1 #include "amd64_edac.h"
2 #include <asm/amd_nb.h>
4 static struct edac_pci_ctl_info
*pci_ctl
;
6 static int report_gart_errors
;
7 module_param(report_gart_errors
, int, 0644);
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
13 static int ecc_enable_override
;
14 module_param(ecc_enable_override
, int, 0644);
16 static struct msr __percpu
*msrs
;
19 * count successfully initialized driver instances for setup_pci_device()
21 static atomic_t drv_instances
= ATOMIC_INIT(0);
23 /* Per-node driver instances */
24 static struct mem_ctl_info
**mcis
;
25 static struct ecc_settings
**ecc_stngs
;
28 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
29 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
32 *FIXME: Produce a better mapping/linearisation.
34 static const struct scrubrate
{
35 u32 scrubval
; /* bit pattern for scrub rate */
36 u32 bandwidth
; /* bandwidth consumed (bytes/sec) */
38 { 0x01, 1600000000UL},
60 { 0x00, 0UL}, /* scrubbing off */
63 int __amd64_read_pci_cfg_dword(struct pci_dev
*pdev
, int offset
,
64 u32
*val
, const char *func
)
68 err
= pci_read_config_dword(pdev
, offset
, val
);
70 amd64_warn("%s: error reading F%dx%03x.\n",
71 func
, PCI_FUNC(pdev
->devfn
), offset
);
76 int __amd64_write_pci_cfg_dword(struct pci_dev
*pdev
, int offset
,
77 u32 val
, const char *func
)
81 err
= pci_write_config_dword(pdev
, offset
, val
);
83 amd64_warn("%s: error writing to F%dx%03x.\n",
84 func
, PCI_FUNC(pdev
->devfn
), offset
);
90 * Select DCT to which PCI cfg accesses are routed
92 static void f15h_select_dct(struct amd64_pvt
*pvt
, u8 dct
)
96 amd64_read_pci_cfg(pvt
->F1
, DCT_CFG_SEL
, ®
);
97 reg
&= (pvt
->model
== 0x30) ? ~3 : ~1;
99 amd64_write_pci_cfg(pvt
->F1
, DCT_CFG_SEL
, reg
);
104 * Depending on the family, F2 DCT reads need special handling:
106 * K8: has a single DCT only and no address offsets >= 0x100
108 * F10h: each DCT has its own set of regs
112 * F16h: has only 1 DCT
114 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
116 static inline int amd64_read_dct_pci_cfg(struct amd64_pvt
*pvt
, u8 dct
,
117 int offset
, u32
*val
)
121 if (dct
|| offset
>= 0x100)
128 * Note: If ganging is enabled, barring the regs
129 * F2x[1,0]98 and F2x[1,0]9C; reads reads to F2x1xx
130 * return 0. (cf. Section 2.8.1 F10h BKDG)
132 if (dct_ganging_enabled(pvt
))
141 * F15h: F2x1xx addresses do not map explicitly to DCT1.
142 * We should select which DCT we access using F1x10C[DctCfgSel]
144 dct
= (dct
&& pvt
->model
== 0x30) ? 3 : dct
;
145 f15h_select_dct(pvt
, dct
);
156 return amd64_read_pci_cfg(pvt
->F2
, offset
, val
);
160 * Memory scrubber control interface. For K8, memory scrubbing is handled by
161 * hardware and can involve L2 cache, dcache as well as the main memory. With
162 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
165 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
166 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
167 * bytes/sec for the setting.
169 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
170 * other archs, we might not have access to the caches directly.
174 * scan the scrub rate mapping table for a close or matching bandwidth value to
175 * issue. If requested is too big, then use last maximum value found.
177 static int __set_scrub_rate(struct pci_dev
*ctl
, u32 new_bw
, u32 min_rate
)
183 * map the configured rate (new_bw) to a value specific to the AMD64
184 * memory controller and apply to register. Search for the first
185 * bandwidth entry that is greater or equal than the setting requested
186 * and program that. If at last entry, turn off DRAM scrubbing.
188 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
189 * by falling back to the last element in scrubrates[].
191 for (i
= 0; i
< ARRAY_SIZE(scrubrates
) - 1; i
++) {
193 * skip scrub rates which aren't recommended
194 * (see F10 BKDG, F3x58)
196 if (scrubrates
[i
].scrubval
< min_rate
)
199 if (scrubrates
[i
].bandwidth
<= new_bw
)
203 scrubval
= scrubrates
[i
].scrubval
;
205 pci_write_bits32(ctl
, SCRCTRL
, scrubval
, 0x001F);
208 return scrubrates
[i
].bandwidth
;
213 static int set_scrub_rate(struct mem_ctl_info
*mci
, u32 bw
)
215 struct amd64_pvt
*pvt
= mci
->pvt_info
;
216 u32 min_scrubrate
= 0x5;
222 if (pvt
->fam
== 0x15 && pvt
->model
< 0x10)
223 f15h_select_dct(pvt
, 0);
225 return __set_scrub_rate(pvt
->F3
, bw
, min_scrubrate
);
228 static int get_scrub_rate(struct mem_ctl_info
*mci
)
230 struct amd64_pvt
*pvt
= mci
->pvt_info
;
232 int i
, retval
= -EINVAL
;
235 if (pvt
->fam
== 0x15 && pvt
->model
< 0x10)
236 f15h_select_dct(pvt
, 0);
238 amd64_read_pci_cfg(pvt
->F3
, SCRCTRL
, &scrubval
);
240 scrubval
= scrubval
& 0x001F;
242 for (i
= 0; i
< ARRAY_SIZE(scrubrates
); i
++) {
243 if (scrubrates
[i
].scrubval
== scrubval
) {
244 retval
= scrubrates
[i
].bandwidth
;
252 * returns true if the SysAddr given by sys_addr matches the
253 * DRAM base/limit associated with node_id
255 static bool base_limit_match(struct amd64_pvt
*pvt
, u64 sys_addr
, u8 nid
)
259 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
260 * all ones if the most significant implemented address bit is 1.
261 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
262 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
263 * Application Programming.
265 addr
= sys_addr
& 0x000000ffffffffffull
;
267 return ((addr
>= get_dram_base(pvt
, nid
)) &&
268 (addr
<= get_dram_limit(pvt
, nid
)));
272 * Attempt to map a SysAddr to a node. On success, return a pointer to the
273 * mem_ctl_info structure for the node that the SysAddr maps to.
275 * On failure, return NULL.
277 static struct mem_ctl_info
*find_mc_by_sys_addr(struct mem_ctl_info
*mci
,
280 struct amd64_pvt
*pvt
;
285 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
286 * 3.4.4.2) registers to map the SysAddr to a node ID.
291 * The value of this field should be the same for all DRAM Base
292 * registers. Therefore we arbitrarily choose to read it from the
293 * register for node 0.
295 intlv_en
= dram_intlv_en(pvt
, 0);
298 for (node_id
= 0; node_id
< DRAM_RANGES
; node_id
++) {
299 if (base_limit_match(pvt
, sys_addr
, node_id
))
305 if (unlikely((intlv_en
!= 0x01) &&
306 (intlv_en
!= 0x03) &&
307 (intlv_en
!= 0x07))) {
308 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en
);
312 bits
= (((u32
) sys_addr
) >> 12) & intlv_en
;
314 for (node_id
= 0; ; ) {
315 if ((dram_intlv_sel(pvt
, node_id
) & intlv_en
) == bits
)
316 break; /* intlv_sel field matches */
318 if (++node_id
>= DRAM_RANGES
)
322 /* sanity test for sys_addr */
323 if (unlikely(!base_limit_match(pvt
, sys_addr
, node_id
))) {
324 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
325 "range for node %d with node interleaving enabled.\n",
326 __func__
, sys_addr
, node_id
);
331 return edac_mc_find((int)node_id
);
334 edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
335 (unsigned long)sys_addr
);
341 * compute the CS base address of the @csrow on the DRAM controller @dct.
342 * For details see F2x[5C:40] in the processor's BKDG
344 static void get_cs_base_and_mask(struct amd64_pvt
*pvt
, int csrow
, u8 dct
,
345 u64
*base
, u64
*mask
)
347 u64 csbase
, csmask
, base_bits
, mask_bits
;
350 if (pvt
->fam
== 0xf && pvt
->ext_model
< K8_REV_F
) {
351 csbase
= pvt
->csels
[dct
].csbases
[csrow
];
352 csmask
= pvt
->csels
[dct
].csmasks
[csrow
];
353 base_bits
= GENMASK_ULL(31, 21) | GENMASK_ULL(15, 9);
354 mask_bits
= GENMASK_ULL(29, 21) | GENMASK_ULL(15, 9);
358 * F16h and F15h, models 30h and later need two addr_shift values:
359 * 8 for high and 6 for low (cf. F16h BKDG).
361 } else if (pvt
->fam
== 0x16 ||
362 (pvt
->fam
== 0x15 && pvt
->model
>= 0x30)) {
363 csbase
= pvt
->csels
[dct
].csbases
[csrow
];
364 csmask
= pvt
->csels
[dct
].csmasks
[csrow
>> 1];
366 *base
= (csbase
& GENMASK_ULL(15, 5)) << 6;
367 *base
|= (csbase
& GENMASK_ULL(30, 19)) << 8;
370 /* poke holes for the csmask */
371 *mask
&= ~((GENMASK_ULL(15, 5) << 6) |
372 (GENMASK_ULL(30, 19) << 8));
374 *mask
|= (csmask
& GENMASK_ULL(15, 5)) << 6;
375 *mask
|= (csmask
& GENMASK_ULL(30, 19)) << 8;
379 csbase
= pvt
->csels
[dct
].csbases
[csrow
];
380 csmask
= pvt
->csels
[dct
].csmasks
[csrow
>> 1];
383 if (pvt
->fam
== 0x15)
384 base_bits
= mask_bits
=
385 GENMASK_ULL(30,19) | GENMASK_ULL(13,5);
387 base_bits
= mask_bits
=
388 GENMASK_ULL(28,19) | GENMASK_ULL(13,5);
391 *base
= (csbase
& base_bits
) << addr_shift
;
394 /* poke holes for the csmask */
395 *mask
&= ~(mask_bits
<< addr_shift
);
397 *mask
|= (csmask
& mask_bits
) << addr_shift
;
400 #define for_each_chip_select(i, dct, pvt) \
401 for (i = 0; i < pvt->csels[dct].b_cnt; i++)
403 #define chip_select_base(i, dct, pvt) \
404 pvt->csels[dct].csbases[i]
406 #define for_each_chip_select_mask(i, dct, pvt) \
407 for (i = 0; i < pvt->csels[dct].m_cnt; i++)
410 * @input_addr is an InputAddr associated with the node given by mci. Return the
411 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
413 static int input_addr_to_csrow(struct mem_ctl_info
*mci
, u64 input_addr
)
415 struct amd64_pvt
*pvt
;
421 for_each_chip_select(csrow
, 0, pvt
) {
422 if (!csrow_enabled(csrow
, 0, pvt
))
425 get_cs_base_and_mask(pvt
, csrow
, 0, &base
, &mask
);
429 if ((input_addr
& mask
) == (base
& mask
)) {
430 edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
431 (unsigned long)input_addr
, csrow
,
437 edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
438 (unsigned long)input_addr
, pvt
->mc_node_id
);
444 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
445 * for the node represented by mci. Info is passed back in *hole_base,
446 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
447 * info is invalid. Info may be invalid for either of the following reasons:
449 * - The revision of the node is not E or greater. In this case, the DRAM Hole
450 * Address Register does not exist.
452 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
453 * indicating that its contents are not valid.
455 * The values passed back in *hole_base, *hole_offset, and *hole_size are
456 * complete 32-bit values despite the fact that the bitfields in the DHAR
457 * only represent bits 31-24 of the base and offset values.
459 int amd64_get_dram_hole_info(struct mem_ctl_info
*mci
, u64
*hole_base
,
460 u64
*hole_offset
, u64
*hole_size
)
462 struct amd64_pvt
*pvt
= mci
->pvt_info
;
464 /* only revE and later have the DRAM Hole Address Register */
465 if (pvt
->fam
== 0xf && pvt
->ext_model
< K8_REV_E
) {
466 edac_dbg(1, " revision %d for node %d does not support DHAR\n",
467 pvt
->ext_model
, pvt
->mc_node_id
);
471 /* valid for Fam10h and above */
472 if (pvt
->fam
>= 0x10 && !dhar_mem_hoist_valid(pvt
)) {
473 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this system\n");
477 if (!dhar_valid(pvt
)) {
478 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this node %d\n",
483 /* This node has Memory Hoisting */
485 /* +------------------+--------------------+--------------------+-----
486 * | memory | DRAM hole | relocated |
487 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
489 * | | | [0x100000000, |
490 * | | | (0x100000000+ |
491 * | | | (0xffffffff-x))] |
492 * +------------------+--------------------+--------------------+-----
494 * Above is a diagram of physical memory showing the DRAM hole and the
495 * relocated addresses from the DRAM hole. As shown, the DRAM hole
496 * starts at address x (the base address) and extends through address
497 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
498 * addresses in the hole so that they start at 0x100000000.
501 *hole_base
= dhar_base(pvt
);
502 *hole_size
= (1ULL << 32) - *hole_base
;
504 *hole_offset
= (pvt
->fam
> 0xf) ? f10_dhar_offset(pvt
)
505 : k8_dhar_offset(pvt
);
507 edac_dbg(1, " DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
508 pvt
->mc_node_id
, (unsigned long)*hole_base
,
509 (unsigned long)*hole_offset
, (unsigned long)*hole_size
);
513 EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info
);
516 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
517 * assumed that sys_addr maps to the node given by mci.
519 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
520 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
521 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
522 * then it is also involved in translating a SysAddr to a DramAddr. Sections
523 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
524 * These parts of the documentation are unclear. I interpret them as follows:
526 * When node n receives a SysAddr, it processes the SysAddr as follows:
528 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
529 * Limit registers for node n. If the SysAddr is not within the range
530 * specified by the base and limit values, then node n ignores the Sysaddr
531 * (since it does not map to node n). Otherwise continue to step 2 below.
533 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
534 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
535 * the range of relocated addresses (starting at 0x100000000) from the DRAM
536 * hole. If not, skip to step 3 below. Else get the value of the
537 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
538 * offset defined by this value from the SysAddr.
540 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
541 * Base register for node n. To obtain the DramAddr, subtract the base
542 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
544 static u64
sys_addr_to_dram_addr(struct mem_ctl_info
*mci
, u64 sys_addr
)
546 struct amd64_pvt
*pvt
= mci
->pvt_info
;
547 u64 dram_base
, hole_base
, hole_offset
, hole_size
, dram_addr
;
550 dram_base
= get_dram_base(pvt
, pvt
->mc_node_id
);
552 ret
= amd64_get_dram_hole_info(mci
, &hole_base
, &hole_offset
,
555 if ((sys_addr
>= (1ULL << 32)) &&
556 (sys_addr
< ((1ULL << 32) + hole_size
))) {
557 /* use DHAR to translate SysAddr to DramAddr */
558 dram_addr
= sys_addr
- hole_offset
;
560 edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
561 (unsigned long)sys_addr
,
562 (unsigned long)dram_addr
);
569 * Translate the SysAddr to a DramAddr as shown near the start of
570 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
571 * only deals with 40-bit values. Therefore we discard bits 63-40 of
572 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
573 * discard are all 1s. Otherwise the bits we discard are all 0s. See
574 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
575 * Programmer's Manual Volume 1 Application Programming.
577 dram_addr
= (sys_addr
& GENMASK_ULL(39, 0)) - dram_base
;
579 edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
580 (unsigned long)sys_addr
, (unsigned long)dram_addr
);
585 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
586 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
587 * for node interleaving.
589 static int num_node_interleave_bits(unsigned intlv_en
)
591 static const int intlv_shift_table
[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
594 BUG_ON(intlv_en
> 7);
595 n
= intlv_shift_table
[intlv_en
];
599 /* Translate the DramAddr given by @dram_addr to an InputAddr. */
600 static u64
dram_addr_to_input_addr(struct mem_ctl_info
*mci
, u64 dram_addr
)
602 struct amd64_pvt
*pvt
;
609 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
610 * concerning translating a DramAddr to an InputAddr.
612 intlv_shift
= num_node_interleave_bits(dram_intlv_en(pvt
, 0));
613 input_addr
= ((dram_addr
>> intlv_shift
) & GENMASK_ULL(35, 12)) +
616 edac_dbg(2, " Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
617 intlv_shift
, (unsigned long)dram_addr
,
618 (unsigned long)input_addr
);
624 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
625 * assumed that @sys_addr maps to the node given by mci.
627 static u64
sys_addr_to_input_addr(struct mem_ctl_info
*mci
, u64 sys_addr
)
632 dram_addr_to_input_addr(mci
, sys_addr_to_dram_addr(mci
, sys_addr
));
634 edac_dbg(2, "SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
635 (unsigned long)sys_addr
, (unsigned long)input_addr
);
640 /* Map the Error address to a PAGE and PAGE OFFSET. */
641 static inline void error_address_to_page_and_offset(u64 error_address
,
642 struct err_info
*err
)
644 err
->page
= (u32
) (error_address
>> PAGE_SHIFT
);
645 err
->offset
= ((u32
) error_address
) & ~PAGE_MASK
;
649 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
650 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
651 * of a node that detected an ECC memory error. mci represents the node that
652 * the error address maps to (possibly different from the node that detected
653 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
656 static int sys_addr_to_csrow(struct mem_ctl_info
*mci
, u64 sys_addr
)
660 csrow
= input_addr_to_csrow(mci
, sys_addr_to_input_addr(mci
, sys_addr
));
663 amd64_mc_err(mci
, "Failed to translate InputAddr to csrow for "
664 "address 0x%lx\n", (unsigned long)sys_addr
);
668 static int get_channel_from_ecc_syndrome(struct mem_ctl_info
*, u16
);
671 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
674 static unsigned long determine_edac_cap(struct amd64_pvt
*pvt
)
677 unsigned long edac_cap
= EDAC_FLAG_NONE
;
679 bit
= (pvt
->fam
> 0xf || pvt
->ext_model
>= K8_REV_F
)
683 if (pvt
->dclr0
& BIT(bit
))
684 edac_cap
= EDAC_FLAG_SECDED
;
689 static void debug_display_dimm_sizes(struct amd64_pvt
*, u8
);
691 static void debug_dump_dramcfg_low(struct amd64_pvt
*pvt
, u32 dclr
, int chan
)
693 edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan
, dclr
);
695 if (pvt
->dram_type
== MEM_LRDDR3
) {
696 u32 dcsm
= pvt
->csels
[chan
].csmasks
[0];
698 * It's assumed all LRDIMMs in a DCT are going to be of
699 * same 'type' until proven otherwise. So, use a cs
700 * value of '0' here to get dcsm value.
702 edac_dbg(1, " LRDIMM %dx rank multiply\n", (dcsm
& 0x3));
705 edac_dbg(1, "All DIMMs support ECC:%s\n",
706 (dclr
& BIT(19)) ? "yes" : "no");
709 edac_dbg(1, " PAR/ERR parity: %s\n",
710 (dclr
& BIT(8)) ? "enabled" : "disabled");
712 if (pvt
->fam
== 0x10)
713 edac_dbg(1, " DCT 128bit mode width: %s\n",
714 (dclr
& BIT(11)) ? "128b" : "64b");
716 edac_dbg(1, " x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
717 (dclr
& BIT(12)) ? "yes" : "no",
718 (dclr
& BIT(13)) ? "yes" : "no",
719 (dclr
& BIT(14)) ? "yes" : "no",
720 (dclr
& BIT(15)) ? "yes" : "no");
723 /* Display and decode various NB registers for debug purposes. */
724 static void dump_misc_regs(struct amd64_pvt
*pvt
)
726 edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt
->nbcap
);
728 edac_dbg(1, " NB two channel DRAM capable: %s\n",
729 (pvt
->nbcap
& NBCAP_DCT_DUAL
) ? "yes" : "no");
731 edac_dbg(1, " ECC capable: %s, ChipKill ECC capable: %s\n",
732 (pvt
->nbcap
& NBCAP_SECDED
) ? "yes" : "no",
733 (pvt
->nbcap
& NBCAP_CHIPKILL
) ? "yes" : "no");
735 debug_dump_dramcfg_low(pvt
, pvt
->dclr0
, 0);
737 edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt
->online_spare
);
739 edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
740 pvt
->dhar
, dhar_base(pvt
),
741 (pvt
->fam
== 0xf) ? k8_dhar_offset(pvt
)
742 : f10_dhar_offset(pvt
));
744 edac_dbg(1, " DramHoleValid: %s\n", dhar_valid(pvt
) ? "yes" : "no");
746 debug_display_dimm_sizes(pvt
, 0);
748 /* everything below this point is Fam10h and above */
752 debug_display_dimm_sizes(pvt
, 1);
754 amd64_info("using %s syndromes.\n", ((pvt
->ecc_sym_sz
== 8) ? "x8" : "x4"));
756 /* Only if NOT ganged does dclr1 have valid info */
757 if (!dct_ganging_enabled(pvt
))
758 debug_dump_dramcfg_low(pvt
, pvt
->dclr1
, 1);
762 * See BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
764 static void prep_chip_selects(struct amd64_pvt
*pvt
)
766 if (pvt
->fam
== 0xf && pvt
->ext_model
< K8_REV_F
) {
767 pvt
->csels
[0].b_cnt
= pvt
->csels
[1].b_cnt
= 8;
768 pvt
->csels
[0].m_cnt
= pvt
->csels
[1].m_cnt
= 8;
769 } else if (pvt
->fam
== 0x15 && pvt
->model
== 0x30) {
770 pvt
->csels
[0].b_cnt
= pvt
->csels
[1].b_cnt
= 4;
771 pvt
->csels
[0].m_cnt
= pvt
->csels
[1].m_cnt
= 2;
773 pvt
->csels
[0].b_cnt
= pvt
->csels
[1].b_cnt
= 8;
774 pvt
->csels
[0].m_cnt
= pvt
->csels
[1].m_cnt
= 4;
779 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
781 static void read_dct_base_mask(struct amd64_pvt
*pvt
)
785 prep_chip_selects(pvt
);
787 for_each_chip_select(cs
, 0, pvt
) {
788 int reg0
= DCSB0
+ (cs
* 4);
789 int reg1
= DCSB1
+ (cs
* 4);
790 u32
*base0
= &pvt
->csels
[0].csbases
[cs
];
791 u32
*base1
= &pvt
->csels
[1].csbases
[cs
];
793 if (!amd64_read_dct_pci_cfg(pvt
, 0, reg0
, base0
))
794 edac_dbg(0, " DCSB0[%d]=0x%08x reg: F2x%x\n",
800 if (!amd64_read_dct_pci_cfg(pvt
, 1, reg0
, base1
))
801 edac_dbg(0, " DCSB1[%d]=0x%08x reg: F2x%x\n",
802 cs
, *base1
, (pvt
->fam
== 0x10) ? reg1
806 for_each_chip_select_mask(cs
, 0, pvt
) {
807 int reg0
= DCSM0
+ (cs
* 4);
808 int reg1
= DCSM1
+ (cs
* 4);
809 u32
*mask0
= &pvt
->csels
[0].csmasks
[cs
];
810 u32
*mask1
= &pvt
->csels
[1].csmasks
[cs
];
812 if (!amd64_read_dct_pci_cfg(pvt
, 0, reg0
, mask0
))
813 edac_dbg(0, " DCSM0[%d]=0x%08x reg: F2x%x\n",
819 if (!amd64_read_dct_pci_cfg(pvt
, 1, reg0
, mask1
))
820 edac_dbg(0, " DCSM1[%d]=0x%08x reg: F2x%x\n",
821 cs
, *mask1
, (pvt
->fam
== 0x10) ? reg1
826 static void determine_memory_type(struct amd64_pvt
*pvt
)
832 if (pvt
->ext_model
>= K8_REV_F
)
835 pvt
->dram_type
= (pvt
->dclr0
& BIT(18)) ? MEM_DDR
: MEM_RDDR
;
839 if (pvt
->dchr0
& DDR3_MODE
)
842 pvt
->dram_type
= (pvt
->dclr0
& BIT(16)) ? MEM_DDR2
: MEM_RDDR2
;
846 if (pvt
->model
< 0x60)
850 * Model 0x60h needs special handling:
852 * We use a Chip Select value of '0' to obtain dcsm.
853 * Theoretically, it is possible to populate LRDIMMs of different
854 * 'Rank' value on a DCT. But this is not the common case. So,
855 * it's reasonable to assume all DIMMs are going to be of same
856 * 'type' until proven otherwise.
858 amd64_read_dct_pci_cfg(pvt
, 0, DRAM_CONTROL
, &dram_ctrl
);
859 dcsm
= pvt
->csels
[0].csmasks
[0];
861 if (((dram_ctrl
>> 8) & 0x7) == 0x2)
862 pvt
->dram_type
= MEM_DDR4
;
863 else if (pvt
->dclr0
& BIT(16))
864 pvt
->dram_type
= MEM_DDR3
;
866 pvt
->dram_type
= MEM_LRDDR3
;
868 pvt
->dram_type
= MEM_RDDR3
;
876 WARN(1, KERN_ERR
"%s: Family??? 0x%x\n", __func__
, pvt
->fam
);
877 pvt
->dram_type
= MEM_EMPTY
;
882 pvt
->dram_type
= (pvt
->dclr0
& BIT(16)) ? MEM_DDR3
: MEM_RDDR3
;
885 /* Get the number of DCT channels the memory controller is using. */
886 static int k8_early_channel_count(struct amd64_pvt
*pvt
)
890 if (pvt
->ext_model
>= K8_REV_F
)
891 /* RevF (NPT) and later */
892 flag
= pvt
->dclr0
& WIDTH_128
;
894 /* RevE and earlier */
895 flag
= pvt
->dclr0
& REVE_WIDTH_128
;
900 return (flag
) ? 2 : 1;
903 /* On F10h and later ErrAddr is MC4_ADDR[47:1] */
904 static u64
get_error_address(struct amd64_pvt
*pvt
, struct mce
*m
)
910 if (pvt
->fam
== 0xf) {
915 addr
= m
->addr
& GENMASK_ULL(end_bit
, start_bit
);
918 * Erratum 637 workaround
920 if (pvt
->fam
== 0x15) {
921 struct amd64_pvt
*pvt
;
922 u64 cc6_base
, tmp_addr
;
927 if ((addr
& GENMASK_ULL(47, 24)) >> 24 != 0x00fdf7)
930 mce_nid
= amd_get_nb_id(m
->extcpu
);
931 pvt
= mcis
[mce_nid
]->pvt_info
;
933 amd64_read_pci_cfg(pvt
->F1
, DRAM_LOCAL_NODE_LIM
, &tmp
);
934 intlv_en
= tmp
>> 21 & 0x7;
936 /* add [47:27] + 3 trailing bits */
937 cc6_base
= (tmp
& GENMASK_ULL(20, 0)) << 3;
939 /* reverse and add DramIntlvEn */
940 cc6_base
|= intlv_en
^ 0x7;
946 return cc6_base
| (addr
& GENMASK_ULL(23, 0));
948 amd64_read_pci_cfg(pvt
->F1
, DRAM_LOCAL_NODE_BASE
, &tmp
);
951 tmp_addr
= (addr
& GENMASK_ULL(23, 12)) << __fls(intlv_en
+ 1);
953 /* OR DramIntlvSel into bits [14:12] */
954 tmp_addr
|= (tmp
& GENMASK_ULL(23, 21)) >> 9;
956 /* add remaining [11:0] bits from original MC4_ADDR */
957 tmp_addr
|= addr
& GENMASK_ULL(11, 0);
959 return cc6_base
| tmp_addr
;
965 static struct pci_dev
*pci_get_related_function(unsigned int vendor
,
967 struct pci_dev
*related
)
969 struct pci_dev
*dev
= NULL
;
971 while ((dev
= pci_get_device(vendor
, device
, dev
))) {
972 if (pci_domain_nr(dev
->bus
) == pci_domain_nr(related
->bus
) &&
973 (dev
->bus
->number
== related
->bus
->number
) &&
974 (PCI_SLOT(dev
->devfn
) == PCI_SLOT(related
->devfn
)))
981 static void read_dram_base_limit_regs(struct amd64_pvt
*pvt
, unsigned range
)
983 struct amd_northbridge
*nb
;
984 struct pci_dev
*f1
= NULL
;
985 unsigned int pci_func
;
986 int off
= range
<< 3;
989 amd64_read_pci_cfg(pvt
->F1
, DRAM_BASE_LO
+ off
, &pvt
->ranges
[range
].base
.lo
);
990 amd64_read_pci_cfg(pvt
->F1
, DRAM_LIMIT_LO
+ off
, &pvt
->ranges
[range
].lim
.lo
);
995 if (!dram_rw(pvt
, range
))
998 amd64_read_pci_cfg(pvt
->F1
, DRAM_BASE_HI
+ off
, &pvt
->ranges
[range
].base
.hi
);
999 amd64_read_pci_cfg(pvt
->F1
, DRAM_LIMIT_HI
+ off
, &pvt
->ranges
[range
].lim
.hi
);
1001 /* F15h: factor in CC6 save area by reading dst node's limit reg */
1002 if (pvt
->fam
!= 0x15)
1005 nb
= node_to_amd_nb(dram_dst_node(pvt
, range
));
1009 if (pvt
->model
== 0x60)
1010 pci_func
= PCI_DEVICE_ID_AMD_15H_M60H_NB_F1
;
1011 else if (pvt
->model
== 0x30)
1012 pci_func
= PCI_DEVICE_ID_AMD_15H_M30H_NB_F1
;
1014 pci_func
= PCI_DEVICE_ID_AMD_15H_NB_F1
;
1016 f1
= pci_get_related_function(nb
->misc
->vendor
, pci_func
, nb
->misc
);
1020 amd64_read_pci_cfg(f1
, DRAM_LOCAL_NODE_LIM
, &llim
);
1022 pvt
->ranges
[range
].lim
.lo
&= GENMASK_ULL(15, 0);
1024 /* {[39:27],111b} */
1025 pvt
->ranges
[range
].lim
.lo
|= ((llim
& 0x1fff) << 3 | 0x7) << 16;
1027 pvt
->ranges
[range
].lim
.hi
&= GENMASK_ULL(7, 0);
1030 pvt
->ranges
[range
].lim
.hi
|= llim
>> 13;
1035 static void k8_map_sysaddr_to_csrow(struct mem_ctl_info
*mci
, u64 sys_addr
,
1036 struct err_info
*err
)
1038 struct amd64_pvt
*pvt
= mci
->pvt_info
;
1040 error_address_to_page_and_offset(sys_addr
, err
);
1043 * Find out which node the error address belongs to. This may be
1044 * different from the node that detected the error.
1046 err
->src_mci
= find_mc_by_sys_addr(mci
, sys_addr
);
1047 if (!err
->src_mci
) {
1048 amd64_mc_err(mci
, "failed to map error addr 0x%lx to a node\n",
1049 (unsigned long)sys_addr
);
1050 err
->err_code
= ERR_NODE
;
1054 /* Now map the sys_addr to a CSROW */
1055 err
->csrow
= sys_addr_to_csrow(err
->src_mci
, sys_addr
);
1056 if (err
->csrow
< 0) {
1057 err
->err_code
= ERR_CSROW
;
1061 /* CHIPKILL enabled */
1062 if (pvt
->nbcfg
& NBCFG_CHIPKILL
) {
1063 err
->channel
= get_channel_from_ecc_syndrome(mci
, err
->syndrome
);
1064 if (err
->channel
< 0) {
1066 * Syndrome didn't map, so we don't know which of the
1067 * 2 DIMMs is in error. So we need to ID 'both' of them
1070 amd64_mc_warn(err
->src_mci
, "unknown syndrome 0x%04x - "
1071 "possible error reporting race\n",
1073 err
->err_code
= ERR_CHANNEL
;
1078 * non-chipkill ecc mode
1080 * The k8 documentation is unclear about how to determine the
1081 * channel number when using non-chipkill memory. This method
1082 * was obtained from email communication with someone at AMD.
1083 * (Wish the email was placed in this comment - norsk)
1085 err
->channel
= ((sys_addr
& BIT(3)) != 0);
1089 static int ddr2_cs_size(unsigned i
, bool dct_width
)
1095 else if (!(i
& 0x1))
1098 shift
= (i
+ 1) >> 1;
1100 return 128 << (shift
+ !!dct_width
);
1103 static int k8_dbam_to_chip_select(struct amd64_pvt
*pvt
, u8 dct
,
1104 unsigned cs_mode
, int cs_mask_nr
)
1106 u32 dclr
= dct
? pvt
->dclr1
: pvt
->dclr0
;
1108 if (pvt
->ext_model
>= K8_REV_F
) {
1109 WARN_ON(cs_mode
> 11);
1110 return ddr2_cs_size(cs_mode
, dclr
& WIDTH_128
);
1112 else if (pvt
->ext_model
>= K8_REV_D
) {
1114 WARN_ON(cs_mode
> 10);
1117 * the below calculation, besides trying to win an obfuscated C
1118 * contest, maps cs_mode values to DIMM chip select sizes. The
1121 * cs_mode CS size (mb)
1122 * ======= ============
1135 * Basically, it calculates a value with which to shift the
1136 * smallest CS size of 32MB.
1138 * ddr[23]_cs_size have a similar purpose.
1140 diff
= cs_mode
/3 + (unsigned)(cs_mode
> 5);
1142 return 32 << (cs_mode
- diff
);
1145 WARN_ON(cs_mode
> 6);
1146 return 32 << cs_mode
;
1151 * Get the number of DCT channels in use.
1154 * number of Memory Channels in operation
1156 * contents of the DCL0_LOW register
1158 static int f1x_early_channel_count(struct amd64_pvt
*pvt
)
1160 int i
, j
, channels
= 0;
1162 /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
1163 if (pvt
->fam
== 0x10 && (pvt
->dclr0
& WIDTH_128
))
1167 * Need to check if in unganged mode: In such, there are 2 channels,
1168 * but they are not in 128 bit mode and thus the above 'dclr0' status
1171 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1172 * their CSEnable bit on. If so, then SINGLE DIMM case.
1174 edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
1177 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1178 * is more than just one DIMM present in unganged mode. Need to check
1179 * both controllers since DIMMs can be placed in either one.
1181 for (i
= 0; i
< 2; i
++) {
1182 u32 dbam
= (i
? pvt
->dbam1
: pvt
->dbam0
);
1184 for (j
= 0; j
< 4; j
++) {
1185 if (DBAM_DIMM(j
, dbam
) > 0) {
1195 amd64_info("MCT channel count: %d\n", channels
);
1200 static int ddr3_cs_size(unsigned i
, bool dct_width
)
1205 if (i
== 0 || i
== 3 || i
== 4)
1211 else if (!(i
& 0x1))
1214 shift
= (i
+ 1) >> 1;
1217 cs_size
= (128 * (1 << !!dct_width
)) << shift
;
1222 static int ddr3_lrdimm_cs_size(unsigned i
, unsigned rank_multiply
)
1227 if (i
< 4 || i
== 6)
1231 else if (!(i
& 0x1))
1234 shift
= (i
+ 1) >> 1;
1237 cs_size
= rank_multiply
* (128 << shift
);
1242 static int ddr4_cs_size(unsigned i
)
1251 /* Min cs_size = 1G */
1252 cs_size
= 1024 * (1 << (i
>> 1));
1257 static int f10_dbam_to_chip_select(struct amd64_pvt
*pvt
, u8 dct
,
1258 unsigned cs_mode
, int cs_mask_nr
)
1260 u32 dclr
= dct
? pvt
->dclr1
: pvt
->dclr0
;
1262 WARN_ON(cs_mode
> 11);
1264 if (pvt
->dchr0
& DDR3_MODE
|| pvt
->dchr1
& DDR3_MODE
)
1265 return ddr3_cs_size(cs_mode
, dclr
& WIDTH_128
);
1267 return ddr2_cs_size(cs_mode
, dclr
& WIDTH_128
);
1271 * F15h supports only 64bit DCT interfaces
1273 static int f15_dbam_to_chip_select(struct amd64_pvt
*pvt
, u8 dct
,
1274 unsigned cs_mode
, int cs_mask_nr
)
1276 WARN_ON(cs_mode
> 12);
1278 return ddr3_cs_size(cs_mode
, false);
1281 /* F15h M60h supports DDR4 mapping as well.. */
1282 static int f15_m60h_dbam_to_chip_select(struct amd64_pvt
*pvt
, u8 dct
,
1283 unsigned cs_mode
, int cs_mask_nr
)
1286 u32 dcsm
= pvt
->csels
[dct
].csmasks
[cs_mask_nr
];
1288 WARN_ON(cs_mode
> 12);
1290 if (pvt
->dram_type
== MEM_DDR4
) {
1294 cs_size
= ddr4_cs_size(cs_mode
);
1295 } else if (pvt
->dram_type
== MEM_LRDDR3
) {
1296 unsigned rank_multiply
= dcsm
& 0xf;
1298 if (rank_multiply
== 3)
1300 cs_size
= ddr3_lrdimm_cs_size(cs_mode
, rank_multiply
);
1302 /* Minimum cs size is 512mb for F15hM60h*/
1306 cs_size
= ddr3_cs_size(cs_mode
, false);
1313 * F16h and F15h model 30h have only limited cs_modes.
1315 static int f16_dbam_to_chip_select(struct amd64_pvt
*pvt
, u8 dct
,
1316 unsigned cs_mode
, int cs_mask_nr
)
1318 WARN_ON(cs_mode
> 12);
1320 if (cs_mode
== 6 || cs_mode
== 8 ||
1321 cs_mode
== 9 || cs_mode
== 12)
1324 return ddr3_cs_size(cs_mode
, false);
1327 static void read_dram_ctl_register(struct amd64_pvt
*pvt
)
1330 if (pvt
->fam
== 0xf)
1333 if (!amd64_read_pci_cfg(pvt
->F2
, DCT_SEL_LO
, &pvt
->dct_sel_lo
)) {
1334 edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
1335 pvt
->dct_sel_lo
, dct_sel_baseaddr(pvt
));
1337 edac_dbg(0, " DCTs operate in %s mode\n",
1338 (dct_ganging_enabled(pvt
) ? "ganged" : "unganged"));
1340 if (!dct_ganging_enabled(pvt
))
1341 edac_dbg(0, " Address range split per DCT: %s\n",
1342 (dct_high_range_enabled(pvt
) ? "yes" : "no"));
1344 edac_dbg(0, " data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
1345 (dct_data_intlv_enabled(pvt
) ? "enabled" : "disabled"),
1346 (dct_memory_cleared(pvt
) ? "yes" : "no"));
1348 edac_dbg(0, " channel interleave: %s, "
1349 "interleave bits selector: 0x%x\n",
1350 (dct_interleave_enabled(pvt
) ? "enabled" : "disabled"),
1351 dct_sel_interleave_addr(pvt
));
1354 amd64_read_pci_cfg(pvt
->F2
, DCT_SEL_HI
, &pvt
->dct_sel_hi
);
1358 * Determine channel (DCT) based on the interleaving mode (see F15h M30h BKDG,
1359 * 2.10.12 Memory Interleaving Modes).
1361 static u8
f15_m30h_determine_channel(struct amd64_pvt
*pvt
, u64 sys_addr
,
1362 u8 intlv_en
, int num_dcts_intlv
,
1369 return (u8
)(dct_sel
);
1371 if (num_dcts_intlv
== 2) {
1372 select
= (sys_addr
>> 8) & 0x3;
1373 channel
= select
? 0x3 : 0;
1374 } else if (num_dcts_intlv
== 4) {
1375 u8 intlv_addr
= dct_sel_interleave_addr(pvt
);
1376 switch (intlv_addr
) {
1378 channel
= (sys_addr
>> 8) & 0x3;
1381 channel
= (sys_addr
>> 9) & 0x3;
1389 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1390 * Interleaving Modes.
1392 static u8
f1x_determine_channel(struct amd64_pvt
*pvt
, u64 sys_addr
,
1393 bool hi_range_sel
, u8 intlv_en
)
1395 u8 dct_sel_high
= (pvt
->dct_sel_lo
>> 1) & 1;
1397 if (dct_ganging_enabled(pvt
))
1401 return dct_sel_high
;
1404 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1406 if (dct_interleave_enabled(pvt
)) {
1407 u8 intlv_addr
= dct_sel_interleave_addr(pvt
);
1409 /* return DCT select function: 0=DCT0, 1=DCT1 */
1411 return sys_addr
>> 6 & 1;
1413 if (intlv_addr
& 0x2) {
1414 u8 shift
= intlv_addr
& 0x1 ? 9 : 6;
1415 u32 temp
= hweight_long((u32
) ((sys_addr
>> 16) & 0x1F)) % 2;
1417 return ((sys_addr
>> shift
) & 1) ^ temp
;
1420 return (sys_addr
>> (12 + hweight8(intlv_en
))) & 1;
1423 if (dct_high_range_enabled(pvt
))
1424 return ~dct_sel_high
& 1;
1429 /* Convert the sys_addr to the normalized DCT address */
1430 static u64
f1x_get_norm_dct_addr(struct amd64_pvt
*pvt
, u8 range
,
1431 u64 sys_addr
, bool hi_rng
,
1432 u32 dct_sel_base_addr
)
1435 u64 dram_base
= get_dram_base(pvt
, range
);
1436 u64 hole_off
= f10_dhar_offset(pvt
);
1437 u64 dct_sel_base_off
= (pvt
->dct_sel_hi
& 0xFFFFFC00) << 16;
1442 * base address of high range is below 4Gb
1443 * (bits [47:27] at [31:11])
1444 * DRAM address space on this DCT is hoisted above 4Gb &&
1447 * remove hole offset from sys_addr
1449 * remove high range offset from sys_addr
1451 if ((!(dct_sel_base_addr
>> 16) ||
1452 dct_sel_base_addr
< dhar_base(pvt
)) &&
1454 (sys_addr
>= BIT_64(32)))
1455 chan_off
= hole_off
;
1457 chan_off
= dct_sel_base_off
;
1461 * we have a valid hole &&
1466 * remove dram base to normalize to DCT address
1468 if (dhar_valid(pvt
) && (sys_addr
>= BIT_64(32)))
1469 chan_off
= hole_off
;
1471 chan_off
= dram_base
;
1474 return (sys_addr
& GENMASK_ULL(47,6)) - (chan_off
& GENMASK_ULL(47,23));
1478 * checks if the csrow passed in is marked as SPARED, if so returns the new
1481 static int f10_process_possible_spare(struct amd64_pvt
*pvt
, u8 dct
, int csrow
)
1485 if (online_spare_swap_done(pvt
, dct
) &&
1486 csrow
== online_spare_bad_dramcs(pvt
, dct
)) {
1488 for_each_chip_select(tmp_cs
, dct
, pvt
) {
1489 if (chip_select_base(tmp_cs
, dct
, pvt
) & 0x2) {
1499 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1500 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1503 * -EINVAL: NOT FOUND
1504 * 0..csrow = Chip-Select Row
1506 static int f1x_lookup_addr_in_dct(u64 in_addr
, u8 nid
, u8 dct
)
1508 struct mem_ctl_info
*mci
;
1509 struct amd64_pvt
*pvt
;
1510 u64 cs_base
, cs_mask
;
1511 int cs_found
= -EINVAL
;
1518 pvt
= mci
->pvt_info
;
1520 edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr
, dct
);
1522 for_each_chip_select(csrow
, dct
, pvt
) {
1523 if (!csrow_enabled(csrow
, dct
, pvt
))
1526 get_cs_base_and_mask(pvt
, csrow
, dct
, &cs_base
, &cs_mask
);
1528 edac_dbg(1, " CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
1529 csrow
, cs_base
, cs_mask
);
1533 edac_dbg(1, " (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
1534 (in_addr
& cs_mask
), (cs_base
& cs_mask
));
1536 if ((in_addr
& cs_mask
) == (cs_base
& cs_mask
)) {
1537 if (pvt
->fam
== 0x15 && pvt
->model
>= 0x30) {
1541 cs_found
= f10_process_possible_spare(pvt
, dct
, csrow
);
1543 edac_dbg(1, " MATCH csrow=%d\n", cs_found
);
1551 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
1552 * swapped with a region located at the bottom of memory so that the GPU can use
1553 * the interleaved region and thus two channels.
1555 static u64
f1x_swap_interleaved_region(struct amd64_pvt
*pvt
, u64 sys_addr
)
1557 u32 swap_reg
, swap_base
, swap_limit
, rgn_size
, tmp_addr
;
1559 if (pvt
->fam
== 0x10) {
1560 /* only revC3 and revE have that feature */
1561 if (pvt
->model
< 4 || (pvt
->model
< 0xa && pvt
->stepping
< 3))
1565 amd64_read_pci_cfg(pvt
->F2
, SWAP_INTLV_REG
, &swap_reg
);
1567 if (!(swap_reg
& 0x1))
1570 swap_base
= (swap_reg
>> 3) & 0x7f;
1571 swap_limit
= (swap_reg
>> 11) & 0x7f;
1572 rgn_size
= (swap_reg
>> 20) & 0x7f;
1573 tmp_addr
= sys_addr
>> 27;
1575 if (!(sys_addr
>> 34) &&
1576 (((tmp_addr
>= swap_base
) &&
1577 (tmp_addr
<= swap_limit
)) ||
1578 (tmp_addr
< rgn_size
)))
1579 return sys_addr
^ (u64
)swap_base
<< 27;
1584 /* For a given @dram_range, check if @sys_addr falls within it. */
1585 static int f1x_match_to_this_node(struct amd64_pvt
*pvt
, unsigned range
,
1586 u64 sys_addr
, int *chan_sel
)
1588 int cs_found
= -EINVAL
;
1592 bool high_range
= false;
1594 u8 node_id
= dram_dst_node(pvt
, range
);
1595 u8 intlv_en
= dram_intlv_en(pvt
, range
);
1596 u32 intlv_sel
= dram_intlv_sel(pvt
, range
);
1598 edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1599 range
, sys_addr
, get_dram_limit(pvt
, range
));
1601 if (dhar_valid(pvt
) &&
1602 dhar_base(pvt
) <= sys_addr
&&
1603 sys_addr
< BIT_64(32)) {
1604 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1609 if (intlv_en
&& (intlv_sel
!= ((sys_addr
>> 12) & intlv_en
)))
1612 sys_addr
= f1x_swap_interleaved_region(pvt
, sys_addr
);
1614 dct_sel_base
= dct_sel_baseaddr(pvt
);
1617 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1618 * select between DCT0 and DCT1.
1620 if (dct_high_range_enabled(pvt
) &&
1621 !dct_ganging_enabled(pvt
) &&
1622 ((sys_addr
>> 27) >= (dct_sel_base
>> 11)))
1625 channel
= f1x_determine_channel(pvt
, sys_addr
, high_range
, intlv_en
);
1627 chan_addr
= f1x_get_norm_dct_addr(pvt
, range
, sys_addr
,
1628 high_range
, dct_sel_base
);
1630 /* Remove node interleaving, see F1x120 */
1632 chan_addr
= ((chan_addr
>> (12 + hweight8(intlv_en
))) << 12) |
1633 (chan_addr
& 0xfff);
1635 /* remove channel interleave */
1636 if (dct_interleave_enabled(pvt
) &&
1637 !dct_high_range_enabled(pvt
) &&
1638 !dct_ganging_enabled(pvt
)) {
1640 if (dct_sel_interleave_addr(pvt
) != 1) {
1641 if (dct_sel_interleave_addr(pvt
) == 0x3)
1643 chan_addr
= ((chan_addr
>> 10) << 9) |
1644 (chan_addr
& 0x1ff);
1646 /* A[6] or hash 6 */
1647 chan_addr
= ((chan_addr
>> 7) << 6) |
1651 chan_addr
= ((chan_addr
>> 13) << 12) |
1652 (chan_addr
& 0xfff);
1655 edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr
);
1657 cs_found
= f1x_lookup_addr_in_dct(chan_addr
, node_id
, channel
);
1660 *chan_sel
= channel
;
1665 static int f15_m30h_match_to_this_node(struct amd64_pvt
*pvt
, unsigned range
,
1666 u64 sys_addr
, int *chan_sel
)
1668 int cs_found
= -EINVAL
;
1669 int num_dcts_intlv
= 0;
1670 u64 chan_addr
, chan_offset
;
1671 u64 dct_base
, dct_limit
;
1672 u32 dct_cont_base_reg
, dct_cont_limit_reg
, tmp
;
1673 u8 channel
, alias_channel
, leg_mmio_hole
, dct_sel
, dct_offset_en
;
1675 u64 dhar_offset
= f10_dhar_offset(pvt
);
1676 u8 intlv_addr
= dct_sel_interleave_addr(pvt
);
1677 u8 node_id
= dram_dst_node(pvt
, range
);
1678 u8 intlv_en
= dram_intlv_en(pvt
, range
);
1680 amd64_read_pci_cfg(pvt
->F1
, DRAM_CONT_BASE
, &dct_cont_base_reg
);
1681 amd64_read_pci_cfg(pvt
->F1
, DRAM_CONT_LIMIT
, &dct_cont_limit_reg
);
1683 dct_offset_en
= (u8
) ((dct_cont_base_reg
>> 3) & BIT(0));
1684 dct_sel
= (u8
) ((dct_cont_base_reg
>> 4) & 0x7);
1686 edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1687 range
, sys_addr
, get_dram_limit(pvt
, range
));
1689 if (!(get_dram_base(pvt
, range
) <= sys_addr
) &&
1690 !(get_dram_limit(pvt
, range
) >= sys_addr
))
1693 if (dhar_valid(pvt
) &&
1694 dhar_base(pvt
) <= sys_addr
&&
1695 sys_addr
< BIT_64(32)) {
1696 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1701 /* Verify sys_addr is within DCT Range. */
1702 dct_base
= (u64
) dct_sel_baseaddr(pvt
);
1703 dct_limit
= (dct_cont_limit_reg
>> 11) & 0x1FFF;
1705 if (!(dct_cont_base_reg
& BIT(0)) &&
1706 !(dct_base
<= (sys_addr
>> 27) &&
1707 dct_limit
>= (sys_addr
>> 27)))
1710 /* Verify number of dct's that participate in channel interleaving. */
1711 num_dcts_intlv
= (int) hweight8(intlv_en
);
1713 if (!(num_dcts_intlv
% 2 == 0) || (num_dcts_intlv
> 4))
1716 channel
= f15_m30h_determine_channel(pvt
, sys_addr
, intlv_en
,
1717 num_dcts_intlv
, dct_sel
);
1719 /* Verify we stay within the MAX number of channels allowed */
1723 leg_mmio_hole
= (u8
) (dct_cont_base_reg
>> 1 & BIT(0));
1725 /* Get normalized DCT addr */
1726 if (leg_mmio_hole
&& (sys_addr
>= BIT_64(32)))
1727 chan_offset
= dhar_offset
;
1729 chan_offset
= dct_base
<< 27;
1731 chan_addr
= sys_addr
- chan_offset
;
1733 /* remove channel interleave */
1734 if (num_dcts_intlv
== 2) {
1735 if (intlv_addr
== 0x4)
1736 chan_addr
= ((chan_addr
>> 9) << 8) |
1738 else if (intlv_addr
== 0x5)
1739 chan_addr
= ((chan_addr
>> 10) << 9) |
1740 (chan_addr
& 0x1ff);
1744 } else if (num_dcts_intlv
== 4) {
1745 if (intlv_addr
== 0x4)
1746 chan_addr
= ((chan_addr
>> 10) << 8) |
1748 else if (intlv_addr
== 0x5)
1749 chan_addr
= ((chan_addr
>> 11) << 9) |
1750 (chan_addr
& 0x1ff);
1755 if (dct_offset_en
) {
1756 amd64_read_pci_cfg(pvt
->F1
,
1757 DRAM_CONT_HIGH_OFF
+ (int) channel
* 4,
1759 chan_addr
+= (u64
) ((tmp
>> 11) & 0xfff) << 27;
1762 f15h_select_dct(pvt
, channel
);
1764 edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr
);
1768 * if channel = 3, then alias it to 1. This is because, in F15 M30h,
1769 * there is support for 4 DCT's, but only 2 are currently functional.
1770 * They are DCT0 and DCT3. But we have read all registers of DCT3 into
1771 * pvt->csels[1]. So we need to use '1' here to get correct info.
1772 * Refer F15 M30h BKDG Section 2.10 and 2.10.3 for clarifications.
1774 alias_channel
= (channel
== 3) ? 1 : channel
;
1776 cs_found
= f1x_lookup_addr_in_dct(chan_addr
, node_id
, alias_channel
);
1779 *chan_sel
= alias_channel
;
1784 static int f1x_translate_sysaddr_to_cs(struct amd64_pvt
*pvt
,
1788 int cs_found
= -EINVAL
;
1791 for (range
= 0; range
< DRAM_RANGES
; range
++) {
1792 if (!dram_rw(pvt
, range
))
1795 if (pvt
->fam
== 0x15 && pvt
->model
>= 0x30)
1796 cs_found
= f15_m30h_match_to_this_node(pvt
, range
,
1800 else if ((get_dram_base(pvt
, range
) <= sys_addr
) &&
1801 (get_dram_limit(pvt
, range
) >= sys_addr
)) {
1802 cs_found
= f1x_match_to_this_node(pvt
, range
,
1803 sys_addr
, chan_sel
);
1812 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1813 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
1815 * The @sys_addr is usually an error address received from the hardware
1818 static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info
*mci
, u64 sys_addr
,
1819 struct err_info
*err
)
1821 struct amd64_pvt
*pvt
= mci
->pvt_info
;
1823 error_address_to_page_and_offset(sys_addr
, err
);
1825 err
->csrow
= f1x_translate_sysaddr_to_cs(pvt
, sys_addr
, &err
->channel
);
1826 if (err
->csrow
< 0) {
1827 err
->err_code
= ERR_CSROW
;
1832 * We need the syndromes for channel detection only when we're
1833 * ganged. Otherwise @chan should already contain the channel at
1836 if (dct_ganging_enabled(pvt
))
1837 err
->channel
= get_channel_from_ecc_syndrome(mci
, err
->syndrome
);
1841 * debug routine to display the memory sizes of all logical DIMMs and its
1844 static void debug_display_dimm_sizes(struct amd64_pvt
*pvt
, u8 ctrl
)
1846 int dimm
, size0
, size1
;
1847 u32
*dcsb
= ctrl
? pvt
->csels
[1].csbases
: pvt
->csels
[0].csbases
;
1848 u32 dbam
= ctrl
? pvt
->dbam1
: pvt
->dbam0
;
1850 if (pvt
->fam
== 0xf) {
1851 /* K8 families < revF not supported yet */
1852 if (pvt
->ext_model
< K8_REV_F
)
1858 if (pvt
->fam
== 0x10) {
1859 dbam
= (ctrl
&& !dct_ganging_enabled(pvt
)) ? pvt
->dbam1
1861 dcsb
= (ctrl
&& !dct_ganging_enabled(pvt
)) ?
1862 pvt
->csels
[1].csbases
:
1863 pvt
->csels
[0].csbases
;
1866 dcsb
= pvt
->csels
[1].csbases
;
1868 edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
1871 edac_printk(KERN_DEBUG
, EDAC_MC
, "DCT%d chip selects:\n", ctrl
);
1873 /* Dump memory sizes for DIMM and its CSROWs */
1874 for (dimm
= 0; dimm
< 4; dimm
++) {
1877 if (dcsb
[dimm
*2] & DCSB_CS_ENABLE
)
1878 /* For f15m60h, need multiplier for LRDIMM cs_size
1879 * calculation. We pass 'dimm' value to the dbam_to_cs
1880 * mapper so we can find the multiplier from the
1881 * corresponding DCSM.
1883 size0
= pvt
->ops
->dbam_to_cs(pvt
, ctrl
,
1884 DBAM_DIMM(dimm
, dbam
),
1888 if (dcsb
[dimm
*2 + 1] & DCSB_CS_ENABLE
)
1889 size1
= pvt
->ops
->dbam_to_cs(pvt
, ctrl
,
1890 DBAM_DIMM(dimm
, dbam
),
1893 amd64_info(EDAC_MC
": %d: %5dMB %d: %5dMB\n",
1895 dimm
* 2 + 1, size1
);
1899 static struct amd64_family_type family_types
[] = {
1902 .f1_id
= PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP
,
1903 .f3_id
= PCI_DEVICE_ID_AMD_K8_NB_MISC
,
1905 .early_channel_count
= k8_early_channel_count
,
1906 .map_sysaddr_to_csrow
= k8_map_sysaddr_to_csrow
,
1907 .dbam_to_cs
= k8_dbam_to_chip_select
,
1912 .f1_id
= PCI_DEVICE_ID_AMD_10H_NB_MAP
,
1913 .f3_id
= PCI_DEVICE_ID_AMD_10H_NB_MISC
,
1915 .early_channel_count
= f1x_early_channel_count
,
1916 .map_sysaddr_to_csrow
= f1x_map_sysaddr_to_csrow
,
1917 .dbam_to_cs
= f10_dbam_to_chip_select
,
1922 .f1_id
= PCI_DEVICE_ID_AMD_15H_NB_F1
,
1923 .f3_id
= PCI_DEVICE_ID_AMD_15H_NB_F3
,
1925 .early_channel_count
= f1x_early_channel_count
,
1926 .map_sysaddr_to_csrow
= f1x_map_sysaddr_to_csrow
,
1927 .dbam_to_cs
= f15_dbam_to_chip_select
,
1931 .ctl_name
= "F15h_M30h",
1932 .f1_id
= PCI_DEVICE_ID_AMD_15H_M30H_NB_F1
,
1933 .f3_id
= PCI_DEVICE_ID_AMD_15H_M30H_NB_F3
,
1935 .early_channel_count
= f1x_early_channel_count
,
1936 .map_sysaddr_to_csrow
= f1x_map_sysaddr_to_csrow
,
1937 .dbam_to_cs
= f16_dbam_to_chip_select
,
1941 .ctl_name
= "F15h_M60h",
1942 .f1_id
= PCI_DEVICE_ID_AMD_15H_M60H_NB_F1
,
1943 .f3_id
= PCI_DEVICE_ID_AMD_15H_M60H_NB_F3
,
1945 .early_channel_count
= f1x_early_channel_count
,
1946 .map_sysaddr_to_csrow
= f1x_map_sysaddr_to_csrow
,
1947 .dbam_to_cs
= f15_m60h_dbam_to_chip_select
,
1952 .f1_id
= PCI_DEVICE_ID_AMD_16H_NB_F1
,
1953 .f3_id
= PCI_DEVICE_ID_AMD_16H_NB_F3
,
1955 .early_channel_count
= f1x_early_channel_count
,
1956 .map_sysaddr_to_csrow
= f1x_map_sysaddr_to_csrow
,
1957 .dbam_to_cs
= f16_dbam_to_chip_select
,
1961 .ctl_name
= "F16h_M30h",
1962 .f1_id
= PCI_DEVICE_ID_AMD_16H_M30H_NB_F1
,
1963 .f3_id
= PCI_DEVICE_ID_AMD_16H_M30H_NB_F3
,
1965 .early_channel_count
= f1x_early_channel_count
,
1966 .map_sysaddr_to_csrow
= f1x_map_sysaddr_to_csrow
,
1967 .dbam_to_cs
= f16_dbam_to_chip_select
,
1973 * These are tables of eigenvectors (one per line) which can be used for the
1974 * construction of the syndrome tables. The modified syndrome search algorithm
1975 * uses those to find the symbol in error and thus the DIMM.
1977 * Algorithm courtesy of Ross LaFetra from AMD.
1979 static const u16 x4_vectors
[] = {
1980 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1981 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1982 0x0001, 0x0002, 0x0004, 0x0008,
1983 0x1013, 0x3032, 0x4044, 0x8088,
1984 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1985 0x4857, 0xc4fe, 0x13cc, 0x3288,
1986 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1987 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1988 0x15c1, 0x2a42, 0x89ac, 0x4758,
1989 0x2b03, 0x1602, 0x4f0c, 0xca08,
1990 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1991 0x8ba7, 0x465e, 0x244c, 0x1cc8,
1992 0x2b87, 0x164e, 0x642c, 0xdc18,
1993 0x40b9, 0x80de, 0x1094, 0x20e8,
1994 0x27db, 0x1eb6, 0x9dac, 0x7b58,
1995 0x11c1, 0x2242, 0x84ac, 0x4c58,
1996 0x1be5, 0x2d7a, 0x5e34, 0xa718,
1997 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1998 0x4c97, 0xc87e, 0x11fc, 0x33a8,
1999 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
2000 0x16b3, 0x3d62, 0x4f34, 0x8518,
2001 0x1e2f, 0x391a, 0x5cac, 0xf858,
2002 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
2003 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
2004 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
2005 0x4397, 0xc27e, 0x17fc, 0x3ea8,
2006 0x1617, 0x3d3e, 0x6464, 0xb8b8,
2007 0x23ff, 0x12aa, 0xab6c, 0x56d8,
2008 0x2dfb, 0x1ba6, 0x913c, 0x7328,
2009 0x185d, 0x2ca6, 0x7914, 0x9e28,
2010 0x171b, 0x3e36, 0x7d7c, 0xebe8,
2011 0x4199, 0x82ee, 0x19f4, 0x2e58,
2012 0x4807, 0xc40e, 0x130c, 0x3208,
2013 0x1905, 0x2e0a, 0x5804, 0xac08,
2014 0x213f, 0x132a, 0xadfc, 0x5ba8,
2015 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
2018 static const u16 x8_vectors
[] = {
2019 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
2020 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
2021 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
2022 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
2023 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
2024 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
2025 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
2026 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
2027 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
2028 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
2029 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
2030 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
2031 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
2032 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
2033 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
2034 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
2035 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
2036 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
2037 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
2040 static int decode_syndrome(u16 syndrome
, const u16
*vectors
, unsigned num_vecs
,
2043 unsigned int i
, err_sym
;
2045 for (err_sym
= 0; err_sym
< num_vecs
/ v_dim
; err_sym
++) {
2047 unsigned v_idx
= err_sym
* v_dim
;
2048 unsigned v_end
= (err_sym
+ 1) * v_dim
;
2050 /* walk over all 16 bits of the syndrome */
2051 for (i
= 1; i
< (1U << 16); i
<<= 1) {
2053 /* if bit is set in that eigenvector... */
2054 if (v_idx
< v_end
&& vectors
[v_idx
] & i
) {
2055 u16 ev_comp
= vectors
[v_idx
++];
2057 /* ... and bit set in the modified syndrome, */
2067 /* can't get to zero, move to next symbol */
2072 edac_dbg(0, "syndrome(%x) not found\n", syndrome
);
2076 static int map_err_sym_to_channel(int err_sym
, int sym_size
)
2089 return err_sym
>> 4;
2095 /* imaginary bits not in a DIMM */
2097 WARN(1, KERN_ERR
"Invalid error symbol: 0x%x\n",
2109 return err_sym
>> 3;
2115 static int get_channel_from_ecc_syndrome(struct mem_ctl_info
*mci
, u16 syndrome
)
2117 struct amd64_pvt
*pvt
= mci
->pvt_info
;
2120 if (pvt
->ecc_sym_sz
== 8)
2121 err_sym
= decode_syndrome(syndrome
, x8_vectors
,
2122 ARRAY_SIZE(x8_vectors
),
2124 else if (pvt
->ecc_sym_sz
== 4)
2125 err_sym
= decode_syndrome(syndrome
, x4_vectors
,
2126 ARRAY_SIZE(x4_vectors
),
2129 amd64_warn("Illegal syndrome type: %u\n", pvt
->ecc_sym_sz
);
2133 return map_err_sym_to_channel(err_sym
, pvt
->ecc_sym_sz
);
2136 static void __log_bus_error(struct mem_ctl_info
*mci
, struct err_info
*err
,
2139 enum hw_event_mc_err_type err_type
;
2143 err_type
= HW_EVENT_ERR_CORRECTED
;
2144 else if (ecc_type
== 1)
2145 err_type
= HW_EVENT_ERR_UNCORRECTED
;
2147 WARN(1, "Something is rotten in the state of Denmark.\n");
2151 switch (err
->err_code
) {
2156 string
= "Failed to map error addr to a node";
2159 string
= "Failed to map error addr to a csrow";
2162 string
= "unknown syndrome - possible error reporting race";
2165 string
= "WTF error";
2169 edac_mc_handle_error(err_type
, mci
, 1,
2170 err
->page
, err
->offset
, err
->syndrome
,
2171 err
->csrow
, err
->channel
, -1,
2175 static inline void decode_bus_error(int node_id
, struct mce
*m
)
2177 struct mem_ctl_info
*mci
= mcis
[node_id
];
2178 struct amd64_pvt
*pvt
= mci
->pvt_info
;
2179 u8 ecc_type
= (m
->status
>> 45) & 0x3;
2180 u8 xec
= XEC(m
->status
, 0x1f);
2181 u16 ec
= EC(m
->status
);
2183 struct err_info err
;
2185 /* Bail out early if this was an 'observed' error */
2186 if (PP(ec
) == NBSL_PP_OBS
)
2189 /* Do only ECC errors */
2190 if (xec
&& xec
!= F10_NBSL_EXT_ERR_ECC
)
2193 memset(&err
, 0, sizeof(err
));
2195 sys_addr
= get_error_address(pvt
, m
);
2198 err
.syndrome
= extract_syndrome(m
->status
);
2200 pvt
->ops
->map_sysaddr_to_csrow(mci
, sys_addr
, &err
);
2202 __log_bus_error(mci
, &err
, ecc_type
);
2206 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
2207 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
2209 static int reserve_mc_sibling_devs(struct amd64_pvt
*pvt
, u16 f1_id
, u16 f3_id
)
2211 /* Reserve the ADDRESS MAP Device */
2212 pvt
->F1
= pci_get_related_function(pvt
->F2
->vendor
, f1_id
, pvt
->F2
);
2214 amd64_err("error address map device not found: "
2215 "vendor %x device 0x%x (broken BIOS?)\n",
2216 PCI_VENDOR_ID_AMD
, f1_id
);
2220 /* Reserve the MISC Device */
2221 pvt
->F3
= pci_get_related_function(pvt
->F2
->vendor
, f3_id
, pvt
->F2
);
2223 pci_dev_put(pvt
->F1
);
2226 amd64_err("error F3 device not found: "
2227 "vendor %x device 0x%x (broken BIOS?)\n",
2228 PCI_VENDOR_ID_AMD
, f3_id
);
2232 edac_dbg(1, "F1: %s\n", pci_name(pvt
->F1
));
2233 edac_dbg(1, "F2: %s\n", pci_name(pvt
->F2
));
2234 edac_dbg(1, "F3: %s\n", pci_name(pvt
->F3
));
2239 static void free_mc_sibling_devs(struct amd64_pvt
*pvt
)
2241 pci_dev_put(pvt
->F1
);
2242 pci_dev_put(pvt
->F3
);
2246 * Retrieve the hardware registers of the memory controller (this includes the
2247 * 'Address Map' and 'Misc' device regs)
2249 static void read_mc_regs(struct amd64_pvt
*pvt
)
2256 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2257 * those are Read-As-Zero
2259 rdmsrl(MSR_K8_TOP_MEM1
, pvt
->top_mem
);
2260 edac_dbg(0, " TOP_MEM: 0x%016llx\n", pvt
->top_mem
);
2262 /* check first whether TOP_MEM2 is enabled */
2263 rdmsrl(MSR_K8_SYSCFG
, msr_val
);
2264 if (msr_val
& (1U << 21)) {
2265 rdmsrl(MSR_K8_TOP_MEM2
, pvt
->top_mem2
);
2266 edac_dbg(0, " TOP_MEM2: 0x%016llx\n", pvt
->top_mem2
);
2268 edac_dbg(0, " TOP_MEM2 disabled\n");
2270 amd64_read_pci_cfg(pvt
->F3
, NBCAP
, &pvt
->nbcap
);
2272 read_dram_ctl_register(pvt
);
2274 for (range
= 0; range
< DRAM_RANGES
; range
++) {
2277 /* read settings for this DRAM range */
2278 read_dram_base_limit_regs(pvt
, range
);
2280 rw
= dram_rw(pvt
, range
);
2284 edac_dbg(1, " DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
2286 get_dram_base(pvt
, range
),
2287 get_dram_limit(pvt
, range
));
2289 edac_dbg(1, " IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
2290 dram_intlv_en(pvt
, range
) ? "Enabled" : "Disabled",
2291 (rw
& 0x1) ? "R" : "-",
2292 (rw
& 0x2) ? "W" : "-",
2293 dram_intlv_sel(pvt
, range
),
2294 dram_dst_node(pvt
, range
));
2297 read_dct_base_mask(pvt
);
2299 amd64_read_pci_cfg(pvt
->F1
, DHAR
, &pvt
->dhar
);
2300 amd64_read_dct_pci_cfg(pvt
, 0, DBAM0
, &pvt
->dbam0
);
2302 amd64_read_pci_cfg(pvt
->F3
, F10_ONLINE_SPARE
, &pvt
->online_spare
);
2304 amd64_read_dct_pci_cfg(pvt
, 0, DCLR0
, &pvt
->dclr0
);
2305 amd64_read_dct_pci_cfg(pvt
, 0, DCHR0
, &pvt
->dchr0
);
2307 if (!dct_ganging_enabled(pvt
)) {
2308 amd64_read_dct_pci_cfg(pvt
, 1, DCLR0
, &pvt
->dclr1
);
2309 amd64_read_dct_pci_cfg(pvt
, 1, DCHR0
, &pvt
->dchr1
);
2312 pvt
->ecc_sym_sz
= 4;
2313 determine_memory_type(pvt
);
2314 edac_dbg(1, " DIMM type: %s\n", edac_mem_types
[pvt
->dram_type
]);
2316 if (pvt
->fam
>= 0x10) {
2317 amd64_read_pci_cfg(pvt
->F3
, EXT_NB_MCA_CFG
, &tmp
);
2318 /* F16h has only DCT0, so no need to read dbam1 */
2319 if (pvt
->fam
!= 0x16)
2320 amd64_read_dct_pci_cfg(pvt
, 1, DBAM0
, &pvt
->dbam1
);
2322 /* F10h, revD and later can do x8 ECC too */
2323 if ((pvt
->fam
> 0x10 || pvt
->model
> 7) && tmp
& BIT(25))
2324 pvt
->ecc_sym_sz
= 8;
2326 dump_misc_regs(pvt
);
2330 * NOTE: CPU Revision Dependent code
2333 * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
2334 * k8 private pointer to -->
2335 * DRAM Bank Address mapping register
2337 * DCL register where dual_channel_active is
2339 * The DBAM register consists of 4 sets of 4 bits each definitions:
2342 * 0-3 CSROWs 0 and 1
2343 * 4-7 CSROWs 2 and 3
2344 * 8-11 CSROWs 4 and 5
2345 * 12-15 CSROWs 6 and 7
2347 * Values range from: 0 to 15
2348 * The meaning of the values depends on CPU revision and dual-channel state,
2349 * see relevant BKDG more info.
2351 * The memory controller provides for total of only 8 CSROWs in its current
2352 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2353 * single channel or two (2) DIMMs in dual channel mode.
2355 * The following code logic collapses the various tables for CSROW based on CPU
2359 * The number of PAGE_SIZE pages on the specified CSROW number it
2363 static u32
get_csrow_nr_pages(struct amd64_pvt
*pvt
, u8 dct
, int csrow_nr
)
2365 u32 cs_mode
, nr_pages
;
2366 u32 dbam
= dct
? pvt
->dbam1
: pvt
->dbam0
;
2370 * The math on this doesn't look right on the surface because x/2*4 can
2371 * be simplified to x*2 but this expression makes use of the fact that
2372 * it is integral math where 1/2=0. This intermediate value becomes the
2373 * number of bits to shift the DBAM register to extract the proper CSROW
2376 cs_mode
= DBAM_DIMM(csrow_nr
/ 2, dbam
);
2378 nr_pages
= pvt
->ops
->dbam_to_cs(pvt
, dct
, cs_mode
, (csrow_nr
/ 2))
2379 << (20 - PAGE_SHIFT
);
2381 edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n",
2382 csrow_nr
, dct
, cs_mode
);
2383 edac_dbg(0, "nr_pages/channel: %u\n", nr_pages
);
2389 * Initialize the array of csrow attribute instances, based on the values
2390 * from pci config hardware registers.
2392 static int init_csrows(struct mem_ctl_info
*mci
)
2394 struct amd64_pvt
*pvt
= mci
->pvt_info
;
2395 struct csrow_info
*csrow
;
2396 struct dimm_info
*dimm
;
2397 enum edac_type edac_mode
;
2398 int i
, j
, empty
= 1;
2402 amd64_read_pci_cfg(pvt
->F3
, NBCFG
, &val
);
2406 edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2407 pvt
->mc_node_id
, val
,
2408 !!(val
& NBCFG_CHIPKILL
), !!(val
& NBCFG_ECC_ENABLE
));
2411 * We iterate over DCT0 here but we look at DCT1 in parallel, if needed.
2413 for_each_chip_select(i
, 0, pvt
) {
2414 bool row_dct0
= !!csrow_enabled(i
, 0, pvt
);
2415 bool row_dct1
= false;
2417 if (pvt
->fam
!= 0xf)
2418 row_dct1
= !!csrow_enabled(i
, 1, pvt
);
2420 if (!row_dct0
&& !row_dct1
)
2423 csrow
= mci
->csrows
[i
];
2426 edac_dbg(1, "MC node: %d, csrow: %d\n",
2427 pvt
->mc_node_id
, i
);
2430 nr_pages
= get_csrow_nr_pages(pvt
, 0, i
);
2431 csrow
->channels
[0]->dimm
->nr_pages
= nr_pages
;
2434 /* K8 has only one DCT */
2435 if (pvt
->fam
!= 0xf && row_dct1
) {
2436 int row_dct1_pages
= get_csrow_nr_pages(pvt
, 1, i
);
2438 csrow
->channels
[1]->dimm
->nr_pages
= row_dct1_pages
;
2439 nr_pages
+= row_dct1_pages
;
2442 edac_dbg(1, "Total csrow%d pages: %u\n", i
, nr_pages
);
2445 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2447 if (pvt
->nbcfg
& NBCFG_ECC_ENABLE
)
2448 edac_mode
= (pvt
->nbcfg
& NBCFG_CHIPKILL
) ?
2449 EDAC_S4ECD4ED
: EDAC_SECDED
;
2451 edac_mode
= EDAC_NONE
;
2453 for (j
= 0; j
< pvt
->channel_count
; j
++) {
2454 dimm
= csrow
->channels
[j
]->dimm
;
2455 dimm
->mtype
= pvt
->dram_type
;
2456 dimm
->edac_mode
= edac_mode
;
2463 /* get all cores on this DCT */
2464 static void get_cpus_on_this_dct_cpumask(struct cpumask
*mask
, u16 nid
)
2468 for_each_online_cpu(cpu
)
2469 if (amd_get_nb_id(cpu
) == nid
)
2470 cpumask_set_cpu(cpu
, mask
);
2473 /* check MCG_CTL on all the cpus on this node */
2474 static bool nb_mce_bank_enabled_on_node(u16 nid
)
2480 if (!zalloc_cpumask_var(&mask
, GFP_KERNEL
)) {
2481 amd64_warn("%s: Error allocating mask\n", __func__
);
2485 get_cpus_on_this_dct_cpumask(mask
, nid
);
2487 rdmsr_on_cpus(mask
, MSR_IA32_MCG_CTL
, msrs
);
2489 for_each_cpu(cpu
, mask
) {
2490 struct msr
*reg
= per_cpu_ptr(msrs
, cpu
);
2491 nbe
= reg
->l
& MSR_MCGCTL_NBE
;
2493 edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2495 (nbe
? "enabled" : "disabled"));
2503 free_cpumask_var(mask
);
2507 static int toggle_ecc_err_reporting(struct ecc_settings
*s
, u16 nid
, bool on
)
2509 cpumask_var_t cmask
;
2512 if (!zalloc_cpumask_var(&cmask
, GFP_KERNEL
)) {
2513 amd64_warn("%s: error allocating mask\n", __func__
);
2517 get_cpus_on_this_dct_cpumask(cmask
, nid
);
2519 rdmsr_on_cpus(cmask
, MSR_IA32_MCG_CTL
, msrs
);
2521 for_each_cpu(cpu
, cmask
) {
2523 struct msr
*reg
= per_cpu_ptr(msrs
, cpu
);
2526 if (reg
->l
& MSR_MCGCTL_NBE
)
2527 s
->flags
.nb_mce_enable
= 1;
2529 reg
->l
|= MSR_MCGCTL_NBE
;
2532 * Turn off NB MCE reporting only when it was off before
2534 if (!s
->flags
.nb_mce_enable
)
2535 reg
->l
&= ~MSR_MCGCTL_NBE
;
2538 wrmsr_on_cpus(cmask
, MSR_IA32_MCG_CTL
, msrs
);
2540 free_cpumask_var(cmask
);
2545 static bool enable_ecc_error_reporting(struct ecc_settings
*s
, u16 nid
,
2549 u32 value
, mask
= 0x3; /* UECC/CECC enable */
2551 if (toggle_ecc_err_reporting(s
, nid
, ON
)) {
2552 amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2556 amd64_read_pci_cfg(F3
, NBCTL
, &value
);
2558 s
->old_nbctl
= value
& mask
;
2559 s
->nbctl_valid
= true;
2562 amd64_write_pci_cfg(F3
, NBCTL
, value
);
2564 amd64_read_pci_cfg(F3
, NBCFG
, &value
);
2566 edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2567 nid
, value
, !!(value
& NBCFG_ECC_ENABLE
));
2569 if (!(value
& NBCFG_ECC_ENABLE
)) {
2570 amd64_warn("DRAM ECC disabled on this node, enabling...\n");
2572 s
->flags
.nb_ecc_prev
= 0;
2574 /* Attempt to turn on DRAM ECC Enable */
2575 value
|= NBCFG_ECC_ENABLE
;
2576 amd64_write_pci_cfg(F3
, NBCFG
, value
);
2578 amd64_read_pci_cfg(F3
, NBCFG
, &value
);
2580 if (!(value
& NBCFG_ECC_ENABLE
)) {
2581 amd64_warn("Hardware rejected DRAM ECC enable,"
2582 "check memory DIMM configuration.\n");
2585 amd64_info("Hardware accepted DRAM ECC Enable\n");
2588 s
->flags
.nb_ecc_prev
= 1;
2591 edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2592 nid
, value
, !!(value
& NBCFG_ECC_ENABLE
));
2597 static void restore_ecc_error_reporting(struct ecc_settings
*s
, u16 nid
,
2600 u32 value
, mask
= 0x3; /* UECC/CECC enable */
2603 if (!s
->nbctl_valid
)
2606 amd64_read_pci_cfg(F3
, NBCTL
, &value
);
2608 value
|= s
->old_nbctl
;
2610 amd64_write_pci_cfg(F3
, NBCTL
, value
);
2612 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
2613 if (!s
->flags
.nb_ecc_prev
) {
2614 amd64_read_pci_cfg(F3
, NBCFG
, &value
);
2615 value
&= ~NBCFG_ECC_ENABLE
;
2616 amd64_write_pci_cfg(F3
, NBCFG
, value
);
2619 /* restore the NB Enable MCGCTL bit */
2620 if (toggle_ecc_err_reporting(s
, nid
, OFF
))
2621 amd64_warn("Error restoring NB MCGCTL settings!\n");
2625 * EDAC requires that the BIOS have ECC enabled before
2626 * taking over the processing of ECC errors. A command line
2627 * option allows to force-enable hardware ECC later in
2628 * enable_ecc_error_reporting().
2630 static const char *ecc_msg
=
2631 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2632 " Either enable ECC checking or force module loading by setting "
2633 "'ecc_enable_override'.\n"
2634 " (Note that use of the override may cause unknown side effects.)\n";
2636 static bool ecc_enabled(struct pci_dev
*F3
, u16 nid
)
2640 bool nb_mce_en
= false;
2642 amd64_read_pci_cfg(F3
, NBCFG
, &value
);
2644 ecc_en
= !!(value
& NBCFG_ECC_ENABLE
);
2645 amd64_info("DRAM ECC %s.\n", (ecc_en
? "enabled" : "disabled"));
2647 nb_mce_en
= nb_mce_bank_enabled_on_node(nid
);
2649 amd64_notice("NB MCE bank disabled, set MSR "
2650 "0x%08x[4] on node %d to enable.\n",
2651 MSR_IA32_MCG_CTL
, nid
);
2653 if (!ecc_en
|| !nb_mce_en
) {
2654 amd64_notice("%s", ecc_msg
);
2660 static int set_mc_sysfs_attrs(struct mem_ctl_info
*mci
)
2662 struct amd64_pvt
*pvt
= mci
->pvt_info
;
2665 rc
= amd64_create_sysfs_dbg_files(mci
);
2669 if (pvt
->fam
>= 0x10) {
2670 rc
= amd64_create_sysfs_inject_files(mci
);
2678 static void del_mc_sysfs_attrs(struct mem_ctl_info
*mci
)
2680 struct amd64_pvt
*pvt
= mci
->pvt_info
;
2682 amd64_remove_sysfs_dbg_files(mci
);
2684 if (pvt
->fam
>= 0x10)
2685 amd64_remove_sysfs_inject_files(mci
);
2688 static void setup_mci_misc_attrs(struct mem_ctl_info
*mci
,
2689 struct amd64_family_type
*fam
)
2691 struct amd64_pvt
*pvt
= mci
->pvt_info
;
2693 mci
->mtype_cap
= MEM_FLAG_DDR2
| MEM_FLAG_RDDR2
;
2694 mci
->edac_ctl_cap
= EDAC_FLAG_NONE
;
2696 if (pvt
->nbcap
& NBCAP_SECDED
)
2697 mci
->edac_ctl_cap
|= EDAC_FLAG_SECDED
;
2699 if (pvt
->nbcap
& NBCAP_CHIPKILL
)
2700 mci
->edac_ctl_cap
|= EDAC_FLAG_S4ECD4ED
;
2702 mci
->edac_cap
= determine_edac_cap(pvt
);
2703 mci
->mod_name
= EDAC_MOD_STR
;
2704 mci
->mod_ver
= EDAC_AMD64_VERSION
;
2705 mci
->ctl_name
= fam
->ctl_name
;
2706 mci
->dev_name
= pci_name(pvt
->F2
);
2707 mci
->ctl_page_to_phys
= NULL
;
2709 /* memory scrubber interface */
2710 mci
->set_sdram_scrub_rate
= set_scrub_rate
;
2711 mci
->get_sdram_scrub_rate
= get_scrub_rate
;
2715 * returns a pointer to the family descriptor on success, NULL otherwise.
2717 static struct amd64_family_type
*per_family_init(struct amd64_pvt
*pvt
)
2719 struct amd64_family_type
*fam_type
= NULL
;
2721 pvt
->ext_model
= boot_cpu_data
.x86_model
>> 4;
2722 pvt
->stepping
= boot_cpu_data
.x86_mask
;
2723 pvt
->model
= boot_cpu_data
.x86_model
;
2724 pvt
->fam
= boot_cpu_data
.x86
;
2728 fam_type
= &family_types
[K8_CPUS
];
2729 pvt
->ops
= &family_types
[K8_CPUS
].ops
;
2733 fam_type
= &family_types
[F10_CPUS
];
2734 pvt
->ops
= &family_types
[F10_CPUS
].ops
;
2738 if (pvt
->model
== 0x30) {
2739 fam_type
= &family_types
[F15_M30H_CPUS
];
2740 pvt
->ops
= &family_types
[F15_M30H_CPUS
].ops
;
2742 } else if (pvt
->model
== 0x60) {
2743 fam_type
= &family_types
[F15_M60H_CPUS
];
2744 pvt
->ops
= &family_types
[F15_M60H_CPUS
].ops
;
2748 fam_type
= &family_types
[F15_CPUS
];
2749 pvt
->ops
= &family_types
[F15_CPUS
].ops
;
2753 if (pvt
->model
== 0x30) {
2754 fam_type
= &family_types
[F16_M30H_CPUS
];
2755 pvt
->ops
= &family_types
[F16_M30H_CPUS
].ops
;
2758 fam_type
= &family_types
[F16_CPUS
];
2759 pvt
->ops
= &family_types
[F16_CPUS
].ops
;
2763 amd64_err("Unsupported family!\n");
2767 amd64_info("%s %sdetected (node %d).\n", fam_type
->ctl_name
,
2769 (pvt
->ext_model
>= K8_REV_F
? "revF or later "
2770 : "revE or earlier ")
2771 : ""), pvt
->mc_node_id
);
2775 static int init_one_instance(struct pci_dev
*F2
)
2777 struct amd64_pvt
*pvt
= NULL
;
2778 struct amd64_family_type
*fam_type
= NULL
;
2779 struct mem_ctl_info
*mci
= NULL
;
2780 struct edac_mc_layer layers
[2];
2782 u16 nid
= amd_get_node_id(F2
);
2785 pvt
= kzalloc(sizeof(struct amd64_pvt
), GFP_KERNEL
);
2789 pvt
->mc_node_id
= nid
;
2793 fam_type
= per_family_init(pvt
);
2798 err
= reserve_mc_sibling_devs(pvt
, fam_type
->f1_id
, fam_type
->f3_id
);
2805 * We need to determine how many memory channels there are. Then use
2806 * that information for calculating the size of the dynamic instance
2807 * tables in the 'mci' structure.
2810 pvt
->channel_count
= pvt
->ops
->early_channel_count(pvt
);
2811 if (pvt
->channel_count
< 0)
2815 layers
[0].type
= EDAC_MC_LAYER_CHIP_SELECT
;
2816 layers
[0].size
= pvt
->csels
[0].b_cnt
;
2817 layers
[0].is_virt_csrow
= true;
2818 layers
[1].type
= EDAC_MC_LAYER_CHANNEL
;
2821 * Always allocate two channels since we can have setups with DIMMs on
2822 * only one channel. Also, this simplifies handling later for the price
2823 * of a couple of KBs tops.
2826 layers
[1].is_virt_csrow
= false;
2828 mci
= edac_mc_alloc(nid
, ARRAY_SIZE(layers
), layers
, 0);
2832 mci
->pvt_info
= pvt
;
2833 mci
->pdev
= &pvt
->F2
->dev
;
2835 setup_mci_misc_attrs(mci
, fam_type
);
2837 if (init_csrows(mci
))
2838 mci
->edac_cap
= EDAC_FLAG_NONE
;
2841 if (edac_mc_add_mc(mci
)) {
2842 edac_dbg(1, "failed edac_mc_add_mc()\n");
2845 if (set_mc_sysfs_attrs(mci
)) {
2846 edac_dbg(1, "failed edac_mc_add_mc()\n");
2850 /* register stuff with EDAC MCE */
2851 if (report_gart_errors
)
2852 amd_report_gart_errors(true);
2854 amd_register_ecc_decoder(decode_bus_error
);
2858 atomic_inc(&drv_instances
);
2863 edac_mc_del_mc(mci
->pdev
);
2868 free_mc_sibling_devs(pvt
);
2877 static int probe_one_instance(struct pci_dev
*pdev
,
2878 const struct pci_device_id
*mc_type
)
2880 u16 nid
= amd_get_node_id(pdev
);
2881 struct pci_dev
*F3
= node_to_amd_nb(nid
)->misc
;
2882 struct ecc_settings
*s
;
2885 ret
= pci_enable_device(pdev
);
2887 edac_dbg(0, "ret=%d\n", ret
);
2892 s
= kzalloc(sizeof(struct ecc_settings
), GFP_KERNEL
);
2898 if (!ecc_enabled(F3
, nid
)) {
2901 if (!ecc_enable_override
)
2904 amd64_warn("Forcing ECC on!\n");
2906 if (!enable_ecc_error_reporting(s
, nid
, F3
))
2910 ret
= init_one_instance(pdev
);
2912 amd64_err("Error probing instance: %d\n", nid
);
2913 restore_ecc_error_reporting(s
, nid
, F3
);
2920 ecc_stngs
[nid
] = NULL
;
2926 static void remove_one_instance(struct pci_dev
*pdev
)
2928 struct mem_ctl_info
*mci
;
2929 struct amd64_pvt
*pvt
;
2930 u16 nid
= amd_get_node_id(pdev
);
2931 struct pci_dev
*F3
= node_to_amd_nb(nid
)->misc
;
2932 struct ecc_settings
*s
= ecc_stngs
[nid
];
2934 mci
= find_mci_by_dev(&pdev
->dev
);
2937 del_mc_sysfs_attrs(mci
);
2938 /* Remove from EDAC CORE tracking list */
2939 mci
= edac_mc_del_mc(&pdev
->dev
);
2943 pvt
= mci
->pvt_info
;
2945 restore_ecc_error_reporting(s
, nid
, F3
);
2947 free_mc_sibling_devs(pvt
);
2949 /* unregister from EDAC MCE */
2950 amd_report_gart_errors(false);
2951 amd_unregister_ecc_decoder(decode_bus_error
);
2953 kfree(ecc_stngs
[nid
]);
2954 ecc_stngs
[nid
] = NULL
;
2956 /* Free the EDAC CORE resources */
2957 mci
->pvt_info
= NULL
;
2965 * This table is part of the interface for loading drivers for PCI devices. The
2966 * PCI core identifies what devices are on a system during boot, and then
2967 * inquiry this table to see if this driver is for a given device found.
2969 static const struct pci_device_id amd64_pci_table
[] = {
2970 { PCI_VDEVICE(AMD
, PCI_DEVICE_ID_AMD_K8_NB_MEMCTL
) },
2971 { PCI_VDEVICE(AMD
, PCI_DEVICE_ID_AMD_10H_NB_DRAM
) },
2972 { PCI_VDEVICE(AMD
, PCI_DEVICE_ID_AMD_15H_NB_F2
) },
2973 { PCI_VDEVICE(AMD
, PCI_DEVICE_ID_AMD_15H_M30H_NB_F2
) },
2974 { PCI_VDEVICE(AMD
, PCI_DEVICE_ID_AMD_15H_M60H_NB_F2
) },
2975 { PCI_VDEVICE(AMD
, PCI_DEVICE_ID_AMD_16H_NB_F2
) },
2976 { PCI_VDEVICE(AMD
, PCI_DEVICE_ID_AMD_16H_M30H_NB_F2
) },
2979 MODULE_DEVICE_TABLE(pci
, amd64_pci_table
);
2981 static struct pci_driver amd64_pci_driver
= {
2982 .name
= EDAC_MOD_STR
,
2983 .probe
= probe_one_instance
,
2984 .remove
= remove_one_instance
,
2985 .id_table
= amd64_pci_table
,
2988 static void setup_pci_device(void)
2990 struct mem_ctl_info
*mci
;
2991 struct amd64_pvt
*pvt
;
3000 pvt
= mci
->pvt_info
;
3001 pci_ctl
= edac_pci_create_generic_ctl(&pvt
->F2
->dev
, EDAC_MOD_STR
);
3003 pr_warn("%s(): Unable to create PCI control\n", __func__
);
3004 pr_warn("%s(): PCI error report via EDAC not set\n", __func__
);
3008 static int __init
amd64_edac_init(void)
3012 printk(KERN_INFO
"AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION
);
3016 if (amd_cache_northbridges() < 0)
3020 mcis
= kzalloc(amd_nb_num() * sizeof(mcis
[0]), GFP_KERNEL
);
3021 ecc_stngs
= kzalloc(amd_nb_num() * sizeof(ecc_stngs
[0]), GFP_KERNEL
);
3022 if (!(mcis
&& ecc_stngs
))
3025 msrs
= msrs_alloc();
3029 err
= pci_register_driver(&amd64_pci_driver
);
3034 if (!atomic_read(&drv_instances
))
3035 goto err_no_instances
;
3039 #ifdef CONFIG_X86_32
3040 amd64_err("%s on 32-bit is unsupported. USE AT YOUR OWN RISK!\n", EDAC_MOD_STR
);
3046 pci_unregister_driver(&amd64_pci_driver
);
3063 static void __exit
amd64_edac_exit(void)
3066 edac_pci_release_generic_ctl(pci_ctl
);
3068 pci_unregister_driver(&amd64_pci_driver
);
3080 module_init(amd64_edac_init
);
3081 module_exit(amd64_edac_exit
);
3083 MODULE_LICENSE("GPL");
3084 MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
3085 "Dave Peterson, Thayne Harbaugh");
3086 MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
3087 EDAC_AMD64_VERSION
);
3089 module_param(edac_op_state
, int, 0444);
3090 MODULE_PARM_DESC(edac_op_state
, "EDAC Error Reporting state: 0=Poll,1=NMI");