2 * linux/drivers/mmc/core/core.c
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/suspend.h>
28 #include <linux/fault-inject.h>
29 #include <linux/random.h>
30 #include <linux/slab.h>
33 #include <linux/mmc/card.h>
34 #include <linux/mmc/host.h>
35 #include <linux/mmc/mmc.h>
36 #include <linux/mmc/sd.h>
37 #include <linux/mmc/slot-gpio.h>
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/mmc.h>
53 /* If the device is not responding */
54 #define MMC_CORE_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
56 /* The max erase timeout, used when host->max_busy_timeout isn't specified */
57 #define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */
59 static const unsigned freqs
[] = { 400000, 300000, 200000, 100000 };
62 * Enabling software CRCs on the data blocks can be a significant (30%)
63 * performance cost, and for other reasons may not always be desired.
64 * So we allow it it to be disabled.
67 module_param(use_spi_crc
, bool, 0);
69 static int mmc_schedule_delayed_work(struct delayed_work
*work
,
73 * We use the system_freezable_wq, because of two reasons.
74 * First, it allows several works (not the same work item) to be
75 * executed simultaneously. Second, the queue becomes frozen when
76 * userspace becomes frozen during system PM.
78 return queue_delayed_work(system_freezable_wq
, work
, delay
);
81 #ifdef CONFIG_FAIL_MMC_REQUEST
84 * Internal function. Inject random data errors.
85 * If mmc_data is NULL no errors are injected.
87 static void mmc_should_fail_request(struct mmc_host
*host
,
88 struct mmc_request
*mrq
)
90 struct mmc_command
*cmd
= mrq
->cmd
;
91 struct mmc_data
*data
= mrq
->data
;
92 static const int data_errors
[] = {
101 if (cmd
->error
|| data
->error
||
102 !should_fail(&host
->fail_mmc_request
, data
->blksz
* data
->blocks
))
105 data
->error
= data_errors
[prandom_u32() % ARRAY_SIZE(data_errors
)];
106 data
->bytes_xfered
= (prandom_u32() % (data
->bytes_xfered
>> 9)) << 9;
109 #else /* CONFIG_FAIL_MMC_REQUEST */
111 static inline void mmc_should_fail_request(struct mmc_host
*host
,
112 struct mmc_request
*mrq
)
116 #endif /* CONFIG_FAIL_MMC_REQUEST */
118 static inline void mmc_complete_cmd(struct mmc_request
*mrq
)
120 if (mrq
->cap_cmd_during_tfr
&& !completion_done(&mrq
->cmd_completion
))
121 complete_all(&mrq
->cmd_completion
);
124 void mmc_command_done(struct mmc_host
*host
, struct mmc_request
*mrq
)
126 if (!mrq
->cap_cmd_during_tfr
)
129 mmc_complete_cmd(mrq
);
131 pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
132 mmc_hostname(host
), mrq
->cmd
->opcode
);
134 EXPORT_SYMBOL(mmc_command_done
);
137 * mmc_request_done - finish processing an MMC request
138 * @host: MMC host which completed request
139 * @mrq: MMC request which request
141 * MMC drivers should call this function when they have completed
142 * their processing of a request.
144 void mmc_request_done(struct mmc_host
*host
, struct mmc_request
*mrq
)
146 struct mmc_command
*cmd
= mrq
->cmd
;
147 int err
= cmd
->error
;
149 /* Flag re-tuning needed on CRC errors */
150 if ((cmd
->opcode
!= MMC_SEND_TUNING_BLOCK
&&
151 cmd
->opcode
!= MMC_SEND_TUNING_BLOCK_HS200
) &&
152 (err
== -EILSEQ
|| (mrq
->sbc
&& mrq
->sbc
->error
== -EILSEQ
) ||
153 (mrq
->data
&& mrq
->data
->error
== -EILSEQ
) ||
154 (mrq
->stop
&& mrq
->stop
->error
== -EILSEQ
)))
155 mmc_retune_needed(host
);
157 if (err
&& cmd
->retries
&& mmc_host_is_spi(host
)) {
158 if (cmd
->resp
[0] & R1_SPI_ILLEGAL_COMMAND
)
162 if (host
->ongoing_mrq
== mrq
)
163 host
->ongoing_mrq
= NULL
;
165 mmc_complete_cmd(mrq
);
167 trace_mmc_request_done(host
, mrq
);
170 * We list various conditions for the command to be considered
173 * - There was no error, OK fine then
174 * - We are not doing some kind of retry
175 * - The card was removed (...so just complete everything no matter
176 * if there are errors or retries)
178 if (!err
|| !cmd
->retries
|| mmc_card_removed(host
->card
)) {
179 mmc_should_fail_request(host
, mrq
);
181 if (!host
->ongoing_mrq
)
182 led_trigger_event(host
->led
, LED_OFF
);
185 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
186 mmc_hostname(host
), mrq
->sbc
->opcode
,
188 mrq
->sbc
->resp
[0], mrq
->sbc
->resp
[1],
189 mrq
->sbc
->resp
[2], mrq
->sbc
->resp
[3]);
192 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
193 mmc_hostname(host
), cmd
->opcode
, err
,
194 cmd
->resp
[0], cmd
->resp
[1],
195 cmd
->resp
[2], cmd
->resp
[3]);
198 pr_debug("%s: %d bytes transferred: %d\n",
200 mrq
->data
->bytes_xfered
, mrq
->data
->error
);
204 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
205 mmc_hostname(host
), mrq
->stop
->opcode
,
207 mrq
->stop
->resp
[0], mrq
->stop
->resp
[1],
208 mrq
->stop
->resp
[2], mrq
->stop
->resp
[3]);
212 * Request starter must handle retries - see
213 * mmc_wait_for_req_done().
219 EXPORT_SYMBOL(mmc_request_done
);
221 static void __mmc_start_request(struct mmc_host
*host
, struct mmc_request
*mrq
)
225 /* Assumes host controller has been runtime resumed by mmc_claim_host */
226 err
= mmc_retune(host
);
228 mrq
->cmd
->error
= err
;
229 mmc_request_done(host
, mrq
);
234 * For sdio rw commands we must wait for card busy otherwise some
235 * sdio devices won't work properly.
236 * And bypass I/O abort, reset and bus suspend operations.
238 if (sdio_is_io_busy(mrq
->cmd
->opcode
, mrq
->cmd
->arg
) &&
239 host
->ops
->card_busy
) {
240 int tries
= 500; /* Wait aprox 500ms at maximum */
242 while (host
->ops
->card_busy(host
) && --tries
)
246 mrq
->cmd
->error
= -EBUSY
;
247 mmc_request_done(host
, mrq
);
252 if (mrq
->cap_cmd_during_tfr
) {
253 host
->ongoing_mrq
= mrq
;
255 * Retry path could come through here without having waiting on
256 * cmd_completion, so ensure it is reinitialised.
258 reinit_completion(&mrq
->cmd_completion
);
261 trace_mmc_request_start(host
, mrq
);
264 host
->cqe_ops
->cqe_off(host
);
266 host
->ops
->request(host
, mrq
);
269 static void mmc_mrq_pr_debug(struct mmc_host
*host
, struct mmc_request
*mrq
)
272 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
273 mmc_hostname(host
), mrq
->sbc
->opcode
,
274 mrq
->sbc
->arg
, mrq
->sbc
->flags
);
278 pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
279 mmc_hostname(host
), mrq
->cmd
->opcode
, mrq
->cmd
->arg
,
284 pr_debug("%s: blksz %d blocks %d flags %08x "
285 "tsac %d ms nsac %d\n",
286 mmc_hostname(host
), mrq
->data
->blksz
,
287 mrq
->data
->blocks
, mrq
->data
->flags
,
288 mrq
->data
->timeout_ns
/ 1000000,
289 mrq
->data
->timeout_clks
);
293 pr_debug("%s: CMD%u arg %08x flags %08x\n",
294 mmc_hostname(host
), mrq
->stop
->opcode
,
295 mrq
->stop
->arg
, mrq
->stop
->flags
);
299 static int mmc_mrq_prep(struct mmc_host
*host
, struct mmc_request
*mrq
)
301 unsigned int i
, sz
= 0;
302 struct scatterlist
*sg
;
307 mrq
->cmd
->data
= mrq
->data
;
314 if (mrq
->data
->blksz
> host
->max_blk_size
||
315 mrq
->data
->blocks
> host
->max_blk_count
||
316 mrq
->data
->blocks
* mrq
->data
->blksz
> host
->max_req_size
)
319 for_each_sg(mrq
->data
->sg
, sg
, mrq
->data
->sg_len
, i
)
321 if (sz
!= mrq
->data
->blocks
* mrq
->data
->blksz
)
324 mrq
->data
->error
= 0;
325 mrq
->data
->mrq
= mrq
;
327 mrq
->data
->stop
= mrq
->stop
;
328 mrq
->stop
->error
= 0;
329 mrq
->stop
->mrq
= mrq
;
336 static int mmc_start_request(struct mmc_host
*host
, struct mmc_request
*mrq
)
340 mmc_retune_hold(host
);
342 if (mmc_card_removed(host
->card
))
345 mmc_mrq_pr_debug(host
, mrq
);
347 WARN_ON(!host
->claimed
);
349 err
= mmc_mrq_prep(host
, mrq
);
353 led_trigger_event(host
->led
, LED_FULL
);
354 __mmc_start_request(host
, mrq
);
360 * mmc_wait_data_done() - done callback for data request
361 * @mrq: done data request
363 * Wakes up mmc context, passed as a callback to host controller driver
365 static void mmc_wait_data_done(struct mmc_request
*mrq
)
367 struct mmc_context_info
*context_info
= &mrq
->host
->context_info
;
369 context_info
->is_done_rcv
= true;
370 wake_up_interruptible(&context_info
->wait
);
373 static void mmc_wait_done(struct mmc_request
*mrq
)
375 complete(&mrq
->completion
);
378 static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host
*host
)
380 struct mmc_request
*ongoing_mrq
= READ_ONCE(host
->ongoing_mrq
);
383 * If there is an ongoing transfer, wait for the command line to become
386 if (ongoing_mrq
&& !completion_done(&ongoing_mrq
->cmd_completion
))
387 wait_for_completion(&ongoing_mrq
->cmd_completion
);
391 *__mmc_start_data_req() - starts data request
392 * @host: MMC host to start the request
393 * @mrq: data request to start
395 * Sets the done callback to be called when request is completed by the card.
396 * Starts data mmc request execution
397 * If an ongoing transfer is already in progress, wait for the command line
398 * to become available before sending another command.
400 static int __mmc_start_data_req(struct mmc_host
*host
, struct mmc_request
*mrq
)
404 mmc_wait_ongoing_tfr_cmd(host
);
406 mrq
->done
= mmc_wait_data_done
;
409 init_completion(&mrq
->cmd_completion
);
411 err
= mmc_start_request(host
, mrq
);
413 mrq
->cmd
->error
= err
;
414 mmc_complete_cmd(mrq
);
415 mmc_wait_data_done(mrq
);
421 static int __mmc_start_req(struct mmc_host
*host
, struct mmc_request
*mrq
)
425 mmc_wait_ongoing_tfr_cmd(host
);
427 init_completion(&mrq
->completion
);
428 mrq
->done
= mmc_wait_done
;
430 init_completion(&mrq
->cmd_completion
);
432 err
= mmc_start_request(host
, mrq
);
434 mrq
->cmd
->error
= err
;
435 mmc_complete_cmd(mrq
);
436 complete(&mrq
->completion
);
442 void mmc_wait_for_req_done(struct mmc_host
*host
, struct mmc_request
*mrq
)
444 struct mmc_command
*cmd
;
447 wait_for_completion(&mrq
->completion
);
452 * If host has timed out waiting for the sanitize
453 * to complete, card might be still in programming state
454 * so let's try to bring the card out of programming
457 if (cmd
->sanitize_busy
&& cmd
->error
== -ETIMEDOUT
) {
458 if (!mmc_interrupt_hpi(host
->card
)) {
459 pr_warn("%s: %s: Interrupted sanitize\n",
460 mmc_hostname(host
), __func__
);
464 pr_err("%s: %s: Failed to interrupt sanitize\n",
465 mmc_hostname(host
), __func__
);
468 if (!cmd
->error
|| !cmd
->retries
||
469 mmc_card_removed(host
->card
))
472 mmc_retune_recheck(host
);
474 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
475 mmc_hostname(host
), cmd
->opcode
, cmd
->error
);
478 __mmc_start_request(host
, mrq
);
481 mmc_retune_release(host
);
483 EXPORT_SYMBOL(mmc_wait_for_req_done
);
486 * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
490 * mmc_is_req_done() is used with requests that have
491 * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
492 * starting a request and before waiting for it to complete. That is,
493 * either in between calls to mmc_start_req(), or after mmc_wait_for_req()
494 * and before mmc_wait_for_req_done(). If it is called at other times the
495 * result is not meaningful.
497 bool mmc_is_req_done(struct mmc_host
*host
, struct mmc_request
*mrq
)
500 return host
->context_info
.is_done_rcv
;
502 return completion_done(&mrq
->completion
);
504 EXPORT_SYMBOL(mmc_is_req_done
);
507 * mmc_pre_req - Prepare for a new request
508 * @host: MMC host to prepare command
509 * @mrq: MMC request to prepare for
511 * mmc_pre_req() is called in prior to mmc_start_req() to let
512 * host prepare for the new request. Preparation of a request may be
513 * performed while another request is running on the host.
515 static void mmc_pre_req(struct mmc_host
*host
, struct mmc_request
*mrq
)
517 if (host
->ops
->pre_req
)
518 host
->ops
->pre_req(host
, mrq
);
522 * mmc_post_req - Post process a completed request
523 * @host: MMC host to post process command
524 * @mrq: MMC request to post process for
525 * @err: Error, if non zero, clean up any resources made in pre_req
527 * Let the host post process a completed request. Post processing of
528 * a request may be performed while another reuqest is running.
530 static void mmc_post_req(struct mmc_host
*host
, struct mmc_request
*mrq
,
533 if (host
->ops
->post_req
)
534 host
->ops
->post_req(host
, mrq
, err
);
538 * mmc_finalize_areq() - finalize an asynchronous request
539 * @host: MMC host to finalize any ongoing request on
541 * Returns the status of the ongoing asynchronous request, but
542 * MMC_BLK_SUCCESS if no request was going on.
544 static enum mmc_blk_status
mmc_finalize_areq(struct mmc_host
*host
)
546 struct mmc_context_info
*context_info
= &host
->context_info
;
547 enum mmc_blk_status status
;
550 return MMC_BLK_SUCCESS
;
553 wait_event_interruptible(context_info
->wait
,
554 (context_info
->is_done_rcv
||
555 context_info
->is_new_req
));
557 if (context_info
->is_done_rcv
) {
558 struct mmc_command
*cmd
;
560 context_info
->is_done_rcv
= false;
561 cmd
= host
->areq
->mrq
->cmd
;
563 if (!cmd
->error
|| !cmd
->retries
||
564 mmc_card_removed(host
->card
)) {
565 status
= host
->areq
->err_check(host
->card
,
567 break; /* return status */
569 mmc_retune_recheck(host
);
570 pr_info("%s: req failed (CMD%u): %d, retrying...\n",
572 cmd
->opcode
, cmd
->error
);
575 __mmc_start_request(host
, host
->areq
->mrq
);
576 continue; /* wait for done/new event again */
580 return MMC_BLK_NEW_REQUEST
;
583 mmc_retune_release(host
);
586 * Check BKOPS urgency for each R1 response
588 if (host
->card
&& mmc_card_mmc(host
->card
) &&
589 ((mmc_resp_type(host
->areq
->mrq
->cmd
) == MMC_RSP_R1
) ||
590 (mmc_resp_type(host
->areq
->mrq
->cmd
) == MMC_RSP_R1B
)) &&
591 (host
->areq
->mrq
->cmd
->resp
[0] & R1_EXCEPTION_EVENT
)) {
592 mmc_start_bkops(host
->card
, true);
599 * mmc_start_areq - start an asynchronous request
600 * @host: MMC host to start command
601 * @areq: asynchronous request to start
602 * @ret_stat: out parameter for status
604 * Start a new MMC custom command request for a host.
605 * If there is on ongoing async request wait for completion
606 * of that request and start the new one and return.
607 * Does not wait for the new request to complete.
609 * Returns the completed request, NULL in case of none completed.
610 * Wait for the an ongoing request (previoulsy started) to complete and
611 * return the completed request. If there is no ongoing request, NULL
612 * is returned without waiting. NULL is not an error condition.
614 struct mmc_async_req
*mmc_start_areq(struct mmc_host
*host
,
615 struct mmc_async_req
*areq
,
616 enum mmc_blk_status
*ret_stat
)
618 enum mmc_blk_status status
;
620 struct mmc_async_req
*previous
= host
->areq
;
622 /* Prepare a new request */
624 mmc_pre_req(host
, areq
->mrq
);
626 /* Finalize previous request */
627 status
= mmc_finalize_areq(host
);
631 /* The previous request is still going on... */
632 if (status
== MMC_BLK_NEW_REQUEST
)
635 /* Fine so far, start the new request! */
636 if (status
== MMC_BLK_SUCCESS
&& areq
)
637 start_err
= __mmc_start_data_req(host
, areq
->mrq
);
639 /* Postprocess the old request at this point */
641 mmc_post_req(host
, host
->areq
->mrq
, 0);
643 /* Cancel a prepared request if it was not started. */
644 if ((status
!= MMC_BLK_SUCCESS
|| start_err
) && areq
)
645 mmc_post_req(host
, areq
->mrq
, -EINVAL
);
647 if (status
!= MMC_BLK_SUCCESS
)
654 EXPORT_SYMBOL(mmc_start_areq
);
657 * mmc_wait_for_req - start a request and wait for completion
658 * @host: MMC host to start command
659 * @mrq: MMC request to start
661 * Start a new MMC custom command request for a host, and wait
662 * for the command to complete. In the case of 'cap_cmd_during_tfr'
663 * requests, the transfer is ongoing and the caller can issue further
664 * commands that do not use the data lines, and then wait by calling
665 * mmc_wait_for_req_done().
666 * Does not attempt to parse the response.
668 void mmc_wait_for_req(struct mmc_host
*host
, struct mmc_request
*mrq
)
670 __mmc_start_req(host
, mrq
);
672 if (!mrq
->cap_cmd_during_tfr
)
673 mmc_wait_for_req_done(host
, mrq
);
675 EXPORT_SYMBOL(mmc_wait_for_req
);
678 * mmc_wait_for_cmd - start a command and wait for completion
679 * @host: MMC host to start command
680 * @cmd: MMC command to start
681 * @retries: maximum number of retries
683 * Start a new MMC command for a host, and wait for the command
684 * to complete. Return any error that occurred while the command
685 * was executing. Do not attempt to parse the response.
687 int mmc_wait_for_cmd(struct mmc_host
*host
, struct mmc_command
*cmd
, int retries
)
689 struct mmc_request mrq
= {};
691 WARN_ON(!host
->claimed
);
693 memset(cmd
->resp
, 0, sizeof(cmd
->resp
));
694 cmd
->retries
= retries
;
699 mmc_wait_for_req(host
, &mrq
);
704 EXPORT_SYMBOL(mmc_wait_for_cmd
);
707 * mmc_set_data_timeout - set the timeout for a data command
708 * @data: data phase for command
709 * @card: the MMC card associated with the data transfer
711 * Computes the data timeout parameters according to the
712 * correct algorithm given the card type.
714 void mmc_set_data_timeout(struct mmc_data
*data
, const struct mmc_card
*card
)
719 * SDIO cards only define an upper 1 s limit on access.
721 if (mmc_card_sdio(card
)) {
722 data
->timeout_ns
= 1000000000;
723 data
->timeout_clks
= 0;
728 * SD cards use a 100 multiplier rather than 10
730 mult
= mmc_card_sd(card
) ? 100 : 10;
733 * Scale up the multiplier (and therefore the timeout) by
734 * the r2w factor for writes.
736 if (data
->flags
& MMC_DATA_WRITE
)
737 mult
<<= card
->csd
.r2w_factor
;
739 data
->timeout_ns
= card
->csd
.taac_ns
* mult
;
740 data
->timeout_clks
= card
->csd
.taac_clks
* mult
;
743 * SD cards also have an upper limit on the timeout.
745 if (mmc_card_sd(card
)) {
746 unsigned int timeout_us
, limit_us
;
748 timeout_us
= data
->timeout_ns
/ 1000;
749 if (card
->host
->ios
.clock
)
750 timeout_us
+= data
->timeout_clks
* 1000 /
751 (card
->host
->ios
.clock
/ 1000);
753 if (data
->flags
& MMC_DATA_WRITE
)
755 * The MMC spec "It is strongly recommended
756 * for hosts to implement more than 500ms
757 * timeout value even if the card indicates
758 * the 250ms maximum busy length." Even the
759 * previous value of 300ms is known to be
760 * insufficient for some cards.
767 * SDHC cards always use these fixed values.
769 if (timeout_us
> limit_us
) {
770 data
->timeout_ns
= limit_us
* 1000;
771 data
->timeout_clks
= 0;
774 /* assign limit value if invalid */
776 data
->timeout_ns
= limit_us
* 1000;
780 * Some cards require longer data read timeout than indicated in CSD.
781 * Address this by setting the read timeout to a "reasonably high"
782 * value. For the cards tested, 600ms has proven enough. If necessary,
783 * this value can be increased if other problematic cards require this.
785 if (mmc_card_long_read_time(card
) && data
->flags
& MMC_DATA_READ
) {
786 data
->timeout_ns
= 600000000;
787 data
->timeout_clks
= 0;
791 * Some cards need very high timeouts if driven in SPI mode.
792 * The worst observed timeout was 900ms after writing a
793 * continuous stream of data until the internal logic
796 if (mmc_host_is_spi(card
->host
)) {
797 if (data
->flags
& MMC_DATA_WRITE
) {
798 if (data
->timeout_ns
< 1000000000)
799 data
->timeout_ns
= 1000000000; /* 1s */
801 if (data
->timeout_ns
< 100000000)
802 data
->timeout_ns
= 100000000; /* 100ms */
806 EXPORT_SYMBOL(mmc_set_data_timeout
);
809 * mmc_align_data_size - pads a transfer size to a more optimal value
810 * @card: the MMC card associated with the data transfer
811 * @sz: original transfer size
813 * Pads the original data size with a number of extra bytes in
814 * order to avoid controller bugs and/or performance hits
815 * (e.g. some controllers revert to PIO for certain sizes).
817 * Returns the improved size, which might be unmodified.
819 * Note that this function is only relevant when issuing a
820 * single scatter gather entry.
822 unsigned int mmc_align_data_size(struct mmc_card
*card
, unsigned int sz
)
825 * FIXME: We don't have a system for the controller to tell
826 * the core about its problems yet, so for now we just 32-bit
829 sz
= ((sz
+ 3) / 4) * 4;
833 EXPORT_SYMBOL(mmc_align_data_size
);
836 * __mmc_claim_host - exclusively claim a host
837 * @host: mmc host to claim
838 * @abort: whether or not the operation should be aborted
840 * Claim a host for a set of operations. If @abort is non null and
841 * dereference a non-zero value then this will return prematurely with
842 * that non-zero value without acquiring the lock. Returns zero
843 * with the lock held otherwise.
845 int __mmc_claim_host(struct mmc_host
*host
, atomic_t
*abort
)
847 DECLARE_WAITQUEUE(wait
, current
);
854 add_wait_queue(&host
->wq
, &wait
);
855 spin_lock_irqsave(&host
->lock
, flags
);
857 set_current_state(TASK_UNINTERRUPTIBLE
);
858 stop
= abort
? atomic_read(abort
) : 0;
859 if (stop
|| !host
->claimed
|| host
->claimer
== current
)
861 spin_unlock_irqrestore(&host
->lock
, flags
);
863 spin_lock_irqsave(&host
->lock
, flags
);
865 set_current_state(TASK_RUNNING
);
868 host
->claimer
= current
;
869 host
->claim_cnt
+= 1;
870 if (host
->claim_cnt
== 1)
874 spin_unlock_irqrestore(&host
->lock
, flags
);
875 remove_wait_queue(&host
->wq
, &wait
);
878 pm_runtime_get_sync(mmc_dev(host
));
882 EXPORT_SYMBOL(__mmc_claim_host
);
885 * mmc_release_host - release a host
886 * @host: mmc host to release
888 * Release a MMC host, allowing others to claim the host
889 * for their operations.
891 void mmc_release_host(struct mmc_host
*host
)
895 WARN_ON(!host
->claimed
);
897 spin_lock_irqsave(&host
->lock
, flags
);
898 if (--host
->claim_cnt
) {
899 /* Release for nested claim */
900 spin_unlock_irqrestore(&host
->lock
, flags
);
903 host
->claimer
= NULL
;
904 spin_unlock_irqrestore(&host
->lock
, flags
);
906 pm_runtime_mark_last_busy(mmc_dev(host
));
907 pm_runtime_put_autosuspend(mmc_dev(host
));
910 EXPORT_SYMBOL(mmc_release_host
);
913 * This is a helper function, which fetches a runtime pm reference for the
914 * card device and also claims the host.
916 void mmc_get_card(struct mmc_card
*card
)
918 pm_runtime_get_sync(&card
->dev
);
919 mmc_claim_host(card
->host
);
921 EXPORT_SYMBOL(mmc_get_card
);
924 * This is a helper function, which releases the host and drops the runtime
925 * pm reference for the card device.
927 void mmc_put_card(struct mmc_card
*card
)
929 mmc_release_host(card
->host
);
930 pm_runtime_mark_last_busy(&card
->dev
);
931 pm_runtime_put_autosuspend(&card
->dev
);
933 EXPORT_SYMBOL(mmc_put_card
);
936 * Internal function that does the actual ios call to the host driver,
937 * optionally printing some debug output.
939 static inline void mmc_set_ios(struct mmc_host
*host
)
941 struct mmc_ios
*ios
= &host
->ios
;
943 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
944 "width %u timing %u\n",
945 mmc_hostname(host
), ios
->clock
, ios
->bus_mode
,
946 ios
->power_mode
, ios
->chip_select
, ios
->vdd
,
947 1 << ios
->bus_width
, ios
->timing
);
949 host
->ops
->set_ios(host
, ios
);
953 * Control chip select pin on a host.
955 void mmc_set_chip_select(struct mmc_host
*host
, int mode
)
957 host
->ios
.chip_select
= mode
;
962 * Sets the host clock to the highest possible frequency that
965 void mmc_set_clock(struct mmc_host
*host
, unsigned int hz
)
967 WARN_ON(hz
&& hz
< host
->f_min
);
969 if (hz
> host
->f_max
)
972 host
->ios
.clock
= hz
;
976 int mmc_execute_tuning(struct mmc_card
*card
)
978 struct mmc_host
*host
= card
->host
;
982 if (!host
->ops
->execute_tuning
)
986 host
->cqe_ops
->cqe_off(host
);
988 if (mmc_card_mmc(card
))
989 opcode
= MMC_SEND_TUNING_BLOCK_HS200
;
991 opcode
= MMC_SEND_TUNING_BLOCK
;
993 err
= host
->ops
->execute_tuning(host
, opcode
);
996 pr_err("%s: tuning execution failed: %d\n",
997 mmc_hostname(host
), err
);
999 mmc_retune_enable(host
);
1005 * Change the bus mode (open drain/push-pull) of a host.
1007 void mmc_set_bus_mode(struct mmc_host
*host
, unsigned int mode
)
1009 host
->ios
.bus_mode
= mode
;
1014 * Change data bus width of a host.
1016 void mmc_set_bus_width(struct mmc_host
*host
, unsigned int width
)
1018 host
->ios
.bus_width
= width
;
1023 * Set initial state after a power cycle or a hw_reset.
1025 void mmc_set_initial_state(struct mmc_host
*host
)
1028 host
->cqe_ops
->cqe_off(host
);
1030 mmc_retune_disable(host
);
1032 if (mmc_host_is_spi(host
))
1033 host
->ios
.chip_select
= MMC_CS_HIGH
;
1035 host
->ios
.chip_select
= MMC_CS_DONTCARE
;
1036 host
->ios
.bus_mode
= MMC_BUSMODE_PUSHPULL
;
1037 host
->ios
.bus_width
= MMC_BUS_WIDTH_1
;
1038 host
->ios
.timing
= MMC_TIMING_LEGACY
;
1039 host
->ios
.drv_type
= 0;
1040 host
->ios
.enhanced_strobe
= false;
1043 * Make sure we are in non-enhanced strobe mode before we
1044 * actually enable it in ext_csd.
1046 if ((host
->caps2
& MMC_CAP2_HS400_ES
) &&
1047 host
->ops
->hs400_enhanced_strobe
)
1048 host
->ops
->hs400_enhanced_strobe(host
, &host
->ios
);
1054 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1055 * @vdd: voltage (mV)
1056 * @low_bits: prefer low bits in boundary cases
1058 * This function returns the OCR bit number according to the provided @vdd
1059 * value. If conversion is not possible a negative errno value returned.
1061 * Depending on the @low_bits flag the function prefers low or high OCR bits
1062 * on boundary voltages. For example,
1063 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1064 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1066 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1068 static int mmc_vdd_to_ocrbitnum(int vdd
, bool low_bits
)
1070 const int max_bit
= ilog2(MMC_VDD_35_36
);
1073 if (vdd
< 1650 || vdd
> 3600)
1076 if (vdd
>= 1650 && vdd
<= 1950)
1077 return ilog2(MMC_VDD_165_195
);
1082 /* Base 2000 mV, step 100 mV, bit's base 8. */
1083 bit
= (vdd
- 2000) / 100 + 8;
1090 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1091 * @vdd_min: minimum voltage value (mV)
1092 * @vdd_max: maximum voltage value (mV)
1094 * This function returns the OCR mask bits according to the provided @vdd_min
1095 * and @vdd_max values. If conversion is not possible the function returns 0.
1097 * Notes wrt boundary cases:
1098 * This function sets the OCR bits for all boundary voltages, for example
1099 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1100 * MMC_VDD_34_35 mask.
1102 u32
mmc_vddrange_to_ocrmask(int vdd_min
, int vdd_max
)
1106 if (vdd_max
< vdd_min
)
1109 /* Prefer high bits for the boundary vdd_max values. */
1110 vdd_max
= mmc_vdd_to_ocrbitnum(vdd_max
, false);
1114 /* Prefer low bits for the boundary vdd_min values. */
1115 vdd_min
= mmc_vdd_to_ocrbitnum(vdd_min
, true);
1119 /* Fill the mask, from max bit to min bit. */
1120 while (vdd_max
>= vdd_min
)
1121 mask
|= 1 << vdd_max
--;
1125 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask
);
1130 * mmc_of_parse_voltage - return mask of supported voltages
1131 * @np: The device node need to be parsed.
1132 * @mask: mask of voltages available for MMC/SD/SDIO
1134 * Parse the "voltage-ranges" DT property, returning zero if it is not
1135 * found, negative errno if the voltage-range specification is invalid,
1136 * or one if the voltage-range is specified and successfully parsed.
1138 int mmc_of_parse_voltage(struct device_node
*np
, u32
*mask
)
1140 const u32
*voltage_ranges
;
1143 voltage_ranges
= of_get_property(np
, "voltage-ranges", &num_ranges
);
1144 num_ranges
= num_ranges
/ sizeof(*voltage_ranges
) / 2;
1145 if (!voltage_ranges
) {
1146 pr_debug("%pOF: voltage-ranges unspecified\n", np
);
1150 pr_err("%pOF: voltage-ranges empty\n", np
);
1154 for (i
= 0; i
< num_ranges
; i
++) {
1155 const int j
= i
* 2;
1158 ocr_mask
= mmc_vddrange_to_ocrmask(
1159 be32_to_cpu(voltage_ranges
[j
]),
1160 be32_to_cpu(voltage_ranges
[j
+ 1]));
1162 pr_err("%pOF: voltage-range #%d is invalid\n",
1171 EXPORT_SYMBOL(mmc_of_parse_voltage
);
1173 #endif /* CONFIG_OF */
1175 static int mmc_of_get_func_num(struct device_node
*node
)
1180 ret
= of_property_read_u32(node
, "reg", ®
);
1187 struct device_node
*mmc_of_find_child_device(struct mmc_host
*host
,
1190 struct device_node
*node
;
1192 if (!host
->parent
|| !host
->parent
->of_node
)
1195 for_each_child_of_node(host
->parent
->of_node
, node
) {
1196 if (mmc_of_get_func_num(node
) == func_num
)
1203 #ifdef CONFIG_REGULATOR
1206 * mmc_ocrbitnum_to_vdd - Convert a OCR bit number to its voltage
1207 * @vdd_bit: OCR bit number
1208 * @min_uV: minimum voltage value (mV)
1209 * @max_uV: maximum voltage value (mV)
1211 * This function returns the voltage range according to the provided OCR
1212 * bit number. If conversion is not possible a negative errno value returned.
1214 static int mmc_ocrbitnum_to_vdd(int vdd_bit
, int *min_uV
, int *max_uV
)
1222 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1223 * bits this regulator doesn't quite support ... don't
1224 * be too picky, most cards and regulators are OK with
1225 * a 0.1V range goof (it's a small error percentage).
1227 tmp
= vdd_bit
- ilog2(MMC_VDD_165_195
);
1229 *min_uV
= 1650 * 1000;
1230 *max_uV
= 1950 * 1000;
1232 *min_uV
= 1900 * 1000 + tmp
* 100 * 1000;
1233 *max_uV
= *min_uV
+ 100 * 1000;
1240 * mmc_regulator_get_ocrmask - return mask of supported voltages
1241 * @supply: regulator to use
1243 * This returns either a negative errno, or a mask of voltages that
1244 * can be provided to MMC/SD/SDIO devices using the specified voltage
1245 * regulator. This would normally be called before registering the
1248 int mmc_regulator_get_ocrmask(struct regulator
*supply
)
1256 count
= regulator_count_voltages(supply
);
1260 for (i
= 0; i
< count
; i
++) {
1261 vdd_uV
= regulator_list_voltage(supply
, i
);
1265 vdd_mV
= vdd_uV
/ 1000;
1266 result
|= mmc_vddrange_to_ocrmask(vdd_mV
, vdd_mV
);
1270 vdd_uV
= regulator_get_voltage(supply
);
1274 vdd_mV
= vdd_uV
/ 1000;
1275 result
= mmc_vddrange_to_ocrmask(vdd_mV
, vdd_mV
);
1280 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask
);
1283 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1284 * @mmc: the host to regulate
1285 * @supply: regulator to use
1286 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1288 * Returns zero on success, else negative errno.
1290 * MMC host drivers may use this to enable or disable a regulator using
1291 * a particular supply voltage. This would normally be called from the
1294 int mmc_regulator_set_ocr(struct mmc_host
*mmc
,
1295 struct regulator
*supply
,
1296 unsigned short vdd_bit
)
1302 mmc_ocrbitnum_to_vdd(vdd_bit
, &min_uV
, &max_uV
);
1304 result
= regulator_set_voltage(supply
, min_uV
, max_uV
);
1305 if (result
== 0 && !mmc
->regulator_enabled
) {
1306 result
= regulator_enable(supply
);
1308 mmc
->regulator_enabled
= true;
1310 } else if (mmc
->regulator_enabled
) {
1311 result
= regulator_disable(supply
);
1313 mmc
->regulator_enabled
= false;
1317 dev_err(mmc_dev(mmc
),
1318 "could not set regulator OCR (%d)\n", result
);
1321 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr
);
1323 static int mmc_regulator_set_voltage_if_supported(struct regulator
*regulator
,
1324 int min_uV
, int target_uV
,
1328 * Check if supported first to avoid errors since we may try several
1329 * signal levels during power up and don't want to show errors.
1331 if (!regulator_is_supported_voltage(regulator
, min_uV
, max_uV
))
1334 return regulator_set_voltage_triplet(regulator
, min_uV
, target_uV
,
1339 * mmc_regulator_set_vqmmc - Set VQMMC as per the ios
1341 * For 3.3V signaling, we try to match VQMMC to VMMC as closely as possible.
1342 * That will match the behavior of old boards where VQMMC and VMMC were supplied
1343 * by the same supply. The Bus Operating conditions for 3.3V signaling in the
1344 * SD card spec also define VQMMC in terms of VMMC.
1345 * If this is not possible we'll try the full 2.7-3.6V of the spec.
1347 * For 1.2V and 1.8V signaling we'll try to get as close as possible to the
1348 * requested voltage. This is definitely a good idea for UHS where there's a
1349 * separate regulator on the card that's trying to make 1.8V and it's best if
1352 * This function is expected to be used by a controller's
1353 * start_signal_voltage_switch() function.
1355 int mmc_regulator_set_vqmmc(struct mmc_host
*mmc
, struct mmc_ios
*ios
)
1357 struct device
*dev
= mmc_dev(mmc
);
1358 int ret
, volt
, min_uV
, max_uV
;
1360 /* If no vqmmc supply then we can't change the voltage */
1361 if (IS_ERR(mmc
->supply
.vqmmc
))
1364 switch (ios
->signal_voltage
) {
1365 case MMC_SIGNAL_VOLTAGE_120
:
1366 return mmc_regulator_set_voltage_if_supported(mmc
->supply
.vqmmc
,
1367 1100000, 1200000, 1300000);
1368 case MMC_SIGNAL_VOLTAGE_180
:
1369 return mmc_regulator_set_voltage_if_supported(mmc
->supply
.vqmmc
,
1370 1700000, 1800000, 1950000);
1371 case MMC_SIGNAL_VOLTAGE_330
:
1372 ret
= mmc_ocrbitnum_to_vdd(mmc
->ios
.vdd
, &volt
, &max_uV
);
1376 dev_dbg(dev
, "%s: found vmmc voltage range of %d-%duV\n",
1377 __func__
, volt
, max_uV
);
1379 min_uV
= max(volt
- 300000, 2700000);
1380 max_uV
= min(max_uV
+ 200000, 3600000);
1383 * Due to a limitation in the current implementation of
1384 * regulator_set_voltage_triplet() which is taking the lowest
1385 * voltage possible if below the target, search for a suitable
1386 * voltage in two steps and try to stay close to vmmc
1387 * with a 0.3V tolerance at first.
1389 if (!mmc_regulator_set_voltage_if_supported(mmc
->supply
.vqmmc
,
1390 min_uV
, volt
, max_uV
))
1393 return mmc_regulator_set_voltage_if_supported(mmc
->supply
.vqmmc
,
1394 2700000, volt
, 3600000);
1399 EXPORT_SYMBOL_GPL(mmc_regulator_set_vqmmc
);
1401 #endif /* CONFIG_REGULATOR */
1403 int mmc_regulator_get_supply(struct mmc_host
*mmc
)
1405 struct device
*dev
= mmc_dev(mmc
);
1408 mmc
->supply
.vmmc
= devm_regulator_get_optional(dev
, "vmmc");
1409 mmc
->supply
.vqmmc
= devm_regulator_get_optional(dev
, "vqmmc");
1411 if (IS_ERR(mmc
->supply
.vmmc
)) {
1412 if (PTR_ERR(mmc
->supply
.vmmc
) == -EPROBE_DEFER
)
1413 return -EPROBE_DEFER
;
1414 dev_dbg(dev
, "No vmmc regulator found\n");
1416 ret
= mmc_regulator_get_ocrmask(mmc
->supply
.vmmc
);
1418 mmc
->ocr_avail
= ret
;
1420 dev_warn(dev
, "Failed getting OCR mask: %d\n", ret
);
1423 if (IS_ERR(mmc
->supply
.vqmmc
)) {
1424 if (PTR_ERR(mmc
->supply
.vqmmc
) == -EPROBE_DEFER
)
1425 return -EPROBE_DEFER
;
1426 dev_dbg(dev
, "No vqmmc regulator found\n");
1431 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply
);
1434 * Mask off any voltages we don't support and select
1435 * the lowest voltage
1437 u32
mmc_select_voltage(struct mmc_host
*host
, u32 ocr
)
1442 * Sanity check the voltages that the card claims to
1446 dev_warn(mmc_dev(host
),
1447 "card claims to support voltages below defined range\n");
1451 ocr
&= host
->ocr_avail
;
1453 dev_warn(mmc_dev(host
), "no support for card's volts\n");
1457 if (host
->caps2
& MMC_CAP2_FULL_PWR_CYCLE
) {
1460 mmc_power_cycle(host
, ocr
);
1464 if (bit
!= host
->ios
.vdd
)
1465 dev_warn(mmc_dev(host
), "exceeding card's volts\n");
1471 int mmc_set_signal_voltage(struct mmc_host
*host
, int signal_voltage
)
1474 int old_signal_voltage
= host
->ios
.signal_voltage
;
1476 host
->ios
.signal_voltage
= signal_voltage
;
1477 if (host
->ops
->start_signal_voltage_switch
)
1478 err
= host
->ops
->start_signal_voltage_switch(host
, &host
->ios
);
1481 host
->ios
.signal_voltage
= old_signal_voltage
;
1487 int mmc_set_uhs_voltage(struct mmc_host
*host
, u32 ocr
)
1489 struct mmc_command cmd
= {};
1494 * If we cannot switch voltages, return failure so the caller
1495 * can continue without UHS mode
1497 if (!host
->ops
->start_signal_voltage_switch
)
1499 if (!host
->ops
->card_busy
)
1500 pr_warn("%s: cannot verify signal voltage switch\n",
1501 mmc_hostname(host
));
1503 cmd
.opcode
= SD_SWITCH_VOLTAGE
;
1505 cmd
.flags
= MMC_RSP_R1
| MMC_CMD_AC
;
1507 err
= mmc_wait_for_cmd(host
, &cmd
, 0);
1511 if (!mmc_host_is_spi(host
) && (cmd
.resp
[0] & R1_ERROR
))
1515 * The card should drive cmd and dat[0:3] low immediately
1516 * after the response of cmd11, but wait 1 ms to be sure
1519 if (host
->ops
->card_busy
&& !host
->ops
->card_busy(host
)) {
1524 * During a signal voltage level switch, the clock must be gated
1525 * for 5 ms according to the SD spec
1527 clock
= host
->ios
.clock
;
1528 host
->ios
.clock
= 0;
1531 if (mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_180
)) {
1533 * Voltages may not have been switched, but we've already
1534 * sent CMD11, so a power cycle is required anyway
1540 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1542 host
->ios
.clock
= clock
;
1545 /* Wait for at least 1 ms according to spec */
1549 * Failure to switch is indicated by the card holding
1552 if (host
->ops
->card_busy
&& host
->ops
->card_busy(host
))
1557 pr_debug("%s: Signal voltage switch failed, "
1558 "power cycling card\n", mmc_hostname(host
));
1559 mmc_power_cycle(host
, ocr
);
1566 * Select timing parameters for host.
1568 void mmc_set_timing(struct mmc_host
*host
, unsigned int timing
)
1570 host
->ios
.timing
= timing
;
1575 * Select appropriate driver type for host.
1577 void mmc_set_driver_type(struct mmc_host
*host
, unsigned int drv_type
)
1579 host
->ios
.drv_type
= drv_type
;
1583 int mmc_select_drive_strength(struct mmc_card
*card
, unsigned int max_dtr
,
1584 int card_drv_type
, int *drv_type
)
1586 struct mmc_host
*host
= card
->host
;
1587 int host_drv_type
= SD_DRIVER_TYPE_B
;
1591 if (!host
->ops
->select_drive_strength
)
1594 /* Use SD definition of driver strength for hosts */
1595 if (host
->caps
& MMC_CAP_DRIVER_TYPE_A
)
1596 host_drv_type
|= SD_DRIVER_TYPE_A
;
1598 if (host
->caps
& MMC_CAP_DRIVER_TYPE_C
)
1599 host_drv_type
|= SD_DRIVER_TYPE_C
;
1601 if (host
->caps
& MMC_CAP_DRIVER_TYPE_D
)
1602 host_drv_type
|= SD_DRIVER_TYPE_D
;
1605 * The drive strength that the hardware can support
1606 * depends on the board design. Pass the appropriate
1607 * information and let the hardware specific code
1608 * return what is possible given the options
1610 return host
->ops
->select_drive_strength(card
, max_dtr
,
1617 * Apply power to the MMC stack. This is a two-stage process.
1618 * First, we enable power to the card without the clock running.
1619 * We then wait a bit for the power to stabilise. Finally,
1620 * enable the bus drivers and clock to the card.
1622 * We must _NOT_ enable the clock prior to power stablising.
1624 * If a host does all the power sequencing itself, ignore the
1625 * initial MMC_POWER_UP stage.
1627 void mmc_power_up(struct mmc_host
*host
, u32 ocr
)
1629 if (host
->ios
.power_mode
== MMC_POWER_ON
)
1632 mmc_pwrseq_pre_power_on(host
);
1634 host
->ios
.vdd
= fls(ocr
) - 1;
1635 host
->ios
.power_mode
= MMC_POWER_UP
;
1636 /* Set initial state and call mmc_set_ios */
1637 mmc_set_initial_state(host
);
1639 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1640 if (!mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_330
))
1641 dev_dbg(mmc_dev(host
), "Initial signal voltage of 3.3v\n");
1642 else if (!mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_180
))
1643 dev_dbg(mmc_dev(host
), "Initial signal voltage of 1.8v\n");
1644 else if (!mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_120
))
1645 dev_dbg(mmc_dev(host
), "Initial signal voltage of 1.2v\n");
1648 * This delay should be sufficient to allow the power supply
1649 * to reach the minimum voltage.
1653 mmc_pwrseq_post_power_on(host
);
1655 host
->ios
.clock
= host
->f_init
;
1657 host
->ios
.power_mode
= MMC_POWER_ON
;
1661 * This delay must be at least 74 clock sizes, or 1 ms, or the
1662 * time required to reach a stable voltage.
1667 void mmc_power_off(struct mmc_host
*host
)
1669 if (host
->ios
.power_mode
== MMC_POWER_OFF
)
1672 mmc_pwrseq_power_off(host
);
1674 host
->ios
.clock
= 0;
1677 host
->ios
.power_mode
= MMC_POWER_OFF
;
1678 /* Set initial state and call mmc_set_ios */
1679 mmc_set_initial_state(host
);
1682 * Some configurations, such as the 802.11 SDIO card in the OLPC
1683 * XO-1.5, require a short delay after poweroff before the card
1684 * can be successfully turned on again.
1689 void mmc_power_cycle(struct mmc_host
*host
, u32 ocr
)
1691 mmc_power_off(host
);
1692 /* Wait at least 1 ms according to SD spec */
1694 mmc_power_up(host
, ocr
);
1698 * Cleanup when the last reference to the bus operator is dropped.
1700 static void __mmc_release_bus(struct mmc_host
*host
)
1702 WARN_ON(!host
->bus_dead
);
1704 host
->bus_ops
= NULL
;
1708 * Increase reference count of bus operator
1710 static inline void mmc_bus_get(struct mmc_host
*host
)
1712 unsigned long flags
;
1714 spin_lock_irqsave(&host
->lock
, flags
);
1716 spin_unlock_irqrestore(&host
->lock
, flags
);
1720 * Decrease reference count of bus operator and free it if
1721 * it is the last reference.
1723 static inline void mmc_bus_put(struct mmc_host
*host
)
1725 unsigned long flags
;
1727 spin_lock_irqsave(&host
->lock
, flags
);
1729 if ((host
->bus_refs
== 0) && host
->bus_ops
)
1730 __mmc_release_bus(host
);
1731 spin_unlock_irqrestore(&host
->lock
, flags
);
1735 * Assign a mmc bus handler to a host. Only one bus handler may control a
1736 * host at any given time.
1738 void mmc_attach_bus(struct mmc_host
*host
, const struct mmc_bus_ops
*ops
)
1740 unsigned long flags
;
1742 WARN_ON(!host
->claimed
);
1744 spin_lock_irqsave(&host
->lock
, flags
);
1746 WARN_ON(host
->bus_ops
);
1747 WARN_ON(host
->bus_refs
);
1749 host
->bus_ops
= ops
;
1753 spin_unlock_irqrestore(&host
->lock
, flags
);
1757 * Remove the current bus handler from a host.
1759 void mmc_detach_bus(struct mmc_host
*host
)
1761 unsigned long flags
;
1763 WARN_ON(!host
->claimed
);
1764 WARN_ON(!host
->bus_ops
);
1766 spin_lock_irqsave(&host
->lock
, flags
);
1770 spin_unlock_irqrestore(&host
->lock
, flags
);
1775 static void _mmc_detect_change(struct mmc_host
*host
, unsigned long delay
,
1779 * If the device is configured as wakeup, we prevent a new sleep for
1780 * 5 s to give provision for user space to consume the event.
1782 if (cd_irq
&& !(host
->caps
& MMC_CAP_NEEDS_POLL
) &&
1783 device_can_wakeup(mmc_dev(host
)))
1784 pm_wakeup_event(mmc_dev(host
), 5000);
1786 host
->detect_change
= 1;
1787 mmc_schedule_delayed_work(&host
->detect
, delay
);
1791 * mmc_detect_change - process change of state on a MMC socket
1792 * @host: host which changed state.
1793 * @delay: optional delay to wait before detection (jiffies)
1795 * MMC drivers should call this when they detect a card has been
1796 * inserted or removed. The MMC layer will confirm that any
1797 * present card is still functional, and initialize any newly
1800 void mmc_detect_change(struct mmc_host
*host
, unsigned long delay
)
1802 _mmc_detect_change(host
, delay
, true);
1804 EXPORT_SYMBOL(mmc_detect_change
);
1806 void mmc_init_erase(struct mmc_card
*card
)
1810 if (is_power_of_2(card
->erase_size
))
1811 card
->erase_shift
= ffs(card
->erase_size
) - 1;
1813 card
->erase_shift
= 0;
1816 * It is possible to erase an arbitrarily large area of an SD or MMC
1817 * card. That is not desirable because it can take a long time
1818 * (minutes) potentially delaying more important I/O, and also the
1819 * timeout calculations become increasingly hugely over-estimated.
1820 * Consequently, 'pref_erase' is defined as a guide to limit erases
1821 * to that size and alignment.
1823 * For SD cards that define Allocation Unit size, limit erases to one
1824 * Allocation Unit at a time.
1825 * For MMC, have a stab at ai good value and for modern cards it will
1826 * end up being 4MiB. Note that if the value is too small, it can end
1827 * up taking longer to erase. Also note, erase_size is already set to
1828 * High Capacity Erase Size if available when this function is called.
1830 if (mmc_card_sd(card
) && card
->ssr
.au
) {
1831 card
->pref_erase
= card
->ssr
.au
;
1832 card
->erase_shift
= ffs(card
->ssr
.au
) - 1;
1833 } else if (card
->erase_size
) {
1834 sz
= (card
->csd
.capacity
<< (card
->csd
.read_blkbits
- 9)) >> 11;
1836 card
->pref_erase
= 512 * 1024 / 512;
1838 card
->pref_erase
= 1024 * 1024 / 512;
1840 card
->pref_erase
= 2 * 1024 * 1024 / 512;
1842 card
->pref_erase
= 4 * 1024 * 1024 / 512;
1843 if (card
->pref_erase
< card
->erase_size
)
1844 card
->pref_erase
= card
->erase_size
;
1846 sz
= card
->pref_erase
% card
->erase_size
;
1848 card
->pref_erase
+= card
->erase_size
- sz
;
1851 card
->pref_erase
= 0;
1854 static unsigned int mmc_mmc_erase_timeout(struct mmc_card
*card
,
1855 unsigned int arg
, unsigned int qty
)
1857 unsigned int erase_timeout
;
1859 if (arg
== MMC_DISCARD_ARG
||
1860 (arg
== MMC_TRIM_ARG
&& card
->ext_csd
.rev
>= 6)) {
1861 erase_timeout
= card
->ext_csd
.trim_timeout
;
1862 } else if (card
->ext_csd
.erase_group_def
& 1) {
1863 /* High Capacity Erase Group Size uses HC timeouts */
1864 if (arg
== MMC_TRIM_ARG
)
1865 erase_timeout
= card
->ext_csd
.trim_timeout
;
1867 erase_timeout
= card
->ext_csd
.hc_erase_timeout
;
1869 /* CSD Erase Group Size uses write timeout */
1870 unsigned int mult
= (10 << card
->csd
.r2w_factor
);
1871 unsigned int timeout_clks
= card
->csd
.taac_clks
* mult
;
1872 unsigned int timeout_us
;
1874 /* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1875 if (card
->csd
.taac_ns
< 1000000)
1876 timeout_us
= (card
->csd
.taac_ns
* mult
) / 1000;
1878 timeout_us
= (card
->csd
.taac_ns
/ 1000) * mult
;
1881 * ios.clock is only a target. The real clock rate might be
1882 * less but not that much less, so fudge it by multiplying by 2.
1885 timeout_us
+= (timeout_clks
* 1000) /
1886 (card
->host
->ios
.clock
/ 1000);
1888 erase_timeout
= timeout_us
/ 1000;
1891 * Theoretically, the calculation could underflow so round up
1892 * to 1ms in that case.
1898 /* Multiplier for secure operations */
1899 if (arg
& MMC_SECURE_ARGS
) {
1900 if (arg
== MMC_SECURE_ERASE_ARG
)
1901 erase_timeout
*= card
->ext_csd
.sec_erase_mult
;
1903 erase_timeout
*= card
->ext_csd
.sec_trim_mult
;
1906 erase_timeout
*= qty
;
1909 * Ensure at least a 1 second timeout for SPI as per
1910 * 'mmc_set_data_timeout()'
1912 if (mmc_host_is_spi(card
->host
) && erase_timeout
< 1000)
1913 erase_timeout
= 1000;
1915 return erase_timeout
;
1918 static unsigned int mmc_sd_erase_timeout(struct mmc_card
*card
,
1922 unsigned int erase_timeout
;
1924 if (card
->ssr
.erase_timeout
) {
1925 /* Erase timeout specified in SD Status Register (SSR) */
1926 erase_timeout
= card
->ssr
.erase_timeout
* qty
+
1927 card
->ssr
.erase_offset
;
1930 * Erase timeout not specified in SD Status Register (SSR) so
1931 * use 250ms per write block.
1933 erase_timeout
= 250 * qty
;
1936 /* Must not be less than 1 second */
1937 if (erase_timeout
< 1000)
1938 erase_timeout
= 1000;
1940 return erase_timeout
;
1943 static unsigned int mmc_erase_timeout(struct mmc_card
*card
,
1947 if (mmc_card_sd(card
))
1948 return mmc_sd_erase_timeout(card
, arg
, qty
);
1950 return mmc_mmc_erase_timeout(card
, arg
, qty
);
1953 static int mmc_do_erase(struct mmc_card
*card
, unsigned int from
,
1954 unsigned int to
, unsigned int arg
)
1956 struct mmc_command cmd
= {};
1957 unsigned int qty
= 0, busy_timeout
= 0;
1958 bool use_r1b_resp
= false;
1959 unsigned long timeout
;
1962 mmc_retune_hold(card
->host
);
1965 * qty is used to calculate the erase timeout which depends on how many
1966 * erase groups (or allocation units in SD terminology) are affected.
1967 * We count erasing part of an erase group as one erase group.
1968 * For SD, the allocation units are always a power of 2. For MMC, the
1969 * erase group size is almost certainly also power of 2, but it does not
1970 * seem to insist on that in the JEDEC standard, so we fall back to
1971 * division in that case. SD may not specify an allocation unit size,
1972 * in which case the timeout is based on the number of write blocks.
1974 * Note that the timeout for secure trim 2 will only be correct if the
1975 * number of erase groups specified is the same as the total of all
1976 * preceding secure trim 1 commands. Since the power may have been
1977 * lost since the secure trim 1 commands occurred, it is generally
1978 * impossible to calculate the secure trim 2 timeout correctly.
1980 if (card
->erase_shift
)
1981 qty
+= ((to
>> card
->erase_shift
) -
1982 (from
>> card
->erase_shift
)) + 1;
1983 else if (mmc_card_sd(card
))
1984 qty
+= to
- from
+ 1;
1986 qty
+= ((to
/ card
->erase_size
) -
1987 (from
/ card
->erase_size
)) + 1;
1989 if (!mmc_card_blockaddr(card
)) {
1994 if (mmc_card_sd(card
))
1995 cmd
.opcode
= SD_ERASE_WR_BLK_START
;
1997 cmd
.opcode
= MMC_ERASE_GROUP_START
;
1999 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
2000 err
= mmc_wait_for_cmd(card
->host
, &cmd
, 0);
2002 pr_err("mmc_erase: group start error %d, "
2003 "status %#x\n", err
, cmd
.resp
[0]);
2008 memset(&cmd
, 0, sizeof(struct mmc_command
));
2009 if (mmc_card_sd(card
))
2010 cmd
.opcode
= SD_ERASE_WR_BLK_END
;
2012 cmd
.opcode
= MMC_ERASE_GROUP_END
;
2014 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
2015 err
= mmc_wait_for_cmd(card
->host
, &cmd
, 0);
2017 pr_err("mmc_erase: group end error %d, status %#x\n",
2023 memset(&cmd
, 0, sizeof(struct mmc_command
));
2024 cmd
.opcode
= MMC_ERASE
;
2026 busy_timeout
= mmc_erase_timeout(card
, arg
, qty
);
2028 * If the host controller supports busy signalling and the timeout for
2029 * the erase operation does not exceed the max_busy_timeout, we should
2030 * use R1B response. Or we need to prevent the host from doing hw busy
2031 * detection, which is done by converting to a R1 response instead.
2033 if (card
->host
->max_busy_timeout
&&
2034 busy_timeout
> card
->host
->max_busy_timeout
) {
2035 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
2037 cmd
.flags
= MMC_RSP_SPI_R1B
| MMC_RSP_R1B
| MMC_CMD_AC
;
2038 cmd
.busy_timeout
= busy_timeout
;
2039 use_r1b_resp
= true;
2042 err
= mmc_wait_for_cmd(card
->host
, &cmd
, 0);
2044 pr_err("mmc_erase: erase error %d, status %#x\n",
2050 if (mmc_host_is_spi(card
->host
))
2054 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
2057 if ((card
->host
->caps
& MMC_CAP_WAIT_WHILE_BUSY
) && use_r1b_resp
)
2060 timeout
= jiffies
+ msecs_to_jiffies(busy_timeout
);
2062 memset(&cmd
, 0, sizeof(struct mmc_command
));
2063 cmd
.opcode
= MMC_SEND_STATUS
;
2064 cmd
.arg
= card
->rca
<< 16;
2065 cmd
.flags
= MMC_RSP_R1
| MMC_CMD_AC
;
2066 /* Do not retry else we can't see errors */
2067 err
= mmc_wait_for_cmd(card
->host
, &cmd
, 0);
2068 if (err
|| (cmd
.resp
[0] & 0xFDF92000)) {
2069 pr_err("error %d requesting status %#x\n",
2075 /* Timeout if the device never becomes ready for data and
2076 * never leaves the program state.
2078 if (time_after(jiffies
, timeout
)) {
2079 pr_err("%s: Card stuck in programming state! %s\n",
2080 mmc_hostname(card
->host
), __func__
);
2085 } while (!(cmd
.resp
[0] & R1_READY_FOR_DATA
) ||
2086 (R1_CURRENT_STATE(cmd
.resp
[0]) == R1_STATE_PRG
));
2088 mmc_retune_release(card
->host
);
2092 static unsigned int mmc_align_erase_size(struct mmc_card
*card
,
2097 unsigned int from_new
= *from
, nr_new
= nr
, rem
;
2100 * When the 'card->erase_size' is power of 2, we can use round_up/down()
2101 * to align the erase size efficiently.
2103 if (is_power_of_2(card
->erase_size
)) {
2104 unsigned int temp
= from_new
;
2106 from_new
= round_up(temp
, card
->erase_size
);
2107 rem
= from_new
- temp
;
2114 nr_new
= round_down(nr_new
, card
->erase_size
);
2116 rem
= from_new
% card
->erase_size
;
2118 rem
= card
->erase_size
- rem
;
2126 rem
= nr_new
% card
->erase_size
;
2134 *to
= from_new
+ nr_new
;
2141 * mmc_erase - erase sectors.
2142 * @card: card to erase
2143 * @from: first sector to erase
2144 * @nr: number of sectors to erase
2145 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
2147 * Caller must claim host before calling this function.
2149 int mmc_erase(struct mmc_card
*card
, unsigned int from
, unsigned int nr
,
2152 unsigned int rem
, to
= from
+ nr
;
2155 if (!(card
->host
->caps
& MMC_CAP_ERASE
) ||
2156 !(card
->csd
.cmdclass
& CCC_ERASE
))
2159 if (!card
->erase_size
)
2162 if (mmc_card_sd(card
) && arg
!= MMC_ERASE_ARG
)
2165 if ((arg
& MMC_SECURE_ARGS
) &&
2166 !(card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_ER_EN
))
2169 if ((arg
& MMC_TRIM_ARGS
) &&
2170 !(card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_GB_CL_EN
))
2173 if (arg
== MMC_SECURE_ERASE_ARG
) {
2174 if (from
% card
->erase_size
|| nr
% card
->erase_size
)
2178 if (arg
== MMC_ERASE_ARG
)
2179 nr
= mmc_align_erase_size(card
, &from
, &to
, nr
);
2187 /* 'from' and 'to' are inclusive */
2191 * Special case where only one erase-group fits in the timeout budget:
2192 * If the region crosses an erase-group boundary on this particular
2193 * case, we will be trimming more than one erase-group which, does not
2194 * fit in the timeout budget of the controller, so we need to split it
2195 * and call mmc_do_erase() twice if necessary. This special case is
2196 * identified by the card->eg_boundary flag.
2198 rem
= card
->erase_size
- (from
% card
->erase_size
);
2199 if ((arg
& MMC_TRIM_ARGS
) && (card
->eg_boundary
) && (nr
> rem
)) {
2200 err
= mmc_do_erase(card
, from
, from
+ rem
- 1, arg
);
2202 if ((err
) || (to
<= from
))
2206 return mmc_do_erase(card
, from
, to
, arg
);
2208 EXPORT_SYMBOL(mmc_erase
);
2210 int mmc_can_erase(struct mmc_card
*card
)
2212 if ((card
->host
->caps
& MMC_CAP_ERASE
) &&
2213 (card
->csd
.cmdclass
& CCC_ERASE
) && card
->erase_size
)
2217 EXPORT_SYMBOL(mmc_can_erase
);
2219 int mmc_can_trim(struct mmc_card
*card
)
2221 if ((card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_GB_CL_EN
) &&
2222 (!(card
->quirks
& MMC_QUIRK_TRIM_BROKEN
)))
2226 EXPORT_SYMBOL(mmc_can_trim
);
2228 int mmc_can_discard(struct mmc_card
*card
)
2231 * As there's no way to detect the discard support bit at v4.5
2232 * use the s/w feature support filed.
2234 if (card
->ext_csd
.feature_support
& MMC_DISCARD_FEATURE
)
2238 EXPORT_SYMBOL(mmc_can_discard
);
2240 int mmc_can_sanitize(struct mmc_card
*card
)
2242 if (!mmc_can_trim(card
) && !mmc_can_erase(card
))
2244 if (card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_SANITIZE
)
2248 EXPORT_SYMBOL(mmc_can_sanitize
);
2250 int mmc_can_secure_erase_trim(struct mmc_card
*card
)
2252 if ((card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_ER_EN
) &&
2253 !(card
->quirks
& MMC_QUIRK_SEC_ERASE_TRIM_BROKEN
))
2257 EXPORT_SYMBOL(mmc_can_secure_erase_trim
);
2259 int mmc_erase_group_aligned(struct mmc_card
*card
, unsigned int from
,
2262 if (!card
->erase_size
)
2264 if (from
% card
->erase_size
|| nr
% card
->erase_size
)
2268 EXPORT_SYMBOL(mmc_erase_group_aligned
);
2270 static unsigned int mmc_do_calc_max_discard(struct mmc_card
*card
,
2273 struct mmc_host
*host
= card
->host
;
2274 unsigned int max_discard
, x
, y
, qty
= 0, max_qty
, min_qty
, timeout
;
2275 unsigned int last_timeout
= 0;
2276 unsigned int max_busy_timeout
= host
->max_busy_timeout
?
2277 host
->max_busy_timeout
: MMC_ERASE_TIMEOUT_MS
;
2279 if (card
->erase_shift
) {
2280 max_qty
= UINT_MAX
>> card
->erase_shift
;
2281 min_qty
= card
->pref_erase
>> card
->erase_shift
;
2282 } else if (mmc_card_sd(card
)) {
2284 min_qty
= card
->pref_erase
;
2286 max_qty
= UINT_MAX
/ card
->erase_size
;
2287 min_qty
= card
->pref_erase
/ card
->erase_size
;
2291 * We should not only use 'host->max_busy_timeout' as the limitation
2292 * when deciding the max discard sectors. We should set a balance value
2293 * to improve the erase speed, and it can not get too long timeout at
2296 * Here we set 'card->pref_erase' as the minimal discard sectors no
2297 * matter what size of 'host->max_busy_timeout', but if the
2298 * 'host->max_busy_timeout' is large enough for more discard sectors,
2299 * then we can continue to increase the max discard sectors until we
2300 * get a balance value. In cases when the 'host->max_busy_timeout'
2301 * isn't specified, use the default max erase timeout.
2305 for (x
= 1; x
&& x
<= max_qty
&& max_qty
- x
>= qty
; x
<<= 1) {
2306 timeout
= mmc_erase_timeout(card
, arg
, qty
+ x
);
2308 if (qty
+ x
> min_qty
&& timeout
> max_busy_timeout
)
2311 if (timeout
< last_timeout
)
2313 last_timeout
= timeout
;
2323 * When specifying a sector range to trim, chances are we might cross
2324 * an erase-group boundary even if the amount of sectors is less than
2326 * If we can only fit one erase-group in the controller timeout budget,
2327 * we have to care that erase-group boundaries are not crossed by a
2328 * single trim operation. We flag that special case with "eg_boundary".
2329 * In all other cases we can just decrement qty and pretend that we
2330 * always touch (qty + 1) erase-groups as a simple optimization.
2333 card
->eg_boundary
= 1;
2337 /* Convert qty to sectors */
2338 if (card
->erase_shift
)
2339 max_discard
= qty
<< card
->erase_shift
;
2340 else if (mmc_card_sd(card
))
2341 max_discard
= qty
+ 1;
2343 max_discard
= qty
* card
->erase_size
;
2348 unsigned int mmc_calc_max_discard(struct mmc_card
*card
)
2350 struct mmc_host
*host
= card
->host
;
2351 unsigned int max_discard
, max_trim
;
2354 * Without erase_group_def set, MMC erase timeout depends on clock
2355 * frequence which can change. In that case, the best choice is
2356 * just the preferred erase size.
2358 if (mmc_card_mmc(card
) && !(card
->ext_csd
.erase_group_def
& 1))
2359 return card
->pref_erase
;
2361 max_discard
= mmc_do_calc_max_discard(card
, MMC_ERASE_ARG
);
2362 if (mmc_can_trim(card
)) {
2363 max_trim
= mmc_do_calc_max_discard(card
, MMC_TRIM_ARG
);
2364 if (max_trim
< max_discard
)
2365 max_discard
= max_trim
;
2366 } else if (max_discard
< card
->erase_size
) {
2369 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2370 mmc_hostname(host
), max_discard
, host
->max_busy_timeout
?
2371 host
->max_busy_timeout
: MMC_ERASE_TIMEOUT_MS
);
2374 EXPORT_SYMBOL(mmc_calc_max_discard
);
2376 bool mmc_card_is_blockaddr(struct mmc_card
*card
)
2378 return card
? mmc_card_blockaddr(card
) : false;
2380 EXPORT_SYMBOL(mmc_card_is_blockaddr
);
2382 int mmc_set_blocklen(struct mmc_card
*card
, unsigned int blocklen
)
2384 struct mmc_command cmd
= {};
2386 if (mmc_card_blockaddr(card
) || mmc_card_ddr52(card
) ||
2387 mmc_card_hs400(card
) || mmc_card_hs400es(card
))
2390 cmd
.opcode
= MMC_SET_BLOCKLEN
;
2392 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
2393 return mmc_wait_for_cmd(card
->host
, &cmd
, 5);
2395 EXPORT_SYMBOL(mmc_set_blocklen
);
2397 int mmc_set_blockcount(struct mmc_card
*card
, unsigned int blockcount
,
2400 struct mmc_command cmd
= {};
2402 cmd
.opcode
= MMC_SET_BLOCK_COUNT
;
2403 cmd
.arg
= blockcount
& 0x0000FFFF;
2406 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
2407 return mmc_wait_for_cmd(card
->host
, &cmd
, 5);
2409 EXPORT_SYMBOL(mmc_set_blockcount
);
2411 static void mmc_hw_reset_for_init(struct mmc_host
*host
)
2413 mmc_pwrseq_reset(host
);
2415 if (!(host
->caps
& MMC_CAP_HW_RESET
) || !host
->ops
->hw_reset
)
2417 host
->ops
->hw_reset(host
);
2420 int mmc_hw_reset(struct mmc_host
*host
)
2428 if (!host
->bus_ops
|| host
->bus_dead
|| !host
->bus_ops
->reset
) {
2433 ret
= host
->bus_ops
->reset(host
);
2437 pr_warn("%s: tried to reset card, got error %d\n",
2438 mmc_hostname(host
), ret
);
2442 EXPORT_SYMBOL(mmc_hw_reset
);
2444 static int mmc_rescan_try_freq(struct mmc_host
*host
, unsigned freq
)
2446 host
->f_init
= freq
;
2448 pr_debug("%s: %s: trying to init card at %u Hz\n",
2449 mmc_hostname(host
), __func__
, host
->f_init
);
2451 mmc_power_up(host
, host
->ocr_avail
);
2454 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2455 * do a hardware reset if possible.
2457 mmc_hw_reset_for_init(host
);
2460 * sdio_reset sends CMD52 to reset card. Since we do not know
2461 * if the card is being re-initialized, just send it. CMD52
2462 * should be ignored by SD/eMMC cards.
2463 * Skip it if we already know that we do not support SDIO commands
2465 if (!(host
->caps2
& MMC_CAP2_NO_SDIO
))
2470 if (!(host
->caps2
& MMC_CAP2_NO_SD
))
2471 mmc_send_if_cond(host
, host
->ocr_avail
);
2473 /* Order's important: probe SDIO, then SD, then MMC */
2474 if (!(host
->caps2
& MMC_CAP2_NO_SDIO
))
2475 if (!mmc_attach_sdio(host
))
2478 if (!(host
->caps2
& MMC_CAP2_NO_SD
))
2479 if (!mmc_attach_sd(host
))
2482 if (!(host
->caps2
& MMC_CAP2_NO_MMC
))
2483 if (!mmc_attach_mmc(host
))
2486 mmc_power_off(host
);
2490 int _mmc_detect_card_removed(struct mmc_host
*host
)
2494 if (!host
->card
|| mmc_card_removed(host
->card
))
2497 ret
= host
->bus_ops
->alive(host
);
2500 * Card detect status and alive check may be out of sync if card is
2501 * removed slowly, when card detect switch changes while card/slot
2502 * pads are still contacted in hardware (refer to "SD Card Mechanical
2503 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2504 * detect work 200ms later for this case.
2506 if (!ret
&& host
->ops
->get_cd
&& !host
->ops
->get_cd(host
)) {
2507 mmc_detect_change(host
, msecs_to_jiffies(200));
2508 pr_debug("%s: card removed too slowly\n", mmc_hostname(host
));
2512 mmc_card_set_removed(host
->card
);
2513 pr_debug("%s: card remove detected\n", mmc_hostname(host
));
2519 int mmc_detect_card_removed(struct mmc_host
*host
)
2521 struct mmc_card
*card
= host
->card
;
2524 WARN_ON(!host
->claimed
);
2529 if (!mmc_card_is_removable(host
))
2532 ret
= mmc_card_removed(card
);
2534 * The card will be considered unchanged unless we have been asked to
2535 * detect a change or host requires polling to provide card detection.
2537 if (!host
->detect_change
&& !(host
->caps
& MMC_CAP_NEEDS_POLL
))
2540 host
->detect_change
= 0;
2542 ret
= _mmc_detect_card_removed(host
);
2543 if (ret
&& (host
->caps
& MMC_CAP_NEEDS_POLL
)) {
2545 * Schedule a detect work as soon as possible to let a
2546 * rescan handle the card removal.
2548 cancel_delayed_work(&host
->detect
);
2549 _mmc_detect_change(host
, 0, false);
2555 EXPORT_SYMBOL(mmc_detect_card_removed
);
2557 void mmc_rescan(struct work_struct
*work
)
2559 struct mmc_host
*host
=
2560 container_of(work
, struct mmc_host
, detect
.work
);
2563 if (host
->rescan_disable
)
2566 /* If there is a non-removable card registered, only scan once */
2567 if (!mmc_card_is_removable(host
) && host
->rescan_entered
)
2569 host
->rescan_entered
= 1;
2571 if (host
->trigger_card_event
&& host
->ops
->card_event
) {
2572 mmc_claim_host(host
);
2573 host
->ops
->card_event(host
);
2574 mmc_release_host(host
);
2575 host
->trigger_card_event
= false;
2581 * if there is a _removable_ card registered, check whether it is
2584 if (host
->bus_ops
&& !host
->bus_dead
&& mmc_card_is_removable(host
))
2585 host
->bus_ops
->detect(host
);
2587 host
->detect_change
= 0;
2590 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2591 * the card is no longer present.
2596 /* if there still is a card present, stop here */
2597 if (host
->bus_ops
!= NULL
) {
2603 * Only we can add a new handler, so it's safe to
2604 * release the lock here.
2608 mmc_claim_host(host
);
2609 if (mmc_card_is_removable(host
) && host
->ops
->get_cd
&&
2610 host
->ops
->get_cd(host
) == 0) {
2611 mmc_power_off(host
);
2612 mmc_release_host(host
);
2616 for (i
= 0; i
< ARRAY_SIZE(freqs
); i
++) {
2617 if (!mmc_rescan_try_freq(host
, max(freqs
[i
], host
->f_min
)))
2619 if (freqs
[i
] <= host
->f_min
)
2622 mmc_release_host(host
);
2625 if (host
->caps
& MMC_CAP_NEEDS_POLL
)
2626 mmc_schedule_delayed_work(&host
->detect
, HZ
);
2629 void mmc_start_host(struct mmc_host
*host
)
2631 host
->f_init
= max(freqs
[0], host
->f_min
);
2632 host
->rescan_disable
= 0;
2633 host
->ios
.power_mode
= MMC_POWER_UNDEFINED
;
2635 if (!(host
->caps2
& MMC_CAP2_NO_PRESCAN_POWERUP
)) {
2636 mmc_claim_host(host
);
2637 mmc_power_up(host
, host
->ocr_avail
);
2638 mmc_release_host(host
);
2641 mmc_gpiod_request_cd_irq(host
);
2642 _mmc_detect_change(host
, 0, false);
2645 void mmc_stop_host(struct mmc_host
*host
)
2647 if (host
->slot
.cd_irq
>= 0) {
2648 if (host
->slot
.cd_wake_enabled
)
2649 disable_irq_wake(host
->slot
.cd_irq
);
2650 disable_irq(host
->slot
.cd_irq
);
2653 host
->rescan_disable
= 1;
2654 cancel_delayed_work_sync(&host
->detect
);
2656 /* clear pm flags now and let card drivers set them as needed */
2660 if (host
->bus_ops
&& !host
->bus_dead
) {
2661 /* Calling bus_ops->remove() with a claimed host can deadlock */
2662 host
->bus_ops
->remove(host
);
2663 mmc_claim_host(host
);
2664 mmc_detach_bus(host
);
2665 mmc_power_off(host
);
2666 mmc_release_host(host
);
2672 mmc_claim_host(host
);
2673 mmc_power_off(host
);
2674 mmc_release_host(host
);
2677 int mmc_power_save_host(struct mmc_host
*host
)
2681 pr_debug("%s: %s: powering down\n", mmc_hostname(host
), __func__
);
2685 if (!host
->bus_ops
|| host
->bus_dead
) {
2690 if (host
->bus_ops
->power_save
)
2691 ret
= host
->bus_ops
->power_save(host
);
2695 mmc_power_off(host
);
2699 EXPORT_SYMBOL(mmc_power_save_host
);
2701 int mmc_power_restore_host(struct mmc_host
*host
)
2705 pr_debug("%s: %s: powering up\n", mmc_hostname(host
), __func__
);
2709 if (!host
->bus_ops
|| host
->bus_dead
) {
2714 mmc_power_up(host
, host
->card
->ocr
);
2715 ret
= host
->bus_ops
->power_restore(host
);
2721 EXPORT_SYMBOL(mmc_power_restore_host
);
2723 #ifdef CONFIG_PM_SLEEP
2724 /* Do the card removal on suspend if card is assumed removeable
2725 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2728 static int mmc_pm_notify(struct notifier_block
*notify_block
,
2729 unsigned long mode
, void *unused
)
2731 struct mmc_host
*host
= container_of(
2732 notify_block
, struct mmc_host
, pm_notify
);
2733 unsigned long flags
;
2737 case PM_HIBERNATION_PREPARE
:
2738 case PM_SUSPEND_PREPARE
:
2739 case PM_RESTORE_PREPARE
:
2740 spin_lock_irqsave(&host
->lock
, flags
);
2741 host
->rescan_disable
= 1;
2742 spin_unlock_irqrestore(&host
->lock
, flags
);
2743 cancel_delayed_work_sync(&host
->detect
);
2748 /* Validate prerequisites for suspend */
2749 if (host
->bus_ops
->pre_suspend
)
2750 err
= host
->bus_ops
->pre_suspend(host
);
2754 /* Calling bus_ops->remove() with a claimed host can deadlock */
2755 host
->bus_ops
->remove(host
);
2756 mmc_claim_host(host
);
2757 mmc_detach_bus(host
);
2758 mmc_power_off(host
);
2759 mmc_release_host(host
);
2763 case PM_POST_SUSPEND
:
2764 case PM_POST_HIBERNATION
:
2765 case PM_POST_RESTORE
:
2767 spin_lock_irqsave(&host
->lock
, flags
);
2768 host
->rescan_disable
= 0;
2769 spin_unlock_irqrestore(&host
->lock
, flags
);
2770 _mmc_detect_change(host
, 0, false);
2777 void mmc_register_pm_notifier(struct mmc_host
*host
)
2779 host
->pm_notify
.notifier_call
= mmc_pm_notify
;
2780 register_pm_notifier(&host
->pm_notify
);
2783 void mmc_unregister_pm_notifier(struct mmc_host
*host
)
2785 unregister_pm_notifier(&host
->pm_notify
);
2790 * mmc_init_context_info() - init synchronization context
2793 * Init struct context_info needed to implement asynchronous
2794 * request mechanism, used by mmc core, host driver and mmc requests
2797 void mmc_init_context_info(struct mmc_host
*host
)
2799 host
->context_info
.is_new_req
= false;
2800 host
->context_info
.is_done_rcv
= false;
2801 host
->context_info
.is_waiting_last_req
= false;
2802 init_waitqueue_head(&host
->context_info
.wait
);
2805 static int __init
mmc_init(void)
2809 ret
= mmc_register_bus();
2813 ret
= mmc_register_host_class();
2815 goto unregister_bus
;
2817 ret
= sdio_register_bus();
2819 goto unregister_host_class
;
2823 unregister_host_class
:
2824 mmc_unregister_host_class();
2826 mmc_unregister_bus();
2830 static void __exit
mmc_exit(void)
2832 sdio_unregister_bus();
2833 mmc_unregister_host_class();
2834 mmc_unregister_bus();
2837 subsys_initcall(mmc_init
);
2838 module_exit(mmc_exit
);
2840 MODULE_LICENSE("GPL");