2 * Freescale i.MX23/i.MX28 Data Co-Processor driver
4 * Copyright (C) 2013 Marek Vasut <marex@denx.de>
6 * The code contained herein is licensed under the GNU General Public
7 * License. You may obtain a copy of the GNU General Public License
8 * Version 2 or later at the following locations:
10 * http://www.opensource.org/licenses/gpl-license.html
11 * http://www.gnu.org/copyleft/gpl.html
14 #include <linux/dma-mapping.h>
15 #include <linux/interrupt.h>
17 #include <linux/kernel.h>
18 #include <linux/kthread.h>
19 #include <linux/module.h>
21 #include <linux/platform_device.h>
22 #include <linux/stmp_device.h>
24 #include <crypto/aes.h>
25 #include <crypto/sha.h>
26 #include <crypto/internal/hash.h>
27 #include <crypto/internal/skcipher.h>
28 #include <crypto/scatterwalk.h>
30 #define DCP_MAX_CHANS 4
31 #define DCP_BUF_SZ PAGE_SIZE
32 #define DCP_SHA_PAY_SZ 64
34 #define DCP_ALIGNMENT 64
37 * Null hashes to align with hw behavior on imx6sl and ull
38 * these are flipped for consistency with hw output
40 static const uint8_t sha1_null_hash
[] =
41 "\x09\x07\xd8\xaf\x90\x18\x60\x95\xef\xbf"
42 "\x55\x32\x0d\x4b\x6b\x5e\xee\xa3\x39\xda";
44 static const uint8_t sha256_null_hash
[] =
45 "\x55\xb8\x52\x78\x1b\x99\x95\xa4"
46 "\x4c\x93\x9b\x64\xe4\x41\xae\x27"
47 "\x24\xb9\x6f\x99\xc8\xf4\xfb\x9a"
48 "\x14\x1c\xfc\x98\x42\xc4\xb0\xe3";
50 /* DCP DMA descriptor. */
52 uint32_t next_cmd_addr
;
62 /* Coherent aligned block for bounce buffering. */
63 struct dcp_coherent_block
{
64 uint8_t aes_in_buf
[DCP_BUF_SZ
];
65 uint8_t aes_out_buf
[DCP_BUF_SZ
];
66 uint8_t sha_in_buf
[DCP_BUF_SZ
];
67 uint8_t sha_out_buf
[DCP_SHA_PAY_SZ
];
69 uint8_t aes_key
[2 * AES_KEYSIZE_128
];
71 struct dcp_dma_desc desc
[DCP_MAX_CHANS
];
80 struct dcp_coherent_block
*coh
;
82 struct completion completion
[DCP_MAX_CHANS
];
83 spinlock_t lock
[DCP_MAX_CHANS
];
84 struct task_struct
*thread
[DCP_MAX_CHANS
];
85 struct crypto_queue queue
[DCP_MAX_CHANS
];
89 DCP_CHAN_HASH_SHA
= 0,
93 struct dcp_async_ctx
{
98 /* SHA Hash-specific context */
103 /* Crypto-specific context */
104 struct crypto_skcipher
*fallback
;
105 unsigned int key_len
;
106 uint8_t key
[AES_KEYSIZE_128
];
109 struct dcp_aes_req_ctx
{
114 struct dcp_sha_req_ctx
{
120 * There can even be only one instance of the MXS DCP due to the
121 * design of Linux Crypto API.
123 static struct dcp
*global_sdcp
;
125 /* DCP register layout. */
126 #define MXS_DCP_CTRL 0x00
127 #define MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES (1 << 23)
128 #define MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING (1 << 22)
130 #define MXS_DCP_STAT 0x10
131 #define MXS_DCP_STAT_CLR 0x18
132 #define MXS_DCP_STAT_IRQ_MASK 0xf
134 #define MXS_DCP_CHANNELCTRL 0x20
135 #define MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK 0xff
137 #define MXS_DCP_CAPABILITY1 0x40
138 #define MXS_DCP_CAPABILITY1_SHA256 (4 << 16)
139 #define MXS_DCP_CAPABILITY1_SHA1 (1 << 16)
140 #define MXS_DCP_CAPABILITY1_AES128 (1 << 0)
142 #define MXS_DCP_CONTEXT 0x50
144 #define MXS_DCP_CH_N_CMDPTR(n) (0x100 + ((n) * 0x40))
146 #define MXS_DCP_CH_N_SEMA(n) (0x110 + ((n) * 0x40))
148 #define MXS_DCP_CH_N_STAT(n) (0x120 + ((n) * 0x40))
149 #define MXS_DCP_CH_N_STAT_CLR(n) (0x128 + ((n) * 0x40))
151 /* DMA descriptor bits. */
152 #define MXS_DCP_CONTROL0_HASH_TERM (1 << 13)
153 #define MXS_DCP_CONTROL0_HASH_INIT (1 << 12)
154 #define MXS_DCP_CONTROL0_PAYLOAD_KEY (1 << 11)
155 #define MXS_DCP_CONTROL0_CIPHER_ENCRYPT (1 << 8)
156 #define MXS_DCP_CONTROL0_CIPHER_INIT (1 << 9)
157 #define MXS_DCP_CONTROL0_ENABLE_HASH (1 << 6)
158 #define MXS_DCP_CONTROL0_ENABLE_CIPHER (1 << 5)
159 #define MXS_DCP_CONTROL0_DECR_SEMAPHORE (1 << 1)
160 #define MXS_DCP_CONTROL0_INTERRUPT (1 << 0)
162 #define MXS_DCP_CONTROL1_HASH_SELECT_SHA256 (2 << 16)
163 #define MXS_DCP_CONTROL1_HASH_SELECT_SHA1 (0 << 16)
164 #define MXS_DCP_CONTROL1_CIPHER_MODE_CBC (1 << 4)
165 #define MXS_DCP_CONTROL1_CIPHER_MODE_ECB (0 << 4)
166 #define MXS_DCP_CONTROL1_CIPHER_SELECT_AES128 (0 << 0)
168 static int mxs_dcp_start_dma(struct dcp_async_ctx
*actx
)
170 struct dcp
*sdcp
= global_sdcp
;
171 const int chan
= actx
->chan
;
174 struct dcp_dma_desc
*desc
= &sdcp
->coh
->desc
[actx
->chan
];
176 dma_addr_t desc_phys
= dma_map_single(sdcp
->dev
, desc
, sizeof(*desc
),
179 reinit_completion(&sdcp
->completion
[chan
]);
181 /* Clear status register. */
182 writel(0xffffffff, sdcp
->base
+ MXS_DCP_CH_N_STAT_CLR(chan
));
184 /* Load the DMA descriptor. */
185 writel(desc_phys
, sdcp
->base
+ MXS_DCP_CH_N_CMDPTR(chan
));
187 /* Increment the semaphore to start the DMA transfer. */
188 writel(1, sdcp
->base
+ MXS_DCP_CH_N_SEMA(chan
));
190 ret
= wait_for_completion_timeout(&sdcp
->completion
[chan
],
191 msecs_to_jiffies(1000));
193 dev_err(sdcp
->dev
, "Channel %i timeout (DCP_STAT=0x%08x)\n",
194 chan
, readl(sdcp
->base
+ MXS_DCP_STAT
));
198 stat
= readl(sdcp
->base
+ MXS_DCP_CH_N_STAT(chan
));
200 dev_err(sdcp
->dev
, "Channel %i error (CH_STAT=0x%08x)\n",
205 dma_unmap_single(sdcp
->dev
, desc_phys
, sizeof(*desc
), DMA_TO_DEVICE
);
211 * Encryption (AES128)
213 static int mxs_dcp_run_aes(struct dcp_async_ctx
*actx
,
214 struct ablkcipher_request
*req
, int init
)
216 struct dcp
*sdcp
= global_sdcp
;
217 struct dcp_dma_desc
*desc
= &sdcp
->coh
->desc
[actx
->chan
];
218 struct dcp_aes_req_ctx
*rctx
= ablkcipher_request_ctx(req
);
221 dma_addr_t key_phys
= dma_map_single(sdcp
->dev
, sdcp
->coh
->aes_key
,
224 dma_addr_t src_phys
= dma_map_single(sdcp
->dev
, sdcp
->coh
->aes_in_buf
,
225 DCP_BUF_SZ
, DMA_TO_DEVICE
);
226 dma_addr_t dst_phys
= dma_map_single(sdcp
->dev
, sdcp
->coh
->aes_out_buf
,
227 DCP_BUF_SZ
, DMA_FROM_DEVICE
);
229 if (actx
->fill
% AES_BLOCK_SIZE
) {
230 dev_err(sdcp
->dev
, "Invalid block size!\n");
235 /* Fill in the DMA descriptor. */
236 desc
->control0
= MXS_DCP_CONTROL0_DECR_SEMAPHORE
|
237 MXS_DCP_CONTROL0_INTERRUPT
|
238 MXS_DCP_CONTROL0_ENABLE_CIPHER
;
240 /* Payload contains the key. */
241 desc
->control0
|= MXS_DCP_CONTROL0_PAYLOAD_KEY
;
244 desc
->control0
|= MXS_DCP_CONTROL0_CIPHER_ENCRYPT
;
246 desc
->control0
|= MXS_DCP_CONTROL0_CIPHER_INIT
;
248 desc
->control1
= MXS_DCP_CONTROL1_CIPHER_SELECT_AES128
;
251 desc
->control1
|= MXS_DCP_CONTROL1_CIPHER_MODE_ECB
;
253 desc
->control1
|= MXS_DCP_CONTROL1_CIPHER_MODE_CBC
;
255 desc
->next_cmd_addr
= 0;
256 desc
->source
= src_phys
;
257 desc
->destination
= dst_phys
;
258 desc
->size
= actx
->fill
;
259 desc
->payload
= key_phys
;
262 ret
= mxs_dcp_start_dma(actx
);
265 dma_unmap_single(sdcp
->dev
, key_phys
, 2 * AES_KEYSIZE_128
,
267 dma_unmap_single(sdcp
->dev
, src_phys
, DCP_BUF_SZ
, DMA_TO_DEVICE
);
268 dma_unmap_single(sdcp
->dev
, dst_phys
, DCP_BUF_SZ
, DMA_FROM_DEVICE
);
273 static int mxs_dcp_aes_block_crypt(struct crypto_async_request
*arq
)
275 struct dcp
*sdcp
= global_sdcp
;
277 struct ablkcipher_request
*req
= ablkcipher_request_cast(arq
);
278 struct dcp_async_ctx
*actx
= crypto_tfm_ctx(arq
->tfm
);
279 struct dcp_aes_req_ctx
*rctx
= ablkcipher_request_ctx(req
);
281 struct scatterlist
*dst
= req
->dst
;
282 struct scatterlist
*src
= req
->src
;
283 const int nents
= sg_nents(req
->src
);
285 const int out_off
= DCP_BUF_SZ
;
286 uint8_t *in_buf
= sdcp
->coh
->aes_in_buf
;
287 uint8_t *out_buf
= sdcp
->coh
->aes_out_buf
;
289 uint8_t *out_tmp
, *src_buf
, *dst_buf
= NULL
;
290 uint32_t dst_off
= 0;
291 uint32_t last_out_len
= 0;
293 uint8_t *key
= sdcp
->coh
->aes_key
;
297 unsigned int i
, len
, clen
, rem
= 0, tlen
= 0;
299 bool limit_hit
= false;
303 /* Copy the key from the temporary location. */
304 memcpy(key
, actx
->key
, actx
->key_len
);
307 /* Copy the CBC IV just past the key. */
308 memcpy(key
+ AES_KEYSIZE_128
, req
->info
, AES_KEYSIZE_128
);
309 /* CBC needs the INIT set. */
312 memset(key
+ AES_KEYSIZE_128
, 0, AES_KEYSIZE_128
);
315 for_each_sg(req
->src
, src
, nents
, i
) {
316 src_buf
= sg_virt(src
);
317 len
= sg_dma_len(src
);
319 limit_hit
= tlen
> req
->nbytes
;
322 len
= req
->nbytes
- (tlen
- len
);
325 if (actx
->fill
+ len
> out_off
)
326 clen
= out_off
- actx
->fill
;
330 memcpy(in_buf
+ actx
->fill
, src_buf
, clen
);
336 * If we filled the buffer or this is the last SG,
339 if (actx
->fill
== out_off
|| sg_is_last(src
) ||
341 ret
= mxs_dcp_run_aes(actx
, req
, init
);
347 last_out_len
= actx
->fill
;
348 while (dst
&& actx
->fill
) {
350 dst_buf
= sg_virt(dst
);
353 rem
= min(sg_dma_len(dst
) - dst_off
,
356 memcpy(dst_buf
+ dst_off
, out_tmp
, rem
);
361 if (dst_off
== sg_dma_len(dst
)) {
375 /* Copy the IV for CBC for chaining */
378 memcpy(req
->info
, out_buf
+(last_out_len
-AES_BLOCK_SIZE
),
381 memcpy(req
->info
, in_buf
+(last_out_len
-AES_BLOCK_SIZE
),
388 static int dcp_chan_thread_aes(void *data
)
390 struct dcp
*sdcp
= global_sdcp
;
391 const int chan
= DCP_CHAN_CRYPTO
;
393 struct crypto_async_request
*backlog
;
394 struct crypto_async_request
*arq
;
398 while (!kthread_should_stop()) {
399 set_current_state(TASK_INTERRUPTIBLE
);
401 spin_lock(&sdcp
->lock
[chan
]);
402 backlog
= crypto_get_backlog(&sdcp
->queue
[chan
]);
403 arq
= crypto_dequeue_request(&sdcp
->queue
[chan
]);
404 spin_unlock(&sdcp
->lock
[chan
]);
406 if (!backlog
&& !arq
) {
411 set_current_state(TASK_RUNNING
);
414 backlog
->complete(backlog
, -EINPROGRESS
);
417 ret
= mxs_dcp_aes_block_crypt(arq
);
418 arq
->complete(arq
, ret
);
425 static int mxs_dcp_block_fallback(struct ablkcipher_request
*req
, int enc
)
427 struct crypto_ablkcipher
*tfm
= crypto_ablkcipher_reqtfm(req
);
428 struct dcp_async_ctx
*ctx
= crypto_ablkcipher_ctx(tfm
);
429 SKCIPHER_REQUEST_ON_STACK(subreq
, ctx
->fallback
);
432 skcipher_request_set_tfm(subreq
, ctx
->fallback
);
433 skcipher_request_set_callback(subreq
, req
->base
.flags
, NULL
, NULL
);
434 skcipher_request_set_crypt(subreq
, req
->src
, req
->dst
,
435 req
->nbytes
, req
->info
);
438 ret
= crypto_skcipher_encrypt(subreq
);
440 ret
= crypto_skcipher_decrypt(subreq
);
442 skcipher_request_zero(subreq
);
447 static int mxs_dcp_aes_enqueue(struct ablkcipher_request
*req
, int enc
, int ecb
)
449 struct dcp
*sdcp
= global_sdcp
;
450 struct crypto_async_request
*arq
= &req
->base
;
451 struct dcp_async_ctx
*actx
= crypto_tfm_ctx(arq
->tfm
);
452 struct dcp_aes_req_ctx
*rctx
= ablkcipher_request_ctx(req
);
455 if (unlikely(actx
->key_len
!= AES_KEYSIZE_128
))
456 return mxs_dcp_block_fallback(req
, enc
);
460 actx
->chan
= DCP_CHAN_CRYPTO
;
462 spin_lock(&sdcp
->lock
[actx
->chan
]);
463 ret
= crypto_enqueue_request(&sdcp
->queue
[actx
->chan
], &req
->base
);
464 spin_unlock(&sdcp
->lock
[actx
->chan
]);
466 wake_up_process(sdcp
->thread
[actx
->chan
]);
471 static int mxs_dcp_aes_ecb_decrypt(struct ablkcipher_request
*req
)
473 return mxs_dcp_aes_enqueue(req
, 0, 1);
476 static int mxs_dcp_aes_ecb_encrypt(struct ablkcipher_request
*req
)
478 return mxs_dcp_aes_enqueue(req
, 1, 1);
481 static int mxs_dcp_aes_cbc_decrypt(struct ablkcipher_request
*req
)
483 return mxs_dcp_aes_enqueue(req
, 0, 0);
486 static int mxs_dcp_aes_cbc_encrypt(struct ablkcipher_request
*req
)
488 return mxs_dcp_aes_enqueue(req
, 1, 0);
491 static int mxs_dcp_aes_setkey(struct crypto_ablkcipher
*tfm
, const u8
*key
,
494 struct dcp_async_ctx
*actx
= crypto_ablkcipher_ctx(tfm
);
498 * AES 128 is supposed by the hardware, store key into temporary
499 * buffer and exit. We must use the temporary buffer here, since
500 * there can still be an operation in progress.
503 if (len
== AES_KEYSIZE_128
) {
504 memcpy(actx
->key
, key
, len
);
509 * If the requested AES key size is not supported by the hardware,
510 * but is supported by in-kernel software implementation, we use
513 crypto_skcipher_clear_flags(actx
->fallback
, CRYPTO_TFM_REQ_MASK
);
514 crypto_skcipher_set_flags(actx
->fallback
,
515 tfm
->base
.crt_flags
& CRYPTO_TFM_REQ_MASK
);
517 ret
= crypto_skcipher_setkey(actx
->fallback
, key
, len
);
521 tfm
->base
.crt_flags
&= ~CRYPTO_TFM_RES_MASK
;
522 tfm
->base
.crt_flags
|= crypto_skcipher_get_flags(actx
->fallback
) &
528 static int mxs_dcp_aes_fallback_init(struct crypto_tfm
*tfm
)
530 const char *name
= crypto_tfm_alg_name(tfm
);
531 const uint32_t flags
= CRYPTO_ALG_ASYNC
| CRYPTO_ALG_NEED_FALLBACK
;
532 struct dcp_async_ctx
*actx
= crypto_tfm_ctx(tfm
);
533 struct crypto_skcipher
*blk
;
535 blk
= crypto_alloc_skcipher(name
, 0, flags
);
539 actx
->fallback
= blk
;
540 tfm
->crt_ablkcipher
.reqsize
= sizeof(struct dcp_aes_req_ctx
);
544 static void mxs_dcp_aes_fallback_exit(struct crypto_tfm
*tfm
)
546 struct dcp_async_ctx
*actx
= crypto_tfm_ctx(tfm
);
548 crypto_free_skcipher(actx
->fallback
);
552 * Hashing (SHA1/SHA256)
554 static int mxs_dcp_run_sha(struct ahash_request
*req
)
556 struct dcp
*sdcp
= global_sdcp
;
559 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
560 struct dcp_async_ctx
*actx
= crypto_ahash_ctx(tfm
);
561 struct dcp_sha_req_ctx
*rctx
= ahash_request_ctx(req
);
562 struct dcp_dma_desc
*desc
= &sdcp
->coh
->desc
[actx
->chan
];
564 dma_addr_t digest_phys
= 0;
565 dma_addr_t buf_phys
= dma_map_single(sdcp
->dev
, sdcp
->coh
->sha_in_buf
,
566 DCP_BUF_SZ
, DMA_TO_DEVICE
);
568 /* Fill in the DMA descriptor. */
569 desc
->control0
= MXS_DCP_CONTROL0_DECR_SEMAPHORE
|
570 MXS_DCP_CONTROL0_INTERRUPT
|
571 MXS_DCP_CONTROL0_ENABLE_HASH
;
573 desc
->control0
|= MXS_DCP_CONTROL0_HASH_INIT
;
575 desc
->control1
= actx
->alg
;
576 desc
->next_cmd_addr
= 0;
577 desc
->source
= buf_phys
;
578 desc
->destination
= 0;
579 desc
->size
= actx
->fill
;
584 * Align driver with hw behavior when generating null hashes
586 if (rctx
->init
&& rctx
->fini
&& desc
->size
== 0) {
587 struct hash_alg_common
*halg
= crypto_hash_alg_common(tfm
);
588 const uint8_t *sha_buf
=
589 (actx
->alg
== MXS_DCP_CONTROL1_HASH_SELECT_SHA1
) ?
590 sha1_null_hash
: sha256_null_hash
;
591 memcpy(sdcp
->coh
->sha_out_buf
, sha_buf
, halg
->digestsize
);
596 /* Set HASH_TERM bit for last transfer block. */
598 digest_phys
= dma_map_single(sdcp
->dev
, sdcp
->coh
->sha_out_buf
,
599 DCP_SHA_PAY_SZ
, DMA_FROM_DEVICE
);
600 desc
->control0
|= MXS_DCP_CONTROL0_HASH_TERM
;
601 desc
->payload
= digest_phys
;
604 ret
= mxs_dcp_start_dma(actx
);
607 dma_unmap_single(sdcp
->dev
, digest_phys
, DCP_SHA_PAY_SZ
,
611 dma_unmap_single(sdcp
->dev
, buf_phys
, DCP_BUF_SZ
, DMA_TO_DEVICE
);
616 static int dcp_sha_req_to_buf(struct crypto_async_request
*arq
)
618 struct dcp
*sdcp
= global_sdcp
;
620 struct ahash_request
*req
= ahash_request_cast(arq
);
621 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
622 struct dcp_async_ctx
*actx
= crypto_ahash_ctx(tfm
);
623 struct dcp_sha_req_ctx
*rctx
= ahash_request_ctx(req
);
624 struct hash_alg_common
*halg
= crypto_hash_alg_common(tfm
);
626 uint8_t *in_buf
= sdcp
->coh
->sha_in_buf
;
627 uint8_t *out_buf
= sdcp
->coh
->sha_out_buf
;
629 struct scatterlist
*src
;
631 unsigned int i
, len
, clen
, oft
= 0;
634 int fin
= rctx
->fini
;
642 if (actx
->fill
+ len
> DCP_BUF_SZ
)
643 clen
= DCP_BUF_SZ
- actx
->fill
;
647 scatterwalk_map_and_copy(in_buf
+ actx
->fill
, src
, oft
, clen
,
655 * If we filled the buffer and still have some
656 * more data, submit the buffer.
658 if (len
&& actx
->fill
== DCP_BUF_SZ
) {
659 ret
= mxs_dcp_run_sha(req
);
670 /* Submit whatever is left. */
674 ret
= mxs_dcp_run_sha(req
);
680 /* For some reason the result is flipped */
681 for (i
= 0; i
< halg
->digestsize
; i
++)
682 req
->result
[i
] = out_buf
[halg
->digestsize
- i
- 1];
688 static int dcp_chan_thread_sha(void *data
)
690 struct dcp
*sdcp
= global_sdcp
;
691 const int chan
= DCP_CHAN_HASH_SHA
;
693 struct crypto_async_request
*backlog
;
694 struct crypto_async_request
*arq
;
696 struct dcp_sha_req_ctx
*rctx
;
698 struct ahash_request
*req
;
701 while (!kthread_should_stop()) {
702 set_current_state(TASK_INTERRUPTIBLE
);
704 spin_lock(&sdcp
->lock
[chan
]);
705 backlog
= crypto_get_backlog(&sdcp
->queue
[chan
]);
706 arq
= crypto_dequeue_request(&sdcp
->queue
[chan
]);
707 spin_unlock(&sdcp
->lock
[chan
]);
709 if (!backlog
&& !arq
) {
714 set_current_state(TASK_RUNNING
);
717 backlog
->complete(backlog
, -EINPROGRESS
);
720 req
= ahash_request_cast(arq
);
721 rctx
= ahash_request_ctx(req
);
723 ret
= dcp_sha_req_to_buf(arq
);
725 arq
->complete(arq
, ret
);
732 static int dcp_sha_init(struct ahash_request
*req
)
734 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
735 struct dcp_async_ctx
*actx
= crypto_ahash_ctx(tfm
);
737 struct hash_alg_common
*halg
= crypto_hash_alg_common(tfm
);
740 * Start hashing session. The code below only inits the
741 * hashing session context, nothing more.
743 memset(actx
, 0, sizeof(*actx
));
745 if (strcmp(halg
->base
.cra_name
, "sha1") == 0)
746 actx
->alg
= MXS_DCP_CONTROL1_HASH_SELECT_SHA1
;
748 actx
->alg
= MXS_DCP_CONTROL1_HASH_SELECT_SHA256
;
752 actx
->chan
= DCP_CHAN_HASH_SHA
;
754 mutex_init(&actx
->mutex
);
759 static int dcp_sha_update_fx(struct ahash_request
*req
, int fini
)
761 struct dcp
*sdcp
= global_sdcp
;
763 struct dcp_sha_req_ctx
*rctx
= ahash_request_ctx(req
);
764 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
765 struct dcp_async_ctx
*actx
= crypto_ahash_ctx(tfm
);
770 * Ignore requests that have no data in them and are not
771 * the trailing requests in the stream of requests.
773 if (!req
->nbytes
&& !fini
)
776 mutex_lock(&actx
->mutex
);
785 spin_lock(&sdcp
->lock
[actx
->chan
]);
786 ret
= crypto_enqueue_request(&sdcp
->queue
[actx
->chan
], &req
->base
);
787 spin_unlock(&sdcp
->lock
[actx
->chan
]);
789 wake_up_process(sdcp
->thread
[actx
->chan
]);
790 mutex_unlock(&actx
->mutex
);
795 static int dcp_sha_update(struct ahash_request
*req
)
797 return dcp_sha_update_fx(req
, 0);
800 static int dcp_sha_final(struct ahash_request
*req
)
802 ahash_request_set_crypt(req
, NULL
, req
->result
, 0);
804 return dcp_sha_update_fx(req
, 1);
807 static int dcp_sha_finup(struct ahash_request
*req
)
809 return dcp_sha_update_fx(req
, 1);
812 static int dcp_sha_digest(struct ahash_request
*req
)
816 ret
= dcp_sha_init(req
);
820 return dcp_sha_finup(req
);
823 static int dcp_sha_noimport(struct ahash_request
*req
, const void *in
)
828 static int dcp_sha_noexport(struct ahash_request
*req
, void *out
)
833 static int dcp_sha_cra_init(struct crypto_tfm
*tfm
)
835 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm
),
836 sizeof(struct dcp_sha_req_ctx
));
840 static void dcp_sha_cra_exit(struct crypto_tfm
*tfm
)
844 /* AES 128 ECB and AES 128 CBC */
845 static struct crypto_alg dcp_aes_algs
[] = {
847 .cra_name
= "ecb(aes)",
848 .cra_driver_name
= "ecb-aes-dcp",
851 .cra_flags
= CRYPTO_ALG_TYPE_ABLKCIPHER
|
853 CRYPTO_ALG_NEED_FALLBACK
,
854 .cra_init
= mxs_dcp_aes_fallback_init
,
855 .cra_exit
= mxs_dcp_aes_fallback_exit
,
856 .cra_blocksize
= AES_BLOCK_SIZE
,
857 .cra_ctxsize
= sizeof(struct dcp_async_ctx
),
858 .cra_type
= &crypto_ablkcipher_type
,
859 .cra_module
= THIS_MODULE
,
862 .min_keysize
= AES_MIN_KEY_SIZE
,
863 .max_keysize
= AES_MAX_KEY_SIZE
,
864 .setkey
= mxs_dcp_aes_setkey
,
865 .encrypt
= mxs_dcp_aes_ecb_encrypt
,
866 .decrypt
= mxs_dcp_aes_ecb_decrypt
870 .cra_name
= "cbc(aes)",
871 .cra_driver_name
= "cbc-aes-dcp",
874 .cra_flags
= CRYPTO_ALG_TYPE_ABLKCIPHER
|
876 CRYPTO_ALG_NEED_FALLBACK
,
877 .cra_init
= mxs_dcp_aes_fallback_init
,
878 .cra_exit
= mxs_dcp_aes_fallback_exit
,
879 .cra_blocksize
= AES_BLOCK_SIZE
,
880 .cra_ctxsize
= sizeof(struct dcp_async_ctx
),
881 .cra_type
= &crypto_ablkcipher_type
,
882 .cra_module
= THIS_MODULE
,
885 .min_keysize
= AES_MIN_KEY_SIZE
,
886 .max_keysize
= AES_MAX_KEY_SIZE
,
887 .setkey
= mxs_dcp_aes_setkey
,
888 .encrypt
= mxs_dcp_aes_cbc_encrypt
,
889 .decrypt
= mxs_dcp_aes_cbc_decrypt
,
890 .ivsize
= AES_BLOCK_SIZE
,
897 static struct ahash_alg dcp_sha1_alg
= {
898 .init
= dcp_sha_init
,
899 .update
= dcp_sha_update
,
900 .final
= dcp_sha_final
,
901 .finup
= dcp_sha_finup
,
902 .digest
= dcp_sha_digest
,
903 .import
= dcp_sha_noimport
,
904 .export
= dcp_sha_noexport
,
906 .digestsize
= SHA1_DIGEST_SIZE
,
909 .cra_driver_name
= "sha1-dcp",
912 .cra_flags
= CRYPTO_ALG_ASYNC
,
913 .cra_blocksize
= SHA1_BLOCK_SIZE
,
914 .cra_ctxsize
= sizeof(struct dcp_async_ctx
),
915 .cra_module
= THIS_MODULE
,
916 .cra_init
= dcp_sha_cra_init
,
917 .cra_exit
= dcp_sha_cra_exit
,
923 static struct ahash_alg dcp_sha256_alg
= {
924 .init
= dcp_sha_init
,
925 .update
= dcp_sha_update
,
926 .final
= dcp_sha_final
,
927 .finup
= dcp_sha_finup
,
928 .digest
= dcp_sha_digest
,
929 .import
= dcp_sha_noimport
,
930 .export
= dcp_sha_noexport
,
932 .digestsize
= SHA256_DIGEST_SIZE
,
934 .cra_name
= "sha256",
935 .cra_driver_name
= "sha256-dcp",
938 .cra_flags
= CRYPTO_ALG_ASYNC
,
939 .cra_blocksize
= SHA256_BLOCK_SIZE
,
940 .cra_ctxsize
= sizeof(struct dcp_async_ctx
),
941 .cra_module
= THIS_MODULE
,
942 .cra_init
= dcp_sha_cra_init
,
943 .cra_exit
= dcp_sha_cra_exit
,
948 static irqreturn_t
mxs_dcp_irq(int irq
, void *context
)
950 struct dcp
*sdcp
= context
;
954 stat
= readl(sdcp
->base
+ MXS_DCP_STAT
);
955 stat
&= MXS_DCP_STAT_IRQ_MASK
;
959 /* Clear the interrupts. */
960 writel(stat
, sdcp
->base
+ MXS_DCP_STAT_CLR
);
962 /* Complete the DMA requests that finished. */
963 for (i
= 0; i
< DCP_MAX_CHANS
; i
++)
965 complete(&sdcp
->completion
[i
]);
970 static int mxs_dcp_probe(struct platform_device
*pdev
)
972 struct device
*dev
= &pdev
->dev
;
973 struct dcp
*sdcp
= NULL
;
976 struct resource
*iores
;
977 int dcp_vmi_irq
, dcp_irq
;
980 dev_err(dev
, "Only one DCP instance allowed!\n");
984 iores
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
985 dcp_vmi_irq
= platform_get_irq(pdev
, 0);
986 if (dcp_vmi_irq
< 0) {
987 dev_err(dev
, "Failed to get IRQ: (%d)!\n", dcp_vmi_irq
);
991 dcp_irq
= platform_get_irq(pdev
, 1);
993 dev_err(dev
, "Failed to get IRQ: (%d)!\n", dcp_irq
);
997 sdcp
= devm_kzalloc(dev
, sizeof(*sdcp
), GFP_KERNEL
);
1002 sdcp
->base
= devm_ioremap_resource(dev
, iores
);
1003 if (IS_ERR(sdcp
->base
))
1004 return PTR_ERR(sdcp
->base
);
1007 ret
= devm_request_irq(dev
, dcp_vmi_irq
, mxs_dcp_irq
, 0,
1008 "dcp-vmi-irq", sdcp
);
1010 dev_err(dev
, "Failed to claim DCP VMI IRQ!\n");
1014 ret
= devm_request_irq(dev
, dcp_irq
, mxs_dcp_irq
, 0,
1017 dev_err(dev
, "Failed to claim DCP IRQ!\n");
1021 /* Allocate coherent helper block. */
1022 sdcp
->coh
= devm_kzalloc(dev
, sizeof(*sdcp
->coh
) + DCP_ALIGNMENT
,
1027 /* Re-align the structure so it fits the DCP constraints. */
1028 sdcp
->coh
= PTR_ALIGN(sdcp
->coh
, DCP_ALIGNMENT
);
1030 /* Restart the DCP block. */
1031 ret
= stmp_reset_block(sdcp
->base
);
1035 /* Initialize control register. */
1036 writel(MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES
|
1037 MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING
| 0xf,
1038 sdcp
->base
+ MXS_DCP_CTRL
);
1040 /* Enable all DCP DMA channels. */
1041 writel(MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK
,
1042 sdcp
->base
+ MXS_DCP_CHANNELCTRL
);
1045 * We do not enable context switching. Give the context buffer a
1046 * pointer to an illegal address so if context switching is
1047 * inadvertantly enabled, the DCP will return an error instead of
1048 * trashing good memory. The DCP DMA cannot access ROM, so any ROM
1051 writel(0xffff0000, sdcp
->base
+ MXS_DCP_CONTEXT
);
1052 for (i
= 0; i
< DCP_MAX_CHANS
; i
++)
1053 writel(0xffffffff, sdcp
->base
+ MXS_DCP_CH_N_STAT_CLR(i
));
1054 writel(0xffffffff, sdcp
->base
+ MXS_DCP_STAT_CLR
);
1058 platform_set_drvdata(pdev
, sdcp
);
1060 for (i
= 0; i
< DCP_MAX_CHANS
; i
++) {
1061 spin_lock_init(&sdcp
->lock
[i
]);
1062 init_completion(&sdcp
->completion
[i
]);
1063 crypto_init_queue(&sdcp
->queue
[i
], 50);
1066 /* Create the SHA and AES handler threads. */
1067 sdcp
->thread
[DCP_CHAN_HASH_SHA
] = kthread_run(dcp_chan_thread_sha
,
1068 NULL
, "mxs_dcp_chan/sha");
1069 if (IS_ERR(sdcp
->thread
[DCP_CHAN_HASH_SHA
])) {
1070 dev_err(dev
, "Error starting SHA thread!\n");
1071 return PTR_ERR(sdcp
->thread
[DCP_CHAN_HASH_SHA
]);
1074 sdcp
->thread
[DCP_CHAN_CRYPTO
] = kthread_run(dcp_chan_thread_aes
,
1075 NULL
, "mxs_dcp_chan/aes");
1076 if (IS_ERR(sdcp
->thread
[DCP_CHAN_CRYPTO
])) {
1077 dev_err(dev
, "Error starting SHA thread!\n");
1078 ret
= PTR_ERR(sdcp
->thread
[DCP_CHAN_CRYPTO
]);
1079 goto err_destroy_sha_thread
;
1082 /* Register the various crypto algorithms. */
1083 sdcp
->caps
= readl(sdcp
->base
+ MXS_DCP_CAPABILITY1
);
1085 if (sdcp
->caps
& MXS_DCP_CAPABILITY1_AES128
) {
1086 ret
= crypto_register_algs(dcp_aes_algs
,
1087 ARRAY_SIZE(dcp_aes_algs
));
1089 /* Failed to register algorithm. */
1090 dev_err(dev
, "Failed to register AES crypto!\n");
1091 goto err_destroy_aes_thread
;
1095 if (sdcp
->caps
& MXS_DCP_CAPABILITY1_SHA1
) {
1096 ret
= crypto_register_ahash(&dcp_sha1_alg
);
1098 dev_err(dev
, "Failed to register %s hash!\n",
1099 dcp_sha1_alg
.halg
.base
.cra_name
);
1100 goto err_unregister_aes
;
1104 if (sdcp
->caps
& MXS_DCP_CAPABILITY1_SHA256
) {
1105 ret
= crypto_register_ahash(&dcp_sha256_alg
);
1107 dev_err(dev
, "Failed to register %s hash!\n",
1108 dcp_sha256_alg
.halg
.base
.cra_name
);
1109 goto err_unregister_sha1
;
1115 err_unregister_sha1
:
1116 if (sdcp
->caps
& MXS_DCP_CAPABILITY1_SHA1
)
1117 crypto_unregister_ahash(&dcp_sha1_alg
);
1120 if (sdcp
->caps
& MXS_DCP_CAPABILITY1_AES128
)
1121 crypto_unregister_algs(dcp_aes_algs
, ARRAY_SIZE(dcp_aes_algs
));
1123 err_destroy_aes_thread
:
1124 kthread_stop(sdcp
->thread
[DCP_CHAN_CRYPTO
]);
1126 err_destroy_sha_thread
:
1127 kthread_stop(sdcp
->thread
[DCP_CHAN_HASH_SHA
]);
1131 static int mxs_dcp_remove(struct platform_device
*pdev
)
1133 struct dcp
*sdcp
= platform_get_drvdata(pdev
);
1135 if (sdcp
->caps
& MXS_DCP_CAPABILITY1_SHA256
)
1136 crypto_unregister_ahash(&dcp_sha256_alg
);
1138 if (sdcp
->caps
& MXS_DCP_CAPABILITY1_SHA1
)
1139 crypto_unregister_ahash(&dcp_sha1_alg
);
1141 if (sdcp
->caps
& MXS_DCP_CAPABILITY1_AES128
)
1142 crypto_unregister_algs(dcp_aes_algs
, ARRAY_SIZE(dcp_aes_algs
));
1144 kthread_stop(sdcp
->thread
[DCP_CHAN_HASH_SHA
]);
1145 kthread_stop(sdcp
->thread
[DCP_CHAN_CRYPTO
]);
1147 platform_set_drvdata(pdev
, NULL
);
1154 static const struct of_device_id mxs_dcp_dt_ids
[] = {
1155 { .compatible
= "fsl,imx23-dcp", .data
= NULL
, },
1156 { .compatible
= "fsl,imx28-dcp", .data
= NULL
, },
1160 MODULE_DEVICE_TABLE(of
, mxs_dcp_dt_ids
);
1162 static struct platform_driver mxs_dcp_driver
= {
1163 .probe
= mxs_dcp_probe
,
1164 .remove
= mxs_dcp_remove
,
1167 .of_match_table
= mxs_dcp_dt_ids
,
1171 module_platform_driver(mxs_dcp_driver
);
1173 MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
1174 MODULE_DESCRIPTION("Freescale MXS DCP Driver");
1175 MODULE_LICENSE("GPL");
1176 MODULE_ALIAS("platform:mxs-dcp");