 * performance counters are assumed to never wrap during the lifetime of
1082 ctr_wrap_time
= (u64
)(~((u64
)0));
1083 if (CPC_SUPPORTED(ctr_wrap_reg
))
1084 cpc_read(cpunum
, ctr_wrap_reg
, &ctr_wrap_time
);
1086 if (!delivered
|| !reference
|| !ref_perf
) {
1091 perf_fb_ctrs
->delivered
= delivered
;
1092 perf_fb_ctrs
->reference
= reference
;
1093 perf_fb_ctrs
->reference_perf
= ref_perf
;
1094 perf_fb_ctrs
->wraparound_time
= ctr_wrap_time
;
1097 up_write(&pcc_data
.pcc_lock
);
1100 EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs
);
1103 * cppc_set_perf - Set a CPUs performance controls.
1104 * @cpu: CPU for which to set performance controls.
1105 * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1107 * Return: 0 for success, -ERRNO otherwise.
1109 int cppc_set_perf(int cpu
, struct cppc_perf_ctrls
*perf_ctrls
)
1111 struct cpc_desc
*cpc_desc
= per_cpu(cpc_desc_ptr
, cpu
);
1112 struct cpc_register_resource
*desired_reg
;
1116 pr_debug("No CPC descriptor for CPU:%d\n", cpu
);
1120 desired_reg
= &cpc_desc
->cpc_regs
[DESIRED_PERF
];
1123 * This is Phase-I where we want to write to CPC registers
1124 * -> We want all CPUs to be able to execute this phase in parallel
1126 * Since read_lock can be acquired by multiple CPUs simultaneously we
1127 * achieve that goal here
1129 if (CPC_IN_PCC(desired_reg
)) {
1130 down_read(&pcc_data
.pcc_lock
); /* BEGIN Phase-I */
1131 if (pcc_data
.platform_owns_pcc
) {
1132 ret
= check_pcc_chan(false);
1134 up_read(&pcc_data
.pcc_lock
);
1139 * Update the pending_write to make sure a PCC CMD_READ will not
1140 * arrive and steal the channel during the switch to write lock
1142 pcc_data
.pending_pcc_write_cmd
= true;
1143 cpc_desc
->write_cmd_id
= pcc_data
.pcc_write_cnt
;
1144 cpc_desc
->write_cmd_status
= 0;
1148 * Skip writing MIN/MAX until Linux knows how to come up with
1151 cpc_write(cpu
, desired_reg
, perf_ctrls
->desired_perf
);
1153 if (CPC_IN_PCC(desired_reg
))
1154 up_read(&pcc_data
.pcc_lock
); /* END Phase-I */
1156 * This is Phase-II where we transfer the ownership of PCC to Platform
1158 * Short Summary: Basically if we think of a group of cppc_set_perf
1159 * requests that happened in short overlapping interval. The last CPU to
1160 * come out of Phase-I will enter Phase-II and ring the doorbell.
1162 * We have the following requirements for Phase-II:
1163 * 1. We want to execute Phase-II only when there are no CPUs
1164 * currently executing in Phase-I
1165 * 2. Once we start Phase-II we want to avoid all other CPUs from
1167 * 3. We want only one CPU among all those who went through Phase-I
1170 * If write_trylock fails to get the lock and doesn't transfer the
1171 * PCC ownership to the platform, then one of the following will be TRUE
1172 * 1. There is at-least one CPU in Phase-I which will later execute
1173 * write_trylock, so the CPUs in Phase-I will be responsible for
1174 * executing the Phase-II.
1175 * 2. Some other CPU has beaten this CPU to successfully execute the
1176 * write_trylock and has already acquired the write_lock. We know for a
1177 * fact it(other CPU acquiring the write_lock) couldn't have happened
1178 * before this CPU's Phase-I as we held the read_lock.
1179 * 3. Some other CPU executing pcc CMD_READ has stolen the
1180 * down_write, in which case, send_pcc_cmd will check for pending
1181 * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1182 * So this CPU can be certain that its request will be delivered
1183 * So in all cases, this CPU knows that its request will be delivered
1184 * by another CPU and can return
1186 * After getting the down_write we still need to check for
1187 * pending_pcc_write_cmd to take care of the following scenario
1188 * The thread running this code could be scheduled out between
1189 * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1190 * could have delivered the request to Platform by triggering the
1191 * doorbell and transferred the ownership of PCC to platform. So this
1192 * avoids triggering an unnecessary doorbell and more importantly before
1193 * triggering the doorbell it makes sure that the PCC channel ownership
1194 * is still with OSPM.
1195 * pending_pcc_write_cmd can also be cleared by a different CPU, if
1196 * there was a pcc CMD_READ waiting on down_write and it steals the lock
1197 * before the pcc CMD_WRITE is completed. pcc_send_cmd checks for this
1198 * case during a CMD_READ and if there are pending writes it delivers
1199 * the write command before servicing the read command
1201 if (CPC_IN_PCC(desired_reg
)) {
1202 if (down_write_trylock(&pcc_data
.pcc_lock
)) { /* BEGIN Phase-II */
1203 /* Update only if there are pending write commands */
1204 if (pcc_data
.pending_pcc_write_cmd
)
1205 send_pcc_cmd(CMD_WRITE
);
1206 up_write(&pcc_data
.pcc_lock
); /* END Phase-II */
1208 /* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1209 wait_event(pcc_data
.pcc_write_wait_q
,
1210 cpc_desc
->write_cmd_id
!= pcc_data
.pcc_write_cnt
);
1212 /* send_pcc_cmd updates the status in case of failure */
1213 ret
= cpc_desc
->write_cmd_status
;
1217 EXPORT_SYMBOL_GPL(cppc_set_perf
);
1220 * cppc_get_transition_latency - returns frequency transition latency in ns
1222 * ACPI CPPC does not explicitly specifiy how a platform can specify the
1223 * transition latency for perfromance change requests. The closest we have
1224 * is the timing information from the PCCT tables which provides the info
1225 * on the number and frequency of PCC commands the platform can handle.
1227 unsigned int cppc_get_transition_latency(int cpu_num
)
1230 * Expected transition latency is based on the PCCT timing values
1231 * Below are definition from ACPI spec:
1232 * pcc_nominal- Expected latency to process a command, in microseconds
1233 * pcc_mpar - The maximum number of periodic requests that the subspace
1234 * channel can support, reported in commands per minute. 0
1235 * indicates no limitation.
1236 * pcc_mrtt - The minimum amount of time that OSPM must wait after the
1237 * completion of a command before issuing the next command,
1240 unsigned int latency_ns
= 0;
1241 struct cpc_desc
*cpc_desc
;
1242 struct cpc_register_resource
*desired_reg
;
1244 cpc_desc
= per_cpu(cpc_desc_ptr
, cpu_num
);
1246 return CPUFREQ_ETERNAL
;
1248 desired_reg
= &cpc_desc
->cpc_regs
[DESIRED_PERF
];
1249 if (!CPC_IN_PCC(desired_reg
))
1250 return CPUFREQ_ETERNAL
;
1252 if (pcc_data
.pcc_mpar
)
1253 latency_ns
= 60 * (1000 * 1000 * 1000 / pcc_data
.pcc_mpar
);
1255 latency_ns
= max(latency_ns
, pcc_data
.pcc_nominal
* 1000);
1256 latency_ns
= max(latency_ns
, pcc_data
.pcc_mrtt
* 1000);
1260 EXPORT_SYMBOL_GPL(cppc_get_transition_latency
);