mm: memcontrol: use per-cpu stocks for socket memory uncharging
[linux/fpc-iii.git] / mm / memcontrol.c
blobca83f3854e4fcf2272474d9200cebd30c75eba82
1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/sched/mm.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/hugetlb.h>
41 #include <linux/pagemap.h>
42 #include <linux/smp.h>
43 #include <linux/page-flags.h>
44 #include <linux/backing-dev.h>
45 #include <linux/bit_spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/limits.h>
48 #include <linux/export.h>
49 #include <linux/mutex.h>
50 #include <linux/rbtree.h>
51 #include <linux/slab.h>
52 #include <linux/swap.h>
53 #include <linux/swapops.h>
54 #include <linux/spinlock.h>
55 #include <linux/eventfd.h>
56 #include <linux/poll.h>
57 #include <linux/sort.h>
58 #include <linux/fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/vmpressure.h>
61 #include <linux/mm_inline.h>
62 #include <linux/swap_cgroup.h>
63 #include <linux/cpu.h>
64 #include <linux/oom.h>
65 #include <linux/lockdep.h>
66 #include <linux/file.h>
67 #include <linux/tracehook.h>
68 #include "internal.h"
69 #include <net/sock.h>
70 #include <net/ip.h>
71 #include "slab.h"
73 #include <linux/uaccess.h>
75 #include <trace/events/vmscan.h>
77 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78 EXPORT_SYMBOL(memory_cgrp_subsys);
80 struct mem_cgroup *root_mem_cgroup __read_mostly;
82 #define MEM_CGROUP_RECLAIM_RETRIES 5
84 /* Socket memory accounting disabled? */
85 static bool cgroup_memory_nosocket;
87 /* Kernel memory accounting disabled? */
88 static bool cgroup_memory_nokmem;
90 /* Whether the swap controller is active */
91 #ifdef CONFIG_MEMCG_SWAP
92 int do_swap_account __read_mostly;
93 #else
94 #define do_swap_account 0
95 #endif
97 /* Whether legacy memory+swap accounting is active */
98 static bool do_memsw_account(void)
100 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
103 static const char *const mem_cgroup_lru_names[] = {
104 "inactive_anon",
105 "active_anon",
106 "inactive_file",
107 "active_file",
108 "unevictable",
111 #define THRESHOLDS_EVENTS_TARGET 128
112 #define SOFTLIMIT_EVENTS_TARGET 1024
113 #define NUMAINFO_EVENTS_TARGET 1024
116 * Cgroups above their limits are maintained in a RB-Tree, independent of
117 * their hierarchy representation
120 struct mem_cgroup_tree_per_node {
121 struct rb_root rb_root;
122 spinlock_t lock;
125 struct mem_cgroup_tree {
126 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
129 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
131 /* for OOM */
132 struct mem_cgroup_eventfd_list {
133 struct list_head list;
134 struct eventfd_ctx *eventfd;
138 * cgroup_event represents events which userspace want to receive.
140 struct mem_cgroup_event {
142 * memcg which the event belongs to.
144 struct mem_cgroup *memcg;
146 * eventfd to signal userspace about the event.
148 struct eventfd_ctx *eventfd;
150 * Each of these stored in a list by the cgroup.
152 struct list_head list;
154 * register_event() callback will be used to add new userspace
155 * waiter for changes related to this event. Use eventfd_signal()
156 * on eventfd to send notification to userspace.
158 int (*register_event)(struct mem_cgroup *memcg,
159 struct eventfd_ctx *eventfd, const char *args);
161 * unregister_event() callback will be called when userspace closes
162 * the eventfd or on cgroup removing. This callback must be set,
163 * if you want provide notification functionality.
165 void (*unregister_event)(struct mem_cgroup *memcg,
166 struct eventfd_ctx *eventfd);
168 * All fields below needed to unregister event when
169 * userspace closes eventfd.
171 poll_table pt;
172 wait_queue_head_t *wqh;
173 wait_queue_entry_t wait;
174 struct work_struct remove;
177 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
178 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
180 /* Stuffs for move charges at task migration. */
182 * Types of charges to be moved.
184 #define MOVE_ANON 0x1U
185 #define MOVE_FILE 0x2U
186 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
188 /* "mc" and its members are protected by cgroup_mutex */
189 static struct move_charge_struct {
190 spinlock_t lock; /* for from, to */
191 struct mm_struct *mm;
192 struct mem_cgroup *from;
193 struct mem_cgroup *to;
194 unsigned long flags;
195 unsigned long precharge;
196 unsigned long moved_charge;
197 unsigned long moved_swap;
198 struct task_struct *moving_task; /* a task moving charges */
199 wait_queue_head_t waitq; /* a waitq for other context */
200 } mc = {
201 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
202 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
206 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
207 * limit reclaim to prevent infinite loops, if they ever occur.
209 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
210 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
212 enum charge_type {
213 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
214 MEM_CGROUP_CHARGE_TYPE_ANON,
215 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
216 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
217 NR_CHARGE_TYPE,
220 /* for encoding cft->private value on file */
221 enum res_type {
222 _MEM,
223 _MEMSWAP,
224 _OOM_TYPE,
225 _KMEM,
226 _TCP,
229 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
230 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
231 #define MEMFILE_ATTR(val) ((val) & 0xffff)
232 /* Used for OOM nofiier */
233 #define OOM_CONTROL (0)
235 /* Some nice accessors for the vmpressure. */
236 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
238 if (!memcg)
239 memcg = root_mem_cgroup;
240 return &memcg->vmpressure;
243 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
245 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
248 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
250 return (memcg == root_mem_cgroup);
253 #ifndef CONFIG_SLOB
255 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
256 * The main reason for not using cgroup id for this:
257 * this works better in sparse environments, where we have a lot of memcgs,
258 * but only a few kmem-limited. Or also, if we have, for instance, 200
259 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
260 * 200 entry array for that.
262 * The current size of the caches array is stored in memcg_nr_cache_ids. It
263 * will double each time we have to increase it.
265 static DEFINE_IDA(memcg_cache_ida);
266 int memcg_nr_cache_ids;
268 /* Protects memcg_nr_cache_ids */
269 static DECLARE_RWSEM(memcg_cache_ids_sem);
271 void memcg_get_cache_ids(void)
273 down_read(&memcg_cache_ids_sem);
276 void memcg_put_cache_ids(void)
278 up_read(&memcg_cache_ids_sem);
282 * MIN_SIZE is different than 1, because we would like to avoid going through
283 * the alloc/free process all the time. In a small machine, 4 kmem-limited
284 * cgroups is a reasonable guess. In the future, it could be a parameter or
285 * tunable, but that is strictly not necessary.
287 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
288 * this constant directly from cgroup, but it is understandable that this is
289 * better kept as an internal representation in cgroup.c. In any case, the
290 * cgrp_id space is not getting any smaller, and we don't have to necessarily
291 * increase ours as well if it increases.
293 #define MEMCG_CACHES_MIN_SIZE 4
294 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
297 * A lot of the calls to the cache allocation functions are expected to be
298 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
299 * conditional to this static branch, we'll have to allow modules that does
300 * kmem_cache_alloc and the such to see this symbol as well
302 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
303 EXPORT_SYMBOL(memcg_kmem_enabled_key);
305 struct workqueue_struct *memcg_kmem_cache_wq;
307 #endif /* !CONFIG_SLOB */
310 * mem_cgroup_css_from_page - css of the memcg associated with a page
311 * @page: page of interest
313 * If memcg is bound to the default hierarchy, css of the memcg associated
314 * with @page is returned. The returned css remains associated with @page
315 * until it is released.
317 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
318 * is returned.
320 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
322 struct mem_cgroup *memcg;
324 memcg = page->mem_cgroup;
326 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
327 memcg = root_mem_cgroup;
329 return &memcg->css;
333 * page_cgroup_ino - return inode number of the memcg a page is charged to
334 * @page: the page
336 * Look up the closest online ancestor of the memory cgroup @page is charged to
337 * and return its inode number or 0 if @page is not charged to any cgroup. It
338 * is safe to call this function without holding a reference to @page.
340 * Note, this function is inherently racy, because there is nothing to prevent
341 * the cgroup inode from getting torn down and potentially reallocated a moment
342 * after page_cgroup_ino() returns, so it only should be used by callers that
343 * do not care (such as procfs interfaces).
345 ino_t page_cgroup_ino(struct page *page)
347 struct mem_cgroup *memcg;
348 unsigned long ino = 0;
350 rcu_read_lock();
351 memcg = READ_ONCE(page->mem_cgroup);
352 while (memcg && !(memcg->css.flags & CSS_ONLINE))
353 memcg = parent_mem_cgroup(memcg);
354 if (memcg)
355 ino = cgroup_ino(memcg->css.cgroup);
356 rcu_read_unlock();
357 return ino;
360 static struct mem_cgroup_per_node *
361 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
363 int nid = page_to_nid(page);
365 return memcg->nodeinfo[nid];
368 static struct mem_cgroup_tree_per_node *
369 soft_limit_tree_node(int nid)
371 return soft_limit_tree.rb_tree_per_node[nid];
374 static struct mem_cgroup_tree_per_node *
375 soft_limit_tree_from_page(struct page *page)
377 int nid = page_to_nid(page);
379 return soft_limit_tree.rb_tree_per_node[nid];
382 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
383 struct mem_cgroup_tree_per_node *mctz,
384 unsigned long new_usage_in_excess)
386 struct rb_node **p = &mctz->rb_root.rb_node;
387 struct rb_node *parent = NULL;
388 struct mem_cgroup_per_node *mz_node;
390 if (mz->on_tree)
391 return;
393 mz->usage_in_excess = new_usage_in_excess;
394 if (!mz->usage_in_excess)
395 return;
396 while (*p) {
397 parent = *p;
398 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
399 tree_node);
400 if (mz->usage_in_excess < mz_node->usage_in_excess)
401 p = &(*p)->rb_left;
403 * We can't avoid mem cgroups that are over their soft
404 * limit by the same amount
406 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
407 p = &(*p)->rb_right;
409 rb_link_node(&mz->tree_node, parent, p);
410 rb_insert_color(&mz->tree_node, &mctz->rb_root);
411 mz->on_tree = true;
414 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
415 struct mem_cgroup_tree_per_node *mctz)
417 if (!mz->on_tree)
418 return;
419 rb_erase(&mz->tree_node, &mctz->rb_root);
420 mz->on_tree = false;
423 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
424 struct mem_cgroup_tree_per_node *mctz)
426 unsigned long flags;
428 spin_lock_irqsave(&mctz->lock, flags);
429 __mem_cgroup_remove_exceeded(mz, mctz);
430 spin_unlock_irqrestore(&mctz->lock, flags);
433 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
435 unsigned long nr_pages = page_counter_read(&memcg->memory);
436 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
437 unsigned long excess = 0;
439 if (nr_pages > soft_limit)
440 excess = nr_pages - soft_limit;
442 return excess;
445 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
447 unsigned long excess;
448 struct mem_cgroup_per_node *mz;
449 struct mem_cgroup_tree_per_node *mctz;
451 mctz = soft_limit_tree_from_page(page);
452 if (!mctz)
453 return;
455 * Necessary to update all ancestors when hierarchy is used.
456 * because their event counter is not touched.
458 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
459 mz = mem_cgroup_page_nodeinfo(memcg, page);
460 excess = soft_limit_excess(memcg);
462 * We have to update the tree if mz is on RB-tree or
463 * mem is over its softlimit.
465 if (excess || mz->on_tree) {
466 unsigned long flags;
468 spin_lock_irqsave(&mctz->lock, flags);
469 /* if on-tree, remove it */
470 if (mz->on_tree)
471 __mem_cgroup_remove_exceeded(mz, mctz);
473 * Insert again. mz->usage_in_excess will be updated.
474 * If excess is 0, no tree ops.
476 __mem_cgroup_insert_exceeded(mz, mctz, excess);
477 spin_unlock_irqrestore(&mctz->lock, flags);
482 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
484 struct mem_cgroup_tree_per_node *mctz;
485 struct mem_cgroup_per_node *mz;
486 int nid;
488 for_each_node(nid) {
489 mz = mem_cgroup_nodeinfo(memcg, nid);
490 mctz = soft_limit_tree_node(nid);
491 if (mctz)
492 mem_cgroup_remove_exceeded(mz, mctz);
496 static struct mem_cgroup_per_node *
497 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
499 struct rb_node *rightmost = NULL;
500 struct mem_cgroup_per_node *mz;
502 retry:
503 mz = NULL;
504 rightmost = rb_last(&mctz->rb_root);
505 if (!rightmost)
506 goto done; /* Nothing to reclaim from */
508 mz = rb_entry(rightmost, struct mem_cgroup_per_node, tree_node);
510 * Remove the node now but someone else can add it back,
511 * we will to add it back at the end of reclaim to its correct
512 * position in the tree.
514 __mem_cgroup_remove_exceeded(mz, mctz);
515 if (!soft_limit_excess(mz->memcg) ||
516 !css_tryget_online(&mz->memcg->css))
517 goto retry;
518 done:
519 return mz;
522 static struct mem_cgroup_per_node *
523 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
525 struct mem_cgroup_per_node *mz;
527 spin_lock_irq(&mctz->lock);
528 mz = __mem_cgroup_largest_soft_limit_node(mctz);
529 spin_unlock_irq(&mctz->lock);
530 return mz;
534 * Return page count for single (non recursive) @memcg.
536 * Implementation Note: reading percpu statistics for memcg.
538 * Both of vmstat[] and percpu_counter has threshold and do periodic
539 * synchronization to implement "quick" read. There are trade-off between
540 * reading cost and precision of value. Then, we may have a chance to implement
541 * a periodic synchronization of counter in memcg's counter.
543 * But this _read() function is used for user interface now. The user accounts
544 * memory usage by memory cgroup and he _always_ requires exact value because
545 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
546 * have to visit all online cpus and make sum. So, for now, unnecessary
547 * synchronization is not implemented. (just implemented for cpu hotplug)
549 * If there are kernel internal actions which can make use of some not-exact
550 * value, and reading all cpu value can be performance bottleneck in some
551 * common workload, threshold and synchronization as vmstat[] should be
552 * implemented.
554 * The parameter idx can be of type enum memcg_event_item or vm_event_item.
557 static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
558 int event)
560 unsigned long val = 0;
561 int cpu;
563 for_each_possible_cpu(cpu)
564 val += per_cpu(memcg->stat->events[event], cpu);
565 return val;
568 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
569 struct page *page,
570 bool compound, int nr_pages)
573 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
574 * counted as CACHE even if it's on ANON LRU.
576 if (PageAnon(page))
577 __this_cpu_add(memcg->stat->count[MEMCG_RSS], nr_pages);
578 else {
579 __this_cpu_add(memcg->stat->count[MEMCG_CACHE], nr_pages);
580 if (PageSwapBacked(page))
581 __this_cpu_add(memcg->stat->count[NR_SHMEM], nr_pages);
584 if (compound) {
585 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
586 __this_cpu_add(memcg->stat->count[MEMCG_RSS_HUGE], nr_pages);
589 /* pagein of a big page is an event. So, ignore page size */
590 if (nr_pages > 0)
591 __this_cpu_inc(memcg->stat->events[PGPGIN]);
592 else {
593 __this_cpu_inc(memcg->stat->events[PGPGOUT]);
594 nr_pages = -nr_pages; /* for event */
597 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
600 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
601 int nid, unsigned int lru_mask)
603 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
604 unsigned long nr = 0;
605 enum lru_list lru;
607 VM_BUG_ON((unsigned)nid >= nr_node_ids);
609 for_each_lru(lru) {
610 if (!(BIT(lru) & lru_mask))
611 continue;
612 nr += mem_cgroup_get_lru_size(lruvec, lru);
614 return nr;
617 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
618 unsigned int lru_mask)
620 unsigned long nr = 0;
621 int nid;
623 for_each_node_state(nid, N_MEMORY)
624 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
625 return nr;
628 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
629 enum mem_cgroup_events_target target)
631 unsigned long val, next;
633 val = __this_cpu_read(memcg->stat->nr_page_events);
634 next = __this_cpu_read(memcg->stat->targets[target]);
635 /* from time_after() in jiffies.h */
636 if ((long)(next - val) < 0) {
637 switch (target) {
638 case MEM_CGROUP_TARGET_THRESH:
639 next = val + THRESHOLDS_EVENTS_TARGET;
640 break;
641 case MEM_CGROUP_TARGET_SOFTLIMIT:
642 next = val + SOFTLIMIT_EVENTS_TARGET;
643 break;
644 case MEM_CGROUP_TARGET_NUMAINFO:
645 next = val + NUMAINFO_EVENTS_TARGET;
646 break;
647 default:
648 break;
650 __this_cpu_write(memcg->stat->targets[target], next);
651 return true;
653 return false;
657 * Check events in order.
660 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
662 /* threshold event is triggered in finer grain than soft limit */
663 if (unlikely(mem_cgroup_event_ratelimit(memcg,
664 MEM_CGROUP_TARGET_THRESH))) {
665 bool do_softlimit;
666 bool do_numainfo __maybe_unused;
668 do_softlimit = mem_cgroup_event_ratelimit(memcg,
669 MEM_CGROUP_TARGET_SOFTLIMIT);
670 #if MAX_NUMNODES > 1
671 do_numainfo = mem_cgroup_event_ratelimit(memcg,
672 MEM_CGROUP_TARGET_NUMAINFO);
673 #endif
674 mem_cgroup_threshold(memcg);
675 if (unlikely(do_softlimit))
676 mem_cgroup_update_tree(memcg, page);
677 #if MAX_NUMNODES > 1
678 if (unlikely(do_numainfo))
679 atomic_inc(&memcg->numainfo_events);
680 #endif
684 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
687 * mm_update_next_owner() may clear mm->owner to NULL
688 * if it races with swapoff, page migration, etc.
689 * So this can be called with p == NULL.
691 if (unlikely(!p))
692 return NULL;
694 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
696 EXPORT_SYMBOL(mem_cgroup_from_task);
698 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
700 struct mem_cgroup *memcg = NULL;
702 rcu_read_lock();
703 do {
705 * Page cache insertions can happen withou an
706 * actual mm context, e.g. during disk probing
707 * on boot, loopback IO, acct() writes etc.
709 if (unlikely(!mm))
710 memcg = root_mem_cgroup;
711 else {
712 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
713 if (unlikely(!memcg))
714 memcg = root_mem_cgroup;
716 } while (!css_tryget_online(&memcg->css));
717 rcu_read_unlock();
718 return memcg;
722 * mem_cgroup_iter - iterate over memory cgroup hierarchy
723 * @root: hierarchy root
724 * @prev: previously returned memcg, NULL on first invocation
725 * @reclaim: cookie for shared reclaim walks, NULL for full walks
727 * Returns references to children of the hierarchy below @root, or
728 * @root itself, or %NULL after a full round-trip.
730 * Caller must pass the return value in @prev on subsequent
731 * invocations for reference counting, or use mem_cgroup_iter_break()
732 * to cancel a hierarchy walk before the round-trip is complete.
734 * Reclaimers can specify a zone and a priority level in @reclaim to
735 * divide up the memcgs in the hierarchy among all concurrent
736 * reclaimers operating on the same zone and priority.
738 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
739 struct mem_cgroup *prev,
740 struct mem_cgroup_reclaim_cookie *reclaim)
742 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
743 struct cgroup_subsys_state *css = NULL;
744 struct mem_cgroup *memcg = NULL;
745 struct mem_cgroup *pos = NULL;
747 if (mem_cgroup_disabled())
748 return NULL;
750 if (!root)
751 root = root_mem_cgroup;
753 if (prev && !reclaim)
754 pos = prev;
756 if (!root->use_hierarchy && root != root_mem_cgroup) {
757 if (prev)
758 goto out;
759 return root;
762 rcu_read_lock();
764 if (reclaim) {
765 struct mem_cgroup_per_node *mz;
767 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
768 iter = &mz->iter[reclaim->priority];
770 if (prev && reclaim->generation != iter->generation)
771 goto out_unlock;
773 while (1) {
774 pos = READ_ONCE(iter->position);
775 if (!pos || css_tryget(&pos->css))
776 break;
778 * css reference reached zero, so iter->position will
779 * be cleared by ->css_released. However, we should not
780 * rely on this happening soon, because ->css_released
781 * is called from a work queue, and by busy-waiting we
782 * might block it. So we clear iter->position right
783 * away.
785 (void)cmpxchg(&iter->position, pos, NULL);
789 if (pos)
790 css = &pos->css;
792 for (;;) {
793 css = css_next_descendant_pre(css, &root->css);
794 if (!css) {
796 * Reclaimers share the hierarchy walk, and a
797 * new one might jump in right at the end of
798 * the hierarchy - make sure they see at least
799 * one group and restart from the beginning.
801 if (!prev)
802 continue;
803 break;
807 * Verify the css and acquire a reference. The root
808 * is provided by the caller, so we know it's alive
809 * and kicking, and don't take an extra reference.
811 memcg = mem_cgroup_from_css(css);
813 if (css == &root->css)
814 break;
816 if (css_tryget(css))
817 break;
819 memcg = NULL;
822 if (reclaim) {
824 * The position could have already been updated by a competing
825 * thread, so check that the value hasn't changed since we read
826 * it to avoid reclaiming from the same cgroup twice.
828 (void)cmpxchg(&iter->position, pos, memcg);
830 if (pos)
831 css_put(&pos->css);
833 if (!memcg)
834 iter->generation++;
835 else if (!prev)
836 reclaim->generation = iter->generation;
839 out_unlock:
840 rcu_read_unlock();
841 out:
842 if (prev && prev != root)
843 css_put(&prev->css);
845 return memcg;
849 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
850 * @root: hierarchy root
851 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
853 void mem_cgroup_iter_break(struct mem_cgroup *root,
854 struct mem_cgroup *prev)
856 if (!root)
857 root = root_mem_cgroup;
858 if (prev && prev != root)
859 css_put(&prev->css);
862 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
864 struct mem_cgroup *memcg = dead_memcg;
865 struct mem_cgroup_reclaim_iter *iter;
866 struct mem_cgroup_per_node *mz;
867 int nid;
868 int i;
870 while ((memcg = parent_mem_cgroup(memcg))) {
871 for_each_node(nid) {
872 mz = mem_cgroup_nodeinfo(memcg, nid);
873 for (i = 0; i <= DEF_PRIORITY; i++) {
874 iter = &mz->iter[i];
875 cmpxchg(&iter->position,
876 dead_memcg, NULL);
883 * Iteration constructs for visiting all cgroups (under a tree). If
884 * loops are exited prematurely (break), mem_cgroup_iter_break() must
885 * be used for reference counting.
887 #define for_each_mem_cgroup_tree(iter, root) \
888 for (iter = mem_cgroup_iter(root, NULL, NULL); \
889 iter != NULL; \
890 iter = mem_cgroup_iter(root, iter, NULL))
892 #define for_each_mem_cgroup(iter) \
893 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
894 iter != NULL; \
895 iter = mem_cgroup_iter(NULL, iter, NULL))
898 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
899 * @memcg: hierarchy root
900 * @fn: function to call for each task
901 * @arg: argument passed to @fn
903 * This function iterates over tasks attached to @memcg or to any of its
904 * descendants and calls @fn for each task. If @fn returns a non-zero
905 * value, the function breaks the iteration loop and returns the value.
906 * Otherwise, it will iterate over all tasks and return 0.
908 * This function must not be called for the root memory cgroup.
910 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
911 int (*fn)(struct task_struct *, void *), void *arg)
913 struct mem_cgroup *iter;
914 int ret = 0;
916 BUG_ON(memcg == root_mem_cgroup);
918 for_each_mem_cgroup_tree(iter, memcg) {
919 struct css_task_iter it;
920 struct task_struct *task;
922 css_task_iter_start(&iter->css, 0, &it);
923 while (!ret && (task = css_task_iter_next(&it)))
924 ret = fn(task, arg);
925 css_task_iter_end(&it);
926 if (ret) {
927 mem_cgroup_iter_break(memcg, iter);
928 break;
931 return ret;
935 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
936 * @page: the page
937 * @zone: zone of the page
939 * This function is only safe when following the LRU page isolation
940 * and putback protocol: the LRU lock must be held, and the page must
941 * either be PageLRU() or the caller must have isolated/allocated it.
943 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
945 struct mem_cgroup_per_node *mz;
946 struct mem_cgroup *memcg;
947 struct lruvec *lruvec;
949 if (mem_cgroup_disabled()) {
950 lruvec = &pgdat->lruvec;
951 goto out;
954 memcg = page->mem_cgroup;
956 * Swapcache readahead pages are added to the LRU - and
957 * possibly migrated - before they are charged.
959 if (!memcg)
960 memcg = root_mem_cgroup;
962 mz = mem_cgroup_page_nodeinfo(memcg, page);
963 lruvec = &mz->lruvec;
964 out:
966 * Since a node can be onlined after the mem_cgroup was created,
967 * we have to be prepared to initialize lruvec->zone here;
968 * and if offlined then reonlined, we need to reinitialize it.
970 if (unlikely(lruvec->pgdat != pgdat))
971 lruvec->pgdat = pgdat;
972 return lruvec;
976 * mem_cgroup_update_lru_size - account for adding or removing an lru page
977 * @lruvec: mem_cgroup per zone lru vector
978 * @lru: index of lru list the page is sitting on
979 * @zid: zone id of the accounted pages
980 * @nr_pages: positive when adding or negative when removing
982 * This function must be called under lru_lock, just before a page is added
983 * to or just after a page is removed from an lru list (that ordering being
984 * so as to allow it to check that lru_size 0 is consistent with list_empty).
986 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
987 int zid, int nr_pages)
989 struct mem_cgroup_per_node *mz;
990 unsigned long *lru_size;
991 long size;
993 if (mem_cgroup_disabled())
994 return;
996 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
997 lru_size = &mz->lru_zone_size[zid][lru];
999 if (nr_pages < 0)
1000 *lru_size += nr_pages;
1002 size = *lru_size;
1003 if (WARN_ONCE(size < 0,
1004 "%s(%p, %d, %d): lru_size %ld\n",
1005 __func__, lruvec, lru, nr_pages, size)) {
1006 VM_BUG_ON(1);
1007 *lru_size = 0;
1010 if (nr_pages > 0)
1011 *lru_size += nr_pages;
1014 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1016 struct mem_cgroup *task_memcg;
1017 struct task_struct *p;
1018 bool ret;
1020 p = find_lock_task_mm(task);
1021 if (p) {
1022 task_memcg = get_mem_cgroup_from_mm(p->mm);
1023 task_unlock(p);
1024 } else {
1026 * All threads may have already detached their mm's, but the oom
1027 * killer still needs to detect if they have already been oom
1028 * killed to prevent needlessly killing additional tasks.
1030 rcu_read_lock();
1031 task_memcg = mem_cgroup_from_task(task);
1032 css_get(&task_memcg->css);
1033 rcu_read_unlock();
1035 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1036 css_put(&task_memcg->css);
1037 return ret;
1041 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1042 * @memcg: the memory cgroup
1044 * Returns the maximum amount of memory @mem can be charged with, in
1045 * pages.
1047 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1049 unsigned long margin = 0;
1050 unsigned long count;
1051 unsigned long limit;
1053 count = page_counter_read(&memcg->memory);
1054 limit = READ_ONCE(memcg->memory.limit);
1055 if (count < limit)
1056 margin = limit - count;
1058 if (do_memsw_account()) {
1059 count = page_counter_read(&memcg->memsw);
1060 limit = READ_ONCE(memcg->memsw.limit);
1061 if (count <= limit)
1062 margin = min(margin, limit - count);
1063 else
1064 margin = 0;
1067 return margin;
1071 * A routine for checking "mem" is under move_account() or not.
1073 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1074 * moving cgroups. This is for waiting at high-memory pressure
1075 * caused by "move".
1077 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1079 struct mem_cgroup *from;
1080 struct mem_cgroup *to;
1081 bool ret = false;
1083 * Unlike task_move routines, we access mc.to, mc.from not under
1084 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1086 spin_lock(&mc.lock);
1087 from = mc.from;
1088 to = mc.to;
1089 if (!from)
1090 goto unlock;
1092 ret = mem_cgroup_is_descendant(from, memcg) ||
1093 mem_cgroup_is_descendant(to, memcg);
1094 unlock:
1095 spin_unlock(&mc.lock);
1096 return ret;
1099 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1101 if (mc.moving_task && current != mc.moving_task) {
1102 if (mem_cgroup_under_move(memcg)) {
1103 DEFINE_WAIT(wait);
1104 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1105 /* moving charge context might have finished. */
1106 if (mc.moving_task)
1107 schedule();
1108 finish_wait(&mc.waitq, &wait);
1109 return true;
1112 return false;
1115 unsigned int memcg1_stats[] = {
1116 MEMCG_CACHE,
1117 MEMCG_RSS,
1118 MEMCG_RSS_HUGE,
1119 NR_SHMEM,
1120 NR_FILE_MAPPED,
1121 NR_FILE_DIRTY,
1122 NR_WRITEBACK,
1123 MEMCG_SWAP,
1126 static const char *const memcg1_stat_names[] = {
1127 "cache",
1128 "rss",
1129 "rss_huge",
1130 "shmem",
1131 "mapped_file",
1132 "dirty",
1133 "writeback",
1134 "swap",
1137 #define K(x) ((x) << (PAGE_SHIFT-10))
1139 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1140 * @memcg: The memory cgroup that went over limit
1141 * @p: Task that is going to be killed
1143 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1144 * enabled
1146 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1148 struct mem_cgroup *iter;
1149 unsigned int i;
1151 rcu_read_lock();
1153 if (p) {
1154 pr_info("Task in ");
1155 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1156 pr_cont(" killed as a result of limit of ");
1157 } else {
1158 pr_info("Memory limit reached of cgroup ");
1161 pr_cont_cgroup_path(memcg->css.cgroup);
1162 pr_cont("\n");
1164 rcu_read_unlock();
1166 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1167 K((u64)page_counter_read(&memcg->memory)),
1168 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1169 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1170 K((u64)page_counter_read(&memcg->memsw)),
1171 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1172 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1173 K((u64)page_counter_read(&memcg->kmem)),
1174 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1176 for_each_mem_cgroup_tree(iter, memcg) {
1177 pr_info("Memory cgroup stats for ");
1178 pr_cont_cgroup_path(iter->css.cgroup);
1179 pr_cont(":");
1181 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1182 if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
1183 continue;
1184 pr_cont(" %s:%luKB", memcg1_stat_names[i],
1185 K(memcg_page_state(iter, memcg1_stats[i])));
1188 for (i = 0; i < NR_LRU_LISTS; i++)
1189 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1190 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1192 pr_cont("\n");
1197 * This function returns the number of memcg under hierarchy tree. Returns
1198 * 1(self count) if no children.
1200 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1202 int num = 0;
1203 struct mem_cgroup *iter;
1205 for_each_mem_cgroup_tree(iter, memcg)
1206 num++;
1207 return num;
1211 * Return the memory (and swap, if configured) limit for a memcg.
1213 unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1215 unsigned long limit;
1217 limit = memcg->memory.limit;
1218 if (mem_cgroup_swappiness(memcg)) {
1219 unsigned long memsw_limit;
1220 unsigned long swap_limit;
1222 memsw_limit = memcg->memsw.limit;
1223 swap_limit = memcg->swap.limit;
1224 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1225 limit = min(limit + swap_limit, memsw_limit);
1227 return limit;
1230 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1231 int order)
1233 struct oom_control oc = {
1234 .zonelist = NULL,
1235 .nodemask = NULL,
1236 .memcg = memcg,
1237 .gfp_mask = gfp_mask,
1238 .order = order,
1240 bool ret;
1242 mutex_lock(&oom_lock);
1243 ret = out_of_memory(&oc);
1244 mutex_unlock(&oom_lock);
1245 return ret;
1248 #if MAX_NUMNODES > 1
1251 * test_mem_cgroup_node_reclaimable
1252 * @memcg: the target memcg
1253 * @nid: the node ID to be checked.
1254 * @noswap : specify true here if the user wants flle only information.
1256 * This function returns whether the specified memcg contains any
1257 * reclaimable pages on a node. Returns true if there are any reclaimable
1258 * pages in the node.
1260 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1261 int nid, bool noswap)
1263 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1264 return true;
1265 if (noswap || !total_swap_pages)
1266 return false;
1267 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1268 return true;
1269 return false;
1274 * Always updating the nodemask is not very good - even if we have an empty
1275 * list or the wrong list here, we can start from some node and traverse all
1276 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1279 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1281 int nid;
1283 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1284 * pagein/pageout changes since the last update.
1286 if (!atomic_read(&memcg->numainfo_events))
1287 return;
1288 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1289 return;
1291 /* make a nodemask where this memcg uses memory from */
1292 memcg->scan_nodes = node_states[N_MEMORY];
1294 for_each_node_mask(nid, node_states[N_MEMORY]) {
1296 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1297 node_clear(nid, memcg->scan_nodes);
1300 atomic_set(&memcg->numainfo_events, 0);
1301 atomic_set(&memcg->numainfo_updating, 0);
1305 * Selecting a node where we start reclaim from. Because what we need is just
1306 * reducing usage counter, start from anywhere is O,K. Considering
1307 * memory reclaim from current node, there are pros. and cons.
1309 * Freeing memory from current node means freeing memory from a node which
1310 * we'll use or we've used. So, it may make LRU bad. And if several threads
1311 * hit limits, it will see a contention on a node. But freeing from remote
1312 * node means more costs for memory reclaim because of memory latency.
1314 * Now, we use round-robin. Better algorithm is welcomed.
1316 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1318 int node;
1320 mem_cgroup_may_update_nodemask(memcg);
1321 node = memcg->last_scanned_node;
1323 node = next_node_in(node, memcg->scan_nodes);
1325 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1326 * last time it really checked all the LRUs due to rate limiting.
1327 * Fallback to the current node in that case for simplicity.
1329 if (unlikely(node == MAX_NUMNODES))
1330 node = numa_node_id();
1332 memcg->last_scanned_node = node;
1333 return node;
1335 #else
1336 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1338 return 0;
1340 #endif
1342 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1343 pg_data_t *pgdat,
1344 gfp_t gfp_mask,
1345 unsigned long *total_scanned)
1347 struct mem_cgroup *victim = NULL;
1348 int total = 0;
1349 int loop = 0;
1350 unsigned long excess;
1351 unsigned long nr_scanned;
1352 struct mem_cgroup_reclaim_cookie reclaim = {
1353 .pgdat = pgdat,
1354 .priority = 0,
1357 excess = soft_limit_excess(root_memcg);
1359 while (1) {
1360 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1361 if (!victim) {
1362 loop++;
1363 if (loop >= 2) {
1365 * If we have not been able to reclaim
1366 * anything, it might because there are
1367 * no reclaimable pages under this hierarchy
1369 if (!total)
1370 break;
1372 * We want to do more targeted reclaim.
1373 * excess >> 2 is not to excessive so as to
1374 * reclaim too much, nor too less that we keep
1375 * coming back to reclaim from this cgroup
1377 if (total >= (excess >> 2) ||
1378 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1379 break;
1381 continue;
1383 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1384 pgdat, &nr_scanned);
1385 *total_scanned += nr_scanned;
1386 if (!soft_limit_excess(root_memcg))
1387 break;
1389 mem_cgroup_iter_break(root_memcg, victim);
1390 return total;
1393 #ifdef CONFIG_LOCKDEP
1394 static struct lockdep_map memcg_oom_lock_dep_map = {
1395 .name = "memcg_oom_lock",
1397 #endif
1399 static DEFINE_SPINLOCK(memcg_oom_lock);
1402 * Check OOM-Killer is already running under our hierarchy.
1403 * If someone is running, return false.
1405 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1407 struct mem_cgroup *iter, *failed = NULL;
1409 spin_lock(&memcg_oom_lock);
1411 for_each_mem_cgroup_tree(iter, memcg) {
1412 if (iter->oom_lock) {
1414 * this subtree of our hierarchy is already locked
1415 * so we cannot give a lock.
1417 failed = iter;
1418 mem_cgroup_iter_break(memcg, iter);
1419 break;
1420 } else
1421 iter->oom_lock = true;
1424 if (failed) {
1426 * OK, we failed to lock the whole subtree so we have
1427 * to clean up what we set up to the failing subtree
1429 for_each_mem_cgroup_tree(iter, memcg) {
1430 if (iter == failed) {
1431 mem_cgroup_iter_break(memcg, iter);
1432 break;
1434 iter->oom_lock = false;
1436 } else
1437 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1439 spin_unlock(&memcg_oom_lock);
1441 return !failed;
1444 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1446 struct mem_cgroup *iter;
1448 spin_lock(&memcg_oom_lock);
1449 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1450 for_each_mem_cgroup_tree(iter, memcg)
1451 iter->oom_lock = false;
1452 spin_unlock(&memcg_oom_lock);
1455 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1457 struct mem_cgroup *iter;
1459 spin_lock(&memcg_oom_lock);
1460 for_each_mem_cgroup_tree(iter, memcg)
1461 iter->under_oom++;
1462 spin_unlock(&memcg_oom_lock);
1465 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1467 struct mem_cgroup *iter;
1470 * When a new child is created while the hierarchy is under oom,
1471 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1473 spin_lock(&memcg_oom_lock);
1474 for_each_mem_cgroup_tree(iter, memcg)
1475 if (iter->under_oom > 0)
1476 iter->under_oom--;
1477 spin_unlock(&memcg_oom_lock);
1480 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1482 struct oom_wait_info {
1483 struct mem_cgroup *memcg;
1484 wait_queue_entry_t wait;
1487 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1488 unsigned mode, int sync, void *arg)
1490 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1491 struct mem_cgroup *oom_wait_memcg;
1492 struct oom_wait_info *oom_wait_info;
1494 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1495 oom_wait_memcg = oom_wait_info->memcg;
1497 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1498 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1499 return 0;
1500 return autoremove_wake_function(wait, mode, sync, arg);
1503 static void memcg_oom_recover(struct mem_cgroup *memcg)
1506 * For the following lockless ->under_oom test, the only required
1507 * guarantee is that it must see the state asserted by an OOM when
1508 * this function is called as a result of userland actions
1509 * triggered by the notification of the OOM. This is trivially
1510 * achieved by invoking mem_cgroup_mark_under_oom() before
1511 * triggering notification.
1513 if (memcg && memcg->under_oom)
1514 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1517 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1519 if (!current->memcg_may_oom)
1520 return;
1522 * We are in the middle of the charge context here, so we
1523 * don't want to block when potentially sitting on a callstack
1524 * that holds all kinds of filesystem and mm locks.
1526 * Also, the caller may handle a failed allocation gracefully
1527 * (like optional page cache readahead) and so an OOM killer
1528 * invocation might not even be necessary.
1530 * That's why we don't do anything here except remember the
1531 * OOM context and then deal with it at the end of the page
1532 * fault when the stack is unwound, the locks are released,
1533 * and when we know whether the fault was overall successful.
1535 css_get(&memcg->css);
1536 current->memcg_in_oom = memcg;
1537 current->memcg_oom_gfp_mask = mask;
1538 current->memcg_oom_order = order;
1542 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1543 * @handle: actually kill/wait or just clean up the OOM state
1545 * This has to be called at the end of a page fault if the memcg OOM
1546 * handler was enabled.
1548 * Memcg supports userspace OOM handling where failed allocations must
1549 * sleep on a waitqueue until the userspace task resolves the
1550 * situation. Sleeping directly in the charge context with all kinds
1551 * of locks held is not a good idea, instead we remember an OOM state
1552 * in the task and mem_cgroup_oom_synchronize() has to be called at
1553 * the end of the page fault to complete the OOM handling.
1555 * Returns %true if an ongoing memcg OOM situation was detected and
1556 * completed, %false otherwise.
1558 bool mem_cgroup_oom_synchronize(bool handle)
1560 struct mem_cgroup *memcg = current->memcg_in_oom;
1561 struct oom_wait_info owait;
1562 bool locked;
1564 /* OOM is global, do not handle */
1565 if (!memcg)
1566 return false;
1568 if (!handle)
1569 goto cleanup;
1571 owait.memcg = memcg;
1572 owait.wait.flags = 0;
1573 owait.wait.func = memcg_oom_wake_function;
1574 owait.wait.private = current;
1575 INIT_LIST_HEAD(&owait.wait.entry);
1577 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1578 mem_cgroup_mark_under_oom(memcg);
1580 locked = mem_cgroup_oom_trylock(memcg);
1582 if (locked)
1583 mem_cgroup_oom_notify(memcg);
1585 if (locked && !memcg->oom_kill_disable) {
1586 mem_cgroup_unmark_under_oom(memcg);
1587 finish_wait(&memcg_oom_waitq, &owait.wait);
1588 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1589 current->memcg_oom_order);
1590 } else {
1591 schedule();
1592 mem_cgroup_unmark_under_oom(memcg);
1593 finish_wait(&memcg_oom_waitq, &owait.wait);
1596 if (locked) {
1597 mem_cgroup_oom_unlock(memcg);
1599 * There is no guarantee that an OOM-lock contender
1600 * sees the wakeups triggered by the OOM kill
1601 * uncharges. Wake any sleepers explicitely.
1603 memcg_oom_recover(memcg);
1605 cleanup:
1606 current->memcg_in_oom = NULL;
1607 css_put(&memcg->css);
1608 return true;
1612 * lock_page_memcg - lock a page->mem_cgroup binding
1613 * @page: the page
1615 * This function protects unlocked LRU pages from being moved to
1616 * another cgroup.
1618 * It ensures lifetime of the returned memcg. Caller is responsible
1619 * for the lifetime of the page; __unlock_page_memcg() is available
1620 * when @page might get freed inside the locked section.
1622 struct mem_cgroup *lock_page_memcg(struct page *page)
1624 struct mem_cgroup *memcg;
1625 unsigned long flags;
1628 * The RCU lock is held throughout the transaction. The fast
1629 * path can get away without acquiring the memcg->move_lock
1630 * because page moving starts with an RCU grace period.
1632 * The RCU lock also protects the memcg from being freed when
1633 * the page state that is going to change is the only thing
1634 * preventing the page itself from being freed. E.g. writeback
1635 * doesn't hold a page reference and relies on PG_writeback to
1636 * keep off truncation, migration and so forth.
1638 rcu_read_lock();
1640 if (mem_cgroup_disabled())
1641 return NULL;
1642 again:
1643 memcg = page->mem_cgroup;
1644 if (unlikely(!memcg))
1645 return NULL;
1647 if (atomic_read(&memcg->moving_account) <= 0)
1648 return memcg;
1650 spin_lock_irqsave(&memcg->move_lock, flags);
1651 if (memcg != page->mem_cgroup) {
1652 spin_unlock_irqrestore(&memcg->move_lock, flags);
1653 goto again;
1657 * When charge migration first begins, we can have locked and
1658 * unlocked page stat updates happening concurrently. Track
1659 * the task who has the lock for unlock_page_memcg().
1661 memcg->move_lock_task = current;
1662 memcg->move_lock_flags = flags;
1664 return memcg;
1666 EXPORT_SYMBOL(lock_page_memcg);
1669 * __unlock_page_memcg - unlock and unpin a memcg
1670 * @memcg: the memcg
1672 * Unlock and unpin a memcg returned by lock_page_memcg().
1674 void __unlock_page_memcg(struct mem_cgroup *memcg)
1676 if (memcg && memcg->move_lock_task == current) {
1677 unsigned long flags = memcg->move_lock_flags;
1679 memcg->move_lock_task = NULL;
1680 memcg->move_lock_flags = 0;
1682 spin_unlock_irqrestore(&memcg->move_lock, flags);
1685 rcu_read_unlock();
1689 * unlock_page_memcg - unlock a page->mem_cgroup binding
1690 * @page: the page
1692 void unlock_page_memcg(struct page *page)
1694 __unlock_page_memcg(page->mem_cgroup);
1696 EXPORT_SYMBOL(unlock_page_memcg);
1699 * size of first charge trial. "32" comes from vmscan.c's magic value.
1700 * TODO: maybe necessary to use big numbers in big irons.
1702 #define CHARGE_BATCH 32U
1703 struct memcg_stock_pcp {
1704 struct mem_cgroup *cached; /* this never be root cgroup */
1705 unsigned int nr_pages;
1706 struct work_struct work;
1707 unsigned long flags;
1708 #define FLUSHING_CACHED_CHARGE 0
1710 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1711 static DEFINE_MUTEX(percpu_charge_mutex);
1714 * consume_stock: Try to consume stocked charge on this cpu.
1715 * @memcg: memcg to consume from.
1716 * @nr_pages: how many pages to charge.
1718 * The charges will only happen if @memcg matches the current cpu's memcg
1719 * stock, and at least @nr_pages are available in that stock. Failure to
1720 * service an allocation will refill the stock.
1722 * returns true if successful, false otherwise.
1724 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1726 struct memcg_stock_pcp *stock;
1727 unsigned long flags;
1728 bool ret = false;
1730 if (nr_pages > CHARGE_BATCH)
1731 return ret;
1733 local_irq_save(flags);
1735 stock = this_cpu_ptr(&memcg_stock);
1736 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1737 stock->nr_pages -= nr_pages;
1738 ret = true;
1741 local_irq_restore(flags);
1743 return ret;
1747 * Returns stocks cached in percpu and reset cached information.
1749 static void drain_stock(struct memcg_stock_pcp *stock)
1751 struct mem_cgroup *old = stock->cached;
1753 if (stock->nr_pages) {
1754 page_counter_uncharge(&old->memory, stock->nr_pages);
1755 if (do_memsw_account())
1756 page_counter_uncharge(&old->memsw, stock->nr_pages);
1757 css_put_many(&old->css, stock->nr_pages);
1758 stock->nr_pages = 0;
1760 stock->cached = NULL;
1763 static void drain_local_stock(struct work_struct *dummy)
1765 struct memcg_stock_pcp *stock;
1766 unsigned long flags;
1768 local_irq_save(flags);
1770 stock = this_cpu_ptr(&memcg_stock);
1771 drain_stock(stock);
1772 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1774 local_irq_restore(flags);
1778 * Cache charges(val) to local per_cpu area.
1779 * This will be consumed by consume_stock() function, later.
1781 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1783 struct memcg_stock_pcp *stock;
1784 unsigned long flags;
1786 local_irq_save(flags);
1788 stock = this_cpu_ptr(&memcg_stock);
1789 if (stock->cached != memcg) { /* reset if necessary */
1790 drain_stock(stock);
1791 stock->cached = memcg;
1793 stock->nr_pages += nr_pages;
1795 if (stock->nr_pages > CHARGE_BATCH)
1796 drain_stock(stock);
1798 local_irq_restore(flags);
1802 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1803 * of the hierarchy under it.
1805 static void drain_all_stock(struct mem_cgroup *root_memcg)
1807 int cpu, curcpu;
1809 /* If someone's already draining, avoid adding running more workers. */
1810 if (!mutex_trylock(&percpu_charge_mutex))
1811 return;
1812 /* Notify other cpus that system-wide "drain" is running */
1813 get_online_cpus();
1814 curcpu = get_cpu();
1815 for_each_online_cpu(cpu) {
1816 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1817 struct mem_cgroup *memcg;
1819 memcg = stock->cached;
1820 if (!memcg || !stock->nr_pages)
1821 continue;
1822 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1823 continue;
1824 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1825 if (cpu == curcpu)
1826 drain_local_stock(&stock->work);
1827 else
1828 schedule_work_on(cpu, &stock->work);
1831 put_cpu();
1832 put_online_cpus();
1833 mutex_unlock(&percpu_charge_mutex);
1836 static int memcg_hotplug_cpu_dead(unsigned int cpu)
1838 struct memcg_stock_pcp *stock;
1840 stock = &per_cpu(memcg_stock, cpu);
1841 drain_stock(stock);
1842 return 0;
1845 static void reclaim_high(struct mem_cgroup *memcg,
1846 unsigned int nr_pages,
1847 gfp_t gfp_mask)
1849 do {
1850 if (page_counter_read(&memcg->memory) <= memcg->high)
1851 continue;
1852 mem_cgroup_event(memcg, MEMCG_HIGH);
1853 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1854 } while ((memcg = parent_mem_cgroup(memcg)));
1857 static void high_work_func(struct work_struct *work)
1859 struct mem_cgroup *memcg;
1861 memcg = container_of(work, struct mem_cgroup, high_work);
1862 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1866 * Scheduled by try_charge() to be executed from the userland return path
1867 * and reclaims memory over the high limit.
1869 void mem_cgroup_handle_over_high(void)
1871 unsigned int nr_pages = current->memcg_nr_pages_over_high;
1872 struct mem_cgroup *memcg;
1874 if (likely(!nr_pages))
1875 return;
1877 memcg = get_mem_cgroup_from_mm(current->mm);
1878 reclaim_high(memcg, nr_pages, GFP_KERNEL);
1879 css_put(&memcg->css);
1880 current->memcg_nr_pages_over_high = 0;
1883 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1884 unsigned int nr_pages)
1886 unsigned int batch = max(CHARGE_BATCH, nr_pages);
1887 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1888 struct mem_cgroup *mem_over_limit;
1889 struct page_counter *counter;
1890 unsigned long nr_reclaimed;
1891 bool may_swap = true;
1892 bool drained = false;
1894 if (mem_cgroup_is_root(memcg))
1895 return 0;
1896 retry:
1897 if (consume_stock(memcg, nr_pages))
1898 return 0;
1900 if (!do_memsw_account() ||
1901 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1902 if (page_counter_try_charge(&memcg->memory, batch, &counter))
1903 goto done_restock;
1904 if (do_memsw_account())
1905 page_counter_uncharge(&memcg->memsw, batch);
1906 mem_over_limit = mem_cgroup_from_counter(counter, memory);
1907 } else {
1908 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1909 may_swap = false;
1912 if (batch > nr_pages) {
1913 batch = nr_pages;
1914 goto retry;
1918 * Unlike in global OOM situations, memcg is not in a physical
1919 * memory shortage. Allow dying and OOM-killed tasks to
1920 * bypass the last charges so that they can exit quickly and
1921 * free their memory.
1923 if (unlikely(tsk_is_oom_victim(current) ||
1924 fatal_signal_pending(current) ||
1925 current->flags & PF_EXITING))
1926 goto force;
1929 * Prevent unbounded recursion when reclaim operations need to
1930 * allocate memory. This might exceed the limits temporarily,
1931 * but we prefer facilitating memory reclaim and getting back
1932 * under the limit over triggering OOM kills in these cases.
1934 if (unlikely(current->flags & PF_MEMALLOC))
1935 goto force;
1937 if (unlikely(task_in_memcg_oom(current)))
1938 goto nomem;
1940 if (!gfpflags_allow_blocking(gfp_mask))
1941 goto nomem;
1943 mem_cgroup_event(mem_over_limit, MEMCG_MAX);
1945 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1946 gfp_mask, may_swap);
1948 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1949 goto retry;
1951 if (!drained) {
1952 drain_all_stock(mem_over_limit);
1953 drained = true;
1954 goto retry;
1957 if (gfp_mask & __GFP_NORETRY)
1958 goto nomem;
1960 * Even though the limit is exceeded at this point, reclaim
1961 * may have been able to free some pages. Retry the charge
1962 * before killing the task.
1964 * Only for regular pages, though: huge pages are rather
1965 * unlikely to succeed so close to the limit, and we fall back
1966 * to regular pages anyway in case of failure.
1968 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
1969 goto retry;
1971 * At task move, charge accounts can be doubly counted. So, it's
1972 * better to wait until the end of task_move if something is going on.
1974 if (mem_cgroup_wait_acct_move(mem_over_limit))
1975 goto retry;
1977 if (nr_retries--)
1978 goto retry;
1980 if (gfp_mask & __GFP_NOFAIL)
1981 goto force;
1983 if (fatal_signal_pending(current))
1984 goto force;
1986 mem_cgroup_event(mem_over_limit, MEMCG_OOM);
1988 mem_cgroup_oom(mem_over_limit, gfp_mask,
1989 get_order(nr_pages * PAGE_SIZE));
1990 nomem:
1991 if (!(gfp_mask & __GFP_NOFAIL))
1992 return -ENOMEM;
1993 force:
1995 * The allocation either can't fail or will lead to more memory
1996 * being freed very soon. Allow memory usage go over the limit
1997 * temporarily by force charging it.
1999 page_counter_charge(&memcg->memory, nr_pages);
2000 if (do_memsw_account())
2001 page_counter_charge(&memcg->memsw, nr_pages);
2002 css_get_many(&memcg->css, nr_pages);
2004 return 0;
2006 done_restock:
2007 css_get_many(&memcg->css, batch);
2008 if (batch > nr_pages)
2009 refill_stock(memcg, batch - nr_pages);
2012 * If the hierarchy is above the normal consumption range, schedule
2013 * reclaim on returning to userland. We can perform reclaim here
2014 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2015 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2016 * not recorded as it most likely matches current's and won't
2017 * change in the meantime. As high limit is checked again before
2018 * reclaim, the cost of mismatch is negligible.
2020 do {
2021 if (page_counter_read(&memcg->memory) > memcg->high) {
2022 /* Don't bother a random interrupted task */
2023 if (in_interrupt()) {
2024 schedule_work(&memcg->high_work);
2025 break;
2027 current->memcg_nr_pages_over_high += batch;
2028 set_notify_resume(current);
2029 break;
2031 } while ((memcg = parent_mem_cgroup(memcg)));
2033 return 0;
2036 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2038 if (mem_cgroup_is_root(memcg))
2039 return;
2041 page_counter_uncharge(&memcg->memory, nr_pages);
2042 if (do_memsw_account())
2043 page_counter_uncharge(&memcg->memsw, nr_pages);
2045 css_put_many(&memcg->css, nr_pages);
2048 static void lock_page_lru(struct page *page, int *isolated)
2050 struct zone *zone = page_zone(page);
2052 spin_lock_irq(zone_lru_lock(zone));
2053 if (PageLRU(page)) {
2054 struct lruvec *lruvec;
2056 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2057 ClearPageLRU(page);
2058 del_page_from_lru_list(page, lruvec, page_lru(page));
2059 *isolated = 1;
2060 } else
2061 *isolated = 0;
2064 static void unlock_page_lru(struct page *page, int isolated)
2066 struct zone *zone = page_zone(page);
2068 if (isolated) {
2069 struct lruvec *lruvec;
2071 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2072 VM_BUG_ON_PAGE(PageLRU(page), page);
2073 SetPageLRU(page);
2074 add_page_to_lru_list(page, lruvec, page_lru(page));
2076 spin_unlock_irq(zone_lru_lock(zone));
2079 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2080 bool lrucare)
2082 int isolated;
2084 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2087 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2088 * may already be on some other mem_cgroup's LRU. Take care of it.
2090 if (lrucare)
2091 lock_page_lru(page, &isolated);
2094 * Nobody should be changing or seriously looking at
2095 * page->mem_cgroup at this point:
2097 * - the page is uncharged
2099 * - the page is off-LRU
2101 * - an anonymous fault has exclusive page access, except for
2102 * a locked page table
2104 * - a page cache insertion, a swapin fault, or a migration
2105 * have the page locked
2107 page->mem_cgroup = memcg;
2109 if (lrucare)
2110 unlock_page_lru(page, isolated);
2113 #ifndef CONFIG_SLOB
2114 static int memcg_alloc_cache_id(void)
2116 int id, size;
2117 int err;
2119 id = ida_simple_get(&memcg_cache_ida,
2120 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2121 if (id < 0)
2122 return id;
2124 if (id < memcg_nr_cache_ids)
2125 return id;
2128 * There's no space for the new id in memcg_caches arrays,
2129 * so we have to grow them.
2131 down_write(&memcg_cache_ids_sem);
2133 size = 2 * (id + 1);
2134 if (size < MEMCG_CACHES_MIN_SIZE)
2135 size = MEMCG_CACHES_MIN_SIZE;
2136 else if (size > MEMCG_CACHES_MAX_SIZE)
2137 size = MEMCG_CACHES_MAX_SIZE;
2139 err = memcg_update_all_caches(size);
2140 if (!err)
2141 err = memcg_update_all_list_lrus(size);
2142 if (!err)
2143 memcg_nr_cache_ids = size;
2145 up_write(&memcg_cache_ids_sem);
2147 if (err) {
2148 ida_simple_remove(&memcg_cache_ida, id);
2149 return err;
2151 return id;
2154 static void memcg_free_cache_id(int id)
2156 ida_simple_remove(&memcg_cache_ida, id);
2159 struct memcg_kmem_cache_create_work {
2160 struct mem_cgroup *memcg;
2161 struct kmem_cache *cachep;
2162 struct work_struct work;
2165 static void memcg_kmem_cache_create_func(struct work_struct *w)
2167 struct memcg_kmem_cache_create_work *cw =
2168 container_of(w, struct memcg_kmem_cache_create_work, work);
2169 struct mem_cgroup *memcg = cw->memcg;
2170 struct kmem_cache *cachep = cw->cachep;
2172 memcg_create_kmem_cache(memcg, cachep);
2174 css_put(&memcg->css);
2175 kfree(cw);
2179 * Enqueue the creation of a per-memcg kmem_cache.
2181 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2182 struct kmem_cache *cachep)
2184 struct memcg_kmem_cache_create_work *cw;
2186 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2187 if (!cw)
2188 return;
2190 css_get(&memcg->css);
2192 cw->memcg = memcg;
2193 cw->cachep = cachep;
2194 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2196 queue_work(memcg_kmem_cache_wq, &cw->work);
2199 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2200 struct kmem_cache *cachep)
2203 * We need to stop accounting when we kmalloc, because if the
2204 * corresponding kmalloc cache is not yet created, the first allocation
2205 * in __memcg_schedule_kmem_cache_create will recurse.
2207 * However, it is better to enclose the whole function. Depending on
2208 * the debugging options enabled, INIT_WORK(), for instance, can
2209 * trigger an allocation. This too, will make us recurse. Because at
2210 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2211 * the safest choice is to do it like this, wrapping the whole function.
2213 current->memcg_kmem_skip_account = 1;
2214 __memcg_schedule_kmem_cache_create(memcg, cachep);
2215 current->memcg_kmem_skip_account = 0;
2218 static inline bool memcg_kmem_bypass(void)
2220 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2221 return true;
2222 return false;
2226 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2227 * @cachep: the original global kmem cache
2229 * Return the kmem_cache we're supposed to use for a slab allocation.
2230 * We try to use the current memcg's version of the cache.
2232 * If the cache does not exist yet, if we are the first user of it, we
2233 * create it asynchronously in a workqueue and let the current allocation
2234 * go through with the original cache.
2236 * This function takes a reference to the cache it returns to assure it
2237 * won't get destroyed while we are working with it. Once the caller is
2238 * done with it, memcg_kmem_put_cache() must be called to release the
2239 * reference.
2241 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2243 struct mem_cgroup *memcg;
2244 struct kmem_cache *memcg_cachep;
2245 int kmemcg_id;
2247 VM_BUG_ON(!is_root_cache(cachep));
2249 if (memcg_kmem_bypass())
2250 return cachep;
2252 if (current->memcg_kmem_skip_account)
2253 return cachep;
2255 memcg = get_mem_cgroup_from_mm(current->mm);
2256 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2257 if (kmemcg_id < 0)
2258 goto out;
2260 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2261 if (likely(memcg_cachep))
2262 return memcg_cachep;
2265 * If we are in a safe context (can wait, and not in interrupt
2266 * context), we could be be predictable and return right away.
2267 * This would guarantee that the allocation being performed
2268 * already belongs in the new cache.
2270 * However, there are some clashes that can arrive from locking.
2271 * For instance, because we acquire the slab_mutex while doing
2272 * memcg_create_kmem_cache, this means no further allocation
2273 * could happen with the slab_mutex held. So it's better to
2274 * defer everything.
2276 memcg_schedule_kmem_cache_create(memcg, cachep);
2277 out:
2278 css_put(&memcg->css);
2279 return cachep;
2283 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2284 * @cachep: the cache returned by memcg_kmem_get_cache
2286 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2288 if (!is_root_cache(cachep))
2289 css_put(&cachep->memcg_params.memcg->css);
2293 * memcg_kmem_charge: charge a kmem page
2294 * @page: page to charge
2295 * @gfp: reclaim mode
2296 * @order: allocation order
2297 * @memcg: memory cgroup to charge
2299 * Returns 0 on success, an error code on failure.
2301 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2302 struct mem_cgroup *memcg)
2304 unsigned int nr_pages = 1 << order;
2305 struct page_counter *counter;
2306 int ret;
2308 ret = try_charge(memcg, gfp, nr_pages);
2309 if (ret)
2310 return ret;
2312 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2313 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2314 cancel_charge(memcg, nr_pages);
2315 return -ENOMEM;
2318 page->mem_cgroup = memcg;
2320 return 0;
2324 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2325 * @page: page to charge
2326 * @gfp: reclaim mode
2327 * @order: allocation order
2329 * Returns 0 on success, an error code on failure.
2331 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2333 struct mem_cgroup *memcg;
2334 int ret = 0;
2336 if (memcg_kmem_bypass())
2337 return 0;
2339 memcg = get_mem_cgroup_from_mm(current->mm);
2340 if (!mem_cgroup_is_root(memcg)) {
2341 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2342 if (!ret)
2343 __SetPageKmemcg(page);
2345 css_put(&memcg->css);
2346 return ret;
2349 * memcg_kmem_uncharge: uncharge a kmem page
2350 * @page: page to uncharge
2351 * @order: allocation order
2353 void memcg_kmem_uncharge(struct page *page, int order)
2355 struct mem_cgroup *memcg = page->mem_cgroup;
2356 unsigned int nr_pages = 1 << order;
2358 if (!memcg)
2359 return;
2361 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2363 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2364 page_counter_uncharge(&memcg->kmem, nr_pages);
2366 page_counter_uncharge(&memcg->memory, nr_pages);
2367 if (do_memsw_account())
2368 page_counter_uncharge(&memcg->memsw, nr_pages);
2370 page->mem_cgroup = NULL;
2372 /* slab pages do not have PageKmemcg flag set */
2373 if (PageKmemcg(page))
2374 __ClearPageKmemcg(page);
2376 css_put_many(&memcg->css, nr_pages);
2378 #endif /* !CONFIG_SLOB */
2380 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2383 * Because tail pages are not marked as "used", set it. We're under
2384 * zone_lru_lock and migration entries setup in all page mappings.
2386 void mem_cgroup_split_huge_fixup(struct page *head)
2388 int i;
2390 if (mem_cgroup_disabled())
2391 return;
2393 for (i = 1; i < HPAGE_PMD_NR; i++)
2394 head[i].mem_cgroup = head->mem_cgroup;
2396 __this_cpu_sub(head->mem_cgroup->stat->count[MEMCG_RSS_HUGE],
2397 HPAGE_PMD_NR);
2399 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2401 #ifdef CONFIG_MEMCG_SWAP
2402 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2403 int nr_entries)
2405 this_cpu_add(memcg->stat->count[MEMCG_SWAP], nr_entries);
2409 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2410 * @entry: swap entry to be moved
2411 * @from: mem_cgroup which the entry is moved from
2412 * @to: mem_cgroup which the entry is moved to
2414 * It succeeds only when the swap_cgroup's record for this entry is the same
2415 * as the mem_cgroup's id of @from.
2417 * Returns 0 on success, -EINVAL on failure.
2419 * The caller must have charged to @to, IOW, called page_counter_charge() about
2420 * both res and memsw, and called css_get().
2422 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2423 struct mem_cgroup *from, struct mem_cgroup *to)
2425 unsigned short old_id, new_id;
2427 old_id = mem_cgroup_id(from);
2428 new_id = mem_cgroup_id(to);
2430 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2431 mem_cgroup_swap_statistics(from, -1);
2432 mem_cgroup_swap_statistics(to, 1);
2433 return 0;
2435 return -EINVAL;
2437 #else
2438 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2439 struct mem_cgroup *from, struct mem_cgroup *to)
2441 return -EINVAL;
2443 #endif
2445 static DEFINE_MUTEX(memcg_limit_mutex);
2447 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2448 unsigned long limit)
2450 unsigned long curusage;
2451 unsigned long oldusage;
2452 bool enlarge = false;
2453 int retry_count;
2454 int ret;
2457 * For keeping hierarchical_reclaim simple, how long we should retry
2458 * is depends on callers. We set our retry-count to be function
2459 * of # of children which we should visit in this loop.
2461 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2462 mem_cgroup_count_children(memcg);
2464 oldusage = page_counter_read(&memcg->memory);
2466 do {
2467 if (signal_pending(current)) {
2468 ret = -EINTR;
2469 break;
2472 mutex_lock(&memcg_limit_mutex);
2473 if (limit > memcg->memsw.limit) {
2474 mutex_unlock(&memcg_limit_mutex);
2475 ret = -EINVAL;
2476 break;
2478 if (limit > memcg->memory.limit)
2479 enlarge = true;
2480 ret = page_counter_limit(&memcg->memory, limit);
2481 mutex_unlock(&memcg_limit_mutex);
2483 if (!ret)
2484 break;
2486 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2488 curusage = page_counter_read(&memcg->memory);
2489 /* Usage is reduced ? */
2490 if (curusage >= oldusage)
2491 retry_count--;
2492 else
2493 oldusage = curusage;
2494 } while (retry_count);
2496 if (!ret && enlarge)
2497 memcg_oom_recover(memcg);
2499 return ret;
2502 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2503 unsigned long limit)
2505 unsigned long curusage;
2506 unsigned long oldusage;
2507 bool enlarge = false;
2508 int retry_count;
2509 int ret;
2511 /* see mem_cgroup_resize_res_limit */
2512 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2513 mem_cgroup_count_children(memcg);
2515 oldusage = page_counter_read(&memcg->memsw);
2517 do {
2518 if (signal_pending(current)) {
2519 ret = -EINTR;
2520 break;
2523 mutex_lock(&memcg_limit_mutex);
2524 if (limit < memcg->memory.limit) {
2525 mutex_unlock(&memcg_limit_mutex);
2526 ret = -EINVAL;
2527 break;
2529 if (limit > memcg->memsw.limit)
2530 enlarge = true;
2531 ret = page_counter_limit(&memcg->memsw, limit);
2532 mutex_unlock(&memcg_limit_mutex);
2534 if (!ret)
2535 break;
2537 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2539 curusage = page_counter_read(&memcg->memsw);
2540 /* Usage is reduced ? */
2541 if (curusage >= oldusage)
2542 retry_count--;
2543 else
2544 oldusage = curusage;
2545 } while (retry_count);
2547 if (!ret && enlarge)
2548 memcg_oom_recover(memcg);
2550 return ret;
2553 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2554 gfp_t gfp_mask,
2555 unsigned long *total_scanned)
2557 unsigned long nr_reclaimed = 0;
2558 struct mem_cgroup_per_node *mz, *next_mz = NULL;
2559 unsigned long reclaimed;
2560 int loop = 0;
2561 struct mem_cgroup_tree_per_node *mctz;
2562 unsigned long excess;
2563 unsigned long nr_scanned;
2565 if (order > 0)
2566 return 0;
2568 mctz = soft_limit_tree_node(pgdat->node_id);
2571 * Do not even bother to check the largest node if the root
2572 * is empty. Do it lockless to prevent lock bouncing. Races
2573 * are acceptable as soft limit is best effort anyway.
2575 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
2576 return 0;
2579 * This loop can run a while, specially if mem_cgroup's continuously
2580 * keep exceeding their soft limit and putting the system under
2581 * pressure
2583 do {
2584 if (next_mz)
2585 mz = next_mz;
2586 else
2587 mz = mem_cgroup_largest_soft_limit_node(mctz);
2588 if (!mz)
2589 break;
2591 nr_scanned = 0;
2592 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2593 gfp_mask, &nr_scanned);
2594 nr_reclaimed += reclaimed;
2595 *total_scanned += nr_scanned;
2596 spin_lock_irq(&mctz->lock);
2597 __mem_cgroup_remove_exceeded(mz, mctz);
2600 * If we failed to reclaim anything from this memory cgroup
2601 * it is time to move on to the next cgroup
2603 next_mz = NULL;
2604 if (!reclaimed)
2605 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2607 excess = soft_limit_excess(mz->memcg);
2609 * One school of thought says that we should not add
2610 * back the node to the tree if reclaim returns 0.
2611 * But our reclaim could return 0, simply because due
2612 * to priority we are exposing a smaller subset of
2613 * memory to reclaim from. Consider this as a longer
2614 * term TODO.
2616 /* If excess == 0, no tree ops */
2617 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2618 spin_unlock_irq(&mctz->lock);
2619 css_put(&mz->memcg->css);
2620 loop++;
2622 * Could not reclaim anything and there are no more
2623 * mem cgroups to try or we seem to be looping without
2624 * reclaiming anything.
2626 if (!nr_reclaimed &&
2627 (next_mz == NULL ||
2628 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2629 break;
2630 } while (!nr_reclaimed);
2631 if (next_mz)
2632 css_put(&next_mz->memcg->css);
2633 return nr_reclaimed;
2637 * Test whether @memcg has children, dead or alive. Note that this
2638 * function doesn't care whether @memcg has use_hierarchy enabled and
2639 * returns %true if there are child csses according to the cgroup
2640 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2642 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2644 bool ret;
2646 rcu_read_lock();
2647 ret = css_next_child(NULL, &memcg->css);
2648 rcu_read_unlock();
2649 return ret;
2653 * Reclaims as many pages from the given memcg as possible.
2655 * Caller is responsible for holding css reference for memcg.
2657 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2659 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2661 /* we call try-to-free pages for make this cgroup empty */
2662 lru_add_drain_all();
2663 /* try to free all pages in this cgroup */
2664 while (nr_retries && page_counter_read(&memcg->memory)) {
2665 int progress;
2667 if (signal_pending(current))
2668 return -EINTR;
2670 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2671 GFP_KERNEL, true);
2672 if (!progress) {
2673 nr_retries--;
2674 /* maybe some writeback is necessary */
2675 congestion_wait(BLK_RW_ASYNC, HZ/10);
2680 return 0;
2683 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2684 char *buf, size_t nbytes,
2685 loff_t off)
2687 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2689 if (mem_cgroup_is_root(memcg))
2690 return -EINVAL;
2691 return mem_cgroup_force_empty(memcg) ?: nbytes;
2694 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2695 struct cftype *cft)
2697 return mem_cgroup_from_css(css)->use_hierarchy;
2700 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2701 struct cftype *cft, u64 val)
2703 int retval = 0;
2704 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2705 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2707 if (memcg->use_hierarchy == val)
2708 return 0;
2711 * If parent's use_hierarchy is set, we can't make any modifications
2712 * in the child subtrees. If it is unset, then the change can
2713 * occur, provided the current cgroup has no children.
2715 * For the root cgroup, parent_mem is NULL, we allow value to be
2716 * set if there are no children.
2718 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2719 (val == 1 || val == 0)) {
2720 if (!memcg_has_children(memcg))
2721 memcg->use_hierarchy = val;
2722 else
2723 retval = -EBUSY;
2724 } else
2725 retval = -EINVAL;
2727 return retval;
2730 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2732 struct mem_cgroup *iter;
2733 int i;
2735 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2737 for_each_mem_cgroup_tree(iter, memcg) {
2738 for (i = 0; i < MEMCG_NR_STAT; i++)
2739 stat[i] += memcg_page_state(iter, i);
2743 static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2745 struct mem_cgroup *iter;
2746 int i;
2748 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2750 for_each_mem_cgroup_tree(iter, memcg) {
2751 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2752 events[i] += memcg_sum_events(iter, i);
2756 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2758 unsigned long val = 0;
2760 if (mem_cgroup_is_root(memcg)) {
2761 struct mem_cgroup *iter;
2763 for_each_mem_cgroup_tree(iter, memcg) {
2764 val += memcg_page_state(iter, MEMCG_CACHE);
2765 val += memcg_page_state(iter, MEMCG_RSS);
2766 if (swap)
2767 val += memcg_page_state(iter, MEMCG_SWAP);
2769 } else {
2770 if (!swap)
2771 val = page_counter_read(&memcg->memory);
2772 else
2773 val = page_counter_read(&memcg->memsw);
2775 return val;
2778 enum {
2779 RES_USAGE,
2780 RES_LIMIT,
2781 RES_MAX_USAGE,
2782 RES_FAILCNT,
2783 RES_SOFT_LIMIT,
2786 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2787 struct cftype *cft)
2789 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2790 struct page_counter *counter;
2792 switch (MEMFILE_TYPE(cft->private)) {
2793 case _MEM:
2794 counter = &memcg->memory;
2795 break;
2796 case _MEMSWAP:
2797 counter = &memcg->memsw;
2798 break;
2799 case _KMEM:
2800 counter = &memcg->kmem;
2801 break;
2802 case _TCP:
2803 counter = &memcg->tcpmem;
2804 break;
2805 default:
2806 BUG();
2809 switch (MEMFILE_ATTR(cft->private)) {
2810 case RES_USAGE:
2811 if (counter == &memcg->memory)
2812 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2813 if (counter == &memcg->memsw)
2814 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2815 return (u64)page_counter_read(counter) * PAGE_SIZE;
2816 case RES_LIMIT:
2817 return (u64)counter->limit * PAGE_SIZE;
2818 case RES_MAX_USAGE:
2819 return (u64)counter->watermark * PAGE_SIZE;
2820 case RES_FAILCNT:
2821 return counter->failcnt;
2822 case RES_SOFT_LIMIT:
2823 return (u64)memcg->soft_limit * PAGE_SIZE;
2824 default:
2825 BUG();
2829 #ifndef CONFIG_SLOB
2830 static int memcg_online_kmem(struct mem_cgroup *memcg)
2832 int memcg_id;
2834 if (cgroup_memory_nokmem)
2835 return 0;
2837 BUG_ON(memcg->kmemcg_id >= 0);
2838 BUG_ON(memcg->kmem_state);
2840 memcg_id = memcg_alloc_cache_id();
2841 if (memcg_id < 0)
2842 return memcg_id;
2844 static_branch_inc(&memcg_kmem_enabled_key);
2846 * A memory cgroup is considered kmem-online as soon as it gets
2847 * kmemcg_id. Setting the id after enabling static branching will
2848 * guarantee no one starts accounting before all call sites are
2849 * patched.
2851 memcg->kmemcg_id = memcg_id;
2852 memcg->kmem_state = KMEM_ONLINE;
2853 INIT_LIST_HEAD(&memcg->kmem_caches);
2855 return 0;
2858 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2860 struct cgroup_subsys_state *css;
2861 struct mem_cgroup *parent, *child;
2862 int kmemcg_id;
2864 if (memcg->kmem_state != KMEM_ONLINE)
2865 return;
2867 * Clear the online state before clearing memcg_caches array
2868 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2869 * guarantees that no cache will be created for this cgroup
2870 * after we are done (see memcg_create_kmem_cache()).
2872 memcg->kmem_state = KMEM_ALLOCATED;
2874 memcg_deactivate_kmem_caches(memcg);
2876 kmemcg_id = memcg->kmemcg_id;
2877 BUG_ON(kmemcg_id < 0);
2879 parent = parent_mem_cgroup(memcg);
2880 if (!parent)
2881 parent = root_mem_cgroup;
2884 * Change kmemcg_id of this cgroup and all its descendants to the
2885 * parent's id, and then move all entries from this cgroup's list_lrus
2886 * to ones of the parent. After we have finished, all list_lrus
2887 * corresponding to this cgroup are guaranteed to remain empty. The
2888 * ordering is imposed by list_lru_node->lock taken by
2889 * memcg_drain_all_list_lrus().
2891 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2892 css_for_each_descendant_pre(css, &memcg->css) {
2893 child = mem_cgroup_from_css(css);
2894 BUG_ON(child->kmemcg_id != kmemcg_id);
2895 child->kmemcg_id = parent->kmemcg_id;
2896 if (!memcg->use_hierarchy)
2897 break;
2899 rcu_read_unlock();
2901 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2903 memcg_free_cache_id(kmemcg_id);
2906 static void memcg_free_kmem(struct mem_cgroup *memcg)
2908 /* css_alloc() failed, offlining didn't happen */
2909 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2910 memcg_offline_kmem(memcg);
2912 if (memcg->kmem_state == KMEM_ALLOCATED) {
2913 memcg_destroy_kmem_caches(memcg);
2914 static_branch_dec(&memcg_kmem_enabled_key);
2915 WARN_ON(page_counter_read(&memcg->kmem));
2918 #else
2919 static int memcg_online_kmem(struct mem_cgroup *memcg)
2921 return 0;
2923 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2926 static void memcg_free_kmem(struct mem_cgroup *memcg)
2929 #endif /* !CONFIG_SLOB */
2931 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2932 unsigned long limit)
2934 int ret;
2936 mutex_lock(&memcg_limit_mutex);
2937 ret = page_counter_limit(&memcg->kmem, limit);
2938 mutex_unlock(&memcg_limit_mutex);
2939 return ret;
2942 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2944 int ret;
2946 mutex_lock(&memcg_limit_mutex);
2948 ret = page_counter_limit(&memcg->tcpmem, limit);
2949 if (ret)
2950 goto out;
2952 if (!memcg->tcpmem_active) {
2954 * The active flag needs to be written after the static_key
2955 * update. This is what guarantees that the socket activation
2956 * function is the last one to run. See mem_cgroup_sk_alloc()
2957 * for details, and note that we don't mark any socket as
2958 * belonging to this memcg until that flag is up.
2960 * We need to do this, because static_keys will span multiple
2961 * sites, but we can't control their order. If we mark a socket
2962 * as accounted, but the accounting functions are not patched in
2963 * yet, we'll lose accounting.
2965 * We never race with the readers in mem_cgroup_sk_alloc(),
2966 * because when this value change, the code to process it is not
2967 * patched in yet.
2969 static_branch_inc(&memcg_sockets_enabled_key);
2970 memcg->tcpmem_active = true;
2972 out:
2973 mutex_unlock(&memcg_limit_mutex);
2974 return ret;
2978 * The user of this function is...
2979 * RES_LIMIT.
2981 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2982 char *buf, size_t nbytes, loff_t off)
2984 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2985 unsigned long nr_pages;
2986 int ret;
2988 buf = strstrip(buf);
2989 ret = page_counter_memparse(buf, "-1", &nr_pages);
2990 if (ret)
2991 return ret;
2993 switch (MEMFILE_ATTR(of_cft(of)->private)) {
2994 case RES_LIMIT:
2995 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2996 ret = -EINVAL;
2997 break;
2999 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3000 case _MEM:
3001 ret = mem_cgroup_resize_limit(memcg, nr_pages);
3002 break;
3003 case _MEMSWAP:
3004 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3005 break;
3006 case _KMEM:
3007 ret = memcg_update_kmem_limit(memcg, nr_pages);
3008 break;
3009 case _TCP:
3010 ret = memcg_update_tcp_limit(memcg, nr_pages);
3011 break;
3013 break;
3014 case RES_SOFT_LIMIT:
3015 memcg->soft_limit = nr_pages;
3016 ret = 0;
3017 break;
3019 return ret ?: nbytes;
3022 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3023 size_t nbytes, loff_t off)
3025 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3026 struct page_counter *counter;
3028 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3029 case _MEM:
3030 counter = &memcg->memory;
3031 break;
3032 case _MEMSWAP:
3033 counter = &memcg->memsw;
3034 break;
3035 case _KMEM:
3036 counter = &memcg->kmem;
3037 break;
3038 case _TCP:
3039 counter = &memcg->tcpmem;
3040 break;
3041 default:
3042 BUG();
3045 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3046 case RES_MAX_USAGE:
3047 page_counter_reset_watermark(counter);
3048 break;
3049 case RES_FAILCNT:
3050 counter->failcnt = 0;
3051 break;
3052 default:
3053 BUG();
3056 return nbytes;
3059 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3060 struct cftype *cft)
3062 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3065 #ifdef CONFIG_MMU
3066 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3067 struct cftype *cft, u64 val)
3069 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3071 if (val & ~MOVE_MASK)
3072 return -EINVAL;
3075 * No kind of locking is needed in here, because ->can_attach() will
3076 * check this value once in the beginning of the process, and then carry
3077 * on with stale data. This means that changes to this value will only
3078 * affect task migrations starting after the change.
3080 memcg->move_charge_at_immigrate = val;
3081 return 0;
3083 #else
3084 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3085 struct cftype *cft, u64 val)
3087 return -ENOSYS;
3089 #endif
3091 #ifdef CONFIG_NUMA
3092 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3094 struct numa_stat {
3095 const char *name;
3096 unsigned int lru_mask;
3099 static const struct numa_stat stats[] = {
3100 { "total", LRU_ALL },
3101 { "file", LRU_ALL_FILE },
3102 { "anon", LRU_ALL_ANON },
3103 { "unevictable", BIT(LRU_UNEVICTABLE) },
3105 const struct numa_stat *stat;
3106 int nid;
3107 unsigned long nr;
3108 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3110 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3111 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3112 seq_printf(m, "%s=%lu", stat->name, nr);
3113 for_each_node_state(nid, N_MEMORY) {
3114 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3115 stat->lru_mask);
3116 seq_printf(m, " N%d=%lu", nid, nr);
3118 seq_putc(m, '\n');
3121 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3122 struct mem_cgroup *iter;
3124 nr = 0;
3125 for_each_mem_cgroup_tree(iter, memcg)
3126 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3127 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3128 for_each_node_state(nid, N_MEMORY) {
3129 nr = 0;
3130 for_each_mem_cgroup_tree(iter, memcg)
3131 nr += mem_cgroup_node_nr_lru_pages(
3132 iter, nid, stat->lru_mask);
3133 seq_printf(m, " N%d=%lu", nid, nr);
3135 seq_putc(m, '\n');
3138 return 0;
3140 #endif /* CONFIG_NUMA */
3142 /* Universal VM events cgroup1 shows, original sort order */
3143 unsigned int memcg1_events[] = {
3144 PGPGIN,
3145 PGPGOUT,
3146 PGFAULT,
3147 PGMAJFAULT,
3150 static const char *const memcg1_event_names[] = {
3151 "pgpgin",
3152 "pgpgout",
3153 "pgfault",
3154 "pgmajfault",
3157 static int memcg_stat_show(struct seq_file *m, void *v)
3159 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3160 unsigned long memory, memsw;
3161 struct mem_cgroup *mi;
3162 unsigned int i;
3164 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3165 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3167 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3168 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3169 continue;
3170 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3171 memcg_page_state(memcg, memcg1_stats[i]) *
3172 PAGE_SIZE);
3175 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3176 seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3177 memcg_sum_events(memcg, memcg1_events[i]));
3179 for (i = 0; i < NR_LRU_LISTS; i++)
3180 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3181 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3183 /* Hierarchical information */
3184 memory = memsw = PAGE_COUNTER_MAX;
3185 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3186 memory = min(memory, mi->memory.limit);
3187 memsw = min(memsw, mi->memsw.limit);
3189 seq_printf(m, "hierarchical_memory_limit %llu\n",
3190 (u64)memory * PAGE_SIZE);
3191 if (do_memsw_account())
3192 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3193 (u64)memsw * PAGE_SIZE);
3195 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3196 unsigned long long val = 0;
3198 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3199 continue;
3200 for_each_mem_cgroup_tree(mi, memcg)
3201 val += memcg_page_state(mi, memcg1_stats[i]) *
3202 PAGE_SIZE;
3203 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], val);
3206 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) {
3207 unsigned long long val = 0;
3209 for_each_mem_cgroup_tree(mi, memcg)
3210 val += memcg_sum_events(mi, memcg1_events[i]);
3211 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i], val);
3214 for (i = 0; i < NR_LRU_LISTS; i++) {
3215 unsigned long long val = 0;
3217 for_each_mem_cgroup_tree(mi, memcg)
3218 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3219 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3222 #ifdef CONFIG_DEBUG_VM
3224 pg_data_t *pgdat;
3225 struct mem_cgroup_per_node *mz;
3226 struct zone_reclaim_stat *rstat;
3227 unsigned long recent_rotated[2] = {0, 0};
3228 unsigned long recent_scanned[2] = {0, 0};
3230 for_each_online_pgdat(pgdat) {
3231 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3232 rstat = &mz->lruvec.reclaim_stat;
3234 recent_rotated[0] += rstat->recent_rotated[0];
3235 recent_rotated[1] += rstat->recent_rotated[1];
3236 recent_scanned[0] += rstat->recent_scanned[0];
3237 recent_scanned[1] += rstat->recent_scanned[1];
3239 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3240 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3241 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3242 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3244 #endif
3246 return 0;
3249 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3250 struct cftype *cft)
3252 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3254 return mem_cgroup_swappiness(memcg);
3257 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3258 struct cftype *cft, u64 val)
3260 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3262 if (val > 100)
3263 return -EINVAL;
3265 if (css->parent)
3266 memcg->swappiness = val;
3267 else
3268 vm_swappiness = val;
3270 return 0;
3273 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3275 struct mem_cgroup_threshold_ary *t;
3276 unsigned long usage;
3277 int i;
3279 rcu_read_lock();
3280 if (!swap)
3281 t = rcu_dereference(memcg->thresholds.primary);
3282 else
3283 t = rcu_dereference(memcg->memsw_thresholds.primary);
3285 if (!t)
3286 goto unlock;
3288 usage = mem_cgroup_usage(memcg, swap);
3291 * current_threshold points to threshold just below or equal to usage.
3292 * If it's not true, a threshold was crossed after last
3293 * call of __mem_cgroup_threshold().
3295 i = t->current_threshold;
3298 * Iterate backward over array of thresholds starting from
3299 * current_threshold and check if a threshold is crossed.
3300 * If none of thresholds below usage is crossed, we read
3301 * only one element of the array here.
3303 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3304 eventfd_signal(t->entries[i].eventfd, 1);
3306 /* i = current_threshold + 1 */
3307 i++;
3310 * Iterate forward over array of thresholds starting from
3311 * current_threshold+1 and check if a threshold is crossed.
3312 * If none of thresholds above usage is crossed, we read
3313 * only one element of the array here.
3315 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3316 eventfd_signal(t->entries[i].eventfd, 1);
3318 /* Update current_threshold */
3319 t->current_threshold = i - 1;
3320 unlock:
3321 rcu_read_unlock();
3324 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3326 while (memcg) {
3327 __mem_cgroup_threshold(memcg, false);
3328 if (do_memsw_account())
3329 __mem_cgroup_threshold(memcg, true);
3331 memcg = parent_mem_cgroup(memcg);
3335 static int compare_thresholds(const void *a, const void *b)
3337 const struct mem_cgroup_threshold *_a = a;
3338 const struct mem_cgroup_threshold *_b = b;
3340 if (_a->threshold > _b->threshold)
3341 return 1;
3343 if (_a->threshold < _b->threshold)
3344 return -1;
3346 return 0;
3349 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3351 struct mem_cgroup_eventfd_list *ev;
3353 spin_lock(&memcg_oom_lock);
3355 list_for_each_entry(ev, &memcg->oom_notify, list)
3356 eventfd_signal(ev->eventfd, 1);
3358 spin_unlock(&memcg_oom_lock);
3359 return 0;
3362 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3364 struct mem_cgroup *iter;
3366 for_each_mem_cgroup_tree(iter, memcg)
3367 mem_cgroup_oom_notify_cb(iter);
3370 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3371 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3373 struct mem_cgroup_thresholds *thresholds;
3374 struct mem_cgroup_threshold_ary *new;
3375 unsigned long threshold;
3376 unsigned long usage;
3377 int i, size, ret;
3379 ret = page_counter_memparse(args, "-1", &threshold);
3380 if (ret)
3381 return ret;
3383 mutex_lock(&memcg->thresholds_lock);
3385 if (type == _MEM) {
3386 thresholds = &memcg->thresholds;
3387 usage = mem_cgroup_usage(memcg, false);
3388 } else if (type == _MEMSWAP) {
3389 thresholds = &memcg->memsw_thresholds;
3390 usage = mem_cgroup_usage(memcg, true);
3391 } else
3392 BUG();
3394 /* Check if a threshold crossed before adding a new one */
3395 if (thresholds->primary)
3396 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3398 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3400 /* Allocate memory for new array of thresholds */
3401 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3402 GFP_KERNEL);
3403 if (!new) {
3404 ret = -ENOMEM;
3405 goto unlock;
3407 new->size = size;
3409 /* Copy thresholds (if any) to new array */
3410 if (thresholds->primary) {
3411 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3412 sizeof(struct mem_cgroup_threshold));
3415 /* Add new threshold */
3416 new->entries[size - 1].eventfd = eventfd;
3417 new->entries[size - 1].threshold = threshold;
3419 /* Sort thresholds. Registering of new threshold isn't time-critical */
3420 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3421 compare_thresholds, NULL);
3423 /* Find current threshold */
3424 new->current_threshold = -1;
3425 for (i = 0; i < size; i++) {
3426 if (new->entries[i].threshold <= usage) {
3428 * new->current_threshold will not be used until
3429 * rcu_assign_pointer(), so it's safe to increment
3430 * it here.
3432 ++new->current_threshold;
3433 } else
3434 break;
3437 /* Free old spare buffer and save old primary buffer as spare */
3438 kfree(thresholds->spare);
3439 thresholds->spare = thresholds->primary;
3441 rcu_assign_pointer(thresholds->primary, new);
3443 /* To be sure that nobody uses thresholds */
3444 synchronize_rcu();
3446 unlock:
3447 mutex_unlock(&memcg->thresholds_lock);
3449 return ret;
3452 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3453 struct eventfd_ctx *eventfd, const char *args)
3455 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3458 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3459 struct eventfd_ctx *eventfd, const char *args)
3461 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3464 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3465 struct eventfd_ctx *eventfd, enum res_type type)
3467 struct mem_cgroup_thresholds *thresholds;
3468 struct mem_cgroup_threshold_ary *new;
3469 unsigned long usage;
3470 int i, j, size;
3472 mutex_lock(&memcg->thresholds_lock);
3474 if (type == _MEM) {
3475 thresholds = &memcg->thresholds;
3476 usage = mem_cgroup_usage(memcg, false);
3477 } else if (type == _MEMSWAP) {
3478 thresholds = &memcg->memsw_thresholds;
3479 usage = mem_cgroup_usage(memcg, true);
3480 } else
3481 BUG();
3483 if (!thresholds->primary)
3484 goto unlock;
3486 /* Check if a threshold crossed before removing */
3487 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3489 /* Calculate new number of threshold */
3490 size = 0;
3491 for (i = 0; i < thresholds->primary->size; i++) {
3492 if (thresholds->primary->entries[i].eventfd != eventfd)
3493 size++;
3496 new = thresholds->spare;
3498 /* Set thresholds array to NULL if we don't have thresholds */
3499 if (!size) {
3500 kfree(new);
3501 new = NULL;
3502 goto swap_buffers;
3505 new->size = size;
3507 /* Copy thresholds and find current threshold */
3508 new->current_threshold = -1;
3509 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3510 if (thresholds->primary->entries[i].eventfd == eventfd)
3511 continue;
3513 new->entries[j] = thresholds->primary->entries[i];
3514 if (new->entries[j].threshold <= usage) {
3516 * new->current_threshold will not be used
3517 * until rcu_assign_pointer(), so it's safe to increment
3518 * it here.
3520 ++new->current_threshold;
3522 j++;
3525 swap_buffers:
3526 /* Swap primary and spare array */
3527 thresholds->spare = thresholds->primary;
3529 rcu_assign_pointer(thresholds->primary, new);
3531 /* To be sure that nobody uses thresholds */
3532 synchronize_rcu();
3534 /* If all events are unregistered, free the spare array */
3535 if (!new) {
3536 kfree(thresholds->spare);
3537 thresholds->spare = NULL;
3539 unlock:
3540 mutex_unlock(&memcg->thresholds_lock);
3543 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3544 struct eventfd_ctx *eventfd)
3546 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3549 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3550 struct eventfd_ctx *eventfd)
3552 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3555 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3556 struct eventfd_ctx *eventfd, const char *args)
3558 struct mem_cgroup_eventfd_list *event;
3560 event = kmalloc(sizeof(*event), GFP_KERNEL);
3561 if (!event)
3562 return -ENOMEM;
3564 spin_lock(&memcg_oom_lock);
3566 event->eventfd = eventfd;
3567 list_add(&event->list, &memcg->oom_notify);
3569 /* already in OOM ? */
3570 if (memcg->under_oom)
3571 eventfd_signal(eventfd, 1);
3572 spin_unlock(&memcg_oom_lock);
3574 return 0;
3577 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3578 struct eventfd_ctx *eventfd)
3580 struct mem_cgroup_eventfd_list *ev, *tmp;
3582 spin_lock(&memcg_oom_lock);
3584 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3585 if (ev->eventfd == eventfd) {
3586 list_del(&ev->list);
3587 kfree(ev);
3591 spin_unlock(&memcg_oom_lock);
3594 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3596 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3598 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3599 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3600 seq_printf(sf, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL));
3601 return 0;
3604 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3605 struct cftype *cft, u64 val)
3607 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3609 /* cannot set to root cgroup and only 0 and 1 are allowed */
3610 if (!css->parent || !((val == 0) || (val == 1)))
3611 return -EINVAL;
3613 memcg->oom_kill_disable = val;
3614 if (!val)
3615 memcg_oom_recover(memcg);
3617 return 0;
3620 #ifdef CONFIG_CGROUP_WRITEBACK
3622 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3624 return &memcg->cgwb_list;
3627 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3629 return wb_domain_init(&memcg->cgwb_domain, gfp);
3632 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3634 wb_domain_exit(&memcg->cgwb_domain);
3637 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3639 wb_domain_size_changed(&memcg->cgwb_domain);
3642 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3644 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3646 if (!memcg->css.parent)
3647 return NULL;
3649 return &memcg->cgwb_domain;
3653 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3654 * @wb: bdi_writeback in question
3655 * @pfilepages: out parameter for number of file pages
3656 * @pheadroom: out parameter for number of allocatable pages according to memcg
3657 * @pdirty: out parameter for number of dirty pages
3658 * @pwriteback: out parameter for number of pages under writeback
3660 * Determine the numbers of file, headroom, dirty, and writeback pages in
3661 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3662 * is a bit more involved.
3664 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3665 * headroom is calculated as the lowest headroom of itself and the
3666 * ancestors. Note that this doesn't consider the actual amount of
3667 * available memory in the system. The caller should further cap
3668 * *@pheadroom accordingly.
3670 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3671 unsigned long *pheadroom, unsigned long *pdirty,
3672 unsigned long *pwriteback)
3674 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3675 struct mem_cgroup *parent;
3677 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
3679 /* this should eventually include NR_UNSTABLE_NFS */
3680 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
3681 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3682 (1 << LRU_ACTIVE_FILE));
3683 *pheadroom = PAGE_COUNTER_MAX;
3685 while ((parent = parent_mem_cgroup(memcg))) {
3686 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3687 unsigned long used = page_counter_read(&memcg->memory);
3689 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3690 memcg = parent;
3694 #else /* CONFIG_CGROUP_WRITEBACK */
3696 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3698 return 0;
3701 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3705 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3709 #endif /* CONFIG_CGROUP_WRITEBACK */
3712 * DO NOT USE IN NEW FILES.
3714 * "cgroup.event_control" implementation.
3716 * This is way over-engineered. It tries to support fully configurable
3717 * events for each user. Such level of flexibility is completely
3718 * unnecessary especially in the light of the planned unified hierarchy.
3720 * Please deprecate this and replace with something simpler if at all
3721 * possible.
3725 * Unregister event and free resources.
3727 * Gets called from workqueue.
3729 static void memcg_event_remove(struct work_struct *work)
3731 struct mem_cgroup_event *event =
3732 container_of(work, struct mem_cgroup_event, remove);
3733 struct mem_cgroup *memcg = event->memcg;
3735 remove_wait_queue(event->wqh, &event->wait);
3737 event->unregister_event(memcg, event->eventfd);
3739 /* Notify userspace the event is going away. */
3740 eventfd_signal(event->eventfd, 1);
3742 eventfd_ctx_put(event->eventfd);
3743 kfree(event);
3744 css_put(&memcg->css);
3748 * Gets called on POLLHUP on eventfd when user closes it.
3750 * Called with wqh->lock held and interrupts disabled.
3752 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3753 int sync, void *key)
3755 struct mem_cgroup_event *event =
3756 container_of(wait, struct mem_cgroup_event, wait);
3757 struct mem_cgroup *memcg = event->memcg;
3758 unsigned long flags = (unsigned long)key;
3760 if (flags & POLLHUP) {
3762 * If the event has been detached at cgroup removal, we
3763 * can simply return knowing the other side will cleanup
3764 * for us.
3766 * We can't race against event freeing since the other
3767 * side will require wqh->lock via remove_wait_queue(),
3768 * which we hold.
3770 spin_lock(&memcg->event_list_lock);
3771 if (!list_empty(&event->list)) {
3772 list_del_init(&event->list);
3774 * We are in atomic context, but cgroup_event_remove()
3775 * may sleep, so we have to call it in workqueue.
3777 schedule_work(&event->remove);
3779 spin_unlock(&memcg->event_list_lock);
3782 return 0;
3785 static void memcg_event_ptable_queue_proc(struct file *file,
3786 wait_queue_head_t *wqh, poll_table *pt)
3788 struct mem_cgroup_event *event =
3789 container_of(pt, struct mem_cgroup_event, pt);
3791 event->wqh = wqh;
3792 add_wait_queue(wqh, &event->wait);
3796 * DO NOT USE IN NEW FILES.
3798 * Parse input and register new cgroup event handler.
3800 * Input must be in format '<event_fd> <control_fd> <args>'.
3801 * Interpretation of args is defined by control file implementation.
3803 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3804 char *buf, size_t nbytes, loff_t off)
3806 struct cgroup_subsys_state *css = of_css(of);
3807 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3808 struct mem_cgroup_event *event;
3809 struct cgroup_subsys_state *cfile_css;
3810 unsigned int efd, cfd;
3811 struct fd efile;
3812 struct fd cfile;
3813 const char *name;
3814 char *endp;
3815 int ret;
3817 buf = strstrip(buf);
3819 efd = simple_strtoul(buf, &endp, 10);
3820 if (*endp != ' ')
3821 return -EINVAL;
3822 buf = endp + 1;
3824 cfd = simple_strtoul(buf, &endp, 10);
3825 if ((*endp != ' ') && (*endp != '\0'))
3826 return -EINVAL;
3827 buf = endp + 1;
3829 event = kzalloc(sizeof(*event), GFP_KERNEL);
3830 if (!event)
3831 return -ENOMEM;
3833 event->memcg = memcg;
3834 INIT_LIST_HEAD(&event->list);
3835 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3836 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3837 INIT_WORK(&event->remove, memcg_event_remove);
3839 efile = fdget(efd);
3840 if (!efile.file) {
3841 ret = -EBADF;
3842 goto out_kfree;
3845 event->eventfd = eventfd_ctx_fileget(efile.file);
3846 if (IS_ERR(event->eventfd)) {
3847 ret = PTR_ERR(event->eventfd);
3848 goto out_put_efile;
3851 cfile = fdget(cfd);
3852 if (!cfile.file) {
3853 ret = -EBADF;
3854 goto out_put_eventfd;
3857 /* the process need read permission on control file */
3858 /* AV: shouldn't we check that it's been opened for read instead? */
3859 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3860 if (ret < 0)
3861 goto out_put_cfile;
3864 * Determine the event callbacks and set them in @event. This used
3865 * to be done via struct cftype but cgroup core no longer knows
3866 * about these events. The following is crude but the whole thing
3867 * is for compatibility anyway.
3869 * DO NOT ADD NEW FILES.
3871 name = cfile.file->f_path.dentry->d_name.name;
3873 if (!strcmp(name, "memory.usage_in_bytes")) {
3874 event->register_event = mem_cgroup_usage_register_event;
3875 event->unregister_event = mem_cgroup_usage_unregister_event;
3876 } else if (!strcmp(name, "memory.oom_control")) {
3877 event->register_event = mem_cgroup_oom_register_event;
3878 event->unregister_event = mem_cgroup_oom_unregister_event;
3879 } else if (!strcmp(name, "memory.pressure_level")) {
3880 event->register_event = vmpressure_register_event;
3881 event->unregister_event = vmpressure_unregister_event;
3882 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3883 event->register_event = memsw_cgroup_usage_register_event;
3884 event->unregister_event = memsw_cgroup_usage_unregister_event;
3885 } else {
3886 ret = -EINVAL;
3887 goto out_put_cfile;
3891 * Verify @cfile should belong to @css. Also, remaining events are
3892 * automatically removed on cgroup destruction but the removal is
3893 * asynchronous, so take an extra ref on @css.
3895 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3896 &memory_cgrp_subsys);
3897 ret = -EINVAL;
3898 if (IS_ERR(cfile_css))
3899 goto out_put_cfile;
3900 if (cfile_css != css) {
3901 css_put(cfile_css);
3902 goto out_put_cfile;
3905 ret = event->register_event(memcg, event->eventfd, buf);
3906 if (ret)
3907 goto out_put_css;
3909 efile.file->f_op->poll(efile.file, &event->pt);
3911 spin_lock(&memcg->event_list_lock);
3912 list_add(&event->list, &memcg->event_list);
3913 spin_unlock(&memcg->event_list_lock);
3915 fdput(cfile);
3916 fdput(efile);
3918 return nbytes;
3920 out_put_css:
3921 css_put(css);
3922 out_put_cfile:
3923 fdput(cfile);
3924 out_put_eventfd:
3925 eventfd_ctx_put(event->eventfd);
3926 out_put_efile:
3927 fdput(efile);
3928 out_kfree:
3929 kfree(event);
3931 return ret;
3934 static struct cftype mem_cgroup_legacy_files[] = {
3936 .name = "usage_in_bytes",
3937 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3938 .read_u64 = mem_cgroup_read_u64,
3941 .name = "max_usage_in_bytes",
3942 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3943 .write = mem_cgroup_reset,
3944 .read_u64 = mem_cgroup_read_u64,
3947 .name = "limit_in_bytes",
3948 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3949 .write = mem_cgroup_write,
3950 .read_u64 = mem_cgroup_read_u64,
3953 .name = "soft_limit_in_bytes",
3954 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3955 .write = mem_cgroup_write,
3956 .read_u64 = mem_cgroup_read_u64,
3959 .name = "failcnt",
3960 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3961 .write = mem_cgroup_reset,
3962 .read_u64 = mem_cgroup_read_u64,
3965 .name = "stat",
3966 .seq_show = memcg_stat_show,
3969 .name = "force_empty",
3970 .write = mem_cgroup_force_empty_write,
3973 .name = "use_hierarchy",
3974 .write_u64 = mem_cgroup_hierarchy_write,
3975 .read_u64 = mem_cgroup_hierarchy_read,
3978 .name = "cgroup.event_control", /* XXX: for compat */
3979 .write = memcg_write_event_control,
3980 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3983 .name = "swappiness",
3984 .read_u64 = mem_cgroup_swappiness_read,
3985 .write_u64 = mem_cgroup_swappiness_write,
3988 .name = "move_charge_at_immigrate",
3989 .read_u64 = mem_cgroup_move_charge_read,
3990 .write_u64 = mem_cgroup_move_charge_write,
3993 .name = "oom_control",
3994 .seq_show = mem_cgroup_oom_control_read,
3995 .write_u64 = mem_cgroup_oom_control_write,
3996 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3999 .name = "pressure_level",
4001 #ifdef CONFIG_NUMA
4003 .name = "numa_stat",
4004 .seq_show = memcg_numa_stat_show,
4006 #endif
4008 .name = "kmem.limit_in_bytes",
4009 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4010 .write = mem_cgroup_write,
4011 .read_u64 = mem_cgroup_read_u64,
4014 .name = "kmem.usage_in_bytes",
4015 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4016 .read_u64 = mem_cgroup_read_u64,
4019 .name = "kmem.failcnt",
4020 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4021 .write = mem_cgroup_reset,
4022 .read_u64 = mem_cgroup_read_u64,
4025 .name = "kmem.max_usage_in_bytes",
4026 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4027 .write = mem_cgroup_reset,
4028 .read_u64 = mem_cgroup_read_u64,
4030 #ifdef CONFIG_SLABINFO
4032 .name = "kmem.slabinfo",
4033 .seq_start = memcg_slab_start,
4034 .seq_next = memcg_slab_next,
4035 .seq_stop = memcg_slab_stop,
4036 .seq_show = memcg_slab_show,
4038 #endif
4040 .name = "kmem.tcp.limit_in_bytes",
4041 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4042 .write = mem_cgroup_write,
4043 .read_u64 = mem_cgroup_read_u64,
4046 .name = "kmem.tcp.usage_in_bytes",
4047 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4048 .read_u64 = mem_cgroup_read_u64,
4051 .name = "kmem.tcp.failcnt",
4052 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4053 .write = mem_cgroup_reset,
4054 .read_u64 = mem_cgroup_read_u64,
4057 .name = "kmem.tcp.max_usage_in_bytes",
4058 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4059 .write = mem_cgroup_reset,
4060 .read_u64 = mem_cgroup_read_u64,
4062 { }, /* terminate */
4066 * Private memory cgroup IDR
4068 * Swap-out records and page cache shadow entries need to store memcg
4069 * references in constrained space, so we maintain an ID space that is
4070 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4071 * memory-controlled cgroups to 64k.
4073 * However, there usually are many references to the oflline CSS after
4074 * the cgroup has been destroyed, such as page cache or reclaimable
4075 * slab objects, that don't need to hang on to the ID. We want to keep
4076 * those dead CSS from occupying IDs, or we might quickly exhaust the
4077 * relatively small ID space and prevent the creation of new cgroups
4078 * even when there are much fewer than 64k cgroups - possibly none.
4080 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4081 * be freed and recycled when it's no longer needed, which is usually
4082 * when the CSS is offlined.
4084 * The only exception to that are records of swapped out tmpfs/shmem
4085 * pages that need to be attributed to live ancestors on swapin. But
4086 * those references are manageable from userspace.
4089 static DEFINE_IDR(mem_cgroup_idr);
4091 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4093 VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
4094 atomic_add(n, &memcg->id.ref);
4097 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4099 VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
4100 if (atomic_sub_and_test(n, &memcg->id.ref)) {
4101 idr_remove(&mem_cgroup_idr, memcg->id.id);
4102 memcg->id.id = 0;
4104 /* Memcg ID pins CSS */
4105 css_put(&memcg->css);
4109 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4111 mem_cgroup_id_get_many(memcg, 1);
4114 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4116 mem_cgroup_id_put_many(memcg, 1);
4120 * mem_cgroup_from_id - look up a memcg from a memcg id
4121 * @id: the memcg id to look up
4123 * Caller must hold rcu_read_lock().
4125 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4127 WARN_ON_ONCE(!rcu_read_lock_held());
4128 return idr_find(&mem_cgroup_idr, id);
4131 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4133 struct mem_cgroup_per_node *pn;
4134 int tmp = node;
4136 * This routine is called against possible nodes.
4137 * But it's BUG to call kmalloc() against offline node.
4139 * TODO: this routine can waste much memory for nodes which will
4140 * never be onlined. It's better to use memory hotplug callback
4141 * function.
4143 if (!node_state(node, N_NORMAL_MEMORY))
4144 tmp = -1;
4145 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4146 if (!pn)
4147 return 1;
4149 pn->lruvec_stat = alloc_percpu(struct lruvec_stat);
4150 if (!pn->lruvec_stat) {
4151 kfree(pn);
4152 return 1;
4155 lruvec_init(&pn->lruvec);
4156 pn->usage_in_excess = 0;
4157 pn->on_tree = false;
4158 pn->memcg = memcg;
4160 memcg->nodeinfo[node] = pn;
4161 return 0;
4164 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4166 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4168 free_percpu(pn->lruvec_stat);
4169 kfree(pn);
4172 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4174 int node;
4176 for_each_node(node)
4177 free_mem_cgroup_per_node_info(memcg, node);
4178 free_percpu(memcg->stat);
4179 kfree(memcg);
4182 static void mem_cgroup_free(struct mem_cgroup *memcg)
4184 memcg_wb_domain_exit(memcg);
4185 __mem_cgroup_free(memcg);
4188 static struct mem_cgroup *mem_cgroup_alloc(void)
4190 struct mem_cgroup *memcg;
4191 size_t size;
4192 int node;
4194 size = sizeof(struct mem_cgroup);
4195 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4197 memcg = kzalloc(size, GFP_KERNEL);
4198 if (!memcg)
4199 return NULL;
4201 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4202 1, MEM_CGROUP_ID_MAX,
4203 GFP_KERNEL);
4204 if (memcg->id.id < 0)
4205 goto fail;
4207 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4208 if (!memcg->stat)
4209 goto fail;
4211 for_each_node(node)
4212 if (alloc_mem_cgroup_per_node_info(memcg, node))
4213 goto fail;
4215 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4216 goto fail;
4218 INIT_WORK(&memcg->high_work, high_work_func);
4219 memcg->last_scanned_node = MAX_NUMNODES;
4220 INIT_LIST_HEAD(&memcg->oom_notify);
4221 mutex_init(&memcg->thresholds_lock);
4222 spin_lock_init(&memcg->move_lock);
4223 vmpressure_init(&memcg->vmpressure);
4224 INIT_LIST_HEAD(&memcg->event_list);
4225 spin_lock_init(&memcg->event_list_lock);
4226 memcg->socket_pressure = jiffies;
4227 #ifndef CONFIG_SLOB
4228 memcg->kmemcg_id = -1;
4229 #endif
4230 #ifdef CONFIG_CGROUP_WRITEBACK
4231 INIT_LIST_HEAD(&memcg->cgwb_list);
4232 #endif
4233 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4234 return memcg;
4235 fail:
4236 if (memcg->id.id > 0)
4237 idr_remove(&mem_cgroup_idr, memcg->id.id);
4238 __mem_cgroup_free(memcg);
4239 return NULL;
4242 static struct cgroup_subsys_state * __ref
4243 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4245 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4246 struct mem_cgroup *memcg;
4247 long error = -ENOMEM;
4249 memcg = mem_cgroup_alloc();
4250 if (!memcg)
4251 return ERR_PTR(error);
4253 memcg->high = PAGE_COUNTER_MAX;
4254 memcg->soft_limit = PAGE_COUNTER_MAX;
4255 if (parent) {
4256 memcg->swappiness = mem_cgroup_swappiness(parent);
4257 memcg->oom_kill_disable = parent->oom_kill_disable;
4259 if (parent && parent->use_hierarchy) {
4260 memcg->use_hierarchy = true;
4261 page_counter_init(&memcg->memory, &parent->memory);
4262 page_counter_init(&memcg->swap, &parent->swap);
4263 page_counter_init(&memcg->memsw, &parent->memsw);
4264 page_counter_init(&memcg->kmem, &parent->kmem);
4265 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4266 } else {
4267 page_counter_init(&memcg->memory, NULL);
4268 page_counter_init(&memcg->swap, NULL);
4269 page_counter_init(&memcg->memsw, NULL);
4270 page_counter_init(&memcg->kmem, NULL);
4271 page_counter_init(&memcg->tcpmem, NULL);
4273 * Deeper hierachy with use_hierarchy == false doesn't make
4274 * much sense so let cgroup subsystem know about this
4275 * unfortunate state in our controller.
4277 if (parent != root_mem_cgroup)
4278 memory_cgrp_subsys.broken_hierarchy = true;
4281 /* The following stuff does not apply to the root */
4282 if (!parent) {
4283 root_mem_cgroup = memcg;
4284 return &memcg->css;
4287 error = memcg_online_kmem(memcg);
4288 if (error)
4289 goto fail;
4291 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4292 static_branch_inc(&memcg_sockets_enabled_key);
4294 return &memcg->css;
4295 fail:
4296 mem_cgroup_free(memcg);
4297 return ERR_PTR(-ENOMEM);
4300 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4302 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4304 /* Online state pins memcg ID, memcg ID pins CSS */
4305 atomic_set(&memcg->id.ref, 1);
4306 css_get(css);
4307 return 0;
4310 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4312 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4313 struct mem_cgroup_event *event, *tmp;
4316 * Unregister events and notify userspace.
4317 * Notify userspace about cgroup removing only after rmdir of cgroup
4318 * directory to avoid race between userspace and kernelspace.
4320 spin_lock(&memcg->event_list_lock);
4321 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4322 list_del_init(&event->list);
4323 schedule_work(&event->remove);
4325 spin_unlock(&memcg->event_list_lock);
4327 memcg->low = 0;
4329 memcg_offline_kmem(memcg);
4330 wb_memcg_offline(memcg);
4332 mem_cgroup_id_put(memcg);
4335 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4337 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4339 invalidate_reclaim_iterators(memcg);
4342 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4344 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4346 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4347 static_branch_dec(&memcg_sockets_enabled_key);
4349 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4350 static_branch_dec(&memcg_sockets_enabled_key);
4352 vmpressure_cleanup(&memcg->vmpressure);
4353 cancel_work_sync(&memcg->high_work);
4354 mem_cgroup_remove_from_trees(memcg);
4355 memcg_free_kmem(memcg);
4356 mem_cgroup_free(memcg);
4360 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4361 * @css: the target css
4363 * Reset the states of the mem_cgroup associated with @css. This is
4364 * invoked when the userland requests disabling on the default hierarchy
4365 * but the memcg is pinned through dependency. The memcg should stop
4366 * applying policies and should revert to the vanilla state as it may be
4367 * made visible again.
4369 * The current implementation only resets the essential configurations.
4370 * This needs to be expanded to cover all the visible parts.
4372 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4374 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4376 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4377 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4378 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4379 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4380 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4381 memcg->low = 0;
4382 memcg->high = PAGE_COUNTER_MAX;
4383 memcg->soft_limit = PAGE_COUNTER_MAX;
4384 memcg_wb_domain_size_changed(memcg);
4387 #ifdef CONFIG_MMU
4388 /* Handlers for move charge at task migration. */
4389 static int mem_cgroup_do_precharge(unsigned long count)
4391 int ret;
4393 /* Try a single bulk charge without reclaim first, kswapd may wake */
4394 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4395 if (!ret) {
4396 mc.precharge += count;
4397 return ret;
4400 /* Try charges one by one with reclaim, but do not retry */
4401 while (count--) {
4402 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4403 if (ret)
4404 return ret;
4405 mc.precharge++;
4406 cond_resched();
4408 return 0;
4411 union mc_target {
4412 struct page *page;
4413 swp_entry_t ent;
4416 enum mc_target_type {
4417 MC_TARGET_NONE = 0,
4418 MC_TARGET_PAGE,
4419 MC_TARGET_SWAP,
4420 MC_TARGET_DEVICE,
4423 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4424 unsigned long addr, pte_t ptent)
4426 struct page *page = _vm_normal_page(vma, addr, ptent, true);
4428 if (!page || !page_mapped(page))
4429 return NULL;
4430 if (PageAnon(page)) {
4431 if (!(mc.flags & MOVE_ANON))
4432 return NULL;
4433 } else {
4434 if (!(mc.flags & MOVE_FILE))
4435 return NULL;
4437 if (!get_page_unless_zero(page))
4438 return NULL;
4440 return page;
4443 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
4444 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4445 pte_t ptent, swp_entry_t *entry)
4447 struct page *page = NULL;
4448 swp_entry_t ent = pte_to_swp_entry(ptent);
4450 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4451 return NULL;
4454 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
4455 * a device and because they are not accessible by CPU they are store
4456 * as special swap entry in the CPU page table.
4458 if (is_device_private_entry(ent)) {
4459 page = device_private_entry_to_page(ent);
4461 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
4462 * a refcount of 1 when free (unlike normal page)
4464 if (!page_ref_add_unless(page, 1, 1))
4465 return NULL;
4466 return page;
4470 * Because lookup_swap_cache() updates some statistics counter,
4471 * we call find_get_page() with swapper_space directly.
4473 page = find_get_page(swap_address_space(ent), swp_offset(ent));
4474 if (do_memsw_account())
4475 entry->val = ent.val;
4477 return page;
4479 #else
4480 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4481 pte_t ptent, swp_entry_t *entry)
4483 return NULL;
4485 #endif
4487 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4488 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4490 struct page *page = NULL;
4491 struct address_space *mapping;
4492 pgoff_t pgoff;
4494 if (!vma->vm_file) /* anonymous vma */
4495 return NULL;
4496 if (!(mc.flags & MOVE_FILE))
4497 return NULL;
4499 mapping = vma->vm_file->f_mapping;
4500 pgoff = linear_page_index(vma, addr);
4502 /* page is moved even if it's not RSS of this task(page-faulted). */
4503 #ifdef CONFIG_SWAP
4504 /* shmem/tmpfs may report page out on swap: account for that too. */
4505 if (shmem_mapping(mapping)) {
4506 page = find_get_entry(mapping, pgoff);
4507 if (radix_tree_exceptional_entry(page)) {
4508 swp_entry_t swp = radix_to_swp_entry(page);
4509 if (do_memsw_account())
4510 *entry = swp;
4511 page = find_get_page(swap_address_space(swp),
4512 swp_offset(swp));
4514 } else
4515 page = find_get_page(mapping, pgoff);
4516 #else
4517 page = find_get_page(mapping, pgoff);
4518 #endif
4519 return page;
4523 * mem_cgroup_move_account - move account of the page
4524 * @page: the page
4525 * @compound: charge the page as compound or small page
4526 * @from: mem_cgroup which the page is moved from.
4527 * @to: mem_cgroup which the page is moved to. @from != @to.
4529 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4531 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4532 * from old cgroup.
4534 static int mem_cgroup_move_account(struct page *page,
4535 bool compound,
4536 struct mem_cgroup *from,
4537 struct mem_cgroup *to)
4539 unsigned long flags;
4540 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4541 int ret;
4542 bool anon;
4544 VM_BUG_ON(from == to);
4545 VM_BUG_ON_PAGE(PageLRU(page), page);
4546 VM_BUG_ON(compound && !PageTransHuge(page));
4549 * Prevent mem_cgroup_migrate() from looking at
4550 * page->mem_cgroup of its source page while we change it.
4552 ret = -EBUSY;
4553 if (!trylock_page(page))
4554 goto out;
4556 ret = -EINVAL;
4557 if (page->mem_cgroup != from)
4558 goto out_unlock;
4560 anon = PageAnon(page);
4562 spin_lock_irqsave(&from->move_lock, flags);
4564 if (!anon && page_mapped(page)) {
4565 __this_cpu_sub(from->stat->count[NR_FILE_MAPPED], nr_pages);
4566 __this_cpu_add(to->stat->count[NR_FILE_MAPPED], nr_pages);
4570 * move_lock grabbed above and caller set from->moving_account, so
4571 * mod_memcg_page_state will serialize updates to PageDirty.
4572 * So mapping should be stable for dirty pages.
4574 if (!anon && PageDirty(page)) {
4575 struct address_space *mapping = page_mapping(page);
4577 if (mapping_cap_account_dirty(mapping)) {
4578 __this_cpu_sub(from->stat->count[NR_FILE_DIRTY],
4579 nr_pages);
4580 __this_cpu_add(to->stat->count[NR_FILE_DIRTY],
4581 nr_pages);
4585 if (PageWriteback(page)) {
4586 __this_cpu_sub(from->stat->count[NR_WRITEBACK], nr_pages);
4587 __this_cpu_add(to->stat->count[NR_WRITEBACK], nr_pages);
4591 * It is safe to change page->mem_cgroup here because the page
4592 * is referenced, charged, and isolated - we can't race with
4593 * uncharging, charging, migration, or LRU putback.
4596 /* caller should have done css_get */
4597 page->mem_cgroup = to;
4598 spin_unlock_irqrestore(&from->move_lock, flags);
4600 ret = 0;
4602 local_irq_disable();
4603 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4604 memcg_check_events(to, page);
4605 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4606 memcg_check_events(from, page);
4607 local_irq_enable();
4608 out_unlock:
4609 unlock_page(page);
4610 out:
4611 return ret;
4615 * get_mctgt_type - get target type of moving charge
4616 * @vma: the vma the pte to be checked belongs
4617 * @addr: the address corresponding to the pte to be checked
4618 * @ptent: the pte to be checked
4619 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4621 * Returns
4622 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4623 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4624 * move charge. if @target is not NULL, the page is stored in target->page
4625 * with extra refcnt got(Callers should handle it).
4626 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4627 * target for charge migration. if @target is not NULL, the entry is stored
4628 * in target->ent.
4629 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PUBLIC
4630 * or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
4631 * For now we such page is charge like a regular page would be as for all
4632 * intent and purposes it is just special memory taking the place of a
4633 * regular page.
4635 * See Documentations/vm/hmm.txt and include/linux/hmm.h
4637 * Called with pte lock held.
4640 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4641 unsigned long addr, pte_t ptent, union mc_target *target)
4643 struct page *page = NULL;
4644 enum mc_target_type ret = MC_TARGET_NONE;
4645 swp_entry_t ent = { .val = 0 };
4647 if (pte_present(ptent))
4648 page = mc_handle_present_pte(vma, addr, ptent);
4649 else if (is_swap_pte(ptent))
4650 page = mc_handle_swap_pte(vma, ptent, &ent);
4651 else if (pte_none(ptent))
4652 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4654 if (!page && !ent.val)
4655 return ret;
4656 if (page) {
4658 * Do only loose check w/o serialization.
4659 * mem_cgroup_move_account() checks the page is valid or
4660 * not under LRU exclusion.
4662 if (page->mem_cgroup == mc.from) {
4663 ret = MC_TARGET_PAGE;
4664 if (is_device_private_page(page) ||
4665 is_device_public_page(page))
4666 ret = MC_TARGET_DEVICE;
4667 if (target)
4668 target->page = page;
4670 if (!ret || !target)
4671 put_page(page);
4674 * There is a swap entry and a page doesn't exist or isn't charged.
4675 * But we cannot move a tail-page in a THP.
4677 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
4678 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4679 ret = MC_TARGET_SWAP;
4680 if (target)
4681 target->ent = ent;
4683 return ret;
4686 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4688 * We don't consider PMD mapped swapping or file mapped pages because THP does
4689 * not support them for now.
4690 * Caller should make sure that pmd_trans_huge(pmd) is true.
4692 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4693 unsigned long addr, pmd_t pmd, union mc_target *target)
4695 struct page *page = NULL;
4696 enum mc_target_type ret = MC_TARGET_NONE;
4698 if (unlikely(is_swap_pmd(pmd))) {
4699 VM_BUG_ON(thp_migration_supported() &&
4700 !is_pmd_migration_entry(pmd));
4701 return ret;
4703 page = pmd_page(pmd);
4704 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4705 if (!(mc.flags & MOVE_ANON))
4706 return ret;
4707 if (page->mem_cgroup == mc.from) {
4708 ret = MC_TARGET_PAGE;
4709 if (target) {
4710 get_page(page);
4711 target->page = page;
4714 return ret;
4716 #else
4717 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4718 unsigned long addr, pmd_t pmd, union mc_target *target)
4720 return MC_TARGET_NONE;
4722 #endif
4724 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4725 unsigned long addr, unsigned long end,
4726 struct mm_walk *walk)
4728 struct vm_area_struct *vma = walk->vma;
4729 pte_t *pte;
4730 spinlock_t *ptl;
4732 ptl = pmd_trans_huge_lock(pmd, vma);
4733 if (ptl) {
4735 * Note their can not be MC_TARGET_DEVICE for now as we do not
4736 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
4737 * MEMORY_DEVICE_PRIVATE but this might change.
4739 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4740 mc.precharge += HPAGE_PMD_NR;
4741 spin_unlock(ptl);
4742 return 0;
4745 if (pmd_trans_unstable(pmd))
4746 return 0;
4747 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4748 for (; addr != end; pte++, addr += PAGE_SIZE)
4749 if (get_mctgt_type(vma, addr, *pte, NULL))
4750 mc.precharge++; /* increment precharge temporarily */
4751 pte_unmap_unlock(pte - 1, ptl);
4752 cond_resched();
4754 return 0;
4757 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4759 unsigned long precharge;
4761 struct mm_walk mem_cgroup_count_precharge_walk = {
4762 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4763 .mm = mm,
4765 down_read(&mm->mmap_sem);
4766 walk_page_range(0, mm->highest_vm_end,
4767 &mem_cgroup_count_precharge_walk);
4768 up_read(&mm->mmap_sem);
4770 precharge = mc.precharge;
4771 mc.precharge = 0;
4773 return precharge;
4776 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4778 unsigned long precharge = mem_cgroup_count_precharge(mm);
4780 VM_BUG_ON(mc.moving_task);
4781 mc.moving_task = current;
4782 return mem_cgroup_do_precharge(precharge);
4785 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4786 static void __mem_cgroup_clear_mc(void)
4788 struct mem_cgroup *from = mc.from;
4789 struct mem_cgroup *to = mc.to;
4791 /* we must uncharge all the leftover precharges from mc.to */
4792 if (mc.precharge) {
4793 cancel_charge(mc.to, mc.precharge);
4794 mc.precharge = 0;
4797 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4798 * we must uncharge here.
4800 if (mc.moved_charge) {
4801 cancel_charge(mc.from, mc.moved_charge);
4802 mc.moved_charge = 0;
4804 /* we must fixup refcnts and charges */
4805 if (mc.moved_swap) {
4806 /* uncharge swap account from the old cgroup */
4807 if (!mem_cgroup_is_root(mc.from))
4808 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4810 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
4813 * we charged both to->memory and to->memsw, so we
4814 * should uncharge to->memory.
4816 if (!mem_cgroup_is_root(mc.to))
4817 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4819 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
4820 css_put_many(&mc.to->css, mc.moved_swap);
4822 mc.moved_swap = 0;
4824 memcg_oom_recover(from);
4825 memcg_oom_recover(to);
4826 wake_up_all(&mc.waitq);
4829 static void mem_cgroup_clear_mc(void)
4831 struct mm_struct *mm = mc.mm;
4834 * we must clear moving_task before waking up waiters at the end of
4835 * task migration.
4837 mc.moving_task = NULL;
4838 __mem_cgroup_clear_mc();
4839 spin_lock(&mc.lock);
4840 mc.from = NULL;
4841 mc.to = NULL;
4842 mc.mm = NULL;
4843 spin_unlock(&mc.lock);
4845 mmput(mm);
4848 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4850 struct cgroup_subsys_state *css;
4851 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4852 struct mem_cgroup *from;
4853 struct task_struct *leader, *p;
4854 struct mm_struct *mm;
4855 unsigned long move_flags;
4856 int ret = 0;
4858 /* charge immigration isn't supported on the default hierarchy */
4859 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4860 return 0;
4863 * Multi-process migrations only happen on the default hierarchy
4864 * where charge immigration is not used. Perform charge
4865 * immigration if @tset contains a leader and whine if there are
4866 * multiple.
4868 p = NULL;
4869 cgroup_taskset_for_each_leader(leader, css, tset) {
4870 WARN_ON_ONCE(p);
4871 p = leader;
4872 memcg = mem_cgroup_from_css(css);
4874 if (!p)
4875 return 0;
4878 * We are now commited to this value whatever it is. Changes in this
4879 * tunable will only affect upcoming migrations, not the current one.
4880 * So we need to save it, and keep it going.
4882 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4883 if (!move_flags)
4884 return 0;
4886 from = mem_cgroup_from_task(p);
4888 VM_BUG_ON(from == memcg);
4890 mm = get_task_mm(p);
4891 if (!mm)
4892 return 0;
4893 /* We move charges only when we move a owner of the mm */
4894 if (mm->owner == p) {
4895 VM_BUG_ON(mc.from);
4896 VM_BUG_ON(mc.to);
4897 VM_BUG_ON(mc.precharge);
4898 VM_BUG_ON(mc.moved_charge);
4899 VM_BUG_ON(mc.moved_swap);
4901 spin_lock(&mc.lock);
4902 mc.mm = mm;
4903 mc.from = from;
4904 mc.to = memcg;
4905 mc.flags = move_flags;
4906 spin_unlock(&mc.lock);
4907 /* We set mc.moving_task later */
4909 ret = mem_cgroup_precharge_mc(mm);
4910 if (ret)
4911 mem_cgroup_clear_mc();
4912 } else {
4913 mmput(mm);
4915 return ret;
4918 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4920 if (mc.to)
4921 mem_cgroup_clear_mc();
4924 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4925 unsigned long addr, unsigned long end,
4926 struct mm_walk *walk)
4928 int ret = 0;
4929 struct vm_area_struct *vma = walk->vma;
4930 pte_t *pte;
4931 spinlock_t *ptl;
4932 enum mc_target_type target_type;
4933 union mc_target target;
4934 struct page *page;
4936 ptl = pmd_trans_huge_lock(pmd, vma);
4937 if (ptl) {
4938 if (mc.precharge < HPAGE_PMD_NR) {
4939 spin_unlock(ptl);
4940 return 0;
4942 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4943 if (target_type == MC_TARGET_PAGE) {
4944 page = target.page;
4945 if (!isolate_lru_page(page)) {
4946 if (!mem_cgroup_move_account(page, true,
4947 mc.from, mc.to)) {
4948 mc.precharge -= HPAGE_PMD_NR;
4949 mc.moved_charge += HPAGE_PMD_NR;
4951 putback_lru_page(page);
4953 put_page(page);
4954 } else if (target_type == MC_TARGET_DEVICE) {
4955 page = target.page;
4956 if (!mem_cgroup_move_account(page, true,
4957 mc.from, mc.to)) {
4958 mc.precharge -= HPAGE_PMD_NR;
4959 mc.moved_charge += HPAGE_PMD_NR;
4961 put_page(page);
4963 spin_unlock(ptl);
4964 return 0;
4967 if (pmd_trans_unstable(pmd))
4968 return 0;
4969 retry:
4970 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4971 for (; addr != end; addr += PAGE_SIZE) {
4972 pte_t ptent = *(pte++);
4973 bool device = false;
4974 swp_entry_t ent;
4976 if (!mc.precharge)
4977 break;
4979 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4980 case MC_TARGET_DEVICE:
4981 device = true;
4982 /* fall through */
4983 case MC_TARGET_PAGE:
4984 page = target.page;
4986 * We can have a part of the split pmd here. Moving it
4987 * can be done but it would be too convoluted so simply
4988 * ignore such a partial THP and keep it in original
4989 * memcg. There should be somebody mapping the head.
4991 if (PageTransCompound(page))
4992 goto put;
4993 if (!device && isolate_lru_page(page))
4994 goto put;
4995 if (!mem_cgroup_move_account(page, false,
4996 mc.from, mc.to)) {
4997 mc.precharge--;
4998 /* we uncharge from mc.from later. */
4999 mc.moved_charge++;
5001 if (!device)
5002 putback_lru_page(page);
5003 put: /* get_mctgt_type() gets the page */
5004 put_page(page);
5005 break;
5006 case MC_TARGET_SWAP:
5007 ent = target.ent;
5008 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5009 mc.precharge--;
5010 /* we fixup refcnts and charges later. */
5011 mc.moved_swap++;
5013 break;
5014 default:
5015 break;
5018 pte_unmap_unlock(pte - 1, ptl);
5019 cond_resched();
5021 if (addr != end) {
5023 * We have consumed all precharges we got in can_attach().
5024 * We try charge one by one, but don't do any additional
5025 * charges to mc.to if we have failed in charge once in attach()
5026 * phase.
5028 ret = mem_cgroup_do_precharge(1);
5029 if (!ret)
5030 goto retry;
5033 return ret;
5036 static void mem_cgroup_move_charge(void)
5038 struct mm_walk mem_cgroup_move_charge_walk = {
5039 .pmd_entry = mem_cgroup_move_charge_pte_range,
5040 .mm = mc.mm,
5043 lru_add_drain_all();
5045 * Signal lock_page_memcg() to take the memcg's move_lock
5046 * while we're moving its pages to another memcg. Then wait
5047 * for already started RCU-only updates to finish.
5049 atomic_inc(&mc.from->moving_account);
5050 synchronize_rcu();
5051 retry:
5052 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5054 * Someone who are holding the mmap_sem might be waiting in
5055 * waitq. So we cancel all extra charges, wake up all waiters,
5056 * and retry. Because we cancel precharges, we might not be able
5057 * to move enough charges, but moving charge is a best-effort
5058 * feature anyway, so it wouldn't be a big problem.
5060 __mem_cgroup_clear_mc();
5061 cond_resched();
5062 goto retry;
5065 * When we have consumed all precharges and failed in doing
5066 * additional charge, the page walk just aborts.
5068 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5070 up_read(&mc.mm->mmap_sem);
5071 atomic_dec(&mc.from->moving_account);
5074 static void mem_cgroup_move_task(void)
5076 if (mc.to) {
5077 mem_cgroup_move_charge();
5078 mem_cgroup_clear_mc();
5081 #else /* !CONFIG_MMU */
5082 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5084 return 0;
5086 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5089 static void mem_cgroup_move_task(void)
5092 #endif
5095 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5096 * to verify whether we're attached to the default hierarchy on each mount
5097 * attempt.
5099 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5102 * use_hierarchy is forced on the default hierarchy. cgroup core
5103 * guarantees that @root doesn't have any children, so turning it
5104 * on for the root memcg is enough.
5106 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5107 root_mem_cgroup->use_hierarchy = true;
5108 else
5109 root_mem_cgroup->use_hierarchy = false;
5112 static u64 memory_current_read(struct cgroup_subsys_state *css,
5113 struct cftype *cft)
5115 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5117 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5120 static int memory_low_show(struct seq_file *m, void *v)
5122 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5123 unsigned long low = READ_ONCE(memcg->low);
5125 if (low == PAGE_COUNTER_MAX)
5126 seq_puts(m, "max\n");
5127 else
5128 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5130 return 0;
5133 static ssize_t memory_low_write(struct kernfs_open_file *of,
5134 char *buf, size_t nbytes, loff_t off)
5136 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5137 unsigned long low;
5138 int err;
5140 buf = strstrip(buf);
5141 err = page_counter_memparse(buf, "max", &low);
5142 if (err)
5143 return err;
5145 memcg->low = low;
5147 return nbytes;
5150 static int memory_high_show(struct seq_file *m, void *v)
5152 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5153 unsigned long high = READ_ONCE(memcg->high);
5155 if (high == PAGE_COUNTER_MAX)
5156 seq_puts(m, "max\n");
5157 else
5158 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5160 return 0;
5163 static ssize_t memory_high_write(struct kernfs_open_file *of,
5164 char *buf, size_t nbytes, loff_t off)
5166 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5167 unsigned long nr_pages;
5168 unsigned long high;
5169 int err;
5171 buf = strstrip(buf);
5172 err = page_counter_memparse(buf, "max", &high);
5173 if (err)
5174 return err;
5176 memcg->high = high;
5178 nr_pages = page_counter_read(&memcg->memory);
5179 if (nr_pages > high)
5180 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5181 GFP_KERNEL, true);
5183 memcg_wb_domain_size_changed(memcg);
5184 return nbytes;
5187 static int memory_max_show(struct seq_file *m, void *v)
5189 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5190 unsigned long max = READ_ONCE(memcg->memory.limit);
5192 if (max == PAGE_COUNTER_MAX)
5193 seq_puts(m, "max\n");
5194 else
5195 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5197 return 0;
5200 static ssize_t memory_max_write(struct kernfs_open_file *of,
5201 char *buf, size_t nbytes, loff_t off)
5203 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5204 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5205 bool drained = false;
5206 unsigned long max;
5207 int err;
5209 buf = strstrip(buf);
5210 err = page_counter_memparse(buf, "max", &max);
5211 if (err)
5212 return err;
5214 xchg(&memcg->memory.limit, max);
5216 for (;;) {
5217 unsigned long nr_pages = page_counter_read(&memcg->memory);
5219 if (nr_pages <= max)
5220 break;
5222 if (signal_pending(current)) {
5223 err = -EINTR;
5224 break;
5227 if (!drained) {
5228 drain_all_stock(memcg);
5229 drained = true;
5230 continue;
5233 if (nr_reclaims) {
5234 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5235 GFP_KERNEL, true))
5236 nr_reclaims--;
5237 continue;
5240 mem_cgroup_event(memcg, MEMCG_OOM);
5241 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5242 break;
5245 memcg_wb_domain_size_changed(memcg);
5246 return nbytes;
5249 static int memory_events_show(struct seq_file *m, void *v)
5251 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5253 seq_printf(m, "low %lu\n", memcg_sum_events(memcg, MEMCG_LOW));
5254 seq_printf(m, "high %lu\n", memcg_sum_events(memcg, MEMCG_HIGH));
5255 seq_printf(m, "max %lu\n", memcg_sum_events(memcg, MEMCG_MAX));
5256 seq_printf(m, "oom %lu\n", memcg_sum_events(memcg, MEMCG_OOM));
5257 seq_printf(m, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL));
5259 return 0;
5262 static int memory_stat_show(struct seq_file *m, void *v)
5264 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5265 unsigned long stat[MEMCG_NR_STAT];
5266 unsigned long events[MEMCG_NR_EVENTS];
5267 int i;
5270 * Provide statistics on the state of the memory subsystem as
5271 * well as cumulative event counters that show past behavior.
5273 * This list is ordered following a combination of these gradients:
5274 * 1) generic big picture -> specifics and details
5275 * 2) reflecting userspace activity -> reflecting kernel heuristics
5277 * Current memory state:
5280 tree_stat(memcg, stat);
5281 tree_events(memcg, events);
5283 seq_printf(m, "anon %llu\n",
5284 (u64)stat[MEMCG_RSS] * PAGE_SIZE);
5285 seq_printf(m, "file %llu\n",
5286 (u64)stat[MEMCG_CACHE] * PAGE_SIZE);
5287 seq_printf(m, "kernel_stack %llu\n",
5288 (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
5289 seq_printf(m, "slab %llu\n",
5290 (u64)(stat[NR_SLAB_RECLAIMABLE] +
5291 stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5292 seq_printf(m, "sock %llu\n",
5293 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5295 seq_printf(m, "shmem %llu\n",
5296 (u64)stat[NR_SHMEM] * PAGE_SIZE);
5297 seq_printf(m, "file_mapped %llu\n",
5298 (u64)stat[NR_FILE_MAPPED] * PAGE_SIZE);
5299 seq_printf(m, "file_dirty %llu\n",
5300 (u64)stat[NR_FILE_DIRTY] * PAGE_SIZE);
5301 seq_printf(m, "file_writeback %llu\n",
5302 (u64)stat[NR_WRITEBACK] * PAGE_SIZE);
5304 for (i = 0; i < NR_LRU_LISTS; i++) {
5305 struct mem_cgroup *mi;
5306 unsigned long val = 0;
5308 for_each_mem_cgroup_tree(mi, memcg)
5309 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5310 seq_printf(m, "%s %llu\n",
5311 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5314 seq_printf(m, "slab_reclaimable %llu\n",
5315 (u64)stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
5316 seq_printf(m, "slab_unreclaimable %llu\n",
5317 (u64)stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5319 /* Accumulated memory events */
5321 seq_printf(m, "pgfault %lu\n", events[PGFAULT]);
5322 seq_printf(m, "pgmajfault %lu\n", events[PGMAJFAULT]);
5324 seq_printf(m, "pgrefill %lu\n", events[PGREFILL]);
5325 seq_printf(m, "pgscan %lu\n", events[PGSCAN_KSWAPD] +
5326 events[PGSCAN_DIRECT]);
5327 seq_printf(m, "pgsteal %lu\n", events[PGSTEAL_KSWAPD] +
5328 events[PGSTEAL_DIRECT]);
5329 seq_printf(m, "pgactivate %lu\n", events[PGACTIVATE]);
5330 seq_printf(m, "pgdeactivate %lu\n", events[PGDEACTIVATE]);
5331 seq_printf(m, "pglazyfree %lu\n", events[PGLAZYFREE]);
5332 seq_printf(m, "pglazyfreed %lu\n", events[PGLAZYFREED]);
5334 seq_printf(m, "workingset_refault %lu\n",
5335 stat[WORKINGSET_REFAULT]);
5336 seq_printf(m, "workingset_activate %lu\n",
5337 stat[WORKINGSET_ACTIVATE]);
5338 seq_printf(m, "workingset_nodereclaim %lu\n",
5339 stat[WORKINGSET_NODERECLAIM]);
5341 return 0;
5344 static struct cftype memory_files[] = {
5346 .name = "current",
5347 .flags = CFTYPE_NOT_ON_ROOT,
5348 .read_u64 = memory_current_read,
5351 .name = "low",
5352 .flags = CFTYPE_NOT_ON_ROOT,
5353 .seq_show = memory_low_show,
5354 .write = memory_low_write,
5357 .name = "high",
5358 .flags = CFTYPE_NOT_ON_ROOT,
5359 .seq_show = memory_high_show,
5360 .write = memory_high_write,
5363 .name = "max",
5364 .flags = CFTYPE_NOT_ON_ROOT,
5365 .seq_show = memory_max_show,
5366 .write = memory_max_write,
5369 .name = "events",
5370 .flags = CFTYPE_NOT_ON_ROOT,
5371 .file_offset = offsetof(struct mem_cgroup, events_file),
5372 .seq_show = memory_events_show,
5375 .name = "stat",
5376 .flags = CFTYPE_NOT_ON_ROOT,
5377 .seq_show = memory_stat_show,
5379 { } /* terminate */
5382 struct cgroup_subsys memory_cgrp_subsys = {
5383 .css_alloc = mem_cgroup_css_alloc,
5384 .css_online = mem_cgroup_css_online,
5385 .css_offline = mem_cgroup_css_offline,
5386 .css_released = mem_cgroup_css_released,
5387 .css_free = mem_cgroup_css_free,
5388 .css_reset = mem_cgroup_css_reset,
5389 .can_attach = mem_cgroup_can_attach,
5390 .cancel_attach = mem_cgroup_cancel_attach,
5391 .post_attach = mem_cgroup_move_task,
5392 .bind = mem_cgroup_bind,
5393 .dfl_cftypes = memory_files,
5394 .legacy_cftypes = mem_cgroup_legacy_files,
5395 .early_init = 0,
5399 * mem_cgroup_low - check if memory consumption is below the normal range
5400 * @root: the top ancestor of the sub-tree being checked
5401 * @memcg: the memory cgroup to check
5403 * Returns %true if memory consumption of @memcg, and that of all
5404 * ancestors up to (but not including) @root, is below the normal range.
5406 * @root is exclusive; it is never low when looked at directly and isn't
5407 * checked when traversing the hierarchy.
5409 * Excluding @root enables using memory.low to prioritize memory usage
5410 * between cgroups within a subtree of the hierarchy that is limited by
5411 * memory.high or memory.max.
5413 * For example, given cgroup A with children B and C:
5416 * / \
5417 * B C
5419 * and
5421 * 1. A/memory.current > A/memory.high
5422 * 2. A/B/memory.current < A/B/memory.low
5423 * 3. A/C/memory.current >= A/C/memory.low
5425 * As 'A' is high, i.e. triggers reclaim from 'A', and 'B' is low, we
5426 * should reclaim from 'C' until 'A' is no longer high or until we can
5427 * no longer reclaim from 'C'. If 'A', i.e. @root, isn't excluded by
5428 * mem_cgroup_low when reclaming from 'A', then 'B' won't be considered
5429 * low and we will reclaim indiscriminately from both 'B' and 'C'.
5431 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5433 if (mem_cgroup_disabled())
5434 return false;
5436 if (!root)
5437 root = root_mem_cgroup;
5438 if (memcg == root)
5439 return false;
5441 for (; memcg != root; memcg = parent_mem_cgroup(memcg)) {
5442 if (page_counter_read(&memcg->memory) >= memcg->low)
5443 return false;
5446 return true;
5450 * mem_cgroup_try_charge - try charging a page
5451 * @page: page to charge
5452 * @mm: mm context of the victim
5453 * @gfp_mask: reclaim mode
5454 * @memcgp: charged memcg return
5455 * @compound: charge the page as compound or small page
5457 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5458 * pages according to @gfp_mask if necessary.
5460 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5461 * Otherwise, an error code is returned.
5463 * After page->mapping has been set up, the caller must finalize the
5464 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5465 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5467 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5468 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5469 bool compound)
5471 struct mem_cgroup *memcg = NULL;
5472 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5473 int ret = 0;
5475 if (mem_cgroup_disabled())
5476 goto out;
5478 if (PageSwapCache(page)) {
5480 * Every swap fault against a single page tries to charge the
5481 * page, bail as early as possible. shmem_unuse() encounters
5482 * already charged pages, too. The USED bit is protected by
5483 * the page lock, which serializes swap cache removal, which
5484 * in turn serializes uncharging.
5486 VM_BUG_ON_PAGE(!PageLocked(page), page);
5487 if (compound_head(page)->mem_cgroup)
5488 goto out;
5490 if (do_swap_account) {
5491 swp_entry_t ent = { .val = page_private(page), };
5492 unsigned short id = lookup_swap_cgroup_id(ent);
5494 rcu_read_lock();
5495 memcg = mem_cgroup_from_id(id);
5496 if (memcg && !css_tryget_online(&memcg->css))
5497 memcg = NULL;
5498 rcu_read_unlock();
5502 if (!memcg)
5503 memcg = get_mem_cgroup_from_mm(mm);
5505 ret = try_charge(memcg, gfp_mask, nr_pages);
5507 css_put(&memcg->css);
5508 out:
5509 *memcgp = memcg;
5510 return ret;
5514 * mem_cgroup_commit_charge - commit a page charge
5515 * @page: page to charge
5516 * @memcg: memcg to charge the page to
5517 * @lrucare: page might be on LRU already
5518 * @compound: charge the page as compound or small page
5520 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5521 * after page->mapping has been set up. This must happen atomically
5522 * as part of the page instantiation, i.e. under the page table lock
5523 * for anonymous pages, under the page lock for page and swap cache.
5525 * In addition, the page must not be on the LRU during the commit, to
5526 * prevent racing with task migration. If it might be, use @lrucare.
5528 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5530 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5531 bool lrucare, bool compound)
5533 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5535 VM_BUG_ON_PAGE(!page->mapping, page);
5536 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5538 if (mem_cgroup_disabled())
5539 return;
5541 * Swap faults will attempt to charge the same page multiple
5542 * times. But reuse_swap_page() might have removed the page
5543 * from swapcache already, so we can't check PageSwapCache().
5545 if (!memcg)
5546 return;
5548 commit_charge(page, memcg, lrucare);
5550 local_irq_disable();
5551 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5552 memcg_check_events(memcg, page);
5553 local_irq_enable();
5555 if (do_memsw_account() && PageSwapCache(page)) {
5556 swp_entry_t entry = { .val = page_private(page) };
5558 * The swap entry might not get freed for a long time,
5559 * let's not wait for it. The page already received a
5560 * memory+swap charge, drop the swap entry duplicate.
5562 mem_cgroup_uncharge_swap(entry, nr_pages);
5567 * mem_cgroup_cancel_charge - cancel a page charge
5568 * @page: page to charge
5569 * @memcg: memcg to charge the page to
5570 * @compound: charge the page as compound or small page
5572 * Cancel a charge transaction started by mem_cgroup_try_charge().
5574 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5575 bool compound)
5577 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5579 if (mem_cgroup_disabled())
5580 return;
5582 * Swap faults will attempt to charge the same page multiple
5583 * times. But reuse_swap_page() might have removed the page
5584 * from swapcache already, so we can't check PageSwapCache().
5586 if (!memcg)
5587 return;
5589 cancel_charge(memcg, nr_pages);
5592 struct uncharge_gather {
5593 struct mem_cgroup *memcg;
5594 unsigned long pgpgout;
5595 unsigned long nr_anon;
5596 unsigned long nr_file;
5597 unsigned long nr_kmem;
5598 unsigned long nr_huge;
5599 unsigned long nr_shmem;
5600 struct page *dummy_page;
5603 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
5605 memset(ug, 0, sizeof(*ug));
5608 static void uncharge_batch(const struct uncharge_gather *ug)
5610 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
5611 unsigned long flags;
5613 if (!mem_cgroup_is_root(ug->memcg)) {
5614 page_counter_uncharge(&ug->memcg->memory, nr_pages);
5615 if (do_memsw_account())
5616 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
5617 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
5618 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
5619 memcg_oom_recover(ug->memcg);
5622 local_irq_save(flags);
5623 __this_cpu_sub(ug->memcg->stat->count[MEMCG_RSS], ug->nr_anon);
5624 __this_cpu_sub(ug->memcg->stat->count[MEMCG_CACHE], ug->nr_file);
5625 __this_cpu_sub(ug->memcg->stat->count[MEMCG_RSS_HUGE], ug->nr_huge);
5626 __this_cpu_sub(ug->memcg->stat->count[NR_SHMEM], ug->nr_shmem);
5627 __this_cpu_add(ug->memcg->stat->events[PGPGOUT], ug->pgpgout);
5628 __this_cpu_add(ug->memcg->stat->nr_page_events, nr_pages);
5629 memcg_check_events(ug->memcg, ug->dummy_page);
5630 local_irq_restore(flags);
5632 if (!mem_cgroup_is_root(ug->memcg))
5633 css_put_many(&ug->memcg->css, nr_pages);
5636 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
5638 VM_BUG_ON_PAGE(PageLRU(page), page);
5639 VM_BUG_ON_PAGE(!PageHWPoison(page) && page_count(page), page);
5641 if (!page->mem_cgroup)
5642 return;
5645 * Nobody should be changing or seriously looking at
5646 * page->mem_cgroup at this point, we have fully
5647 * exclusive access to the page.
5650 if (ug->memcg != page->mem_cgroup) {
5651 if (ug->memcg) {
5652 uncharge_batch(ug);
5653 uncharge_gather_clear(ug);
5655 ug->memcg = page->mem_cgroup;
5658 if (!PageKmemcg(page)) {
5659 unsigned int nr_pages = 1;
5661 if (PageTransHuge(page)) {
5662 nr_pages <<= compound_order(page);
5663 ug->nr_huge += nr_pages;
5665 if (PageAnon(page))
5666 ug->nr_anon += nr_pages;
5667 else {
5668 ug->nr_file += nr_pages;
5669 if (PageSwapBacked(page))
5670 ug->nr_shmem += nr_pages;
5672 ug->pgpgout++;
5673 } else {
5674 ug->nr_kmem += 1 << compound_order(page);
5675 __ClearPageKmemcg(page);
5678 ug->dummy_page = page;
5679 page->mem_cgroup = NULL;
5682 static void uncharge_list(struct list_head *page_list)
5684 struct uncharge_gather ug;
5685 struct list_head *next;
5687 uncharge_gather_clear(&ug);
5690 * Note that the list can be a single page->lru; hence the
5691 * do-while loop instead of a simple list_for_each_entry().
5693 next = page_list->next;
5694 do {
5695 struct page *page;
5697 page = list_entry(next, struct page, lru);
5698 next = page->lru.next;
5700 uncharge_page(page, &ug);
5701 } while (next != page_list);
5703 if (ug.memcg)
5704 uncharge_batch(&ug);
5708 * mem_cgroup_uncharge - uncharge a page
5709 * @page: page to uncharge
5711 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5712 * mem_cgroup_commit_charge().
5714 void mem_cgroup_uncharge(struct page *page)
5716 struct uncharge_gather ug;
5718 if (mem_cgroup_disabled())
5719 return;
5721 /* Don't touch page->lru of any random page, pre-check: */
5722 if (!page->mem_cgroup)
5723 return;
5725 uncharge_gather_clear(&ug);
5726 uncharge_page(page, &ug);
5727 uncharge_batch(&ug);
5731 * mem_cgroup_uncharge_list - uncharge a list of page
5732 * @page_list: list of pages to uncharge
5734 * Uncharge a list of pages previously charged with
5735 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5737 void mem_cgroup_uncharge_list(struct list_head *page_list)
5739 if (mem_cgroup_disabled())
5740 return;
5742 if (!list_empty(page_list))
5743 uncharge_list(page_list);
5747 * mem_cgroup_migrate - charge a page's replacement
5748 * @oldpage: currently circulating page
5749 * @newpage: replacement page
5751 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5752 * be uncharged upon free.
5754 * Both pages must be locked, @newpage->mapping must be set up.
5756 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5758 struct mem_cgroup *memcg;
5759 unsigned int nr_pages;
5760 bool compound;
5761 unsigned long flags;
5763 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5764 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5765 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5766 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5767 newpage);
5769 if (mem_cgroup_disabled())
5770 return;
5772 /* Page cache replacement: new page already charged? */
5773 if (newpage->mem_cgroup)
5774 return;
5776 /* Swapcache readahead pages can get replaced before being charged */
5777 memcg = oldpage->mem_cgroup;
5778 if (!memcg)
5779 return;
5781 /* Force-charge the new page. The old one will be freed soon */
5782 compound = PageTransHuge(newpage);
5783 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5785 page_counter_charge(&memcg->memory, nr_pages);
5786 if (do_memsw_account())
5787 page_counter_charge(&memcg->memsw, nr_pages);
5788 css_get_many(&memcg->css, nr_pages);
5790 commit_charge(newpage, memcg, false);
5792 local_irq_save(flags);
5793 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5794 memcg_check_events(memcg, newpage);
5795 local_irq_restore(flags);
5798 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5799 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5801 void mem_cgroup_sk_alloc(struct sock *sk)
5803 struct mem_cgroup *memcg;
5805 if (!mem_cgroup_sockets_enabled)
5806 return;
5809 * Socket cloning can throw us here with sk_memcg already
5810 * filled. It won't however, necessarily happen from
5811 * process context. So the test for root memcg given
5812 * the current task's memcg won't help us in this case.
5814 * Respecting the original socket's memcg is a better
5815 * decision in this case.
5817 if (sk->sk_memcg) {
5818 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5819 css_get(&sk->sk_memcg->css);
5820 return;
5823 rcu_read_lock();
5824 memcg = mem_cgroup_from_task(current);
5825 if (memcg == root_mem_cgroup)
5826 goto out;
5827 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5828 goto out;
5829 if (css_tryget_online(&memcg->css))
5830 sk->sk_memcg = memcg;
5831 out:
5832 rcu_read_unlock();
5835 void mem_cgroup_sk_free(struct sock *sk)
5837 if (sk->sk_memcg)
5838 css_put(&sk->sk_memcg->css);
5842 * mem_cgroup_charge_skmem - charge socket memory
5843 * @memcg: memcg to charge
5844 * @nr_pages: number of pages to charge
5846 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5847 * @memcg's configured limit, %false if the charge had to be forced.
5849 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5851 gfp_t gfp_mask = GFP_KERNEL;
5853 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5854 struct page_counter *fail;
5856 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5857 memcg->tcpmem_pressure = 0;
5858 return true;
5860 page_counter_charge(&memcg->tcpmem, nr_pages);
5861 memcg->tcpmem_pressure = 1;
5862 return false;
5865 /* Don't block in the packet receive path */
5866 if (in_softirq())
5867 gfp_mask = GFP_NOWAIT;
5869 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5871 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5872 return true;
5874 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5875 return false;
5879 * mem_cgroup_uncharge_skmem - uncharge socket memory
5880 * @memcg - memcg to uncharge
5881 * @nr_pages - number of pages to uncharge
5883 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5885 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5886 page_counter_uncharge(&memcg->tcpmem, nr_pages);
5887 return;
5890 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5892 refill_stock(memcg, nr_pages);
5895 static int __init cgroup_memory(char *s)
5897 char *token;
5899 while ((token = strsep(&s, ",")) != NULL) {
5900 if (!*token)
5901 continue;
5902 if (!strcmp(token, "nosocket"))
5903 cgroup_memory_nosocket = true;
5904 if (!strcmp(token, "nokmem"))
5905 cgroup_memory_nokmem = true;
5907 return 0;
5909 __setup("cgroup.memory=", cgroup_memory);
5912 * subsys_initcall() for memory controller.
5914 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
5915 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
5916 * basically everything that doesn't depend on a specific mem_cgroup structure
5917 * should be initialized from here.
5919 static int __init mem_cgroup_init(void)
5921 int cpu, node;
5923 #ifndef CONFIG_SLOB
5925 * Kmem cache creation is mostly done with the slab_mutex held,
5926 * so use a workqueue with limited concurrency to avoid stalling
5927 * all worker threads in case lots of cgroups are created and
5928 * destroyed simultaneously.
5930 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
5931 BUG_ON(!memcg_kmem_cache_wq);
5932 #endif
5934 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
5935 memcg_hotplug_cpu_dead);
5937 for_each_possible_cpu(cpu)
5938 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5939 drain_local_stock);
5941 for_each_node(node) {
5942 struct mem_cgroup_tree_per_node *rtpn;
5944 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5945 node_online(node) ? node : NUMA_NO_NODE);
5947 rtpn->rb_root = RB_ROOT;
5948 spin_lock_init(&rtpn->lock);
5949 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5952 return 0;
5954 subsys_initcall(mem_cgroup_init);
5956 #ifdef CONFIG_MEMCG_SWAP
5957 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
5959 while (!atomic_inc_not_zero(&memcg->id.ref)) {
5961 * The root cgroup cannot be destroyed, so it's refcount must
5962 * always be >= 1.
5964 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
5965 VM_BUG_ON(1);
5966 break;
5968 memcg = parent_mem_cgroup(memcg);
5969 if (!memcg)
5970 memcg = root_mem_cgroup;
5972 return memcg;
5976 * mem_cgroup_swapout - transfer a memsw charge to swap
5977 * @page: page whose memsw charge to transfer
5978 * @entry: swap entry to move the charge to
5980 * Transfer the memsw charge of @page to @entry.
5982 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5984 struct mem_cgroup *memcg, *swap_memcg;
5985 unsigned int nr_entries;
5986 unsigned short oldid;
5988 VM_BUG_ON_PAGE(PageLRU(page), page);
5989 VM_BUG_ON_PAGE(page_count(page), page);
5991 if (!do_memsw_account())
5992 return;
5994 memcg = page->mem_cgroup;
5996 /* Readahead page, never charged */
5997 if (!memcg)
5998 return;
6001 * In case the memcg owning these pages has been offlined and doesn't
6002 * have an ID allocated to it anymore, charge the closest online
6003 * ancestor for the swap instead and transfer the memory+swap charge.
6005 swap_memcg = mem_cgroup_id_get_online(memcg);
6006 nr_entries = hpage_nr_pages(page);
6007 /* Get references for the tail pages, too */
6008 if (nr_entries > 1)
6009 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6010 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6011 nr_entries);
6012 VM_BUG_ON_PAGE(oldid, page);
6013 mem_cgroup_swap_statistics(swap_memcg, nr_entries);
6015 page->mem_cgroup = NULL;
6017 if (!mem_cgroup_is_root(memcg))
6018 page_counter_uncharge(&memcg->memory, nr_entries);
6020 if (memcg != swap_memcg) {
6021 if (!mem_cgroup_is_root(swap_memcg))
6022 page_counter_charge(&swap_memcg->memsw, nr_entries);
6023 page_counter_uncharge(&memcg->memsw, nr_entries);
6027 * Interrupts should be disabled here because the caller holds the
6028 * mapping->tree_lock lock which is taken with interrupts-off. It is
6029 * important here to have the interrupts disabled because it is the
6030 * only synchronisation we have for udpating the per-CPU variables.
6032 VM_BUG_ON(!irqs_disabled());
6033 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6034 -nr_entries);
6035 memcg_check_events(memcg, page);
6037 if (!mem_cgroup_is_root(memcg))
6038 css_put(&memcg->css);
6042 * mem_cgroup_try_charge_swap - try charging swap space for a page
6043 * @page: page being added to swap
6044 * @entry: swap entry to charge
6046 * Try to charge @page's memcg for the swap space at @entry.
6048 * Returns 0 on success, -ENOMEM on failure.
6050 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6052 unsigned int nr_pages = hpage_nr_pages(page);
6053 struct page_counter *counter;
6054 struct mem_cgroup *memcg;
6055 unsigned short oldid;
6057 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6058 return 0;
6060 memcg = page->mem_cgroup;
6062 /* Readahead page, never charged */
6063 if (!memcg)
6064 return 0;
6066 memcg = mem_cgroup_id_get_online(memcg);
6068 if (!mem_cgroup_is_root(memcg) &&
6069 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6070 mem_cgroup_id_put(memcg);
6071 return -ENOMEM;
6074 /* Get references for the tail pages, too */
6075 if (nr_pages > 1)
6076 mem_cgroup_id_get_many(memcg, nr_pages - 1);
6077 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6078 VM_BUG_ON_PAGE(oldid, page);
6079 mem_cgroup_swap_statistics(memcg, nr_pages);
6081 return 0;
6085 * mem_cgroup_uncharge_swap - uncharge swap space
6086 * @entry: swap entry to uncharge
6087 * @nr_pages: the amount of swap space to uncharge
6089 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6091 struct mem_cgroup *memcg;
6092 unsigned short id;
6094 if (!do_swap_account)
6095 return;
6097 id = swap_cgroup_record(entry, 0, nr_pages);
6098 rcu_read_lock();
6099 memcg = mem_cgroup_from_id(id);
6100 if (memcg) {
6101 if (!mem_cgroup_is_root(memcg)) {
6102 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6103 page_counter_uncharge(&memcg->swap, nr_pages);
6104 else
6105 page_counter_uncharge(&memcg->memsw, nr_pages);
6107 mem_cgroup_swap_statistics(memcg, -nr_pages);
6108 mem_cgroup_id_put_many(memcg, nr_pages);
6110 rcu_read_unlock();
6113 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6115 long nr_swap_pages = get_nr_swap_pages();
6117 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6118 return nr_swap_pages;
6119 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6120 nr_swap_pages = min_t(long, nr_swap_pages,
6121 READ_ONCE(memcg->swap.limit) -
6122 page_counter_read(&memcg->swap));
6123 return nr_swap_pages;
6126 bool mem_cgroup_swap_full(struct page *page)
6128 struct mem_cgroup *memcg;
6130 VM_BUG_ON_PAGE(!PageLocked(page), page);
6132 if (vm_swap_full())
6133 return true;
6134 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6135 return false;
6137 memcg = page->mem_cgroup;
6138 if (!memcg)
6139 return false;
6141 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6142 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
6143 return true;
6145 return false;
6148 /* for remember boot option*/
6149 #ifdef CONFIG_MEMCG_SWAP_ENABLED
6150 static int really_do_swap_account __initdata = 1;
6151 #else
6152 static int really_do_swap_account __initdata;
6153 #endif
6155 static int __init enable_swap_account(char *s)
6157 if (!strcmp(s, "1"))
6158 really_do_swap_account = 1;
6159 else if (!strcmp(s, "0"))
6160 really_do_swap_account = 0;
6161 return 1;
6163 __setup("swapaccount=", enable_swap_account);
6165 static u64 swap_current_read(struct cgroup_subsys_state *css,
6166 struct cftype *cft)
6168 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6170 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6173 static int swap_max_show(struct seq_file *m, void *v)
6175 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6176 unsigned long max = READ_ONCE(memcg->swap.limit);
6178 if (max == PAGE_COUNTER_MAX)
6179 seq_puts(m, "max\n");
6180 else
6181 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6183 return 0;
6186 static ssize_t swap_max_write(struct kernfs_open_file *of,
6187 char *buf, size_t nbytes, loff_t off)
6189 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6190 unsigned long max;
6191 int err;
6193 buf = strstrip(buf);
6194 err = page_counter_memparse(buf, "max", &max);
6195 if (err)
6196 return err;
6198 mutex_lock(&memcg_limit_mutex);
6199 err = page_counter_limit(&memcg->swap, max);
6200 mutex_unlock(&memcg_limit_mutex);
6201 if (err)
6202 return err;
6204 return nbytes;
6207 static struct cftype swap_files[] = {
6209 .name = "swap.current",
6210 .flags = CFTYPE_NOT_ON_ROOT,
6211 .read_u64 = swap_current_read,
6214 .name = "swap.max",
6215 .flags = CFTYPE_NOT_ON_ROOT,
6216 .seq_show = swap_max_show,
6217 .write = swap_max_write,
6219 { } /* terminate */
6222 static struct cftype memsw_cgroup_files[] = {
6224 .name = "memsw.usage_in_bytes",
6225 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6226 .read_u64 = mem_cgroup_read_u64,
6229 .name = "memsw.max_usage_in_bytes",
6230 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6231 .write = mem_cgroup_reset,
6232 .read_u64 = mem_cgroup_read_u64,
6235 .name = "memsw.limit_in_bytes",
6236 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6237 .write = mem_cgroup_write,
6238 .read_u64 = mem_cgroup_read_u64,
6241 .name = "memsw.failcnt",
6242 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6243 .write = mem_cgroup_reset,
6244 .read_u64 = mem_cgroup_read_u64,
6246 { }, /* terminate */
6249 static int __init mem_cgroup_swap_init(void)
6251 if (!mem_cgroup_disabled() && really_do_swap_account) {
6252 do_swap_account = 1;
6253 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6254 swap_files));
6255 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6256 memsw_cgroup_files));
6258 return 0;
6260 subsys_initcall(mem_cgroup_swap_init);
6262 #endif /* CONFIG_MEMCG_SWAP */