1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
38 #include <linux/sched/mm.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/hugetlb.h>
41 #include <linux/pagemap.h>
42 #include <linux/smp.h>
43 #include <linux/page-flags.h>
44 #include <linux/backing-dev.h>
45 #include <linux/bit_spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/limits.h>
48 #include <linux/export.h>
49 #include <linux/mutex.h>
50 #include <linux/rbtree.h>
51 #include <linux/slab.h>
52 #include <linux/swap.h>
53 #include <linux/swapops.h>
54 #include <linux/spinlock.h>
55 #include <linux/eventfd.h>
56 #include <linux/poll.h>
57 #include <linux/sort.h>
59 #include <linux/seq_file.h>
60 #include <linux/vmpressure.h>
61 #include <linux/mm_inline.h>
62 #include <linux/swap_cgroup.h>
63 #include <linux/cpu.h>
64 #include <linux/oom.h>
65 #include <linux/lockdep.h>
66 #include <linux/file.h>
67 #include <linux/tracehook.h>
73 #include <linux/uaccess.h>
75 #include <trace/events/vmscan.h>
77 struct cgroup_subsys memory_cgrp_subsys __read_mostly
;
78 EXPORT_SYMBOL(memory_cgrp_subsys
);
80 struct mem_cgroup
*root_mem_cgroup __read_mostly
;
82 #define MEM_CGROUP_RECLAIM_RETRIES 5
84 /* Socket memory accounting disabled? */
85 static bool cgroup_memory_nosocket
;
87 /* Kernel memory accounting disabled? */
88 static bool cgroup_memory_nokmem
;
90 /* Whether the swap controller is active */
91 #ifdef CONFIG_MEMCG_SWAP
92 int do_swap_account __read_mostly
;
94 #define do_swap_account 0
97 /* Whether legacy memory+swap accounting is active */
98 static bool do_memsw_account(void)
100 return !cgroup_subsys_on_dfl(memory_cgrp_subsys
) && do_swap_account
;
103 static const char *const mem_cgroup_lru_names
[] = {
111 #define THRESHOLDS_EVENTS_TARGET 128
112 #define SOFTLIMIT_EVENTS_TARGET 1024
113 #define NUMAINFO_EVENTS_TARGET 1024
116 * Cgroups above their limits are maintained in a RB-Tree, independent of
117 * their hierarchy representation
120 struct mem_cgroup_tree_per_node
{
121 struct rb_root rb_root
;
125 struct mem_cgroup_tree
{
126 struct mem_cgroup_tree_per_node
*rb_tree_per_node
[MAX_NUMNODES
];
129 static struct mem_cgroup_tree soft_limit_tree __read_mostly
;
132 struct mem_cgroup_eventfd_list
{
133 struct list_head list
;
134 struct eventfd_ctx
*eventfd
;
138 * cgroup_event represents events which userspace want to receive.
140 struct mem_cgroup_event
{
142 * memcg which the event belongs to.
144 struct mem_cgroup
*memcg
;
146 * eventfd to signal userspace about the event.
148 struct eventfd_ctx
*eventfd
;
150 * Each of these stored in a list by the cgroup.
152 struct list_head list
;
154 * register_event() callback will be used to add new userspace
155 * waiter for changes related to this event. Use eventfd_signal()
156 * on eventfd to send notification to userspace.
158 int (*register_event
)(struct mem_cgroup
*memcg
,
159 struct eventfd_ctx
*eventfd
, const char *args
);
161 * unregister_event() callback will be called when userspace closes
162 * the eventfd or on cgroup removing. This callback must be set,
163 * if you want provide notification functionality.
165 void (*unregister_event
)(struct mem_cgroup
*memcg
,
166 struct eventfd_ctx
*eventfd
);
168 * All fields below needed to unregister event when
169 * userspace closes eventfd.
172 wait_queue_head_t
*wqh
;
173 wait_queue_entry_t wait
;
174 struct work_struct remove
;
177 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
);
178 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
);
180 /* Stuffs for move charges at task migration. */
182 * Types of charges to be moved.
184 #define MOVE_ANON 0x1U
185 #define MOVE_FILE 0x2U
186 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
188 /* "mc" and its members are protected by cgroup_mutex */
189 static struct move_charge_struct
{
190 spinlock_t lock
; /* for from, to */
191 struct mm_struct
*mm
;
192 struct mem_cgroup
*from
;
193 struct mem_cgroup
*to
;
195 unsigned long precharge
;
196 unsigned long moved_charge
;
197 unsigned long moved_swap
;
198 struct task_struct
*moving_task
; /* a task moving charges */
199 wait_queue_head_t waitq
; /* a waitq for other context */
201 .lock
= __SPIN_LOCK_UNLOCKED(mc
.lock
),
202 .waitq
= __WAIT_QUEUE_HEAD_INITIALIZER(mc
.waitq
),
206 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
207 * limit reclaim to prevent infinite loops, if they ever occur.
209 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
210 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
213 MEM_CGROUP_CHARGE_TYPE_CACHE
= 0,
214 MEM_CGROUP_CHARGE_TYPE_ANON
,
215 MEM_CGROUP_CHARGE_TYPE_SWAPOUT
, /* for accounting swapcache */
216 MEM_CGROUP_CHARGE_TYPE_DROP
, /* a page was unused swap cache */
220 /* for encoding cft->private value on file */
229 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
230 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
231 #define MEMFILE_ATTR(val) ((val) & 0xffff)
232 /* Used for OOM nofiier */
233 #define OOM_CONTROL (0)
235 /* Some nice accessors for the vmpressure. */
236 struct vmpressure
*memcg_to_vmpressure(struct mem_cgroup
*memcg
)
239 memcg
= root_mem_cgroup
;
240 return &memcg
->vmpressure
;
243 struct cgroup_subsys_state
*vmpressure_to_css(struct vmpressure
*vmpr
)
245 return &container_of(vmpr
, struct mem_cgroup
, vmpressure
)->css
;
248 static inline bool mem_cgroup_is_root(struct mem_cgroup
*memcg
)
250 return (memcg
== root_mem_cgroup
);
255 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
256 * The main reason for not using cgroup id for this:
257 * this works better in sparse environments, where we have a lot of memcgs,
258 * but only a few kmem-limited. Or also, if we have, for instance, 200
259 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
260 * 200 entry array for that.
262 * The current size of the caches array is stored in memcg_nr_cache_ids. It
263 * will double each time we have to increase it.
265 static DEFINE_IDA(memcg_cache_ida
);
266 int memcg_nr_cache_ids
;
268 /* Protects memcg_nr_cache_ids */
269 static DECLARE_RWSEM(memcg_cache_ids_sem
);
271 void memcg_get_cache_ids(void)
273 down_read(&memcg_cache_ids_sem
);
276 void memcg_put_cache_ids(void)
278 up_read(&memcg_cache_ids_sem
);
282 * MIN_SIZE is different than 1, because we would like to avoid going through
283 * the alloc/free process all the time. In a small machine, 4 kmem-limited
284 * cgroups is a reasonable guess. In the future, it could be a parameter or
285 * tunable, but that is strictly not necessary.
287 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
288 * this constant directly from cgroup, but it is understandable that this is
289 * better kept as an internal representation in cgroup.c. In any case, the
290 * cgrp_id space is not getting any smaller, and we don't have to necessarily
291 * increase ours as well if it increases.
293 #define MEMCG_CACHES_MIN_SIZE 4
294 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
297 * A lot of the calls to the cache allocation functions are expected to be
298 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
299 * conditional to this static branch, we'll have to allow modules that does
300 * kmem_cache_alloc and the such to see this symbol as well
302 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key
);
303 EXPORT_SYMBOL(memcg_kmem_enabled_key
);
305 struct workqueue_struct
*memcg_kmem_cache_wq
;
307 #endif /* !CONFIG_SLOB */
310 * mem_cgroup_css_from_page - css of the memcg associated with a page
311 * @page: page of interest
313 * If memcg is bound to the default hierarchy, css of the memcg associated
314 * with @page is returned. The returned css remains associated with @page
315 * until it is released.
317 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
320 struct cgroup_subsys_state
*mem_cgroup_css_from_page(struct page
*page
)
322 struct mem_cgroup
*memcg
;
324 memcg
= page
->mem_cgroup
;
326 if (!memcg
|| !cgroup_subsys_on_dfl(memory_cgrp_subsys
))
327 memcg
= root_mem_cgroup
;
333 * page_cgroup_ino - return inode number of the memcg a page is charged to
336 * Look up the closest online ancestor of the memory cgroup @page is charged to
337 * and return its inode number or 0 if @page is not charged to any cgroup. It
338 * is safe to call this function without holding a reference to @page.
340 * Note, this function is inherently racy, because there is nothing to prevent
341 * the cgroup inode from getting torn down and potentially reallocated a moment
342 * after page_cgroup_ino() returns, so it only should be used by callers that
343 * do not care (such as procfs interfaces).
345 ino_t
page_cgroup_ino(struct page
*page
)
347 struct mem_cgroup
*memcg
;
348 unsigned long ino
= 0;
351 memcg
= READ_ONCE(page
->mem_cgroup
);
352 while (memcg
&& !(memcg
->css
.flags
& CSS_ONLINE
))
353 memcg
= parent_mem_cgroup(memcg
);
355 ino
= cgroup_ino(memcg
->css
.cgroup
);
360 static struct mem_cgroup_per_node
*
361 mem_cgroup_page_nodeinfo(struct mem_cgroup
*memcg
, struct page
*page
)
363 int nid
= page_to_nid(page
);
365 return memcg
->nodeinfo
[nid
];
368 static struct mem_cgroup_tree_per_node
*
369 soft_limit_tree_node(int nid
)
371 return soft_limit_tree
.rb_tree_per_node
[nid
];
374 static struct mem_cgroup_tree_per_node
*
375 soft_limit_tree_from_page(struct page
*page
)
377 int nid
= page_to_nid(page
);
379 return soft_limit_tree
.rb_tree_per_node
[nid
];
382 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node
*mz
,
383 struct mem_cgroup_tree_per_node
*mctz
,
384 unsigned long new_usage_in_excess
)
386 struct rb_node
**p
= &mctz
->rb_root
.rb_node
;
387 struct rb_node
*parent
= NULL
;
388 struct mem_cgroup_per_node
*mz_node
;
393 mz
->usage_in_excess
= new_usage_in_excess
;
394 if (!mz
->usage_in_excess
)
398 mz_node
= rb_entry(parent
, struct mem_cgroup_per_node
,
400 if (mz
->usage_in_excess
< mz_node
->usage_in_excess
)
403 * We can't avoid mem cgroups that are over their soft
404 * limit by the same amount
406 else if (mz
->usage_in_excess
>= mz_node
->usage_in_excess
)
409 rb_link_node(&mz
->tree_node
, parent
, p
);
410 rb_insert_color(&mz
->tree_node
, &mctz
->rb_root
);
414 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node
*mz
,
415 struct mem_cgroup_tree_per_node
*mctz
)
419 rb_erase(&mz
->tree_node
, &mctz
->rb_root
);
423 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node
*mz
,
424 struct mem_cgroup_tree_per_node
*mctz
)
428 spin_lock_irqsave(&mctz
->lock
, flags
);
429 __mem_cgroup_remove_exceeded(mz
, mctz
);
430 spin_unlock_irqrestore(&mctz
->lock
, flags
);
433 static unsigned long soft_limit_excess(struct mem_cgroup
*memcg
)
435 unsigned long nr_pages
= page_counter_read(&memcg
->memory
);
436 unsigned long soft_limit
= READ_ONCE(memcg
->soft_limit
);
437 unsigned long excess
= 0;
439 if (nr_pages
> soft_limit
)
440 excess
= nr_pages
- soft_limit
;
445 static void mem_cgroup_update_tree(struct mem_cgroup
*memcg
, struct page
*page
)
447 unsigned long excess
;
448 struct mem_cgroup_per_node
*mz
;
449 struct mem_cgroup_tree_per_node
*mctz
;
451 mctz
= soft_limit_tree_from_page(page
);
455 * Necessary to update all ancestors when hierarchy is used.
456 * because their event counter is not touched.
458 for (; memcg
; memcg
= parent_mem_cgroup(memcg
)) {
459 mz
= mem_cgroup_page_nodeinfo(memcg
, page
);
460 excess
= soft_limit_excess(memcg
);
462 * We have to update the tree if mz is on RB-tree or
463 * mem is over its softlimit.
465 if (excess
|| mz
->on_tree
) {
468 spin_lock_irqsave(&mctz
->lock
, flags
);
469 /* if on-tree, remove it */
471 __mem_cgroup_remove_exceeded(mz
, mctz
);
473 * Insert again. mz->usage_in_excess will be updated.
474 * If excess is 0, no tree ops.
476 __mem_cgroup_insert_exceeded(mz
, mctz
, excess
);
477 spin_unlock_irqrestore(&mctz
->lock
, flags
);
482 static void mem_cgroup_remove_from_trees(struct mem_cgroup
*memcg
)
484 struct mem_cgroup_tree_per_node
*mctz
;
485 struct mem_cgroup_per_node
*mz
;
489 mz
= mem_cgroup_nodeinfo(memcg
, nid
);
490 mctz
= soft_limit_tree_node(nid
);
492 mem_cgroup_remove_exceeded(mz
, mctz
);
496 static struct mem_cgroup_per_node
*
497 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node
*mctz
)
499 struct rb_node
*rightmost
= NULL
;
500 struct mem_cgroup_per_node
*mz
;
504 rightmost
= rb_last(&mctz
->rb_root
);
506 goto done
; /* Nothing to reclaim from */
508 mz
= rb_entry(rightmost
, struct mem_cgroup_per_node
, tree_node
);
510 * Remove the node now but someone else can add it back,
511 * we will to add it back at the end of reclaim to its correct
512 * position in the tree.
514 __mem_cgroup_remove_exceeded(mz
, mctz
);
515 if (!soft_limit_excess(mz
->memcg
) ||
516 !css_tryget_online(&mz
->memcg
->css
))
522 static struct mem_cgroup_per_node
*
523 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node
*mctz
)
525 struct mem_cgroup_per_node
*mz
;
527 spin_lock_irq(&mctz
->lock
);
528 mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
529 spin_unlock_irq(&mctz
->lock
);
534 * Return page count for single (non recursive) @memcg.
536 * Implementation Note: reading percpu statistics for memcg.
538 * Both of vmstat[] and percpu_counter has threshold and do periodic
539 * synchronization to implement "quick" read. There are trade-off between
540 * reading cost and precision of value. Then, we may have a chance to implement
541 * a periodic synchronization of counter in memcg's counter.
543 * But this _read() function is used for user interface now. The user accounts
544 * memory usage by memory cgroup and he _always_ requires exact value because
545 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
546 * have to visit all online cpus and make sum. So, for now, unnecessary
547 * synchronization is not implemented. (just implemented for cpu hotplug)
549 * If there are kernel internal actions which can make use of some not-exact
550 * value, and reading all cpu value can be performance bottleneck in some
551 * common workload, threshold and synchronization as vmstat[] should be
554 * The parameter idx can be of type enum memcg_event_item or vm_event_item.
557 static unsigned long memcg_sum_events(struct mem_cgroup
*memcg
,
560 unsigned long val
= 0;
563 for_each_possible_cpu(cpu
)
564 val
+= per_cpu(memcg
->stat
->events
[event
], cpu
);
568 static void mem_cgroup_charge_statistics(struct mem_cgroup
*memcg
,
570 bool compound
, int nr_pages
)
573 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
574 * counted as CACHE even if it's on ANON LRU.
577 __this_cpu_add(memcg
->stat
->count
[MEMCG_RSS
], nr_pages
);
579 __this_cpu_add(memcg
->stat
->count
[MEMCG_CACHE
], nr_pages
);
580 if (PageSwapBacked(page
))
581 __this_cpu_add(memcg
->stat
->count
[NR_SHMEM
], nr_pages
);
585 VM_BUG_ON_PAGE(!PageTransHuge(page
), page
);
586 __this_cpu_add(memcg
->stat
->count
[MEMCG_RSS_HUGE
], nr_pages
);
589 /* pagein of a big page is an event. So, ignore page size */
591 __this_cpu_inc(memcg
->stat
->events
[PGPGIN
]);
593 __this_cpu_inc(memcg
->stat
->events
[PGPGOUT
]);
594 nr_pages
= -nr_pages
; /* for event */
597 __this_cpu_add(memcg
->stat
->nr_page_events
, nr_pages
);
600 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup
*memcg
,
601 int nid
, unsigned int lru_mask
)
603 struct lruvec
*lruvec
= mem_cgroup_lruvec(NODE_DATA(nid
), memcg
);
604 unsigned long nr
= 0;
607 VM_BUG_ON((unsigned)nid
>= nr_node_ids
);
610 if (!(BIT(lru
) & lru_mask
))
612 nr
+= mem_cgroup_get_lru_size(lruvec
, lru
);
617 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup
*memcg
,
618 unsigned int lru_mask
)
620 unsigned long nr
= 0;
623 for_each_node_state(nid
, N_MEMORY
)
624 nr
+= mem_cgroup_node_nr_lru_pages(memcg
, nid
, lru_mask
);
628 static bool mem_cgroup_event_ratelimit(struct mem_cgroup
*memcg
,
629 enum mem_cgroup_events_target target
)
631 unsigned long val
, next
;
633 val
= __this_cpu_read(memcg
->stat
->nr_page_events
);
634 next
= __this_cpu_read(memcg
->stat
->targets
[target
]);
635 /* from time_after() in jiffies.h */
636 if ((long)(next
- val
) < 0) {
638 case MEM_CGROUP_TARGET_THRESH
:
639 next
= val
+ THRESHOLDS_EVENTS_TARGET
;
641 case MEM_CGROUP_TARGET_SOFTLIMIT
:
642 next
= val
+ SOFTLIMIT_EVENTS_TARGET
;
644 case MEM_CGROUP_TARGET_NUMAINFO
:
645 next
= val
+ NUMAINFO_EVENTS_TARGET
;
650 __this_cpu_write(memcg
->stat
->targets
[target
], next
);
657 * Check events in order.
660 static void memcg_check_events(struct mem_cgroup
*memcg
, struct page
*page
)
662 /* threshold event is triggered in finer grain than soft limit */
663 if (unlikely(mem_cgroup_event_ratelimit(memcg
,
664 MEM_CGROUP_TARGET_THRESH
))) {
666 bool do_numainfo __maybe_unused
;
668 do_softlimit
= mem_cgroup_event_ratelimit(memcg
,
669 MEM_CGROUP_TARGET_SOFTLIMIT
);
671 do_numainfo
= mem_cgroup_event_ratelimit(memcg
,
672 MEM_CGROUP_TARGET_NUMAINFO
);
674 mem_cgroup_threshold(memcg
);
675 if (unlikely(do_softlimit
))
676 mem_cgroup_update_tree(memcg
, page
);
678 if (unlikely(do_numainfo
))
679 atomic_inc(&memcg
->numainfo_events
);
684 struct mem_cgroup
*mem_cgroup_from_task(struct task_struct
*p
)
687 * mm_update_next_owner() may clear mm->owner to NULL
688 * if it races with swapoff, page migration, etc.
689 * So this can be called with p == NULL.
694 return mem_cgroup_from_css(task_css(p
, memory_cgrp_id
));
696 EXPORT_SYMBOL(mem_cgroup_from_task
);
698 static struct mem_cgroup
*get_mem_cgroup_from_mm(struct mm_struct
*mm
)
700 struct mem_cgroup
*memcg
= NULL
;
705 * Page cache insertions can happen withou an
706 * actual mm context, e.g. during disk probing
707 * on boot, loopback IO, acct() writes etc.
710 memcg
= root_mem_cgroup
;
712 memcg
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
713 if (unlikely(!memcg
))
714 memcg
= root_mem_cgroup
;
716 } while (!css_tryget_online(&memcg
->css
));
722 * mem_cgroup_iter - iterate over memory cgroup hierarchy
723 * @root: hierarchy root
724 * @prev: previously returned memcg, NULL on first invocation
725 * @reclaim: cookie for shared reclaim walks, NULL for full walks
727 * Returns references to children of the hierarchy below @root, or
728 * @root itself, or %NULL after a full round-trip.
730 * Caller must pass the return value in @prev on subsequent
731 * invocations for reference counting, or use mem_cgroup_iter_break()
732 * to cancel a hierarchy walk before the round-trip is complete.
734 * Reclaimers can specify a zone and a priority level in @reclaim to
735 * divide up the memcgs in the hierarchy among all concurrent
736 * reclaimers operating on the same zone and priority.
738 struct mem_cgroup
*mem_cgroup_iter(struct mem_cgroup
*root
,
739 struct mem_cgroup
*prev
,
740 struct mem_cgroup_reclaim_cookie
*reclaim
)
742 struct mem_cgroup_reclaim_iter
*uninitialized_var(iter
);
743 struct cgroup_subsys_state
*css
= NULL
;
744 struct mem_cgroup
*memcg
= NULL
;
745 struct mem_cgroup
*pos
= NULL
;
747 if (mem_cgroup_disabled())
751 root
= root_mem_cgroup
;
753 if (prev
&& !reclaim
)
756 if (!root
->use_hierarchy
&& root
!= root_mem_cgroup
) {
765 struct mem_cgroup_per_node
*mz
;
767 mz
= mem_cgroup_nodeinfo(root
, reclaim
->pgdat
->node_id
);
768 iter
= &mz
->iter
[reclaim
->priority
];
770 if (prev
&& reclaim
->generation
!= iter
->generation
)
774 pos
= READ_ONCE(iter
->position
);
775 if (!pos
|| css_tryget(&pos
->css
))
778 * css reference reached zero, so iter->position will
779 * be cleared by ->css_released. However, we should not
780 * rely on this happening soon, because ->css_released
781 * is called from a work queue, and by busy-waiting we
782 * might block it. So we clear iter->position right
785 (void)cmpxchg(&iter
->position
, pos
, NULL
);
793 css
= css_next_descendant_pre(css
, &root
->css
);
796 * Reclaimers share the hierarchy walk, and a
797 * new one might jump in right at the end of
798 * the hierarchy - make sure they see at least
799 * one group and restart from the beginning.
807 * Verify the css and acquire a reference. The root
808 * is provided by the caller, so we know it's alive
809 * and kicking, and don't take an extra reference.
811 memcg
= mem_cgroup_from_css(css
);
813 if (css
== &root
->css
)
824 * The position could have already been updated by a competing
825 * thread, so check that the value hasn't changed since we read
826 * it to avoid reclaiming from the same cgroup twice.
828 (void)cmpxchg(&iter
->position
, pos
, memcg
);
836 reclaim
->generation
= iter
->generation
;
842 if (prev
&& prev
!= root
)
849 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
850 * @root: hierarchy root
851 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
853 void mem_cgroup_iter_break(struct mem_cgroup
*root
,
854 struct mem_cgroup
*prev
)
857 root
= root_mem_cgroup
;
858 if (prev
&& prev
!= root
)
862 static void invalidate_reclaim_iterators(struct mem_cgroup
*dead_memcg
)
864 struct mem_cgroup
*memcg
= dead_memcg
;
865 struct mem_cgroup_reclaim_iter
*iter
;
866 struct mem_cgroup_per_node
*mz
;
870 while ((memcg
= parent_mem_cgroup(memcg
))) {
872 mz
= mem_cgroup_nodeinfo(memcg
, nid
);
873 for (i
= 0; i
<= DEF_PRIORITY
; i
++) {
875 cmpxchg(&iter
->position
,
883 * Iteration constructs for visiting all cgroups (under a tree). If
884 * loops are exited prematurely (break), mem_cgroup_iter_break() must
885 * be used for reference counting.
887 #define for_each_mem_cgroup_tree(iter, root) \
888 for (iter = mem_cgroup_iter(root, NULL, NULL); \
890 iter = mem_cgroup_iter(root, iter, NULL))
892 #define for_each_mem_cgroup(iter) \
893 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
895 iter = mem_cgroup_iter(NULL, iter, NULL))
898 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
899 * @memcg: hierarchy root
900 * @fn: function to call for each task
901 * @arg: argument passed to @fn
903 * This function iterates over tasks attached to @memcg or to any of its
904 * descendants and calls @fn for each task. If @fn returns a non-zero
905 * value, the function breaks the iteration loop and returns the value.
906 * Otherwise, it will iterate over all tasks and return 0.
908 * This function must not be called for the root memory cgroup.
910 int mem_cgroup_scan_tasks(struct mem_cgroup
*memcg
,
911 int (*fn
)(struct task_struct
*, void *), void *arg
)
913 struct mem_cgroup
*iter
;
916 BUG_ON(memcg
== root_mem_cgroup
);
918 for_each_mem_cgroup_tree(iter
, memcg
) {
919 struct css_task_iter it
;
920 struct task_struct
*task
;
922 css_task_iter_start(&iter
->css
, 0, &it
);
923 while (!ret
&& (task
= css_task_iter_next(&it
)))
925 css_task_iter_end(&it
);
927 mem_cgroup_iter_break(memcg
, iter
);
935 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
937 * @zone: zone of the page
939 * This function is only safe when following the LRU page isolation
940 * and putback protocol: the LRU lock must be held, and the page must
941 * either be PageLRU() or the caller must have isolated/allocated it.
943 struct lruvec
*mem_cgroup_page_lruvec(struct page
*page
, struct pglist_data
*pgdat
)
945 struct mem_cgroup_per_node
*mz
;
946 struct mem_cgroup
*memcg
;
947 struct lruvec
*lruvec
;
949 if (mem_cgroup_disabled()) {
950 lruvec
= &pgdat
->lruvec
;
954 memcg
= page
->mem_cgroup
;
956 * Swapcache readahead pages are added to the LRU - and
957 * possibly migrated - before they are charged.
960 memcg
= root_mem_cgroup
;
962 mz
= mem_cgroup_page_nodeinfo(memcg
, page
);
963 lruvec
= &mz
->lruvec
;
966 * Since a node can be onlined after the mem_cgroup was created,
967 * we have to be prepared to initialize lruvec->zone here;
968 * and if offlined then reonlined, we need to reinitialize it.
970 if (unlikely(lruvec
->pgdat
!= pgdat
))
971 lruvec
->pgdat
= pgdat
;
976 * mem_cgroup_update_lru_size - account for adding or removing an lru page
977 * @lruvec: mem_cgroup per zone lru vector
978 * @lru: index of lru list the page is sitting on
979 * @zid: zone id of the accounted pages
980 * @nr_pages: positive when adding or negative when removing
982 * This function must be called under lru_lock, just before a page is added
983 * to or just after a page is removed from an lru list (that ordering being
984 * so as to allow it to check that lru_size 0 is consistent with list_empty).
986 void mem_cgroup_update_lru_size(struct lruvec
*lruvec
, enum lru_list lru
,
987 int zid
, int nr_pages
)
989 struct mem_cgroup_per_node
*mz
;
990 unsigned long *lru_size
;
993 if (mem_cgroup_disabled())
996 mz
= container_of(lruvec
, struct mem_cgroup_per_node
, lruvec
);
997 lru_size
= &mz
->lru_zone_size
[zid
][lru
];
1000 *lru_size
+= nr_pages
;
1003 if (WARN_ONCE(size
< 0,
1004 "%s(%p, %d, %d): lru_size %ld\n",
1005 __func__
, lruvec
, lru
, nr_pages
, size
)) {
1011 *lru_size
+= nr_pages
;
1014 bool task_in_mem_cgroup(struct task_struct
*task
, struct mem_cgroup
*memcg
)
1016 struct mem_cgroup
*task_memcg
;
1017 struct task_struct
*p
;
1020 p
= find_lock_task_mm(task
);
1022 task_memcg
= get_mem_cgroup_from_mm(p
->mm
);
1026 * All threads may have already detached their mm's, but the oom
1027 * killer still needs to detect if they have already been oom
1028 * killed to prevent needlessly killing additional tasks.
1031 task_memcg
= mem_cgroup_from_task(task
);
1032 css_get(&task_memcg
->css
);
1035 ret
= mem_cgroup_is_descendant(task_memcg
, memcg
);
1036 css_put(&task_memcg
->css
);
1041 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1042 * @memcg: the memory cgroup
1044 * Returns the maximum amount of memory @mem can be charged with, in
1047 static unsigned long mem_cgroup_margin(struct mem_cgroup
*memcg
)
1049 unsigned long margin
= 0;
1050 unsigned long count
;
1051 unsigned long limit
;
1053 count
= page_counter_read(&memcg
->memory
);
1054 limit
= READ_ONCE(memcg
->memory
.limit
);
1056 margin
= limit
- count
;
1058 if (do_memsw_account()) {
1059 count
= page_counter_read(&memcg
->memsw
);
1060 limit
= READ_ONCE(memcg
->memsw
.limit
);
1062 margin
= min(margin
, limit
- count
);
1071 * A routine for checking "mem" is under move_account() or not.
1073 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1074 * moving cgroups. This is for waiting at high-memory pressure
1077 static bool mem_cgroup_under_move(struct mem_cgroup
*memcg
)
1079 struct mem_cgroup
*from
;
1080 struct mem_cgroup
*to
;
1083 * Unlike task_move routines, we access mc.to, mc.from not under
1084 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1086 spin_lock(&mc
.lock
);
1092 ret
= mem_cgroup_is_descendant(from
, memcg
) ||
1093 mem_cgroup_is_descendant(to
, memcg
);
1095 spin_unlock(&mc
.lock
);
1099 static bool mem_cgroup_wait_acct_move(struct mem_cgroup
*memcg
)
1101 if (mc
.moving_task
&& current
!= mc
.moving_task
) {
1102 if (mem_cgroup_under_move(memcg
)) {
1104 prepare_to_wait(&mc
.waitq
, &wait
, TASK_INTERRUPTIBLE
);
1105 /* moving charge context might have finished. */
1108 finish_wait(&mc
.waitq
, &wait
);
1115 unsigned int memcg1_stats
[] = {
1126 static const char *const memcg1_stat_names
[] = {
1137 #define K(x) ((x) << (PAGE_SHIFT-10))
1139 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1140 * @memcg: The memory cgroup that went over limit
1141 * @p: Task that is going to be killed
1143 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1146 void mem_cgroup_print_oom_info(struct mem_cgroup
*memcg
, struct task_struct
*p
)
1148 struct mem_cgroup
*iter
;
1154 pr_info("Task in ");
1155 pr_cont_cgroup_path(task_cgroup(p
, memory_cgrp_id
));
1156 pr_cont(" killed as a result of limit of ");
1158 pr_info("Memory limit reached of cgroup ");
1161 pr_cont_cgroup_path(memcg
->css
.cgroup
);
1166 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1167 K((u64
)page_counter_read(&memcg
->memory
)),
1168 K((u64
)memcg
->memory
.limit
), memcg
->memory
.failcnt
);
1169 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1170 K((u64
)page_counter_read(&memcg
->memsw
)),
1171 K((u64
)memcg
->memsw
.limit
), memcg
->memsw
.failcnt
);
1172 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1173 K((u64
)page_counter_read(&memcg
->kmem
)),
1174 K((u64
)memcg
->kmem
.limit
), memcg
->kmem
.failcnt
);
1176 for_each_mem_cgroup_tree(iter
, memcg
) {
1177 pr_info("Memory cgroup stats for ");
1178 pr_cont_cgroup_path(iter
->css
.cgroup
);
1181 for (i
= 0; i
< ARRAY_SIZE(memcg1_stats
); i
++) {
1182 if (memcg1_stats
[i
] == MEMCG_SWAP
&& !do_swap_account
)
1184 pr_cont(" %s:%luKB", memcg1_stat_names
[i
],
1185 K(memcg_page_state(iter
, memcg1_stats
[i
])));
1188 for (i
= 0; i
< NR_LRU_LISTS
; i
++)
1189 pr_cont(" %s:%luKB", mem_cgroup_lru_names
[i
],
1190 K(mem_cgroup_nr_lru_pages(iter
, BIT(i
))));
1197 * This function returns the number of memcg under hierarchy tree. Returns
1198 * 1(self count) if no children.
1200 static int mem_cgroup_count_children(struct mem_cgroup
*memcg
)
1203 struct mem_cgroup
*iter
;
1205 for_each_mem_cgroup_tree(iter
, memcg
)
1211 * Return the memory (and swap, if configured) limit for a memcg.
1213 unsigned long mem_cgroup_get_limit(struct mem_cgroup
*memcg
)
1215 unsigned long limit
;
1217 limit
= memcg
->memory
.limit
;
1218 if (mem_cgroup_swappiness(memcg
)) {
1219 unsigned long memsw_limit
;
1220 unsigned long swap_limit
;
1222 memsw_limit
= memcg
->memsw
.limit
;
1223 swap_limit
= memcg
->swap
.limit
;
1224 swap_limit
= min(swap_limit
, (unsigned long)total_swap_pages
);
1225 limit
= min(limit
+ swap_limit
, memsw_limit
);
1230 static bool mem_cgroup_out_of_memory(struct mem_cgroup
*memcg
, gfp_t gfp_mask
,
1233 struct oom_control oc
= {
1237 .gfp_mask
= gfp_mask
,
1242 mutex_lock(&oom_lock
);
1243 ret
= out_of_memory(&oc
);
1244 mutex_unlock(&oom_lock
);
1248 #if MAX_NUMNODES > 1
1251 * test_mem_cgroup_node_reclaimable
1252 * @memcg: the target memcg
1253 * @nid: the node ID to be checked.
1254 * @noswap : specify true here if the user wants flle only information.
1256 * This function returns whether the specified memcg contains any
1257 * reclaimable pages on a node. Returns true if there are any reclaimable
1258 * pages in the node.
1260 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup
*memcg
,
1261 int nid
, bool noswap
)
1263 if (mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL_FILE
))
1265 if (noswap
|| !total_swap_pages
)
1267 if (mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL_ANON
))
1274 * Always updating the nodemask is not very good - even if we have an empty
1275 * list or the wrong list here, we can start from some node and traverse all
1276 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1279 static void mem_cgroup_may_update_nodemask(struct mem_cgroup
*memcg
)
1283 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1284 * pagein/pageout changes since the last update.
1286 if (!atomic_read(&memcg
->numainfo_events
))
1288 if (atomic_inc_return(&memcg
->numainfo_updating
) > 1)
1291 /* make a nodemask where this memcg uses memory from */
1292 memcg
->scan_nodes
= node_states
[N_MEMORY
];
1294 for_each_node_mask(nid
, node_states
[N_MEMORY
]) {
1296 if (!test_mem_cgroup_node_reclaimable(memcg
, nid
, false))
1297 node_clear(nid
, memcg
->scan_nodes
);
1300 atomic_set(&memcg
->numainfo_events
, 0);
1301 atomic_set(&memcg
->numainfo_updating
, 0);
1305 * Selecting a node where we start reclaim from. Because what we need is just
1306 * reducing usage counter, start from anywhere is O,K. Considering
1307 * memory reclaim from current node, there are pros. and cons.
1309 * Freeing memory from current node means freeing memory from a node which
1310 * we'll use or we've used. So, it may make LRU bad. And if several threads
1311 * hit limits, it will see a contention on a node. But freeing from remote
1312 * node means more costs for memory reclaim because of memory latency.
1314 * Now, we use round-robin. Better algorithm is welcomed.
1316 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
1320 mem_cgroup_may_update_nodemask(memcg
);
1321 node
= memcg
->last_scanned_node
;
1323 node
= next_node_in(node
, memcg
->scan_nodes
);
1325 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1326 * last time it really checked all the LRUs due to rate limiting.
1327 * Fallback to the current node in that case for simplicity.
1329 if (unlikely(node
== MAX_NUMNODES
))
1330 node
= numa_node_id();
1332 memcg
->last_scanned_node
= node
;
1336 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
1342 static int mem_cgroup_soft_reclaim(struct mem_cgroup
*root_memcg
,
1345 unsigned long *total_scanned
)
1347 struct mem_cgroup
*victim
= NULL
;
1350 unsigned long excess
;
1351 unsigned long nr_scanned
;
1352 struct mem_cgroup_reclaim_cookie reclaim
= {
1357 excess
= soft_limit_excess(root_memcg
);
1360 victim
= mem_cgroup_iter(root_memcg
, victim
, &reclaim
);
1365 * If we have not been able to reclaim
1366 * anything, it might because there are
1367 * no reclaimable pages under this hierarchy
1372 * We want to do more targeted reclaim.
1373 * excess >> 2 is not to excessive so as to
1374 * reclaim too much, nor too less that we keep
1375 * coming back to reclaim from this cgroup
1377 if (total
>= (excess
>> 2) ||
1378 (loop
> MEM_CGROUP_MAX_RECLAIM_LOOPS
))
1383 total
+= mem_cgroup_shrink_node(victim
, gfp_mask
, false,
1384 pgdat
, &nr_scanned
);
1385 *total_scanned
+= nr_scanned
;
1386 if (!soft_limit_excess(root_memcg
))
1389 mem_cgroup_iter_break(root_memcg
, victim
);
1393 #ifdef CONFIG_LOCKDEP
1394 static struct lockdep_map memcg_oom_lock_dep_map
= {
1395 .name
= "memcg_oom_lock",
1399 static DEFINE_SPINLOCK(memcg_oom_lock
);
1402 * Check OOM-Killer is already running under our hierarchy.
1403 * If someone is running, return false.
1405 static bool mem_cgroup_oom_trylock(struct mem_cgroup
*memcg
)
1407 struct mem_cgroup
*iter
, *failed
= NULL
;
1409 spin_lock(&memcg_oom_lock
);
1411 for_each_mem_cgroup_tree(iter
, memcg
) {
1412 if (iter
->oom_lock
) {
1414 * this subtree of our hierarchy is already locked
1415 * so we cannot give a lock.
1418 mem_cgroup_iter_break(memcg
, iter
);
1421 iter
->oom_lock
= true;
1426 * OK, we failed to lock the whole subtree so we have
1427 * to clean up what we set up to the failing subtree
1429 for_each_mem_cgroup_tree(iter
, memcg
) {
1430 if (iter
== failed
) {
1431 mem_cgroup_iter_break(memcg
, iter
);
1434 iter
->oom_lock
= false;
1437 mutex_acquire(&memcg_oom_lock_dep_map
, 0, 1, _RET_IP_
);
1439 spin_unlock(&memcg_oom_lock
);
1444 static void mem_cgroup_oom_unlock(struct mem_cgroup
*memcg
)
1446 struct mem_cgroup
*iter
;
1448 spin_lock(&memcg_oom_lock
);
1449 mutex_release(&memcg_oom_lock_dep_map
, 1, _RET_IP_
);
1450 for_each_mem_cgroup_tree(iter
, memcg
)
1451 iter
->oom_lock
= false;
1452 spin_unlock(&memcg_oom_lock
);
1455 static void mem_cgroup_mark_under_oom(struct mem_cgroup
*memcg
)
1457 struct mem_cgroup
*iter
;
1459 spin_lock(&memcg_oom_lock
);
1460 for_each_mem_cgroup_tree(iter
, memcg
)
1462 spin_unlock(&memcg_oom_lock
);
1465 static void mem_cgroup_unmark_under_oom(struct mem_cgroup
*memcg
)
1467 struct mem_cgroup
*iter
;
1470 * When a new child is created while the hierarchy is under oom,
1471 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1473 spin_lock(&memcg_oom_lock
);
1474 for_each_mem_cgroup_tree(iter
, memcg
)
1475 if (iter
->under_oom
> 0)
1477 spin_unlock(&memcg_oom_lock
);
1480 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq
);
1482 struct oom_wait_info
{
1483 struct mem_cgroup
*memcg
;
1484 wait_queue_entry_t wait
;
1487 static int memcg_oom_wake_function(wait_queue_entry_t
*wait
,
1488 unsigned mode
, int sync
, void *arg
)
1490 struct mem_cgroup
*wake_memcg
= (struct mem_cgroup
*)arg
;
1491 struct mem_cgroup
*oom_wait_memcg
;
1492 struct oom_wait_info
*oom_wait_info
;
1494 oom_wait_info
= container_of(wait
, struct oom_wait_info
, wait
);
1495 oom_wait_memcg
= oom_wait_info
->memcg
;
1497 if (!mem_cgroup_is_descendant(wake_memcg
, oom_wait_memcg
) &&
1498 !mem_cgroup_is_descendant(oom_wait_memcg
, wake_memcg
))
1500 return autoremove_wake_function(wait
, mode
, sync
, arg
);
1503 static void memcg_oom_recover(struct mem_cgroup
*memcg
)
1506 * For the following lockless ->under_oom test, the only required
1507 * guarantee is that it must see the state asserted by an OOM when
1508 * this function is called as a result of userland actions
1509 * triggered by the notification of the OOM. This is trivially
1510 * achieved by invoking mem_cgroup_mark_under_oom() before
1511 * triggering notification.
1513 if (memcg
&& memcg
->under_oom
)
1514 __wake_up(&memcg_oom_waitq
, TASK_NORMAL
, 0, memcg
);
1517 static void mem_cgroup_oom(struct mem_cgroup
*memcg
, gfp_t mask
, int order
)
1519 if (!current
->memcg_may_oom
)
1522 * We are in the middle of the charge context here, so we
1523 * don't want to block when potentially sitting on a callstack
1524 * that holds all kinds of filesystem and mm locks.
1526 * Also, the caller may handle a failed allocation gracefully
1527 * (like optional page cache readahead) and so an OOM killer
1528 * invocation might not even be necessary.
1530 * That's why we don't do anything here except remember the
1531 * OOM context and then deal with it at the end of the page
1532 * fault when the stack is unwound, the locks are released,
1533 * and when we know whether the fault was overall successful.
1535 css_get(&memcg
->css
);
1536 current
->memcg_in_oom
= memcg
;
1537 current
->memcg_oom_gfp_mask
= mask
;
1538 current
->memcg_oom_order
= order
;
1542 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1543 * @handle: actually kill/wait or just clean up the OOM state
1545 * This has to be called at the end of a page fault if the memcg OOM
1546 * handler was enabled.
1548 * Memcg supports userspace OOM handling where failed allocations must
1549 * sleep on a waitqueue until the userspace task resolves the
1550 * situation. Sleeping directly in the charge context with all kinds
1551 * of locks held is not a good idea, instead we remember an OOM state
1552 * in the task and mem_cgroup_oom_synchronize() has to be called at
1553 * the end of the page fault to complete the OOM handling.
1555 * Returns %true if an ongoing memcg OOM situation was detected and
1556 * completed, %false otherwise.
1558 bool mem_cgroup_oom_synchronize(bool handle
)
1560 struct mem_cgroup
*memcg
= current
->memcg_in_oom
;
1561 struct oom_wait_info owait
;
1564 /* OOM is global, do not handle */
1571 owait
.memcg
= memcg
;
1572 owait
.wait
.flags
= 0;
1573 owait
.wait
.func
= memcg_oom_wake_function
;
1574 owait
.wait
.private = current
;
1575 INIT_LIST_HEAD(&owait
.wait
.entry
);
1577 prepare_to_wait(&memcg_oom_waitq
, &owait
.wait
, TASK_KILLABLE
);
1578 mem_cgroup_mark_under_oom(memcg
);
1580 locked
= mem_cgroup_oom_trylock(memcg
);
1583 mem_cgroup_oom_notify(memcg
);
1585 if (locked
&& !memcg
->oom_kill_disable
) {
1586 mem_cgroup_unmark_under_oom(memcg
);
1587 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1588 mem_cgroup_out_of_memory(memcg
, current
->memcg_oom_gfp_mask
,
1589 current
->memcg_oom_order
);
1592 mem_cgroup_unmark_under_oom(memcg
);
1593 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1597 mem_cgroup_oom_unlock(memcg
);
1599 * There is no guarantee that an OOM-lock contender
1600 * sees the wakeups triggered by the OOM kill
1601 * uncharges. Wake any sleepers explicitely.
1603 memcg_oom_recover(memcg
);
1606 current
->memcg_in_oom
= NULL
;
1607 css_put(&memcg
->css
);
1612 * lock_page_memcg - lock a page->mem_cgroup binding
1615 * This function protects unlocked LRU pages from being moved to
1618 * It ensures lifetime of the returned memcg. Caller is responsible
1619 * for the lifetime of the page; __unlock_page_memcg() is available
1620 * when @page might get freed inside the locked section.
1622 struct mem_cgroup
*lock_page_memcg(struct page
*page
)
1624 struct mem_cgroup
*memcg
;
1625 unsigned long flags
;
1628 * The RCU lock is held throughout the transaction. The fast
1629 * path can get away without acquiring the memcg->move_lock
1630 * because page moving starts with an RCU grace period.
1632 * The RCU lock also protects the memcg from being freed when
1633 * the page state that is going to change is the only thing
1634 * preventing the page itself from being freed. E.g. writeback
1635 * doesn't hold a page reference and relies on PG_writeback to
1636 * keep off truncation, migration and so forth.
1640 if (mem_cgroup_disabled())
1643 memcg
= page
->mem_cgroup
;
1644 if (unlikely(!memcg
))
1647 if (atomic_read(&memcg
->moving_account
) <= 0)
1650 spin_lock_irqsave(&memcg
->move_lock
, flags
);
1651 if (memcg
!= page
->mem_cgroup
) {
1652 spin_unlock_irqrestore(&memcg
->move_lock
, flags
);
1657 * When charge migration first begins, we can have locked and
1658 * unlocked page stat updates happening concurrently. Track
1659 * the task who has the lock for unlock_page_memcg().
1661 memcg
->move_lock_task
= current
;
1662 memcg
->move_lock_flags
= flags
;
1666 EXPORT_SYMBOL(lock_page_memcg
);
1669 * __unlock_page_memcg - unlock and unpin a memcg
1672 * Unlock and unpin a memcg returned by lock_page_memcg().
1674 void __unlock_page_memcg(struct mem_cgroup
*memcg
)
1676 if (memcg
&& memcg
->move_lock_task
== current
) {
1677 unsigned long flags
= memcg
->move_lock_flags
;
1679 memcg
->move_lock_task
= NULL
;
1680 memcg
->move_lock_flags
= 0;
1682 spin_unlock_irqrestore(&memcg
->move_lock
, flags
);
1689 * unlock_page_memcg - unlock a page->mem_cgroup binding
1692 void unlock_page_memcg(struct page
*page
)
1694 __unlock_page_memcg(page
->mem_cgroup
);
1696 EXPORT_SYMBOL(unlock_page_memcg
);
1699 * size of first charge trial. "32" comes from vmscan.c's magic value.
1700 * TODO: maybe necessary to use big numbers in big irons.
1702 #define CHARGE_BATCH 32U
1703 struct memcg_stock_pcp
{
1704 struct mem_cgroup
*cached
; /* this never be root cgroup */
1705 unsigned int nr_pages
;
1706 struct work_struct work
;
1707 unsigned long flags
;
1708 #define FLUSHING_CACHED_CHARGE 0
1710 static DEFINE_PER_CPU(struct memcg_stock_pcp
, memcg_stock
);
1711 static DEFINE_MUTEX(percpu_charge_mutex
);
1714 * consume_stock: Try to consume stocked charge on this cpu.
1715 * @memcg: memcg to consume from.
1716 * @nr_pages: how many pages to charge.
1718 * The charges will only happen if @memcg matches the current cpu's memcg
1719 * stock, and at least @nr_pages are available in that stock. Failure to
1720 * service an allocation will refill the stock.
1722 * returns true if successful, false otherwise.
1724 static bool consume_stock(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
1726 struct memcg_stock_pcp
*stock
;
1727 unsigned long flags
;
1730 if (nr_pages
> CHARGE_BATCH
)
1733 local_irq_save(flags
);
1735 stock
= this_cpu_ptr(&memcg_stock
);
1736 if (memcg
== stock
->cached
&& stock
->nr_pages
>= nr_pages
) {
1737 stock
->nr_pages
-= nr_pages
;
1741 local_irq_restore(flags
);
1747 * Returns stocks cached in percpu and reset cached information.
1749 static void drain_stock(struct memcg_stock_pcp
*stock
)
1751 struct mem_cgroup
*old
= stock
->cached
;
1753 if (stock
->nr_pages
) {
1754 page_counter_uncharge(&old
->memory
, stock
->nr_pages
);
1755 if (do_memsw_account())
1756 page_counter_uncharge(&old
->memsw
, stock
->nr_pages
);
1757 css_put_many(&old
->css
, stock
->nr_pages
);
1758 stock
->nr_pages
= 0;
1760 stock
->cached
= NULL
;
1763 static void drain_local_stock(struct work_struct
*dummy
)
1765 struct memcg_stock_pcp
*stock
;
1766 unsigned long flags
;
1768 local_irq_save(flags
);
1770 stock
= this_cpu_ptr(&memcg_stock
);
1772 clear_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
);
1774 local_irq_restore(flags
);
1778 * Cache charges(val) to local per_cpu area.
1779 * This will be consumed by consume_stock() function, later.
1781 static void refill_stock(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
1783 struct memcg_stock_pcp
*stock
;
1784 unsigned long flags
;
1786 local_irq_save(flags
);
1788 stock
= this_cpu_ptr(&memcg_stock
);
1789 if (stock
->cached
!= memcg
) { /* reset if necessary */
1791 stock
->cached
= memcg
;
1793 stock
->nr_pages
+= nr_pages
;
1795 if (stock
->nr_pages
> CHARGE_BATCH
)
1798 local_irq_restore(flags
);
1802 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1803 * of the hierarchy under it.
1805 static void drain_all_stock(struct mem_cgroup
*root_memcg
)
1809 /* If someone's already draining, avoid adding running more workers. */
1810 if (!mutex_trylock(&percpu_charge_mutex
))
1812 /* Notify other cpus that system-wide "drain" is running */
1815 for_each_online_cpu(cpu
) {
1816 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
1817 struct mem_cgroup
*memcg
;
1819 memcg
= stock
->cached
;
1820 if (!memcg
|| !stock
->nr_pages
)
1822 if (!mem_cgroup_is_descendant(memcg
, root_memcg
))
1824 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
)) {
1826 drain_local_stock(&stock
->work
);
1828 schedule_work_on(cpu
, &stock
->work
);
1833 mutex_unlock(&percpu_charge_mutex
);
1836 static int memcg_hotplug_cpu_dead(unsigned int cpu
)
1838 struct memcg_stock_pcp
*stock
;
1840 stock
= &per_cpu(memcg_stock
, cpu
);
1845 static void reclaim_high(struct mem_cgroup
*memcg
,
1846 unsigned int nr_pages
,
1850 if (page_counter_read(&memcg
->memory
) <= memcg
->high
)
1852 mem_cgroup_event(memcg
, MEMCG_HIGH
);
1853 try_to_free_mem_cgroup_pages(memcg
, nr_pages
, gfp_mask
, true);
1854 } while ((memcg
= parent_mem_cgroup(memcg
)));
1857 static void high_work_func(struct work_struct
*work
)
1859 struct mem_cgroup
*memcg
;
1861 memcg
= container_of(work
, struct mem_cgroup
, high_work
);
1862 reclaim_high(memcg
, CHARGE_BATCH
, GFP_KERNEL
);
1866 * Scheduled by try_charge() to be executed from the userland return path
1867 * and reclaims memory over the high limit.
1869 void mem_cgroup_handle_over_high(void)
1871 unsigned int nr_pages
= current
->memcg_nr_pages_over_high
;
1872 struct mem_cgroup
*memcg
;
1874 if (likely(!nr_pages
))
1877 memcg
= get_mem_cgroup_from_mm(current
->mm
);
1878 reclaim_high(memcg
, nr_pages
, GFP_KERNEL
);
1879 css_put(&memcg
->css
);
1880 current
->memcg_nr_pages_over_high
= 0;
1883 static int try_charge(struct mem_cgroup
*memcg
, gfp_t gfp_mask
,
1884 unsigned int nr_pages
)
1886 unsigned int batch
= max(CHARGE_BATCH
, nr_pages
);
1887 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
1888 struct mem_cgroup
*mem_over_limit
;
1889 struct page_counter
*counter
;
1890 unsigned long nr_reclaimed
;
1891 bool may_swap
= true;
1892 bool drained
= false;
1894 if (mem_cgroup_is_root(memcg
))
1897 if (consume_stock(memcg
, nr_pages
))
1900 if (!do_memsw_account() ||
1901 page_counter_try_charge(&memcg
->memsw
, batch
, &counter
)) {
1902 if (page_counter_try_charge(&memcg
->memory
, batch
, &counter
))
1904 if (do_memsw_account())
1905 page_counter_uncharge(&memcg
->memsw
, batch
);
1906 mem_over_limit
= mem_cgroup_from_counter(counter
, memory
);
1908 mem_over_limit
= mem_cgroup_from_counter(counter
, memsw
);
1912 if (batch
> nr_pages
) {
1918 * Unlike in global OOM situations, memcg is not in a physical
1919 * memory shortage. Allow dying and OOM-killed tasks to
1920 * bypass the last charges so that they can exit quickly and
1921 * free their memory.
1923 if (unlikely(tsk_is_oom_victim(current
) ||
1924 fatal_signal_pending(current
) ||
1925 current
->flags
& PF_EXITING
))
1929 * Prevent unbounded recursion when reclaim operations need to
1930 * allocate memory. This might exceed the limits temporarily,
1931 * but we prefer facilitating memory reclaim and getting back
1932 * under the limit over triggering OOM kills in these cases.
1934 if (unlikely(current
->flags
& PF_MEMALLOC
))
1937 if (unlikely(task_in_memcg_oom(current
)))
1940 if (!gfpflags_allow_blocking(gfp_mask
))
1943 mem_cgroup_event(mem_over_limit
, MEMCG_MAX
);
1945 nr_reclaimed
= try_to_free_mem_cgroup_pages(mem_over_limit
, nr_pages
,
1946 gfp_mask
, may_swap
);
1948 if (mem_cgroup_margin(mem_over_limit
) >= nr_pages
)
1952 drain_all_stock(mem_over_limit
);
1957 if (gfp_mask
& __GFP_NORETRY
)
1960 * Even though the limit is exceeded at this point, reclaim
1961 * may have been able to free some pages. Retry the charge
1962 * before killing the task.
1964 * Only for regular pages, though: huge pages are rather
1965 * unlikely to succeed so close to the limit, and we fall back
1966 * to regular pages anyway in case of failure.
1968 if (nr_reclaimed
&& nr_pages
<= (1 << PAGE_ALLOC_COSTLY_ORDER
))
1971 * At task move, charge accounts can be doubly counted. So, it's
1972 * better to wait until the end of task_move if something is going on.
1974 if (mem_cgroup_wait_acct_move(mem_over_limit
))
1980 if (gfp_mask
& __GFP_NOFAIL
)
1983 if (fatal_signal_pending(current
))
1986 mem_cgroup_event(mem_over_limit
, MEMCG_OOM
);
1988 mem_cgroup_oom(mem_over_limit
, gfp_mask
,
1989 get_order(nr_pages
* PAGE_SIZE
));
1991 if (!(gfp_mask
& __GFP_NOFAIL
))
1995 * The allocation either can't fail or will lead to more memory
1996 * being freed very soon. Allow memory usage go over the limit
1997 * temporarily by force charging it.
1999 page_counter_charge(&memcg
->memory
, nr_pages
);
2000 if (do_memsw_account())
2001 page_counter_charge(&memcg
->memsw
, nr_pages
);
2002 css_get_many(&memcg
->css
, nr_pages
);
2007 css_get_many(&memcg
->css
, batch
);
2008 if (batch
> nr_pages
)
2009 refill_stock(memcg
, batch
- nr_pages
);
2012 * If the hierarchy is above the normal consumption range, schedule
2013 * reclaim on returning to userland. We can perform reclaim here
2014 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2015 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2016 * not recorded as it most likely matches current's and won't
2017 * change in the meantime. As high limit is checked again before
2018 * reclaim, the cost of mismatch is negligible.
2021 if (page_counter_read(&memcg
->memory
) > memcg
->high
) {
2022 /* Don't bother a random interrupted task */
2023 if (in_interrupt()) {
2024 schedule_work(&memcg
->high_work
);
2027 current
->memcg_nr_pages_over_high
+= batch
;
2028 set_notify_resume(current
);
2031 } while ((memcg
= parent_mem_cgroup(memcg
)));
2036 static void cancel_charge(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
2038 if (mem_cgroup_is_root(memcg
))
2041 page_counter_uncharge(&memcg
->memory
, nr_pages
);
2042 if (do_memsw_account())
2043 page_counter_uncharge(&memcg
->memsw
, nr_pages
);
2045 css_put_many(&memcg
->css
, nr_pages
);
2048 static void lock_page_lru(struct page
*page
, int *isolated
)
2050 struct zone
*zone
= page_zone(page
);
2052 spin_lock_irq(zone_lru_lock(zone
));
2053 if (PageLRU(page
)) {
2054 struct lruvec
*lruvec
;
2056 lruvec
= mem_cgroup_page_lruvec(page
, zone
->zone_pgdat
);
2058 del_page_from_lru_list(page
, lruvec
, page_lru(page
));
2064 static void unlock_page_lru(struct page
*page
, int isolated
)
2066 struct zone
*zone
= page_zone(page
);
2069 struct lruvec
*lruvec
;
2071 lruvec
= mem_cgroup_page_lruvec(page
, zone
->zone_pgdat
);
2072 VM_BUG_ON_PAGE(PageLRU(page
), page
);
2074 add_page_to_lru_list(page
, lruvec
, page_lru(page
));
2076 spin_unlock_irq(zone_lru_lock(zone
));
2079 static void commit_charge(struct page
*page
, struct mem_cgroup
*memcg
,
2084 VM_BUG_ON_PAGE(page
->mem_cgroup
, page
);
2087 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2088 * may already be on some other mem_cgroup's LRU. Take care of it.
2091 lock_page_lru(page
, &isolated
);
2094 * Nobody should be changing or seriously looking at
2095 * page->mem_cgroup at this point:
2097 * - the page is uncharged
2099 * - the page is off-LRU
2101 * - an anonymous fault has exclusive page access, except for
2102 * a locked page table
2104 * - a page cache insertion, a swapin fault, or a migration
2105 * have the page locked
2107 page
->mem_cgroup
= memcg
;
2110 unlock_page_lru(page
, isolated
);
2114 static int memcg_alloc_cache_id(void)
2119 id
= ida_simple_get(&memcg_cache_ida
,
2120 0, MEMCG_CACHES_MAX_SIZE
, GFP_KERNEL
);
2124 if (id
< memcg_nr_cache_ids
)
2128 * There's no space for the new id in memcg_caches arrays,
2129 * so we have to grow them.
2131 down_write(&memcg_cache_ids_sem
);
2133 size
= 2 * (id
+ 1);
2134 if (size
< MEMCG_CACHES_MIN_SIZE
)
2135 size
= MEMCG_CACHES_MIN_SIZE
;
2136 else if (size
> MEMCG_CACHES_MAX_SIZE
)
2137 size
= MEMCG_CACHES_MAX_SIZE
;
2139 err
= memcg_update_all_caches(size
);
2141 err
= memcg_update_all_list_lrus(size
);
2143 memcg_nr_cache_ids
= size
;
2145 up_write(&memcg_cache_ids_sem
);
2148 ida_simple_remove(&memcg_cache_ida
, id
);
2154 static void memcg_free_cache_id(int id
)
2156 ida_simple_remove(&memcg_cache_ida
, id
);
2159 struct memcg_kmem_cache_create_work
{
2160 struct mem_cgroup
*memcg
;
2161 struct kmem_cache
*cachep
;
2162 struct work_struct work
;
2165 static void memcg_kmem_cache_create_func(struct work_struct
*w
)
2167 struct memcg_kmem_cache_create_work
*cw
=
2168 container_of(w
, struct memcg_kmem_cache_create_work
, work
);
2169 struct mem_cgroup
*memcg
= cw
->memcg
;
2170 struct kmem_cache
*cachep
= cw
->cachep
;
2172 memcg_create_kmem_cache(memcg
, cachep
);
2174 css_put(&memcg
->css
);
2179 * Enqueue the creation of a per-memcg kmem_cache.
2181 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup
*memcg
,
2182 struct kmem_cache
*cachep
)
2184 struct memcg_kmem_cache_create_work
*cw
;
2186 cw
= kmalloc(sizeof(*cw
), GFP_NOWAIT
);
2190 css_get(&memcg
->css
);
2193 cw
->cachep
= cachep
;
2194 INIT_WORK(&cw
->work
, memcg_kmem_cache_create_func
);
2196 queue_work(memcg_kmem_cache_wq
, &cw
->work
);
2199 static void memcg_schedule_kmem_cache_create(struct mem_cgroup
*memcg
,
2200 struct kmem_cache
*cachep
)
2203 * We need to stop accounting when we kmalloc, because if the
2204 * corresponding kmalloc cache is not yet created, the first allocation
2205 * in __memcg_schedule_kmem_cache_create will recurse.
2207 * However, it is better to enclose the whole function. Depending on
2208 * the debugging options enabled, INIT_WORK(), for instance, can
2209 * trigger an allocation. This too, will make us recurse. Because at
2210 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2211 * the safest choice is to do it like this, wrapping the whole function.
2213 current
->memcg_kmem_skip_account
= 1;
2214 __memcg_schedule_kmem_cache_create(memcg
, cachep
);
2215 current
->memcg_kmem_skip_account
= 0;
2218 static inline bool memcg_kmem_bypass(void)
2220 if (in_interrupt() || !current
->mm
|| (current
->flags
& PF_KTHREAD
))
2226 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2227 * @cachep: the original global kmem cache
2229 * Return the kmem_cache we're supposed to use for a slab allocation.
2230 * We try to use the current memcg's version of the cache.
2232 * If the cache does not exist yet, if we are the first user of it, we
2233 * create it asynchronously in a workqueue and let the current allocation
2234 * go through with the original cache.
2236 * This function takes a reference to the cache it returns to assure it
2237 * won't get destroyed while we are working with it. Once the caller is
2238 * done with it, memcg_kmem_put_cache() must be called to release the
2241 struct kmem_cache
*memcg_kmem_get_cache(struct kmem_cache
*cachep
)
2243 struct mem_cgroup
*memcg
;
2244 struct kmem_cache
*memcg_cachep
;
2247 VM_BUG_ON(!is_root_cache(cachep
));
2249 if (memcg_kmem_bypass())
2252 if (current
->memcg_kmem_skip_account
)
2255 memcg
= get_mem_cgroup_from_mm(current
->mm
);
2256 kmemcg_id
= READ_ONCE(memcg
->kmemcg_id
);
2260 memcg_cachep
= cache_from_memcg_idx(cachep
, kmemcg_id
);
2261 if (likely(memcg_cachep
))
2262 return memcg_cachep
;
2265 * If we are in a safe context (can wait, and not in interrupt
2266 * context), we could be be predictable and return right away.
2267 * This would guarantee that the allocation being performed
2268 * already belongs in the new cache.
2270 * However, there are some clashes that can arrive from locking.
2271 * For instance, because we acquire the slab_mutex while doing
2272 * memcg_create_kmem_cache, this means no further allocation
2273 * could happen with the slab_mutex held. So it's better to
2276 memcg_schedule_kmem_cache_create(memcg
, cachep
);
2278 css_put(&memcg
->css
);
2283 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2284 * @cachep: the cache returned by memcg_kmem_get_cache
2286 void memcg_kmem_put_cache(struct kmem_cache
*cachep
)
2288 if (!is_root_cache(cachep
))
2289 css_put(&cachep
->memcg_params
.memcg
->css
);
2293 * memcg_kmem_charge: charge a kmem page
2294 * @page: page to charge
2295 * @gfp: reclaim mode
2296 * @order: allocation order
2297 * @memcg: memory cgroup to charge
2299 * Returns 0 on success, an error code on failure.
2301 int memcg_kmem_charge_memcg(struct page
*page
, gfp_t gfp
, int order
,
2302 struct mem_cgroup
*memcg
)
2304 unsigned int nr_pages
= 1 << order
;
2305 struct page_counter
*counter
;
2308 ret
= try_charge(memcg
, gfp
, nr_pages
);
2312 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) &&
2313 !page_counter_try_charge(&memcg
->kmem
, nr_pages
, &counter
)) {
2314 cancel_charge(memcg
, nr_pages
);
2318 page
->mem_cgroup
= memcg
;
2324 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2325 * @page: page to charge
2326 * @gfp: reclaim mode
2327 * @order: allocation order
2329 * Returns 0 on success, an error code on failure.
2331 int memcg_kmem_charge(struct page
*page
, gfp_t gfp
, int order
)
2333 struct mem_cgroup
*memcg
;
2336 if (memcg_kmem_bypass())
2339 memcg
= get_mem_cgroup_from_mm(current
->mm
);
2340 if (!mem_cgroup_is_root(memcg
)) {
2341 ret
= memcg_kmem_charge_memcg(page
, gfp
, order
, memcg
);
2343 __SetPageKmemcg(page
);
2345 css_put(&memcg
->css
);
2349 * memcg_kmem_uncharge: uncharge a kmem page
2350 * @page: page to uncharge
2351 * @order: allocation order
2353 void memcg_kmem_uncharge(struct page
*page
, int order
)
2355 struct mem_cgroup
*memcg
= page
->mem_cgroup
;
2356 unsigned int nr_pages
= 1 << order
;
2361 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg
), page
);
2363 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
))
2364 page_counter_uncharge(&memcg
->kmem
, nr_pages
);
2366 page_counter_uncharge(&memcg
->memory
, nr_pages
);
2367 if (do_memsw_account())
2368 page_counter_uncharge(&memcg
->memsw
, nr_pages
);
2370 page
->mem_cgroup
= NULL
;
2372 /* slab pages do not have PageKmemcg flag set */
2373 if (PageKmemcg(page
))
2374 __ClearPageKmemcg(page
);
2376 css_put_many(&memcg
->css
, nr_pages
);
2378 #endif /* !CONFIG_SLOB */
2380 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2383 * Because tail pages are not marked as "used", set it. We're under
2384 * zone_lru_lock and migration entries setup in all page mappings.
2386 void mem_cgroup_split_huge_fixup(struct page
*head
)
2390 if (mem_cgroup_disabled())
2393 for (i
= 1; i
< HPAGE_PMD_NR
; i
++)
2394 head
[i
].mem_cgroup
= head
->mem_cgroup
;
2396 __this_cpu_sub(head
->mem_cgroup
->stat
->count
[MEMCG_RSS_HUGE
],
2399 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2401 #ifdef CONFIG_MEMCG_SWAP
2402 static void mem_cgroup_swap_statistics(struct mem_cgroup
*memcg
,
2405 this_cpu_add(memcg
->stat
->count
[MEMCG_SWAP
], nr_entries
);
2409 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2410 * @entry: swap entry to be moved
2411 * @from: mem_cgroup which the entry is moved from
2412 * @to: mem_cgroup which the entry is moved to
2414 * It succeeds only when the swap_cgroup's record for this entry is the same
2415 * as the mem_cgroup's id of @from.
2417 * Returns 0 on success, -EINVAL on failure.
2419 * The caller must have charged to @to, IOW, called page_counter_charge() about
2420 * both res and memsw, and called css_get().
2422 static int mem_cgroup_move_swap_account(swp_entry_t entry
,
2423 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
2425 unsigned short old_id
, new_id
;
2427 old_id
= mem_cgroup_id(from
);
2428 new_id
= mem_cgroup_id(to
);
2430 if (swap_cgroup_cmpxchg(entry
, old_id
, new_id
) == old_id
) {
2431 mem_cgroup_swap_statistics(from
, -1);
2432 mem_cgroup_swap_statistics(to
, 1);
2438 static inline int mem_cgroup_move_swap_account(swp_entry_t entry
,
2439 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
2445 static DEFINE_MUTEX(memcg_limit_mutex
);
2447 static int mem_cgroup_resize_limit(struct mem_cgroup
*memcg
,
2448 unsigned long limit
)
2450 unsigned long curusage
;
2451 unsigned long oldusage
;
2452 bool enlarge
= false;
2457 * For keeping hierarchical_reclaim simple, how long we should retry
2458 * is depends on callers. We set our retry-count to be function
2459 * of # of children which we should visit in this loop.
2461 retry_count
= MEM_CGROUP_RECLAIM_RETRIES
*
2462 mem_cgroup_count_children(memcg
);
2464 oldusage
= page_counter_read(&memcg
->memory
);
2467 if (signal_pending(current
)) {
2472 mutex_lock(&memcg_limit_mutex
);
2473 if (limit
> memcg
->memsw
.limit
) {
2474 mutex_unlock(&memcg_limit_mutex
);
2478 if (limit
> memcg
->memory
.limit
)
2480 ret
= page_counter_limit(&memcg
->memory
, limit
);
2481 mutex_unlock(&memcg_limit_mutex
);
2486 try_to_free_mem_cgroup_pages(memcg
, 1, GFP_KERNEL
, true);
2488 curusage
= page_counter_read(&memcg
->memory
);
2489 /* Usage is reduced ? */
2490 if (curusage
>= oldusage
)
2493 oldusage
= curusage
;
2494 } while (retry_count
);
2496 if (!ret
&& enlarge
)
2497 memcg_oom_recover(memcg
);
2502 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup
*memcg
,
2503 unsigned long limit
)
2505 unsigned long curusage
;
2506 unsigned long oldusage
;
2507 bool enlarge
= false;
2511 /* see mem_cgroup_resize_res_limit */
2512 retry_count
= MEM_CGROUP_RECLAIM_RETRIES
*
2513 mem_cgroup_count_children(memcg
);
2515 oldusage
= page_counter_read(&memcg
->memsw
);
2518 if (signal_pending(current
)) {
2523 mutex_lock(&memcg_limit_mutex
);
2524 if (limit
< memcg
->memory
.limit
) {
2525 mutex_unlock(&memcg_limit_mutex
);
2529 if (limit
> memcg
->memsw
.limit
)
2531 ret
= page_counter_limit(&memcg
->memsw
, limit
);
2532 mutex_unlock(&memcg_limit_mutex
);
2537 try_to_free_mem_cgroup_pages(memcg
, 1, GFP_KERNEL
, false);
2539 curusage
= page_counter_read(&memcg
->memsw
);
2540 /* Usage is reduced ? */
2541 if (curusage
>= oldusage
)
2544 oldusage
= curusage
;
2545 } while (retry_count
);
2547 if (!ret
&& enlarge
)
2548 memcg_oom_recover(memcg
);
2553 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t
*pgdat
, int order
,
2555 unsigned long *total_scanned
)
2557 unsigned long nr_reclaimed
= 0;
2558 struct mem_cgroup_per_node
*mz
, *next_mz
= NULL
;
2559 unsigned long reclaimed
;
2561 struct mem_cgroup_tree_per_node
*mctz
;
2562 unsigned long excess
;
2563 unsigned long nr_scanned
;
2568 mctz
= soft_limit_tree_node(pgdat
->node_id
);
2571 * Do not even bother to check the largest node if the root
2572 * is empty. Do it lockless to prevent lock bouncing. Races
2573 * are acceptable as soft limit is best effort anyway.
2575 if (!mctz
|| RB_EMPTY_ROOT(&mctz
->rb_root
))
2579 * This loop can run a while, specially if mem_cgroup's continuously
2580 * keep exceeding their soft limit and putting the system under
2587 mz
= mem_cgroup_largest_soft_limit_node(mctz
);
2592 reclaimed
= mem_cgroup_soft_reclaim(mz
->memcg
, pgdat
,
2593 gfp_mask
, &nr_scanned
);
2594 nr_reclaimed
+= reclaimed
;
2595 *total_scanned
+= nr_scanned
;
2596 spin_lock_irq(&mctz
->lock
);
2597 __mem_cgroup_remove_exceeded(mz
, mctz
);
2600 * If we failed to reclaim anything from this memory cgroup
2601 * it is time to move on to the next cgroup
2605 next_mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
2607 excess
= soft_limit_excess(mz
->memcg
);
2609 * One school of thought says that we should not add
2610 * back the node to the tree if reclaim returns 0.
2611 * But our reclaim could return 0, simply because due
2612 * to priority we are exposing a smaller subset of
2613 * memory to reclaim from. Consider this as a longer
2616 /* If excess == 0, no tree ops */
2617 __mem_cgroup_insert_exceeded(mz
, mctz
, excess
);
2618 spin_unlock_irq(&mctz
->lock
);
2619 css_put(&mz
->memcg
->css
);
2622 * Could not reclaim anything and there are no more
2623 * mem cgroups to try or we seem to be looping without
2624 * reclaiming anything.
2626 if (!nr_reclaimed
&&
2628 loop
> MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS
))
2630 } while (!nr_reclaimed
);
2632 css_put(&next_mz
->memcg
->css
);
2633 return nr_reclaimed
;
2637 * Test whether @memcg has children, dead or alive. Note that this
2638 * function doesn't care whether @memcg has use_hierarchy enabled and
2639 * returns %true if there are child csses according to the cgroup
2640 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2642 static inline bool memcg_has_children(struct mem_cgroup
*memcg
)
2647 ret
= css_next_child(NULL
, &memcg
->css
);
2653 * Reclaims as many pages from the given memcg as possible.
2655 * Caller is responsible for holding css reference for memcg.
2657 static int mem_cgroup_force_empty(struct mem_cgroup
*memcg
)
2659 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2661 /* we call try-to-free pages for make this cgroup empty */
2662 lru_add_drain_all();
2663 /* try to free all pages in this cgroup */
2664 while (nr_retries
&& page_counter_read(&memcg
->memory
)) {
2667 if (signal_pending(current
))
2670 progress
= try_to_free_mem_cgroup_pages(memcg
, 1,
2674 /* maybe some writeback is necessary */
2675 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
2683 static ssize_t
mem_cgroup_force_empty_write(struct kernfs_open_file
*of
,
2684 char *buf
, size_t nbytes
,
2687 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
2689 if (mem_cgroup_is_root(memcg
))
2691 return mem_cgroup_force_empty(memcg
) ?: nbytes
;
2694 static u64
mem_cgroup_hierarchy_read(struct cgroup_subsys_state
*css
,
2697 return mem_cgroup_from_css(css
)->use_hierarchy
;
2700 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state
*css
,
2701 struct cftype
*cft
, u64 val
)
2704 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
2705 struct mem_cgroup
*parent_memcg
= mem_cgroup_from_css(memcg
->css
.parent
);
2707 if (memcg
->use_hierarchy
== val
)
2711 * If parent's use_hierarchy is set, we can't make any modifications
2712 * in the child subtrees. If it is unset, then the change can
2713 * occur, provided the current cgroup has no children.
2715 * For the root cgroup, parent_mem is NULL, we allow value to be
2716 * set if there are no children.
2718 if ((!parent_memcg
|| !parent_memcg
->use_hierarchy
) &&
2719 (val
== 1 || val
== 0)) {
2720 if (!memcg_has_children(memcg
))
2721 memcg
->use_hierarchy
= val
;
2730 static void tree_stat(struct mem_cgroup
*memcg
, unsigned long *stat
)
2732 struct mem_cgroup
*iter
;
2735 memset(stat
, 0, sizeof(*stat
) * MEMCG_NR_STAT
);
2737 for_each_mem_cgroup_tree(iter
, memcg
) {
2738 for (i
= 0; i
< MEMCG_NR_STAT
; i
++)
2739 stat
[i
] += memcg_page_state(iter
, i
);
2743 static void tree_events(struct mem_cgroup
*memcg
, unsigned long *events
)
2745 struct mem_cgroup
*iter
;
2748 memset(events
, 0, sizeof(*events
) * MEMCG_NR_EVENTS
);
2750 for_each_mem_cgroup_tree(iter
, memcg
) {
2751 for (i
= 0; i
< MEMCG_NR_EVENTS
; i
++)
2752 events
[i
] += memcg_sum_events(iter
, i
);
2756 static unsigned long mem_cgroup_usage(struct mem_cgroup
*memcg
, bool swap
)
2758 unsigned long val
= 0;
2760 if (mem_cgroup_is_root(memcg
)) {
2761 struct mem_cgroup
*iter
;
2763 for_each_mem_cgroup_tree(iter
, memcg
) {
2764 val
+= memcg_page_state(iter
, MEMCG_CACHE
);
2765 val
+= memcg_page_state(iter
, MEMCG_RSS
);
2767 val
+= memcg_page_state(iter
, MEMCG_SWAP
);
2771 val
= page_counter_read(&memcg
->memory
);
2773 val
= page_counter_read(&memcg
->memsw
);
2786 static u64
mem_cgroup_read_u64(struct cgroup_subsys_state
*css
,
2789 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
2790 struct page_counter
*counter
;
2792 switch (MEMFILE_TYPE(cft
->private)) {
2794 counter
= &memcg
->memory
;
2797 counter
= &memcg
->memsw
;
2800 counter
= &memcg
->kmem
;
2803 counter
= &memcg
->tcpmem
;
2809 switch (MEMFILE_ATTR(cft
->private)) {
2811 if (counter
== &memcg
->memory
)
2812 return (u64
)mem_cgroup_usage(memcg
, false) * PAGE_SIZE
;
2813 if (counter
== &memcg
->memsw
)
2814 return (u64
)mem_cgroup_usage(memcg
, true) * PAGE_SIZE
;
2815 return (u64
)page_counter_read(counter
) * PAGE_SIZE
;
2817 return (u64
)counter
->limit
* PAGE_SIZE
;
2819 return (u64
)counter
->watermark
* PAGE_SIZE
;
2821 return counter
->failcnt
;
2822 case RES_SOFT_LIMIT
:
2823 return (u64
)memcg
->soft_limit
* PAGE_SIZE
;
2830 static int memcg_online_kmem(struct mem_cgroup
*memcg
)
2834 if (cgroup_memory_nokmem
)
2837 BUG_ON(memcg
->kmemcg_id
>= 0);
2838 BUG_ON(memcg
->kmem_state
);
2840 memcg_id
= memcg_alloc_cache_id();
2844 static_branch_inc(&memcg_kmem_enabled_key
);
2846 * A memory cgroup is considered kmem-online as soon as it gets
2847 * kmemcg_id. Setting the id after enabling static branching will
2848 * guarantee no one starts accounting before all call sites are
2851 memcg
->kmemcg_id
= memcg_id
;
2852 memcg
->kmem_state
= KMEM_ONLINE
;
2853 INIT_LIST_HEAD(&memcg
->kmem_caches
);
2858 static void memcg_offline_kmem(struct mem_cgroup
*memcg
)
2860 struct cgroup_subsys_state
*css
;
2861 struct mem_cgroup
*parent
, *child
;
2864 if (memcg
->kmem_state
!= KMEM_ONLINE
)
2867 * Clear the online state before clearing memcg_caches array
2868 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2869 * guarantees that no cache will be created for this cgroup
2870 * after we are done (see memcg_create_kmem_cache()).
2872 memcg
->kmem_state
= KMEM_ALLOCATED
;
2874 memcg_deactivate_kmem_caches(memcg
);
2876 kmemcg_id
= memcg
->kmemcg_id
;
2877 BUG_ON(kmemcg_id
< 0);
2879 parent
= parent_mem_cgroup(memcg
);
2881 parent
= root_mem_cgroup
;
2884 * Change kmemcg_id of this cgroup and all its descendants to the
2885 * parent's id, and then move all entries from this cgroup's list_lrus
2886 * to ones of the parent. After we have finished, all list_lrus
2887 * corresponding to this cgroup are guaranteed to remain empty. The
2888 * ordering is imposed by list_lru_node->lock taken by
2889 * memcg_drain_all_list_lrus().
2891 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2892 css_for_each_descendant_pre(css
, &memcg
->css
) {
2893 child
= mem_cgroup_from_css(css
);
2894 BUG_ON(child
->kmemcg_id
!= kmemcg_id
);
2895 child
->kmemcg_id
= parent
->kmemcg_id
;
2896 if (!memcg
->use_hierarchy
)
2901 memcg_drain_all_list_lrus(kmemcg_id
, parent
->kmemcg_id
);
2903 memcg_free_cache_id(kmemcg_id
);
2906 static void memcg_free_kmem(struct mem_cgroup
*memcg
)
2908 /* css_alloc() failed, offlining didn't happen */
2909 if (unlikely(memcg
->kmem_state
== KMEM_ONLINE
))
2910 memcg_offline_kmem(memcg
);
2912 if (memcg
->kmem_state
== KMEM_ALLOCATED
) {
2913 memcg_destroy_kmem_caches(memcg
);
2914 static_branch_dec(&memcg_kmem_enabled_key
);
2915 WARN_ON(page_counter_read(&memcg
->kmem
));
2919 static int memcg_online_kmem(struct mem_cgroup
*memcg
)
2923 static void memcg_offline_kmem(struct mem_cgroup
*memcg
)
2926 static void memcg_free_kmem(struct mem_cgroup
*memcg
)
2929 #endif /* !CONFIG_SLOB */
2931 static int memcg_update_kmem_limit(struct mem_cgroup
*memcg
,
2932 unsigned long limit
)
2936 mutex_lock(&memcg_limit_mutex
);
2937 ret
= page_counter_limit(&memcg
->kmem
, limit
);
2938 mutex_unlock(&memcg_limit_mutex
);
2942 static int memcg_update_tcp_limit(struct mem_cgroup
*memcg
, unsigned long limit
)
2946 mutex_lock(&memcg_limit_mutex
);
2948 ret
= page_counter_limit(&memcg
->tcpmem
, limit
);
2952 if (!memcg
->tcpmem_active
) {
2954 * The active flag needs to be written after the static_key
2955 * update. This is what guarantees that the socket activation
2956 * function is the last one to run. See mem_cgroup_sk_alloc()
2957 * for details, and note that we don't mark any socket as
2958 * belonging to this memcg until that flag is up.
2960 * We need to do this, because static_keys will span multiple
2961 * sites, but we can't control their order. If we mark a socket
2962 * as accounted, but the accounting functions are not patched in
2963 * yet, we'll lose accounting.
2965 * We never race with the readers in mem_cgroup_sk_alloc(),
2966 * because when this value change, the code to process it is not
2969 static_branch_inc(&memcg_sockets_enabled_key
);
2970 memcg
->tcpmem_active
= true;
2973 mutex_unlock(&memcg_limit_mutex
);
2978 * The user of this function is...
2981 static ssize_t
mem_cgroup_write(struct kernfs_open_file
*of
,
2982 char *buf
, size_t nbytes
, loff_t off
)
2984 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
2985 unsigned long nr_pages
;
2988 buf
= strstrip(buf
);
2989 ret
= page_counter_memparse(buf
, "-1", &nr_pages
);
2993 switch (MEMFILE_ATTR(of_cft(of
)->private)) {
2995 if (mem_cgroup_is_root(memcg
)) { /* Can't set limit on root */
2999 switch (MEMFILE_TYPE(of_cft(of
)->private)) {
3001 ret
= mem_cgroup_resize_limit(memcg
, nr_pages
);
3004 ret
= mem_cgroup_resize_memsw_limit(memcg
, nr_pages
);
3007 ret
= memcg_update_kmem_limit(memcg
, nr_pages
);
3010 ret
= memcg_update_tcp_limit(memcg
, nr_pages
);
3014 case RES_SOFT_LIMIT
:
3015 memcg
->soft_limit
= nr_pages
;
3019 return ret
?: nbytes
;
3022 static ssize_t
mem_cgroup_reset(struct kernfs_open_file
*of
, char *buf
,
3023 size_t nbytes
, loff_t off
)
3025 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
3026 struct page_counter
*counter
;
3028 switch (MEMFILE_TYPE(of_cft(of
)->private)) {
3030 counter
= &memcg
->memory
;
3033 counter
= &memcg
->memsw
;
3036 counter
= &memcg
->kmem
;
3039 counter
= &memcg
->tcpmem
;
3045 switch (MEMFILE_ATTR(of_cft(of
)->private)) {
3047 page_counter_reset_watermark(counter
);
3050 counter
->failcnt
= 0;
3059 static u64
mem_cgroup_move_charge_read(struct cgroup_subsys_state
*css
,
3062 return mem_cgroup_from_css(css
)->move_charge_at_immigrate
;
3066 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state
*css
,
3067 struct cftype
*cft
, u64 val
)
3069 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3071 if (val
& ~MOVE_MASK
)
3075 * No kind of locking is needed in here, because ->can_attach() will
3076 * check this value once in the beginning of the process, and then carry
3077 * on with stale data. This means that changes to this value will only
3078 * affect task migrations starting after the change.
3080 memcg
->move_charge_at_immigrate
= val
;
3084 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state
*css
,
3085 struct cftype
*cft
, u64 val
)
3092 static int memcg_numa_stat_show(struct seq_file
*m
, void *v
)
3096 unsigned int lru_mask
;
3099 static const struct numa_stat stats
[] = {
3100 { "total", LRU_ALL
},
3101 { "file", LRU_ALL_FILE
},
3102 { "anon", LRU_ALL_ANON
},
3103 { "unevictable", BIT(LRU_UNEVICTABLE
) },
3105 const struct numa_stat
*stat
;
3108 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
3110 for (stat
= stats
; stat
< stats
+ ARRAY_SIZE(stats
); stat
++) {
3111 nr
= mem_cgroup_nr_lru_pages(memcg
, stat
->lru_mask
);
3112 seq_printf(m
, "%s=%lu", stat
->name
, nr
);
3113 for_each_node_state(nid
, N_MEMORY
) {
3114 nr
= mem_cgroup_node_nr_lru_pages(memcg
, nid
,
3116 seq_printf(m
, " N%d=%lu", nid
, nr
);
3121 for (stat
= stats
; stat
< stats
+ ARRAY_SIZE(stats
); stat
++) {
3122 struct mem_cgroup
*iter
;
3125 for_each_mem_cgroup_tree(iter
, memcg
)
3126 nr
+= mem_cgroup_nr_lru_pages(iter
, stat
->lru_mask
);
3127 seq_printf(m
, "hierarchical_%s=%lu", stat
->name
, nr
);
3128 for_each_node_state(nid
, N_MEMORY
) {
3130 for_each_mem_cgroup_tree(iter
, memcg
)
3131 nr
+= mem_cgroup_node_nr_lru_pages(
3132 iter
, nid
, stat
->lru_mask
);
3133 seq_printf(m
, " N%d=%lu", nid
, nr
);
3140 #endif /* CONFIG_NUMA */
3142 /* Universal VM events cgroup1 shows, original sort order */
3143 unsigned int memcg1_events
[] = {
3150 static const char *const memcg1_event_names
[] = {
3157 static int memcg_stat_show(struct seq_file
*m
, void *v
)
3159 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
3160 unsigned long memory
, memsw
;
3161 struct mem_cgroup
*mi
;
3164 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names
) != ARRAY_SIZE(memcg1_stats
));
3165 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names
) != NR_LRU_LISTS
);
3167 for (i
= 0; i
< ARRAY_SIZE(memcg1_stats
); i
++) {
3168 if (memcg1_stats
[i
] == MEMCG_SWAP
&& !do_memsw_account())
3170 seq_printf(m
, "%s %lu\n", memcg1_stat_names
[i
],
3171 memcg_page_state(memcg
, memcg1_stats
[i
]) *
3175 for (i
= 0; i
< ARRAY_SIZE(memcg1_events
); i
++)
3176 seq_printf(m
, "%s %lu\n", memcg1_event_names
[i
],
3177 memcg_sum_events(memcg
, memcg1_events
[i
]));
3179 for (i
= 0; i
< NR_LRU_LISTS
; i
++)
3180 seq_printf(m
, "%s %lu\n", mem_cgroup_lru_names
[i
],
3181 mem_cgroup_nr_lru_pages(memcg
, BIT(i
)) * PAGE_SIZE
);
3183 /* Hierarchical information */
3184 memory
= memsw
= PAGE_COUNTER_MAX
;
3185 for (mi
= memcg
; mi
; mi
= parent_mem_cgroup(mi
)) {
3186 memory
= min(memory
, mi
->memory
.limit
);
3187 memsw
= min(memsw
, mi
->memsw
.limit
);
3189 seq_printf(m
, "hierarchical_memory_limit %llu\n",
3190 (u64
)memory
* PAGE_SIZE
);
3191 if (do_memsw_account())
3192 seq_printf(m
, "hierarchical_memsw_limit %llu\n",
3193 (u64
)memsw
* PAGE_SIZE
);
3195 for (i
= 0; i
< ARRAY_SIZE(memcg1_stats
); i
++) {
3196 unsigned long long val
= 0;
3198 if (memcg1_stats
[i
] == MEMCG_SWAP
&& !do_memsw_account())
3200 for_each_mem_cgroup_tree(mi
, memcg
)
3201 val
+= memcg_page_state(mi
, memcg1_stats
[i
]) *
3203 seq_printf(m
, "total_%s %llu\n", memcg1_stat_names
[i
], val
);
3206 for (i
= 0; i
< ARRAY_SIZE(memcg1_events
); i
++) {
3207 unsigned long long val
= 0;
3209 for_each_mem_cgroup_tree(mi
, memcg
)
3210 val
+= memcg_sum_events(mi
, memcg1_events
[i
]);
3211 seq_printf(m
, "total_%s %llu\n", memcg1_event_names
[i
], val
);
3214 for (i
= 0; i
< NR_LRU_LISTS
; i
++) {
3215 unsigned long long val
= 0;
3217 for_each_mem_cgroup_tree(mi
, memcg
)
3218 val
+= mem_cgroup_nr_lru_pages(mi
, BIT(i
)) * PAGE_SIZE
;
3219 seq_printf(m
, "total_%s %llu\n", mem_cgroup_lru_names
[i
], val
);
3222 #ifdef CONFIG_DEBUG_VM
3225 struct mem_cgroup_per_node
*mz
;
3226 struct zone_reclaim_stat
*rstat
;
3227 unsigned long recent_rotated
[2] = {0, 0};
3228 unsigned long recent_scanned
[2] = {0, 0};
3230 for_each_online_pgdat(pgdat
) {
3231 mz
= mem_cgroup_nodeinfo(memcg
, pgdat
->node_id
);
3232 rstat
= &mz
->lruvec
.reclaim_stat
;
3234 recent_rotated
[0] += rstat
->recent_rotated
[0];
3235 recent_rotated
[1] += rstat
->recent_rotated
[1];
3236 recent_scanned
[0] += rstat
->recent_scanned
[0];
3237 recent_scanned
[1] += rstat
->recent_scanned
[1];
3239 seq_printf(m
, "recent_rotated_anon %lu\n", recent_rotated
[0]);
3240 seq_printf(m
, "recent_rotated_file %lu\n", recent_rotated
[1]);
3241 seq_printf(m
, "recent_scanned_anon %lu\n", recent_scanned
[0]);
3242 seq_printf(m
, "recent_scanned_file %lu\n", recent_scanned
[1]);
3249 static u64
mem_cgroup_swappiness_read(struct cgroup_subsys_state
*css
,
3252 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3254 return mem_cgroup_swappiness(memcg
);
3257 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state
*css
,
3258 struct cftype
*cft
, u64 val
)
3260 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3266 memcg
->swappiness
= val
;
3268 vm_swappiness
= val
;
3273 static void __mem_cgroup_threshold(struct mem_cgroup
*memcg
, bool swap
)
3275 struct mem_cgroup_threshold_ary
*t
;
3276 unsigned long usage
;
3281 t
= rcu_dereference(memcg
->thresholds
.primary
);
3283 t
= rcu_dereference(memcg
->memsw_thresholds
.primary
);
3288 usage
= mem_cgroup_usage(memcg
, swap
);
3291 * current_threshold points to threshold just below or equal to usage.
3292 * If it's not true, a threshold was crossed after last
3293 * call of __mem_cgroup_threshold().
3295 i
= t
->current_threshold
;
3298 * Iterate backward over array of thresholds starting from
3299 * current_threshold and check if a threshold is crossed.
3300 * If none of thresholds below usage is crossed, we read
3301 * only one element of the array here.
3303 for (; i
>= 0 && unlikely(t
->entries
[i
].threshold
> usage
); i
--)
3304 eventfd_signal(t
->entries
[i
].eventfd
, 1);
3306 /* i = current_threshold + 1 */
3310 * Iterate forward over array of thresholds starting from
3311 * current_threshold+1 and check if a threshold is crossed.
3312 * If none of thresholds above usage is crossed, we read
3313 * only one element of the array here.
3315 for (; i
< t
->size
&& unlikely(t
->entries
[i
].threshold
<= usage
); i
++)
3316 eventfd_signal(t
->entries
[i
].eventfd
, 1);
3318 /* Update current_threshold */
3319 t
->current_threshold
= i
- 1;
3324 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
)
3327 __mem_cgroup_threshold(memcg
, false);
3328 if (do_memsw_account())
3329 __mem_cgroup_threshold(memcg
, true);
3331 memcg
= parent_mem_cgroup(memcg
);
3335 static int compare_thresholds(const void *a
, const void *b
)
3337 const struct mem_cgroup_threshold
*_a
= a
;
3338 const struct mem_cgroup_threshold
*_b
= b
;
3340 if (_a
->threshold
> _b
->threshold
)
3343 if (_a
->threshold
< _b
->threshold
)
3349 static int mem_cgroup_oom_notify_cb(struct mem_cgroup
*memcg
)
3351 struct mem_cgroup_eventfd_list
*ev
;
3353 spin_lock(&memcg_oom_lock
);
3355 list_for_each_entry(ev
, &memcg
->oom_notify
, list
)
3356 eventfd_signal(ev
->eventfd
, 1);
3358 spin_unlock(&memcg_oom_lock
);
3362 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
)
3364 struct mem_cgroup
*iter
;
3366 for_each_mem_cgroup_tree(iter
, memcg
)
3367 mem_cgroup_oom_notify_cb(iter
);
3370 static int __mem_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
3371 struct eventfd_ctx
*eventfd
, const char *args
, enum res_type type
)
3373 struct mem_cgroup_thresholds
*thresholds
;
3374 struct mem_cgroup_threshold_ary
*new;
3375 unsigned long threshold
;
3376 unsigned long usage
;
3379 ret
= page_counter_memparse(args
, "-1", &threshold
);
3383 mutex_lock(&memcg
->thresholds_lock
);
3386 thresholds
= &memcg
->thresholds
;
3387 usage
= mem_cgroup_usage(memcg
, false);
3388 } else if (type
== _MEMSWAP
) {
3389 thresholds
= &memcg
->memsw_thresholds
;
3390 usage
= mem_cgroup_usage(memcg
, true);
3394 /* Check if a threshold crossed before adding a new one */
3395 if (thresholds
->primary
)
3396 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
3398 size
= thresholds
->primary
? thresholds
->primary
->size
+ 1 : 1;
3400 /* Allocate memory for new array of thresholds */
3401 new = kmalloc(sizeof(*new) + size
* sizeof(struct mem_cgroup_threshold
),
3409 /* Copy thresholds (if any) to new array */
3410 if (thresholds
->primary
) {
3411 memcpy(new->entries
, thresholds
->primary
->entries
, (size
- 1) *
3412 sizeof(struct mem_cgroup_threshold
));
3415 /* Add new threshold */
3416 new->entries
[size
- 1].eventfd
= eventfd
;
3417 new->entries
[size
- 1].threshold
= threshold
;
3419 /* Sort thresholds. Registering of new threshold isn't time-critical */
3420 sort(new->entries
, size
, sizeof(struct mem_cgroup_threshold
),
3421 compare_thresholds
, NULL
);
3423 /* Find current threshold */
3424 new->current_threshold
= -1;
3425 for (i
= 0; i
< size
; i
++) {
3426 if (new->entries
[i
].threshold
<= usage
) {
3428 * new->current_threshold will not be used until
3429 * rcu_assign_pointer(), so it's safe to increment
3432 ++new->current_threshold
;
3437 /* Free old spare buffer and save old primary buffer as spare */
3438 kfree(thresholds
->spare
);
3439 thresholds
->spare
= thresholds
->primary
;
3441 rcu_assign_pointer(thresholds
->primary
, new);
3443 /* To be sure that nobody uses thresholds */
3447 mutex_unlock(&memcg
->thresholds_lock
);
3452 static int mem_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
3453 struct eventfd_ctx
*eventfd
, const char *args
)
3455 return __mem_cgroup_usage_register_event(memcg
, eventfd
, args
, _MEM
);
3458 static int memsw_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
3459 struct eventfd_ctx
*eventfd
, const char *args
)
3461 return __mem_cgroup_usage_register_event(memcg
, eventfd
, args
, _MEMSWAP
);
3464 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
3465 struct eventfd_ctx
*eventfd
, enum res_type type
)
3467 struct mem_cgroup_thresholds
*thresholds
;
3468 struct mem_cgroup_threshold_ary
*new;
3469 unsigned long usage
;
3472 mutex_lock(&memcg
->thresholds_lock
);
3475 thresholds
= &memcg
->thresholds
;
3476 usage
= mem_cgroup_usage(memcg
, false);
3477 } else if (type
== _MEMSWAP
) {
3478 thresholds
= &memcg
->memsw_thresholds
;
3479 usage
= mem_cgroup_usage(memcg
, true);
3483 if (!thresholds
->primary
)
3486 /* Check if a threshold crossed before removing */
3487 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
3489 /* Calculate new number of threshold */
3491 for (i
= 0; i
< thresholds
->primary
->size
; i
++) {
3492 if (thresholds
->primary
->entries
[i
].eventfd
!= eventfd
)
3496 new = thresholds
->spare
;
3498 /* Set thresholds array to NULL if we don't have thresholds */
3507 /* Copy thresholds and find current threshold */
3508 new->current_threshold
= -1;
3509 for (i
= 0, j
= 0; i
< thresholds
->primary
->size
; i
++) {
3510 if (thresholds
->primary
->entries
[i
].eventfd
== eventfd
)
3513 new->entries
[j
] = thresholds
->primary
->entries
[i
];
3514 if (new->entries
[j
].threshold
<= usage
) {
3516 * new->current_threshold will not be used
3517 * until rcu_assign_pointer(), so it's safe to increment
3520 ++new->current_threshold
;
3526 /* Swap primary and spare array */
3527 thresholds
->spare
= thresholds
->primary
;
3529 rcu_assign_pointer(thresholds
->primary
, new);
3531 /* To be sure that nobody uses thresholds */
3534 /* If all events are unregistered, free the spare array */
3536 kfree(thresholds
->spare
);
3537 thresholds
->spare
= NULL
;
3540 mutex_unlock(&memcg
->thresholds_lock
);
3543 static void mem_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
3544 struct eventfd_ctx
*eventfd
)
3546 return __mem_cgroup_usage_unregister_event(memcg
, eventfd
, _MEM
);
3549 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
3550 struct eventfd_ctx
*eventfd
)
3552 return __mem_cgroup_usage_unregister_event(memcg
, eventfd
, _MEMSWAP
);
3555 static int mem_cgroup_oom_register_event(struct mem_cgroup
*memcg
,
3556 struct eventfd_ctx
*eventfd
, const char *args
)
3558 struct mem_cgroup_eventfd_list
*event
;
3560 event
= kmalloc(sizeof(*event
), GFP_KERNEL
);
3564 spin_lock(&memcg_oom_lock
);
3566 event
->eventfd
= eventfd
;
3567 list_add(&event
->list
, &memcg
->oom_notify
);
3569 /* already in OOM ? */
3570 if (memcg
->under_oom
)
3571 eventfd_signal(eventfd
, 1);
3572 spin_unlock(&memcg_oom_lock
);
3577 static void mem_cgroup_oom_unregister_event(struct mem_cgroup
*memcg
,
3578 struct eventfd_ctx
*eventfd
)
3580 struct mem_cgroup_eventfd_list
*ev
, *tmp
;
3582 spin_lock(&memcg_oom_lock
);
3584 list_for_each_entry_safe(ev
, tmp
, &memcg
->oom_notify
, list
) {
3585 if (ev
->eventfd
== eventfd
) {
3586 list_del(&ev
->list
);
3591 spin_unlock(&memcg_oom_lock
);
3594 static int mem_cgroup_oom_control_read(struct seq_file
*sf
, void *v
)
3596 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(sf
));
3598 seq_printf(sf
, "oom_kill_disable %d\n", memcg
->oom_kill_disable
);
3599 seq_printf(sf
, "under_oom %d\n", (bool)memcg
->under_oom
);
3600 seq_printf(sf
, "oom_kill %lu\n", memcg_sum_events(memcg
, OOM_KILL
));
3604 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state
*css
,
3605 struct cftype
*cft
, u64 val
)
3607 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3609 /* cannot set to root cgroup and only 0 and 1 are allowed */
3610 if (!css
->parent
|| !((val
== 0) || (val
== 1)))
3613 memcg
->oom_kill_disable
= val
;
3615 memcg_oom_recover(memcg
);
3620 #ifdef CONFIG_CGROUP_WRITEBACK
3622 struct list_head
*mem_cgroup_cgwb_list(struct mem_cgroup
*memcg
)
3624 return &memcg
->cgwb_list
;
3627 static int memcg_wb_domain_init(struct mem_cgroup
*memcg
, gfp_t gfp
)
3629 return wb_domain_init(&memcg
->cgwb_domain
, gfp
);
3632 static void memcg_wb_domain_exit(struct mem_cgroup
*memcg
)
3634 wb_domain_exit(&memcg
->cgwb_domain
);
3637 static void memcg_wb_domain_size_changed(struct mem_cgroup
*memcg
)
3639 wb_domain_size_changed(&memcg
->cgwb_domain
);
3642 struct wb_domain
*mem_cgroup_wb_domain(struct bdi_writeback
*wb
)
3644 struct mem_cgroup
*memcg
= mem_cgroup_from_css(wb
->memcg_css
);
3646 if (!memcg
->css
.parent
)
3649 return &memcg
->cgwb_domain
;
3653 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3654 * @wb: bdi_writeback in question
3655 * @pfilepages: out parameter for number of file pages
3656 * @pheadroom: out parameter for number of allocatable pages according to memcg
3657 * @pdirty: out parameter for number of dirty pages
3658 * @pwriteback: out parameter for number of pages under writeback
3660 * Determine the numbers of file, headroom, dirty, and writeback pages in
3661 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3662 * is a bit more involved.
3664 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3665 * headroom is calculated as the lowest headroom of itself and the
3666 * ancestors. Note that this doesn't consider the actual amount of
3667 * available memory in the system. The caller should further cap
3668 * *@pheadroom accordingly.
3670 void mem_cgroup_wb_stats(struct bdi_writeback
*wb
, unsigned long *pfilepages
,
3671 unsigned long *pheadroom
, unsigned long *pdirty
,
3672 unsigned long *pwriteback
)
3674 struct mem_cgroup
*memcg
= mem_cgroup_from_css(wb
->memcg_css
);
3675 struct mem_cgroup
*parent
;
3677 *pdirty
= memcg_page_state(memcg
, NR_FILE_DIRTY
);
3679 /* this should eventually include NR_UNSTABLE_NFS */
3680 *pwriteback
= memcg_page_state(memcg
, NR_WRITEBACK
);
3681 *pfilepages
= mem_cgroup_nr_lru_pages(memcg
, (1 << LRU_INACTIVE_FILE
) |
3682 (1 << LRU_ACTIVE_FILE
));
3683 *pheadroom
= PAGE_COUNTER_MAX
;
3685 while ((parent
= parent_mem_cgroup(memcg
))) {
3686 unsigned long ceiling
= min(memcg
->memory
.limit
, memcg
->high
);
3687 unsigned long used
= page_counter_read(&memcg
->memory
);
3689 *pheadroom
= min(*pheadroom
, ceiling
- min(ceiling
, used
));
3694 #else /* CONFIG_CGROUP_WRITEBACK */
3696 static int memcg_wb_domain_init(struct mem_cgroup
*memcg
, gfp_t gfp
)
3701 static void memcg_wb_domain_exit(struct mem_cgroup
*memcg
)
3705 static void memcg_wb_domain_size_changed(struct mem_cgroup
*memcg
)
3709 #endif /* CONFIG_CGROUP_WRITEBACK */
3712 * DO NOT USE IN NEW FILES.
3714 * "cgroup.event_control" implementation.
3716 * This is way over-engineered. It tries to support fully configurable
3717 * events for each user. Such level of flexibility is completely
3718 * unnecessary especially in the light of the planned unified hierarchy.
3720 * Please deprecate this and replace with something simpler if at all
3725 * Unregister event and free resources.
3727 * Gets called from workqueue.
3729 static void memcg_event_remove(struct work_struct
*work
)
3731 struct mem_cgroup_event
*event
=
3732 container_of(work
, struct mem_cgroup_event
, remove
);
3733 struct mem_cgroup
*memcg
= event
->memcg
;
3735 remove_wait_queue(event
->wqh
, &event
->wait
);
3737 event
->unregister_event(memcg
, event
->eventfd
);
3739 /* Notify userspace the event is going away. */
3740 eventfd_signal(event
->eventfd
, 1);
3742 eventfd_ctx_put(event
->eventfd
);
3744 css_put(&memcg
->css
);
3748 * Gets called on POLLHUP on eventfd when user closes it.
3750 * Called with wqh->lock held and interrupts disabled.
3752 static int memcg_event_wake(wait_queue_entry_t
*wait
, unsigned mode
,
3753 int sync
, void *key
)
3755 struct mem_cgroup_event
*event
=
3756 container_of(wait
, struct mem_cgroup_event
, wait
);
3757 struct mem_cgroup
*memcg
= event
->memcg
;
3758 unsigned long flags
= (unsigned long)key
;
3760 if (flags
& POLLHUP
) {
3762 * If the event has been detached at cgroup removal, we
3763 * can simply return knowing the other side will cleanup
3766 * We can't race against event freeing since the other
3767 * side will require wqh->lock via remove_wait_queue(),
3770 spin_lock(&memcg
->event_list_lock
);
3771 if (!list_empty(&event
->list
)) {
3772 list_del_init(&event
->list
);
3774 * We are in atomic context, but cgroup_event_remove()
3775 * may sleep, so we have to call it in workqueue.
3777 schedule_work(&event
->remove
);
3779 spin_unlock(&memcg
->event_list_lock
);
3785 static void memcg_event_ptable_queue_proc(struct file
*file
,
3786 wait_queue_head_t
*wqh
, poll_table
*pt
)
3788 struct mem_cgroup_event
*event
=
3789 container_of(pt
, struct mem_cgroup_event
, pt
);
3792 add_wait_queue(wqh
, &event
->wait
);
3796 * DO NOT USE IN NEW FILES.
3798 * Parse input and register new cgroup event handler.
3800 * Input must be in format '<event_fd> <control_fd> <args>'.
3801 * Interpretation of args is defined by control file implementation.
3803 static ssize_t
memcg_write_event_control(struct kernfs_open_file
*of
,
3804 char *buf
, size_t nbytes
, loff_t off
)
3806 struct cgroup_subsys_state
*css
= of_css(of
);
3807 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3808 struct mem_cgroup_event
*event
;
3809 struct cgroup_subsys_state
*cfile_css
;
3810 unsigned int efd
, cfd
;
3817 buf
= strstrip(buf
);
3819 efd
= simple_strtoul(buf
, &endp
, 10);
3824 cfd
= simple_strtoul(buf
, &endp
, 10);
3825 if ((*endp
!= ' ') && (*endp
!= '\0'))
3829 event
= kzalloc(sizeof(*event
), GFP_KERNEL
);
3833 event
->memcg
= memcg
;
3834 INIT_LIST_HEAD(&event
->list
);
3835 init_poll_funcptr(&event
->pt
, memcg_event_ptable_queue_proc
);
3836 init_waitqueue_func_entry(&event
->wait
, memcg_event_wake
);
3837 INIT_WORK(&event
->remove
, memcg_event_remove
);
3845 event
->eventfd
= eventfd_ctx_fileget(efile
.file
);
3846 if (IS_ERR(event
->eventfd
)) {
3847 ret
= PTR_ERR(event
->eventfd
);
3854 goto out_put_eventfd
;
3857 /* the process need read permission on control file */
3858 /* AV: shouldn't we check that it's been opened for read instead? */
3859 ret
= inode_permission(file_inode(cfile
.file
), MAY_READ
);
3864 * Determine the event callbacks and set them in @event. This used
3865 * to be done via struct cftype but cgroup core no longer knows
3866 * about these events. The following is crude but the whole thing
3867 * is for compatibility anyway.
3869 * DO NOT ADD NEW FILES.
3871 name
= cfile
.file
->f_path
.dentry
->d_name
.name
;
3873 if (!strcmp(name
, "memory.usage_in_bytes")) {
3874 event
->register_event
= mem_cgroup_usage_register_event
;
3875 event
->unregister_event
= mem_cgroup_usage_unregister_event
;
3876 } else if (!strcmp(name
, "memory.oom_control")) {
3877 event
->register_event
= mem_cgroup_oom_register_event
;
3878 event
->unregister_event
= mem_cgroup_oom_unregister_event
;
3879 } else if (!strcmp(name
, "memory.pressure_level")) {
3880 event
->register_event
= vmpressure_register_event
;
3881 event
->unregister_event
= vmpressure_unregister_event
;
3882 } else if (!strcmp(name
, "memory.memsw.usage_in_bytes")) {
3883 event
->register_event
= memsw_cgroup_usage_register_event
;
3884 event
->unregister_event
= memsw_cgroup_usage_unregister_event
;
3891 * Verify @cfile should belong to @css. Also, remaining events are
3892 * automatically removed on cgroup destruction but the removal is
3893 * asynchronous, so take an extra ref on @css.
3895 cfile_css
= css_tryget_online_from_dir(cfile
.file
->f_path
.dentry
->d_parent
,
3896 &memory_cgrp_subsys
);
3898 if (IS_ERR(cfile_css
))
3900 if (cfile_css
!= css
) {
3905 ret
= event
->register_event(memcg
, event
->eventfd
, buf
);
3909 efile
.file
->f_op
->poll(efile
.file
, &event
->pt
);
3911 spin_lock(&memcg
->event_list_lock
);
3912 list_add(&event
->list
, &memcg
->event_list
);
3913 spin_unlock(&memcg
->event_list_lock
);
3925 eventfd_ctx_put(event
->eventfd
);
3934 static struct cftype mem_cgroup_legacy_files
[] = {
3936 .name
= "usage_in_bytes",
3937 .private = MEMFILE_PRIVATE(_MEM
, RES_USAGE
),
3938 .read_u64
= mem_cgroup_read_u64
,
3941 .name
= "max_usage_in_bytes",
3942 .private = MEMFILE_PRIVATE(_MEM
, RES_MAX_USAGE
),
3943 .write
= mem_cgroup_reset
,
3944 .read_u64
= mem_cgroup_read_u64
,
3947 .name
= "limit_in_bytes",
3948 .private = MEMFILE_PRIVATE(_MEM
, RES_LIMIT
),
3949 .write
= mem_cgroup_write
,
3950 .read_u64
= mem_cgroup_read_u64
,
3953 .name
= "soft_limit_in_bytes",
3954 .private = MEMFILE_PRIVATE(_MEM
, RES_SOFT_LIMIT
),
3955 .write
= mem_cgroup_write
,
3956 .read_u64
= mem_cgroup_read_u64
,
3960 .private = MEMFILE_PRIVATE(_MEM
, RES_FAILCNT
),
3961 .write
= mem_cgroup_reset
,
3962 .read_u64
= mem_cgroup_read_u64
,
3966 .seq_show
= memcg_stat_show
,
3969 .name
= "force_empty",
3970 .write
= mem_cgroup_force_empty_write
,
3973 .name
= "use_hierarchy",
3974 .write_u64
= mem_cgroup_hierarchy_write
,
3975 .read_u64
= mem_cgroup_hierarchy_read
,
3978 .name
= "cgroup.event_control", /* XXX: for compat */
3979 .write
= memcg_write_event_control
,
3980 .flags
= CFTYPE_NO_PREFIX
| CFTYPE_WORLD_WRITABLE
,
3983 .name
= "swappiness",
3984 .read_u64
= mem_cgroup_swappiness_read
,
3985 .write_u64
= mem_cgroup_swappiness_write
,
3988 .name
= "move_charge_at_immigrate",
3989 .read_u64
= mem_cgroup_move_charge_read
,
3990 .write_u64
= mem_cgroup_move_charge_write
,
3993 .name
= "oom_control",
3994 .seq_show
= mem_cgroup_oom_control_read
,
3995 .write_u64
= mem_cgroup_oom_control_write
,
3996 .private = MEMFILE_PRIVATE(_OOM_TYPE
, OOM_CONTROL
),
3999 .name
= "pressure_level",
4003 .name
= "numa_stat",
4004 .seq_show
= memcg_numa_stat_show
,
4008 .name
= "kmem.limit_in_bytes",
4009 .private = MEMFILE_PRIVATE(_KMEM
, RES_LIMIT
),
4010 .write
= mem_cgroup_write
,
4011 .read_u64
= mem_cgroup_read_u64
,
4014 .name
= "kmem.usage_in_bytes",
4015 .private = MEMFILE_PRIVATE(_KMEM
, RES_USAGE
),
4016 .read_u64
= mem_cgroup_read_u64
,
4019 .name
= "kmem.failcnt",
4020 .private = MEMFILE_PRIVATE(_KMEM
, RES_FAILCNT
),
4021 .write
= mem_cgroup_reset
,
4022 .read_u64
= mem_cgroup_read_u64
,
4025 .name
= "kmem.max_usage_in_bytes",
4026 .private = MEMFILE_PRIVATE(_KMEM
, RES_MAX_USAGE
),
4027 .write
= mem_cgroup_reset
,
4028 .read_u64
= mem_cgroup_read_u64
,
4030 #ifdef CONFIG_SLABINFO
4032 .name
= "kmem.slabinfo",
4033 .seq_start
= memcg_slab_start
,
4034 .seq_next
= memcg_slab_next
,
4035 .seq_stop
= memcg_slab_stop
,
4036 .seq_show
= memcg_slab_show
,
4040 .name
= "kmem.tcp.limit_in_bytes",
4041 .private = MEMFILE_PRIVATE(_TCP
, RES_LIMIT
),
4042 .write
= mem_cgroup_write
,
4043 .read_u64
= mem_cgroup_read_u64
,
4046 .name
= "kmem.tcp.usage_in_bytes",
4047 .private = MEMFILE_PRIVATE(_TCP
, RES_USAGE
),
4048 .read_u64
= mem_cgroup_read_u64
,
4051 .name
= "kmem.tcp.failcnt",
4052 .private = MEMFILE_PRIVATE(_TCP
, RES_FAILCNT
),
4053 .write
= mem_cgroup_reset
,
4054 .read_u64
= mem_cgroup_read_u64
,
4057 .name
= "kmem.tcp.max_usage_in_bytes",
4058 .private = MEMFILE_PRIVATE(_TCP
, RES_MAX_USAGE
),
4059 .write
= mem_cgroup_reset
,
4060 .read_u64
= mem_cgroup_read_u64
,
4062 { }, /* terminate */
4066 * Private memory cgroup IDR
4068 * Swap-out records and page cache shadow entries need to store memcg
4069 * references in constrained space, so we maintain an ID space that is
4070 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4071 * memory-controlled cgroups to 64k.
4073 * However, there usually are many references to the oflline CSS after
4074 * the cgroup has been destroyed, such as page cache or reclaimable
4075 * slab objects, that don't need to hang on to the ID. We want to keep
4076 * those dead CSS from occupying IDs, or we might quickly exhaust the
4077 * relatively small ID space and prevent the creation of new cgroups
4078 * even when there are much fewer than 64k cgroups - possibly none.
4080 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4081 * be freed and recycled when it's no longer needed, which is usually
4082 * when the CSS is offlined.
4084 * The only exception to that are records of swapped out tmpfs/shmem
4085 * pages that need to be attributed to live ancestors on swapin. But
4086 * those references are manageable from userspace.
4089 static DEFINE_IDR(mem_cgroup_idr
);
4091 static void mem_cgroup_id_get_many(struct mem_cgroup
*memcg
, unsigned int n
)
4093 VM_BUG_ON(atomic_read(&memcg
->id
.ref
) <= 0);
4094 atomic_add(n
, &memcg
->id
.ref
);
4097 static void mem_cgroup_id_put_many(struct mem_cgroup
*memcg
, unsigned int n
)
4099 VM_BUG_ON(atomic_read(&memcg
->id
.ref
) < n
);
4100 if (atomic_sub_and_test(n
, &memcg
->id
.ref
)) {
4101 idr_remove(&mem_cgroup_idr
, memcg
->id
.id
);
4104 /* Memcg ID pins CSS */
4105 css_put(&memcg
->css
);
4109 static inline void mem_cgroup_id_get(struct mem_cgroup
*memcg
)
4111 mem_cgroup_id_get_many(memcg
, 1);
4114 static inline void mem_cgroup_id_put(struct mem_cgroup
*memcg
)
4116 mem_cgroup_id_put_many(memcg
, 1);
4120 * mem_cgroup_from_id - look up a memcg from a memcg id
4121 * @id: the memcg id to look up
4123 * Caller must hold rcu_read_lock().
4125 struct mem_cgroup
*mem_cgroup_from_id(unsigned short id
)
4127 WARN_ON_ONCE(!rcu_read_lock_held());
4128 return idr_find(&mem_cgroup_idr
, id
);
4131 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup
*memcg
, int node
)
4133 struct mem_cgroup_per_node
*pn
;
4136 * This routine is called against possible nodes.
4137 * But it's BUG to call kmalloc() against offline node.
4139 * TODO: this routine can waste much memory for nodes which will
4140 * never be onlined. It's better to use memory hotplug callback
4143 if (!node_state(node
, N_NORMAL_MEMORY
))
4145 pn
= kzalloc_node(sizeof(*pn
), GFP_KERNEL
, tmp
);
4149 pn
->lruvec_stat
= alloc_percpu(struct lruvec_stat
);
4150 if (!pn
->lruvec_stat
) {
4155 lruvec_init(&pn
->lruvec
);
4156 pn
->usage_in_excess
= 0;
4157 pn
->on_tree
= false;
4160 memcg
->nodeinfo
[node
] = pn
;
4164 static void free_mem_cgroup_per_node_info(struct mem_cgroup
*memcg
, int node
)
4166 struct mem_cgroup_per_node
*pn
= memcg
->nodeinfo
[node
];
4168 free_percpu(pn
->lruvec_stat
);
4172 static void __mem_cgroup_free(struct mem_cgroup
*memcg
)
4177 free_mem_cgroup_per_node_info(memcg
, node
);
4178 free_percpu(memcg
->stat
);
4182 static void mem_cgroup_free(struct mem_cgroup
*memcg
)
4184 memcg_wb_domain_exit(memcg
);
4185 __mem_cgroup_free(memcg
);
4188 static struct mem_cgroup
*mem_cgroup_alloc(void)
4190 struct mem_cgroup
*memcg
;
4194 size
= sizeof(struct mem_cgroup
);
4195 size
+= nr_node_ids
* sizeof(struct mem_cgroup_per_node
*);
4197 memcg
= kzalloc(size
, GFP_KERNEL
);
4201 memcg
->id
.id
= idr_alloc(&mem_cgroup_idr
, NULL
,
4202 1, MEM_CGROUP_ID_MAX
,
4204 if (memcg
->id
.id
< 0)
4207 memcg
->stat
= alloc_percpu(struct mem_cgroup_stat_cpu
);
4212 if (alloc_mem_cgroup_per_node_info(memcg
, node
))
4215 if (memcg_wb_domain_init(memcg
, GFP_KERNEL
))
4218 INIT_WORK(&memcg
->high_work
, high_work_func
);
4219 memcg
->last_scanned_node
= MAX_NUMNODES
;
4220 INIT_LIST_HEAD(&memcg
->oom_notify
);
4221 mutex_init(&memcg
->thresholds_lock
);
4222 spin_lock_init(&memcg
->move_lock
);
4223 vmpressure_init(&memcg
->vmpressure
);
4224 INIT_LIST_HEAD(&memcg
->event_list
);
4225 spin_lock_init(&memcg
->event_list_lock
);
4226 memcg
->socket_pressure
= jiffies
;
4228 memcg
->kmemcg_id
= -1;
4230 #ifdef CONFIG_CGROUP_WRITEBACK
4231 INIT_LIST_HEAD(&memcg
->cgwb_list
);
4233 idr_replace(&mem_cgroup_idr
, memcg
, memcg
->id
.id
);
4236 if (memcg
->id
.id
> 0)
4237 idr_remove(&mem_cgroup_idr
, memcg
->id
.id
);
4238 __mem_cgroup_free(memcg
);
4242 static struct cgroup_subsys_state
* __ref
4243 mem_cgroup_css_alloc(struct cgroup_subsys_state
*parent_css
)
4245 struct mem_cgroup
*parent
= mem_cgroup_from_css(parent_css
);
4246 struct mem_cgroup
*memcg
;
4247 long error
= -ENOMEM
;
4249 memcg
= mem_cgroup_alloc();
4251 return ERR_PTR(error
);
4253 memcg
->high
= PAGE_COUNTER_MAX
;
4254 memcg
->soft_limit
= PAGE_COUNTER_MAX
;
4256 memcg
->swappiness
= mem_cgroup_swappiness(parent
);
4257 memcg
->oom_kill_disable
= parent
->oom_kill_disable
;
4259 if (parent
&& parent
->use_hierarchy
) {
4260 memcg
->use_hierarchy
= true;
4261 page_counter_init(&memcg
->memory
, &parent
->memory
);
4262 page_counter_init(&memcg
->swap
, &parent
->swap
);
4263 page_counter_init(&memcg
->memsw
, &parent
->memsw
);
4264 page_counter_init(&memcg
->kmem
, &parent
->kmem
);
4265 page_counter_init(&memcg
->tcpmem
, &parent
->tcpmem
);
4267 page_counter_init(&memcg
->memory
, NULL
);
4268 page_counter_init(&memcg
->swap
, NULL
);
4269 page_counter_init(&memcg
->memsw
, NULL
);
4270 page_counter_init(&memcg
->kmem
, NULL
);
4271 page_counter_init(&memcg
->tcpmem
, NULL
);
4273 * Deeper hierachy with use_hierarchy == false doesn't make
4274 * much sense so let cgroup subsystem know about this
4275 * unfortunate state in our controller.
4277 if (parent
!= root_mem_cgroup
)
4278 memory_cgrp_subsys
.broken_hierarchy
= true;
4281 /* The following stuff does not apply to the root */
4283 root_mem_cgroup
= memcg
;
4287 error
= memcg_online_kmem(memcg
);
4291 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
) && !cgroup_memory_nosocket
)
4292 static_branch_inc(&memcg_sockets_enabled_key
);
4296 mem_cgroup_free(memcg
);
4297 return ERR_PTR(-ENOMEM
);
4300 static int mem_cgroup_css_online(struct cgroup_subsys_state
*css
)
4302 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4304 /* Online state pins memcg ID, memcg ID pins CSS */
4305 atomic_set(&memcg
->id
.ref
, 1);
4310 static void mem_cgroup_css_offline(struct cgroup_subsys_state
*css
)
4312 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4313 struct mem_cgroup_event
*event
, *tmp
;
4316 * Unregister events and notify userspace.
4317 * Notify userspace about cgroup removing only after rmdir of cgroup
4318 * directory to avoid race between userspace and kernelspace.
4320 spin_lock(&memcg
->event_list_lock
);
4321 list_for_each_entry_safe(event
, tmp
, &memcg
->event_list
, list
) {
4322 list_del_init(&event
->list
);
4323 schedule_work(&event
->remove
);
4325 spin_unlock(&memcg
->event_list_lock
);
4329 memcg_offline_kmem(memcg
);
4330 wb_memcg_offline(memcg
);
4332 mem_cgroup_id_put(memcg
);
4335 static void mem_cgroup_css_released(struct cgroup_subsys_state
*css
)
4337 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4339 invalidate_reclaim_iterators(memcg
);
4342 static void mem_cgroup_css_free(struct cgroup_subsys_state
*css
)
4344 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4346 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
) && !cgroup_memory_nosocket
)
4347 static_branch_dec(&memcg_sockets_enabled_key
);
4349 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) && memcg
->tcpmem_active
)
4350 static_branch_dec(&memcg_sockets_enabled_key
);
4352 vmpressure_cleanup(&memcg
->vmpressure
);
4353 cancel_work_sync(&memcg
->high_work
);
4354 mem_cgroup_remove_from_trees(memcg
);
4355 memcg_free_kmem(memcg
);
4356 mem_cgroup_free(memcg
);
4360 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4361 * @css: the target css
4363 * Reset the states of the mem_cgroup associated with @css. This is
4364 * invoked when the userland requests disabling on the default hierarchy
4365 * but the memcg is pinned through dependency. The memcg should stop
4366 * applying policies and should revert to the vanilla state as it may be
4367 * made visible again.
4369 * The current implementation only resets the essential configurations.
4370 * This needs to be expanded to cover all the visible parts.
4372 static void mem_cgroup_css_reset(struct cgroup_subsys_state
*css
)
4374 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4376 page_counter_limit(&memcg
->memory
, PAGE_COUNTER_MAX
);
4377 page_counter_limit(&memcg
->swap
, PAGE_COUNTER_MAX
);
4378 page_counter_limit(&memcg
->memsw
, PAGE_COUNTER_MAX
);
4379 page_counter_limit(&memcg
->kmem
, PAGE_COUNTER_MAX
);
4380 page_counter_limit(&memcg
->tcpmem
, PAGE_COUNTER_MAX
);
4382 memcg
->high
= PAGE_COUNTER_MAX
;
4383 memcg
->soft_limit
= PAGE_COUNTER_MAX
;
4384 memcg_wb_domain_size_changed(memcg
);
4388 /* Handlers for move charge at task migration. */
4389 static int mem_cgroup_do_precharge(unsigned long count
)
4393 /* Try a single bulk charge without reclaim first, kswapd may wake */
4394 ret
= try_charge(mc
.to
, GFP_KERNEL
& ~__GFP_DIRECT_RECLAIM
, count
);
4396 mc
.precharge
+= count
;
4400 /* Try charges one by one with reclaim, but do not retry */
4402 ret
= try_charge(mc
.to
, GFP_KERNEL
| __GFP_NORETRY
, 1);
4416 enum mc_target_type
{
4423 static struct page
*mc_handle_present_pte(struct vm_area_struct
*vma
,
4424 unsigned long addr
, pte_t ptent
)
4426 struct page
*page
= _vm_normal_page(vma
, addr
, ptent
, true);
4428 if (!page
|| !page_mapped(page
))
4430 if (PageAnon(page
)) {
4431 if (!(mc
.flags
& MOVE_ANON
))
4434 if (!(mc
.flags
& MOVE_FILE
))
4437 if (!get_page_unless_zero(page
))
4443 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
4444 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
4445 pte_t ptent
, swp_entry_t
*entry
)
4447 struct page
*page
= NULL
;
4448 swp_entry_t ent
= pte_to_swp_entry(ptent
);
4450 if (!(mc
.flags
& MOVE_ANON
) || non_swap_entry(ent
))
4454 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
4455 * a device and because they are not accessible by CPU they are store
4456 * as special swap entry in the CPU page table.
4458 if (is_device_private_entry(ent
)) {
4459 page
= device_private_entry_to_page(ent
);
4461 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
4462 * a refcount of 1 when free (unlike normal page)
4464 if (!page_ref_add_unless(page
, 1, 1))
4470 * Because lookup_swap_cache() updates some statistics counter,
4471 * we call find_get_page() with swapper_space directly.
4473 page
= find_get_page(swap_address_space(ent
), swp_offset(ent
));
4474 if (do_memsw_account())
4475 entry
->val
= ent
.val
;
4480 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
4481 pte_t ptent
, swp_entry_t
*entry
)
4487 static struct page
*mc_handle_file_pte(struct vm_area_struct
*vma
,
4488 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
4490 struct page
*page
= NULL
;
4491 struct address_space
*mapping
;
4494 if (!vma
->vm_file
) /* anonymous vma */
4496 if (!(mc
.flags
& MOVE_FILE
))
4499 mapping
= vma
->vm_file
->f_mapping
;
4500 pgoff
= linear_page_index(vma
, addr
);
4502 /* page is moved even if it's not RSS of this task(page-faulted). */
4504 /* shmem/tmpfs may report page out on swap: account for that too. */
4505 if (shmem_mapping(mapping
)) {
4506 page
= find_get_entry(mapping
, pgoff
);
4507 if (radix_tree_exceptional_entry(page
)) {
4508 swp_entry_t swp
= radix_to_swp_entry(page
);
4509 if (do_memsw_account())
4511 page
= find_get_page(swap_address_space(swp
),
4515 page
= find_get_page(mapping
, pgoff
);
4517 page
= find_get_page(mapping
, pgoff
);
4523 * mem_cgroup_move_account - move account of the page
4525 * @compound: charge the page as compound or small page
4526 * @from: mem_cgroup which the page is moved from.
4527 * @to: mem_cgroup which the page is moved to. @from != @to.
4529 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4531 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4534 static int mem_cgroup_move_account(struct page
*page
,
4536 struct mem_cgroup
*from
,
4537 struct mem_cgroup
*to
)
4539 unsigned long flags
;
4540 unsigned int nr_pages
= compound
? hpage_nr_pages(page
) : 1;
4544 VM_BUG_ON(from
== to
);
4545 VM_BUG_ON_PAGE(PageLRU(page
), page
);
4546 VM_BUG_ON(compound
&& !PageTransHuge(page
));
4549 * Prevent mem_cgroup_migrate() from looking at
4550 * page->mem_cgroup of its source page while we change it.
4553 if (!trylock_page(page
))
4557 if (page
->mem_cgroup
!= from
)
4560 anon
= PageAnon(page
);
4562 spin_lock_irqsave(&from
->move_lock
, flags
);
4564 if (!anon
&& page_mapped(page
)) {
4565 __this_cpu_sub(from
->stat
->count
[NR_FILE_MAPPED
], nr_pages
);
4566 __this_cpu_add(to
->stat
->count
[NR_FILE_MAPPED
], nr_pages
);
4570 * move_lock grabbed above and caller set from->moving_account, so
4571 * mod_memcg_page_state will serialize updates to PageDirty.
4572 * So mapping should be stable for dirty pages.
4574 if (!anon
&& PageDirty(page
)) {
4575 struct address_space
*mapping
= page_mapping(page
);
4577 if (mapping_cap_account_dirty(mapping
)) {
4578 __this_cpu_sub(from
->stat
->count
[NR_FILE_DIRTY
],
4580 __this_cpu_add(to
->stat
->count
[NR_FILE_DIRTY
],
4585 if (PageWriteback(page
)) {
4586 __this_cpu_sub(from
->stat
->count
[NR_WRITEBACK
], nr_pages
);
4587 __this_cpu_add(to
->stat
->count
[NR_WRITEBACK
], nr_pages
);
4591 * It is safe to change page->mem_cgroup here because the page
4592 * is referenced, charged, and isolated - we can't race with
4593 * uncharging, charging, migration, or LRU putback.
4596 /* caller should have done css_get */
4597 page
->mem_cgroup
= to
;
4598 spin_unlock_irqrestore(&from
->move_lock
, flags
);
4602 local_irq_disable();
4603 mem_cgroup_charge_statistics(to
, page
, compound
, nr_pages
);
4604 memcg_check_events(to
, page
);
4605 mem_cgroup_charge_statistics(from
, page
, compound
, -nr_pages
);
4606 memcg_check_events(from
, page
);
4615 * get_mctgt_type - get target type of moving charge
4616 * @vma: the vma the pte to be checked belongs
4617 * @addr: the address corresponding to the pte to be checked
4618 * @ptent: the pte to be checked
4619 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4622 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4623 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4624 * move charge. if @target is not NULL, the page is stored in target->page
4625 * with extra refcnt got(Callers should handle it).
4626 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4627 * target for charge migration. if @target is not NULL, the entry is stored
4629 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PUBLIC
4630 * or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
4631 * For now we such page is charge like a regular page would be as for all
4632 * intent and purposes it is just special memory taking the place of a
4635 * See Documentations/vm/hmm.txt and include/linux/hmm.h
4637 * Called with pte lock held.
4640 static enum mc_target_type
get_mctgt_type(struct vm_area_struct
*vma
,
4641 unsigned long addr
, pte_t ptent
, union mc_target
*target
)
4643 struct page
*page
= NULL
;
4644 enum mc_target_type ret
= MC_TARGET_NONE
;
4645 swp_entry_t ent
= { .val
= 0 };
4647 if (pte_present(ptent
))
4648 page
= mc_handle_present_pte(vma
, addr
, ptent
);
4649 else if (is_swap_pte(ptent
))
4650 page
= mc_handle_swap_pte(vma
, ptent
, &ent
);
4651 else if (pte_none(ptent
))
4652 page
= mc_handle_file_pte(vma
, addr
, ptent
, &ent
);
4654 if (!page
&& !ent
.val
)
4658 * Do only loose check w/o serialization.
4659 * mem_cgroup_move_account() checks the page is valid or
4660 * not under LRU exclusion.
4662 if (page
->mem_cgroup
== mc
.from
) {
4663 ret
= MC_TARGET_PAGE
;
4664 if (is_device_private_page(page
) ||
4665 is_device_public_page(page
))
4666 ret
= MC_TARGET_DEVICE
;
4668 target
->page
= page
;
4670 if (!ret
|| !target
)
4674 * There is a swap entry and a page doesn't exist or isn't charged.
4675 * But we cannot move a tail-page in a THP.
4677 if (ent
.val
&& !ret
&& (!page
|| !PageTransCompound(page
)) &&
4678 mem_cgroup_id(mc
.from
) == lookup_swap_cgroup_id(ent
)) {
4679 ret
= MC_TARGET_SWAP
;
4686 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4688 * We don't consider PMD mapped swapping or file mapped pages because THP does
4689 * not support them for now.
4690 * Caller should make sure that pmd_trans_huge(pmd) is true.
4692 static enum mc_target_type
get_mctgt_type_thp(struct vm_area_struct
*vma
,
4693 unsigned long addr
, pmd_t pmd
, union mc_target
*target
)
4695 struct page
*page
= NULL
;
4696 enum mc_target_type ret
= MC_TARGET_NONE
;
4698 if (unlikely(is_swap_pmd(pmd
))) {
4699 VM_BUG_ON(thp_migration_supported() &&
4700 !is_pmd_migration_entry(pmd
));
4703 page
= pmd_page(pmd
);
4704 VM_BUG_ON_PAGE(!page
|| !PageHead(page
), page
);
4705 if (!(mc
.flags
& MOVE_ANON
))
4707 if (page
->mem_cgroup
== mc
.from
) {
4708 ret
= MC_TARGET_PAGE
;
4711 target
->page
= page
;
4717 static inline enum mc_target_type
get_mctgt_type_thp(struct vm_area_struct
*vma
,
4718 unsigned long addr
, pmd_t pmd
, union mc_target
*target
)
4720 return MC_TARGET_NONE
;
4724 static int mem_cgroup_count_precharge_pte_range(pmd_t
*pmd
,
4725 unsigned long addr
, unsigned long end
,
4726 struct mm_walk
*walk
)
4728 struct vm_area_struct
*vma
= walk
->vma
;
4732 ptl
= pmd_trans_huge_lock(pmd
, vma
);
4735 * Note their can not be MC_TARGET_DEVICE for now as we do not
4736 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
4737 * MEMORY_DEVICE_PRIVATE but this might change.
4739 if (get_mctgt_type_thp(vma
, addr
, *pmd
, NULL
) == MC_TARGET_PAGE
)
4740 mc
.precharge
+= HPAGE_PMD_NR
;
4745 if (pmd_trans_unstable(pmd
))
4747 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
4748 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
)
4749 if (get_mctgt_type(vma
, addr
, *pte
, NULL
))
4750 mc
.precharge
++; /* increment precharge temporarily */
4751 pte_unmap_unlock(pte
- 1, ptl
);
4757 static unsigned long mem_cgroup_count_precharge(struct mm_struct
*mm
)
4759 unsigned long precharge
;
4761 struct mm_walk mem_cgroup_count_precharge_walk
= {
4762 .pmd_entry
= mem_cgroup_count_precharge_pte_range
,
4765 down_read(&mm
->mmap_sem
);
4766 walk_page_range(0, mm
->highest_vm_end
,
4767 &mem_cgroup_count_precharge_walk
);
4768 up_read(&mm
->mmap_sem
);
4770 precharge
= mc
.precharge
;
4776 static int mem_cgroup_precharge_mc(struct mm_struct
*mm
)
4778 unsigned long precharge
= mem_cgroup_count_precharge(mm
);
4780 VM_BUG_ON(mc
.moving_task
);
4781 mc
.moving_task
= current
;
4782 return mem_cgroup_do_precharge(precharge
);
4785 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4786 static void __mem_cgroup_clear_mc(void)
4788 struct mem_cgroup
*from
= mc
.from
;
4789 struct mem_cgroup
*to
= mc
.to
;
4791 /* we must uncharge all the leftover precharges from mc.to */
4793 cancel_charge(mc
.to
, mc
.precharge
);
4797 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4798 * we must uncharge here.
4800 if (mc
.moved_charge
) {
4801 cancel_charge(mc
.from
, mc
.moved_charge
);
4802 mc
.moved_charge
= 0;
4804 /* we must fixup refcnts and charges */
4805 if (mc
.moved_swap
) {
4806 /* uncharge swap account from the old cgroup */
4807 if (!mem_cgroup_is_root(mc
.from
))
4808 page_counter_uncharge(&mc
.from
->memsw
, mc
.moved_swap
);
4810 mem_cgroup_id_put_many(mc
.from
, mc
.moved_swap
);
4813 * we charged both to->memory and to->memsw, so we
4814 * should uncharge to->memory.
4816 if (!mem_cgroup_is_root(mc
.to
))
4817 page_counter_uncharge(&mc
.to
->memory
, mc
.moved_swap
);
4819 mem_cgroup_id_get_many(mc
.to
, mc
.moved_swap
);
4820 css_put_many(&mc
.to
->css
, mc
.moved_swap
);
4824 memcg_oom_recover(from
);
4825 memcg_oom_recover(to
);
4826 wake_up_all(&mc
.waitq
);
4829 static void mem_cgroup_clear_mc(void)
4831 struct mm_struct
*mm
= mc
.mm
;
4834 * we must clear moving_task before waking up waiters at the end of
4837 mc
.moving_task
= NULL
;
4838 __mem_cgroup_clear_mc();
4839 spin_lock(&mc
.lock
);
4843 spin_unlock(&mc
.lock
);
4848 static int mem_cgroup_can_attach(struct cgroup_taskset
*tset
)
4850 struct cgroup_subsys_state
*css
;
4851 struct mem_cgroup
*memcg
= NULL
; /* unneeded init to make gcc happy */
4852 struct mem_cgroup
*from
;
4853 struct task_struct
*leader
, *p
;
4854 struct mm_struct
*mm
;
4855 unsigned long move_flags
;
4858 /* charge immigration isn't supported on the default hierarchy */
4859 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
4863 * Multi-process migrations only happen on the default hierarchy
4864 * where charge immigration is not used. Perform charge
4865 * immigration if @tset contains a leader and whine if there are
4869 cgroup_taskset_for_each_leader(leader
, css
, tset
) {
4872 memcg
= mem_cgroup_from_css(css
);
4878 * We are now commited to this value whatever it is. Changes in this
4879 * tunable will only affect upcoming migrations, not the current one.
4880 * So we need to save it, and keep it going.
4882 move_flags
= READ_ONCE(memcg
->move_charge_at_immigrate
);
4886 from
= mem_cgroup_from_task(p
);
4888 VM_BUG_ON(from
== memcg
);
4890 mm
= get_task_mm(p
);
4893 /* We move charges only when we move a owner of the mm */
4894 if (mm
->owner
== p
) {
4897 VM_BUG_ON(mc
.precharge
);
4898 VM_BUG_ON(mc
.moved_charge
);
4899 VM_BUG_ON(mc
.moved_swap
);
4901 spin_lock(&mc
.lock
);
4905 mc
.flags
= move_flags
;
4906 spin_unlock(&mc
.lock
);
4907 /* We set mc.moving_task later */
4909 ret
= mem_cgroup_precharge_mc(mm
);
4911 mem_cgroup_clear_mc();
4918 static void mem_cgroup_cancel_attach(struct cgroup_taskset
*tset
)
4921 mem_cgroup_clear_mc();
4924 static int mem_cgroup_move_charge_pte_range(pmd_t
*pmd
,
4925 unsigned long addr
, unsigned long end
,
4926 struct mm_walk
*walk
)
4929 struct vm_area_struct
*vma
= walk
->vma
;
4932 enum mc_target_type target_type
;
4933 union mc_target target
;
4936 ptl
= pmd_trans_huge_lock(pmd
, vma
);
4938 if (mc
.precharge
< HPAGE_PMD_NR
) {
4942 target_type
= get_mctgt_type_thp(vma
, addr
, *pmd
, &target
);
4943 if (target_type
== MC_TARGET_PAGE
) {
4945 if (!isolate_lru_page(page
)) {
4946 if (!mem_cgroup_move_account(page
, true,
4948 mc
.precharge
-= HPAGE_PMD_NR
;
4949 mc
.moved_charge
+= HPAGE_PMD_NR
;
4951 putback_lru_page(page
);
4954 } else if (target_type
== MC_TARGET_DEVICE
) {
4956 if (!mem_cgroup_move_account(page
, true,
4958 mc
.precharge
-= HPAGE_PMD_NR
;
4959 mc
.moved_charge
+= HPAGE_PMD_NR
;
4967 if (pmd_trans_unstable(pmd
))
4970 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
4971 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
4972 pte_t ptent
= *(pte
++);
4973 bool device
= false;
4979 switch (get_mctgt_type(vma
, addr
, ptent
, &target
)) {
4980 case MC_TARGET_DEVICE
:
4983 case MC_TARGET_PAGE
:
4986 * We can have a part of the split pmd here. Moving it
4987 * can be done but it would be too convoluted so simply
4988 * ignore such a partial THP and keep it in original
4989 * memcg. There should be somebody mapping the head.
4991 if (PageTransCompound(page
))
4993 if (!device
&& isolate_lru_page(page
))
4995 if (!mem_cgroup_move_account(page
, false,
4998 /* we uncharge from mc.from later. */
5002 putback_lru_page(page
);
5003 put
: /* get_mctgt_type() gets the page */
5006 case MC_TARGET_SWAP
:
5008 if (!mem_cgroup_move_swap_account(ent
, mc
.from
, mc
.to
)) {
5010 /* we fixup refcnts and charges later. */
5018 pte_unmap_unlock(pte
- 1, ptl
);
5023 * We have consumed all precharges we got in can_attach().
5024 * We try charge one by one, but don't do any additional
5025 * charges to mc.to if we have failed in charge once in attach()
5028 ret
= mem_cgroup_do_precharge(1);
5036 static void mem_cgroup_move_charge(void)
5038 struct mm_walk mem_cgroup_move_charge_walk
= {
5039 .pmd_entry
= mem_cgroup_move_charge_pte_range
,
5043 lru_add_drain_all();
5045 * Signal lock_page_memcg() to take the memcg's move_lock
5046 * while we're moving its pages to another memcg. Then wait
5047 * for already started RCU-only updates to finish.
5049 atomic_inc(&mc
.from
->moving_account
);
5052 if (unlikely(!down_read_trylock(&mc
.mm
->mmap_sem
))) {
5054 * Someone who are holding the mmap_sem might be waiting in
5055 * waitq. So we cancel all extra charges, wake up all waiters,
5056 * and retry. Because we cancel precharges, we might not be able
5057 * to move enough charges, but moving charge is a best-effort
5058 * feature anyway, so it wouldn't be a big problem.
5060 __mem_cgroup_clear_mc();
5065 * When we have consumed all precharges and failed in doing
5066 * additional charge, the page walk just aborts.
5068 walk_page_range(0, mc
.mm
->highest_vm_end
, &mem_cgroup_move_charge_walk
);
5070 up_read(&mc
.mm
->mmap_sem
);
5071 atomic_dec(&mc
.from
->moving_account
);
5074 static void mem_cgroup_move_task(void)
5077 mem_cgroup_move_charge();
5078 mem_cgroup_clear_mc();
5081 #else /* !CONFIG_MMU */
5082 static int mem_cgroup_can_attach(struct cgroup_taskset
*tset
)
5086 static void mem_cgroup_cancel_attach(struct cgroup_taskset
*tset
)
5089 static void mem_cgroup_move_task(void)
5095 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5096 * to verify whether we're attached to the default hierarchy on each mount
5099 static void mem_cgroup_bind(struct cgroup_subsys_state
*root_css
)
5102 * use_hierarchy is forced on the default hierarchy. cgroup core
5103 * guarantees that @root doesn't have any children, so turning it
5104 * on for the root memcg is enough.
5106 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
5107 root_mem_cgroup
->use_hierarchy
= true;
5109 root_mem_cgroup
->use_hierarchy
= false;
5112 static u64
memory_current_read(struct cgroup_subsys_state
*css
,
5115 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5117 return (u64
)page_counter_read(&memcg
->memory
) * PAGE_SIZE
;
5120 static int memory_low_show(struct seq_file
*m
, void *v
)
5122 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5123 unsigned long low
= READ_ONCE(memcg
->low
);
5125 if (low
== PAGE_COUNTER_MAX
)
5126 seq_puts(m
, "max\n");
5128 seq_printf(m
, "%llu\n", (u64
)low
* PAGE_SIZE
);
5133 static ssize_t
memory_low_write(struct kernfs_open_file
*of
,
5134 char *buf
, size_t nbytes
, loff_t off
)
5136 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
5140 buf
= strstrip(buf
);
5141 err
= page_counter_memparse(buf
, "max", &low
);
5150 static int memory_high_show(struct seq_file
*m
, void *v
)
5152 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5153 unsigned long high
= READ_ONCE(memcg
->high
);
5155 if (high
== PAGE_COUNTER_MAX
)
5156 seq_puts(m
, "max\n");
5158 seq_printf(m
, "%llu\n", (u64
)high
* PAGE_SIZE
);
5163 static ssize_t
memory_high_write(struct kernfs_open_file
*of
,
5164 char *buf
, size_t nbytes
, loff_t off
)
5166 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
5167 unsigned long nr_pages
;
5171 buf
= strstrip(buf
);
5172 err
= page_counter_memparse(buf
, "max", &high
);
5178 nr_pages
= page_counter_read(&memcg
->memory
);
5179 if (nr_pages
> high
)
5180 try_to_free_mem_cgroup_pages(memcg
, nr_pages
- high
,
5183 memcg_wb_domain_size_changed(memcg
);
5187 static int memory_max_show(struct seq_file
*m
, void *v
)
5189 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5190 unsigned long max
= READ_ONCE(memcg
->memory
.limit
);
5192 if (max
== PAGE_COUNTER_MAX
)
5193 seq_puts(m
, "max\n");
5195 seq_printf(m
, "%llu\n", (u64
)max
* PAGE_SIZE
);
5200 static ssize_t
memory_max_write(struct kernfs_open_file
*of
,
5201 char *buf
, size_t nbytes
, loff_t off
)
5203 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
5204 unsigned int nr_reclaims
= MEM_CGROUP_RECLAIM_RETRIES
;
5205 bool drained
= false;
5209 buf
= strstrip(buf
);
5210 err
= page_counter_memparse(buf
, "max", &max
);
5214 xchg(&memcg
->memory
.limit
, max
);
5217 unsigned long nr_pages
= page_counter_read(&memcg
->memory
);
5219 if (nr_pages
<= max
)
5222 if (signal_pending(current
)) {
5228 drain_all_stock(memcg
);
5234 if (!try_to_free_mem_cgroup_pages(memcg
, nr_pages
- max
,
5240 mem_cgroup_event(memcg
, MEMCG_OOM
);
5241 if (!mem_cgroup_out_of_memory(memcg
, GFP_KERNEL
, 0))
5245 memcg_wb_domain_size_changed(memcg
);
5249 static int memory_events_show(struct seq_file
*m
, void *v
)
5251 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5253 seq_printf(m
, "low %lu\n", memcg_sum_events(memcg
, MEMCG_LOW
));
5254 seq_printf(m
, "high %lu\n", memcg_sum_events(memcg
, MEMCG_HIGH
));
5255 seq_printf(m
, "max %lu\n", memcg_sum_events(memcg
, MEMCG_MAX
));
5256 seq_printf(m
, "oom %lu\n", memcg_sum_events(memcg
, MEMCG_OOM
));
5257 seq_printf(m
, "oom_kill %lu\n", memcg_sum_events(memcg
, OOM_KILL
));
5262 static int memory_stat_show(struct seq_file
*m
, void *v
)
5264 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5265 unsigned long stat
[MEMCG_NR_STAT
];
5266 unsigned long events
[MEMCG_NR_EVENTS
];
5270 * Provide statistics on the state of the memory subsystem as
5271 * well as cumulative event counters that show past behavior.
5273 * This list is ordered following a combination of these gradients:
5274 * 1) generic big picture -> specifics and details
5275 * 2) reflecting userspace activity -> reflecting kernel heuristics
5277 * Current memory state:
5280 tree_stat(memcg
, stat
);
5281 tree_events(memcg
, events
);
5283 seq_printf(m
, "anon %llu\n",
5284 (u64
)stat
[MEMCG_RSS
] * PAGE_SIZE
);
5285 seq_printf(m
, "file %llu\n",
5286 (u64
)stat
[MEMCG_CACHE
] * PAGE_SIZE
);
5287 seq_printf(m
, "kernel_stack %llu\n",
5288 (u64
)stat
[MEMCG_KERNEL_STACK_KB
] * 1024);
5289 seq_printf(m
, "slab %llu\n",
5290 (u64
)(stat
[NR_SLAB_RECLAIMABLE
] +
5291 stat
[NR_SLAB_UNRECLAIMABLE
]) * PAGE_SIZE
);
5292 seq_printf(m
, "sock %llu\n",
5293 (u64
)stat
[MEMCG_SOCK
] * PAGE_SIZE
);
5295 seq_printf(m
, "shmem %llu\n",
5296 (u64
)stat
[NR_SHMEM
] * PAGE_SIZE
);
5297 seq_printf(m
, "file_mapped %llu\n",
5298 (u64
)stat
[NR_FILE_MAPPED
] * PAGE_SIZE
);
5299 seq_printf(m
, "file_dirty %llu\n",
5300 (u64
)stat
[NR_FILE_DIRTY
] * PAGE_SIZE
);
5301 seq_printf(m
, "file_writeback %llu\n",
5302 (u64
)stat
[NR_WRITEBACK
] * PAGE_SIZE
);
5304 for (i
= 0; i
< NR_LRU_LISTS
; i
++) {
5305 struct mem_cgroup
*mi
;
5306 unsigned long val
= 0;
5308 for_each_mem_cgroup_tree(mi
, memcg
)
5309 val
+= mem_cgroup_nr_lru_pages(mi
, BIT(i
));
5310 seq_printf(m
, "%s %llu\n",
5311 mem_cgroup_lru_names
[i
], (u64
)val
* PAGE_SIZE
);
5314 seq_printf(m
, "slab_reclaimable %llu\n",
5315 (u64
)stat
[NR_SLAB_RECLAIMABLE
] * PAGE_SIZE
);
5316 seq_printf(m
, "slab_unreclaimable %llu\n",
5317 (u64
)stat
[NR_SLAB_UNRECLAIMABLE
] * PAGE_SIZE
);
5319 /* Accumulated memory events */
5321 seq_printf(m
, "pgfault %lu\n", events
[PGFAULT
]);
5322 seq_printf(m
, "pgmajfault %lu\n", events
[PGMAJFAULT
]);
5324 seq_printf(m
, "pgrefill %lu\n", events
[PGREFILL
]);
5325 seq_printf(m
, "pgscan %lu\n", events
[PGSCAN_KSWAPD
] +
5326 events
[PGSCAN_DIRECT
]);
5327 seq_printf(m
, "pgsteal %lu\n", events
[PGSTEAL_KSWAPD
] +
5328 events
[PGSTEAL_DIRECT
]);
5329 seq_printf(m
, "pgactivate %lu\n", events
[PGACTIVATE
]);
5330 seq_printf(m
, "pgdeactivate %lu\n", events
[PGDEACTIVATE
]);
5331 seq_printf(m
, "pglazyfree %lu\n", events
[PGLAZYFREE
]);
5332 seq_printf(m
, "pglazyfreed %lu\n", events
[PGLAZYFREED
]);
5334 seq_printf(m
, "workingset_refault %lu\n",
5335 stat
[WORKINGSET_REFAULT
]);
5336 seq_printf(m
, "workingset_activate %lu\n",
5337 stat
[WORKINGSET_ACTIVATE
]);
5338 seq_printf(m
, "workingset_nodereclaim %lu\n",
5339 stat
[WORKINGSET_NODERECLAIM
]);
5344 static struct cftype memory_files
[] = {
5347 .flags
= CFTYPE_NOT_ON_ROOT
,
5348 .read_u64
= memory_current_read
,
5352 .flags
= CFTYPE_NOT_ON_ROOT
,
5353 .seq_show
= memory_low_show
,
5354 .write
= memory_low_write
,
5358 .flags
= CFTYPE_NOT_ON_ROOT
,
5359 .seq_show
= memory_high_show
,
5360 .write
= memory_high_write
,
5364 .flags
= CFTYPE_NOT_ON_ROOT
,
5365 .seq_show
= memory_max_show
,
5366 .write
= memory_max_write
,
5370 .flags
= CFTYPE_NOT_ON_ROOT
,
5371 .file_offset
= offsetof(struct mem_cgroup
, events_file
),
5372 .seq_show
= memory_events_show
,
5376 .flags
= CFTYPE_NOT_ON_ROOT
,
5377 .seq_show
= memory_stat_show
,
5382 struct cgroup_subsys memory_cgrp_subsys
= {
5383 .css_alloc
= mem_cgroup_css_alloc
,
5384 .css_online
= mem_cgroup_css_online
,
5385 .css_offline
= mem_cgroup_css_offline
,
5386 .css_released
= mem_cgroup_css_released
,
5387 .css_free
= mem_cgroup_css_free
,
5388 .css_reset
= mem_cgroup_css_reset
,
5389 .can_attach
= mem_cgroup_can_attach
,
5390 .cancel_attach
= mem_cgroup_cancel_attach
,
5391 .post_attach
= mem_cgroup_move_task
,
5392 .bind
= mem_cgroup_bind
,
5393 .dfl_cftypes
= memory_files
,
5394 .legacy_cftypes
= mem_cgroup_legacy_files
,
5399 * mem_cgroup_low - check if memory consumption is below the normal range
5400 * @root: the top ancestor of the sub-tree being checked
5401 * @memcg: the memory cgroup to check
5403 * Returns %true if memory consumption of @memcg, and that of all
5404 * ancestors up to (but not including) @root, is below the normal range.
5406 * @root is exclusive; it is never low when looked at directly and isn't
5407 * checked when traversing the hierarchy.
5409 * Excluding @root enables using memory.low to prioritize memory usage
5410 * between cgroups within a subtree of the hierarchy that is limited by
5411 * memory.high or memory.max.
5413 * For example, given cgroup A with children B and C:
5421 * 1. A/memory.current > A/memory.high
5422 * 2. A/B/memory.current < A/B/memory.low
5423 * 3. A/C/memory.current >= A/C/memory.low
5425 * As 'A' is high, i.e. triggers reclaim from 'A', and 'B' is low, we
5426 * should reclaim from 'C' until 'A' is no longer high or until we can
5427 * no longer reclaim from 'C'. If 'A', i.e. @root, isn't excluded by
5428 * mem_cgroup_low when reclaming from 'A', then 'B' won't be considered
5429 * low and we will reclaim indiscriminately from both 'B' and 'C'.
5431 bool mem_cgroup_low(struct mem_cgroup
*root
, struct mem_cgroup
*memcg
)
5433 if (mem_cgroup_disabled())
5437 root
= root_mem_cgroup
;
5441 for (; memcg
!= root
; memcg
= parent_mem_cgroup(memcg
)) {
5442 if (page_counter_read(&memcg
->memory
) >= memcg
->low
)
5450 * mem_cgroup_try_charge - try charging a page
5451 * @page: page to charge
5452 * @mm: mm context of the victim
5453 * @gfp_mask: reclaim mode
5454 * @memcgp: charged memcg return
5455 * @compound: charge the page as compound or small page
5457 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5458 * pages according to @gfp_mask if necessary.
5460 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5461 * Otherwise, an error code is returned.
5463 * After page->mapping has been set up, the caller must finalize the
5464 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5465 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5467 int mem_cgroup_try_charge(struct page
*page
, struct mm_struct
*mm
,
5468 gfp_t gfp_mask
, struct mem_cgroup
**memcgp
,
5471 struct mem_cgroup
*memcg
= NULL
;
5472 unsigned int nr_pages
= compound
? hpage_nr_pages(page
) : 1;
5475 if (mem_cgroup_disabled())
5478 if (PageSwapCache(page
)) {
5480 * Every swap fault against a single page tries to charge the
5481 * page, bail as early as possible. shmem_unuse() encounters
5482 * already charged pages, too. The USED bit is protected by
5483 * the page lock, which serializes swap cache removal, which
5484 * in turn serializes uncharging.
5486 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
5487 if (compound_head(page
)->mem_cgroup
)
5490 if (do_swap_account
) {
5491 swp_entry_t ent
= { .val
= page_private(page
), };
5492 unsigned short id
= lookup_swap_cgroup_id(ent
);
5495 memcg
= mem_cgroup_from_id(id
);
5496 if (memcg
&& !css_tryget_online(&memcg
->css
))
5503 memcg
= get_mem_cgroup_from_mm(mm
);
5505 ret
= try_charge(memcg
, gfp_mask
, nr_pages
);
5507 css_put(&memcg
->css
);
5514 * mem_cgroup_commit_charge - commit a page charge
5515 * @page: page to charge
5516 * @memcg: memcg to charge the page to
5517 * @lrucare: page might be on LRU already
5518 * @compound: charge the page as compound or small page
5520 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5521 * after page->mapping has been set up. This must happen atomically
5522 * as part of the page instantiation, i.e. under the page table lock
5523 * for anonymous pages, under the page lock for page and swap cache.
5525 * In addition, the page must not be on the LRU during the commit, to
5526 * prevent racing with task migration. If it might be, use @lrucare.
5528 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5530 void mem_cgroup_commit_charge(struct page
*page
, struct mem_cgroup
*memcg
,
5531 bool lrucare
, bool compound
)
5533 unsigned int nr_pages
= compound
? hpage_nr_pages(page
) : 1;
5535 VM_BUG_ON_PAGE(!page
->mapping
, page
);
5536 VM_BUG_ON_PAGE(PageLRU(page
) && !lrucare
, page
);
5538 if (mem_cgroup_disabled())
5541 * Swap faults will attempt to charge the same page multiple
5542 * times. But reuse_swap_page() might have removed the page
5543 * from swapcache already, so we can't check PageSwapCache().
5548 commit_charge(page
, memcg
, lrucare
);
5550 local_irq_disable();
5551 mem_cgroup_charge_statistics(memcg
, page
, compound
, nr_pages
);
5552 memcg_check_events(memcg
, page
);
5555 if (do_memsw_account() && PageSwapCache(page
)) {
5556 swp_entry_t entry
= { .val
= page_private(page
) };
5558 * The swap entry might not get freed for a long time,
5559 * let's not wait for it. The page already received a
5560 * memory+swap charge, drop the swap entry duplicate.
5562 mem_cgroup_uncharge_swap(entry
, nr_pages
);
5567 * mem_cgroup_cancel_charge - cancel a page charge
5568 * @page: page to charge
5569 * @memcg: memcg to charge the page to
5570 * @compound: charge the page as compound or small page
5572 * Cancel a charge transaction started by mem_cgroup_try_charge().
5574 void mem_cgroup_cancel_charge(struct page
*page
, struct mem_cgroup
*memcg
,
5577 unsigned int nr_pages
= compound
? hpage_nr_pages(page
) : 1;
5579 if (mem_cgroup_disabled())
5582 * Swap faults will attempt to charge the same page multiple
5583 * times. But reuse_swap_page() might have removed the page
5584 * from swapcache already, so we can't check PageSwapCache().
5589 cancel_charge(memcg
, nr_pages
);
5592 struct uncharge_gather
{
5593 struct mem_cgroup
*memcg
;
5594 unsigned long pgpgout
;
5595 unsigned long nr_anon
;
5596 unsigned long nr_file
;
5597 unsigned long nr_kmem
;
5598 unsigned long nr_huge
;
5599 unsigned long nr_shmem
;
5600 struct page
*dummy_page
;
5603 static inline void uncharge_gather_clear(struct uncharge_gather
*ug
)
5605 memset(ug
, 0, sizeof(*ug
));
5608 static void uncharge_batch(const struct uncharge_gather
*ug
)
5610 unsigned long nr_pages
= ug
->nr_anon
+ ug
->nr_file
+ ug
->nr_kmem
;
5611 unsigned long flags
;
5613 if (!mem_cgroup_is_root(ug
->memcg
)) {
5614 page_counter_uncharge(&ug
->memcg
->memory
, nr_pages
);
5615 if (do_memsw_account())
5616 page_counter_uncharge(&ug
->memcg
->memsw
, nr_pages
);
5617 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) && ug
->nr_kmem
)
5618 page_counter_uncharge(&ug
->memcg
->kmem
, ug
->nr_kmem
);
5619 memcg_oom_recover(ug
->memcg
);
5622 local_irq_save(flags
);
5623 __this_cpu_sub(ug
->memcg
->stat
->count
[MEMCG_RSS
], ug
->nr_anon
);
5624 __this_cpu_sub(ug
->memcg
->stat
->count
[MEMCG_CACHE
], ug
->nr_file
);
5625 __this_cpu_sub(ug
->memcg
->stat
->count
[MEMCG_RSS_HUGE
], ug
->nr_huge
);
5626 __this_cpu_sub(ug
->memcg
->stat
->count
[NR_SHMEM
], ug
->nr_shmem
);
5627 __this_cpu_add(ug
->memcg
->stat
->events
[PGPGOUT
], ug
->pgpgout
);
5628 __this_cpu_add(ug
->memcg
->stat
->nr_page_events
, nr_pages
);
5629 memcg_check_events(ug
->memcg
, ug
->dummy_page
);
5630 local_irq_restore(flags
);
5632 if (!mem_cgroup_is_root(ug
->memcg
))
5633 css_put_many(&ug
->memcg
->css
, nr_pages
);
5636 static void uncharge_page(struct page
*page
, struct uncharge_gather
*ug
)
5638 VM_BUG_ON_PAGE(PageLRU(page
), page
);
5639 VM_BUG_ON_PAGE(!PageHWPoison(page
) && page_count(page
), page
);
5641 if (!page
->mem_cgroup
)
5645 * Nobody should be changing or seriously looking at
5646 * page->mem_cgroup at this point, we have fully
5647 * exclusive access to the page.
5650 if (ug
->memcg
!= page
->mem_cgroup
) {
5653 uncharge_gather_clear(ug
);
5655 ug
->memcg
= page
->mem_cgroup
;
5658 if (!PageKmemcg(page
)) {
5659 unsigned int nr_pages
= 1;
5661 if (PageTransHuge(page
)) {
5662 nr_pages
<<= compound_order(page
);
5663 ug
->nr_huge
+= nr_pages
;
5666 ug
->nr_anon
+= nr_pages
;
5668 ug
->nr_file
+= nr_pages
;
5669 if (PageSwapBacked(page
))
5670 ug
->nr_shmem
+= nr_pages
;
5674 ug
->nr_kmem
+= 1 << compound_order(page
);
5675 __ClearPageKmemcg(page
);
5678 ug
->dummy_page
= page
;
5679 page
->mem_cgroup
= NULL
;
5682 static void uncharge_list(struct list_head
*page_list
)
5684 struct uncharge_gather ug
;
5685 struct list_head
*next
;
5687 uncharge_gather_clear(&ug
);
5690 * Note that the list can be a single page->lru; hence the
5691 * do-while loop instead of a simple list_for_each_entry().
5693 next
= page_list
->next
;
5697 page
= list_entry(next
, struct page
, lru
);
5698 next
= page
->lru
.next
;
5700 uncharge_page(page
, &ug
);
5701 } while (next
!= page_list
);
5704 uncharge_batch(&ug
);
5708 * mem_cgroup_uncharge - uncharge a page
5709 * @page: page to uncharge
5711 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5712 * mem_cgroup_commit_charge().
5714 void mem_cgroup_uncharge(struct page
*page
)
5716 struct uncharge_gather ug
;
5718 if (mem_cgroup_disabled())
5721 /* Don't touch page->lru of any random page, pre-check: */
5722 if (!page
->mem_cgroup
)
5725 uncharge_gather_clear(&ug
);
5726 uncharge_page(page
, &ug
);
5727 uncharge_batch(&ug
);
5731 * mem_cgroup_uncharge_list - uncharge a list of page
5732 * @page_list: list of pages to uncharge
5734 * Uncharge a list of pages previously charged with
5735 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5737 void mem_cgroup_uncharge_list(struct list_head
*page_list
)
5739 if (mem_cgroup_disabled())
5742 if (!list_empty(page_list
))
5743 uncharge_list(page_list
);
5747 * mem_cgroup_migrate - charge a page's replacement
5748 * @oldpage: currently circulating page
5749 * @newpage: replacement page
5751 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5752 * be uncharged upon free.
5754 * Both pages must be locked, @newpage->mapping must be set up.
5756 void mem_cgroup_migrate(struct page
*oldpage
, struct page
*newpage
)
5758 struct mem_cgroup
*memcg
;
5759 unsigned int nr_pages
;
5761 unsigned long flags
;
5763 VM_BUG_ON_PAGE(!PageLocked(oldpage
), oldpage
);
5764 VM_BUG_ON_PAGE(!PageLocked(newpage
), newpage
);
5765 VM_BUG_ON_PAGE(PageAnon(oldpage
) != PageAnon(newpage
), newpage
);
5766 VM_BUG_ON_PAGE(PageTransHuge(oldpage
) != PageTransHuge(newpage
),
5769 if (mem_cgroup_disabled())
5772 /* Page cache replacement: new page already charged? */
5773 if (newpage
->mem_cgroup
)
5776 /* Swapcache readahead pages can get replaced before being charged */
5777 memcg
= oldpage
->mem_cgroup
;
5781 /* Force-charge the new page. The old one will be freed soon */
5782 compound
= PageTransHuge(newpage
);
5783 nr_pages
= compound
? hpage_nr_pages(newpage
) : 1;
5785 page_counter_charge(&memcg
->memory
, nr_pages
);
5786 if (do_memsw_account())
5787 page_counter_charge(&memcg
->memsw
, nr_pages
);
5788 css_get_many(&memcg
->css
, nr_pages
);
5790 commit_charge(newpage
, memcg
, false);
5792 local_irq_save(flags
);
5793 mem_cgroup_charge_statistics(memcg
, newpage
, compound
, nr_pages
);
5794 memcg_check_events(memcg
, newpage
);
5795 local_irq_restore(flags
);
5798 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key
);
5799 EXPORT_SYMBOL(memcg_sockets_enabled_key
);
5801 void mem_cgroup_sk_alloc(struct sock
*sk
)
5803 struct mem_cgroup
*memcg
;
5805 if (!mem_cgroup_sockets_enabled
)
5809 * Socket cloning can throw us here with sk_memcg already
5810 * filled. It won't however, necessarily happen from
5811 * process context. So the test for root memcg given
5812 * the current task's memcg won't help us in this case.
5814 * Respecting the original socket's memcg is a better
5815 * decision in this case.
5818 BUG_ON(mem_cgroup_is_root(sk
->sk_memcg
));
5819 css_get(&sk
->sk_memcg
->css
);
5824 memcg
= mem_cgroup_from_task(current
);
5825 if (memcg
== root_mem_cgroup
)
5827 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) && !memcg
->tcpmem_active
)
5829 if (css_tryget_online(&memcg
->css
))
5830 sk
->sk_memcg
= memcg
;
5835 void mem_cgroup_sk_free(struct sock
*sk
)
5838 css_put(&sk
->sk_memcg
->css
);
5842 * mem_cgroup_charge_skmem - charge socket memory
5843 * @memcg: memcg to charge
5844 * @nr_pages: number of pages to charge
5846 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5847 * @memcg's configured limit, %false if the charge had to be forced.
5849 bool mem_cgroup_charge_skmem(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
5851 gfp_t gfp_mask
= GFP_KERNEL
;
5853 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
)) {
5854 struct page_counter
*fail
;
5856 if (page_counter_try_charge(&memcg
->tcpmem
, nr_pages
, &fail
)) {
5857 memcg
->tcpmem_pressure
= 0;
5860 page_counter_charge(&memcg
->tcpmem
, nr_pages
);
5861 memcg
->tcpmem_pressure
= 1;
5865 /* Don't block in the packet receive path */
5867 gfp_mask
= GFP_NOWAIT
;
5869 this_cpu_add(memcg
->stat
->count
[MEMCG_SOCK
], nr_pages
);
5871 if (try_charge(memcg
, gfp_mask
, nr_pages
) == 0)
5874 try_charge(memcg
, gfp_mask
|__GFP_NOFAIL
, nr_pages
);
5879 * mem_cgroup_uncharge_skmem - uncharge socket memory
5880 * @memcg - memcg to uncharge
5881 * @nr_pages - number of pages to uncharge
5883 void mem_cgroup_uncharge_skmem(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
5885 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
)) {
5886 page_counter_uncharge(&memcg
->tcpmem
, nr_pages
);
5890 this_cpu_sub(memcg
->stat
->count
[MEMCG_SOCK
], nr_pages
);
5892 refill_stock(memcg
, nr_pages
);
5895 static int __init
cgroup_memory(char *s
)
5899 while ((token
= strsep(&s
, ",")) != NULL
) {
5902 if (!strcmp(token
, "nosocket"))
5903 cgroup_memory_nosocket
= true;
5904 if (!strcmp(token
, "nokmem"))
5905 cgroup_memory_nokmem
= true;
5909 __setup("cgroup.memory=", cgroup_memory
);
5912 * subsys_initcall() for memory controller.
5914 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
5915 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
5916 * basically everything that doesn't depend on a specific mem_cgroup structure
5917 * should be initialized from here.
5919 static int __init
mem_cgroup_init(void)
5925 * Kmem cache creation is mostly done with the slab_mutex held,
5926 * so use a workqueue with limited concurrency to avoid stalling
5927 * all worker threads in case lots of cgroups are created and
5928 * destroyed simultaneously.
5930 memcg_kmem_cache_wq
= alloc_workqueue("memcg_kmem_cache", 0, 1);
5931 BUG_ON(!memcg_kmem_cache_wq
);
5934 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD
, "mm/memctrl:dead", NULL
,
5935 memcg_hotplug_cpu_dead
);
5937 for_each_possible_cpu(cpu
)
5938 INIT_WORK(&per_cpu_ptr(&memcg_stock
, cpu
)->work
,
5941 for_each_node(node
) {
5942 struct mem_cgroup_tree_per_node
*rtpn
;
5944 rtpn
= kzalloc_node(sizeof(*rtpn
), GFP_KERNEL
,
5945 node_online(node
) ? node
: NUMA_NO_NODE
);
5947 rtpn
->rb_root
= RB_ROOT
;
5948 spin_lock_init(&rtpn
->lock
);
5949 soft_limit_tree
.rb_tree_per_node
[node
] = rtpn
;
5954 subsys_initcall(mem_cgroup_init
);
5956 #ifdef CONFIG_MEMCG_SWAP
5957 static struct mem_cgroup
*mem_cgroup_id_get_online(struct mem_cgroup
*memcg
)
5959 while (!atomic_inc_not_zero(&memcg
->id
.ref
)) {
5961 * The root cgroup cannot be destroyed, so it's refcount must
5964 if (WARN_ON_ONCE(memcg
== root_mem_cgroup
)) {
5968 memcg
= parent_mem_cgroup(memcg
);
5970 memcg
= root_mem_cgroup
;
5976 * mem_cgroup_swapout - transfer a memsw charge to swap
5977 * @page: page whose memsw charge to transfer
5978 * @entry: swap entry to move the charge to
5980 * Transfer the memsw charge of @page to @entry.
5982 void mem_cgroup_swapout(struct page
*page
, swp_entry_t entry
)
5984 struct mem_cgroup
*memcg
, *swap_memcg
;
5985 unsigned int nr_entries
;
5986 unsigned short oldid
;
5988 VM_BUG_ON_PAGE(PageLRU(page
), page
);
5989 VM_BUG_ON_PAGE(page_count(page
), page
);
5991 if (!do_memsw_account())
5994 memcg
= page
->mem_cgroup
;
5996 /* Readahead page, never charged */
6001 * In case the memcg owning these pages has been offlined and doesn't
6002 * have an ID allocated to it anymore, charge the closest online
6003 * ancestor for the swap instead and transfer the memory+swap charge.
6005 swap_memcg
= mem_cgroup_id_get_online(memcg
);
6006 nr_entries
= hpage_nr_pages(page
);
6007 /* Get references for the tail pages, too */
6009 mem_cgroup_id_get_many(swap_memcg
, nr_entries
- 1);
6010 oldid
= swap_cgroup_record(entry
, mem_cgroup_id(swap_memcg
),
6012 VM_BUG_ON_PAGE(oldid
, page
);
6013 mem_cgroup_swap_statistics(swap_memcg
, nr_entries
);
6015 page
->mem_cgroup
= NULL
;
6017 if (!mem_cgroup_is_root(memcg
))
6018 page_counter_uncharge(&memcg
->memory
, nr_entries
);
6020 if (memcg
!= swap_memcg
) {
6021 if (!mem_cgroup_is_root(swap_memcg
))
6022 page_counter_charge(&swap_memcg
->memsw
, nr_entries
);
6023 page_counter_uncharge(&memcg
->memsw
, nr_entries
);
6027 * Interrupts should be disabled here because the caller holds the
6028 * mapping->tree_lock lock which is taken with interrupts-off. It is
6029 * important here to have the interrupts disabled because it is the
6030 * only synchronisation we have for udpating the per-CPU variables.
6032 VM_BUG_ON(!irqs_disabled());
6033 mem_cgroup_charge_statistics(memcg
, page
, PageTransHuge(page
),
6035 memcg_check_events(memcg
, page
);
6037 if (!mem_cgroup_is_root(memcg
))
6038 css_put(&memcg
->css
);
6042 * mem_cgroup_try_charge_swap - try charging swap space for a page
6043 * @page: page being added to swap
6044 * @entry: swap entry to charge
6046 * Try to charge @page's memcg for the swap space at @entry.
6048 * Returns 0 on success, -ENOMEM on failure.
6050 int mem_cgroup_try_charge_swap(struct page
*page
, swp_entry_t entry
)
6052 unsigned int nr_pages
= hpage_nr_pages(page
);
6053 struct page_counter
*counter
;
6054 struct mem_cgroup
*memcg
;
6055 unsigned short oldid
;
6057 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) || !do_swap_account
)
6060 memcg
= page
->mem_cgroup
;
6062 /* Readahead page, never charged */
6066 memcg
= mem_cgroup_id_get_online(memcg
);
6068 if (!mem_cgroup_is_root(memcg
) &&
6069 !page_counter_try_charge(&memcg
->swap
, nr_pages
, &counter
)) {
6070 mem_cgroup_id_put(memcg
);
6074 /* Get references for the tail pages, too */
6076 mem_cgroup_id_get_many(memcg
, nr_pages
- 1);
6077 oldid
= swap_cgroup_record(entry
, mem_cgroup_id(memcg
), nr_pages
);
6078 VM_BUG_ON_PAGE(oldid
, page
);
6079 mem_cgroup_swap_statistics(memcg
, nr_pages
);
6085 * mem_cgroup_uncharge_swap - uncharge swap space
6086 * @entry: swap entry to uncharge
6087 * @nr_pages: the amount of swap space to uncharge
6089 void mem_cgroup_uncharge_swap(swp_entry_t entry
, unsigned int nr_pages
)
6091 struct mem_cgroup
*memcg
;
6094 if (!do_swap_account
)
6097 id
= swap_cgroup_record(entry
, 0, nr_pages
);
6099 memcg
= mem_cgroup_from_id(id
);
6101 if (!mem_cgroup_is_root(memcg
)) {
6102 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
6103 page_counter_uncharge(&memcg
->swap
, nr_pages
);
6105 page_counter_uncharge(&memcg
->memsw
, nr_pages
);
6107 mem_cgroup_swap_statistics(memcg
, -nr_pages
);
6108 mem_cgroup_id_put_many(memcg
, nr_pages
);
6113 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup
*memcg
)
6115 long nr_swap_pages
= get_nr_swap_pages();
6117 if (!do_swap_account
|| !cgroup_subsys_on_dfl(memory_cgrp_subsys
))
6118 return nr_swap_pages
;
6119 for (; memcg
!= root_mem_cgroup
; memcg
= parent_mem_cgroup(memcg
))
6120 nr_swap_pages
= min_t(long, nr_swap_pages
,
6121 READ_ONCE(memcg
->swap
.limit
) -
6122 page_counter_read(&memcg
->swap
));
6123 return nr_swap_pages
;
6126 bool mem_cgroup_swap_full(struct page
*page
)
6128 struct mem_cgroup
*memcg
;
6130 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
6134 if (!do_swap_account
|| !cgroup_subsys_on_dfl(memory_cgrp_subsys
))
6137 memcg
= page
->mem_cgroup
;
6141 for (; memcg
!= root_mem_cgroup
; memcg
= parent_mem_cgroup(memcg
))
6142 if (page_counter_read(&memcg
->swap
) * 2 >= memcg
->swap
.limit
)
6148 /* for remember boot option*/
6149 #ifdef CONFIG_MEMCG_SWAP_ENABLED
6150 static int really_do_swap_account __initdata
= 1;
6152 static int really_do_swap_account __initdata
;
6155 static int __init
enable_swap_account(char *s
)
6157 if (!strcmp(s
, "1"))
6158 really_do_swap_account
= 1;
6159 else if (!strcmp(s
, "0"))
6160 really_do_swap_account
= 0;
6163 __setup("swapaccount=", enable_swap_account
);
6165 static u64
swap_current_read(struct cgroup_subsys_state
*css
,
6168 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
6170 return (u64
)page_counter_read(&memcg
->swap
) * PAGE_SIZE
;
6173 static int swap_max_show(struct seq_file
*m
, void *v
)
6175 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
6176 unsigned long max
= READ_ONCE(memcg
->swap
.limit
);
6178 if (max
== PAGE_COUNTER_MAX
)
6179 seq_puts(m
, "max\n");
6181 seq_printf(m
, "%llu\n", (u64
)max
* PAGE_SIZE
);
6186 static ssize_t
swap_max_write(struct kernfs_open_file
*of
,
6187 char *buf
, size_t nbytes
, loff_t off
)
6189 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
6193 buf
= strstrip(buf
);
6194 err
= page_counter_memparse(buf
, "max", &max
);
6198 mutex_lock(&memcg_limit_mutex
);
6199 err
= page_counter_limit(&memcg
->swap
, max
);
6200 mutex_unlock(&memcg_limit_mutex
);
6207 static struct cftype swap_files
[] = {
6209 .name
= "swap.current",
6210 .flags
= CFTYPE_NOT_ON_ROOT
,
6211 .read_u64
= swap_current_read
,
6215 .flags
= CFTYPE_NOT_ON_ROOT
,
6216 .seq_show
= swap_max_show
,
6217 .write
= swap_max_write
,
6222 static struct cftype memsw_cgroup_files
[] = {
6224 .name
= "memsw.usage_in_bytes",
6225 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_USAGE
),
6226 .read_u64
= mem_cgroup_read_u64
,
6229 .name
= "memsw.max_usage_in_bytes",
6230 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_MAX_USAGE
),
6231 .write
= mem_cgroup_reset
,
6232 .read_u64
= mem_cgroup_read_u64
,
6235 .name
= "memsw.limit_in_bytes",
6236 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_LIMIT
),
6237 .write
= mem_cgroup_write
,
6238 .read_u64
= mem_cgroup_read_u64
,
6241 .name
= "memsw.failcnt",
6242 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_FAILCNT
),
6243 .write
= mem_cgroup_reset
,
6244 .read_u64
= mem_cgroup_read_u64
,
6246 { }, /* terminate */
6249 static int __init
mem_cgroup_swap_init(void)
6251 if (!mem_cgroup_disabled() && really_do_swap_account
) {
6252 do_swap_account
= 1;
6253 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys
,
6255 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys
,
6256 memsw_cgroup_files
));
6260 subsys_initcall(mem_cgroup_swap_init
);
6262 #endif /* CONFIG_MEMCG_SWAP */