2 * linux/drivers/clocksource/arm_arch_timer.c
4 * Copyright (C) 2011 ARM Ltd.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #define pr_fmt(fmt) "arm_arch_timer: " fmt
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/device.h>
17 #include <linux/smp.h>
18 #include <linux/cpu.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/clockchips.h>
21 #include <linux/clocksource.h>
22 #include <linux/interrupt.h>
23 #include <linux/of_irq.h>
24 #include <linux/of_address.h>
26 #include <linux/slab.h>
27 #include <linux/sched/clock.h>
28 #include <linux/sched_clock.h>
29 #include <linux/acpi.h>
31 #include <asm/arch_timer.h>
34 #include <clocksource/arm_arch_timer.h>
37 #define pr_fmt(fmt) "arch_timer: " fmt
40 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
42 #define CNTACR(n) (0x40 + ((n) * 4))
43 #define CNTACR_RPCT BIT(0)
44 #define CNTACR_RVCT BIT(1)
45 #define CNTACR_RFRQ BIT(2)
46 #define CNTACR_RVOFF BIT(3)
47 #define CNTACR_RWVT BIT(4)
48 #define CNTACR_RWPT BIT(5)
50 #define CNTVCT_LO 0x08
51 #define CNTVCT_HI 0x0c
53 #define CNTP_TVAL 0x28
55 #define CNTV_TVAL 0x38
58 static unsigned arch_timers_present __initdata
;
60 static void __iomem
*arch_counter_base
;
64 struct clock_event_device evt
;
67 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
69 static u32 arch_timer_rate
;
70 static int arch_timer_ppi
[ARCH_TIMER_MAX_TIMER_PPI
];
72 static struct clock_event_device __percpu
*arch_timer_evt
;
74 static enum arch_timer_ppi_nr arch_timer_uses_ppi
= ARCH_TIMER_VIRT_PPI
;
75 static bool arch_timer_c3stop
;
76 static bool arch_timer_mem_use_virtual
;
77 static bool arch_counter_suspend_stop
;
78 static bool vdso_default
= true;
80 static bool evtstrm_enable
= IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM
);
82 static int __init
early_evtstrm_cfg(char *buf
)
84 return strtobool(buf
, &evtstrm_enable
);
86 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg
);
89 * Architected system timer support.
92 static __always_inline
93 void arch_timer_reg_write(int access
, enum arch_timer_reg reg
, u32 val
,
94 struct clock_event_device
*clk
)
96 if (access
== ARCH_TIMER_MEM_PHYS_ACCESS
) {
97 struct arch_timer
*timer
= to_arch_timer(clk
);
99 case ARCH_TIMER_REG_CTRL
:
100 writel_relaxed(val
, timer
->base
+ CNTP_CTL
);
102 case ARCH_TIMER_REG_TVAL
:
103 writel_relaxed(val
, timer
->base
+ CNTP_TVAL
);
106 } else if (access
== ARCH_TIMER_MEM_VIRT_ACCESS
) {
107 struct arch_timer
*timer
= to_arch_timer(clk
);
109 case ARCH_TIMER_REG_CTRL
:
110 writel_relaxed(val
, timer
->base
+ CNTV_CTL
);
112 case ARCH_TIMER_REG_TVAL
:
113 writel_relaxed(val
, timer
->base
+ CNTV_TVAL
);
117 arch_timer_reg_write_cp15(access
, reg
, val
);
121 static __always_inline
122 u32
arch_timer_reg_read(int access
, enum arch_timer_reg reg
,
123 struct clock_event_device
*clk
)
127 if (access
== ARCH_TIMER_MEM_PHYS_ACCESS
) {
128 struct arch_timer
*timer
= to_arch_timer(clk
);
130 case ARCH_TIMER_REG_CTRL
:
131 val
= readl_relaxed(timer
->base
+ CNTP_CTL
);
133 case ARCH_TIMER_REG_TVAL
:
134 val
= readl_relaxed(timer
->base
+ CNTP_TVAL
);
137 } else if (access
== ARCH_TIMER_MEM_VIRT_ACCESS
) {
138 struct arch_timer
*timer
= to_arch_timer(clk
);
140 case ARCH_TIMER_REG_CTRL
:
141 val
= readl_relaxed(timer
->base
+ CNTV_CTL
);
143 case ARCH_TIMER_REG_TVAL
:
144 val
= readl_relaxed(timer
->base
+ CNTV_TVAL
);
148 val
= arch_timer_reg_read_cp15(access
, reg
);
155 * Default to cp15 based access because arm64 uses this function for
156 * sched_clock() before DT is probed and the cp15 method is guaranteed
157 * to exist on arm64. arm doesn't use this before DT is probed so even
158 * if we don't have the cp15 accessors we won't have a problem.
160 u64 (*arch_timer_read_counter
)(void) = arch_counter_get_cntvct
;
162 static u64
arch_counter_read(struct clocksource
*cs
)
164 return arch_timer_read_counter();
167 static u64
arch_counter_read_cc(const struct cyclecounter
*cc
)
169 return arch_timer_read_counter();
172 static struct clocksource clocksource_counter
= {
173 .name
= "arch_sys_counter",
175 .read
= arch_counter_read
,
176 .mask
= CLOCKSOURCE_MASK(56),
177 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
180 static struct cyclecounter cyclecounter __ro_after_init
= {
181 .read
= arch_counter_read_cc
,
182 .mask
= CLOCKSOURCE_MASK(56),
185 struct ate_acpi_oem_info
{
186 char oem_id
[ACPI_OEM_ID_SIZE
+ 1];
187 char oem_table_id
[ACPI_OEM_TABLE_ID_SIZE
+ 1];
191 #ifdef CONFIG_FSL_ERRATUM_A008585
193 * The number of retries is an arbitrary value well beyond the highest number
194 * of iterations the loop has been observed to take.
196 #define __fsl_a008585_read_reg(reg) ({ \
198 int _retries = 200; \
201 _old = read_sysreg(reg); \
202 _new = read_sysreg(reg); \
204 } while (unlikely(_old != _new) && _retries); \
206 WARN_ON_ONCE(!_retries); \
210 static u32 notrace
fsl_a008585_read_cntp_tval_el0(void)
212 return __fsl_a008585_read_reg(cntp_tval_el0
);
215 static u32 notrace
fsl_a008585_read_cntv_tval_el0(void)
217 return __fsl_a008585_read_reg(cntv_tval_el0
);
220 static u64 notrace
fsl_a008585_read_cntvct_el0(void)
222 return __fsl_a008585_read_reg(cntvct_el0
);
226 #ifdef CONFIG_HISILICON_ERRATUM_161010101
228 * Verify whether the value of the second read is larger than the first by
229 * less than 32 is the only way to confirm the value is correct, so clear the
230 * lower 5 bits to check whether the difference is greater than 32 or not.
231 * Theoretically the erratum should not occur more than twice in succession
232 * when reading the system counter, but it is possible that some interrupts
233 * may lead to more than twice read errors, triggering the warning, so setting
234 * the number of retries far beyond the number of iterations the loop has been
237 #define __hisi_161010101_read_reg(reg) ({ \
242 _old = read_sysreg(reg); \
243 _new = read_sysreg(reg); \
245 } while (unlikely((_new - _old) >> 5) && _retries); \
247 WARN_ON_ONCE(!_retries); \
251 static u32 notrace
hisi_161010101_read_cntp_tval_el0(void)
253 return __hisi_161010101_read_reg(cntp_tval_el0
);
256 static u32 notrace
hisi_161010101_read_cntv_tval_el0(void)
258 return __hisi_161010101_read_reg(cntv_tval_el0
);
261 static u64 notrace
hisi_161010101_read_cntvct_el0(void)
263 return __hisi_161010101_read_reg(cntvct_el0
);
266 static struct ate_acpi_oem_info hisi_161010101_oem_info
[] = {
268 * Note that trailing spaces are required to properly match
269 * the OEM table information.
273 .oem_table_id
= "HIP05 ",
278 .oem_table_id
= "HIP06 ",
283 .oem_table_id
= "HIP07 ",
286 { /* Sentinel indicating the end of the OEM array */ },
290 #ifdef CONFIG_ARM64_ERRATUM_858921
291 static u64 notrace
arm64_858921_read_cntvct_el0(void)
295 old
= read_sysreg(cntvct_el0
);
296 new = read_sysreg(cntvct_el0
);
297 return (((old
^ new) >> 32) & 1) ? old
: new;
301 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
302 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround
*,
303 timer_unstable_counter_workaround
);
304 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround
);
306 DEFINE_STATIC_KEY_FALSE(arch_timer_read_ool_enabled
);
307 EXPORT_SYMBOL_GPL(arch_timer_read_ool_enabled
);
309 static void erratum_set_next_event_tval_generic(const int access
, unsigned long evt
,
310 struct clock_event_device
*clk
)
313 u64 cval
= evt
+ arch_counter_get_cntvct();
315 ctrl
= arch_timer_reg_read(access
, ARCH_TIMER_REG_CTRL
, clk
);
316 ctrl
|= ARCH_TIMER_CTRL_ENABLE
;
317 ctrl
&= ~ARCH_TIMER_CTRL_IT_MASK
;
319 if (access
== ARCH_TIMER_PHYS_ACCESS
)
320 write_sysreg(cval
, cntp_cval_el0
);
322 write_sysreg(cval
, cntv_cval_el0
);
324 arch_timer_reg_write(access
, ARCH_TIMER_REG_CTRL
, ctrl
, clk
);
327 static __maybe_unused
int erratum_set_next_event_tval_virt(unsigned long evt
,
328 struct clock_event_device
*clk
)
330 erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS
, evt
, clk
);
334 static __maybe_unused
int erratum_set_next_event_tval_phys(unsigned long evt
,
335 struct clock_event_device
*clk
)
337 erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS
, evt
, clk
);
341 static const struct arch_timer_erratum_workaround ool_workarounds
[] = {
342 #ifdef CONFIG_FSL_ERRATUM_A008585
344 .match_type
= ate_match_dt
,
345 .id
= "fsl,erratum-a008585",
346 .desc
= "Freescale erratum a005858",
347 .read_cntp_tval_el0
= fsl_a008585_read_cntp_tval_el0
,
348 .read_cntv_tval_el0
= fsl_a008585_read_cntv_tval_el0
,
349 .read_cntvct_el0
= fsl_a008585_read_cntvct_el0
,
350 .set_next_event_phys
= erratum_set_next_event_tval_phys
,
351 .set_next_event_virt
= erratum_set_next_event_tval_virt
,
354 #ifdef CONFIG_HISILICON_ERRATUM_161010101
356 .match_type
= ate_match_dt
,
357 .id
= "hisilicon,erratum-161010101",
358 .desc
= "HiSilicon erratum 161010101",
359 .read_cntp_tval_el0
= hisi_161010101_read_cntp_tval_el0
,
360 .read_cntv_tval_el0
= hisi_161010101_read_cntv_tval_el0
,
361 .read_cntvct_el0
= hisi_161010101_read_cntvct_el0
,
362 .set_next_event_phys
= erratum_set_next_event_tval_phys
,
363 .set_next_event_virt
= erratum_set_next_event_tval_virt
,
366 .match_type
= ate_match_acpi_oem_info
,
367 .id
= hisi_161010101_oem_info
,
368 .desc
= "HiSilicon erratum 161010101",
369 .read_cntp_tval_el0
= hisi_161010101_read_cntp_tval_el0
,
370 .read_cntv_tval_el0
= hisi_161010101_read_cntv_tval_el0
,
371 .read_cntvct_el0
= hisi_161010101_read_cntvct_el0
,
372 .set_next_event_phys
= erratum_set_next_event_tval_phys
,
373 .set_next_event_virt
= erratum_set_next_event_tval_virt
,
376 #ifdef CONFIG_ARM64_ERRATUM_858921
378 .match_type
= ate_match_local_cap_id
,
379 .id
= (void *)ARM64_WORKAROUND_858921
,
380 .desc
= "ARM erratum 858921",
381 .read_cntvct_el0
= arm64_858921_read_cntvct_el0
,
386 typedef bool (*ate_match_fn_t
)(const struct arch_timer_erratum_workaround
*,
390 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround
*wa
,
393 const struct device_node
*np
= arg
;
395 return of_property_read_bool(np
, wa
->id
);
399 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround
*wa
,
402 return this_cpu_has_cap((uintptr_t)wa
->id
);
407 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround
*wa
,
410 static const struct ate_acpi_oem_info empty_oem_info
= {};
411 const struct ate_acpi_oem_info
*info
= wa
->id
;
412 const struct acpi_table_header
*table
= arg
;
414 /* Iterate over the ACPI OEM info array, looking for a match */
415 while (memcmp(info
, &empty_oem_info
, sizeof(*info
))) {
416 if (!memcmp(info
->oem_id
, table
->oem_id
, ACPI_OEM_ID_SIZE
) &&
417 !memcmp(info
->oem_table_id
, table
->oem_table_id
, ACPI_OEM_TABLE_ID_SIZE
) &&
418 info
->oem_revision
== table
->oem_revision
)
427 static const struct arch_timer_erratum_workaround
*
428 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type
,
429 ate_match_fn_t match_fn
,
434 for (i
= 0; i
< ARRAY_SIZE(ool_workarounds
); i
++) {
435 if (ool_workarounds
[i
].match_type
!= type
)
438 if (match_fn(&ool_workarounds
[i
], arg
))
439 return &ool_workarounds
[i
];
446 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround
*wa
,
452 __this_cpu_write(timer_unstable_counter_workaround
, wa
);
454 for_each_possible_cpu(i
)
455 per_cpu(timer_unstable_counter_workaround
, i
) = wa
;
459 * Use the locked version, as we're called from the CPU
460 * hotplug framework. Otherwise, we end-up in deadlock-land.
462 static_branch_enable_cpuslocked(&arch_timer_read_ool_enabled
);
465 * Don't use the vdso fastpath if errata require using the
466 * out-of-line counter accessor. We may change our mind pretty
467 * late in the game (with a per-CPU erratum, for example), so
468 * change both the default value and the vdso itself.
470 if (wa
->read_cntvct_el0
) {
471 clocksource_counter
.archdata
.vdso_direct
= false;
472 vdso_default
= false;
476 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type
,
479 const struct arch_timer_erratum_workaround
*wa
;
480 ate_match_fn_t match_fn
= NULL
;
485 match_fn
= arch_timer_check_dt_erratum
;
487 case ate_match_local_cap_id
:
488 match_fn
= arch_timer_check_local_cap_erratum
;
491 case ate_match_acpi_oem_info
:
492 match_fn
= arch_timer_check_acpi_oem_erratum
;
499 wa
= arch_timer_iterate_errata(type
, match_fn
, arg
);
503 if (needs_unstable_timer_counter_workaround()) {
504 const struct arch_timer_erratum_workaround
*__wa
;
505 __wa
= __this_cpu_read(timer_unstable_counter_workaround
);
506 if (__wa
&& wa
!= __wa
)
507 pr_warn("Can't enable workaround for %s (clashes with %s\n)",
508 wa
->desc
, __wa
->desc
);
514 arch_timer_enable_workaround(wa
, local
);
515 pr_info("Enabling %s workaround for %s\n",
516 local
? "local" : "global", wa
->desc
);
519 #define erratum_handler(fn, r, ...) \
522 if (needs_unstable_timer_counter_workaround()) { \
523 const struct arch_timer_erratum_workaround *__wa; \
524 __wa = __this_cpu_read(timer_unstable_counter_workaround); \
525 if (__wa && __wa->fn) { \
526 r = __wa->fn(__VA_ARGS__); \
537 static bool arch_timer_this_cpu_has_cntvct_wa(void)
539 const struct arch_timer_erratum_workaround
*wa
;
541 wa
= __this_cpu_read(timer_unstable_counter_workaround
);
542 return wa
&& wa
->read_cntvct_el0
;
545 #define arch_timer_check_ool_workaround(t,a) do { } while(0)
546 #define erratum_set_next_event_tval_virt(...) ({BUG(); 0;})
547 #define erratum_set_next_event_tval_phys(...) ({BUG(); 0;})
548 #define erratum_handler(fn, r, ...) ({false;})
549 #define arch_timer_this_cpu_has_cntvct_wa() ({false;})
550 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
552 static __always_inline irqreturn_t
timer_handler(const int access
,
553 struct clock_event_device
*evt
)
557 ctrl
= arch_timer_reg_read(access
, ARCH_TIMER_REG_CTRL
, evt
);
558 if (ctrl
& ARCH_TIMER_CTRL_IT_STAT
) {
559 ctrl
|= ARCH_TIMER_CTRL_IT_MASK
;
560 arch_timer_reg_write(access
, ARCH_TIMER_REG_CTRL
, ctrl
, evt
);
561 evt
->event_handler(evt
);
568 static irqreturn_t
arch_timer_handler_virt(int irq
, void *dev_id
)
570 struct clock_event_device
*evt
= dev_id
;
572 return timer_handler(ARCH_TIMER_VIRT_ACCESS
, evt
);
575 static irqreturn_t
arch_timer_handler_phys(int irq
, void *dev_id
)
577 struct clock_event_device
*evt
= dev_id
;
579 return timer_handler(ARCH_TIMER_PHYS_ACCESS
, evt
);
582 static irqreturn_t
arch_timer_handler_phys_mem(int irq
, void *dev_id
)
584 struct clock_event_device
*evt
= dev_id
;
586 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS
, evt
);
589 static irqreturn_t
arch_timer_handler_virt_mem(int irq
, void *dev_id
)
591 struct clock_event_device
*evt
= dev_id
;
593 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS
, evt
);
596 static __always_inline
int timer_shutdown(const int access
,
597 struct clock_event_device
*clk
)
601 ctrl
= arch_timer_reg_read(access
, ARCH_TIMER_REG_CTRL
, clk
);
602 ctrl
&= ~ARCH_TIMER_CTRL_ENABLE
;
603 arch_timer_reg_write(access
, ARCH_TIMER_REG_CTRL
, ctrl
, clk
);
608 static int arch_timer_shutdown_virt(struct clock_event_device
*clk
)
610 return timer_shutdown(ARCH_TIMER_VIRT_ACCESS
, clk
);
613 static int arch_timer_shutdown_phys(struct clock_event_device
*clk
)
615 return timer_shutdown(ARCH_TIMER_PHYS_ACCESS
, clk
);
618 static int arch_timer_shutdown_virt_mem(struct clock_event_device
*clk
)
620 return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS
, clk
);
623 static int arch_timer_shutdown_phys_mem(struct clock_event_device
*clk
)
625 return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS
, clk
);
628 static __always_inline
void set_next_event(const int access
, unsigned long evt
,
629 struct clock_event_device
*clk
)
632 ctrl
= arch_timer_reg_read(access
, ARCH_TIMER_REG_CTRL
, clk
);
633 ctrl
|= ARCH_TIMER_CTRL_ENABLE
;
634 ctrl
&= ~ARCH_TIMER_CTRL_IT_MASK
;
635 arch_timer_reg_write(access
, ARCH_TIMER_REG_TVAL
, evt
, clk
);
636 arch_timer_reg_write(access
, ARCH_TIMER_REG_CTRL
, ctrl
, clk
);
639 static int arch_timer_set_next_event_virt(unsigned long evt
,
640 struct clock_event_device
*clk
)
644 if (erratum_handler(set_next_event_virt
, ret
, evt
, clk
))
647 set_next_event(ARCH_TIMER_VIRT_ACCESS
, evt
, clk
);
651 static int arch_timer_set_next_event_phys(unsigned long evt
,
652 struct clock_event_device
*clk
)
656 if (erratum_handler(set_next_event_phys
, ret
, evt
, clk
))
659 set_next_event(ARCH_TIMER_PHYS_ACCESS
, evt
, clk
);
663 static int arch_timer_set_next_event_virt_mem(unsigned long evt
,
664 struct clock_event_device
*clk
)
666 set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS
, evt
, clk
);
670 static int arch_timer_set_next_event_phys_mem(unsigned long evt
,
671 struct clock_event_device
*clk
)
673 set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS
, evt
, clk
);
677 static void __arch_timer_setup(unsigned type
,
678 struct clock_event_device
*clk
)
680 clk
->features
= CLOCK_EVT_FEAT_ONESHOT
;
682 if (type
== ARCH_TIMER_TYPE_CP15
) {
683 if (arch_timer_c3stop
)
684 clk
->features
|= CLOCK_EVT_FEAT_C3STOP
;
685 clk
->name
= "arch_sys_timer";
687 clk
->cpumask
= cpumask_of(smp_processor_id());
688 clk
->irq
= arch_timer_ppi
[arch_timer_uses_ppi
];
689 switch (arch_timer_uses_ppi
) {
690 case ARCH_TIMER_VIRT_PPI
:
691 clk
->set_state_shutdown
= arch_timer_shutdown_virt
;
692 clk
->set_state_oneshot_stopped
= arch_timer_shutdown_virt
;
693 clk
->set_next_event
= arch_timer_set_next_event_virt
;
695 case ARCH_TIMER_PHYS_SECURE_PPI
:
696 case ARCH_TIMER_PHYS_NONSECURE_PPI
:
697 case ARCH_TIMER_HYP_PPI
:
698 clk
->set_state_shutdown
= arch_timer_shutdown_phys
;
699 clk
->set_state_oneshot_stopped
= arch_timer_shutdown_phys
;
700 clk
->set_next_event
= arch_timer_set_next_event_phys
;
706 arch_timer_check_ool_workaround(ate_match_local_cap_id
, NULL
);
708 clk
->features
|= CLOCK_EVT_FEAT_DYNIRQ
;
709 clk
->name
= "arch_mem_timer";
711 clk
->cpumask
= cpu_all_mask
;
712 if (arch_timer_mem_use_virtual
) {
713 clk
->set_state_shutdown
= arch_timer_shutdown_virt_mem
;
714 clk
->set_state_oneshot_stopped
= arch_timer_shutdown_virt_mem
;
715 clk
->set_next_event
=
716 arch_timer_set_next_event_virt_mem
;
718 clk
->set_state_shutdown
= arch_timer_shutdown_phys_mem
;
719 clk
->set_state_oneshot_stopped
= arch_timer_shutdown_phys_mem
;
720 clk
->set_next_event
=
721 arch_timer_set_next_event_phys_mem
;
725 clk
->set_state_shutdown(clk
);
727 clockevents_config_and_register(clk
, arch_timer_rate
, 0xf, 0x7fffffff);
730 static void arch_timer_evtstrm_enable(int divider
)
732 u32 cntkctl
= arch_timer_get_cntkctl();
734 cntkctl
&= ~ARCH_TIMER_EVT_TRIGGER_MASK
;
735 /* Set the divider and enable virtual event stream */
736 cntkctl
|= (divider
<< ARCH_TIMER_EVT_TRIGGER_SHIFT
)
737 | ARCH_TIMER_VIRT_EVT_EN
;
738 arch_timer_set_cntkctl(cntkctl
);
739 elf_hwcap
|= HWCAP_EVTSTRM
;
741 compat_elf_hwcap
|= COMPAT_HWCAP_EVTSTRM
;
745 static void arch_timer_configure_evtstream(void)
747 int evt_stream_div
, pos
;
749 /* Find the closest power of two to the divisor */
750 evt_stream_div
= arch_timer_rate
/ ARCH_TIMER_EVT_STREAM_FREQ
;
751 pos
= fls(evt_stream_div
);
752 if (pos
> 1 && !(evt_stream_div
& (1 << (pos
- 2))))
754 /* enable event stream */
755 arch_timer_evtstrm_enable(min(pos
, 15));
758 static void arch_counter_set_user_access(void)
760 u32 cntkctl
= arch_timer_get_cntkctl();
762 /* Disable user access to the timers and both counters */
763 /* Also disable virtual event stream */
764 cntkctl
&= ~(ARCH_TIMER_USR_PT_ACCESS_EN
765 | ARCH_TIMER_USR_VT_ACCESS_EN
766 | ARCH_TIMER_USR_VCT_ACCESS_EN
767 | ARCH_TIMER_VIRT_EVT_EN
768 | ARCH_TIMER_USR_PCT_ACCESS_EN
);
771 * Enable user access to the virtual counter if it doesn't
772 * need to be workaround. The vdso may have been already
775 if (arch_timer_this_cpu_has_cntvct_wa())
776 pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
778 cntkctl
|= ARCH_TIMER_USR_VCT_ACCESS_EN
;
780 arch_timer_set_cntkctl(cntkctl
);
783 static bool arch_timer_has_nonsecure_ppi(void)
785 return (arch_timer_uses_ppi
== ARCH_TIMER_PHYS_SECURE_PPI
&&
786 arch_timer_ppi
[ARCH_TIMER_PHYS_NONSECURE_PPI
]);
789 static u32
check_ppi_trigger(int irq
)
791 u32 flags
= irq_get_trigger_type(irq
);
793 if (flags
!= IRQF_TRIGGER_HIGH
&& flags
!= IRQF_TRIGGER_LOW
) {
794 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq
);
795 pr_warn("WARNING: Please fix your firmware\n");
796 flags
= IRQF_TRIGGER_LOW
;
802 static int arch_timer_starting_cpu(unsigned int cpu
)
804 struct clock_event_device
*clk
= this_cpu_ptr(arch_timer_evt
);
807 __arch_timer_setup(ARCH_TIMER_TYPE_CP15
, clk
);
809 flags
= check_ppi_trigger(arch_timer_ppi
[arch_timer_uses_ppi
]);
810 enable_percpu_irq(arch_timer_ppi
[arch_timer_uses_ppi
], flags
);
812 if (arch_timer_has_nonsecure_ppi()) {
813 flags
= check_ppi_trigger(arch_timer_ppi
[ARCH_TIMER_PHYS_NONSECURE_PPI
]);
814 enable_percpu_irq(arch_timer_ppi
[ARCH_TIMER_PHYS_NONSECURE_PPI
],
818 arch_counter_set_user_access();
820 arch_timer_configure_evtstream();
826 * For historical reasons, when probing with DT we use whichever (non-zero)
827 * rate was probed first, and don't verify that others match. If the first node
828 * probed has a clock-frequency property, this overrides the HW register.
830 static void arch_timer_of_configure_rate(u32 rate
, struct device_node
*np
)
832 /* Who has more than one independent system counter? */
836 if (of_property_read_u32(np
, "clock-frequency", &arch_timer_rate
))
837 arch_timer_rate
= rate
;
839 /* Check the timer frequency. */
840 if (arch_timer_rate
== 0)
841 pr_warn("frequency not available\n");
844 static void arch_timer_banner(unsigned type
)
846 pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
847 type
& ARCH_TIMER_TYPE_CP15
? "cp15" : "",
848 type
== (ARCH_TIMER_TYPE_CP15
| ARCH_TIMER_TYPE_MEM
) ?
850 type
& ARCH_TIMER_TYPE_MEM
? "mmio" : "",
851 (unsigned long)arch_timer_rate
/ 1000000,
852 (unsigned long)(arch_timer_rate
/ 10000) % 100,
853 type
& ARCH_TIMER_TYPE_CP15
?
854 (arch_timer_uses_ppi
== ARCH_TIMER_VIRT_PPI
) ? "virt" : "phys" :
856 type
== (ARCH_TIMER_TYPE_CP15
| ARCH_TIMER_TYPE_MEM
) ? "/" : "",
857 type
& ARCH_TIMER_TYPE_MEM
?
858 arch_timer_mem_use_virtual
? "virt" : "phys" :
862 u32
arch_timer_get_rate(void)
864 return arch_timer_rate
;
867 static u64
arch_counter_get_cntvct_mem(void)
869 u32 vct_lo
, vct_hi
, tmp_hi
;
872 vct_hi
= readl_relaxed(arch_counter_base
+ CNTVCT_HI
);
873 vct_lo
= readl_relaxed(arch_counter_base
+ CNTVCT_LO
);
874 tmp_hi
= readl_relaxed(arch_counter_base
+ CNTVCT_HI
);
875 } while (vct_hi
!= tmp_hi
);
877 return ((u64
) vct_hi
<< 32) | vct_lo
;
880 static struct arch_timer_kvm_info arch_timer_kvm_info
;
882 struct arch_timer_kvm_info
*arch_timer_get_kvm_info(void)
884 return &arch_timer_kvm_info
;
887 static void __init
arch_counter_register(unsigned type
)
891 /* Register the CP15 based counter if we have one */
892 if (type
& ARCH_TIMER_TYPE_CP15
) {
893 if (IS_ENABLED(CONFIG_ARM64
) ||
894 arch_timer_uses_ppi
== ARCH_TIMER_VIRT_PPI
)
895 arch_timer_read_counter
= arch_counter_get_cntvct
;
897 arch_timer_read_counter
= arch_counter_get_cntpct
;
899 clocksource_counter
.archdata
.vdso_direct
= vdso_default
;
901 arch_timer_read_counter
= arch_counter_get_cntvct_mem
;
904 if (!arch_counter_suspend_stop
)
905 clocksource_counter
.flags
|= CLOCK_SOURCE_SUSPEND_NONSTOP
;
906 start_count
= arch_timer_read_counter();
907 clocksource_register_hz(&clocksource_counter
, arch_timer_rate
);
908 cyclecounter
.mult
= clocksource_counter
.mult
;
909 cyclecounter
.shift
= clocksource_counter
.shift
;
910 timecounter_init(&arch_timer_kvm_info
.timecounter
,
911 &cyclecounter
, start_count
);
913 /* 56 bits minimum, so we assume worst case rollover */
914 sched_clock_register(arch_timer_read_counter
, 56, arch_timer_rate
);
917 static void arch_timer_stop(struct clock_event_device
*clk
)
919 pr_debug("disable IRQ%d cpu #%d\n", clk
->irq
, smp_processor_id());
921 disable_percpu_irq(arch_timer_ppi
[arch_timer_uses_ppi
]);
922 if (arch_timer_has_nonsecure_ppi())
923 disable_percpu_irq(arch_timer_ppi
[ARCH_TIMER_PHYS_NONSECURE_PPI
]);
925 clk
->set_state_shutdown(clk
);
928 static int arch_timer_dying_cpu(unsigned int cpu
)
930 struct clock_event_device
*clk
= this_cpu_ptr(arch_timer_evt
);
932 arch_timer_stop(clk
);
937 static DEFINE_PER_CPU(unsigned long, saved_cntkctl
);
938 static int arch_timer_cpu_pm_notify(struct notifier_block
*self
,
939 unsigned long action
, void *hcpu
)
941 if (action
== CPU_PM_ENTER
)
942 __this_cpu_write(saved_cntkctl
, arch_timer_get_cntkctl());
943 else if (action
== CPU_PM_ENTER_FAILED
|| action
== CPU_PM_EXIT
)
944 arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl
));
948 static struct notifier_block arch_timer_cpu_pm_notifier
= {
949 .notifier_call
= arch_timer_cpu_pm_notify
,
952 static int __init
arch_timer_cpu_pm_init(void)
954 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier
);
957 static void __init
arch_timer_cpu_pm_deinit(void)
959 WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier
));
963 static int __init
arch_timer_cpu_pm_init(void)
968 static void __init
arch_timer_cpu_pm_deinit(void)
973 static int __init
arch_timer_register(void)
978 arch_timer_evt
= alloc_percpu(struct clock_event_device
);
979 if (!arch_timer_evt
) {
984 ppi
= arch_timer_ppi
[arch_timer_uses_ppi
];
985 switch (arch_timer_uses_ppi
) {
986 case ARCH_TIMER_VIRT_PPI
:
987 err
= request_percpu_irq(ppi
, arch_timer_handler_virt
,
988 "arch_timer", arch_timer_evt
);
990 case ARCH_TIMER_PHYS_SECURE_PPI
:
991 case ARCH_TIMER_PHYS_NONSECURE_PPI
:
992 err
= request_percpu_irq(ppi
, arch_timer_handler_phys
,
993 "arch_timer", arch_timer_evt
);
994 if (!err
&& arch_timer_has_nonsecure_ppi()) {
995 ppi
= arch_timer_ppi
[ARCH_TIMER_PHYS_NONSECURE_PPI
];
996 err
= request_percpu_irq(ppi
, arch_timer_handler_phys
,
997 "arch_timer", arch_timer_evt
);
999 free_percpu_irq(arch_timer_ppi
[ARCH_TIMER_PHYS_SECURE_PPI
],
1003 case ARCH_TIMER_HYP_PPI
:
1004 err
= request_percpu_irq(ppi
, arch_timer_handler_phys
,
1005 "arch_timer", arch_timer_evt
);
1012 pr_err("can't register interrupt %d (%d)\n", ppi
, err
);
1016 err
= arch_timer_cpu_pm_init();
1018 goto out_unreg_notify
;
1021 /* Register and immediately configure the timer on the boot CPU */
1022 err
= cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING
,
1023 "clockevents/arm/arch_timer:starting",
1024 arch_timer_starting_cpu
, arch_timer_dying_cpu
);
1026 goto out_unreg_cpupm
;
1030 arch_timer_cpu_pm_deinit();
1033 free_percpu_irq(arch_timer_ppi
[arch_timer_uses_ppi
], arch_timer_evt
);
1034 if (arch_timer_has_nonsecure_ppi())
1035 free_percpu_irq(arch_timer_ppi
[ARCH_TIMER_PHYS_NONSECURE_PPI
],
1039 free_percpu(arch_timer_evt
);
1044 static int __init
arch_timer_mem_register(void __iomem
*base
, unsigned int irq
)
1048 struct arch_timer
*t
;
1050 t
= kzalloc(sizeof(*t
), GFP_KERNEL
);
1056 __arch_timer_setup(ARCH_TIMER_TYPE_MEM
, &t
->evt
);
1058 if (arch_timer_mem_use_virtual
)
1059 func
= arch_timer_handler_virt_mem
;
1061 func
= arch_timer_handler_phys_mem
;
1063 ret
= request_irq(irq
, func
, IRQF_TIMER
, "arch_mem_timer", &t
->evt
);
1065 pr_err("Failed to request mem timer irq\n");
1072 static const struct of_device_id arch_timer_of_match
[] __initconst
= {
1073 { .compatible
= "arm,armv7-timer", },
1074 { .compatible
= "arm,armv8-timer", },
1078 static const struct of_device_id arch_timer_mem_of_match
[] __initconst
= {
1079 { .compatible
= "arm,armv7-timer-mem", },
1083 static bool __init
arch_timer_needs_of_probing(void)
1085 struct device_node
*dn
;
1086 bool needs_probing
= false;
1087 unsigned int mask
= ARCH_TIMER_TYPE_CP15
| ARCH_TIMER_TYPE_MEM
;
1089 /* We have two timers, and both device-tree nodes are probed. */
1090 if ((arch_timers_present
& mask
) == mask
)
1094 * Only one type of timer is probed,
1095 * check if we have another type of timer node in device-tree.
1097 if (arch_timers_present
& ARCH_TIMER_TYPE_CP15
)
1098 dn
= of_find_matching_node(NULL
, arch_timer_mem_of_match
);
1100 dn
= of_find_matching_node(NULL
, arch_timer_of_match
);
1102 if (dn
&& of_device_is_available(dn
))
1103 needs_probing
= true;
1107 return needs_probing
;
1110 static int __init
arch_timer_common_init(void)
1112 arch_timer_banner(arch_timers_present
);
1113 arch_counter_register(arch_timers_present
);
1114 return arch_timer_arch_init();
1118 * arch_timer_select_ppi() - Select suitable PPI for the current system.
1120 * If HYP mode is available, we know that the physical timer
1121 * has been configured to be accessible from PL1. Use it, so
1122 * that a guest can use the virtual timer instead.
1124 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1125 * accesses to CNTP_*_EL1 registers are silently redirected to
1126 * their CNTHP_*_EL2 counterparts, and use a different PPI
1129 * If no interrupt provided for virtual timer, we'll have to
1130 * stick to the physical timer. It'd better be accessible...
1131 * For arm64 we never use the secure interrupt.
1133 * Return: a suitable PPI type for the current system.
1135 static enum arch_timer_ppi_nr __init
arch_timer_select_ppi(void)
1137 if (is_kernel_in_hyp_mode())
1138 return ARCH_TIMER_HYP_PPI
;
1140 if (!is_hyp_mode_available() && arch_timer_ppi
[ARCH_TIMER_VIRT_PPI
])
1141 return ARCH_TIMER_VIRT_PPI
;
1143 if (IS_ENABLED(CONFIG_ARM64
))
1144 return ARCH_TIMER_PHYS_NONSECURE_PPI
;
1146 return ARCH_TIMER_PHYS_SECURE_PPI
;
1149 static int __init
arch_timer_of_init(struct device_node
*np
)
1154 if (arch_timers_present
& ARCH_TIMER_TYPE_CP15
) {
1155 pr_warn("multiple nodes in dt, skipping\n");
1159 arch_timers_present
|= ARCH_TIMER_TYPE_CP15
;
1160 for (i
= ARCH_TIMER_PHYS_SECURE_PPI
; i
< ARCH_TIMER_MAX_TIMER_PPI
; i
++)
1161 arch_timer_ppi
[i
] = irq_of_parse_and_map(np
, i
);
1163 arch_timer_kvm_info
.virtual_irq
= arch_timer_ppi
[ARCH_TIMER_VIRT_PPI
];
1165 rate
= arch_timer_get_cntfrq();
1166 arch_timer_of_configure_rate(rate
, np
);
1168 arch_timer_c3stop
= !of_property_read_bool(np
, "always-on");
1170 /* Check for globally applicable workarounds */
1171 arch_timer_check_ool_workaround(ate_match_dt
, np
);
1174 * If we cannot rely on firmware initializing the timer registers then
1175 * we should use the physical timers instead.
1177 if (IS_ENABLED(CONFIG_ARM
) &&
1178 of_property_read_bool(np
, "arm,cpu-registers-not-fw-configured"))
1179 arch_timer_uses_ppi
= ARCH_TIMER_PHYS_SECURE_PPI
;
1181 arch_timer_uses_ppi
= arch_timer_select_ppi();
1183 if (!arch_timer_ppi
[arch_timer_uses_ppi
]) {
1184 pr_err("No interrupt available, giving up\n");
1188 /* On some systems, the counter stops ticking when in suspend. */
1189 arch_counter_suspend_stop
= of_property_read_bool(np
,
1190 "arm,no-tick-in-suspend");
1192 ret
= arch_timer_register();
1196 if (arch_timer_needs_of_probing())
1199 return arch_timer_common_init();
1201 TIMER_OF_DECLARE(armv7_arch_timer
, "arm,armv7-timer", arch_timer_of_init
);
1202 TIMER_OF_DECLARE(armv8_arch_timer
, "arm,armv8-timer", arch_timer_of_init
);
1205 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame
*frame
)
1210 base
= ioremap(frame
->cntbase
, frame
->size
);
1212 pr_err("Unable to map frame @ %pa\n", &frame
->cntbase
);
1216 rate
= readl_relaxed(base
+ CNTFRQ
);
1223 static struct arch_timer_mem_frame
* __init
1224 arch_timer_mem_find_best_frame(struct arch_timer_mem
*timer_mem
)
1226 struct arch_timer_mem_frame
*frame
, *best_frame
= NULL
;
1227 void __iomem
*cntctlbase
;
1231 cntctlbase
= ioremap(timer_mem
->cntctlbase
, timer_mem
->size
);
1233 pr_err("Can't map CNTCTLBase @ %pa\n",
1234 &timer_mem
->cntctlbase
);
1238 cnttidr
= readl_relaxed(cntctlbase
+ CNTTIDR
);
1241 * Try to find a virtual capable frame. Otherwise fall back to a
1242 * physical capable frame.
1244 for (i
= 0; i
< ARCH_TIMER_MEM_MAX_FRAMES
; i
++) {
1245 u32 cntacr
= CNTACR_RFRQ
| CNTACR_RWPT
| CNTACR_RPCT
|
1246 CNTACR_RWVT
| CNTACR_RVOFF
| CNTACR_RVCT
;
1248 frame
= &timer_mem
->frame
[i
];
1252 /* Try enabling everything, and see what sticks */
1253 writel_relaxed(cntacr
, cntctlbase
+ CNTACR(i
));
1254 cntacr
= readl_relaxed(cntctlbase
+ CNTACR(i
));
1256 if ((cnttidr
& CNTTIDR_VIRT(i
)) &&
1257 !(~cntacr
& (CNTACR_RWVT
| CNTACR_RVCT
))) {
1259 arch_timer_mem_use_virtual
= true;
1263 if (~cntacr
& (CNTACR_RWPT
| CNTACR_RPCT
))
1269 iounmap(cntctlbase
);
1272 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1273 &timer_mem
->cntctlbase
);
1279 arch_timer_mem_frame_register(struct arch_timer_mem_frame
*frame
)
1284 if (arch_timer_mem_use_virtual
)
1285 irq
= frame
->virt_irq
;
1287 irq
= frame
->phys_irq
;
1290 pr_err("Frame missing %s irq.\n",
1291 arch_timer_mem_use_virtual
? "virt" : "phys");
1295 if (!request_mem_region(frame
->cntbase
, frame
->size
,
1299 base
= ioremap(frame
->cntbase
, frame
->size
);
1301 pr_err("Can't map frame's registers\n");
1305 ret
= arch_timer_mem_register(base
, irq
);
1311 arch_counter_base
= base
;
1312 arch_timers_present
|= ARCH_TIMER_TYPE_MEM
;
1317 static int __init
arch_timer_mem_of_init(struct device_node
*np
)
1319 struct arch_timer_mem
*timer_mem
;
1320 struct arch_timer_mem_frame
*frame
;
1321 struct device_node
*frame_node
;
1322 struct resource res
;
1326 timer_mem
= kzalloc(sizeof(*timer_mem
), GFP_KERNEL
);
1330 if (of_address_to_resource(np
, 0, &res
))
1332 timer_mem
->cntctlbase
= res
.start
;
1333 timer_mem
->size
= resource_size(&res
);
1335 for_each_available_child_of_node(np
, frame_node
) {
1337 struct arch_timer_mem_frame
*frame
;
1339 if (of_property_read_u32(frame_node
, "frame-number", &n
)) {
1340 pr_err(FW_BUG
"Missing frame-number.\n");
1341 of_node_put(frame_node
);
1344 if (n
>= ARCH_TIMER_MEM_MAX_FRAMES
) {
1345 pr_err(FW_BUG
"Wrong frame-number, only 0-%u are permitted.\n",
1346 ARCH_TIMER_MEM_MAX_FRAMES
- 1);
1347 of_node_put(frame_node
);
1350 frame
= &timer_mem
->frame
[n
];
1353 pr_err(FW_BUG
"Duplicated frame-number.\n");
1354 of_node_put(frame_node
);
1358 if (of_address_to_resource(frame_node
, 0, &res
)) {
1359 of_node_put(frame_node
);
1362 frame
->cntbase
= res
.start
;
1363 frame
->size
= resource_size(&res
);
1365 frame
->virt_irq
= irq_of_parse_and_map(frame_node
,
1366 ARCH_TIMER_VIRT_SPI
);
1367 frame
->phys_irq
= irq_of_parse_and_map(frame_node
,
1368 ARCH_TIMER_PHYS_SPI
);
1370 frame
->valid
= true;
1373 frame
= arch_timer_mem_find_best_frame(timer_mem
);
1379 rate
= arch_timer_mem_frame_get_cntfrq(frame
);
1380 arch_timer_of_configure_rate(rate
, np
);
1382 ret
= arch_timer_mem_frame_register(frame
);
1383 if (!ret
&& !arch_timer_needs_of_probing())
1384 ret
= arch_timer_common_init();
1389 TIMER_OF_DECLARE(armv7_arch_timer_mem
, "arm,armv7-timer-mem",
1390 arch_timer_mem_of_init
);
1392 #ifdef CONFIG_ACPI_GTDT
1394 arch_timer_mem_verify_cntfrq(struct arch_timer_mem
*timer_mem
)
1396 struct arch_timer_mem_frame
*frame
;
1400 for (i
= 0; i
< ARCH_TIMER_MEM_MAX_FRAMES
; i
++) {
1401 frame
= &timer_mem
->frame
[i
];
1406 rate
= arch_timer_mem_frame_get_cntfrq(frame
);
1407 if (rate
== arch_timer_rate
)
1410 pr_err(FW_BUG
"CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1412 (unsigned long)rate
, (unsigned long)arch_timer_rate
);
1420 static int __init
arch_timer_mem_acpi_init(int platform_timer_count
)
1422 struct arch_timer_mem
*timers
, *timer
;
1423 struct arch_timer_mem_frame
*frame
;
1424 int timer_count
, i
, ret
= 0;
1426 timers
= kcalloc(platform_timer_count
, sizeof(*timers
),
1431 ret
= acpi_arch_timer_mem_init(timers
, &timer_count
);
1432 if (ret
|| !timer_count
)
1435 for (i
= 0; i
< timer_count
; i
++) {
1436 ret
= arch_timer_mem_verify_cntfrq(&timers
[i
]);
1438 pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1444 * While unlikely, it's theoretically possible that none of the frames
1445 * in a timer expose the combination of feature we want.
1447 for (i
= 0; i
< timer_count
; i
++) {
1450 frame
= arch_timer_mem_find_best_frame(timer
);
1456 ret
= arch_timer_mem_frame_register(frame
);
1462 /* Initialize per-processor generic timer and memory-mapped timer(if present) */
1463 static int __init
arch_timer_acpi_init(struct acpi_table_header
*table
)
1465 int ret
, platform_timer_count
;
1467 if (arch_timers_present
& ARCH_TIMER_TYPE_CP15
) {
1468 pr_warn("already initialized, skipping\n");
1472 arch_timers_present
|= ARCH_TIMER_TYPE_CP15
;
1474 ret
= acpi_gtdt_init(table
, &platform_timer_count
);
1476 pr_err("Failed to init GTDT table.\n");
1480 arch_timer_ppi
[ARCH_TIMER_PHYS_NONSECURE_PPI
] =
1481 acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI
);
1483 arch_timer_ppi
[ARCH_TIMER_VIRT_PPI
] =
1484 acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI
);
1486 arch_timer_ppi
[ARCH_TIMER_HYP_PPI
] =
1487 acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI
);
1489 arch_timer_kvm_info
.virtual_irq
= arch_timer_ppi
[ARCH_TIMER_VIRT_PPI
];
1492 * When probing via ACPI, we have no mechanism to override the sysreg
1493 * CNTFRQ value. This *must* be correct.
1495 arch_timer_rate
= arch_timer_get_cntfrq();
1496 if (!arch_timer_rate
) {
1497 pr_err(FW_BUG
"frequency not available.\n");
1501 arch_timer_uses_ppi
= arch_timer_select_ppi();
1502 if (!arch_timer_ppi
[arch_timer_uses_ppi
]) {
1503 pr_err("No interrupt available, giving up\n");
1507 /* Always-on capability */
1508 arch_timer_c3stop
= acpi_gtdt_c3stop(arch_timer_uses_ppi
);
1510 /* Check for globally applicable workarounds */
1511 arch_timer_check_ool_workaround(ate_match_acpi_oem_info
, table
);
1513 ret
= arch_timer_register();
1517 if (platform_timer_count
&&
1518 arch_timer_mem_acpi_init(platform_timer_count
))
1519 pr_err("Failed to initialize memory-mapped timer.\n");
1521 return arch_timer_common_init();
1523 TIMER_ACPI_DECLARE(arch_timer
, ACPI_SIG_GTDT
, arch_timer_acpi_init
);