btrfs: replace remaining do_div calls with div_u64 variants
[linux/fpc-iii.git] / fs / btrfs / extent-tree.c
blob5840afe5e5f90e19c2bad7cc026cf1666676569e
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "tree-log.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "raid56.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "math.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
40 #undef SCRAMBLE_DELAYED_REFS
43 * control flags for do_chunk_alloc's force field
44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45 * if we really need one.
47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
48 * if we have very few chunks already allocated. This is
49 * used as part of the clustering code to help make sure
50 * we have a good pool of storage to cluster in, without
51 * filling the FS with empty chunks
53 * CHUNK_ALLOC_FORCE means it must try to allocate one
56 enum {
57 CHUNK_ALLOC_NO_FORCE = 0,
58 CHUNK_ALLOC_LIMITED = 1,
59 CHUNK_ALLOC_FORCE = 2,
63 * Control how reservations are dealt with.
65 * RESERVE_FREE - freeing a reservation.
66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67 * ENOSPC accounting
68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69 * bytes_may_use as the ENOSPC accounting is done elsewhere
71 enum {
72 RESERVE_FREE = 0,
73 RESERVE_ALLOC = 1,
74 RESERVE_ALLOC_NO_ACCOUNT = 2,
77 static int update_block_group(struct btrfs_trans_handle *trans,
78 struct btrfs_root *root, u64 bytenr,
79 u64 num_bytes, int alloc);
80 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
81 struct btrfs_root *root,
82 u64 bytenr, u64 num_bytes, u64 parent,
83 u64 root_objectid, u64 owner_objectid,
84 u64 owner_offset, int refs_to_drop,
85 struct btrfs_delayed_extent_op *extra_op,
86 int no_quota);
87 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
88 struct extent_buffer *leaf,
89 struct btrfs_extent_item *ei);
90 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
91 struct btrfs_root *root,
92 u64 parent, u64 root_objectid,
93 u64 flags, u64 owner, u64 offset,
94 struct btrfs_key *ins, int ref_mod);
95 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
96 struct btrfs_root *root,
97 u64 parent, u64 root_objectid,
98 u64 flags, struct btrfs_disk_key *key,
99 int level, struct btrfs_key *ins,
100 int no_quota);
101 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
102 struct btrfs_root *extent_root, u64 flags,
103 int force);
104 static int find_next_key(struct btrfs_path *path, int level,
105 struct btrfs_key *key);
106 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
107 int dump_block_groups);
108 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
109 u64 num_bytes, int reserve,
110 int delalloc);
111 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
112 u64 num_bytes);
113 int btrfs_pin_extent(struct btrfs_root *root,
114 u64 bytenr, u64 num_bytes, int reserved);
116 static noinline int
117 block_group_cache_done(struct btrfs_block_group_cache *cache)
119 smp_mb();
120 return cache->cached == BTRFS_CACHE_FINISHED ||
121 cache->cached == BTRFS_CACHE_ERROR;
124 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
126 return (cache->flags & bits) == bits;
129 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
131 atomic_inc(&cache->count);
134 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
136 if (atomic_dec_and_test(&cache->count)) {
137 WARN_ON(cache->pinned > 0);
138 WARN_ON(cache->reserved > 0);
139 kfree(cache->free_space_ctl);
140 kfree(cache);
145 * this adds the block group to the fs_info rb tree for the block group
146 * cache
148 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
149 struct btrfs_block_group_cache *block_group)
151 struct rb_node **p;
152 struct rb_node *parent = NULL;
153 struct btrfs_block_group_cache *cache;
155 spin_lock(&info->block_group_cache_lock);
156 p = &info->block_group_cache_tree.rb_node;
158 while (*p) {
159 parent = *p;
160 cache = rb_entry(parent, struct btrfs_block_group_cache,
161 cache_node);
162 if (block_group->key.objectid < cache->key.objectid) {
163 p = &(*p)->rb_left;
164 } else if (block_group->key.objectid > cache->key.objectid) {
165 p = &(*p)->rb_right;
166 } else {
167 spin_unlock(&info->block_group_cache_lock);
168 return -EEXIST;
172 rb_link_node(&block_group->cache_node, parent, p);
173 rb_insert_color(&block_group->cache_node,
174 &info->block_group_cache_tree);
176 if (info->first_logical_byte > block_group->key.objectid)
177 info->first_logical_byte = block_group->key.objectid;
179 spin_unlock(&info->block_group_cache_lock);
181 return 0;
185 * This will return the block group at or after bytenr if contains is 0, else
186 * it will return the block group that contains the bytenr
188 static struct btrfs_block_group_cache *
189 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
190 int contains)
192 struct btrfs_block_group_cache *cache, *ret = NULL;
193 struct rb_node *n;
194 u64 end, start;
196 spin_lock(&info->block_group_cache_lock);
197 n = info->block_group_cache_tree.rb_node;
199 while (n) {
200 cache = rb_entry(n, struct btrfs_block_group_cache,
201 cache_node);
202 end = cache->key.objectid + cache->key.offset - 1;
203 start = cache->key.objectid;
205 if (bytenr < start) {
206 if (!contains && (!ret || start < ret->key.objectid))
207 ret = cache;
208 n = n->rb_left;
209 } else if (bytenr > start) {
210 if (contains && bytenr <= end) {
211 ret = cache;
212 break;
214 n = n->rb_right;
215 } else {
216 ret = cache;
217 break;
220 if (ret) {
221 btrfs_get_block_group(ret);
222 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
223 info->first_logical_byte = ret->key.objectid;
225 spin_unlock(&info->block_group_cache_lock);
227 return ret;
230 static int add_excluded_extent(struct btrfs_root *root,
231 u64 start, u64 num_bytes)
233 u64 end = start + num_bytes - 1;
234 set_extent_bits(&root->fs_info->freed_extents[0],
235 start, end, EXTENT_UPTODATE, GFP_NOFS);
236 set_extent_bits(&root->fs_info->freed_extents[1],
237 start, end, EXTENT_UPTODATE, GFP_NOFS);
238 return 0;
241 static void free_excluded_extents(struct btrfs_root *root,
242 struct btrfs_block_group_cache *cache)
244 u64 start, end;
246 start = cache->key.objectid;
247 end = start + cache->key.offset - 1;
249 clear_extent_bits(&root->fs_info->freed_extents[0],
250 start, end, EXTENT_UPTODATE, GFP_NOFS);
251 clear_extent_bits(&root->fs_info->freed_extents[1],
252 start, end, EXTENT_UPTODATE, GFP_NOFS);
255 static int exclude_super_stripes(struct btrfs_root *root,
256 struct btrfs_block_group_cache *cache)
258 u64 bytenr;
259 u64 *logical;
260 int stripe_len;
261 int i, nr, ret;
263 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
264 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
265 cache->bytes_super += stripe_len;
266 ret = add_excluded_extent(root, cache->key.objectid,
267 stripe_len);
268 if (ret)
269 return ret;
272 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
273 bytenr = btrfs_sb_offset(i);
274 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
275 cache->key.objectid, bytenr,
276 0, &logical, &nr, &stripe_len);
277 if (ret)
278 return ret;
280 while (nr--) {
281 u64 start, len;
283 if (logical[nr] > cache->key.objectid +
284 cache->key.offset)
285 continue;
287 if (logical[nr] + stripe_len <= cache->key.objectid)
288 continue;
290 start = logical[nr];
291 if (start < cache->key.objectid) {
292 start = cache->key.objectid;
293 len = (logical[nr] + stripe_len) - start;
294 } else {
295 len = min_t(u64, stripe_len,
296 cache->key.objectid +
297 cache->key.offset - start);
300 cache->bytes_super += len;
301 ret = add_excluded_extent(root, start, len);
302 if (ret) {
303 kfree(logical);
304 return ret;
308 kfree(logical);
310 return 0;
313 static struct btrfs_caching_control *
314 get_caching_control(struct btrfs_block_group_cache *cache)
316 struct btrfs_caching_control *ctl;
318 spin_lock(&cache->lock);
319 if (!cache->caching_ctl) {
320 spin_unlock(&cache->lock);
321 return NULL;
324 ctl = cache->caching_ctl;
325 atomic_inc(&ctl->count);
326 spin_unlock(&cache->lock);
327 return ctl;
330 static void put_caching_control(struct btrfs_caching_control *ctl)
332 if (atomic_dec_and_test(&ctl->count))
333 kfree(ctl);
337 * this is only called by cache_block_group, since we could have freed extents
338 * we need to check the pinned_extents for any extents that can't be used yet
339 * since their free space will be released as soon as the transaction commits.
341 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
342 struct btrfs_fs_info *info, u64 start, u64 end)
344 u64 extent_start, extent_end, size, total_added = 0;
345 int ret;
347 while (start < end) {
348 ret = find_first_extent_bit(info->pinned_extents, start,
349 &extent_start, &extent_end,
350 EXTENT_DIRTY | EXTENT_UPTODATE,
351 NULL);
352 if (ret)
353 break;
355 if (extent_start <= start) {
356 start = extent_end + 1;
357 } else if (extent_start > start && extent_start < end) {
358 size = extent_start - start;
359 total_added += size;
360 ret = btrfs_add_free_space(block_group, start,
361 size);
362 BUG_ON(ret); /* -ENOMEM or logic error */
363 start = extent_end + 1;
364 } else {
365 break;
369 if (start < end) {
370 size = end - start;
371 total_added += size;
372 ret = btrfs_add_free_space(block_group, start, size);
373 BUG_ON(ret); /* -ENOMEM or logic error */
376 return total_added;
379 static noinline void caching_thread(struct btrfs_work *work)
381 struct btrfs_block_group_cache *block_group;
382 struct btrfs_fs_info *fs_info;
383 struct btrfs_caching_control *caching_ctl;
384 struct btrfs_root *extent_root;
385 struct btrfs_path *path;
386 struct extent_buffer *leaf;
387 struct btrfs_key key;
388 u64 total_found = 0;
389 u64 last = 0;
390 u32 nritems;
391 int ret = -ENOMEM;
393 caching_ctl = container_of(work, struct btrfs_caching_control, work);
394 block_group = caching_ctl->block_group;
395 fs_info = block_group->fs_info;
396 extent_root = fs_info->extent_root;
398 path = btrfs_alloc_path();
399 if (!path)
400 goto out;
402 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
405 * We don't want to deadlock with somebody trying to allocate a new
406 * extent for the extent root while also trying to search the extent
407 * root to add free space. So we skip locking and search the commit
408 * root, since its read-only
410 path->skip_locking = 1;
411 path->search_commit_root = 1;
412 path->reada = 1;
414 key.objectid = last;
415 key.offset = 0;
416 key.type = BTRFS_EXTENT_ITEM_KEY;
417 again:
418 mutex_lock(&caching_ctl->mutex);
419 /* need to make sure the commit_root doesn't disappear */
420 down_read(&fs_info->commit_root_sem);
422 next:
423 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
424 if (ret < 0)
425 goto err;
427 leaf = path->nodes[0];
428 nritems = btrfs_header_nritems(leaf);
430 while (1) {
431 if (btrfs_fs_closing(fs_info) > 1) {
432 last = (u64)-1;
433 break;
436 if (path->slots[0] < nritems) {
437 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
438 } else {
439 ret = find_next_key(path, 0, &key);
440 if (ret)
441 break;
443 if (need_resched() ||
444 rwsem_is_contended(&fs_info->commit_root_sem)) {
445 caching_ctl->progress = last;
446 btrfs_release_path(path);
447 up_read(&fs_info->commit_root_sem);
448 mutex_unlock(&caching_ctl->mutex);
449 cond_resched();
450 goto again;
453 ret = btrfs_next_leaf(extent_root, path);
454 if (ret < 0)
455 goto err;
456 if (ret)
457 break;
458 leaf = path->nodes[0];
459 nritems = btrfs_header_nritems(leaf);
460 continue;
463 if (key.objectid < last) {
464 key.objectid = last;
465 key.offset = 0;
466 key.type = BTRFS_EXTENT_ITEM_KEY;
468 caching_ctl->progress = last;
469 btrfs_release_path(path);
470 goto next;
473 if (key.objectid < block_group->key.objectid) {
474 path->slots[0]++;
475 continue;
478 if (key.objectid >= block_group->key.objectid +
479 block_group->key.offset)
480 break;
482 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
483 key.type == BTRFS_METADATA_ITEM_KEY) {
484 total_found += add_new_free_space(block_group,
485 fs_info, last,
486 key.objectid);
487 if (key.type == BTRFS_METADATA_ITEM_KEY)
488 last = key.objectid +
489 fs_info->tree_root->nodesize;
490 else
491 last = key.objectid + key.offset;
493 if (total_found > (1024 * 1024 * 2)) {
494 total_found = 0;
495 wake_up(&caching_ctl->wait);
498 path->slots[0]++;
500 ret = 0;
502 total_found += add_new_free_space(block_group, fs_info, last,
503 block_group->key.objectid +
504 block_group->key.offset);
505 caching_ctl->progress = (u64)-1;
507 spin_lock(&block_group->lock);
508 block_group->caching_ctl = NULL;
509 block_group->cached = BTRFS_CACHE_FINISHED;
510 spin_unlock(&block_group->lock);
512 err:
513 btrfs_free_path(path);
514 up_read(&fs_info->commit_root_sem);
516 free_excluded_extents(extent_root, block_group);
518 mutex_unlock(&caching_ctl->mutex);
519 out:
520 if (ret) {
521 spin_lock(&block_group->lock);
522 block_group->caching_ctl = NULL;
523 block_group->cached = BTRFS_CACHE_ERROR;
524 spin_unlock(&block_group->lock);
526 wake_up(&caching_ctl->wait);
528 put_caching_control(caching_ctl);
529 btrfs_put_block_group(block_group);
532 static int cache_block_group(struct btrfs_block_group_cache *cache,
533 int load_cache_only)
535 DEFINE_WAIT(wait);
536 struct btrfs_fs_info *fs_info = cache->fs_info;
537 struct btrfs_caching_control *caching_ctl;
538 int ret = 0;
540 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
541 if (!caching_ctl)
542 return -ENOMEM;
544 INIT_LIST_HEAD(&caching_ctl->list);
545 mutex_init(&caching_ctl->mutex);
546 init_waitqueue_head(&caching_ctl->wait);
547 caching_ctl->block_group = cache;
548 caching_ctl->progress = cache->key.objectid;
549 atomic_set(&caching_ctl->count, 1);
550 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
551 caching_thread, NULL, NULL);
553 spin_lock(&cache->lock);
555 * This should be a rare occasion, but this could happen I think in the
556 * case where one thread starts to load the space cache info, and then
557 * some other thread starts a transaction commit which tries to do an
558 * allocation while the other thread is still loading the space cache
559 * info. The previous loop should have kept us from choosing this block
560 * group, but if we've moved to the state where we will wait on caching
561 * block groups we need to first check if we're doing a fast load here,
562 * so we can wait for it to finish, otherwise we could end up allocating
563 * from a block group who's cache gets evicted for one reason or
564 * another.
566 while (cache->cached == BTRFS_CACHE_FAST) {
567 struct btrfs_caching_control *ctl;
569 ctl = cache->caching_ctl;
570 atomic_inc(&ctl->count);
571 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
572 spin_unlock(&cache->lock);
574 schedule();
576 finish_wait(&ctl->wait, &wait);
577 put_caching_control(ctl);
578 spin_lock(&cache->lock);
581 if (cache->cached != BTRFS_CACHE_NO) {
582 spin_unlock(&cache->lock);
583 kfree(caching_ctl);
584 return 0;
586 WARN_ON(cache->caching_ctl);
587 cache->caching_ctl = caching_ctl;
588 cache->cached = BTRFS_CACHE_FAST;
589 spin_unlock(&cache->lock);
591 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
592 mutex_lock(&caching_ctl->mutex);
593 ret = load_free_space_cache(fs_info, cache);
595 spin_lock(&cache->lock);
596 if (ret == 1) {
597 cache->caching_ctl = NULL;
598 cache->cached = BTRFS_CACHE_FINISHED;
599 cache->last_byte_to_unpin = (u64)-1;
600 caching_ctl->progress = (u64)-1;
601 } else {
602 if (load_cache_only) {
603 cache->caching_ctl = NULL;
604 cache->cached = BTRFS_CACHE_NO;
605 } else {
606 cache->cached = BTRFS_CACHE_STARTED;
607 cache->has_caching_ctl = 1;
610 spin_unlock(&cache->lock);
611 mutex_unlock(&caching_ctl->mutex);
613 wake_up(&caching_ctl->wait);
614 if (ret == 1) {
615 put_caching_control(caching_ctl);
616 free_excluded_extents(fs_info->extent_root, cache);
617 return 0;
619 } else {
621 * We are not going to do the fast caching, set cached to the
622 * appropriate value and wakeup any waiters.
624 spin_lock(&cache->lock);
625 if (load_cache_only) {
626 cache->caching_ctl = NULL;
627 cache->cached = BTRFS_CACHE_NO;
628 } else {
629 cache->cached = BTRFS_CACHE_STARTED;
630 cache->has_caching_ctl = 1;
632 spin_unlock(&cache->lock);
633 wake_up(&caching_ctl->wait);
636 if (load_cache_only) {
637 put_caching_control(caching_ctl);
638 return 0;
641 down_write(&fs_info->commit_root_sem);
642 atomic_inc(&caching_ctl->count);
643 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
644 up_write(&fs_info->commit_root_sem);
646 btrfs_get_block_group(cache);
648 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
650 return ret;
654 * return the block group that starts at or after bytenr
656 static struct btrfs_block_group_cache *
657 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
659 struct btrfs_block_group_cache *cache;
661 cache = block_group_cache_tree_search(info, bytenr, 0);
663 return cache;
667 * return the block group that contains the given bytenr
669 struct btrfs_block_group_cache *btrfs_lookup_block_group(
670 struct btrfs_fs_info *info,
671 u64 bytenr)
673 struct btrfs_block_group_cache *cache;
675 cache = block_group_cache_tree_search(info, bytenr, 1);
677 return cache;
680 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
681 u64 flags)
683 struct list_head *head = &info->space_info;
684 struct btrfs_space_info *found;
686 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
688 rcu_read_lock();
689 list_for_each_entry_rcu(found, head, list) {
690 if (found->flags & flags) {
691 rcu_read_unlock();
692 return found;
695 rcu_read_unlock();
696 return NULL;
700 * after adding space to the filesystem, we need to clear the full flags
701 * on all the space infos.
703 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
705 struct list_head *head = &info->space_info;
706 struct btrfs_space_info *found;
708 rcu_read_lock();
709 list_for_each_entry_rcu(found, head, list)
710 found->full = 0;
711 rcu_read_unlock();
714 /* simple helper to search for an existing data extent at a given offset */
715 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
717 int ret;
718 struct btrfs_key key;
719 struct btrfs_path *path;
721 path = btrfs_alloc_path();
722 if (!path)
723 return -ENOMEM;
725 key.objectid = start;
726 key.offset = len;
727 key.type = BTRFS_EXTENT_ITEM_KEY;
728 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
729 0, 0);
730 btrfs_free_path(path);
731 return ret;
735 * helper function to lookup reference count and flags of a tree block.
737 * the head node for delayed ref is used to store the sum of all the
738 * reference count modifications queued up in the rbtree. the head
739 * node may also store the extent flags to set. This way you can check
740 * to see what the reference count and extent flags would be if all of
741 * the delayed refs are not processed.
743 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
744 struct btrfs_root *root, u64 bytenr,
745 u64 offset, int metadata, u64 *refs, u64 *flags)
747 struct btrfs_delayed_ref_head *head;
748 struct btrfs_delayed_ref_root *delayed_refs;
749 struct btrfs_path *path;
750 struct btrfs_extent_item *ei;
751 struct extent_buffer *leaf;
752 struct btrfs_key key;
753 u32 item_size;
754 u64 num_refs;
755 u64 extent_flags;
756 int ret;
759 * If we don't have skinny metadata, don't bother doing anything
760 * different
762 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
763 offset = root->nodesize;
764 metadata = 0;
767 path = btrfs_alloc_path();
768 if (!path)
769 return -ENOMEM;
771 if (!trans) {
772 path->skip_locking = 1;
773 path->search_commit_root = 1;
776 search_again:
777 key.objectid = bytenr;
778 key.offset = offset;
779 if (metadata)
780 key.type = BTRFS_METADATA_ITEM_KEY;
781 else
782 key.type = BTRFS_EXTENT_ITEM_KEY;
784 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
785 &key, path, 0, 0);
786 if (ret < 0)
787 goto out_free;
789 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
790 if (path->slots[0]) {
791 path->slots[0]--;
792 btrfs_item_key_to_cpu(path->nodes[0], &key,
793 path->slots[0]);
794 if (key.objectid == bytenr &&
795 key.type == BTRFS_EXTENT_ITEM_KEY &&
796 key.offset == root->nodesize)
797 ret = 0;
801 if (ret == 0) {
802 leaf = path->nodes[0];
803 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
804 if (item_size >= sizeof(*ei)) {
805 ei = btrfs_item_ptr(leaf, path->slots[0],
806 struct btrfs_extent_item);
807 num_refs = btrfs_extent_refs(leaf, ei);
808 extent_flags = btrfs_extent_flags(leaf, ei);
809 } else {
810 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
811 struct btrfs_extent_item_v0 *ei0;
812 BUG_ON(item_size != sizeof(*ei0));
813 ei0 = btrfs_item_ptr(leaf, path->slots[0],
814 struct btrfs_extent_item_v0);
815 num_refs = btrfs_extent_refs_v0(leaf, ei0);
816 /* FIXME: this isn't correct for data */
817 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
818 #else
819 BUG();
820 #endif
822 BUG_ON(num_refs == 0);
823 } else {
824 num_refs = 0;
825 extent_flags = 0;
826 ret = 0;
829 if (!trans)
830 goto out;
832 delayed_refs = &trans->transaction->delayed_refs;
833 spin_lock(&delayed_refs->lock);
834 head = btrfs_find_delayed_ref_head(trans, bytenr);
835 if (head) {
836 if (!mutex_trylock(&head->mutex)) {
837 atomic_inc(&head->node.refs);
838 spin_unlock(&delayed_refs->lock);
840 btrfs_release_path(path);
843 * Mutex was contended, block until it's released and try
844 * again
846 mutex_lock(&head->mutex);
847 mutex_unlock(&head->mutex);
848 btrfs_put_delayed_ref(&head->node);
849 goto search_again;
851 spin_lock(&head->lock);
852 if (head->extent_op && head->extent_op->update_flags)
853 extent_flags |= head->extent_op->flags_to_set;
854 else
855 BUG_ON(num_refs == 0);
857 num_refs += head->node.ref_mod;
858 spin_unlock(&head->lock);
859 mutex_unlock(&head->mutex);
861 spin_unlock(&delayed_refs->lock);
862 out:
863 WARN_ON(num_refs == 0);
864 if (refs)
865 *refs = num_refs;
866 if (flags)
867 *flags = extent_flags;
868 out_free:
869 btrfs_free_path(path);
870 return ret;
874 * Back reference rules. Back refs have three main goals:
876 * 1) differentiate between all holders of references to an extent so that
877 * when a reference is dropped we can make sure it was a valid reference
878 * before freeing the extent.
880 * 2) Provide enough information to quickly find the holders of an extent
881 * if we notice a given block is corrupted or bad.
883 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
884 * maintenance. This is actually the same as #2, but with a slightly
885 * different use case.
887 * There are two kinds of back refs. The implicit back refs is optimized
888 * for pointers in non-shared tree blocks. For a given pointer in a block,
889 * back refs of this kind provide information about the block's owner tree
890 * and the pointer's key. These information allow us to find the block by
891 * b-tree searching. The full back refs is for pointers in tree blocks not
892 * referenced by their owner trees. The location of tree block is recorded
893 * in the back refs. Actually the full back refs is generic, and can be
894 * used in all cases the implicit back refs is used. The major shortcoming
895 * of the full back refs is its overhead. Every time a tree block gets
896 * COWed, we have to update back refs entry for all pointers in it.
898 * For a newly allocated tree block, we use implicit back refs for
899 * pointers in it. This means most tree related operations only involve
900 * implicit back refs. For a tree block created in old transaction, the
901 * only way to drop a reference to it is COW it. So we can detect the
902 * event that tree block loses its owner tree's reference and do the
903 * back refs conversion.
905 * When a tree block is COW'd through a tree, there are four cases:
907 * The reference count of the block is one and the tree is the block's
908 * owner tree. Nothing to do in this case.
910 * The reference count of the block is one and the tree is not the
911 * block's owner tree. In this case, full back refs is used for pointers
912 * in the block. Remove these full back refs, add implicit back refs for
913 * every pointers in the new block.
915 * The reference count of the block is greater than one and the tree is
916 * the block's owner tree. In this case, implicit back refs is used for
917 * pointers in the block. Add full back refs for every pointers in the
918 * block, increase lower level extents' reference counts. The original
919 * implicit back refs are entailed to the new block.
921 * The reference count of the block is greater than one and the tree is
922 * not the block's owner tree. Add implicit back refs for every pointer in
923 * the new block, increase lower level extents' reference count.
925 * Back Reference Key composing:
927 * The key objectid corresponds to the first byte in the extent,
928 * The key type is used to differentiate between types of back refs.
929 * There are different meanings of the key offset for different types
930 * of back refs.
932 * File extents can be referenced by:
934 * - multiple snapshots, subvolumes, or different generations in one subvol
935 * - different files inside a single subvolume
936 * - different offsets inside a file (bookend extents in file.c)
938 * The extent ref structure for the implicit back refs has fields for:
940 * - Objectid of the subvolume root
941 * - objectid of the file holding the reference
942 * - original offset in the file
943 * - how many bookend extents
945 * The key offset for the implicit back refs is hash of the first
946 * three fields.
948 * The extent ref structure for the full back refs has field for:
950 * - number of pointers in the tree leaf
952 * The key offset for the implicit back refs is the first byte of
953 * the tree leaf
955 * When a file extent is allocated, The implicit back refs is used.
956 * the fields are filled in:
958 * (root_key.objectid, inode objectid, offset in file, 1)
960 * When a file extent is removed file truncation, we find the
961 * corresponding implicit back refs and check the following fields:
963 * (btrfs_header_owner(leaf), inode objectid, offset in file)
965 * Btree extents can be referenced by:
967 * - Different subvolumes
969 * Both the implicit back refs and the full back refs for tree blocks
970 * only consist of key. The key offset for the implicit back refs is
971 * objectid of block's owner tree. The key offset for the full back refs
972 * is the first byte of parent block.
974 * When implicit back refs is used, information about the lowest key and
975 * level of the tree block are required. These information are stored in
976 * tree block info structure.
979 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
980 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
981 struct btrfs_root *root,
982 struct btrfs_path *path,
983 u64 owner, u32 extra_size)
985 struct btrfs_extent_item *item;
986 struct btrfs_extent_item_v0 *ei0;
987 struct btrfs_extent_ref_v0 *ref0;
988 struct btrfs_tree_block_info *bi;
989 struct extent_buffer *leaf;
990 struct btrfs_key key;
991 struct btrfs_key found_key;
992 u32 new_size = sizeof(*item);
993 u64 refs;
994 int ret;
996 leaf = path->nodes[0];
997 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
999 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1000 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1001 struct btrfs_extent_item_v0);
1002 refs = btrfs_extent_refs_v0(leaf, ei0);
1004 if (owner == (u64)-1) {
1005 while (1) {
1006 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1007 ret = btrfs_next_leaf(root, path);
1008 if (ret < 0)
1009 return ret;
1010 BUG_ON(ret > 0); /* Corruption */
1011 leaf = path->nodes[0];
1013 btrfs_item_key_to_cpu(leaf, &found_key,
1014 path->slots[0]);
1015 BUG_ON(key.objectid != found_key.objectid);
1016 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1017 path->slots[0]++;
1018 continue;
1020 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1021 struct btrfs_extent_ref_v0);
1022 owner = btrfs_ref_objectid_v0(leaf, ref0);
1023 break;
1026 btrfs_release_path(path);
1028 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1029 new_size += sizeof(*bi);
1031 new_size -= sizeof(*ei0);
1032 ret = btrfs_search_slot(trans, root, &key, path,
1033 new_size + extra_size, 1);
1034 if (ret < 0)
1035 return ret;
1036 BUG_ON(ret); /* Corruption */
1038 btrfs_extend_item(root, path, new_size);
1040 leaf = path->nodes[0];
1041 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1042 btrfs_set_extent_refs(leaf, item, refs);
1043 /* FIXME: get real generation */
1044 btrfs_set_extent_generation(leaf, item, 0);
1045 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1046 btrfs_set_extent_flags(leaf, item,
1047 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1048 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1049 bi = (struct btrfs_tree_block_info *)(item + 1);
1050 /* FIXME: get first key of the block */
1051 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1052 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1053 } else {
1054 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1056 btrfs_mark_buffer_dirty(leaf);
1057 return 0;
1059 #endif
1061 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1063 u32 high_crc = ~(u32)0;
1064 u32 low_crc = ~(u32)0;
1065 __le64 lenum;
1067 lenum = cpu_to_le64(root_objectid);
1068 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1069 lenum = cpu_to_le64(owner);
1070 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1071 lenum = cpu_to_le64(offset);
1072 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1074 return ((u64)high_crc << 31) ^ (u64)low_crc;
1077 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1078 struct btrfs_extent_data_ref *ref)
1080 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1081 btrfs_extent_data_ref_objectid(leaf, ref),
1082 btrfs_extent_data_ref_offset(leaf, ref));
1085 static int match_extent_data_ref(struct extent_buffer *leaf,
1086 struct btrfs_extent_data_ref *ref,
1087 u64 root_objectid, u64 owner, u64 offset)
1089 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1090 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1091 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1092 return 0;
1093 return 1;
1096 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1097 struct btrfs_root *root,
1098 struct btrfs_path *path,
1099 u64 bytenr, u64 parent,
1100 u64 root_objectid,
1101 u64 owner, u64 offset)
1103 struct btrfs_key key;
1104 struct btrfs_extent_data_ref *ref;
1105 struct extent_buffer *leaf;
1106 u32 nritems;
1107 int ret;
1108 int recow;
1109 int err = -ENOENT;
1111 key.objectid = bytenr;
1112 if (parent) {
1113 key.type = BTRFS_SHARED_DATA_REF_KEY;
1114 key.offset = parent;
1115 } else {
1116 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1117 key.offset = hash_extent_data_ref(root_objectid,
1118 owner, offset);
1120 again:
1121 recow = 0;
1122 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1123 if (ret < 0) {
1124 err = ret;
1125 goto fail;
1128 if (parent) {
1129 if (!ret)
1130 return 0;
1131 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1132 key.type = BTRFS_EXTENT_REF_V0_KEY;
1133 btrfs_release_path(path);
1134 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1135 if (ret < 0) {
1136 err = ret;
1137 goto fail;
1139 if (!ret)
1140 return 0;
1141 #endif
1142 goto fail;
1145 leaf = path->nodes[0];
1146 nritems = btrfs_header_nritems(leaf);
1147 while (1) {
1148 if (path->slots[0] >= nritems) {
1149 ret = btrfs_next_leaf(root, path);
1150 if (ret < 0)
1151 err = ret;
1152 if (ret)
1153 goto fail;
1155 leaf = path->nodes[0];
1156 nritems = btrfs_header_nritems(leaf);
1157 recow = 1;
1160 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1161 if (key.objectid != bytenr ||
1162 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1163 goto fail;
1165 ref = btrfs_item_ptr(leaf, path->slots[0],
1166 struct btrfs_extent_data_ref);
1168 if (match_extent_data_ref(leaf, ref, root_objectid,
1169 owner, offset)) {
1170 if (recow) {
1171 btrfs_release_path(path);
1172 goto again;
1174 err = 0;
1175 break;
1177 path->slots[0]++;
1179 fail:
1180 return err;
1183 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1184 struct btrfs_root *root,
1185 struct btrfs_path *path,
1186 u64 bytenr, u64 parent,
1187 u64 root_objectid, u64 owner,
1188 u64 offset, int refs_to_add)
1190 struct btrfs_key key;
1191 struct extent_buffer *leaf;
1192 u32 size;
1193 u32 num_refs;
1194 int ret;
1196 key.objectid = bytenr;
1197 if (parent) {
1198 key.type = BTRFS_SHARED_DATA_REF_KEY;
1199 key.offset = parent;
1200 size = sizeof(struct btrfs_shared_data_ref);
1201 } else {
1202 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1203 key.offset = hash_extent_data_ref(root_objectid,
1204 owner, offset);
1205 size = sizeof(struct btrfs_extent_data_ref);
1208 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1209 if (ret && ret != -EEXIST)
1210 goto fail;
1212 leaf = path->nodes[0];
1213 if (parent) {
1214 struct btrfs_shared_data_ref *ref;
1215 ref = btrfs_item_ptr(leaf, path->slots[0],
1216 struct btrfs_shared_data_ref);
1217 if (ret == 0) {
1218 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1219 } else {
1220 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1221 num_refs += refs_to_add;
1222 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1224 } else {
1225 struct btrfs_extent_data_ref *ref;
1226 while (ret == -EEXIST) {
1227 ref = btrfs_item_ptr(leaf, path->slots[0],
1228 struct btrfs_extent_data_ref);
1229 if (match_extent_data_ref(leaf, ref, root_objectid,
1230 owner, offset))
1231 break;
1232 btrfs_release_path(path);
1233 key.offset++;
1234 ret = btrfs_insert_empty_item(trans, root, path, &key,
1235 size);
1236 if (ret && ret != -EEXIST)
1237 goto fail;
1239 leaf = path->nodes[0];
1241 ref = btrfs_item_ptr(leaf, path->slots[0],
1242 struct btrfs_extent_data_ref);
1243 if (ret == 0) {
1244 btrfs_set_extent_data_ref_root(leaf, ref,
1245 root_objectid);
1246 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1247 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1248 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1249 } else {
1250 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1251 num_refs += refs_to_add;
1252 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1255 btrfs_mark_buffer_dirty(leaf);
1256 ret = 0;
1257 fail:
1258 btrfs_release_path(path);
1259 return ret;
1262 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1263 struct btrfs_root *root,
1264 struct btrfs_path *path,
1265 int refs_to_drop, int *last_ref)
1267 struct btrfs_key key;
1268 struct btrfs_extent_data_ref *ref1 = NULL;
1269 struct btrfs_shared_data_ref *ref2 = NULL;
1270 struct extent_buffer *leaf;
1271 u32 num_refs = 0;
1272 int ret = 0;
1274 leaf = path->nodes[0];
1275 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1277 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1278 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1279 struct btrfs_extent_data_ref);
1280 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1281 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1282 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1283 struct btrfs_shared_data_ref);
1284 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1285 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1286 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1287 struct btrfs_extent_ref_v0 *ref0;
1288 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1289 struct btrfs_extent_ref_v0);
1290 num_refs = btrfs_ref_count_v0(leaf, ref0);
1291 #endif
1292 } else {
1293 BUG();
1296 BUG_ON(num_refs < refs_to_drop);
1297 num_refs -= refs_to_drop;
1299 if (num_refs == 0) {
1300 ret = btrfs_del_item(trans, root, path);
1301 *last_ref = 1;
1302 } else {
1303 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1304 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1305 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1306 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1307 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1308 else {
1309 struct btrfs_extent_ref_v0 *ref0;
1310 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1311 struct btrfs_extent_ref_v0);
1312 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1314 #endif
1315 btrfs_mark_buffer_dirty(leaf);
1317 return ret;
1320 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1321 struct btrfs_path *path,
1322 struct btrfs_extent_inline_ref *iref)
1324 struct btrfs_key key;
1325 struct extent_buffer *leaf;
1326 struct btrfs_extent_data_ref *ref1;
1327 struct btrfs_shared_data_ref *ref2;
1328 u32 num_refs = 0;
1330 leaf = path->nodes[0];
1331 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1332 if (iref) {
1333 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1334 BTRFS_EXTENT_DATA_REF_KEY) {
1335 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1336 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1337 } else {
1338 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1339 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1341 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1342 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1343 struct btrfs_extent_data_ref);
1344 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1345 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1346 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1347 struct btrfs_shared_data_ref);
1348 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1349 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1350 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1351 struct btrfs_extent_ref_v0 *ref0;
1352 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1353 struct btrfs_extent_ref_v0);
1354 num_refs = btrfs_ref_count_v0(leaf, ref0);
1355 #endif
1356 } else {
1357 WARN_ON(1);
1359 return num_refs;
1362 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1363 struct btrfs_root *root,
1364 struct btrfs_path *path,
1365 u64 bytenr, u64 parent,
1366 u64 root_objectid)
1368 struct btrfs_key key;
1369 int ret;
1371 key.objectid = bytenr;
1372 if (parent) {
1373 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1374 key.offset = parent;
1375 } else {
1376 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1377 key.offset = root_objectid;
1380 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1381 if (ret > 0)
1382 ret = -ENOENT;
1383 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1384 if (ret == -ENOENT && parent) {
1385 btrfs_release_path(path);
1386 key.type = BTRFS_EXTENT_REF_V0_KEY;
1387 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1388 if (ret > 0)
1389 ret = -ENOENT;
1391 #endif
1392 return ret;
1395 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1396 struct btrfs_root *root,
1397 struct btrfs_path *path,
1398 u64 bytenr, u64 parent,
1399 u64 root_objectid)
1401 struct btrfs_key key;
1402 int ret;
1404 key.objectid = bytenr;
1405 if (parent) {
1406 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1407 key.offset = parent;
1408 } else {
1409 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1410 key.offset = root_objectid;
1413 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1414 btrfs_release_path(path);
1415 return ret;
1418 static inline int extent_ref_type(u64 parent, u64 owner)
1420 int type;
1421 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1422 if (parent > 0)
1423 type = BTRFS_SHARED_BLOCK_REF_KEY;
1424 else
1425 type = BTRFS_TREE_BLOCK_REF_KEY;
1426 } else {
1427 if (parent > 0)
1428 type = BTRFS_SHARED_DATA_REF_KEY;
1429 else
1430 type = BTRFS_EXTENT_DATA_REF_KEY;
1432 return type;
1435 static int find_next_key(struct btrfs_path *path, int level,
1436 struct btrfs_key *key)
1439 for (; level < BTRFS_MAX_LEVEL; level++) {
1440 if (!path->nodes[level])
1441 break;
1442 if (path->slots[level] + 1 >=
1443 btrfs_header_nritems(path->nodes[level]))
1444 continue;
1445 if (level == 0)
1446 btrfs_item_key_to_cpu(path->nodes[level], key,
1447 path->slots[level] + 1);
1448 else
1449 btrfs_node_key_to_cpu(path->nodes[level], key,
1450 path->slots[level] + 1);
1451 return 0;
1453 return 1;
1457 * look for inline back ref. if back ref is found, *ref_ret is set
1458 * to the address of inline back ref, and 0 is returned.
1460 * if back ref isn't found, *ref_ret is set to the address where it
1461 * should be inserted, and -ENOENT is returned.
1463 * if insert is true and there are too many inline back refs, the path
1464 * points to the extent item, and -EAGAIN is returned.
1466 * NOTE: inline back refs are ordered in the same way that back ref
1467 * items in the tree are ordered.
1469 static noinline_for_stack
1470 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1471 struct btrfs_root *root,
1472 struct btrfs_path *path,
1473 struct btrfs_extent_inline_ref **ref_ret,
1474 u64 bytenr, u64 num_bytes,
1475 u64 parent, u64 root_objectid,
1476 u64 owner, u64 offset, int insert)
1478 struct btrfs_key key;
1479 struct extent_buffer *leaf;
1480 struct btrfs_extent_item *ei;
1481 struct btrfs_extent_inline_ref *iref;
1482 u64 flags;
1483 u64 item_size;
1484 unsigned long ptr;
1485 unsigned long end;
1486 int extra_size;
1487 int type;
1488 int want;
1489 int ret;
1490 int err = 0;
1491 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1492 SKINNY_METADATA);
1494 key.objectid = bytenr;
1495 key.type = BTRFS_EXTENT_ITEM_KEY;
1496 key.offset = num_bytes;
1498 want = extent_ref_type(parent, owner);
1499 if (insert) {
1500 extra_size = btrfs_extent_inline_ref_size(want);
1501 path->keep_locks = 1;
1502 } else
1503 extra_size = -1;
1506 * Owner is our parent level, so we can just add one to get the level
1507 * for the block we are interested in.
1509 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1510 key.type = BTRFS_METADATA_ITEM_KEY;
1511 key.offset = owner;
1514 again:
1515 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1516 if (ret < 0) {
1517 err = ret;
1518 goto out;
1522 * We may be a newly converted file system which still has the old fat
1523 * extent entries for metadata, so try and see if we have one of those.
1525 if (ret > 0 && skinny_metadata) {
1526 skinny_metadata = false;
1527 if (path->slots[0]) {
1528 path->slots[0]--;
1529 btrfs_item_key_to_cpu(path->nodes[0], &key,
1530 path->slots[0]);
1531 if (key.objectid == bytenr &&
1532 key.type == BTRFS_EXTENT_ITEM_KEY &&
1533 key.offset == num_bytes)
1534 ret = 0;
1536 if (ret) {
1537 key.objectid = bytenr;
1538 key.type = BTRFS_EXTENT_ITEM_KEY;
1539 key.offset = num_bytes;
1540 btrfs_release_path(path);
1541 goto again;
1545 if (ret && !insert) {
1546 err = -ENOENT;
1547 goto out;
1548 } else if (WARN_ON(ret)) {
1549 err = -EIO;
1550 goto out;
1553 leaf = path->nodes[0];
1554 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1555 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1556 if (item_size < sizeof(*ei)) {
1557 if (!insert) {
1558 err = -ENOENT;
1559 goto out;
1561 ret = convert_extent_item_v0(trans, root, path, owner,
1562 extra_size);
1563 if (ret < 0) {
1564 err = ret;
1565 goto out;
1567 leaf = path->nodes[0];
1568 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1570 #endif
1571 BUG_ON(item_size < sizeof(*ei));
1573 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1574 flags = btrfs_extent_flags(leaf, ei);
1576 ptr = (unsigned long)(ei + 1);
1577 end = (unsigned long)ei + item_size;
1579 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1580 ptr += sizeof(struct btrfs_tree_block_info);
1581 BUG_ON(ptr > end);
1584 err = -ENOENT;
1585 while (1) {
1586 if (ptr >= end) {
1587 WARN_ON(ptr > end);
1588 break;
1590 iref = (struct btrfs_extent_inline_ref *)ptr;
1591 type = btrfs_extent_inline_ref_type(leaf, iref);
1592 if (want < type)
1593 break;
1594 if (want > type) {
1595 ptr += btrfs_extent_inline_ref_size(type);
1596 continue;
1599 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1600 struct btrfs_extent_data_ref *dref;
1601 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1602 if (match_extent_data_ref(leaf, dref, root_objectid,
1603 owner, offset)) {
1604 err = 0;
1605 break;
1607 if (hash_extent_data_ref_item(leaf, dref) <
1608 hash_extent_data_ref(root_objectid, owner, offset))
1609 break;
1610 } else {
1611 u64 ref_offset;
1612 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1613 if (parent > 0) {
1614 if (parent == ref_offset) {
1615 err = 0;
1616 break;
1618 if (ref_offset < parent)
1619 break;
1620 } else {
1621 if (root_objectid == ref_offset) {
1622 err = 0;
1623 break;
1625 if (ref_offset < root_objectid)
1626 break;
1629 ptr += btrfs_extent_inline_ref_size(type);
1631 if (err == -ENOENT && insert) {
1632 if (item_size + extra_size >=
1633 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1634 err = -EAGAIN;
1635 goto out;
1638 * To add new inline back ref, we have to make sure
1639 * there is no corresponding back ref item.
1640 * For simplicity, we just do not add new inline back
1641 * ref if there is any kind of item for this block
1643 if (find_next_key(path, 0, &key) == 0 &&
1644 key.objectid == bytenr &&
1645 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1646 err = -EAGAIN;
1647 goto out;
1650 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1651 out:
1652 if (insert) {
1653 path->keep_locks = 0;
1654 btrfs_unlock_up_safe(path, 1);
1656 return err;
1660 * helper to add new inline back ref
1662 static noinline_for_stack
1663 void setup_inline_extent_backref(struct btrfs_root *root,
1664 struct btrfs_path *path,
1665 struct btrfs_extent_inline_ref *iref,
1666 u64 parent, u64 root_objectid,
1667 u64 owner, u64 offset, int refs_to_add,
1668 struct btrfs_delayed_extent_op *extent_op)
1670 struct extent_buffer *leaf;
1671 struct btrfs_extent_item *ei;
1672 unsigned long ptr;
1673 unsigned long end;
1674 unsigned long item_offset;
1675 u64 refs;
1676 int size;
1677 int type;
1679 leaf = path->nodes[0];
1680 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1681 item_offset = (unsigned long)iref - (unsigned long)ei;
1683 type = extent_ref_type(parent, owner);
1684 size = btrfs_extent_inline_ref_size(type);
1686 btrfs_extend_item(root, path, size);
1688 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1689 refs = btrfs_extent_refs(leaf, ei);
1690 refs += refs_to_add;
1691 btrfs_set_extent_refs(leaf, ei, refs);
1692 if (extent_op)
1693 __run_delayed_extent_op(extent_op, leaf, ei);
1695 ptr = (unsigned long)ei + item_offset;
1696 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1697 if (ptr < end - size)
1698 memmove_extent_buffer(leaf, ptr + size, ptr,
1699 end - size - ptr);
1701 iref = (struct btrfs_extent_inline_ref *)ptr;
1702 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1703 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1704 struct btrfs_extent_data_ref *dref;
1705 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1706 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1707 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1708 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1709 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1710 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1711 struct btrfs_shared_data_ref *sref;
1712 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1713 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1714 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1715 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1716 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1717 } else {
1718 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1720 btrfs_mark_buffer_dirty(leaf);
1723 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1724 struct btrfs_root *root,
1725 struct btrfs_path *path,
1726 struct btrfs_extent_inline_ref **ref_ret,
1727 u64 bytenr, u64 num_bytes, u64 parent,
1728 u64 root_objectid, u64 owner, u64 offset)
1730 int ret;
1732 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1733 bytenr, num_bytes, parent,
1734 root_objectid, owner, offset, 0);
1735 if (ret != -ENOENT)
1736 return ret;
1738 btrfs_release_path(path);
1739 *ref_ret = NULL;
1741 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1742 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1743 root_objectid);
1744 } else {
1745 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1746 root_objectid, owner, offset);
1748 return ret;
1752 * helper to update/remove inline back ref
1754 static noinline_for_stack
1755 void update_inline_extent_backref(struct btrfs_root *root,
1756 struct btrfs_path *path,
1757 struct btrfs_extent_inline_ref *iref,
1758 int refs_to_mod,
1759 struct btrfs_delayed_extent_op *extent_op,
1760 int *last_ref)
1762 struct extent_buffer *leaf;
1763 struct btrfs_extent_item *ei;
1764 struct btrfs_extent_data_ref *dref = NULL;
1765 struct btrfs_shared_data_ref *sref = NULL;
1766 unsigned long ptr;
1767 unsigned long end;
1768 u32 item_size;
1769 int size;
1770 int type;
1771 u64 refs;
1773 leaf = path->nodes[0];
1774 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1775 refs = btrfs_extent_refs(leaf, ei);
1776 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1777 refs += refs_to_mod;
1778 btrfs_set_extent_refs(leaf, ei, refs);
1779 if (extent_op)
1780 __run_delayed_extent_op(extent_op, leaf, ei);
1782 type = btrfs_extent_inline_ref_type(leaf, iref);
1784 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1785 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1786 refs = btrfs_extent_data_ref_count(leaf, dref);
1787 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1788 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1789 refs = btrfs_shared_data_ref_count(leaf, sref);
1790 } else {
1791 refs = 1;
1792 BUG_ON(refs_to_mod != -1);
1795 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1796 refs += refs_to_mod;
1798 if (refs > 0) {
1799 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1800 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1801 else
1802 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1803 } else {
1804 *last_ref = 1;
1805 size = btrfs_extent_inline_ref_size(type);
1806 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1807 ptr = (unsigned long)iref;
1808 end = (unsigned long)ei + item_size;
1809 if (ptr + size < end)
1810 memmove_extent_buffer(leaf, ptr, ptr + size,
1811 end - ptr - size);
1812 item_size -= size;
1813 btrfs_truncate_item(root, path, item_size, 1);
1815 btrfs_mark_buffer_dirty(leaf);
1818 static noinline_for_stack
1819 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1820 struct btrfs_root *root,
1821 struct btrfs_path *path,
1822 u64 bytenr, u64 num_bytes, u64 parent,
1823 u64 root_objectid, u64 owner,
1824 u64 offset, int refs_to_add,
1825 struct btrfs_delayed_extent_op *extent_op)
1827 struct btrfs_extent_inline_ref *iref;
1828 int ret;
1830 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1831 bytenr, num_bytes, parent,
1832 root_objectid, owner, offset, 1);
1833 if (ret == 0) {
1834 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1835 update_inline_extent_backref(root, path, iref,
1836 refs_to_add, extent_op, NULL);
1837 } else if (ret == -ENOENT) {
1838 setup_inline_extent_backref(root, path, iref, parent,
1839 root_objectid, owner, offset,
1840 refs_to_add, extent_op);
1841 ret = 0;
1843 return ret;
1846 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1847 struct btrfs_root *root,
1848 struct btrfs_path *path,
1849 u64 bytenr, u64 parent, u64 root_objectid,
1850 u64 owner, u64 offset, int refs_to_add)
1852 int ret;
1853 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1854 BUG_ON(refs_to_add != 1);
1855 ret = insert_tree_block_ref(trans, root, path, bytenr,
1856 parent, root_objectid);
1857 } else {
1858 ret = insert_extent_data_ref(trans, root, path, bytenr,
1859 parent, root_objectid,
1860 owner, offset, refs_to_add);
1862 return ret;
1865 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1866 struct btrfs_root *root,
1867 struct btrfs_path *path,
1868 struct btrfs_extent_inline_ref *iref,
1869 int refs_to_drop, int is_data, int *last_ref)
1871 int ret = 0;
1873 BUG_ON(!is_data && refs_to_drop != 1);
1874 if (iref) {
1875 update_inline_extent_backref(root, path, iref,
1876 -refs_to_drop, NULL, last_ref);
1877 } else if (is_data) {
1878 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1879 last_ref);
1880 } else {
1881 *last_ref = 1;
1882 ret = btrfs_del_item(trans, root, path);
1884 return ret;
1887 static int btrfs_issue_discard(struct block_device *bdev,
1888 u64 start, u64 len)
1890 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1893 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1894 u64 num_bytes, u64 *actual_bytes)
1896 int ret;
1897 u64 discarded_bytes = 0;
1898 struct btrfs_bio *bbio = NULL;
1901 /* Tell the block device(s) that the sectors can be discarded */
1902 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1903 bytenr, &num_bytes, &bbio, 0);
1904 /* Error condition is -ENOMEM */
1905 if (!ret) {
1906 struct btrfs_bio_stripe *stripe = bbio->stripes;
1907 int i;
1910 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1911 if (!stripe->dev->can_discard)
1912 continue;
1914 ret = btrfs_issue_discard(stripe->dev->bdev,
1915 stripe->physical,
1916 stripe->length);
1917 if (!ret)
1918 discarded_bytes += stripe->length;
1919 else if (ret != -EOPNOTSUPP)
1920 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1923 * Just in case we get back EOPNOTSUPP for some reason,
1924 * just ignore the return value so we don't screw up
1925 * people calling discard_extent.
1927 ret = 0;
1929 btrfs_put_bbio(bbio);
1932 if (actual_bytes)
1933 *actual_bytes = discarded_bytes;
1936 if (ret == -EOPNOTSUPP)
1937 ret = 0;
1938 return ret;
1941 /* Can return -ENOMEM */
1942 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1943 struct btrfs_root *root,
1944 u64 bytenr, u64 num_bytes, u64 parent,
1945 u64 root_objectid, u64 owner, u64 offset,
1946 int no_quota)
1948 int ret;
1949 struct btrfs_fs_info *fs_info = root->fs_info;
1951 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1952 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1954 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1955 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1956 num_bytes,
1957 parent, root_objectid, (int)owner,
1958 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1959 } else {
1960 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1961 num_bytes,
1962 parent, root_objectid, owner, offset,
1963 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1965 return ret;
1968 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1969 struct btrfs_root *root,
1970 u64 bytenr, u64 num_bytes,
1971 u64 parent, u64 root_objectid,
1972 u64 owner, u64 offset, int refs_to_add,
1973 int no_quota,
1974 struct btrfs_delayed_extent_op *extent_op)
1976 struct btrfs_fs_info *fs_info = root->fs_info;
1977 struct btrfs_path *path;
1978 struct extent_buffer *leaf;
1979 struct btrfs_extent_item *item;
1980 struct btrfs_key key;
1981 u64 refs;
1982 int ret;
1983 enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_ADD_EXCL;
1985 path = btrfs_alloc_path();
1986 if (!path)
1987 return -ENOMEM;
1989 if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled)
1990 no_quota = 1;
1992 path->reada = 1;
1993 path->leave_spinning = 1;
1994 /* this will setup the path even if it fails to insert the back ref */
1995 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
1996 bytenr, num_bytes, parent,
1997 root_objectid, owner, offset,
1998 refs_to_add, extent_op);
1999 if ((ret < 0 && ret != -EAGAIN) || (!ret && no_quota))
2000 goto out;
2002 * Ok we were able to insert an inline extent and it appears to be a new
2003 * reference, deal with the qgroup accounting.
2005 if (!ret && !no_quota) {
2006 ASSERT(root->fs_info->quota_enabled);
2007 leaf = path->nodes[0];
2008 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2009 item = btrfs_item_ptr(leaf, path->slots[0],
2010 struct btrfs_extent_item);
2011 if (btrfs_extent_refs(leaf, item) > (u64)refs_to_add)
2012 type = BTRFS_QGROUP_OPER_ADD_SHARED;
2013 btrfs_release_path(path);
2015 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2016 bytenr, num_bytes, type, 0);
2017 goto out;
2021 * Ok we had -EAGAIN which means we didn't have space to insert and
2022 * inline extent ref, so just update the reference count and add a
2023 * normal backref.
2025 leaf = path->nodes[0];
2026 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2027 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2028 refs = btrfs_extent_refs(leaf, item);
2029 if (refs)
2030 type = BTRFS_QGROUP_OPER_ADD_SHARED;
2031 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2032 if (extent_op)
2033 __run_delayed_extent_op(extent_op, leaf, item);
2035 btrfs_mark_buffer_dirty(leaf);
2036 btrfs_release_path(path);
2038 if (!no_quota) {
2039 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2040 bytenr, num_bytes, type, 0);
2041 if (ret)
2042 goto out;
2045 path->reada = 1;
2046 path->leave_spinning = 1;
2047 /* now insert the actual backref */
2048 ret = insert_extent_backref(trans, root->fs_info->extent_root,
2049 path, bytenr, parent, root_objectid,
2050 owner, offset, refs_to_add);
2051 if (ret)
2052 btrfs_abort_transaction(trans, root, ret);
2053 out:
2054 btrfs_free_path(path);
2055 return ret;
2058 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2059 struct btrfs_root *root,
2060 struct btrfs_delayed_ref_node *node,
2061 struct btrfs_delayed_extent_op *extent_op,
2062 int insert_reserved)
2064 int ret = 0;
2065 struct btrfs_delayed_data_ref *ref;
2066 struct btrfs_key ins;
2067 u64 parent = 0;
2068 u64 ref_root = 0;
2069 u64 flags = 0;
2071 ins.objectid = node->bytenr;
2072 ins.offset = node->num_bytes;
2073 ins.type = BTRFS_EXTENT_ITEM_KEY;
2075 ref = btrfs_delayed_node_to_data_ref(node);
2076 trace_run_delayed_data_ref(node, ref, node->action);
2078 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2079 parent = ref->parent;
2080 ref_root = ref->root;
2082 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2083 if (extent_op)
2084 flags |= extent_op->flags_to_set;
2085 ret = alloc_reserved_file_extent(trans, root,
2086 parent, ref_root, flags,
2087 ref->objectid, ref->offset,
2088 &ins, node->ref_mod);
2089 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2090 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2091 node->num_bytes, parent,
2092 ref_root, ref->objectid,
2093 ref->offset, node->ref_mod,
2094 node->no_quota, extent_op);
2095 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2096 ret = __btrfs_free_extent(trans, root, node->bytenr,
2097 node->num_bytes, parent,
2098 ref_root, ref->objectid,
2099 ref->offset, node->ref_mod,
2100 extent_op, node->no_quota);
2101 } else {
2102 BUG();
2104 return ret;
2107 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2108 struct extent_buffer *leaf,
2109 struct btrfs_extent_item *ei)
2111 u64 flags = btrfs_extent_flags(leaf, ei);
2112 if (extent_op->update_flags) {
2113 flags |= extent_op->flags_to_set;
2114 btrfs_set_extent_flags(leaf, ei, flags);
2117 if (extent_op->update_key) {
2118 struct btrfs_tree_block_info *bi;
2119 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2120 bi = (struct btrfs_tree_block_info *)(ei + 1);
2121 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2125 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2126 struct btrfs_root *root,
2127 struct btrfs_delayed_ref_node *node,
2128 struct btrfs_delayed_extent_op *extent_op)
2130 struct btrfs_key key;
2131 struct btrfs_path *path;
2132 struct btrfs_extent_item *ei;
2133 struct extent_buffer *leaf;
2134 u32 item_size;
2135 int ret;
2136 int err = 0;
2137 int metadata = !extent_op->is_data;
2139 if (trans->aborted)
2140 return 0;
2142 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2143 metadata = 0;
2145 path = btrfs_alloc_path();
2146 if (!path)
2147 return -ENOMEM;
2149 key.objectid = node->bytenr;
2151 if (metadata) {
2152 key.type = BTRFS_METADATA_ITEM_KEY;
2153 key.offset = extent_op->level;
2154 } else {
2155 key.type = BTRFS_EXTENT_ITEM_KEY;
2156 key.offset = node->num_bytes;
2159 again:
2160 path->reada = 1;
2161 path->leave_spinning = 1;
2162 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2163 path, 0, 1);
2164 if (ret < 0) {
2165 err = ret;
2166 goto out;
2168 if (ret > 0) {
2169 if (metadata) {
2170 if (path->slots[0] > 0) {
2171 path->slots[0]--;
2172 btrfs_item_key_to_cpu(path->nodes[0], &key,
2173 path->slots[0]);
2174 if (key.objectid == node->bytenr &&
2175 key.type == BTRFS_EXTENT_ITEM_KEY &&
2176 key.offset == node->num_bytes)
2177 ret = 0;
2179 if (ret > 0) {
2180 btrfs_release_path(path);
2181 metadata = 0;
2183 key.objectid = node->bytenr;
2184 key.offset = node->num_bytes;
2185 key.type = BTRFS_EXTENT_ITEM_KEY;
2186 goto again;
2188 } else {
2189 err = -EIO;
2190 goto out;
2194 leaf = path->nodes[0];
2195 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2196 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2197 if (item_size < sizeof(*ei)) {
2198 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2199 path, (u64)-1, 0);
2200 if (ret < 0) {
2201 err = ret;
2202 goto out;
2204 leaf = path->nodes[0];
2205 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2207 #endif
2208 BUG_ON(item_size < sizeof(*ei));
2209 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2210 __run_delayed_extent_op(extent_op, leaf, ei);
2212 btrfs_mark_buffer_dirty(leaf);
2213 out:
2214 btrfs_free_path(path);
2215 return err;
2218 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2219 struct btrfs_root *root,
2220 struct btrfs_delayed_ref_node *node,
2221 struct btrfs_delayed_extent_op *extent_op,
2222 int insert_reserved)
2224 int ret = 0;
2225 struct btrfs_delayed_tree_ref *ref;
2226 struct btrfs_key ins;
2227 u64 parent = 0;
2228 u64 ref_root = 0;
2229 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2230 SKINNY_METADATA);
2232 ref = btrfs_delayed_node_to_tree_ref(node);
2233 trace_run_delayed_tree_ref(node, ref, node->action);
2235 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2236 parent = ref->parent;
2237 ref_root = ref->root;
2239 ins.objectid = node->bytenr;
2240 if (skinny_metadata) {
2241 ins.offset = ref->level;
2242 ins.type = BTRFS_METADATA_ITEM_KEY;
2243 } else {
2244 ins.offset = node->num_bytes;
2245 ins.type = BTRFS_EXTENT_ITEM_KEY;
2248 BUG_ON(node->ref_mod != 1);
2249 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2250 BUG_ON(!extent_op || !extent_op->update_flags);
2251 ret = alloc_reserved_tree_block(trans, root,
2252 parent, ref_root,
2253 extent_op->flags_to_set,
2254 &extent_op->key,
2255 ref->level, &ins,
2256 node->no_quota);
2257 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2258 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2259 node->num_bytes, parent, ref_root,
2260 ref->level, 0, 1, node->no_quota,
2261 extent_op);
2262 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2263 ret = __btrfs_free_extent(trans, root, node->bytenr,
2264 node->num_bytes, parent, ref_root,
2265 ref->level, 0, 1, extent_op,
2266 node->no_quota);
2267 } else {
2268 BUG();
2270 return ret;
2273 /* helper function to actually process a single delayed ref entry */
2274 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2275 struct btrfs_root *root,
2276 struct btrfs_delayed_ref_node *node,
2277 struct btrfs_delayed_extent_op *extent_op,
2278 int insert_reserved)
2280 int ret = 0;
2282 if (trans->aborted) {
2283 if (insert_reserved)
2284 btrfs_pin_extent(root, node->bytenr,
2285 node->num_bytes, 1);
2286 return 0;
2289 if (btrfs_delayed_ref_is_head(node)) {
2290 struct btrfs_delayed_ref_head *head;
2292 * we've hit the end of the chain and we were supposed
2293 * to insert this extent into the tree. But, it got
2294 * deleted before we ever needed to insert it, so all
2295 * we have to do is clean up the accounting
2297 BUG_ON(extent_op);
2298 head = btrfs_delayed_node_to_head(node);
2299 trace_run_delayed_ref_head(node, head, node->action);
2301 if (insert_reserved) {
2302 btrfs_pin_extent(root, node->bytenr,
2303 node->num_bytes, 1);
2304 if (head->is_data) {
2305 ret = btrfs_del_csums(trans, root,
2306 node->bytenr,
2307 node->num_bytes);
2310 return ret;
2313 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2314 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2315 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2316 insert_reserved);
2317 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2318 node->type == BTRFS_SHARED_DATA_REF_KEY)
2319 ret = run_delayed_data_ref(trans, root, node, extent_op,
2320 insert_reserved);
2321 else
2322 BUG();
2323 return ret;
2326 static noinline struct btrfs_delayed_ref_node *
2327 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2329 struct rb_node *node;
2330 struct btrfs_delayed_ref_node *ref, *last = NULL;;
2333 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2334 * this prevents ref count from going down to zero when
2335 * there still are pending delayed ref.
2337 node = rb_first(&head->ref_root);
2338 while (node) {
2339 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2340 rb_node);
2341 if (ref->action == BTRFS_ADD_DELAYED_REF)
2342 return ref;
2343 else if (last == NULL)
2344 last = ref;
2345 node = rb_next(node);
2347 return last;
2351 * Returns 0 on success or if called with an already aborted transaction.
2352 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2354 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2355 struct btrfs_root *root,
2356 unsigned long nr)
2358 struct btrfs_delayed_ref_root *delayed_refs;
2359 struct btrfs_delayed_ref_node *ref;
2360 struct btrfs_delayed_ref_head *locked_ref = NULL;
2361 struct btrfs_delayed_extent_op *extent_op;
2362 struct btrfs_fs_info *fs_info = root->fs_info;
2363 ktime_t start = ktime_get();
2364 int ret;
2365 unsigned long count = 0;
2366 unsigned long actual_count = 0;
2367 int must_insert_reserved = 0;
2369 delayed_refs = &trans->transaction->delayed_refs;
2370 while (1) {
2371 if (!locked_ref) {
2372 if (count >= nr)
2373 break;
2375 spin_lock(&delayed_refs->lock);
2376 locked_ref = btrfs_select_ref_head(trans);
2377 if (!locked_ref) {
2378 spin_unlock(&delayed_refs->lock);
2379 break;
2382 /* grab the lock that says we are going to process
2383 * all the refs for this head */
2384 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2385 spin_unlock(&delayed_refs->lock);
2387 * we may have dropped the spin lock to get the head
2388 * mutex lock, and that might have given someone else
2389 * time to free the head. If that's true, it has been
2390 * removed from our list and we can move on.
2392 if (ret == -EAGAIN) {
2393 locked_ref = NULL;
2394 count++;
2395 continue;
2400 * We need to try and merge add/drops of the same ref since we
2401 * can run into issues with relocate dropping the implicit ref
2402 * and then it being added back again before the drop can
2403 * finish. If we merged anything we need to re-loop so we can
2404 * get a good ref.
2406 spin_lock(&locked_ref->lock);
2407 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2408 locked_ref);
2411 * locked_ref is the head node, so we have to go one
2412 * node back for any delayed ref updates
2414 ref = select_delayed_ref(locked_ref);
2416 if (ref && ref->seq &&
2417 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2418 spin_unlock(&locked_ref->lock);
2419 btrfs_delayed_ref_unlock(locked_ref);
2420 spin_lock(&delayed_refs->lock);
2421 locked_ref->processing = 0;
2422 delayed_refs->num_heads_ready++;
2423 spin_unlock(&delayed_refs->lock);
2424 locked_ref = NULL;
2425 cond_resched();
2426 count++;
2427 continue;
2431 * record the must insert reserved flag before we
2432 * drop the spin lock.
2434 must_insert_reserved = locked_ref->must_insert_reserved;
2435 locked_ref->must_insert_reserved = 0;
2437 extent_op = locked_ref->extent_op;
2438 locked_ref->extent_op = NULL;
2440 if (!ref) {
2443 /* All delayed refs have been processed, Go ahead
2444 * and send the head node to run_one_delayed_ref,
2445 * so that any accounting fixes can happen
2447 ref = &locked_ref->node;
2449 if (extent_op && must_insert_reserved) {
2450 btrfs_free_delayed_extent_op(extent_op);
2451 extent_op = NULL;
2454 if (extent_op) {
2455 spin_unlock(&locked_ref->lock);
2456 ret = run_delayed_extent_op(trans, root,
2457 ref, extent_op);
2458 btrfs_free_delayed_extent_op(extent_op);
2460 if (ret) {
2462 * Need to reset must_insert_reserved if
2463 * there was an error so the abort stuff
2464 * can cleanup the reserved space
2465 * properly.
2467 if (must_insert_reserved)
2468 locked_ref->must_insert_reserved = 1;
2469 locked_ref->processing = 0;
2470 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2471 btrfs_delayed_ref_unlock(locked_ref);
2472 return ret;
2474 continue;
2478 * Need to drop our head ref lock and re-aqcuire the
2479 * delayed ref lock and then re-check to make sure
2480 * nobody got added.
2482 spin_unlock(&locked_ref->lock);
2483 spin_lock(&delayed_refs->lock);
2484 spin_lock(&locked_ref->lock);
2485 if (rb_first(&locked_ref->ref_root) ||
2486 locked_ref->extent_op) {
2487 spin_unlock(&locked_ref->lock);
2488 spin_unlock(&delayed_refs->lock);
2489 continue;
2491 ref->in_tree = 0;
2492 delayed_refs->num_heads--;
2493 rb_erase(&locked_ref->href_node,
2494 &delayed_refs->href_root);
2495 spin_unlock(&delayed_refs->lock);
2496 } else {
2497 actual_count++;
2498 ref->in_tree = 0;
2499 rb_erase(&ref->rb_node, &locked_ref->ref_root);
2501 atomic_dec(&delayed_refs->num_entries);
2503 if (!btrfs_delayed_ref_is_head(ref)) {
2505 * when we play the delayed ref, also correct the
2506 * ref_mod on head
2508 switch (ref->action) {
2509 case BTRFS_ADD_DELAYED_REF:
2510 case BTRFS_ADD_DELAYED_EXTENT:
2511 locked_ref->node.ref_mod -= ref->ref_mod;
2512 break;
2513 case BTRFS_DROP_DELAYED_REF:
2514 locked_ref->node.ref_mod += ref->ref_mod;
2515 break;
2516 default:
2517 WARN_ON(1);
2520 spin_unlock(&locked_ref->lock);
2522 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2523 must_insert_reserved);
2525 btrfs_free_delayed_extent_op(extent_op);
2526 if (ret) {
2527 locked_ref->processing = 0;
2528 btrfs_delayed_ref_unlock(locked_ref);
2529 btrfs_put_delayed_ref(ref);
2530 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2531 return ret;
2535 * If this node is a head, that means all the refs in this head
2536 * have been dealt with, and we will pick the next head to deal
2537 * with, so we must unlock the head and drop it from the cluster
2538 * list before we release it.
2540 if (btrfs_delayed_ref_is_head(ref)) {
2541 btrfs_delayed_ref_unlock(locked_ref);
2542 locked_ref = NULL;
2544 btrfs_put_delayed_ref(ref);
2545 count++;
2546 cond_resched();
2550 * We don't want to include ref heads since we can have empty ref heads
2551 * and those will drastically skew our runtime down since we just do
2552 * accounting, no actual extent tree updates.
2554 if (actual_count > 0) {
2555 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2556 u64 avg;
2559 * We weigh the current average higher than our current runtime
2560 * to avoid large swings in the average.
2562 spin_lock(&delayed_refs->lock);
2563 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2564 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2565 spin_unlock(&delayed_refs->lock);
2567 return 0;
2570 #ifdef SCRAMBLE_DELAYED_REFS
2572 * Normally delayed refs get processed in ascending bytenr order. This
2573 * correlates in most cases to the order added. To expose dependencies on this
2574 * order, we start to process the tree in the middle instead of the beginning
2576 static u64 find_middle(struct rb_root *root)
2578 struct rb_node *n = root->rb_node;
2579 struct btrfs_delayed_ref_node *entry;
2580 int alt = 1;
2581 u64 middle;
2582 u64 first = 0, last = 0;
2584 n = rb_first(root);
2585 if (n) {
2586 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2587 first = entry->bytenr;
2589 n = rb_last(root);
2590 if (n) {
2591 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2592 last = entry->bytenr;
2594 n = root->rb_node;
2596 while (n) {
2597 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2598 WARN_ON(!entry->in_tree);
2600 middle = entry->bytenr;
2602 if (alt)
2603 n = n->rb_left;
2604 else
2605 n = n->rb_right;
2607 alt = 1 - alt;
2609 return middle;
2611 #endif
2613 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2615 u64 num_bytes;
2617 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2618 sizeof(struct btrfs_extent_inline_ref));
2619 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2620 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2623 * We don't ever fill up leaves all the way so multiply by 2 just to be
2624 * closer to what we're really going to want to ouse.
2626 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2629 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2630 struct btrfs_root *root)
2632 struct btrfs_block_rsv *global_rsv;
2633 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2634 u64 num_bytes;
2635 int ret = 0;
2637 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2638 num_heads = heads_to_leaves(root, num_heads);
2639 if (num_heads > 1)
2640 num_bytes += (num_heads - 1) * root->nodesize;
2641 num_bytes <<= 1;
2642 global_rsv = &root->fs_info->global_block_rsv;
2645 * If we can't allocate any more chunks lets make sure we have _lots_ of
2646 * wiggle room since running delayed refs can create more delayed refs.
2648 if (global_rsv->space_info->full)
2649 num_bytes <<= 1;
2651 spin_lock(&global_rsv->lock);
2652 if (global_rsv->reserved <= num_bytes)
2653 ret = 1;
2654 spin_unlock(&global_rsv->lock);
2655 return ret;
2658 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2659 struct btrfs_root *root)
2661 struct btrfs_fs_info *fs_info = root->fs_info;
2662 u64 num_entries =
2663 atomic_read(&trans->transaction->delayed_refs.num_entries);
2664 u64 avg_runtime;
2665 u64 val;
2667 smp_mb();
2668 avg_runtime = fs_info->avg_delayed_ref_runtime;
2669 val = num_entries * avg_runtime;
2670 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2671 return 1;
2672 if (val >= NSEC_PER_SEC / 2)
2673 return 2;
2675 return btrfs_check_space_for_delayed_refs(trans, root);
2678 struct async_delayed_refs {
2679 struct btrfs_root *root;
2680 int count;
2681 int error;
2682 int sync;
2683 struct completion wait;
2684 struct btrfs_work work;
2687 static void delayed_ref_async_start(struct btrfs_work *work)
2689 struct async_delayed_refs *async;
2690 struct btrfs_trans_handle *trans;
2691 int ret;
2693 async = container_of(work, struct async_delayed_refs, work);
2695 trans = btrfs_join_transaction(async->root);
2696 if (IS_ERR(trans)) {
2697 async->error = PTR_ERR(trans);
2698 goto done;
2702 * trans->sync means that when we call end_transaciton, we won't
2703 * wait on delayed refs
2705 trans->sync = true;
2706 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2707 if (ret)
2708 async->error = ret;
2710 ret = btrfs_end_transaction(trans, async->root);
2711 if (ret && !async->error)
2712 async->error = ret;
2713 done:
2714 if (async->sync)
2715 complete(&async->wait);
2716 else
2717 kfree(async);
2720 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2721 unsigned long count, int wait)
2723 struct async_delayed_refs *async;
2724 int ret;
2726 async = kmalloc(sizeof(*async), GFP_NOFS);
2727 if (!async)
2728 return -ENOMEM;
2730 async->root = root->fs_info->tree_root;
2731 async->count = count;
2732 async->error = 0;
2733 if (wait)
2734 async->sync = 1;
2735 else
2736 async->sync = 0;
2737 init_completion(&async->wait);
2739 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2740 delayed_ref_async_start, NULL, NULL);
2742 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2744 if (wait) {
2745 wait_for_completion(&async->wait);
2746 ret = async->error;
2747 kfree(async);
2748 return ret;
2750 return 0;
2754 * this starts processing the delayed reference count updates and
2755 * extent insertions we have queued up so far. count can be
2756 * 0, which means to process everything in the tree at the start
2757 * of the run (but not newly added entries), or it can be some target
2758 * number you'd like to process.
2760 * Returns 0 on success or if called with an aborted transaction
2761 * Returns <0 on error and aborts the transaction
2763 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2764 struct btrfs_root *root, unsigned long count)
2766 struct rb_node *node;
2767 struct btrfs_delayed_ref_root *delayed_refs;
2768 struct btrfs_delayed_ref_head *head;
2769 int ret;
2770 int run_all = count == (unsigned long)-1;
2772 /* We'll clean this up in btrfs_cleanup_transaction */
2773 if (trans->aborted)
2774 return 0;
2776 if (root == root->fs_info->extent_root)
2777 root = root->fs_info->tree_root;
2779 delayed_refs = &trans->transaction->delayed_refs;
2780 if (count == 0)
2781 count = atomic_read(&delayed_refs->num_entries) * 2;
2783 again:
2784 #ifdef SCRAMBLE_DELAYED_REFS
2785 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2786 #endif
2787 ret = __btrfs_run_delayed_refs(trans, root, count);
2788 if (ret < 0) {
2789 btrfs_abort_transaction(trans, root, ret);
2790 return ret;
2793 if (run_all) {
2794 if (!list_empty(&trans->new_bgs))
2795 btrfs_create_pending_block_groups(trans, root);
2797 spin_lock(&delayed_refs->lock);
2798 node = rb_first(&delayed_refs->href_root);
2799 if (!node) {
2800 spin_unlock(&delayed_refs->lock);
2801 goto out;
2803 count = (unsigned long)-1;
2805 while (node) {
2806 head = rb_entry(node, struct btrfs_delayed_ref_head,
2807 href_node);
2808 if (btrfs_delayed_ref_is_head(&head->node)) {
2809 struct btrfs_delayed_ref_node *ref;
2811 ref = &head->node;
2812 atomic_inc(&ref->refs);
2814 spin_unlock(&delayed_refs->lock);
2816 * Mutex was contended, block until it's
2817 * released and try again
2819 mutex_lock(&head->mutex);
2820 mutex_unlock(&head->mutex);
2822 btrfs_put_delayed_ref(ref);
2823 cond_resched();
2824 goto again;
2825 } else {
2826 WARN_ON(1);
2828 node = rb_next(node);
2830 spin_unlock(&delayed_refs->lock);
2831 cond_resched();
2832 goto again;
2834 out:
2835 ret = btrfs_delayed_qgroup_accounting(trans, root->fs_info);
2836 if (ret)
2837 return ret;
2838 assert_qgroups_uptodate(trans);
2839 return 0;
2842 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2843 struct btrfs_root *root,
2844 u64 bytenr, u64 num_bytes, u64 flags,
2845 int level, int is_data)
2847 struct btrfs_delayed_extent_op *extent_op;
2848 int ret;
2850 extent_op = btrfs_alloc_delayed_extent_op();
2851 if (!extent_op)
2852 return -ENOMEM;
2854 extent_op->flags_to_set = flags;
2855 extent_op->update_flags = 1;
2856 extent_op->update_key = 0;
2857 extent_op->is_data = is_data ? 1 : 0;
2858 extent_op->level = level;
2860 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2861 num_bytes, extent_op);
2862 if (ret)
2863 btrfs_free_delayed_extent_op(extent_op);
2864 return ret;
2867 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2868 struct btrfs_root *root,
2869 struct btrfs_path *path,
2870 u64 objectid, u64 offset, u64 bytenr)
2872 struct btrfs_delayed_ref_head *head;
2873 struct btrfs_delayed_ref_node *ref;
2874 struct btrfs_delayed_data_ref *data_ref;
2875 struct btrfs_delayed_ref_root *delayed_refs;
2876 struct rb_node *node;
2877 int ret = 0;
2879 delayed_refs = &trans->transaction->delayed_refs;
2880 spin_lock(&delayed_refs->lock);
2881 head = btrfs_find_delayed_ref_head(trans, bytenr);
2882 if (!head) {
2883 spin_unlock(&delayed_refs->lock);
2884 return 0;
2887 if (!mutex_trylock(&head->mutex)) {
2888 atomic_inc(&head->node.refs);
2889 spin_unlock(&delayed_refs->lock);
2891 btrfs_release_path(path);
2894 * Mutex was contended, block until it's released and let
2895 * caller try again
2897 mutex_lock(&head->mutex);
2898 mutex_unlock(&head->mutex);
2899 btrfs_put_delayed_ref(&head->node);
2900 return -EAGAIN;
2902 spin_unlock(&delayed_refs->lock);
2904 spin_lock(&head->lock);
2905 node = rb_first(&head->ref_root);
2906 while (node) {
2907 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2908 node = rb_next(node);
2910 /* If it's a shared ref we know a cross reference exists */
2911 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2912 ret = 1;
2913 break;
2916 data_ref = btrfs_delayed_node_to_data_ref(ref);
2919 * If our ref doesn't match the one we're currently looking at
2920 * then we have a cross reference.
2922 if (data_ref->root != root->root_key.objectid ||
2923 data_ref->objectid != objectid ||
2924 data_ref->offset != offset) {
2925 ret = 1;
2926 break;
2929 spin_unlock(&head->lock);
2930 mutex_unlock(&head->mutex);
2931 return ret;
2934 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2935 struct btrfs_root *root,
2936 struct btrfs_path *path,
2937 u64 objectid, u64 offset, u64 bytenr)
2939 struct btrfs_root *extent_root = root->fs_info->extent_root;
2940 struct extent_buffer *leaf;
2941 struct btrfs_extent_data_ref *ref;
2942 struct btrfs_extent_inline_ref *iref;
2943 struct btrfs_extent_item *ei;
2944 struct btrfs_key key;
2945 u32 item_size;
2946 int ret;
2948 key.objectid = bytenr;
2949 key.offset = (u64)-1;
2950 key.type = BTRFS_EXTENT_ITEM_KEY;
2952 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2953 if (ret < 0)
2954 goto out;
2955 BUG_ON(ret == 0); /* Corruption */
2957 ret = -ENOENT;
2958 if (path->slots[0] == 0)
2959 goto out;
2961 path->slots[0]--;
2962 leaf = path->nodes[0];
2963 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2965 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2966 goto out;
2968 ret = 1;
2969 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2970 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2971 if (item_size < sizeof(*ei)) {
2972 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2973 goto out;
2975 #endif
2976 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2978 if (item_size != sizeof(*ei) +
2979 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2980 goto out;
2982 if (btrfs_extent_generation(leaf, ei) <=
2983 btrfs_root_last_snapshot(&root->root_item))
2984 goto out;
2986 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2987 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2988 BTRFS_EXTENT_DATA_REF_KEY)
2989 goto out;
2991 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2992 if (btrfs_extent_refs(leaf, ei) !=
2993 btrfs_extent_data_ref_count(leaf, ref) ||
2994 btrfs_extent_data_ref_root(leaf, ref) !=
2995 root->root_key.objectid ||
2996 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2997 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2998 goto out;
3000 ret = 0;
3001 out:
3002 return ret;
3005 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3006 struct btrfs_root *root,
3007 u64 objectid, u64 offset, u64 bytenr)
3009 struct btrfs_path *path;
3010 int ret;
3011 int ret2;
3013 path = btrfs_alloc_path();
3014 if (!path)
3015 return -ENOENT;
3017 do {
3018 ret = check_committed_ref(trans, root, path, objectid,
3019 offset, bytenr);
3020 if (ret && ret != -ENOENT)
3021 goto out;
3023 ret2 = check_delayed_ref(trans, root, path, objectid,
3024 offset, bytenr);
3025 } while (ret2 == -EAGAIN);
3027 if (ret2 && ret2 != -ENOENT) {
3028 ret = ret2;
3029 goto out;
3032 if (ret != -ENOENT || ret2 != -ENOENT)
3033 ret = 0;
3034 out:
3035 btrfs_free_path(path);
3036 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3037 WARN_ON(ret > 0);
3038 return ret;
3041 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3042 struct btrfs_root *root,
3043 struct extent_buffer *buf,
3044 int full_backref, int inc)
3046 u64 bytenr;
3047 u64 num_bytes;
3048 u64 parent;
3049 u64 ref_root;
3050 u32 nritems;
3051 struct btrfs_key key;
3052 struct btrfs_file_extent_item *fi;
3053 int i;
3054 int level;
3055 int ret = 0;
3056 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3057 u64, u64, u64, u64, u64, u64, int);
3060 if (btrfs_test_is_dummy_root(root))
3061 return 0;
3063 ref_root = btrfs_header_owner(buf);
3064 nritems = btrfs_header_nritems(buf);
3065 level = btrfs_header_level(buf);
3067 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3068 return 0;
3070 if (inc)
3071 process_func = btrfs_inc_extent_ref;
3072 else
3073 process_func = btrfs_free_extent;
3075 if (full_backref)
3076 parent = buf->start;
3077 else
3078 parent = 0;
3080 for (i = 0; i < nritems; i++) {
3081 if (level == 0) {
3082 btrfs_item_key_to_cpu(buf, &key, i);
3083 if (key.type != BTRFS_EXTENT_DATA_KEY)
3084 continue;
3085 fi = btrfs_item_ptr(buf, i,
3086 struct btrfs_file_extent_item);
3087 if (btrfs_file_extent_type(buf, fi) ==
3088 BTRFS_FILE_EXTENT_INLINE)
3089 continue;
3090 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3091 if (bytenr == 0)
3092 continue;
3094 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3095 key.offset -= btrfs_file_extent_offset(buf, fi);
3096 ret = process_func(trans, root, bytenr, num_bytes,
3097 parent, ref_root, key.objectid,
3098 key.offset, 1);
3099 if (ret)
3100 goto fail;
3101 } else {
3102 bytenr = btrfs_node_blockptr(buf, i);
3103 num_bytes = root->nodesize;
3104 ret = process_func(trans, root, bytenr, num_bytes,
3105 parent, ref_root, level - 1, 0,
3107 if (ret)
3108 goto fail;
3111 return 0;
3112 fail:
3113 return ret;
3116 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3117 struct extent_buffer *buf, int full_backref)
3119 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3122 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3123 struct extent_buffer *buf, int full_backref)
3125 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3128 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3129 struct btrfs_root *root,
3130 struct btrfs_path *path,
3131 struct btrfs_block_group_cache *cache)
3133 int ret;
3134 struct btrfs_root *extent_root = root->fs_info->extent_root;
3135 unsigned long bi;
3136 struct extent_buffer *leaf;
3138 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3139 if (ret) {
3140 if (ret > 0)
3141 ret = -ENOENT;
3142 goto fail;
3145 leaf = path->nodes[0];
3146 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3147 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3148 btrfs_mark_buffer_dirty(leaf);
3149 btrfs_release_path(path);
3150 fail:
3151 if (ret)
3152 btrfs_abort_transaction(trans, root, ret);
3153 return ret;
3157 static struct btrfs_block_group_cache *
3158 next_block_group(struct btrfs_root *root,
3159 struct btrfs_block_group_cache *cache)
3161 struct rb_node *node;
3163 spin_lock(&root->fs_info->block_group_cache_lock);
3165 /* If our block group was removed, we need a full search. */
3166 if (RB_EMPTY_NODE(&cache->cache_node)) {
3167 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3169 spin_unlock(&root->fs_info->block_group_cache_lock);
3170 btrfs_put_block_group(cache);
3171 cache = btrfs_lookup_first_block_group(root->fs_info,
3172 next_bytenr);
3173 return cache;
3175 node = rb_next(&cache->cache_node);
3176 btrfs_put_block_group(cache);
3177 if (node) {
3178 cache = rb_entry(node, struct btrfs_block_group_cache,
3179 cache_node);
3180 btrfs_get_block_group(cache);
3181 } else
3182 cache = NULL;
3183 spin_unlock(&root->fs_info->block_group_cache_lock);
3184 return cache;
3187 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3188 struct btrfs_trans_handle *trans,
3189 struct btrfs_path *path)
3191 struct btrfs_root *root = block_group->fs_info->tree_root;
3192 struct inode *inode = NULL;
3193 u64 alloc_hint = 0;
3194 int dcs = BTRFS_DC_ERROR;
3195 u64 num_pages = 0;
3196 int retries = 0;
3197 int ret = 0;
3200 * If this block group is smaller than 100 megs don't bother caching the
3201 * block group.
3203 if (block_group->key.offset < (100 * 1024 * 1024)) {
3204 spin_lock(&block_group->lock);
3205 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3206 spin_unlock(&block_group->lock);
3207 return 0;
3210 again:
3211 inode = lookup_free_space_inode(root, block_group, path);
3212 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3213 ret = PTR_ERR(inode);
3214 btrfs_release_path(path);
3215 goto out;
3218 if (IS_ERR(inode)) {
3219 BUG_ON(retries);
3220 retries++;
3222 if (block_group->ro)
3223 goto out_free;
3225 ret = create_free_space_inode(root, trans, block_group, path);
3226 if (ret)
3227 goto out_free;
3228 goto again;
3231 /* We've already setup this transaction, go ahead and exit */
3232 if (block_group->cache_generation == trans->transid &&
3233 i_size_read(inode)) {
3234 dcs = BTRFS_DC_SETUP;
3235 goto out_put;
3239 * We want to set the generation to 0, that way if anything goes wrong
3240 * from here on out we know not to trust this cache when we load up next
3241 * time.
3243 BTRFS_I(inode)->generation = 0;
3244 ret = btrfs_update_inode(trans, root, inode);
3245 WARN_ON(ret);
3247 if (i_size_read(inode) > 0) {
3248 ret = btrfs_check_trunc_cache_free_space(root,
3249 &root->fs_info->global_block_rsv);
3250 if (ret)
3251 goto out_put;
3253 ret = btrfs_truncate_free_space_cache(root, trans, inode);
3254 if (ret)
3255 goto out_put;
3258 spin_lock(&block_group->lock);
3259 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3260 !btrfs_test_opt(root, SPACE_CACHE) ||
3261 block_group->delalloc_bytes) {
3263 * don't bother trying to write stuff out _if_
3264 * a) we're not cached,
3265 * b) we're with nospace_cache mount option.
3267 dcs = BTRFS_DC_WRITTEN;
3268 spin_unlock(&block_group->lock);
3269 goto out_put;
3271 spin_unlock(&block_group->lock);
3274 * Try to preallocate enough space based on how big the block group is.
3275 * Keep in mind this has to include any pinned space which could end up
3276 * taking up quite a bit since it's not folded into the other space
3277 * cache.
3279 num_pages = div_u64(block_group->key.offset, 256 * 1024 * 1024);
3280 if (!num_pages)
3281 num_pages = 1;
3283 num_pages *= 16;
3284 num_pages *= PAGE_CACHE_SIZE;
3286 ret = btrfs_check_data_free_space(inode, num_pages);
3287 if (ret)
3288 goto out_put;
3290 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3291 num_pages, num_pages,
3292 &alloc_hint);
3293 if (!ret)
3294 dcs = BTRFS_DC_SETUP;
3295 btrfs_free_reserved_data_space(inode, num_pages);
3297 out_put:
3298 iput(inode);
3299 out_free:
3300 btrfs_release_path(path);
3301 out:
3302 spin_lock(&block_group->lock);
3303 if (!ret && dcs == BTRFS_DC_SETUP)
3304 block_group->cache_generation = trans->transid;
3305 block_group->disk_cache_state = dcs;
3306 spin_unlock(&block_group->lock);
3308 return ret;
3311 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3312 struct btrfs_root *root)
3314 struct btrfs_block_group_cache *cache;
3315 struct btrfs_transaction *cur_trans = trans->transaction;
3316 int ret = 0;
3317 struct btrfs_path *path;
3319 if (list_empty(&cur_trans->dirty_bgs))
3320 return 0;
3322 path = btrfs_alloc_path();
3323 if (!path)
3324 return -ENOMEM;
3327 * We don't need the lock here since we are protected by the transaction
3328 * commit. We want to do the cache_save_setup first and then run the
3329 * delayed refs to make sure we have the best chance at doing this all
3330 * in one shot.
3332 while (!list_empty(&cur_trans->dirty_bgs)) {
3333 cache = list_first_entry(&cur_trans->dirty_bgs,
3334 struct btrfs_block_group_cache,
3335 dirty_list);
3336 list_del_init(&cache->dirty_list);
3337 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3338 cache_save_setup(cache, trans, path);
3339 if (!ret)
3340 ret = btrfs_run_delayed_refs(trans, root,
3341 (unsigned long) -1);
3342 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP)
3343 btrfs_write_out_cache(root, trans, cache, path);
3344 if (!ret)
3345 ret = write_one_cache_group(trans, root, path, cache);
3346 btrfs_put_block_group(cache);
3349 btrfs_free_path(path);
3350 return ret;
3353 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3355 struct btrfs_block_group_cache *block_group;
3356 int readonly = 0;
3358 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3359 if (!block_group || block_group->ro)
3360 readonly = 1;
3361 if (block_group)
3362 btrfs_put_block_group(block_group);
3363 return readonly;
3366 static const char *alloc_name(u64 flags)
3368 switch (flags) {
3369 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3370 return "mixed";
3371 case BTRFS_BLOCK_GROUP_METADATA:
3372 return "metadata";
3373 case BTRFS_BLOCK_GROUP_DATA:
3374 return "data";
3375 case BTRFS_BLOCK_GROUP_SYSTEM:
3376 return "system";
3377 default:
3378 WARN_ON(1);
3379 return "invalid-combination";
3383 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3384 u64 total_bytes, u64 bytes_used,
3385 struct btrfs_space_info **space_info)
3387 struct btrfs_space_info *found;
3388 int i;
3389 int factor;
3390 int ret;
3392 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3393 BTRFS_BLOCK_GROUP_RAID10))
3394 factor = 2;
3395 else
3396 factor = 1;
3398 found = __find_space_info(info, flags);
3399 if (found) {
3400 spin_lock(&found->lock);
3401 found->total_bytes += total_bytes;
3402 found->disk_total += total_bytes * factor;
3403 found->bytes_used += bytes_used;
3404 found->disk_used += bytes_used * factor;
3405 found->full = 0;
3406 spin_unlock(&found->lock);
3407 *space_info = found;
3408 return 0;
3410 found = kzalloc(sizeof(*found), GFP_NOFS);
3411 if (!found)
3412 return -ENOMEM;
3414 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3415 if (ret) {
3416 kfree(found);
3417 return ret;
3420 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3421 INIT_LIST_HEAD(&found->block_groups[i]);
3422 init_rwsem(&found->groups_sem);
3423 spin_lock_init(&found->lock);
3424 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3425 found->total_bytes = total_bytes;
3426 found->disk_total = total_bytes * factor;
3427 found->bytes_used = bytes_used;
3428 found->disk_used = bytes_used * factor;
3429 found->bytes_pinned = 0;
3430 found->bytes_reserved = 0;
3431 found->bytes_readonly = 0;
3432 found->bytes_may_use = 0;
3433 found->full = 0;
3434 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3435 found->chunk_alloc = 0;
3436 found->flush = 0;
3437 init_waitqueue_head(&found->wait);
3438 INIT_LIST_HEAD(&found->ro_bgs);
3440 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3441 info->space_info_kobj, "%s",
3442 alloc_name(found->flags));
3443 if (ret) {
3444 kfree(found);
3445 return ret;
3448 *space_info = found;
3449 list_add_rcu(&found->list, &info->space_info);
3450 if (flags & BTRFS_BLOCK_GROUP_DATA)
3451 info->data_sinfo = found;
3453 return ret;
3456 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3458 u64 extra_flags = chunk_to_extended(flags) &
3459 BTRFS_EXTENDED_PROFILE_MASK;
3461 write_seqlock(&fs_info->profiles_lock);
3462 if (flags & BTRFS_BLOCK_GROUP_DATA)
3463 fs_info->avail_data_alloc_bits |= extra_flags;
3464 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3465 fs_info->avail_metadata_alloc_bits |= extra_flags;
3466 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3467 fs_info->avail_system_alloc_bits |= extra_flags;
3468 write_sequnlock(&fs_info->profiles_lock);
3472 * returns target flags in extended format or 0 if restripe for this
3473 * chunk_type is not in progress
3475 * should be called with either volume_mutex or balance_lock held
3477 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3479 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3480 u64 target = 0;
3482 if (!bctl)
3483 return 0;
3485 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3486 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3487 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3488 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3489 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3490 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3491 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3492 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3493 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3496 return target;
3500 * @flags: available profiles in extended format (see ctree.h)
3502 * Returns reduced profile in chunk format. If profile changing is in
3503 * progress (either running or paused) picks the target profile (if it's
3504 * already available), otherwise falls back to plain reducing.
3506 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3508 u64 num_devices = root->fs_info->fs_devices->rw_devices;
3509 u64 target;
3510 u64 tmp;
3513 * see if restripe for this chunk_type is in progress, if so
3514 * try to reduce to the target profile
3516 spin_lock(&root->fs_info->balance_lock);
3517 target = get_restripe_target(root->fs_info, flags);
3518 if (target) {
3519 /* pick target profile only if it's already available */
3520 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3521 spin_unlock(&root->fs_info->balance_lock);
3522 return extended_to_chunk(target);
3525 spin_unlock(&root->fs_info->balance_lock);
3527 /* First, mask out the RAID levels which aren't possible */
3528 if (num_devices == 1)
3529 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3530 BTRFS_BLOCK_GROUP_RAID5);
3531 if (num_devices < 3)
3532 flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3533 if (num_devices < 4)
3534 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3536 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3537 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3538 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3539 flags &= ~tmp;
3541 if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3542 tmp = BTRFS_BLOCK_GROUP_RAID6;
3543 else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3544 tmp = BTRFS_BLOCK_GROUP_RAID5;
3545 else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3546 tmp = BTRFS_BLOCK_GROUP_RAID10;
3547 else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3548 tmp = BTRFS_BLOCK_GROUP_RAID1;
3549 else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3550 tmp = BTRFS_BLOCK_GROUP_RAID0;
3552 return extended_to_chunk(flags | tmp);
3555 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
3557 unsigned seq;
3558 u64 flags;
3560 do {
3561 flags = orig_flags;
3562 seq = read_seqbegin(&root->fs_info->profiles_lock);
3564 if (flags & BTRFS_BLOCK_GROUP_DATA)
3565 flags |= root->fs_info->avail_data_alloc_bits;
3566 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3567 flags |= root->fs_info->avail_system_alloc_bits;
3568 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3569 flags |= root->fs_info->avail_metadata_alloc_bits;
3570 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
3572 return btrfs_reduce_alloc_profile(root, flags);
3575 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3577 u64 flags;
3578 u64 ret;
3580 if (data)
3581 flags = BTRFS_BLOCK_GROUP_DATA;
3582 else if (root == root->fs_info->chunk_root)
3583 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3584 else
3585 flags = BTRFS_BLOCK_GROUP_METADATA;
3587 ret = get_alloc_profile(root, flags);
3588 return ret;
3592 * This will check the space that the inode allocates from to make sure we have
3593 * enough space for bytes.
3595 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3597 struct btrfs_space_info *data_sinfo;
3598 struct btrfs_root *root = BTRFS_I(inode)->root;
3599 struct btrfs_fs_info *fs_info = root->fs_info;
3600 u64 used;
3601 int ret = 0, committed = 0, alloc_chunk = 1;
3603 /* make sure bytes are sectorsize aligned */
3604 bytes = ALIGN(bytes, root->sectorsize);
3606 if (btrfs_is_free_space_inode(inode)) {
3607 committed = 1;
3608 ASSERT(current->journal_info);
3611 data_sinfo = fs_info->data_sinfo;
3612 if (!data_sinfo)
3613 goto alloc;
3615 again:
3616 /* make sure we have enough space to handle the data first */
3617 spin_lock(&data_sinfo->lock);
3618 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3619 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3620 data_sinfo->bytes_may_use;
3622 if (used + bytes > data_sinfo->total_bytes) {
3623 struct btrfs_trans_handle *trans;
3626 * if we don't have enough free bytes in this space then we need
3627 * to alloc a new chunk.
3629 if (!data_sinfo->full && alloc_chunk) {
3630 u64 alloc_target;
3632 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3633 spin_unlock(&data_sinfo->lock);
3634 alloc:
3635 alloc_target = btrfs_get_alloc_profile(root, 1);
3637 * It is ugly that we don't call nolock join
3638 * transaction for the free space inode case here.
3639 * But it is safe because we only do the data space
3640 * reservation for the free space cache in the
3641 * transaction context, the common join transaction
3642 * just increase the counter of the current transaction
3643 * handler, doesn't try to acquire the trans_lock of
3644 * the fs.
3646 trans = btrfs_join_transaction(root);
3647 if (IS_ERR(trans))
3648 return PTR_ERR(trans);
3650 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3651 alloc_target,
3652 CHUNK_ALLOC_NO_FORCE);
3653 btrfs_end_transaction(trans, root);
3654 if (ret < 0) {
3655 if (ret != -ENOSPC)
3656 return ret;
3657 else
3658 goto commit_trans;
3661 if (!data_sinfo)
3662 data_sinfo = fs_info->data_sinfo;
3664 goto again;
3668 * If we don't have enough pinned space to deal with this
3669 * allocation don't bother committing the transaction.
3671 if (percpu_counter_compare(&data_sinfo->total_bytes_pinned,
3672 bytes) < 0)
3673 committed = 1;
3674 spin_unlock(&data_sinfo->lock);
3676 /* commit the current transaction and try again */
3677 commit_trans:
3678 if (!committed &&
3679 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3680 committed = 1;
3682 trans = btrfs_join_transaction(root);
3683 if (IS_ERR(trans))
3684 return PTR_ERR(trans);
3685 ret = btrfs_commit_transaction(trans, root);
3686 if (ret)
3687 return ret;
3688 goto again;
3691 trace_btrfs_space_reservation(root->fs_info,
3692 "space_info:enospc",
3693 data_sinfo->flags, bytes, 1);
3694 return -ENOSPC;
3696 data_sinfo->bytes_may_use += bytes;
3697 trace_btrfs_space_reservation(root->fs_info, "space_info",
3698 data_sinfo->flags, bytes, 1);
3699 spin_unlock(&data_sinfo->lock);
3701 return 0;
3705 * Called if we need to clear a data reservation for this inode.
3707 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3709 struct btrfs_root *root = BTRFS_I(inode)->root;
3710 struct btrfs_space_info *data_sinfo;
3712 /* make sure bytes are sectorsize aligned */
3713 bytes = ALIGN(bytes, root->sectorsize);
3715 data_sinfo = root->fs_info->data_sinfo;
3716 spin_lock(&data_sinfo->lock);
3717 WARN_ON(data_sinfo->bytes_may_use < bytes);
3718 data_sinfo->bytes_may_use -= bytes;
3719 trace_btrfs_space_reservation(root->fs_info, "space_info",
3720 data_sinfo->flags, bytes, 0);
3721 spin_unlock(&data_sinfo->lock);
3724 static void force_metadata_allocation(struct btrfs_fs_info *info)
3726 struct list_head *head = &info->space_info;
3727 struct btrfs_space_info *found;
3729 rcu_read_lock();
3730 list_for_each_entry_rcu(found, head, list) {
3731 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3732 found->force_alloc = CHUNK_ALLOC_FORCE;
3734 rcu_read_unlock();
3737 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
3739 return (global->size << 1);
3742 static int should_alloc_chunk(struct btrfs_root *root,
3743 struct btrfs_space_info *sinfo, int force)
3745 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3746 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3747 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3748 u64 thresh;
3750 if (force == CHUNK_ALLOC_FORCE)
3751 return 1;
3754 * We need to take into account the global rsv because for all intents
3755 * and purposes it's used space. Don't worry about locking the
3756 * global_rsv, it doesn't change except when the transaction commits.
3758 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3759 num_allocated += calc_global_rsv_need_space(global_rsv);
3762 * in limited mode, we want to have some free space up to
3763 * about 1% of the FS size.
3765 if (force == CHUNK_ALLOC_LIMITED) {
3766 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3767 thresh = max_t(u64, 64 * 1024 * 1024,
3768 div_factor_fine(thresh, 1));
3770 if (num_bytes - num_allocated < thresh)
3771 return 1;
3774 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
3775 return 0;
3776 return 1;
3779 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3781 u64 num_dev;
3783 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
3784 BTRFS_BLOCK_GROUP_RAID0 |
3785 BTRFS_BLOCK_GROUP_RAID5 |
3786 BTRFS_BLOCK_GROUP_RAID6))
3787 num_dev = root->fs_info->fs_devices->rw_devices;
3788 else if (type & BTRFS_BLOCK_GROUP_RAID1)
3789 num_dev = 2;
3790 else
3791 num_dev = 1; /* DUP or single */
3793 /* metadata for updaing devices and chunk tree */
3794 return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3797 static void check_system_chunk(struct btrfs_trans_handle *trans,
3798 struct btrfs_root *root, u64 type)
3800 struct btrfs_space_info *info;
3801 u64 left;
3802 u64 thresh;
3804 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3805 spin_lock(&info->lock);
3806 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3807 info->bytes_reserved - info->bytes_readonly;
3808 spin_unlock(&info->lock);
3810 thresh = get_system_chunk_thresh(root, type);
3811 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3812 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
3813 left, thresh, type);
3814 dump_space_info(info, 0, 0);
3817 if (left < thresh) {
3818 u64 flags;
3820 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3821 btrfs_alloc_chunk(trans, root, flags);
3825 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3826 struct btrfs_root *extent_root, u64 flags, int force)
3828 struct btrfs_space_info *space_info;
3829 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3830 int wait_for_alloc = 0;
3831 int ret = 0;
3833 /* Don't re-enter if we're already allocating a chunk */
3834 if (trans->allocating_chunk)
3835 return -ENOSPC;
3837 space_info = __find_space_info(extent_root->fs_info, flags);
3838 if (!space_info) {
3839 ret = update_space_info(extent_root->fs_info, flags,
3840 0, 0, &space_info);
3841 BUG_ON(ret); /* -ENOMEM */
3843 BUG_ON(!space_info); /* Logic error */
3845 again:
3846 spin_lock(&space_info->lock);
3847 if (force < space_info->force_alloc)
3848 force = space_info->force_alloc;
3849 if (space_info->full) {
3850 if (should_alloc_chunk(extent_root, space_info, force))
3851 ret = -ENOSPC;
3852 else
3853 ret = 0;
3854 spin_unlock(&space_info->lock);
3855 return ret;
3858 if (!should_alloc_chunk(extent_root, space_info, force)) {
3859 spin_unlock(&space_info->lock);
3860 return 0;
3861 } else if (space_info->chunk_alloc) {
3862 wait_for_alloc = 1;
3863 } else {
3864 space_info->chunk_alloc = 1;
3867 spin_unlock(&space_info->lock);
3869 mutex_lock(&fs_info->chunk_mutex);
3872 * The chunk_mutex is held throughout the entirety of a chunk
3873 * allocation, so once we've acquired the chunk_mutex we know that the
3874 * other guy is done and we need to recheck and see if we should
3875 * allocate.
3877 if (wait_for_alloc) {
3878 mutex_unlock(&fs_info->chunk_mutex);
3879 wait_for_alloc = 0;
3880 goto again;
3883 trans->allocating_chunk = true;
3886 * If we have mixed data/metadata chunks we want to make sure we keep
3887 * allocating mixed chunks instead of individual chunks.
3889 if (btrfs_mixed_space_info(space_info))
3890 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3893 * if we're doing a data chunk, go ahead and make sure that
3894 * we keep a reasonable number of metadata chunks allocated in the
3895 * FS as well.
3897 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3898 fs_info->data_chunk_allocations++;
3899 if (!(fs_info->data_chunk_allocations %
3900 fs_info->metadata_ratio))
3901 force_metadata_allocation(fs_info);
3905 * Check if we have enough space in SYSTEM chunk because we may need
3906 * to update devices.
3908 check_system_chunk(trans, extent_root, flags);
3910 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3911 trans->allocating_chunk = false;
3913 spin_lock(&space_info->lock);
3914 if (ret < 0 && ret != -ENOSPC)
3915 goto out;
3916 if (ret)
3917 space_info->full = 1;
3918 else
3919 ret = 1;
3921 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3922 out:
3923 space_info->chunk_alloc = 0;
3924 spin_unlock(&space_info->lock);
3925 mutex_unlock(&fs_info->chunk_mutex);
3926 return ret;
3929 static int can_overcommit(struct btrfs_root *root,
3930 struct btrfs_space_info *space_info, u64 bytes,
3931 enum btrfs_reserve_flush_enum flush)
3933 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3934 u64 profile = btrfs_get_alloc_profile(root, 0);
3935 u64 space_size;
3936 u64 avail;
3937 u64 used;
3939 used = space_info->bytes_used + space_info->bytes_reserved +
3940 space_info->bytes_pinned + space_info->bytes_readonly;
3943 * We only want to allow over committing if we have lots of actual space
3944 * free, but if we don't have enough space to handle the global reserve
3945 * space then we could end up having a real enospc problem when trying
3946 * to allocate a chunk or some other such important allocation.
3948 spin_lock(&global_rsv->lock);
3949 space_size = calc_global_rsv_need_space(global_rsv);
3950 spin_unlock(&global_rsv->lock);
3951 if (used + space_size >= space_info->total_bytes)
3952 return 0;
3954 used += space_info->bytes_may_use;
3956 spin_lock(&root->fs_info->free_chunk_lock);
3957 avail = root->fs_info->free_chunk_space;
3958 spin_unlock(&root->fs_info->free_chunk_lock);
3961 * If we have dup, raid1 or raid10 then only half of the free
3962 * space is actually useable. For raid56, the space info used
3963 * doesn't include the parity drive, so we don't have to
3964 * change the math
3966 if (profile & (BTRFS_BLOCK_GROUP_DUP |
3967 BTRFS_BLOCK_GROUP_RAID1 |
3968 BTRFS_BLOCK_GROUP_RAID10))
3969 avail >>= 1;
3972 * If we aren't flushing all things, let us overcommit up to
3973 * 1/2th of the space. If we can flush, don't let us overcommit
3974 * too much, let it overcommit up to 1/8 of the space.
3976 if (flush == BTRFS_RESERVE_FLUSH_ALL)
3977 avail >>= 3;
3978 else
3979 avail >>= 1;
3981 if (used + bytes < space_info->total_bytes + avail)
3982 return 1;
3983 return 0;
3986 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
3987 unsigned long nr_pages, int nr_items)
3989 struct super_block *sb = root->fs_info->sb;
3991 if (down_read_trylock(&sb->s_umount)) {
3992 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
3993 up_read(&sb->s_umount);
3994 } else {
3996 * We needn't worry the filesystem going from r/w to r/o though
3997 * we don't acquire ->s_umount mutex, because the filesystem
3998 * should guarantee the delalloc inodes list be empty after
3999 * the filesystem is readonly(all dirty pages are written to
4000 * the disk).
4002 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4003 if (!current->journal_info)
4004 btrfs_wait_ordered_roots(root->fs_info, nr_items);
4008 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4010 u64 bytes;
4011 int nr;
4013 bytes = btrfs_calc_trans_metadata_size(root, 1);
4014 nr = (int)div64_u64(to_reclaim, bytes);
4015 if (!nr)
4016 nr = 1;
4017 return nr;
4020 #define EXTENT_SIZE_PER_ITEM (256 * 1024)
4023 * shrink metadata reservation for delalloc
4025 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4026 bool wait_ordered)
4028 struct btrfs_block_rsv *block_rsv;
4029 struct btrfs_space_info *space_info;
4030 struct btrfs_trans_handle *trans;
4031 u64 delalloc_bytes;
4032 u64 max_reclaim;
4033 long time_left;
4034 unsigned long nr_pages;
4035 int loops;
4036 int items;
4037 enum btrfs_reserve_flush_enum flush;
4039 /* Calc the number of the pages we need flush for space reservation */
4040 items = calc_reclaim_items_nr(root, to_reclaim);
4041 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4043 trans = (struct btrfs_trans_handle *)current->journal_info;
4044 block_rsv = &root->fs_info->delalloc_block_rsv;
4045 space_info = block_rsv->space_info;
4047 delalloc_bytes = percpu_counter_sum_positive(
4048 &root->fs_info->delalloc_bytes);
4049 if (delalloc_bytes == 0) {
4050 if (trans)
4051 return;
4052 if (wait_ordered)
4053 btrfs_wait_ordered_roots(root->fs_info, items);
4054 return;
4057 loops = 0;
4058 while (delalloc_bytes && loops < 3) {
4059 max_reclaim = min(delalloc_bytes, to_reclaim);
4060 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4061 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4063 * We need to wait for the async pages to actually start before
4064 * we do anything.
4066 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4067 if (!max_reclaim)
4068 goto skip_async;
4070 if (max_reclaim <= nr_pages)
4071 max_reclaim = 0;
4072 else
4073 max_reclaim -= nr_pages;
4075 wait_event(root->fs_info->async_submit_wait,
4076 atomic_read(&root->fs_info->async_delalloc_pages) <=
4077 (int)max_reclaim);
4078 skip_async:
4079 if (!trans)
4080 flush = BTRFS_RESERVE_FLUSH_ALL;
4081 else
4082 flush = BTRFS_RESERVE_NO_FLUSH;
4083 spin_lock(&space_info->lock);
4084 if (can_overcommit(root, space_info, orig, flush)) {
4085 spin_unlock(&space_info->lock);
4086 break;
4088 spin_unlock(&space_info->lock);
4090 loops++;
4091 if (wait_ordered && !trans) {
4092 btrfs_wait_ordered_roots(root->fs_info, items);
4093 } else {
4094 time_left = schedule_timeout_killable(1);
4095 if (time_left)
4096 break;
4098 delalloc_bytes = percpu_counter_sum_positive(
4099 &root->fs_info->delalloc_bytes);
4104 * maybe_commit_transaction - possibly commit the transaction if its ok to
4105 * @root - the root we're allocating for
4106 * @bytes - the number of bytes we want to reserve
4107 * @force - force the commit
4109 * This will check to make sure that committing the transaction will actually
4110 * get us somewhere and then commit the transaction if it does. Otherwise it
4111 * will return -ENOSPC.
4113 static int may_commit_transaction(struct btrfs_root *root,
4114 struct btrfs_space_info *space_info,
4115 u64 bytes, int force)
4117 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4118 struct btrfs_trans_handle *trans;
4120 trans = (struct btrfs_trans_handle *)current->journal_info;
4121 if (trans)
4122 return -EAGAIN;
4124 if (force)
4125 goto commit;
4127 /* See if there is enough pinned space to make this reservation */
4128 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4129 bytes) >= 0)
4130 goto commit;
4133 * See if there is some space in the delayed insertion reservation for
4134 * this reservation.
4136 if (space_info != delayed_rsv->space_info)
4137 return -ENOSPC;
4139 spin_lock(&delayed_rsv->lock);
4140 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4141 bytes - delayed_rsv->size) >= 0) {
4142 spin_unlock(&delayed_rsv->lock);
4143 return -ENOSPC;
4145 spin_unlock(&delayed_rsv->lock);
4147 commit:
4148 trans = btrfs_join_transaction(root);
4149 if (IS_ERR(trans))
4150 return -ENOSPC;
4152 return btrfs_commit_transaction(trans, root);
4155 enum flush_state {
4156 FLUSH_DELAYED_ITEMS_NR = 1,
4157 FLUSH_DELAYED_ITEMS = 2,
4158 FLUSH_DELALLOC = 3,
4159 FLUSH_DELALLOC_WAIT = 4,
4160 ALLOC_CHUNK = 5,
4161 COMMIT_TRANS = 6,
4164 static int flush_space(struct btrfs_root *root,
4165 struct btrfs_space_info *space_info, u64 num_bytes,
4166 u64 orig_bytes, int state)
4168 struct btrfs_trans_handle *trans;
4169 int nr;
4170 int ret = 0;
4172 switch (state) {
4173 case FLUSH_DELAYED_ITEMS_NR:
4174 case FLUSH_DELAYED_ITEMS:
4175 if (state == FLUSH_DELAYED_ITEMS_NR)
4176 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4177 else
4178 nr = -1;
4180 trans = btrfs_join_transaction(root);
4181 if (IS_ERR(trans)) {
4182 ret = PTR_ERR(trans);
4183 break;
4185 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4186 btrfs_end_transaction(trans, root);
4187 break;
4188 case FLUSH_DELALLOC:
4189 case FLUSH_DELALLOC_WAIT:
4190 shrink_delalloc(root, num_bytes * 2, orig_bytes,
4191 state == FLUSH_DELALLOC_WAIT);
4192 break;
4193 case ALLOC_CHUNK:
4194 trans = btrfs_join_transaction(root);
4195 if (IS_ERR(trans)) {
4196 ret = PTR_ERR(trans);
4197 break;
4199 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4200 btrfs_get_alloc_profile(root, 0),
4201 CHUNK_ALLOC_NO_FORCE);
4202 btrfs_end_transaction(trans, root);
4203 if (ret == -ENOSPC)
4204 ret = 0;
4205 break;
4206 case COMMIT_TRANS:
4207 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4208 break;
4209 default:
4210 ret = -ENOSPC;
4211 break;
4214 return ret;
4217 static inline u64
4218 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4219 struct btrfs_space_info *space_info)
4221 u64 used;
4222 u64 expected;
4223 u64 to_reclaim;
4225 to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4226 16 * 1024 * 1024);
4227 spin_lock(&space_info->lock);
4228 if (can_overcommit(root, space_info, to_reclaim,
4229 BTRFS_RESERVE_FLUSH_ALL)) {
4230 to_reclaim = 0;
4231 goto out;
4234 used = space_info->bytes_used + space_info->bytes_reserved +
4235 space_info->bytes_pinned + space_info->bytes_readonly +
4236 space_info->bytes_may_use;
4237 if (can_overcommit(root, space_info, 1024 * 1024,
4238 BTRFS_RESERVE_FLUSH_ALL))
4239 expected = div_factor_fine(space_info->total_bytes, 95);
4240 else
4241 expected = div_factor_fine(space_info->total_bytes, 90);
4243 if (used > expected)
4244 to_reclaim = used - expected;
4245 else
4246 to_reclaim = 0;
4247 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4248 space_info->bytes_reserved);
4249 out:
4250 spin_unlock(&space_info->lock);
4252 return to_reclaim;
4255 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4256 struct btrfs_fs_info *fs_info, u64 used)
4258 return (used >= div_factor_fine(space_info->total_bytes, 98) &&
4259 !btrfs_fs_closing(fs_info) &&
4260 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4263 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
4264 struct btrfs_fs_info *fs_info,
4265 int flush_state)
4267 u64 used;
4269 spin_lock(&space_info->lock);
4271 * We run out of space and have not got any free space via flush_space,
4272 * so don't bother doing async reclaim.
4274 if (flush_state > COMMIT_TRANS && space_info->full) {
4275 spin_unlock(&space_info->lock);
4276 return 0;
4279 used = space_info->bytes_used + space_info->bytes_reserved +
4280 space_info->bytes_pinned + space_info->bytes_readonly +
4281 space_info->bytes_may_use;
4282 if (need_do_async_reclaim(space_info, fs_info, used)) {
4283 spin_unlock(&space_info->lock);
4284 return 1;
4286 spin_unlock(&space_info->lock);
4288 return 0;
4291 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4293 struct btrfs_fs_info *fs_info;
4294 struct btrfs_space_info *space_info;
4295 u64 to_reclaim;
4296 int flush_state;
4298 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4299 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4301 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4302 space_info);
4303 if (!to_reclaim)
4304 return;
4306 flush_state = FLUSH_DELAYED_ITEMS_NR;
4307 do {
4308 flush_space(fs_info->fs_root, space_info, to_reclaim,
4309 to_reclaim, flush_state);
4310 flush_state++;
4311 if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4312 flush_state))
4313 return;
4314 } while (flush_state <= COMMIT_TRANS);
4316 if (btrfs_need_do_async_reclaim(space_info, fs_info, flush_state))
4317 queue_work(system_unbound_wq, work);
4320 void btrfs_init_async_reclaim_work(struct work_struct *work)
4322 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4326 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4327 * @root - the root we're allocating for
4328 * @block_rsv - the block_rsv we're allocating for
4329 * @orig_bytes - the number of bytes we want
4330 * @flush - whether or not we can flush to make our reservation
4332 * This will reserve orgi_bytes number of bytes from the space info associated
4333 * with the block_rsv. If there is not enough space it will make an attempt to
4334 * flush out space to make room. It will do this by flushing delalloc if
4335 * possible or committing the transaction. If flush is 0 then no attempts to
4336 * regain reservations will be made and this will fail if there is not enough
4337 * space already.
4339 static int reserve_metadata_bytes(struct btrfs_root *root,
4340 struct btrfs_block_rsv *block_rsv,
4341 u64 orig_bytes,
4342 enum btrfs_reserve_flush_enum flush)
4344 struct btrfs_space_info *space_info = block_rsv->space_info;
4345 u64 used;
4346 u64 num_bytes = orig_bytes;
4347 int flush_state = FLUSH_DELAYED_ITEMS_NR;
4348 int ret = 0;
4349 bool flushing = false;
4351 again:
4352 ret = 0;
4353 spin_lock(&space_info->lock);
4355 * We only want to wait if somebody other than us is flushing and we
4356 * are actually allowed to flush all things.
4358 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4359 space_info->flush) {
4360 spin_unlock(&space_info->lock);
4362 * If we have a trans handle we can't wait because the flusher
4363 * may have to commit the transaction, which would mean we would
4364 * deadlock since we are waiting for the flusher to finish, but
4365 * hold the current transaction open.
4367 if (current->journal_info)
4368 return -EAGAIN;
4369 ret = wait_event_killable(space_info->wait, !space_info->flush);
4370 /* Must have been killed, return */
4371 if (ret)
4372 return -EINTR;
4374 spin_lock(&space_info->lock);
4377 ret = -ENOSPC;
4378 used = space_info->bytes_used + space_info->bytes_reserved +
4379 space_info->bytes_pinned + space_info->bytes_readonly +
4380 space_info->bytes_may_use;
4383 * The idea here is that we've not already over-reserved the block group
4384 * then we can go ahead and save our reservation first and then start
4385 * flushing if we need to. Otherwise if we've already overcommitted
4386 * lets start flushing stuff first and then come back and try to make
4387 * our reservation.
4389 if (used <= space_info->total_bytes) {
4390 if (used + orig_bytes <= space_info->total_bytes) {
4391 space_info->bytes_may_use += orig_bytes;
4392 trace_btrfs_space_reservation(root->fs_info,
4393 "space_info", space_info->flags, orig_bytes, 1);
4394 ret = 0;
4395 } else {
4397 * Ok set num_bytes to orig_bytes since we aren't
4398 * overocmmitted, this way we only try and reclaim what
4399 * we need.
4401 num_bytes = orig_bytes;
4403 } else {
4405 * Ok we're over committed, set num_bytes to the overcommitted
4406 * amount plus the amount of bytes that we need for this
4407 * reservation.
4409 num_bytes = used - space_info->total_bytes +
4410 (orig_bytes * 2);
4413 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4414 space_info->bytes_may_use += orig_bytes;
4415 trace_btrfs_space_reservation(root->fs_info, "space_info",
4416 space_info->flags, orig_bytes,
4418 ret = 0;
4422 * Couldn't make our reservation, save our place so while we're trying
4423 * to reclaim space we can actually use it instead of somebody else
4424 * stealing it from us.
4426 * We make the other tasks wait for the flush only when we can flush
4427 * all things.
4429 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4430 flushing = true;
4431 space_info->flush = 1;
4432 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4433 used += orig_bytes;
4435 * We will do the space reservation dance during log replay,
4436 * which means we won't have fs_info->fs_root set, so don't do
4437 * the async reclaim as we will panic.
4439 if (!root->fs_info->log_root_recovering &&
4440 need_do_async_reclaim(space_info, root->fs_info, used) &&
4441 !work_busy(&root->fs_info->async_reclaim_work))
4442 queue_work(system_unbound_wq,
4443 &root->fs_info->async_reclaim_work);
4445 spin_unlock(&space_info->lock);
4447 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4448 goto out;
4450 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4451 flush_state);
4452 flush_state++;
4455 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4456 * would happen. So skip delalloc flush.
4458 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4459 (flush_state == FLUSH_DELALLOC ||
4460 flush_state == FLUSH_DELALLOC_WAIT))
4461 flush_state = ALLOC_CHUNK;
4463 if (!ret)
4464 goto again;
4465 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4466 flush_state < COMMIT_TRANS)
4467 goto again;
4468 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4469 flush_state <= COMMIT_TRANS)
4470 goto again;
4472 out:
4473 if (ret == -ENOSPC &&
4474 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4475 struct btrfs_block_rsv *global_rsv =
4476 &root->fs_info->global_block_rsv;
4478 if (block_rsv != global_rsv &&
4479 !block_rsv_use_bytes(global_rsv, orig_bytes))
4480 ret = 0;
4482 if (ret == -ENOSPC)
4483 trace_btrfs_space_reservation(root->fs_info,
4484 "space_info:enospc",
4485 space_info->flags, orig_bytes, 1);
4486 if (flushing) {
4487 spin_lock(&space_info->lock);
4488 space_info->flush = 0;
4489 wake_up_all(&space_info->wait);
4490 spin_unlock(&space_info->lock);
4492 return ret;
4495 static struct btrfs_block_rsv *get_block_rsv(
4496 const struct btrfs_trans_handle *trans,
4497 const struct btrfs_root *root)
4499 struct btrfs_block_rsv *block_rsv = NULL;
4501 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4502 block_rsv = trans->block_rsv;
4504 if (root == root->fs_info->csum_root && trans->adding_csums)
4505 block_rsv = trans->block_rsv;
4507 if (root == root->fs_info->uuid_root)
4508 block_rsv = trans->block_rsv;
4510 if (!block_rsv)
4511 block_rsv = root->block_rsv;
4513 if (!block_rsv)
4514 block_rsv = &root->fs_info->empty_block_rsv;
4516 return block_rsv;
4519 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4520 u64 num_bytes)
4522 int ret = -ENOSPC;
4523 spin_lock(&block_rsv->lock);
4524 if (block_rsv->reserved >= num_bytes) {
4525 block_rsv->reserved -= num_bytes;
4526 if (block_rsv->reserved < block_rsv->size)
4527 block_rsv->full = 0;
4528 ret = 0;
4530 spin_unlock(&block_rsv->lock);
4531 return ret;
4534 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4535 u64 num_bytes, int update_size)
4537 spin_lock(&block_rsv->lock);
4538 block_rsv->reserved += num_bytes;
4539 if (update_size)
4540 block_rsv->size += num_bytes;
4541 else if (block_rsv->reserved >= block_rsv->size)
4542 block_rsv->full = 1;
4543 spin_unlock(&block_rsv->lock);
4546 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4547 struct btrfs_block_rsv *dest, u64 num_bytes,
4548 int min_factor)
4550 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4551 u64 min_bytes;
4553 if (global_rsv->space_info != dest->space_info)
4554 return -ENOSPC;
4556 spin_lock(&global_rsv->lock);
4557 min_bytes = div_factor(global_rsv->size, min_factor);
4558 if (global_rsv->reserved < min_bytes + num_bytes) {
4559 spin_unlock(&global_rsv->lock);
4560 return -ENOSPC;
4562 global_rsv->reserved -= num_bytes;
4563 if (global_rsv->reserved < global_rsv->size)
4564 global_rsv->full = 0;
4565 spin_unlock(&global_rsv->lock);
4567 block_rsv_add_bytes(dest, num_bytes, 1);
4568 return 0;
4571 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4572 struct btrfs_block_rsv *block_rsv,
4573 struct btrfs_block_rsv *dest, u64 num_bytes)
4575 struct btrfs_space_info *space_info = block_rsv->space_info;
4577 spin_lock(&block_rsv->lock);
4578 if (num_bytes == (u64)-1)
4579 num_bytes = block_rsv->size;
4580 block_rsv->size -= num_bytes;
4581 if (block_rsv->reserved >= block_rsv->size) {
4582 num_bytes = block_rsv->reserved - block_rsv->size;
4583 block_rsv->reserved = block_rsv->size;
4584 block_rsv->full = 1;
4585 } else {
4586 num_bytes = 0;
4588 spin_unlock(&block_rsv->lock);
4590 if (num_bytes > 0) {
4591 if (dest) {
4592 spin_lock(&dest->lock);
4593 if (!dest->full) {
4594 u64 bytes_to_add;
4596 bytes_to_add = dest->size - dest->reserved;
4597 bytes_to_add = min(num_bytes, bytes_to_add);
4598 dest->reserved += bytes_to_add;
4599 if (dest->reserved >= dest->size)
4600 dest->full = 1;
4601 num_bytes -= bytes_to_add;
4603 spin_unlock(&dest->lock);
4605 if (num_bytes) {
4606 spin_lock(&space_info->lock);
4607 space_info->bytes_may_use -= num_bytes;
4608 trace_btrfs_space_reservation(fs_info, "space_info",
4609 space_info->flags, num_bytes, 0);
4610 spin_unlock(&space_info->lock);
4615 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4616 struct btrfs_block_rsv *dst, u64 num_bytes)
4618 int ret;
4620 ret = block_rsv_use_bytes(src, num_bytes);
4621 if (ret)
4622 return ret;
4624 block_rsv_add_bytes(dst, num_bytes, 1);
4625 return 0;
4628 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4630 memset(rsv, 0, sizeof(*rsv));
4631 spin_lock_init(&rsv->lock);
4632 rsv->type = type;
4635 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4636 unsigned short type)
4638 struct btrfs_block_rsv *block_rsv;
4639 struct btrfs_fs_info *fs_info = root->fs_info;
4641 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4642 if (!block_rsv)
4643 return NULL;
4645 btrfs_init_block_rsv(block_rsv, type);
4646 block_rsv->space_info = __find_space_info(fs_info,
4647 BTRFS_BLOCK_GROUP_METADATA);
4648 return block_rsv;
4651 void btrfs_free_block_rsv(struct btrfs_root *root,
4652 struct btrfs_block_rsv *rsv)
4654 if (!rsv)
4655 return;
4656 btrfs_block_rsv_release(root, rsv, (u64)-1);
4657 kfree(rsv);
4660 int btrfs_block_rsv_add(struct btrfs_root *root,
4661 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4662 enum btrfs_reserve_flush_enum flush)
4664 int ret;
4666 if (num_bytes == 0)
4667 return 0;
4669 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4670 if (!ret) {
4671 block_rsv_add_bytes(block_rsv, num_bytes, 1);
4672 return 0;
4675 return ret;
4678 int btrfs_block_rsv_check(struct btrfs_root *root,
4679 struct btrfs_block_rsv *block_rsv, int min_factor)
4681 u64 num_bytes = 0;
4682 int ret = -ENOSPC;
4684 if (!block_rsv)
4685 return 0;
4687 spin_lock(&block_rsv->lock);
4688 num_bytes = div_factor(block_rsv->size, min_factor);
4689 if (block_rsv->reserved >= num_bytes)
4690 ret = 0;
4691 spin_unlock(&block_rsv->lock);
4693 return ret;
4696 int btrfs_block_rsv_refill(struct btrfs_root *root,
4697 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4698 enum btrfs_reserve_flush_enum flush)
4700 u64 num_bytes = 0;
4701 int ret = -ENOSPC;
4703 if (!block_rsv)
4704 return 0;
4706 spin_lock(&block_rsv->lock);
4707 num_bytes = min_reserved;
4708 if (block_rsv->reserved >= num_bytes)
4709 ret = 0;
4710 else
4711 num_bytes -= block_rsv->reserved;
4712 spin_unlock(&block_rsv->lock);
4714 if (!ret)
4715 return 0;
4717 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4718 if (!ret) {
4719 block_rsv_add_bytes(block_rsv, num_bytes, 0);
4720 return 0;
4723 return ret;
4726 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4727 struct btrfs_block_rsv *dst_rsv,
4728 u64 num_bytes)
4730 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4733 void btrfs_block_rsv_release(struct btrfs_root *root,
4734 struct btrfs_block_rsv *block_rsv,
4735 u64 num_bytes)
4737 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4738 if (global_rsv == block_rsv ||
4739 block_rsv->space_info != global_rsv->space_info)
4740 global_rsv = NULL;
4741 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4742 num_bytes);
4746 * helper to calculate size of global block reservation.
4747 * the desired value is sum of space used by extent tree,
4748 * checksum tree and root tree
4750 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4752 struct btrfs_space_info *sinfo;
4753 u64 num_bytes;
4754 u64 meta_used;
4755 u64 data_used;
4756 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4758 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4759 spin_lock(&sinfo->lock);
4760 data_used = sinfo->bytes_used;
4761 spin_unlock(&sinfo->lock);
4763 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4764 spin_lock(&sinfo->lock);
4765 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4766 data_used = 0;
4767 meta_used = sinfo->bytes_used;
4768 spin_unlock(&sinfo->lock);
4770 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4771 csum_size * 2;
4772 num_bytes += div_u64(data_used + meta_used, 50);
4774 if (num_bytes * 3 > meta_used)
4775 num_bytes = div_u64(meta_used, 3);
4777 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
4780 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4782 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4783 struct btrfs_space_info *sinfo = block_rsv->space_info;
4784 u64 num_bytes;
4786 num_bytes = calc_global_metadata_size(fs_info);
4788 spin_lock(&sinfo->lock);
4789 spin_lock(&block_rsv->lock);
4791 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4793 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4794 sinfo->bytes_reserved + sinfo->bytes_readonly +
4795 sinfo->bytes_may_use;
4797 if (sinfo->total_bytes > num_bytes) {
4798 num_bytes = sinfo->total_bytes - num_bytes;
4799 block_rsv->reserved += num_bytes;
4800 sinfo->bytes_may_use += num_bytes;
4801 trace_btrfs_space_reservation(fs_info, "space_info",
4802 sinfo->flags, num_bytes, 1);
4805 if (block_rsv->reserved >= block_rsv->size) {
4806 num_bytes = block_rsv->reserved - block_rsv->size;
4807 sinfo->bytes_may_use -= num_bytes;
4808 trace_btrfs_space_reservation(fs_info, "space_info",
4809 sinfo->flags, num_bytes, 0);
4810 block_rsv->reserved = block_rsv->size;
4811 block_rsv->full = 1;
4814 spin_unlock(&block_rsv->lock);
4815 spin_unlock(&sinfo->lock);
4818 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4820 struct btrfs_space_info *space_info;
4822 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4823 fs_info->chunk_block_rsv.space_info = space_info;
4825 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4826 fs_info->global_block_rsv.space_info = space_info;
4827 fs_info->delalloc_block_rsv.space_info = space_info;
4828 fs_info->trans_block_rsv.space_info = space_info;
4829 fs_info->empty_block_rsv.space_info = space_info;
4830 fs_info->delayed_block_rsv.space_info = space_info;
4832 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4833 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4834 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4835 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4836 if (fs_info->quota_root)
4837 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
4838 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4840 update_global_block_rsv(fs_info);
4843 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4845 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4846 (u64)-1);
4847 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4848 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4849 WARN_ON(fs_info->trans_block_rsv.size > 0);
4850 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4851 WARN_ON(fs_info->chunk_block_rsv.size > 0);
4852 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4853 WARN_ON(fs_info->delayed_block_rsv.size > 0);
4854 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4857 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4858 struct btrfs_root *root)
4860 if (!trans->block_rsv)
4861 return;
4863 if (!trans->bytes_reserved)
4864 return;
4866 trace_btrfs_space_reservation(root->fs_info, "transaction",
4867 trans->transid, trans->bytes_reserved, 0);
4868 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4869 trans->bytes_reserved = 0;
4872 /* Can only return 0 or -ENOSPC */
4873 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4874 struct inode *inode)
4876 struct btrfs_root *root = BTRFS_I(inode)->root;
4877 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4878 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4881 * We need to hold space in order to delete our orphan item once we've
4882 * added it, so this takes the reservation so we can release it later
4883 * when we are truly done with the orphan item.
4885 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4886 trace_btrfs_space_reservation(root->fs_info, "orphan",
4887 btrfs_ino(inode), num_bytes, 1);
4888 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4891 void btrfs_orphan_release_metadata(struct inode *inode)
4893 struct btrfs_root *root = BTRFS_I(inode)->root;
4894 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4895 trace_btrfs_space_reservation(root->fs_info, "orphan",
4896 btrfs_ino(inode), num_bytes, 0);
4897 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4901 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
4902 * root: the root of the parent directory
4903 * rsv: block reservation
4904 * items: the number of items that we need do reservation
4905 * qgroup_reserved: used to return the reserved size in qgroup
4907 * This function is used to reserve the space for snapshot/subvolume
4908 * creation and deletion. Those operations are different with the
4909 * common file/directory operations, they change two fs/file trees
4910 * and root tree, the number of items that the qgroup reserves is
4911 * different with the free space reservation. So we can not use
4912 * the space reseravtion mechanism in start_transaction().
4914 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
4915 struct btrfs_block_rsv *rsv,
4916 int items,
4917 u64 *qgroup_reserved,
4918 bool use_global_rsv)
4920 u64 num_bytes;
4921 int ret;
4922 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4924 if (root->fs_info->quota_enabled) {
4925 /* One for parent inode, two for dir entries */
4926 num_bytes = 3 * root->nodesize;
4927 ret = btrfs_qgroup_reserve(root, num_bytes);
4928 if (ret)
4929 return ret;
4930 } else {
4931 num_bytes = 0;
4934 *qgroup_reserved = num_bytes;
4936 num_bytes = btrfs_calc_trans_metadata_size(root, items);
4937 rsv->space_info = __find_space_info(root->fs_info,
4938 BTRFS_BLOCK_GROUP_METADATA);
4939 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
4940 BTRFS_RESERVE_FLUSH_ALL);
4942 if (ret == -ENOSPC && use_global_rsv)
4943 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
4945 if (ret) {
4946 if (*qgroup_reserved)
4947 btrfs_qgroup_free(root, *qgroup_reserved);
4950 return ret;
4953 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
4954 struct btrfs_block_rsv *rsv,
4955 u64 qgroup_reserved)
4957 btrfs_block_rsv_release(root, rsv, (u64)-1);
4958 if (qgroup_reserved)
4959 btrfs_qgroup_free(root, qgroup_reserved);
4963 * drop_outstanding_extent - drop an outstanding extent
4964 * @inode: the inode we're dropping the extent for
4965 * @num_bytes: the number of bytes we're relaseing.
4967 * This is called when we are freeing up an outstanding extent, either called
4968 * after an error or after an extent is written. This will return the number of
4969 * reserved extents that need to be freed. This must be called with
4970 * BTRFS_I(inode)->lock held.
4972 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
4974 unsigned drop_inode_space = 0;
4975 unsigned dropped_extents = 0;
4976 unsigned num_extents = 0;
4978 num_extents = (unsigned)div64_u64(num_bytes +
4979 BTRFS_MAX_EXTENT_SIZE - 1,
4980 BTRFS_MAX_EXTENT_SIZE);
4981 ASSERT(num_extents);
4982 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
4983 BTRFS_I(inode)->outstanding_extents -= num_extents;
4985 if (BTRFS_I(inode)->outstanding_extents == 0 &&
4986 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4987 &BTRFS_I(inode)->runtime_flags))
4988 drop_inode_space = 1;
4991 * If we have more or the same amount of outsanding extents than we have
4992 * reserved then we need to leave the reserved extents count alone.
4994 if (BTRFS_I(inode)->outstanding_extents >=
4995 BTRFS_I(inode)->reserved_extents)
4996 return drop_inode_space;
4998 dropped_extents = BTRFS_I(inode)->reserved_extents -
4999 BTRFS_I(inode)->outstanding_extents;
5000 BTRFS_I(inode)->reserved_extents -= dropped_extents;
5001 return dropped_extents + drop_inode_space;
5005 * calc_csum_metadata_size - return the amount of metada space that must be
5006 * reserved/free'd for the given bytes.
5007 * @inode: the inode we're manipulating
5008 * @num_bytes: the number of bytes in question
5009 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5011 * This adjusts the number of csum_bytes in the inode and then returns the
5012 * correct amount of metadata that must either be reserved or freed. We
5013 * calculate how many checksums we can fit into one leaf and then divide the
5014 * number of bytes that will need to be checksumed by this value to figure out
5015 * how many checksums will be required. If we are adding bytes then the number
5016 * may go up and we will return the number of additional bytes that must be
5017 * reserved. If it is going down we will return the number of bytes that must
5018 * be freed.
5020 * This must be called with BTRFS_I(inode)->lock held.
5022 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5023 int reserve)
5025 struct btrfs_root *root = BTRFS_I(inode)->root;
5026 u64 csum_size;
5027 int num_csums_per_leaf;
5028 int num_csums;
5029 int old_csums;
5031 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5032 BTRFS_I(inode)->csum_bytes == 0)
5033 return 0;
5035 old_csums = (int)div_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
5036 if (reserve)
5037 BTRFS_I(inode)->csum_bytes += num_bytes;
5038 else
5039 BTRFS_I(inode)->csum_bytes -= num_bytes;
5040 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
5041 num_csums_per_leaf = (int)div_u64(csum_size,
5042 sizeof(struct btrfs_csum_item) +
5043 sizeof(struct btrfs_disk_key));
5044 num_csums = (int)div_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
5045 num_csums = num_csums + num_csums_per_leaf - 1;
5046 num_csums = num_csums / num_csums_per_leaf;
5048 old_csums = old_csums + num_csums_per_leaf - 1;
5049 old_csums = old_csums / num_csums_per_leaf;
5051 /* No change, no need to reserve more */
5052 if (old_csums == num_csums)
5053 return 0;
5055 if (reserve)
5056 return btrfs_calc_trans_metadata_size(root,
5057 num_csums - old_csums);
5059 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5062 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5064 struct btrfs_root *root = BTRFS_I(inode)->root;
5065 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5066 u64 to_reserve = 0;
5067 u64 csum_bytes;
5068 unsigned nr_extents = 0;
5069 int extra_reserve = 0;
5070 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5071 int ret = 0;
5072 bool delalloc_lock = true;
5073 u64 to_free = 0;
5074 unsigned dropped;
5076 /* If we are a free space inode we need to not flush since we will be in
5077 * the middle of a transaction commit. We also don't need the delalloc
5078 * mutex since we won't race with anybody. We need this mostly to make
5079 * lockdep shut its filthy mouth.
5081 if (btrfs_is_free_space_inode(inode)) {
5082 flush = BTRFS_RESERVE_NO_FLUSH;
5083 delalloc_lock = false;
5086 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5087 btrfs_transaction_in_commit(root->fs_info))
5088 schedule_timeout(1);
5090 if (delalloc_lock)
5091 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5093 num_bytes = ALIGN(num_bytes, root->sectorsize);
5095 spin_lock(&BTRFS_I(inode)->lock);
5096 BTRFS_I(inode)->outstanding_extents++;
5098 if (BTRFS_I(inode)->outstanding_extents >
5099 BTRFS_I(inode)->reserved_extents)
5100 nr_extents = BTRFS_I(inode)->outstanding_extents -
5101 BTRFS_I(inode)->reserved_extents;
5104 * Add an item to reserve for updating the inode when we complete the
5105 * delalloc io.
5107 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5108 &BTRFS_I(inode)->runtime_flags)) {
5109 nr_extents++;
5110 extra_reserve = 1;
5113 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
5114 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5115 csum_bytes = BTRFS_I(inode)->csum_bytes;
5116 spin_unlock(&BTRFS_I(inode)->lock);
5118 if (root->fs_info->quota_enabled) {
5119 ret = btrfs_qgroup_reserve(root, num_bytes +
5120 nr_extents * root->nodesize);
5121 if (ret)
5122 goto out_fail;
5125 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5126 if (unlikely(ret)) {
5127 if (root->fs_info->quota_enabled)
5128 btrfs_qgroup_free(root, num_bytes +
5129 nr_extents * root->nodesize);
5130 goto out_fail;
5133 spin_lock(&BTRFS_I(inode)->lock);
5134 if (extra_reserve) {
5135 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5136 &BTRFS_I(inode)->runtime_flags);
5137 nr_extents--;
5139 BTRFS_I(inode)->reserved_extents += nr_extents;
5140 spin_unlock(&BTRFS_I(inode)->lock);
5142 if (delalloc_lock)
5143 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5145 if (to_reserve)
5146 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5147 btrfs_ino(inode), to_reserve, 1);
5148 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5150 return 0;
5152 out_fail:
5153 spin_lock(&BTRFS_I(inode)->lock);
5154 dropped = drop_outstanding_extent(inode, num_bytes);
5156 * If the inodes csum_bytes is the same as the original
5157 * csum_bytes then we know we haven't raced with any free()ers
5158 * so we can just reduce our inodes csum bytes and carry on.
5160 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5161 calc_csum_metadata_size(inode, num_bytes, 0);
5162 } else {
5163 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5164 u64 bytes;
5167 * This is tricky, but first we need to figure out how much we
5168 * free'd from any free-ers that occured during this
5169 * reservation, so we reset ->csum_bytes to the csum_bytes
5170 * before we dropped our lock, and then call the free for the
5171 * number of bytes that were freed while we were trying our
5172 * reservation.
5174 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5175 BTRFS_I(inode)->csum_bytes = csum_bytes;
5176 to_free = calc_csum_metadata_size(inode, bytes, 0);
5180 * Now we need to see how much we would have freed had we not
5181 * been making this reservation and our ->csum_bytes were not
5182 * artificially inflated.
5184 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5185 bytes = csum_bytes - orig_csum_bytes;
5186 bytes = calc_csum_metadata_size(inode, bytes, 0);
5189 * Now reset ->csum_bytes to what it should be. If bytes is
5190 * more than to_free then we would have free'd more space had we
5191 * not had an artificially high ->csum_bytes, so we need to free
5192 * the remainder. If bytes is the same or less then we don't
5193 * need to do anything, the other free-ers did the correct
5194 * thing.
5196 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5197 if (bytes > to_free)
5198 to_free = bytes - to_free;
5199 else
5200 to_free = 0;
5202 spin_unlock(&BTRFS_I(inode)->lock);
5203 if (dropped)
5204 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5206 if (to_free) {
5207 btrfs_block_rsv_release(root, block_rsv, to_free);
5208 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5209 btrfs_ino(inode), to_free, 0);
5211 if (delalloc_lock)
5212 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5213 return ret;
5217 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5218 * @inode: the inode to release the reservation for
5219 * @num_bytes: the number of bytes we're releasing
5221 * This will release the metadata reservation for an inode. This can be called
5222 * once we complete IO for a given set of bytes to release their metadata
5223 * reservations.
5225 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5227 struct btrfs_root *root = BTRFS_I(inode)->root;
5228 u64 to_free = 0;
5229 unsigned dropped;
5231 num_bytes = ALIGN(num_bytes, root->sectorsize);
5232 spin_lock(&BTRFS_I(inode)->lock);
5233 dropped = drop_outstanding_extent(inode, num_bytes);
5235 if (num_bytes)
5236 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5237 spin_unlock(&BTRFS_I(inode)->lock);
5238 if (dropped > 0)
5239 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5241 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5242 btrfs_ino(inode), to_free, 0);
5243 if (root->fs_info->quota_enabled) {
5244 btrfs_qgroup_free(root, num_bytes +
5245 dropped * root->nodesize);
5248 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5249 to_free);
5253 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5254 * @inode: inode we're writing to
5255 * @num_bytes: the number of bytes we want to allocate
5257 * This will do the following things
5259 * o reserve space in the data space info for num_bytes
5260 * o reserve space in the metadata space info based on number of outstanding
5261 * extents and how much csums will be needed
5262 * o add to the inodes ->delalloc_bytes
5263 * o add it to the fs_info's delalloc inodes list.
5265 * This will return 0 for success and -ENOSPC if there is no space left.
5267 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5269 int ret;
5271 ret = btrfs_check_data_free_space(inode, num_bytes);
5272 if (ret)
5273 return ret;
5275 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5276 if (ret) {
5277 btrfs_free_reserved_data_space(inode, num_bytes);
5278 return ret;
5281 return 0;
5285 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5286 * @inode: inode we're releasing space for
5287 * @num_bytes: the number of bytes we want to free up
5289 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5290 * called in the case that we don't need the metadata AND data reservations
5291 * anymore. So if there is an error or we insert an inline extent.
5293 * This function will release the metadata space that was not used and will
5294 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5295 * list if there are no delalloc bytes left.
5297 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5299 btrfs_delalloc_release_metadata(inode, num_bytes);
5300 btrfs_free_reserved_data_space(inode, num_bytes);
5303 static int update_block_group(struct btrfs_trans_handle *trans,
5304 struct btrfs_root *root, u64 bytenr,
5305 u64 num_bytes, int alloc)
5307 struct btrfs_block_group_cache *cache = NULL;
5308 struct btrfs_fs_info *info = root->fs_info;
5309 u64 total = num_bytes;
5310 u64 old_val;
5311 u64 byte_in_group;
5312 int factor;
5314 /* block accounting for super block */
5315 spin_lock(&info->delalloc_root_lock);
5316 old_val = btrfs_super_bytes_used(info->super_copy);
5317 if (alloc)
5318 old_val += num_bytes;
5319 else
5320 old_val -= num_bytes;
5321 btrfs_set_super_bytes_used(info->super_copy, old_val);
5322 spin_unlock(&info->delalloc_root_lock);
5324 while (total) {
5325 cache = btrfs_lookup_block_group(info, bytenr);
5326 if (!cache)
5327 return -ENOENT;
5328 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5329 BTRFS_BLOCK_GROUP_RAID1 |
5330 BTRFS_BLOCK_GROUP_RAID10))
5331 factor = 2;
5332 else
5333 factor = 1;
5335 * If this block group has free space cache written out, we
5336 * need to make sure to load it if we are removing space. This
5337 * is because we need the unpinning stage to actually add the
5338 * space back to the block group, otherwise we will leak space.
5340 if (!alloc && cache->cached == BTRFS_CACHE_NO)
5341 cache_block_group(cache, 1);
5343 spin_lock(&trans->transaction->dirty_bgs_lock);
5344 if (list_empty(&cache->dirty_list)) {
5345 list_add_tail(&cache->dirty_list,
5346 &trans->transaction->dirty_bgs);
5347 btrfs_get_block_group(cache);
5349 spin_unlock(&trans->transaction->dirty_bgs_lock);
5351 byte_in_group = bytenr - cache->key.objectid;
5352 WARN_ON(byte_in_group > cache->key.offset);
5354 spin_lock(&cache->space_info->lock);
5355 spin_lock(&cache->lock);
5357 if (btrfs_test_opt(root, SPACE_CACHE) &&
5358 cache->disk_cache_state < BTRFS_DC_CLEAR)
5359 cache->disk_cache_state = BTRFS_DC_CLEAR;
5361 old_val = btrfs_block_group_used(&cache->item);
5362 num_bytes = min(total, cache->key.offset - byte_in_group);
5363 if (alloc) {
5364 old_val += num_bytes;
5365 btrfs_set_block_group_used(&cache->item, old_val);
5366 cache->reserved -= num_bytes;
5367 cache->space_info->bytes_reserved -= num_bytes;
5368 cache->space_info->bytes_used += num_bytes;
5369 cache->space_info->disk_used += num_bytes * factor;
5370 spin_unlock(&cache->lock);
5371 spin_unlock(&cache->space_info->lock);
5372 } else {
5373 old_val -= num_bytes;
5374 btrfs_set_block_group_used(&cache->item, old_val);
5375 cache->pinned += num_bytes;
5376 cache->space_info->bytes_pinned += num_bytes;
5377 cache->space_info->bytes_used -= num_bytes;
5378 cache->space_info->disk_used -= num_bytes * factor;
5379 spin_unlock(&cache->lock);
5380 spin_unlock(&cache->space_info->lock);
5382 set_extent_dirty(info->pinned_extents,
5383 bytenr, bytenr + num_bytes - 1,
5384 GFP_NOFS | __GFP_NOFAIL);
5386 * No longer have used bytes in this block group, queue
5387 * it for deletion.
5389 if (old_val == 0) {
5390 spin_lock(&info->unused_bgs_lock);
5391 if (list_empty(&cache->bg_list)) {
5392 btrfs_get_block_group(cache);
5393 list_add_tail(&cache->bg_list,
5394 &info->unused_bgs);
5396 spin_unlock(&info->unused_bgs_lock);
5399 btrfs_put_block_group(cache);
5400 total -= num_bytes;
5401 bytenr += num_bytes;
5403 return 0;
5406 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5408 struct btrfs_block_group_cache *cache;
5409 u64 bytenr;
5411 spin_lock(&root->fs_info->block_group_cache_lock);
5412 bytenr = root->fs_info->first_logical_byte;
5413 spin_unlock(&root->fs_info->block_group_cache_lock);
5415 if (bytenr < (u64)-1)
5416 return bytenr;
5418 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5419 if (!cache)
5420 return 0;
5422 bytenr = cache->key.objectid;
5423 btrfs_put_block_group(cache);
5425 return bytenr;
5428 static int pin_down_extent(struct btrfs_root *root,
5429 struct btrfs_block_group_cache *cache,
5430 u64 bytenr, u64 num_bytes, int reserved)
5432 spin_lock(&cache->space_info->lock);
5433 spin_lock(&cache->lock);
5434 cache->pinned += num_bytes;
5435 cache->space_info->bytes_pinned += num_bytes;
5436 if (reserved) {
5437 cache->reserved -= num_bytes;
5438 cache->space_info->bytes_reserved -= num_bytes;
5440 spin_unlock(&cache->lock);
5441 spin_unlock(&cache->space_info->lock);
5443 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5444 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5445 if (reserved)
5446 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
5447 return 0;
5451 * this function must be called within transaction
5453 int btrfs_pin_extent(struct btrfs_root *root,
5454 u64 bytenr, u64 num_bytes, int reserved)
5456 struct btrfs_block_group_cache *cache;
5458 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5459 BUG_ON(!cache); /* Logic error */
5461 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5463 btrfs_put_block_group(cache);
5464 return 0;
5468 * this function must be called within transaction
5470 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5471 u64 bytenr, u64 num_bytes)
5473 struct btrfs_block_group_cache *cache;
5474 int ret;
5476 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5477 if (!cache)
5478 return -EINVAL;
5481 * pull in the free space cache (if any) so that our pin
5482 * removes the free space from the cache. We have load_only set
5483 * to one because the slow code to read in the free extents does check
5484 * the pinned extents.
5486 cache_block_group(cache, 1);
5488 pin_down_extent(root, cache, bytenr, num_bytes, 0);
5490 /* remove us from the free space cache (if we're there at all) */
5491 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5492 btrfs_put_block_group(cache);
5493 return ret;
5496 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5498 int ret;
5499 struct btrfs_block_group_cache *block_group;
5500 struct btrfs_caching_control *caching_ctl;
5502 block_group = btrfs_lookup_block_group(root->fs_info, start);
5503 if (!block_group)
5504 return -EINVAL;
5506 cache_block_group(block_group, 0);
5507 caching_ctl = get_caching_control(block_group);
5509 if (!caching_ctl) {
5510 /* Logic error */
5511 BUG_ON(!block_group_cache_done(block_group));
5512 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5513 } else {
5514 mutex_lock(&caching_ctl->mutex);
5516 if (start >= caching_ctl->progress) {
5517 ret = add_excluded_extent(root, start, num_bytes);
5518 } else if (start + num_bytes <= caching_ctl->progress) {
5519 ret = btrfs_remove_free_space(block_group,
5520 start, num_bytes);
5521 } else {
5522 num_bytes = caching_ctl->progress - start;
5523 ret = btrfs_remove_free_space(block_group,
5524 start, num_bytes);
5525 if (ret)
5526 goto out_lock;
5528 num_bytes = (start + num_bytes) -
5529 caching_ctl->progress;
5530 start = caching_ctl->progress;
5531 ret = add_excluded_extent(root, start, num_bytes);
5533 out_lock:
5534 mutex_unlock(&caching_ctl->mutex);
5535 put_caching_control(caching_ctl);
5537 btrfs_put_block_group(block_group);
5538 return ret;
5541 int btrfs_exclude_logged_extents(struct btrfs_root *log,
5542 struct extent_buffer *eb)
5544 struct btrfs_file_extent_item *item;
5545 struct btrfs_key key;
5546 int found_type;
5547 int i;
5549 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5550 return 0;
5552 for (i = 0; i < btrfs_header_nritems(eb); i++) {
5553 btrfs_item_key_to_cpu(eb, &key, i);
5554 if (key.type != BTRFS_EXTENT_DATA_KEY)
5555 continue;
5556 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5557 found_type = btrfs_file_extent_type(eb, item);
5558 if (found_type == BTRFS_FILE_EXTENT_INLINE)
5559 continue;
5560 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5561 continue;
5562 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5563 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5564 __exclude_logged_extent(log, key.objectid, key.offset);
5567 return 0;
5571 * btrfs_update_reserved_bytes - update the block_group and space info counters
5572 * @cache: The cache we are manipulating
5573 * @num_bytes: The number of bytes in question
5574 * @reserve: One of the reservation enums
5575 * @delalloc: The blocks are allocated for the delalloc write
5577 * This is called by the allocator when it reserves space, or by somebody who is
5578 * freeing space that was never actually used on disk. For example if you
5579 * reserve some space for a new leaf in transaction A and before transaction A
5580 * commits you free that leaf, you call this with reserve set to 0 in order to
5581 * clear the reservation.
5583 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5584 * ENOSPC accounting. For data we handle the reservation through clearing the
5585 * delalloc bits in the io_tree. We have to do this since we could end up
5586 * allocating less disk space for the amount of data we have reserved in the
5587 * case of compression.
5589 * If this is a reservation and the block group has become read only we cannot
5590 * make the reservation and return -EAGAIN, otherwise this function always
5591 * succeeds.
5593 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5594 u64 num_bytes, int reserve, int delalloc)
5596 struct btrfs_space_info *space_info = cache->space_info;
5597 int ret = 0;
5599 spin_lock(&space_info->lock);
5600 spin_lock(&cache->lock);
5601 if (reserve != RESERVE_FREE) {
5602 if (cache->ro) {
5603 ret = -EAGAIN;
5604 } else {
5605 cache->reserved += num_bytes;
5606 space_info->bytes_reserved += num_bytes;
5607 if (reserve == RESERVE_ALLOC) {
5608 trace_btrfs_space_reservation(cache->fs_info,
5609 "space_info", space_info->flags,
5610 num_bytes, 0);
5611 space_info->bytes_may_use -= num_bytes;
5614 if (delalloc)
5615 cache->delalloc_bytes += num_bytes;
5617 } else {
5618 if (cache->ro)
5619 space_info->bytes_readonly += num_bytes;
5620 cache->reserved -= num_bytes;
5621 space_info->bytes_reserved -= num_bytes;
5623 if (delalloc)
5624 cache->delalloc_bytes -= num_bytes;
5626 spin_unlock(&cache->lock);
5627 spin_unlock(&space_info->lock);
5628 return ret;
5631 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5632 struct btrfs_root *root)
5634 struct btrfs_fs_info *fs_info = root->fs_info;
5635 struct btrfs_caching_control *next;
5636 struct btrfs_caching_control *caching_ctl;
5637 struct btrfs_block_group_cache *cache;
5639 down_write(&fs_info->commit_root_sem);
5641 list_for_each_entry_safe(caching_ctl, next,
5642 &fs_info->caching_block_groups, list) {
5643 cache = caching_ctl->block_group;
5644 if (block_group_cache_done(cache)) {
5645 cache->last_byte_to_unpin = (u64)-1;
5646 list_del_init(&caching_ctl->list);
5647 put_caching_control(caching_ctl);
5648 } else {
5649 cache->last_byte_to_unpin = caching_ctl->progress;
5653 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5654 fs_info->pinned_extents = &fs_info->freed_extents[1];
5655 else
5656 fs_info->pinned_extents = &fs_info->freed_extents[0];
5658 up_write(&fs_info->commit_root_sem);
5660 update_global_block_rsv(fs_info);
5663 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
5664 const bool return_free_space)
5666 struct btrfs_fs_info *fs_info = root->fs_info;
5667 struct btrfs_block_group_cache *cache = NULL;
5668 struct btrfs_space_info *space_info;
5669 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5670 u64 len;
5671 bool readonly;
5673 while (start <= end) {
5674 readonly = false;
5675 if (!cache ||
5676 start >= cache->key.objectid + cache->key.offset) {
5677 if (cache)
5678 btrfs_put_block_group(cache);
5679 cache = btrfs_lookup_block_group(fs_info, start);
5680 BUG_ON(!cache); /* Logic error */
5683 len = cache->key.objectid + cache->key.offset - start;
5684 len = min(len, end + 1 - start);
5686 if (start < cache->last_byte_to_unpin) {
5687 len = min(len, cache->last_byte_to_unpin - start);
5688 if (return_free_space)
5689 btrfs_add_free_space(cache, start, len);
5692 start += len;
5693 space_info = cache->space_info;
5695 spin_lock(&space_info->lock);
5696 spin_lock(&cache->lock);
5697 cache->pinned -= len;
5698 space_info->bytes_pinned -= len;
5699 percpu_counter_add(&space_info->total_bytes_pinned, -len);
5700 if (cache->ro) {
5701 space_info->bytes_readonly += len;
5702 readonly = true;
5704 spin_unlock(&cache->lock);
5705 if (!readonly && global_rsv->space_info == space_info) {
5706 spin_lock(&global_rsv->lock);
5707 if (!global_rsv->full) {
5708 len = min(len, global_rsv->size -
5709 global_rsv->reserved);
5710 global_rsv->reserved += len;
5711 space_info->bytes_may_use += len;
5712 if (global_rsv->reserved >= global_rsv->size)
5713 global_rsv->full = 1;
5715 spin_unlock(&global_rsv->lock);
5717 spin_unlock(&space_info->lock);
5720 if (cache)
5721 btrfs_put_block_group(cache);
5722 return 0;
5725 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
5726 struct btrfs_root *root)
5728 struct btrfs_fs_info *fs_info = root->fs_info;
5729 struct extent_io_tree *unpin;
5730 u64 start;
5731 u64 end;
5732 int ret;
5734 if (trans->aborted)
5735 return 0;
5737 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5738 unpin = &fs_info->freed_extents[1];
5739 else
5740 unpin = &fs_info->freed_extents[0];
5742 while (1) {
5743 mutex_lock(&fs_info->unused_bg_unpin_mutex);
5744 ret = find_first_extent_bit(unpin, 0, &start, &end,
5745 EXTENT_DIRTY, NULL);
5746 if (ret) {
5747 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
5748 break;
5751 if (btrfs_test_opt(root, DISCARD))
5752 ret = btrfs_discard_extent(root, start,
5753 end + 1 - start, NULL);
5755 clear_extent_dirty(unpin, start, end, GFP_NOFS);
5756 unpin_extent_range(root, start, end, true);
5757 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
5758 cond_resched();
5761 return 0;
5764 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
5765 u64 owner, u64 root_objectid)
5767 struct btrfs_space_info *space_info;
5768 u64 flags;
5770 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5771 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
5772 flags = BTRFS_BLOCK_GROUP_SYSTEM;
5773 else
5774 flags = BTRFS_BLOCK_GROUP_METADATA;
5775 } else {
5776 flags = BTRFS_BLOCK_GROUP_DATA;
5779 space_info = __find_space_info(fs_info, flags);
5780 BUG_ON(!space_info); /* Logic bug */
5781 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
5785 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
5786 struct btrfs_root *root,
5787 u64 bytenr, u64 num_bytes, u64 parent,
5788 u64 root_objectid, u64 owner_objectid,
5789 u64 owner_offset, int refs_to_drop,
5790 struct btrfs_delayed_extent_op *extent_op,
5791 int no_quota)
5793 struct btrfs_key key;
5794 struct btrfs_path *path;
5795 struct btrfs_fs_info *info = root->fs_info;
5796 struct btrfs_root *extent_root = info->extent_root;
5797 struct extent_buffer *leaf;
5798 struct btrfs_extent_item *ei;
5799 struct btrfs_extent_inline_ref *iref;
5800 int ret;
5801 int is_data;
5802 int extent_slot = 0;
5803 int found_extent = 0;
5804 int num_to_del = 1;
5805 u32 item_size;
5806 u64 refs;
5807 int last_ref = 0;
5808 enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_SUB_EXCL;
5809 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
5810 SKINNY_METADATA);
5812 if (!info->quota_enabled || !is_fstree(root_objectid))
5813 no_quota = 1;
5815 path = btrfs_alloc_path();
5816 if (!path)
5817 return -ENOMEM;
5819 path->reada = 1;
5820 path->leave_spinning = 1;
5822 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
5823 BUG_ON(!is_data && refs_to_drop != 1);
5825 if (is_data)
5826 skinny_metadata = 0;
5828 ret = lookup_extent_backref(trans, extent_root, path, &iref,
5829 bytenr, num_bytes, parent,
5830 root_objectid, owner_objectid,
5831 owner_offset);
5832 if (ret == 0) {
5833 extent_slot = path->slots[0];
5834 while (extent_slot >= 0) {
5835 btrfs_item_key_to_cpu(path->nodes[0], &key,
5836 extent_slot);
5837 if (key.objectid != bytenr)
5838 break;
5839 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
5840 key.offset == num_bytes) {
5841 found_extent = 1;
5842 break;
5844 if (key.type == BTRFS_METADATA_ITEM_KEY &&
5845 key.offset == owner_objectid) {
5846 found_extent = 1;
5847 break;
5849 if (path->slots[0] - extent_slot > 5)
5850 break;
5851 extent_slot--;
5853 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5854 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
5855 if (found_extent && item_size < sizeof(*ei))
5856 found_extent = 0;
5857 #endif
5858 if (!found_extent) {
5859 BUG_ON(iref);
5860 ret = remove_extent_backref(trans, extent_root, path,
5861 NULL, refs_to_drop,
5862 is_data, &last_ref);
5863 if (ret) {
5864 btrfs_abort_transaction(trans, extent_root, ret);
5865 goto out;
5867 btrfs_release_path(path);
5868 path->leave_spinning = 1;
5870 key.objectid = bytenr;
5871 key.type = BTRFS_EXTENT_ITEM_KEY;
5872 key.offset = num_bytes;
5874 if (!is_data && skinny_metadata) {
5875 key.type = BTRFS_METADATA_ITEM_KEY;
5876 key.offset = owner_objectid;
5879 ret = btrfs_search_slot(trans, extent_root,
5880 &key, path, -1, 1);
5881 if (ret > 0 && skinny_metadata && path->slots[0]) {
5883 * Couldn't find our skinny metadata item,
5884 * see if we have ye olde extent item.
5886 path->slots[0]--;
5887 btrfs_item_key_to_cpu(path->nodes[0], &key,
5888 path->slots[0]);
5889 if (key.objectid == bytenr &&
5890 key.type == BTRFS_EXTENT_ITEM_KEY &&
5891 key.offset == num_bytes)
5892 ret = 0;
5895 if (ret > 0 && skinny_metadata) {
5896 skinny_metadata = false;
5897 key.objectid = bytenr;
5898 key.type = BTRFS_EXTENT_ITEM_KEY;
5899 key.offset = num_bytes;
5900 btrfs_release_path(path);
5901 ret = btrfs_search_slot(trans, extent_root,
5902 &key, path, -1, 1);
5905 if (ret) {
5906 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5907 ret, bytenr);
5908 if (ret > 0)
5909 btrfs_print_leaf(extent_root,
5910 path->nodes[0]);
5912 if (ret < 0) {
5913 btrfs_abort_transaction(trans, extent_root, ret);
5914 goto out;
5916 extent_slot = path->slots[0];
5918 } else if (WARN_ON(ret == -ENOENT)) {
5919 btrfs_print_leaf(extent_root, path->nodes[0]);
5920 btrfs_err(info,
5921 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
5922 bytenr, parent, root_objectid, owner_objectid,
5923 owner_offset);
5924 btrfs_abort_transaction(trans, extent_root, ret);
5925 goto out;
5926 } else {
5927 btrfs_abort_transaction(trans, extent_root, ret);
5928 goto out;
5931 leaf = path->nodes[0];
5932 item_size = btrfs_item_size_nr(leaf, extent_slot);
5933 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5934 if (item_size < sizeof(*ei)) {
5935 BUG_ON(found_extent || extent_slot != path->slots[0]);
5936 ret = convert_extent_item_v0(trans, extent_root, path,
5937 owner_objectid, 0);
5938 if (ret < 0) {
5939 btrfs_abort_transaction(trans, extent_root, ret);
5940 goto out;
5943 btrfs_release_path(path);
5944 path->leave_spinning = 1;
5946 key.objectid = bytenr;
5947 key.type = BTRFS_EXTENT_ITEM_KEY;
5948 key.offset = num_bytes;
5950 ret = btrfs_search_slot(trans, extent_root, &key, path,
5951 -1, 1);
5952 if (ret) {
5953 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5954 ret, bytenr);
5955 btrfs_print_leaf(extent_root, path->nodes[0]);
5957 if (ret < 0) {
5958 btrfs_abort_transaction(trans, extent_root, ret);
5959 goto out;
5962 extent_slot = path->slots[0];
5963 leaf = path->nodes[0];
5964 item_size = btrfs_item_size_nr(leaf, extent_slot);
5966 #endif
5967 BUG_ON(item_size < sizeof(*ei));
5968 ei = btrfs_item_ptr(leaf, extent_slot,
5969 struct btrfs_extent_item);
5970 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
5971 key.type == BTRFS_EXTENT_ITEM_KEY) {
5972 struct btrfs_tree_block_info *bi;
5973 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
5974 bi = (struct btrfs_tree_block_info *)(ei + 1);
5975 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
5978 refs = btrfs_extent_refs(leaf, ei);
5979 if (refs < refs_to_drop) {
5980 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
5981 "for bytenr %Lu", refs_to_drop, refs, bytenr);
5982 ret = -EINVAL;
5983 btrfs_abort_transaction(trans, extent_root, ret);
5984 goto out;
5986 refs -= refs_to_drop;
5988 if (refs > 0) {
5989 type = BTRFS_QGROUP_OPER_SUB_SHARED;
5990 if (extent_op)
5991 __run_delayed_extent_op(extent_op, leaf, ei);
5993 * In the case of inline back ref, reference count will
5994 * be updated by remove_extent_backref
5996 if (iref) {
5997 BUG_ON(!found_extent);
5998 } else {
5999 btrfs_set_extent_refs(leaf, ei, refs);
6000 btrfs_mark_buffer_dirty(leaf);
6002 if (found_extent) {
6003 ret = remove_extent_backref(trans, extent_root, path,
6004 iref, refs_to_drop,
6005 is_data, &last_ref);
6006 if (ret) {
6007 btrfs_abort_transaction(trans, extent_root, ret);
6008 goto out;
6011 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6012 root_objectid);
6013 } else {
6014 if (found_extent) {
6015 BUG_ON(is_data && refs_to_drop !=
6016 extent_data_ref_count(root, path, iref));
6017 if (iref) {
6018 BUG_ON(path->slots[0] != extent_slot);
6019 } else {
6020 BUG_ON(path->slots[0] != extent_slot + 1);
6021 path->slots[0] = extent_slot;
6022 num_to_del = 2;
6026 last_ref = 1;
6027 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6028 num_to_del);
6029 if (ret) {
6030 btrfs_abort_transaction(trans, extent_root, ret);
6031 goto out;
6033 btrfs_release_path(path);
6035 if (is_data) {
6036 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
6037 if (ret) {
6038 btrfs_abort_transaction(trans, extent_root, ret);
6039 goto out;
6043 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
6044 if (ret) {
6045 btrfs_abort_transaction(trans, extent_root, ret);
6046 goto out;
6049 btrfs_release_path(path);
6051 /* Deal with the quota accounting */
6052 if (!ret && last_ref && !no_quota) {
6053 int mod_seq = 0;
6055 if (owner_objectid >= BTRFS_FIRST_FREE_OBJECTID &&
6056 type == BTRFS_QGROUP_OPER_SUB_SHARED)
6057 mod_seq = 1;
6059 ret = btrfs_qgroup_record_ref(trans, info, root_objectid,
6060 bytenr, num_bytes, type,
6061 mod_seq);
6063 out:
6064 btrfs_free_path(path);
6065 return ret;
6069 * when we free an block, it is possible (and likely) that we free the last
6070 * delayed ref for that extent as well. This searches the delayed ref tree for
6071 * a given extent, and if there are no other delayed refs to be processed, it
6072 * removes it from the tree.
6074 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6075 struct btrfs_root *root, u64 bytenr)
6077 struct btrfs_delayed_ref_head *head;
6078 struct btrfs_delayed_ref_root *delayed_refs;
6079 int ret = 0;
6081 delayed_refs = &trans->transaction->delayed_refs;
6082 spin_lock(&delayed_refs->lock);
6083 head = btrfs_find_delayed_ref_head(trans, bytenr);
6084 if (!head)
6085 goto out_delayed_unlock;
6087 spin_lock(&head->lock);
6088 if (rb_first(&head->ref_root))
6089 goto out;
6091 if (head->extent_op) {
6092 if (!head->must_insert_reserved)
6093 goto out;
6094 btrfs_free_delayed_extent_op(head->extent_op);
6095 head->extent_op = NULL;
6099 * waiting for the lock here would deadlock. If someone else has it
6100 * locked they are already in the process of dropping it anyway
6102 if (!mutex_trylock(&head->mutex))
6103 goto out;
6106 * at this point we have a head with no other entries. Go
6107 * ahead and process it.
6109 head->node.in_tree = 0;
6110 rb_erase(&head->href_node, &delayed_refs->href_root);
6112 atomic_dec(&delayed_refs->num_entries);
6115 * we don't take a ref on the node because we're removing it from the
6116 * tree, so we just steal the ref the tree was holding.
6118 delayed_refs->num_heads--;
6119 if (head->processing == 0)
6120 delayed_refs->num_heads_ready--;
6121 head->processing = 0;
6122 spin_unlock(&head->lock);
6123 spin_unlock(&delayed_refs->lock);
6125 BUG_ON(head->extent_op);
6126 if (head->must_insert_reserved)
6127 ret = 1;
6129 mutex_unlock(&head->mutex);
6130 btrfs_put_delayed_ref(&head->node);
6131 return ret;
6132 out:
6133 spin_unlock(&head->lock);
6135 out_delayed_unlock:
6136 spin_unlock(&delayed_refs->lock);
6137 return 0;
6140 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6141 struct btrfs_root *root,
6142 struct extent_buffer *buf,
6143 u64 parent, int last_ref)
6145 int pin = 1;
6146 int ret;
6148 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6149 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6150 buf->start, buf->len,
6151 parent, root->root_key.objectid,
6152 btrfs_header_level(buf),
6153 BTRFS_DROP_DELAYED_REF, NULL, 0);
6154 BUG_ON(ret); /* -ENOMEM */
6157 if (!last_ref)
6158 return;
6160 if (btrfs_header_generation(buf) == trans->transid) {
6161 struct btrfs_block_group_cache *cache;
6163 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6164 ret = check_ref_cleanup(trans, root, buf->start);
6165 if (!ret)
6166 goto out;
6169 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6171 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6172 pin_down_extent(root, cache, buf->start, buf->len, 1);
6173 btrfs_put_block_group(cache);
6174 goto out;
6177 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6179 btrfs_add_free_space(cache, buf->start, buf->len);
6180 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6181 btrfs_put_block_group(cache);
6182 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6183 pin = 0;
6185 out:
6186 if (pin)
6187 add_pinned_bytes(root->fs_info, buf->len,
6188 btrfs_header_level(buf),
6189 root->root_key.objectid);
6192 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6193 * anymore.
6195 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6198 /* Can return -ENOMEM */
6199 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6200 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6201 u64 owner, u64 offset, int no_quota)
6203 int ret;
6204 struct btrfs_fs_info *fs_info = root->fs_info;
6206 if (btrfs_test_is_dummy_root(root))
6207 return 0;
6209 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6212 * tree log blocks never actually go into the extent allocation
6213 * tree, just update pinning info and exit early.
6215 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6216 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6217 /* unlocks the pinned mutex */
6218 btrfs_pin_extent(root, bytenr, num_bytes, 1);
6219 ret = 0;
6220 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6221 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6222 num_bytes,
6223 parent, root_objectid, (int)owner,
6224 BTRFS_DROP_DELAYED_REF, NULL, no_quota);
6225 } else {
6226 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6227 num_bytes,
6228 parent, root_objectid, owner,
6229 offset, BTRFS_DROP_DELAYED_REF,
6230 NULL, no_quota);
6232 return ret;
6236 * when we wait for progress in the block group caching, its because
6237 * our allocation attempt failed at least once. So, we must sleep
6238 * and let some progress happen before we try again.
6240 * This function will sleep at least once waiting for new free space to
6241 * show up, and then it will check the block group free space numbers
6242 * for our min num_bytes. Another option is to have it go ahead
6243 * and look in the rbtree for a free extent of a given size, but this
6244 * is a good start.
6246 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6247 * any of the information in this block group.
6249 static noinline void
6250 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6251 u64 num_bytes)
6253 struct btrfs_caching_control *caching_ctl;
6255 caching_ctl = get_caching_control(cache);
6256 if (!caching_ctl)
6257 return;
6259 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6260 (cache->free_space_ctl->free_space >= num_bytes));
6262 put_caching_control(caching_ctl);
6265 static noinline int
6266 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6268 struct btrfs_caching_control *caching_ctl;
6269 int ret = 0;
6271 caching_ctl = get_caching_control(cache);
6272 if (!caching_ctl)
6273 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6275 wait_event(caching_ctl->wait, block_group_cache_done(cache));
6276 if (cache->cached == BTRFS_CACHE_ERROR)
6277 ret = -EIO;
6278 put_caching_control(caching_ctl);
6279 return ret;
6282 int __get_raid_index(u64 flags)
6284 if (flags & BTRFS_BLOCK_GROUP_RAID10)
6285 return BTRFS_RAID_RAID10;
6286 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6287 return BTRFS_RAID_RAID1;
6288 else if (flags & BTRFS_BLOCK_GROUP_DUP)
6289 return BTRFS_RAID_DUP;
6290 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6291 return BTRFS_RAID_RAID0;
6292 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6293 return BTRFS_RAID_RAID5;
6294 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6295 return BTRFS_RAID_RAID6;
6297 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6300 int get_block_group_index(struct btrfs_block_group_cache *cache)
6302 return __get_raid_index(cache->flags);
6305 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6306 [BTRFS_RAID_RAID10] = "raid10",
6307 [BTRFS_RAID_RAID1] = "raid1",
6308 [BTRFS_RAID_DUP] = "dup",
6309 [BTRFS_RAID_RAID0] = "raid0",
6310 [BTRFS_RAID_SINGLE] = "single",
6311 [BTRFS_RAID_RAID5] = "raid5",
6312 [BTRFS_RAID_RAID6] = "raid6",
6315 static const char *get_raid_name(enum btrfs_raid_types type)
6317 if (type >= BTRFS_NR_RAID_TYPES)
6318 return NULL;
6320 return btrfs_raid_type_names[type];
6323 enum btrfs_loop_type {
6324 LOOP_CACHING_NOWAIT = 0,
6325 LOOP_CACHING_WAIT = 1,
6326 LOOP_ALLOC_CHUNK = 2,
6327 LOOP_NO_EMPTY_SIZE = 3,
6330 static inline void
6331 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6332 int delalloc)
6334 if (delalloc)
6335 down_read(&cache->data_rwsem);
6338 static inline void
6339 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6340 int delalloc)
6342 btrfs_get_block_group(cache);
6343 if (delalloc)
6344 down_read(&cache->data_rwsem);
6347 static struct btrfs_block_group_cache *
6348 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6349 struct btrfs_free_cluster *cluster,
6350 int delalloc)
6352 struct btrfs_block_group_cache *used_bg;
6353 bool locked = false;
6354 again:
6355 spin_lock(&cluster->refill_lock);
6356 if (locked) {
6357 if (used_bg == cluster->block_group)
6358 return used_bg;
6360 up_read(&used_bg->data_rwsem);
6361 btrfs_put_block_group(used_bg);
6364 used_bg = cluster->block_group;
6365 if (!used_bg)
6366 return NULL;
6368 if (used_bg == block_group)
6369 return used_bg;
6371 btrfs_get_block_group(used_bg);
6373 if (!delalloc)
6374 return used_bg;
6376 if (down_read_trylock(&used_bg->data_rwsem))
6377 return used_bg;
6379 spin_unlock(&cluster->refill_lock);
6380 down_read(&used_bg->data_rwsem);
6381 locked = true;
6382 goto again;
6385 static inline void
6386 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
6387 int delalloc)
6389 if (delalloc)
6390 up_read(&cache->data_rwsem);
6391 btrfs_put_block_group(cache);
6395 * walks the btree of allocated extents and find a hole of a given size.
6396 * The key ins is changed to record the hole:
6397 * ins->objectid == start position
6398 * ins->flags = BTRFS_EXTENT_ITEM_KEY
6399 * ins->offset == the size of the hole.
6400 * Any available blocks before search_start are skipped.
6402 * If there is no suitable free space, we will record the max size of
6403 * the free space extent currently.
6405 static noinline int find_free_extent(struct btrfs_root *orig_root,
6406 u64 num_bytes, u64 empty_size,
6407 u64 hint_byte, struct btrfs_key *ins,
6408 u64 flags, int delalloc)
6410 int ret = 0;
6411 struct btrfs_root *root = orig_root->fs_info->extent_root;
6412 struct btrfs_free_cluster *last_ptr = NULL;
6413 struct btrfs_block_group_cache *block_group = NULL;
6414 u64 search_start = 0;
6415 u64 max_extent_size = 0;
6416 int empty_cluster = 2 * 1024 * 1024;
6417 struct btrfs_space_info *space_info;
6418 int loop = 0;
6419 int index = __get_raid_index(flags);
6420 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6421 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6422 bool failed_cluster_refill = false;
6423 bool failed_alloc = false;
6424 bool use_cluster = true;
6425 bool have_caching_bg = false;
6427 WARN_ON(num_bytes < root->sectorsize);
6428 ins->type = BTRFS_EXTENT_ITEM_KEY;
6429 ins->objectid = 0;
6430 ins->offset = 0;
6432 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6434 space_info = __find_space_info(root->fs_info, flags);
6435 if (!space_info) {
6436 btrfs_err(root->fs_info, "No space info for %llu", flags);
6437 return -ENOSPC;
6441 * If the space info is for both data and metadata it means we have a
6442 * small filesystem and we can't use the clustering stuff.
6444 if (btrfs_mixed_space_info(space_info))
6445 use_cluster = false;
6447 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6448 last_ptr = &root->fs_info->meta_alloc_cluster;
6449 if (!btrfs_test_opt(root, SSD))
6450 empty_cluster = 64 * 1024;
6453 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6454 btrfs_test_opt(root, SSD)) {
6455 last_ptr = &root->fs_info->data_alloc_cluster;
6458 if (last_ptr) {
6459 spin_lock(&last_ptr->lock);
6460 if (last_ptr->block_group)
6461 hint_byte = last_ptr->window_start;
6462 spin_unlock(&last_ptr->lock);
6465 search_start = max(search_start, first_logical_byte(root, 0));
6466 search_start = max(search_start, hint_byte);
6468 if (!last_ptr)
6469 empty_cluster = 0;
6471 if (search_start == hint_byte) {
6472 block_group = btrfs_lookup_block_group(root->fs_info,
6473 search_start);
6475 * we don't want to use the block group if it doesn't match our
6476 * allocation bits, or if its not cached.
6478 * However if we are re-searching with an ideal block group
6479 * picked out then we don't care that the block group is cached.
6481 if (block_group && block_group_bits(block_group, flags) &&
6482 block_group->cached != BTRFS_CACHE_NO) {
6483 down_read(&space_info->groups_sem);
6484 if (list_empty(&block_group->list) ||
6485 block_group->ro) {
6487 * someone is removing this block group,
6488 * we can't jump into the have_block_group
6489 * target because our list pointers are not
6490 * valid
6492 btrfs_put_block_group(block_group);
6493 up_read(&space_info->groups_sem);
6494 } else {
6495 index = get_block_group_index(block_group);
6496 btrfs_lock_block_group(block_group, delalloc);
6497 goto have_block_group;
6499 } else if (block_group) {
6500 btrfs_put_block_group(block_group);
6503 search:
6504 have_caching_bg = false;
6505 down_read(&space_info->groups_sem);
6506 list_for_each_entry(block_group, &space_info->block_groups[index],
6507 list) {
6508 u64 offset;
6509 int cached;
6511 btrfs_grab_block_group(block_group, delalloc);
6512 search_start = block_group->key.objectid;
6515 * this can happen if we end up cycling through all the
6516 * raid types, but we want to make sure we only allocate
6517 * for the proper type.
6519 if (!block_group_bits(block_group, flags)) {
6520 u64 extra = BTRFS_BLOCK_GROUP_DUP |
6521 BTRFS_BLOCK_GROUP_RAID1 |
6522 BTRFS_BLOCK_GROUP_RAID5 |
6523 BTRFS_BLOCK_GROUP_RAID6 |
6524 BTRFS_BLOCK_GROUP_RAID10;
6527 * if they asked for extra copies and this block group
6528 * doesn't provide them, bail. This does allow us to
6529 * fill raid0 from raid1.
6531 if ((flags & extra) && !(block_group->flags & extra))
6532 goto loop;
6535 have_block_group:
6536 cached = block_group_cache_done(block_group);
6537 if (unlikely(!cached)) {
6538 ret = cache_block_group(block_group, 0);
6539 BUG_ON(ret < 0);
6540 ret = 0;
6543 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6544 goto loop;
6545 if (unlikely(block_group->ro))
6546 goto loop;
6549 * Ok we want to try and use the cluster allocator, so
6550 * lets look there
6552 if (last_ptr) {
6553 struct btrfs_block_group_cache *used_block_group;
6554 unsigned long aligned_cluster;
6556 * the refill lock keeps out other
6557 * people trying to start a new cluster
6559 used_block_group = btrfs_lock_cluster(block_group,
6560 last_ptr,
6561 delalloc);
6562 if (!used_block_group)
6563 goto refill_cluster;
6565 if (used_block_group != block_group &&
6566 (used_block_group->ro ||
6567 !block_group_bits(used_block_group, flags)))
6568 goto release_cluster;
6570 offset = btrfs_alloc_from_cluster(used_block_group,
6571 last_ptr,
6572 num_bytes,
6573 used_block_group->key.objectid,
6574 &max_extent_size);
6575 if (offset) {
6576 /* we have a block, we're done */
6577 spin_unlock(&last_ptr->refill_lock);
6578 trace_btrfs_reserve_extent_cluster(root,
6579 used_block_group,
6580 search_start, num_bytes);
6581 if (used_block_group != block_group) {
6582 btrfs_release_block_group(block_group,
6583 delalloc);
6584 block_group = used_block_group;
6586 goto checks;
6589 WARN_ON(last_ptr->block_group != used_block_group);
6590 release_cluster:
6591 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
6592 * set up a new clusters, so lets just skip it
6593 * and let the allocator find whatever block
6594 * it can find. If we reach this point, we
6595 * will have tried the cluster allocator
6596 * plenty of times and not have found
6597 * anything, so we are likely way too
6598 * fragmented for the clustering stuff to find
6599 * anything.
6601 * However, if the cluster is taken from the
6602 * current block group, release the cluster
6603 * first, so that we stand a better chance of
6604 * succeeding in the unclustered
6605 * allocation. */
6606 if (loop >= LOOP_NO_EMPTY_SIZE &&
6607 used_block_group != block_group) {
6608 spin_unlock(&last_ptr->refill_lock);
6609 btrfs_release_block_group(used_block_group,
6610 delalloc);
6611 goto unclustered_alloc;
6615 * this cluster didn't work out, free it and
6616 * start over
6618 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6620 if (used_block_group != block_group)
6621 btrfs_release_block_group(used_block_group,
6622 delalloc);
6623 refill_cluster:
6624 if (loop >= LOOP_NO_EMPTY_SIZE) {
6625 spin_unlock(&last_ptr->refill_lock);
6626 goto unclustered_alloc;
6629 aligned_cluster = max_t(unsigned long,
6630 empty_cluster + empty_size,
6631 block_group->full_stripe_len);
6633 /* allocate a cluster in this block group */
6634 ret = btrfs_find_space_cluster(root, block_group,
6635 last_ptr, search_start,
6636 num_bytes,
6637 aligned_cluster);
6638 if (ret == 0) {
6640 * now pull our allocation out of this
6641 * cluster
6643 offset = btrfs_alloc_from_cluster(block_group,
6644 last_ptr,
6645 num_bytes,
6646 search_start,
6647 &max_extent_size);
6648 if (offset) {
6649 /* we found one, proceed */
6650 spin_unlock(&last_ptr->refill_lock);
6651 trace_btrfs_reserve_extent_cluster(root,
6652 block_group, search_start,
6653 num_bytes);
6654 goto checks;
6656 } else if (!cached && loop > LOOP_CACHING_NOWAIT
6657 && !failed_cluster_refill) {
6658 spin_unlock(&last_ptr->refill_lock);
6660 failed_cluster_refill = true;
6661 wait_block_group_cache_progress(block_group,
6662 num_bytes + empty_cluster + empty_size);
6663 goto have_block_group;
6667 * at this point we either didn't find a cluster
6668 * or we weren't able to allocate a block from our
6669 * cluster. Free the cluster we've been trying
6670 * to use, and go to the next block group
6672 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6673 spin_unlock(&last_ptr->refill_lock);
6674 goto loop;
6677 unclustered_alloc:
6678 spin_lock(&block_group->free_space_ctl->tree_lock);
6679 if (cached &&
6680 block_group->free_space_ctl->free_space <
6681 num_bytes + empty_cluster + empty_size) {
6682 if (block_group->free_space_ctl->free_space >
6683 max_extent_size)
6684 max_extent_size =
6685 block_group->free_space_ctl->free_space;
6686 spin_unlock(&block_group->free_space_ctl->tree_lock);
6687 goto loop;
6689 spin_unlock(&block_group->free_space_ctl->tree_lock);
6691 offset = btrfs_find_space_for_alloc(block_group, search_start,
6692 num_bytes, empty_size,
6693 &max_extent_size);
6695 * If we didn't find a chunk, and we haven't failed on this
6696 * block group before, and this block group is in the middle of
6697 * caching and we are ok with waiting, then go ahead and wait
6698 * for progress to be made, and set failed_alloc to true.
6700 * If failed_alloc is true then we've already waited on this
6701 * block group once and should move on to the next block group.
6703 if (!offset && !failed_alloc && !cached &&
6704 loop > LOOP_CACHING_NOWAIT) {
6705 wait_block_group_cache_progress(block_group,
6706 num_bytes + empty_size);
6707 failed_alloc = true;
6708 goto have_block_group;
6709 } else if (!offset) {
6710 if (!cached)
6711 have_caching_bg = true;
6712 goto loop;
6714 checks:
6715 search_start = ALIGN(offset, root->stripesize);
6717 /* move on to the next group */
6718 if (search_start + num_bytes >
6719 block_group->key.objectid + block_group->key.offset) {
6720 btrfs_add_free_space(block_group, offset, num_bytes);
6721 goto loop;
6724 if (offset < search_start)
6725 btrfs_add_free_space(block_group, offset,
6726 search_start - offset);
6727 BUG_ON(offset > search_start);
6729 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
6730 alloc_type, delalloc);
6731 if (ret == -EAGAIN) {
6732 btrfs_add_free_space(block_group, offset, num_bytes);
6733 goto loop;
6736 /* we are all good, lets return */
6737 ins->objectid = search_start;
6738 ins->offset = num_bytes;
6740 trace_btrfs_reserve_extent(orig_root, block_group,
6741 search_start, num_bytes);
6742 btrfs_release_block_group(block_group, delalloc);
6743 break;
6744 loop:
6745 failed_cluster_refill = false;
6746 failed_alloc = false;
6747 BUG_ON(index != get_block_group_index(block_group));
6748 btrfs_release_block_group(block_group, delalloc);
6750 up_read(&space_info->groups_sem);
6752 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
6753 goto search;
6755 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
6756 goto search;
6759 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
6760 * caching kthreads as we move along
6761 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
6762 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
6763 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
6764 * again
6766 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
6767 index = 0;
6768 loop++;
6769 if (loop == LOOP_ALLOC_CHUNK) {
6770 struct btrfs_trans_handle *trans;
6771 int exist = 0;
6773 trans = current->journal_info;
6774 if (trans)
6775 exist = 1;
6776 else
6777 trans = btrfs_join_transaction(root);
6779 if (IS_ERR(trans)) {
6780 ret = PTR_ERR(trans);
6781 goto out;
6784 ret = do_chunk_alloc(trans, root, flags,
6785 CHUNK_ALLOC_FORCE);
6787 * Do not bail out on ENOSPC since we
6788 * can do more things.
6790 if (ret < 0 && ret != -ENOSPC)
6791 btrfs_abort_transaction(trans,
6792 root, ret);
6793 else
6794 ret = 0;
6795 if (!exist)
6796 btrfs_end_transaction(trans, root);
6797 if (ret)
6798 goto out;
6801 if (loop == LOOP_NO_EMPTY_SIZE) {
6802 empty_size = 0;
6803 empty_cluster = 0;
6806 goto search;
6807 } else if (!ins->objectid) {
6808 ret = -ENOSPC;
6809 } else if (ins->objectid) {
6810 ret = 0;
6812 out:
6813 if (ret == -ENOSPC)
6814 ins->offset = max_extent_size;
6815 return ret;
6818 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
6819 int dump_block_groups)
6821 struct btrfs_block_group_cache *cache;
6822 int index = 0;
6824 spin_lock(&info->lock);
6825 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
6826 info->flags,
6827 info->total_bytes - info->bytes_used - info->bytes_pinned -
6828 info->bytes_reserved - info->bytes_readonly,
6829 (info->full) ? "" : "not ");
6830 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
6831 "reserved=%llu, may_use=%llu, readonly=%llu\n",
6832 info->total_bytes, info->bytes_used, info->bytes_pinned,
6833 info->bytes_reserved, info->bytes_may_use,
6834 info->bytes_readonly);
6835 spin_unlock(&info->lock);
6837 if (!dump_block_groups)
6838 return;
6840 down_read(&info->groups_sem);
6841 again:
6842 list_for_each_entry(cache, &info->block_groups[index], list) {
6843 spin_lock(&cache->lock);
6844 printk(KERN_INFO "BTRFS: "
6845 "block group %llu has %llu bytes, "
6846 "%llu used %llu pinned %llu reserved %s\n",
6847 cache->key.objectid, cache->key.offset,
6848 btrfs_block_group_used(&cache->item), cache->pinned,
6849 cache->reserved, cache->ro ? "[readonly]" : "");
6850 btrfs_dump_free_space(cache, bytes);
6851 spin_unlock(&cache->lock);
6853 if (++index < BTRFS_NR_RAID_TYPES)
6854 goto again;
6855 up_read(&info->groups_sem);
6858 int btrfs_reserve_extent(struct btrfs_root *root,
6859 u64 num_bytes, u64 min_alloc_size,
6860 u64 empty_size, u64 hint_byte,
6861 struct btrfs_key *ins, int is_data, int delalloc)
6863 bool final_tried = false;
6864 u64 flags;
6865 int ret;
6867 flags = btrfs_get_alloc_profile(root, is_data);
6868 again:
6869 WARN_ON(num_bytes < root->sectorsize);
6870 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
6871 flags, delalloc);
6873 if (ret == -ENOSPC) {
6874 if (!final_tried && ins->offset) {
6875 num_bytes = min(num_bytes >> 1, ins->offset);
6876 num_bytes = round_down(num_bytes, root->sectorsize);
6877 num_bytes = max(num_bytes, min_alloc_size);
6878 if (num_bytes == min_alloc_size)
6879 final_tried = true;
6880 goto again;
6881 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6882 struct btrfs_space_info *sinfo;
6884 sinfo = __find_space_info(root->fs_info, flags);
6885 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
6886 flags, num_bytes);
6887 if (sinfo)
6888 dump_space_info(sinfo, num_bytes, 1);
6892 return ret;
6895 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
6896 u64 start, u64 len,
6897 int pin, int delalloc)
6899 struct btrfs_block_group_cache *cache;
6900 int ret = 0;
6902 cache = btrfs_lookup_block_group(root->fs_info, start);
6903 if (!cache) {
6904 btrfs_err(root->fs_info, "Unable to find block group for %llu",
6905 start);
6906 return -ENOSPC;
6909 if (btrfs_test_opt(root, DISCARD))
6910 ret = btrfs_discard_extent(root, start, len, NULL);
6912 if (pin)
6913 pin_down_extent(root, cache, start, len, 1);
6914 else {
6915 btrfs_add_free_space(cache, start, len);
6916 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
6918 btrfs_put_block_group(cache);
6920 trace_btrfs_reserved_extent_free(root, start, len);
6922 return ret;
6925 int btrfs_free_reserved_extent(struct btrfs_root *root,
6926 u64 start, u64 len, int delalloc)
6928 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
6931 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
6932 u64 start, u64 len)
6934 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
6937 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6938 struct btrfs_root *root,
6939 u64 parent, u64 root_objectid,
6940 u64 flags, u64 owner, u64 offset,
6941 struct btrfs_key *ins, int ref_mod)
6943 int ret;
6944 struct btrfs_fs_info *fs_info = root->fs_info;
6945 struct btrfs_extent_item *extent_item;
6946 struct btrfs_extent_inline_ref *iref;
6947 struct btrfs_path *path;
6948 struct extent_buffer *leaf;
6949 int type;
6950 u32 size;
6952 if (parent > 0)
6953 type = BTRFS_SHARED_DATA_REF_KEY;
6954 else
6955 type = BTRFS_EXTENT_DATA_REF_KEY;
6957 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
6959 path = btrfs_alloc_path();
6960 if (!path)
6961 return -ENOMEM;
6963 path->leave_spinning = 1;
6964 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6965 ins, size);
6966 if (ret) {
6967 btrfs_free_path(path);
6968 return ret;
6971 leaf = path->nodes[0];
6972 extent_item = btrfs_item_ptr(leaf, path->slots[0],
6973 struct btrfs_extent_item);
6974 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
6975 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6976 btrfs_set_extent_flags(leaf, extent_item,
6977 flags | BTRFS_EXTENT_FLAG_DATA);
6979 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6980 btrfs_set_extent_inline_ref_type(leaf, iref, type);
6981 if (parent > 0) {
6982 struct btrfs_shared_data_ref *ref;
6983 ref = (struct btrfs_shared_data_ref *)(iref + 1);
6984 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6985 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
6986 } else {
6987 struct btrfs_extent_data_ref *ref;
6988 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
6989 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
6990 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
6991 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
6992 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
6995 btrfs_mark_buffer_dirty(path->nodes[0]);
6996 btrfs_free_path(path);
6998 /* Always set parent to 0 here since its exclusive anyway. */
6999 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7000 ins->objectid, ins->offset,
7001 BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7002 if (ret)
7003 return ret;
7005 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
7006 if (ret) { /* -ENOENT, logic error */
7007 btrfs_err(fs_info, "update block group failed for %llu %llu",
7008 ins->objectid, ins->offset);
7009 BUG();
7011 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
7012 return ret;
7015 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7016 struct btrfs_root *root,
7017 u64 parent, u64 root_objectid,
7018 u64 flags, struct btrfs_disk_key *key,
7019 int level, struct btrfs_key *ins,
7020 int no_quota)
7022 int ret;
7023 struct btrfs_fs_info *fs_info = root->fs_info;
7024 struct btrfs_extent_item *extent_item;
7025 struct btrfs_tree_block_info *block_info;
7026 struct btrfs_extent_inline_ref *iref;
7027 struct btrfs_path *path;
7028 struct extent_buffer *leaf;
7029 u32 size = sizeof(*extent_item) + sizeof(*iref);
7030 u64 num_bytes = ins->offset;
7031 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7032 SKINNY_METADATA);
7034 if (!skinny_metadata)
7035 size += sizeof(*block_info);
7037 path = btrfs_alloc_path();
7038 if (!path) {
7039 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7040 root->nodesize);
7041 return -ENOMEM;
7044 path->leave_spinning = 1;
7045 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7046 ins, size);
7047 if (ret) {
7048 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7049 root->nodesize);
7050 btrfs_free_path(path);
7051 return ret;
7054 leaf = path->nodes[0];
7055 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7056 struct btrfs_extent_item);
7057 btrfs_set_extent_refs(leaf, extent_item, 1);
7058 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7059 btrfs_set_extent_flags(leaf, extent_item,
7060 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
7062 if (skinny_metadata) {
7063 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7064 num_bytes = root->nodesize;
7065 } else {
7066 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7067 btrfs_set_tree_block_key(leaf, block_info, key);
7068 btrfs_set_tree_block_level(leaf, block_info, level);
7069 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7072 if (parent > 0) {
7073 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7074 btrfs_set_extent_inline_ref_type(leaf, iref,
7075 BTRFS_SHARED_BLOCK_REF_KEY);
7076 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7077 } else {
7078 btrfs_set_extent_inline_ref_type(leaf, iref,
7079 BTRFS_TREE_BLOCK_REF_KEY);
7080 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7083 btrfs_mark_buffer_dirty(leaf);
7084 btrfs_free_path(path);
7086 if (!no_quota) {
7087 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7088 ins->objectid, num_bytes,
7089 BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7090 if (ret)
7091 return ret;
7094 ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7096 if (ret) { /* -ENOENT, logic error */
7097 btrfs_err(fs_info, "update block group failed for %llu %llu",
7098 ins->objectid, ins->offset);
7099 BUG();
7102 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
7103 return ret;
7106 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7107 struct btrfs_root *root,
7108 u64 root_objectid, u64 owner,
7109 u64 offset, struct btrfs_key *ins)
7111 int ret;
7113 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7115 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7116 ins->offset, 0,
7117 root_objectid, owner, offset,
7118 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
7119 return ret;
7123 * this is used by the tree logging recovery code. It records that
7124 * an extent has been allocated and makes sure to clear the free
7125 * space cache bits as well
7127 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7128 struct btrfs_root *root,
7129 u64 root_objectid, u64 owner, u64 offset,
7130 struct btrfs_key *ins)
7132 int ret;
7133 struct btrfs_block_group_cache *block_group;
7136 * Mixed block groups will exclude before processing the log so we only
7137 * need to do the exlude dance if this fs isn't mixed.
7139 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7140 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
7141 if (ret)
7142 return ret;
7145 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7146 if (!block_group)
7147 return -EINVAL;
7149 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
7150 RESERVE_ALLOC_NO_ACCOUNT, 0);
7151 BUG_ON(ret); /* logic error */
7152 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7153 0, owner, offset, ins, 1);
7154 btrfs_put_block_group(block_group);
7155 return ret;
7158 static struct extent_buffer *
7159 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7160 u64 bytenr, int level)
7162 struct extent_buffer *buf;
7164 buf = btrfs_find_create_tree_block(root, bytenr);
7165 if (!buf)
7166 return ERR_PTR(-ENOMEM);
7167 btrfs_set_header_generation(buf, trans->transid);
7168 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
7169 btrfs_tree_lock(buf);
7170 clean_tree_block(trans, root, buf);
7171 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
7173 btrfs_set_lock_blocking(buf);
7174 btrfs_set_buffer_uptodate(buf);
7176 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
7177 buf->log_index = root->log_transid % 2;
7179 * we allow two log transactions at a time, use different
7180 * EXENT bit to differentiate dirty pages.
7182 if (buf->log_index == 0)
7183 set_extent_dirty(&root->dirty_log_pages, buf->start,
7184 buf->start + buf->len - 1, GFP_NOFS);
7185 else
7186 set_extent_new(&root->dirty_log_pages, buf->start,
7187 buf->start + buf->len - 1, GFP_NOFS);
7188 } else {
7189 buf->log_index = -1;
7190 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
7191 buf->start + buf->len - 1, GFP_NOFS);
7193 trans->blocks_used++;
7194 /* this returns a buffer locked for blocking */
7195 return buf;
7198 static struct btrfs_block_rsv *
7199 use_block_rsv(struct btrfs_trans_handle *trans,
7200 struct btrfs_root *root, u32 blocksize)
7202 struct btrfs_block_rsv *block_rsv;
7203 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
7204 int ret;
7205 bool global_updated = false;
7207 block_rsv = get_block_rsv(trans, root);
7209 if (unlikely(block_rsv->size == 0))
7210 goto try_reserve;
7211 again:
7212 ret = block_rsv_use_bytes(block_rsv, blocksize);
7213 if (!ret)
7214 return block_rsv;
7216 if (block_rsv->failfast)
7217 return ERR_PTR(ret);
7219 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7220 global_updated = true;
7221 update_global_block_rsv(root->fs_info);
7222 goto again;
7225 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7226 static DEFINE_RATELIMIT_STATE(_rs,
7227 DEFAULT_RATELIMIT_INTERVAL * 10,
7228 /*DEFAULT_RATELIMIT_BURST*/ 1);
7229 if (__ratelimit(&_rs))
7230 WARN(1, KERN_DEBUG
7231 "BTRFS: block rsv returned %d\n", ret);
7233 try_reserve:
7234 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7235 BTRFS_RESERVE_NO_FLUSH);
7236 if (!ret)
7237 return block_rsv;
7239 * If we couldn't reserve metadata bytes try and use some from
7240 * the global reserve if its space type is the same as the global
7241 * reservation.
7243 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7244 block_rsv->space_info == global_rsv->space_info) {
7245 ret = block_rsv_use_bytes(global_rsv, blocksize);
7246 if (!ret)
7247 return global_rsv;
7249 return ERR_PTR(ret);
7252 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7253 struct btrfs_block_rsv *block_rsv, u32 blocksize)
7255 block_rsv_add_bytes(block_rsv, blocksize, 0);
7256 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
7260 * finds a free extent and does all the dirty work required for allocation
7261 * returns the key for the extent through ins, and a tree buffer for
7262 * the first block of the extent through buf.
7264 * returns the tree buffer or NULL.
7266 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7267 struct btrfs_root *root,
7268 u64 parent, u64 root_objectid,
7269 struct btrfs_disk_key *key, int level,
7270 u64 hint, u64 empty_size)
7272 struct btrfs_key ins;
7273 struct btrfs_block_rsv *block_rsv;
7274 struct extent_buffer *buf;
7275 u64 flags = 0;
7276 int ret;
7277 u32 blocksize = root->nodesize;
7278 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7279 SKINNY_METADATA);
7281 if (btrfs_test_is_dummy_root(root)) {
7282 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
7283 level);
7284 if (!IS_ERR(buf))
7285 root->alloc_bytenr += blocksize;
7286 return buf;
7289 block_rsv = use_block_rsv(trans, root, blocksize);
7290 if (IS_ERR(block_rsv))
7291 return ERR_CAST(block_rsv);
7293 ret = btrfs_reserve_extent(root, blocksize, blocksize,
7294 empty_size, hint, &ins, 0, 0);
7295 if (ret) {
7296 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7297 return ERR_PTR(ret);
7300 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
7301 BUG_ON(IS_ERR(buf)); /* -ENOMEM */
7303 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7304 if (parent == 0)
7305 parent = ins.objectid;
7306 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7307 } else
7308 BUG_ON(parent > 0);
7310 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
7311 struct btrfs_delayed_extent_op *extent_op;
7312 extent_op = btrfs_alloc_delayed_extent_op();
7313 BUG_ON(!extent_op); /* -ENOMEM */
7314 if (key)
7315 memcpy(&extent_op->key, key, sizeof(extent_op->key));
7316 else
7317 memset(&extent_op->key, 0, sizeof(extent_op->key));
7318 extent_op->flags_to_set = flags;
7319 if (skinny_metadata)
7320 extent_op->update_key = 0;
7321 else
7322 extent_op->update_key = 1;
7323 extent_op->update_flags = 1;
7324 extent_op->is_data = 0;
7325 extent_op->level = level;
7327 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7328 ins.objectid,
7329 ins.offset, parent, root_objectid,
7330 level, BTRFS_ADD_DELAYED_EXTENT,
7331 extent_op, 0);
7332 BUG_ON(ret); /* -ENOMEM */
7334 return buf;
7337 struct walk_control {
7338 u64 refs[BTRFS_MAX_LEVEL];
7339 u64 flags[BTRFS_MAX_LEVEL];
7340 struct btrfs_key update_progress;
7341 int stage;
7342 int level;
7343 int shared_level;
7344 int update_ref;
7345 int keep_locks;
7346 int reada_slot;
7347 int reada_count;
7348 int for_reloc;
7351 #define DROP_REFERENCE 1
7352 #define UPDATE_BACKREF 2
7354 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7355 struct btrfs_root *root,
7356 struct walk_control *wc,
7357 struct btrfs_path *path)
7359 u64 bytenr;
7360 u64 generation;
7361 u64 refs;
7362 u64 flags;
7363 u32 nritems;
7364 u32 blocksize;
7365 struct btrfs_key key;
7366 struct extent_buffer *eb;
7367 int ret;
7368 int slot;
7369 int nread = 0;
7371 if (path->slots[wc->level] < wc->reada_slot) {
7372 wc->reada_count = wc->reada_count * 2 / 3;
7373 wc->reada_count = max(wc->reada_count, 2);
7374 } else {
7375 wc->reada_count = wc->reada_count * 3 / 2;
7376 wc->reada_count = min_t(int, wc->reada_count,
7377 BTRFS_NODEPTRS_PER_BLOCK(root));
7380 eb = path->nodes[wc->level];
7381 nritems = btrfs_header_nritems(eb);
7382 blocksize = root->nodesize;
7384 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7385 if (nread >= wc->reada_count)
7386 break;
7388 cond_resched();
7389 bytenr = btrfs_node_blockptr(eb, slot);
7390 generation = btrfs_node_ptr_generation(eb, slot);
7392 if (slot == path->slots[wc->level])
7393 goto reada;
7395 if (wc->stage == UPDATE_BACKREF &&
7396 generation <= root->root_key.offset)
7397 continue;
7399 /* We don't lock the tree block, it's OK to be racy here */
7400 ret = btrfs_lookup_extent_info(trans, root, bytenr,
7401 wc->level - 1, 1, &refs,
7402 &flags);
7403 /* We don't care about errors in readahead. */
7404 if (ret < 0)
7405 continue;
7406 BUG_ON(refs == 0);
7408 if (wc->stage == DROP_REFERENCE) {
7409 if (refs == 1)
7410 goto reada;
7412 if (wc->level == 1 &&
7413 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7414 continue;
7415 if (!wc->update_ref ||
7416 generation <= root->root_key.offset)
7417 continue;
7418 btrfs_node_key_to_cpu(eb, &key, slot);
7419 ret = btrfs_comp_cpu_keys(&key,
7420 &wc->update_progress);
7421 if (ret < 0)
7422 continue;
7423 } else {
7424 if (wc->level == 1 &&
7425 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7426 continue;
7428 reada:
7429 readahead_tree_block(root, bytenr);
7430 nread++;
7432 wc->reada_slot = slot;
7435 static int account_leaf_items(struct btrfs_trans_handle *trans,
7436 struct btrfs_root *root,
7437 struct extent_buffer *eb)
7439 int nr = btrfs_header_nritems(eb);
7440 int i, extent_type, ret;
7441 struct btrfs_key key;
7442 struct btrfs_file_extent_item *fi;
7443 u64 bytenr, num_bytes;
7445 for (i = 0; i < nr; i++) {
7446 btrfs_item_key_to_cpu(eb, &key, i);
7448 if (key.type != BTRFS_EXTENT_DATA_KEY)
7449 continue;
7451 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
7452 /* filter out non qgroup-accountable extents */
7453 extent_type = btrfs_file_extent_type(eb, fi);
7455 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
7456 continue;
7458 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
7459 if (!bytenr)
7460 continue;
7462 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
7464 ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7465 root->objectid,
7466 bytenr, num_bytes,
7467 BTRFS_QGROUP_OPER_SUB_SUBTREE, 0);
7468 if (ret)
7469 return ret;
7471 return 0;
7475 * Walk up the tree from the bottom, freeing leaves and any interior
7476 * nodes which have had all slots visited. If a node (leaf or
7477 * interior) is freed, the node above it will have it's slot
7478 * incremented. The root node will never be freed.
7480 * At the end of this function, we should have a path which has all
7481 * slots incremented to the next position for a search. If we need to
7482 * read a new node it will be NULL and the node above it will have the
7483 * correct slot selected for a later read.
7485 * If we increment the root nodes slot counter past the number of
7486 * elements, 1 is returned to signal completion of the search.
7488 static int adjust_slots_upwards(struct btrfs_root *root,
7489 struct btrfs_path *path, int root_level)
7491 int level = 0;
7492 int nr, slot;
7493 struct extent_buffer *eb;
7495 if (root_level == 0)
7496 return 1;
7498 while (level <= root_level) {
7499 eb = path->nodes[level];
7500 nr = btrfs_header_nritems(eb);
7501 path->slots[level]++;
7502 slot = path->slots[level];
7503 if (slot >= nr || level == 0) {
7505 * Don't free the root - we will detect this
7506 * condition after our loop and return a
7507 * positive value for caller to stop walking the tree.
7509 if (level != root_level) {
7510 btrfs_tree_unlock_rw(eb, path->locks[level]);
7511 path->locks[level] = 0;
7513 free_extent_buffer(eb);
7514 path->nodes[level] = NULL;
7515 path->slots[level] = 0;
7517 } else {
7519 * We have a valid slot to walk back down
7520 * from. Stop here so caller can process these
7521 * new nodes.
7523 break;
7526 level++;
7529 eb = path->nodes[root_level];
7530 if (path->slots[root_level] >= btrfs_header_nritems(eb))
7531 return 1;
7533 return 0;
7537 * root_eb is the subtree root and is locked before this function is called.
7539 static int account_shared_subtree(struct btrfs_trans_handle *trans,
7540 struct btrfs_root *root,
7541 struct extent_buffer *root_eb,
7542 u64 root_gen,
7543 int root_level)
7545 int ret = 0;
7546 int level;
7547 struct extent_buffer *eb = root_eb;
7548 struct btrfs_path *path = NULL;
7550 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
7551 BUG_ON(root_eb == NULL);
7553 if (!root->fs_info->quota_enabled)
7554 return 0;
7556 if (!extent_buffer_uptodate(root_eb)) {
7557 ret = btrfs_read_buffer(root_eb, root_gen);
7558 if (ret)
7559 goto out;
7562 if (root_level == 0) {
7563 ret = account_leaf_items(trans, root, root_eb);
7564 goto out;
7567 path = btrfs_alloc_path();
7568 if (!path)
7569 return -ENOMEM;
7572 * Walk down the tree. Missing extent blocks are filled in as
7573 * we go. Metadata is accounted every time we read a new
7574 * extent block.
7576 * When we reach a leaf, we account for file extent items in it,
7577 * walk back up the tree (adjusting slot pointers as we go)
7578 * and restart the search process.
7580 extent_buffer_get(root_eb); /* For path */
7581 path->nodes[root_level] = root_eb;
7582 path->slots[root_level] = 0;
7583 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
7584 walk_down:
7585 level = root_level;
7586 while (level >= 0) {
7587 if (path->nodes[level] == NULL) {
7588 int parent_slot;
7589 u64 child_gen;
7590 u64 child_bytenr;
7592 /* We need to get child blockptr/gen from
7593 * parent before we can read it. */
7594 eb = path->nodes[level + 1];
7595 parent_slot = path->slots[level + 1];
7596 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
7597 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
7599 eb = read_tree_block(root, child_bytenr, child_gen);
7600 if (!eb || !extent_buffer_uptodate(eb)) {
7601 ret = -EIO;
7602 goto out;
7605 path->nodes[level] = eb;
7606 path->slots[level] = 0;
7608 btrfs_tree_read_lock(eb);
7609 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
7610 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
7612 ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7613 root->objectid,
7614 child_bytenr,
7615 root->nodesize,
7616 BTRFS_QGROUP_OPER_SUB_SUBTREE,
7618 if (ret)
7619 goto out;
7623 if (level == 0) {
7624 ret = account_leaf_items(trans, root, path->nodes[level]);
7625 if (ret)
7626 goto out;
7628 /* Nonzero return here means we completed our search */
7629 ret = adjust_slots_upwards(root, path, root_level);
7630 if (ret)
7631 break;
7633 /* Restart search with new slots */
7634 goto walk_down;
7637 level--;
7640 ret = 0;
7641 out:
7642 btrfs_free_path(path);
7644 return ret;
7648 * helper to process tree block while walking down the tree.
7650 * when wc->stage == UPDATE_BACKREF, this function updates
7651 * back refs for pointers in the block.
7653 * NOTE: return value 1 means we should stop walking down.
7655 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
7656 struct btrfs_root *root,
7657 struct btrfs_path *path,
7658 struct walk_control *wc, int lookup_info)
7660 int level = wc->level;
7661 struct extent_buffer *eb = path->nodes[level];
7662 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7663 int ret;
7665 if (wc->stage == UPDATE_BACKREF &&
7666 btrfs_header_owner(eb) != root->root_key.objectid)
7667 return 1;
7670 * when reference count of tree block is 1, it won't increase
7671 * again. once full backref flag is set, we never clear it.
7673 if (lookup_info &&
7674 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
7675 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
7676 BUG_ON(!path->locks[level]);
7677 ret = btrfs_lookup_extent_info(trans, root,
7678 eb->start, level, 1,
7679 &wc->refs[level],
7680 &wc->flags[level]);
7681 BUG_ON(ret == -ENOMEM);
7682 if (ret)
7683 return ret;
7684 BUG_ON(wc->refs[level] == 0);
7687 if (wc->stage == DROP_REFERENCE) {
7688 if (wc->refs[level] > 1)
7689 return 1;
7691 if (path->locks[level] && !wc->keep_locks) {
7692 btrfs_tree_unlock_rw(eb, path->locks[level]);
7693 path->locks[level] = 0;
7695 return 0;
7698 /* wc->stage == UPDATE_BACKREF */
7699 if (!(wc->flags[level] & flag)) {
7700 BUG_ON(!path->locks[level]);
7701 ret = btrfs_inc_ref(trans, root, eb, 1);
7702 BUG_ON(ret); /* -ENOMEM */
7703 ret = btrfs_dec_ref(trans, root, eb, 0);
7704 BUG_ON(ret); /* -ENOMEM */
7705 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
7706 eb->len, flag,
7707 btrfs_header_level(eb), 0);
7708 BUG_ON(ret); /* -ENOMEM */
7709 wc->flags[level] |= flag;
7713 * the block is shared by multiple trees, so it's not good to
7714 * keep the tree lock
7716 if (path->locks[level] && level > 0) {
7717 btrfs_tree_unlock_rw(eb, path->locks[level]);
7718 path->locks[level] = 0;
7720 return 0;
7724 * helper to process tree block pointer.
7726 * when wc->stage == DROP_REFERENCE, this function checks
7727 * reference count of the block pointed to. if the block
7728 * is shared and we need update back refs for the subtree
7729 * rooted at the block, this function changes wc->stage to
7730 * UPDATE_BACKREF. if the block is shared and there is no
7731 * need to update back, this function drops the reference
7732 * to the block.
7734 * NOTE: return value 1 means we should stop walking down.
7736 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
7737 struct btrfs_root *root,
7738 struct btrfs_path *path,
7739 struct walk_control *wc, int *lookup_info)
7741 u64 bytenr;
7742 u64 generation;
7743 u64 parent;
7744 u32 blocksize;
7745 struct btrfs_key key;
7746 struct extent_buffer *next;
7747 int level = wc->level;
7748 int reada = 0;
7749 int ret = 0;
7750 bool need_account = false;
7752 generation = btrfs_node_ptr_generation(path->nodes[level],
7753 path->slots[level]);
7755 * if the lower level block was created before the snapshot
7756 * was created, we know there is no need to update back refs
7757 * for the subtree
7759 if (wc->stage == UPDATE_BACKREF &&
7760 generation <= root->root_key.offset) {
7761 *lookup_info = 1;
7762 return 1;
7765 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
7766 blocksize = root->nodesize;
7768 next = btrfs_find_tree_block(root, bytenr);
7769 if (!next) {
7770 next = btrfs_find_create_tree_block(root, bytenr);
7771 if (!next)
7772 return -ENOMEM;
7773 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
7774 level - 1);
7775 reada = 1;
7777 btrfs_tree_lock(next);
7778 btrfs_set_lock_blocking(next);
7780 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
7781 &wc->refs[level - 1],
7782 &wc->flags[level - 1]);
7783 if (ret < 0) {
7784 btrfs_tree_unlock(next);
7785 return ret;
7788 if (unlikely(wc->refs[level - 1] == 0)) {
7789 btrfs_err(root->fs_info, "Missing references.");
7790 BUG();
7792 *lookup_info = 0;
7794 if (wc->stage == DROP_REFERENCE) {
7795 if (wc->refs[level - 1] > 1) {
7796 need_account = true;
7797 if (level == 1 &&
7798 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7799 goto skip;
7801 if (!wc->update_ref ||
7802 generation <= root->root_key.offset)
7803 goto skip;
7805 btrfs_node_key_to_cpu(path->nodes[level], &key,
7806 path->slots[level]);
7807 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
7808 if (ret < 0)
7809 goto skip;
7811 wc->stage = UPDATE_BACKREF;
7812 wc->shared_level = level - 1;
7814 } else {
7815 if (level == 1 &&
7816 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7817 goto skip;
7820 if (!btrfs_buffer_uptodate(next, generation, 0)) {
7821 btrfs_tree_unlock(next);
7822 free_extent_buffer(next);
7823 next = NULL;
7824 *lookup_info = 1;
7827 if (!next) {
7828 if (reada && level == 1)
7829 reada_walk_down(trans, root, wc, path);
7830 next = read_tree_block(root, bytenr, generation);
7831 if (!next || !extent_buffer_uptodate(next)) {
7832 free_extent_buffer(next);
7833 return -EIO;
7835 btrfs_tree_lock(next);
7836 btrfs_set_lock_blocking(next);
7839 level--;
7840 BUG_ON(level != btrfs_header_level(next));
7841 path->nodes[level] = next;
7842 path->slots[level] = 0;
7843 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7844 wc->level = level;
7845 if (wc->level == 1)
7846 wc->reada_slot = 0;
7847 return 0;
7848 skip:
7849 wc->refs[level - 1] = 0;
7850 wc->flags[level - 1] = 0;
7851 if (wc->stage == DROP_REFERENCE) {
7852 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
7853 parent = path->nodes[level]->start;
7854 } else {
7855 BUG_ON(root->root_key.objectid !=
7856 btrfs_header_owner(path->nodes[level]));
7857 parent = 0;
7860 if (need_account) {
7861 ret = account_shared_subtree(trans, root, next,
7862 generation, level - 1);
7863 if (ret) {
7864 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
7865 "%d accounting shared subtree. Quota "
7866 "is out of sync, rescan required.\n",
7867 root->fs_info->sb->s_id, ret);
7870 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
7871 root->root_key.objectid, level - 1, 0, 0);
7872 BUG_ON(ret); /* -ENOMEM */
7874 btrfs_tree_unlock(next);
7875 free_extent_buffer(next);
7876 *lookup_info = 1;
7877 return 1;
7881 * helper to process tree block while walking up the tree.
7883 * when wc->stage == DROP_REFERENCE, this function drops
7884 * reference count on the block.
7886 * when wc->stage == UPDATE_BACKREF, this function changes
7887 * wc->stage back to DROP_REFERENCE if we changed wc->stage
7888 * to UPDATE_BACKREF previously while processing the block.
7890 * NOTE: return value 1 means we should stop walking up.
7892 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
7893 struct btrfs_root *root,
7894 struct btrfs_path *path,
7895 struct walk_control *wc)
7897 int ret;
7898 int level = wc->level;
7899 struct extent_buffer *eb = path->nodes[level];
7900 u64 parent = 0;
7902 if (wc->stage == UPDATE_BACKREF) {
7903 BUG_ON(wc->shared_level < level);
7904 if (level < wc->shared_level)
7905 goto out;
7907 ret = find_next_key(path, level + 1, &wc->update_progress);
7908 if (ret > 0)
7909 wc->update_ref = 0;
7911 wc->stage = DROP_REFERENCE;
7912 wc->shared_level = -1;
7913 path->slots[level] = 0;
7916 * check reference count again if the block isn't locked.
7917 * we should start walking down the tree again if reference
7918 * count is one.
7920 if (!path->locks[level]) {
7921 BUG_ON(level == 0);
7922 btrfs_tree_lock(eb);
7923 btrfs_set_lock_blocking(eb);
7924 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7926 ret = btrfs_lookup_extent_info(trans, root,
7927 eb->start, level, 1,
7928 &wc->refs[level],
7929 &wc->flags[level]);
7930 if (ret < 0) {
7931 btrfs_tree_unlock_rw(eb, path->locks[level]);
7932 path->locks[level] = 0;
7933 return ret;
7935 BUG_ON(wc->refs[level] == 0);
7936 if (wc->refs[level] == 1) {
7937 btrfs_tree_unlock_rw(eb, path->locks[level]);
7938 path->locks[level] = 0;
7939 return 1;
7944 /* wc->stage == DROP_REFERENCE */
7945 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
7947 if (wc->refs[level] == 1) {
7948 if (level == 0) {
7949 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7950 ret = btrfs_dec_ref(trans, root, eb, 1);
7951 else
7952 ret = btrfs_dec_ref(trans, root, eb, 0);
7953 BUG_ON(ret); /* -ENOMEM */
7954 ret = account_leaf_items(trans, root, eb);
7955 if (ret) {
7956 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
7957 "%d accounting leaf items. Quota "
7958 "is out of sync, rescan required.\n",
7959 root->fs_info->sb->s_id, ret);
7962 /* make block locked assertion in clean_tree_block happy */
7963 if (!path->locks[level] &&
7964 btrfs_header_generation(eb) == trans->transid) {
7965 btrfs_tree_lock(eb);
7966 btrfs_set_lock_blocking(eb);
7967 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7969 clean_tree_block(trans, root, eb);
7972 if (eb == root->node) {
7973 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7974 parent = eb->start;
7975 else
7976 BUG_ON(root->root_key.objectid !=
7977 btrfs_header_owner(eb));
7978 } else {
7979 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7980 parent = path->nodes[level + 1]->start;
7981 else
7982 BUG_ON(root->root_key.objectid !=
7983 btrfs_header_owner(path->nodes[level + 1]));
7986 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
7987 out:
7988 wc->refs[level] = 0;
7989 wc->flags[level] = 0;
7990 return 0;
7993 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
7994 struct btrfs_root *root,
7995 struct btrfs_path *path,
7996 struct walk_control *wc)
7998 int level = wc->level;
7999 int lookup_info = 1;
8000 int ret;
8002 while (level >= 0) {
8003 ret = walk_down_proc(trans, root, path, wc, lookup_info);
8004 if (ret > 0)
8005 break;
8007 if (level == 0)
8008 break;
8010 if (path->slots[level] >=
8011 btrfs_header_nritems(path->nodes[level]))
8012 break;
8014 ret = do_walk_down(trans, root, path, wc, &lookup_info);
8015 if (ret > 0) {
8016 path->slots[level]++;
8017 continue;
8018 } else if (ret < 0)
8019 return ret;
8020 level = wc->level;
8022 return 0;
8025 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8026 struct btrfs_root *root,
8027 struct btrfs_path *path,
8028 struct walk_control *wc, int max_level)
8030 int level = wc->level;
8031 int ret;
8033 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8034 while (level < max_level && path->nodes[level]) {
8035 wc->level = level;
8036 if (path->slots[level] + 1 <
8037 btrfs_header_nritems(path->nodes[level])) {
8038 path->slots[level]++;
8039 return 0;
8040 } else {
8041 ret = walk_up_proc(trans, root, path, wc);
8042 if (ret > 0)
8043 return 0;
8045 if (path->locks[level]) {
8046 btrfs_tree_unlock_rw(path->nodes[level],
8047 path->locks[level]);
8048 path->locks[level] = 0;
8050 free_extent_buffer(path->nodes[level]);
8051 path->nodes[level] = NULL;
8052 level++;
8055 return 1;
8059 * drop a subvolume tree.
8061 * this function traverses the tree freeing any blocks that only
8062 * referenced by the tree.
8064 * when a shared tree block is found. this function decreases its
8065 * reference count by one. if update_ref is true, this function
8066 * also make sure backrefs for the shared block and all lower level
8067 * blocks are properly updated.
8069 * If called with for_reloc == 0, may exit early with -EAGAIN
8071 int btrfs_drop_snapshot(struct btrfs_root *root,
8072 struct btrfs_block_rsv *block_rsv, int update_ref,
8073 int for_reloc)
8075 struct btrfs_path *path;
8076 struct btrfs_trans_handle *trans;
8077 struct btrfs_root *tree_root = root->fs_info->tree_root;
8078 struct btrfs_root_item *root_item = &root->root_item;
8079 struct walk_control *wc;
8080 struct btrfs_key key;
8081 int err = 0;
8082 int ret;
8083 int level;
8084 bool root_dropped = false;
8086 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8088 path = btrfs_alloc_path();
8089 if (!path) {
8090 err = -ENOMEM;
8091 goto out;
8094 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8095 if (!wc) {
8096 btrfs_free_path(path);
8097 err = -ENOMEM;
8098 goto out;
8101 trans = btrfs_start_transaction(tree_root, 0);
8102 if (IS_ERR(trans)) {
8103 err = PTR_ERR(trans);
8104 goto out_free;
8107 if (block_rsv)
8108 trans->block_rsv = block_rsv;
8110 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
8111 level = btrfs_header_level(root->node);
8112 path->nodes[level] = btrfs_lock_root_node(root);
8113 btrfs_set_lock_blocking(path->nodes[level]);
8114 path->slots[level] = 0;
8115 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8116 memset(&wc->update_progress, 0,
8117 sizeof(wc->update_progress));
8118 } else {
8119 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
8120 memcpy(&wc->update_progress, &key,
8121 sizeof(wc->update_progress));
8123 level = root_item->drop_level;
8124 BUG_ON(level == 0);
8125 path->lowest_level = level;
8126 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8127 path->lowest_level = 0;
8128 if (ret < 0) {
8129 err = ret;
8130 goto out_end_trans;
8132 WARN_ON(ret > 0);
8135 * unlock our path, this is safe because only this
8136 * function is allowed to delete this snapshot
8138 btrfs_unlock_up_safe(path, 0);
8140 level = btrfs_header_level(root->node);
8141 while (1) {
8142 btrfs_tree_lock(path->nodes[level]);
8143 btrfs_set_lock_blocking(path->nodes[level]);
8144 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8146 ret = btrfs_lookup_extent_info(trans, root,
8147 path->nodes[level]->start,
8148 level, 1, &wc->refs[level],
8149 &wc->flags[level]);
8150 if (ret < 0) {
8151 err = ret;
8152 goto out_end_trans;
8154 BUG_ON(wc->refs[level] == 0);
8156 if (level == root_item->drop_level)
8157 break;
8159 btrfs_tree_unlock(path->nodes[level]);
8160 path->locks[level] = 0;
8161 WARN_ON(wc->refs[level] != 1);
8162 level--;
8166 wc->level = level;
8167 wc->shared_level = -1;
8168 wc->stage = DROP_REFERENCE;
8169 wc->update_ref = update_ref;
8170 wc->keep_locks = 0;
8171 wc->for_reloc = for_reloc;
8172 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8174 while (1) {
8176 ret = walk_down_tree(trans, root, path, wc);
8177 if (ret < 0) {
8178 err = ret;
8179 break;
8182 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8183 if (ret < 0) {
8184 err = ret;
8185 break;
8188 if (ret > 0) {
8189 BUG_ON(wc->stage != DROP_REFERENCE);
8190 break;
8193 if (wc->stage == DROP_REFERENCE) {
8194 level = wc->level;
8195 btrfs_node_key(path->nodes[level],
8196 &root_item->drop_progress,
8197 path->slots[level]);
8198 root_item->drop_level = level;
8201 BUG_ON(wc->level == 0);
8202 if (btrfs_should_end_transaction(trans, tree_root) ||
8203 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
8204 ret = btrfs_update_root(trans, tree_root,
8205 &root->root_key,
8206 root_item);
8207 if (ret) {
8208 btrfs_abort_transaction(trans, tree_root, ret);
8209 err = ret;
8210 goto out_end_trans;
8214 * Qgroup update accounting is run from
8215 * delayed ref handling. This usually works
8216 * out because delayed refs are normally the
8217 * only way qgroup updates are added. However,
8218 * we may have added updates during our tree
8219 * walk so run qgroups here to make sure we
8220 * don't lose any updates.
8222 ret = btrfs_delayed_qgroup_accounting(trans,
8223 root->fs_info);
8224 if (ret)
8225 printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8226 "running qgroup updates "
8227 "during snapshot delete. "
8228 "Quota is out of sync, "
8229 "rescan required.\n", ret);
8231 btrfs_end_transaction_throttle(trans, tree_root);
8232 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
8233 pr_debug("BTRFS: drop snapshot early exit\n");
8234 err = -EAGAIN;
8235 goto out_free;
8238 trans = btrfs_start_transaction(tree_root, 0);
8239 if (IS_ERR(trans)) {
8240 err = PTR_ERR(trans);
8241 goto out_free;
8243 if (block_rsv)
8244 trans->block_rsv = block_rsv;
8247 btrfs_release_path(path);
8248 if (err)
8249 goto out_end_trans;
8251 ret = btrfs_del_root(trans, tree_root, &root->root_key);
8252 if (ret) {
8253 btrfs_abort_transaction(trans, tree_root, ret);
8254 goto out_end_trans;
8257 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
8258 ret = btrfs_find_root(tree_root, &root->root_key, path,
8259 NULL, NULL);
8260 if (ret < 0) {
8261 btrfs_abort_transaction(trans, tree_root, ret);
8262 err = ret;
8263 goto out_end_trans;
8264 } else if (ret > 0) {
8265 /* if we fail to delete the orphan item this time
8266 * around, it'll get picked up the next time.
8268 * The most common failure here is just -ENOENT.
8270 btrfs_del_orphan_item(trans, tree_root,
8271 root->root_key.objectid);
8275 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
8276 btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
8277 } else {
8278 free_extent_buffer(root->node);
8279 free_extent_buffer(root->commit_root);
8280 btrfs_put_fs_root(root);
8282 root_dropped = true;
8283 out_end_trans:
8284 ret = btrfs_delayed_qgroup_accounting(trans, tree_root->fs_info);
8285 if (ret)
8286 printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8287 "running qgroup updates "
8288 "during snapshot delete. "
8289 "Quota is out of sync, "
8290 "rescan required.\n", ret);
8292 btrfs_end_transaction_throttle(trans, tree_root);
8293 out_free:
8294 kfree(wc);
8295 btrfs_free_path(path);
8296 out:
8298 * So if we need to stop dropping the snapshot for whatever reason we
8299 * need to make sure to add it back to the dead root list so that we
8300 * keep trying to do the work later. This also cleans up roots if we
8301 * don't have it in the radix (like when we recover after a power fail
8302 * or unmount) so we don't leak memory.
8304 if (!for_reloc && root_dropped == false)
8305 btrfs_add_dead_root(root);
8306 if (err && err != -EAGAIN)
8307 btrfs_std_error(root->fs_info, err);
8308 return err;
8312 * drop subtree rooted at tree block 'node'.
8314 * NOTE: this function will unlock and release tree block 'node'
8315 * only used by relocation code
8317 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
8318 struct btrfs_root *root,
8319 struct extent_buffer *node,
8320 struct extent_buffer *parent)
8322 struct btrfs_path *path;
8323 struct walk_control *wc;
8324 int level;
8325 int parent_level;
8326 int ret = 0;
8327 int wret;
8329 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
8331 path = btrfs_alloc_path();
8332 if (!path)
8333 return -ENOMEM;
8335 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8336 if (!wc) {
8337 btrfs_free_path(path);
8338 return -ENOMEM;
8341 btrfs_assert_tree_locked(parent);
8342 parent_level = btrfs_header_level(parent);
8343 extent_buffer_get(parent);
8344 path->nodes[parent_level] = parent;
8345 path->slots[parent_level] = btrfs_header_nritems(parent);
8347 btrfs_assert_tree_locked(node);
8348 level = btrfs_header_level(node);
8349 path->nodes[level] = node;
8350 path->slots[level] = 0;
8351 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8353 wc->refs[parent_level] = 1;
8354 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8355 wc->level = level;
8356 wc->shared_level = -1;
8357 wc->stage = DROP_REFERENCE;
8358 wc->update_ref = 0;
8359 wc->keep_locks = 1;
8360 wc->for_reloc = 1;
8361 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8363 while (1) {
8364 wret = walk_down_tree(trans, root, path, wc);
8365 if (wret < 0) {
8366 ret = wret;
8367 break;
8370 wret = walk_up_tree(trans, root, path, wc, parent_level);
8371 if (wret < 0)
8372 ret = wret;
8373 if (wret != 0)
8374 break;
8377 kfree(wc);
8378 btrfs_free_path(path);
8379 return ret;
8382 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
8384 u64 num_devices;
8385 u64 stripped;
8388 * if restripe for this chunk_type is on pick target profile and
8389 * return, otherwise do the usual balance
8391 stripped = get_restripe_target(root->fs_info, flags);
8392 if (stripped)
8393 return extended_to_chunk(stripped);
8395 num_devices = root->fs_info->fs_devices->rw_devices;
8397 stripped = BTRFS_BLOCK_GROUP_RAID0 |
8398 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
8399 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
8401 if (num_devices == 1) {
8402 stripped |= BTRFS_BLOCK_GROUP_DUP;
8403 stripped = flags & ~stripped;
8405 /* turn raid0 into single device chunks */
8406 if (flags & BTRFS_BLOCK_GROUP_RAID0)
8407 return stripped;
8409 /* turn mirroring into duplication */
8410 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
8411 BTRFS_BLOCK_GROUP_RAID10))
8412 return stripped | BTRFS_BLOCK_GROUP_DUP;
8413 } else {
8414 /* they already had raid on here, just return */
8415 if (flags & stripped)
8416 return flags;
8418 stripped |= BTRFS_BLOCK_GROUP_DUP;
8419 stripped = flags & ~stripped;
8421 /* switch duplicated blocks with raid1 */
8422 if (flags & BTRFS_BLOCK_GROUP_DUP)
8423 return stripped | BTRFS_BLOCK_GROUP_RAID1;
8425 /* this is drive concat, leave it alone */
8428 return flags;
8431 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
8433 struct btrfs_space_info *sinfo = cache->space_info;
8434 u64 num_bytes;
8435 u64 min_allocable_bytes;
8436 int ret = -ENOSPC;
8440 * We need some metadata space and system metadata space for
8441 * allocating chunks in some corner cases until we force to set
8442 * it to be readonly.
8444 if ((sinfo->flags &
8445 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
8446 !force)
8447 min_allocable_bytes = 1 * 1024 * 1024;
8448 else
8449 min_allocable_bytes = 0;
8451 spin_lock(&sinfo->lock);
8452 spin_lock(&cache->lock);
8454 if (cache->ro) {
8455 ret = 0;
8456 goto out;
8459 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8460 cache->bytes_super - btrfs_block_group_used(&cache->item);
8462 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
8463 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
8464 min_allocable_bytes <= sinfo->total_bytes) {
8465 sinfo->bytes_readonly += num_bytes;
8466 cache->ro = 1;
8467 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
8468 ret = 0;
8470 out:
8471 spin_unlock(&cache->lock);
8472 spin_unlock(&sinfo->lock);
8473 return ret;
8476 int btrfs_set_block_group_ro(struct btrfs_root *root,
8477 struct btrfs_block_group_cache *cache)
8480 struct btrfs_trans_handle *trans;
8481 u64 alloc_flags;
8482 int ret;
8484 BUG_ON(cache->ro);
8486 trans = btrfs_join_transaction(root);
8487 if (IS_ERR(trans))
8488 return PTR_ERR(trans);
8490 ret = set_block_group_ro(cache, 0);
8491 if (!ret)
8492 goto out;
8493 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
8494 ret = do_chunk_alloc(trans, root, alloc_flags,
8495 CHUNK_ALLOC_FORCE);
8496 if (ret < 0)
8497 goto out;
8498 ret = set_block_group_ro(cache, 0);
8499 out:
8500 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
8501 alloc_flags = update_block_group_flags(root, cache->flags);
8502 check_system_chunk(trans, root, alloc_flags);
8505 btrfs_end_transaction(trans, root);
8506 return ret;
8509 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
8510 struct btrfs_root *root, u64 type)
8512 u64 alloc_flags = get_alloc_profile(root, type);
8513 return do_chunk_alloc(trans, root, alloc_flags,
8514 CHUNK_ALLOC_FORCE);
8518 * helper to account the unused space of all the readonly block group in the
8519 * space_info. takes mirrors into account.
8521 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
8523 struct btrfs_block_group_cache *block_group;
8524 u64 free_bytes = 0;
8525 int factor;
8527 /* It's df, we don't care if it's racey */
8528 if (list_empty(&sinfo->ro_bgs))
8529 return 0;
8531 spin_lock(&sinfo->lock);
8532 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
8533 spin_lock(&block_group->lock);
8535 if (!block_group->ro) {
8536 spin_unlock(&block_group->lock);
8537 continue;
8540 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8541 BTRFS_BLOCK_GROUP_RAID10 |
8542 BTRFS_BLOCK_GROUP_DUP))
8543 factor = 2;
8544 else
8545 factor = 1;
8547 free_bytes += (block_group->key.offset -
8548 btrfs_block_group_used(&block_group->item)) *
8549 factor;
8551 spin_unlock(&block_group->lock);
8553 spin_unlock(&sinfo->lock);
8555 return free_bytes;
8558 void btrfs_set_block_group_rw(struct btrfs_root *root,
8559 struct btrfs_block_group_cache *cache)
8561 struct btrfs_space_info *sinfo = cache->space_info;
8562 u64 num_bytes;
8564 BUG_ON(!cache->ro);
8566 spin_lock(&sinfo->lock);
8567 spin_lock(&cache->lock);
8568 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8569 cache->bytes_super - btrfs_block_group_used(&cache->item);
8570 sinfo->bytes_readonly -= num_bytes;
8571 cache->ro = 0;
8572 list_del_init(&cache->ro_list);
8573 spin_unlock(&cache->lock);
8574 spin_unlock(&sinfo->lock);
8578 * checks to see if its even possible to relocate this block group.
8580 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8581 * ok to go ahead and try.
8583 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
8585 struct btrfs_block_group_cache *block_group;
8586 struct btrfs_space_info *space_info;
8587 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8588 struct btrfs_device *device;
8589 struct btrfs_trans_handle *trans;
8590 u64 min_free;
8591 u64 dev_min = 1;
8592 u64 dev_nr = 0;
8593 u64 target;
8594 int index;
8595 int full = 0;
8596 int ret = 0;
8598 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
8600 /* odd, couldn't find the block group, leave it alone */
8601 if (!block_group)
8602 return -1;
8604 min_free = btrfs_block_group_used(&block_group->item);
8606 /* no bytes used, we're good */
8607 if (!min_free)
8608 goto out;
8610 space_info = block_group->space_info;
8611 spin_lock(&space_info->lock);
8613 full = space_info->full;
8616 * if this is the last block group we have in this space, we can't
8617 * relocate it unless we're able to allocate a new chunk below.
8619 * Otherwise, we need to make sure we have room in the space to handle
8620 * all of the extents from this block group. If we can, we're good
8622 if ((space_info->total_bytes != block_group->key.offset) &&
8623 (space_info->bytes_used + space_info->bytes_reserved +
8624 space_info->bytes_pinned + space_info->bytes_readonly +
8625 min_free < space_info->total_bytes)) {
8626 spin_unlock(&space_info->lock);
8627 goto out;
8629 spin_unlock(&space_info->lock);
8632 * ok we don't have enough space, but maybe we have free space on our
8633 * devices to allocate new chunks for relocation, so loop through our
8634 * alloc devices and guess if we have enough space. if this block
8635 * group is going to be restriped, run checks against the target
8636 * profile instead of the current one.
8638 ret = -1;
8641 * index:
8642 * 0: raid10
8643 * 1: raid1
8644 * 2: dup
8645 * 3: raid0
8646 * 4: single
8648 target = get_restripe_target(root->fs_info, block_group->flags);
8649 if (target) {
8650 index = __get_raid_index(extended_to_chunk(target));
8651 } else {
8653 * this is just a balance, so if we were marked as full
8654 * we know there is no space for a new chunk
8656 if (full)
8657 goto out;
8659 index = get_block_group_index(block_group);
8662 if (index == BTRFS_RAID_RAID10) {
8663 dev_min = 4;
8664 /* Divide by 2 */
8665 min_free >>= 1;
8666 } else if (index == BTRFS_RAID_RAID1) {
8667 dev_min = 2;
8668 } else if (index == BTRFS_RAID_DUP) {
8669 /* Multiply by 2 */
8670 min_free <<= 1;
8671 } else if (index == BTRFS_RAID_RAID0) {
8672 dev_min = fs_devices->rw_devices;
8673 min_free = div64_u64(min_free, dev_min);
8676 /* We need to do this so that we can look at pending chunks */
8677 trans = btrfs_join_transaction(root);
8678 if (IS_ERR(trans)) {
8679 ret = PTR_ERR(trans);
8680 goto out;
8683 mutex_lock(&root->fs_info->chunk_mutex);
8684 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
8685 u64 dev_offset;
8688 * check to make sure we can actually find a chunk with enough
8689 * space to fit our block group in.
8691 if (device->total_bytes > device->bytes_used + min_free &&
8692 !device->is_tgtdev_for_dev_replace) {
8693 ret = find_free_dev_extent(trans, device, min_free,
8694 &dev_offset, NULL);
8695 if (!ret)
8696 dev_nr++;
8698 if (dev_nr >= dev_min)
8699 break;
8701 ret = -1;
8704 mutex_unlock(&root->fs_info->chunk_mutex);
8705 btrfs_end_transaction(trans, root);
8706 out:
8707 btrfs_put_block_group(block_group);
8708 return ret;
8711 static int find_first_block_group(struct btrfs_root *root,
8712 struct btrfs_path *path, struct btrfs_key *key)
8714 int ret = 0;
8715 struct btrfs_key found_key;
8716 struct extent_buffer *leaf;
8717 int slot;
8719 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
8720 if (ret < 0)
8721 goto out;
8723 while (1) {
8724 slot = path->slots[0];
8725 leaf = path->nodes[0];
8726 if (slot >= btrfs_header_nritems(leaf)) {
8727 ret = btrfs_next_leaf(root, path);
8728 if (ret == 0)
8729 continue;
8730 if (ret < 0)
8731 goto out;
8732 break;
8734 btrfs_item_key_to_cpu(leaf, &found_key, slot);
8736 if (found_key.objectid >= key->objectid &&
8737 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
8738 ret = 0;
8739 goto out;
8741 path->slots[0]++;
8743 out:
8744 return ret;
8747 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
8749 struct btrfs_block_group_cache *block_group;
8750 u64 last = 0;
8752 while (1) {
8753 struct inode *inode;
8755 block_group = btrfs_lookup_first_block_group(info, last);
8756 while (block_group) {
8757 spin_lock(&block_group->lock);
8758 if (block_group->iref)
8759 break;
8760 spin_unlock(&block_group->lock);
8761 block_group = next_block_group(info->tree_root,
8762 block_group);
8764 if (!block_group) {
8765 if (last == 0)
8766 break;
8767 last = 0;
8768 continue;
8771 inode = block_group->inode;
8772 block_group->iref = 0;
8773 block_group->inode = NULL;
8774 spin_unlock(&block_group->lock);
8775 iput(inode);
8776 last = block_group->key.objectid + block_group->key.offset;
8777 btrfs_put_block_group(block_group);
8781 int btrfs_free_block_groups(struct btrfs_fs_info *info)
8783 struct btrfs_block_group_cache *block_group;
8784 struct btrfs_space_info *space_info;
8785 struct btrfs_caching_control *caching_ctl;
8786 struct rb_node *n;
8788 down_write(&info->commit_root_sem);
8789 while (!list_empty(&info->caching_block_groups)) {
8790 caching_ctl = list_entry(info->caching_block_groups.next,
8791 struct btrfs_caching_control, list);
8792 list_del(&caching_ctl->list);
8793 put_caching_control(caching_ctl);
8795 up_write(&info->commit_root_sem);
8797 spin_lock(&info->unused_bgs_lock);
8798 while (!list_empty(&info->unused_bgs)) {
8799 block_group = list_first_entry(&info->unused_bgs,
8800 struct btrfs_block_group_cache,
8801 bg_list);
8802 list_del_init(&block_group->bg_list);
8803 btrfs_put_block_group(block_group);
8805 spin_unlock(&info->unused_bgs_lock);
8807 spin_lock(&info->block_group_cache_lock);
8808 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
8809 block_group = rb_entry(n, struct btrfs_block_group_cache,
8810 cache_node);
8811 rb_erase(&block_group->cache_node,
8812 &info->block_group_cache_tree);
8813 RB_CLEAR_NODE(&block_group->cache_node);
8814 spin_unlock(&info->block_group_cache_lock);
8816 down_write(&block_group->space_info->groups_sem);
8817 list_del(&block_group->list);
8818 up_write(&block_group->space_info->groups_sem);
8820 if (block_group->cached == BTRFS_CACHE_STARTED)
8821 wait_block_group_cache_done(block_group);
8824 * We haven't cached this block group, which means we could
8825 * possibly have excluded extents on this block group.
8827 if (block_group->cached == BTRFS_CACHE_NO ||
8828 block_group->cached == BTRFS_CACHE_ERROR)
8829 free_excluded_extents(info->extent_root, block_group);
8831 btrfs_remove_free_space_cache(block_group);
8832 btrfs_put_block_group(block_group);
8834 spin_lock(&info->block_group_cache_lock);
8836 spin_unlock(&info->block_group_cache_lock);
8838 /* now that all the block groups are freed, go through and
8839 * free all the space_info structs. This is only called during
8840 * the final stages of unmount, and so we know nobody is
8841 * using them. We call synchronize_rcu() once before we start,
8842 * just to be on the safe side.
8844 synchronize_rcu();
8846 release_global_block_rsv(info);
8848 while (!list_empty(&info->space_info)) {
8849 int i;
8851 space_info = list_entry(info->space_info.next,
8852 struct btrfs_space_info,
8853 list);
8854 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
8855 if (WARN_ON(space_info->bytes_pinned > 0 ||
8856 space_info->bytes_reserved > 0 ||
8857 space_info->bytes_may_use > 0)) {
8858 dump_space_info(space_info, 0, 0);
8861 list_del(&space_info->list);
8862 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
8863 struct kobject *kobj;
8864 kobj = space_info->block_group_kobjs[i];
8865 space_info->block_group_kobjs[i] = NULL;
8866 if (kobj) {
8867 kobject_del(kobj);
8868 kobject_put(kobj);
8871 kobject_del(&space_info->kobj);
8872 kobject_put(&space_info->kobj);
8874 return 0;
8877 static void __link_block_group(struct btrfs_space_info *space_info,
8878 struct btrfs_block_group_cache *cache)
8880 int index = get_block_group_index(cache);
8881 bool first = false;
8883 down_write(&space_info->groups_sem);
8884 if (list_empty(&space_info->block_groups[index]))
8885 first = true;
8886 list_add_tail(&cache->list, &space_info->block_groups[index]);
8887 up_write(&space_info->groups_sem);
8889 if (first) {
8890 struct raid_kobject *rkobj;
8891 int ret;
8893 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
8894 if (!rkobj)
8895 goto out_err;
8896 rkobj->raid_type = index;
8897 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
8898 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
8899 "%s", get_raid_name(index));
8900 if (ret) {
8901 kobject_put(&rkobj->kobj);
8902 goto out_err;
8904 space_info->block_group_kobjs[index] = &rkobj->kobj;
8907 return;
8908 out_err:
8909 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
8912 static struct btrfs_block_group_cache *
8913 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
8915 struct btrfs_block_group_cache *cache;
8917 cache = kzalloc(sizeof(*cache), GFP_NOFS);
8918 if (!cache)
8919 return NULL;
8921 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8922 GFP_NOFS);
8923 if (!cache->free_space_ctl) {
8924 kfree(cache);
8925 return NULL;
8928 cache->key.objectid = start;
8929 cache->key.offset = size;
8930 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8932 cache->sectorsize = root->sectorsize;
8933 cache->fs_info = root->fs_info;
8934 cache->full_stripe_len = btrfs_full_stripe_len(root,
8935 &root->fs_info->mapping_tree,
8936 start);
8937 atomic_set(&cache->count, 1);
8938 spin_lock_init(&cache->lock);
8939 init_rwsem(&cache->data_rwsem);
8940 INIT_LIST_HEAD(&cache->list);
8941 INIT_LIST_HEAD(&cache->cluster_list);
8942 INIT_LIST_HEAD(&cache->bg_list);
8943 INIT_LIST_HEAD(&cache->ro_list);
8944 INIT_LIST_HEAD(&cache->dirty_list);
8945 btrfs_init_free_space_ctl(cache);
8946 atomic_set(&cache->trimming, 0);
8948 return cache;
8951 int btrfs_read_block_groups(struct btrfs_root *root)
8953 struct btrfs_path *path;
8954 int ret;
8955 struct btrfs_block_group_cache *cache;
8956 struct btrfs_fs_info *info = root->fs_info;
8957 struct btrfs_space_info *space_info;
8958 struct btrfs_key key;
8959 struct btrfs_key found_key;
8960 struct extent_buffer *leaf;
8961 int need_clear = 0;
8962 u64 cache_gen;
8964 root = info->extent_root;
8965 key.objectid = 0;
8966 key.offset = 0;
8967 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8968 path = btrfs_alloc_path();
8969 if (!path)
8970 return -ENOMEM;
8971 path->reada = 1;
8973 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
8974 if (btrfs_test_opt(root, SPACE_CACHE) &&
8975 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
8976 need_clear = 1;
8977 if (btrfs_test_opt(root, CLEAR_CACHE))
8978 need_clear = 1;
8980 while (1) {
8981 ret = find_first_block_group(root, path, &key);
8982 if (ret > 0)
8983 break;
8984 if (ret != 0)
8985 goto error;
8987 leaf = path->nodes[0];
8988 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
8990 cache = btrfs_create_block_group_cache(root, found_key.objectid,
8991 found_key.offset);
8992 if (!cache) {
8993 ret = -ENOMEM;
8994 goto error;
8997 if (need_clear) {
8999 * When we mount with old space cache, we need to
9000 * set BTRFS_DC_CLEAR and set dirty flag.
9002 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9003 * truncate the old free space cache inode and
9004 * setup a new one.
9005 * b) Setting 'dirty flag' makes sure that we flush
9006 * the new space cache info onto disk.
9008 if (btrfs_test_opt(root, SPACE_CACHE))
9009 cache->disk_cache_state = BTRFS_DC_CLEAR;
9012 read_extent_buffer(leaf, &cache->item,
9013 btrfs_item_ptr_offset(leaf, path->slots[0]),
9014 sizeof(cache->item));
9015 cache->flags = btrfs_block_group_flags(&cache->item);
9017 key.objectid = found_key.objectid + found_key.offset;
9018 btrfs_release_path(path);
9021 * We need to exclude the super stripes now so that the space
9022 * info has super bytes accounted for, otherwise we'll think
9023 * we have more space than we actually do.
9025 ret = exclude_super_stripes(root, cache);
9026 if (ret) {
9028 * We may have excluded something, so call this just in
9029 * case.
9031 free_excluded_extents(root, cache);
9032 btrfs_put_block_group(cache);
9033 goto error;
9037 * check for two cases, either we are full, and therefore
9038 * don't need to bother with the caching work since we won't
9039 * find any space, or we are empty, and we can just add all
9040 * the space in and be done with it. This saves us _alot_ of
9041 * time, particularly in the full case.
9043 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
9044 cache->last_byte_to_unpin = (u64)-1;
9045 cache->cached = BTRFS_CACHE_FINISHED;
9046 free_excluded_extents(root, cache);
9047 } else if (btrfs_block_group_used(&cache->item) == 0) {
9048 cache->last_byte_to_unpin = (u64)-1;
9049 cache->cached = BTRFS_CACHE_FINISHED;
9050 add_new_free_space(cache, root->fs_info,
9051 found_key.objectid,
9052 found_key.objectid +
9053 found_key.offset);
9054 free_excluded_extents(root, cache);
9057 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9058 if (ret) {
9059 btrfs_remove_free_space_cache(cache);
9060 btrfs_put_block_group(cache);
9061 goto error;
9064 ret = update_space_info(info, cache->flags, found_key.offset,
9065 btrfs_block_group_used(&cache->item),
9066 &space_info);
9067 if (ret) {
9068 btrfs_remove_free_space_cache(cache);
9069 spin_lock(&info->block_group_cache_lock);
9070 rb_erase(&cache->cache_node,
9071 &info->block_group_cache_tree);
9072 RB_CLEAR_NODE(&cache->cache_node);
9073 spin_unlock(&info->block_group_cache_lock);
9074 btrfs_put_block_group(cache);
9075 goto error;
9078 cache->space_info = space_info;
9079 spin_lock(&cache->space_info->lock);
9080 cache->space_info->bytes_readonly += cache->bytes_super;
9081 spin_unlock(&cache->space_info->lock);
9083 __link_block_group(space_info, cache);
9085 set_avail_alloc_bits(root->fs_info, cache->flags);
9086 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
9087 set_block_group_ro(cache, 1);
9088 } else if (btrfs_block_group_used(&cache->item) == 0) {
9089 spin_lock(&info->unused_bgs_lock);
9090 /* Should always be true but just in case. */
9091 if (list_empty(&cache->bg_list)) {
9092 btrfs_get_block_group(cache);
9093 list_add_tail(&cache->bg_list,
9094 &info->unused_bgs);
9096 spin_unlock(&info->unused_bgs_lock);
9100 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9101 if (!(get_alloc_profile(root, space_info->flags) &
9102 (BTRFS_BLOCK_GROUP_RAID10 |
9103 BTRFS_BLOCK_GROUP_RAID1 |
9104 BTRFS_BLOCK_GROUP_RAID5 |
9105 BTRFS_BLOCK_GROUP_RAID6 |
9106 BTRFS_BLOCK_GROUP_DUP)))
9107 continue;
9109 * avoid allocating from un-mirrored block group if there are
9110 * mirrored block groups.
9112 list_for_each_entry(cache,
9113 &space_info->block_groups[BTRFS_RAID_RAID0],
9114 list)
9115 set_block_group_ro(cache, 1);
9116 list_for_each_entry(cache,
9117 &space_info->block_groups[BTRFS_RAID_SINGLE],
9118 list)
9119 set_block_group_ro(cache, 1);
9122 init_global_block_rsv(info);
9123 ret = 0;
9124 error:
9125 btrfs_free_path(path);
9126 return ret;
9129 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9130 struct btrfs_root *root)
9132 struct btrfs_block_group_cache *block_group, *tmp;
9133 struct btrfs_root *extent_root = root->fs_info->extent_root;
9134 struct btrfs_block_group_item item;
9135 struct btrfs_key key;
9136 int ret = 0;
9138 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
9139 if (ret)
9140 goto next;
9142 spin_lock(&block_group->lock);
9143 memcpy(&item, &block_group->item, sizeof(item));
9144 memcpy(&key, &block_group->key, sizeof(key));
9145 spin_unlock(&block_group->lock);
9147 ret = btrfs_insert_item(trans, extent_root, &key, &item,
9148 sizeof(item));
9149 if (ret)
9150 btrfs_abort_transaction(trans, extent_root, ret);
9151 ret = btrfs_finish_chunk_alloc(trans, extent_root,
9152 key.objectid, key.offset);
9153 if (ret)
9154 btrfs_abort_transaction(trans, extent_root, ret);
9155 next:
9156 list_del_init(&block_group->bg_list);
9160 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9161 struct btrfs_root *root, u64 bytes_used,
9162 u64 type, u64 chunk_objectid, u64 chunk_offset,
9163 u64 size)
9165 int ret;
9166 struct btrfs_root *extent_root;
9167 struct btrfs_block_group_cache *cache;
9169 extent_root = root->fs_info->extent_root;
9171 btrfs_set_log_full_commit(root->fs_info, trans);
9173 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
9174 if (!cache)
9175 return -ENOMEM;
9177 btrfs_set_block_group_used(&cache->item, bytes_used);
9178 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
9179 btrfs_set_block_group_flags(&cache->item, type);
9181 cache->flags = type;
9182 cache->last_byte_to_unpin = (u64)-1;
9183 cache->cached = BTRFS_CACHE_FINISHED;
9184 ret = exclude_super_stripes(root, cache);
9185 if (ret) {
9187 * We may have excluded something, so call this just in
9188 * case.
9190 free_excluded_extents(root, cache);
9191 btrfs_put_block_group(cache);
9192 return ret;
9195 add_new_free_space(cache, root->fs_info, chunk_offset,
9196 chunk_offset + size);
9198 free_excluded_extents(root, cache);
9200 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9201 if (ret) {
9202 btrfs_remove_free_space_cache(cache);
9203 btrfs_put_block_group(cache);
9204 return ret;
9207 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
9208 &cache->space_info);
9209 if (ret) {
9210 btrfs_remove_free_space_cache(cache);
9211 spin_lock(&root->fs_info->block_group_cache_lock);
9212 rb_erase(&cache->cache_node,
9213 &root->fs_info->block_group_cache_tree);
9214 RB_CLEAR_NODE(&cache->cache_node);
9215 spin_unlock(&root->fs_info->block_group_cache_lock);
9216 btrfs_put_block_group(cache);
9217 return ret;
9219 update_global_block_rsv(root->fs_info);
9221 spin_lock(&cache->space_info->lock);
9222 cache->space_info->bytes_readonly += cache->bytes_super;
9223 spin_unlock(&cache->space_info->lock);
9225 __link_block_group(cache->space_info, cache);
9227 list_add_tail(&cache->bg_list, &trans->new_bgs);
9229 set_avail_alloc_bits(extent_root->fs_info, type);
9231 return 0;
9234 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
9236 u64 extra_flags = chunk_to_extended(flags) &
9237 BTRFS_EXTENDED_PROFILE_MASK;
9239 write_seqlock(&fs_info->profiles_lock);
9240 if (flags & BTRFS_BLOCK_GROUP_DATA)
9241 fs_info->avail_data_alloc_bits &= ~extra_flags;
9242 if (flags & BTRFS_BLOCK_GROUP_METADATA)
9243 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
9244 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
9245 fs_info->avail_system_alloc_bits &= ~extra_flags;
9246 write_sequnlock(&fs_info->profiles_lock);
9249 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
9250 struct btrfs_root *root, u64 group_start,
9251 struct extent_map *em)
9253 struct btrfs_path *path;
9254 struct btrfs_block_group_cache *block_group;
9255 struct btrfs_free_cluster *cluster;
9256 struct btrfs_root *tree_root = root->fs_info->tree_root;
9257 struct btrfs_key key;
9258 struct inode *inode;
9259 struct kobject *kobj = NULL;
9260 int ret;
9261 int index;
9262 int factor;
9263 struct btrfs_caching_control *caching_ctl = NULL;
9264 bool remove_em;
9266 root = root->fs_info->extent_root;
9268 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
9269 BUG_ON(!block_group);
9270 BUG_ON(!block_group->ro);
9273 * Free the reserved super bytes from this block group before
9274 * remove it.
9276 free_excluded_extents(root, block_group);
9278 memcpy(&key, &block_group->key, sizeof(key));
9279 index = get_block_group_index(block_group);
9280 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
9281 BTRFS_BLOCK_GROUP_RAID1 |
9282 BTRFS_BLOCK_GROUP_RAID10))
9283 factor = 2;
9284 else
9285 factor = 1;
9287 /* make sure this block group isn't part of an allocation cluster */
9288 cluster = &root->fs_info->data_alloc_cluster;
9289 spin_lock(&cluster->refill_lock);
9290 btrfs_return_cluster_to_free_space(block_group, cluster);
9291 spin_unlock(&cluster->refill_lock);
9294 * make sure this block group isn't part of a metadata
9295 * allocation cluster
9297 cluster = &root->fs_info->meta_alloc_cluster;
9298 spin_lock(&cluster->refill_lock);
9299 btrfs_return_cluster_to_free_space(block_group, cluster);
9300 spin_unlock(&cluster->refill_lock);
9302 path = btrfs_alloc_path();
9303 if (!path) {
9304 ret = -ENOMEM;
9305 goto out;
9308 inode = lookup_free_space_inode(tree_root, block_group, path);
9309 if (!IS_ERR(inode)) {
9310 ret = btrfs_orphan_add(trans, inode);
9311 if (ret) {
9312 btrfs_add_delayed_iput(inode);
9313 goto out;
9315 clear_nlink(inode);
9316 /* One for the block groups ref */
9317 spin_lock(&block_group->lock);
9318 if (block_group->iref) {
9319 block_group->iref = 0;
9320 block_group->inode = NULL;
9321 spin_unlock(&block_group->lock);
9322 iput(inode);
9323 } else {
9324 spin_unlock(&block_group->lock);
9326 /* One for our lookup ref */
9327 btrfs_add_delayed_iput(inode);
9330 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
9331 key.offset = block_group->key.objectid;
9332 key.type = 0;
9334 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
9335 if (ret < 0)
9336 goto out;
9337 if (ret > 0)
9338 btrfs_release_path(path);
9339 if (ret == 0) {
9340 ret = btrfs_del_item(trans, tree_root, path);
9341 if (ret)
9342 goto out;
9343 btrfs_release_path(path);
9346 spin_lock(&root->fs_info->block_group_cache_lock);
9347 rb_erase(&block_group->cache_node,
9348 &root->fs_info->block_group_cache_tree);
9349 RB_CLEAR_NODE(&block_group->cache_node);
9351 if (root->fs_info->first_logical_byte == block_group->key.objectid)
9352 root->fs_info->first_logical_byte = (u64)-1;
9353 spin_unlock(&root->fs_info->block_group_cache_lock);
9355 down_write(&block_group->space_info->groups_sem);
9357 * we must use list_del_init so people can check to see if they
9358 * are still on the list after taking the semaphore
9360 list_del_init(&block_group->list);
9361 list_del_init(&block_group->ro_list);
9362 if (list_empty(&block_group->space_info->block_groups[index])) {
9363 kobj = block_group->space_info->block_group_kobjs[index];
9364 block_group->space_info->block_group_kobjs[index] = NULL;
9365 clear_avail_alloc_bits(root->fs_info, block_group->flags);
9367 up_write(&block_group->space_info->groups_sem);
9368 if (kobj) {
9369 kobject_del(kobj);
9370 kobject_put(kobj);
9373 if (block_group->has_caching_ctl)
9374 caching_ctl = get_caching_control(block_group);
9375 if (block_group->cached == BTRFS_CACHE_STARTED)
9376 wait_block_group_cache_done(block_group);
9377 if (block_group->has_caching_ctl) {
9378 down_write(&root->fs_info->commit_root_sem);
9379 if (!caching_ctl) {
9380 struct btrfs_caching_control *ctl;
9382 list_for_each_entry(ctl,
9383 &root->fs_info->caching_block_groups, list)
9384 if (ctl->block_group == block_group) {
9385 caching_ctl = ctl;
9386 atomic_inc(&caching_ctl->count);
9387 break;
9390 if (caching_ctl)
9391 list_del_init(&caching_ctl->list);
9392 up_write(&root->fs_info->commit_root_sem);
9393 if (caching_ctl) {
9394 /* Once for the caching bgs list and once for us. */
9395 put_caching_control(caching_ctl);
9396 put_caching_control(caching_ctl);
9400 spin_lock(&trans->transaction->dirty_bgs_lock);
9401 if (!list_empty(&block_group->dirty_list)) {
9402 list_del_init(&block_group->dirty_list);
9403 btrfs_put_block_group(block_group);
9405 spin_unlock(&trans->transaction->dirty_bgs_lock);
9407 btrfs_remove_free_space_cache(block_group);
9409 spin_lock(&block_group->space_info->lock);
9410 block_group->space_info->total_bytes -= block_group->key.offset;
9411 block_group->space_info->bytes_readonly -= block_group->key.offset;
9412 block_group->space_info->disk_total -= block_group->key.offset * factor;
9413 spin_unlock(&block_group->space_info->lock);
9415 memcpy(&key, &block_group->key, sizeof(key));
9417 lock_chunks(root);
9418 if (!list_empty(&em->list)) {
9419 /* We're in the transaction->pending_chunks list. */
9420 free_extent_map(em);
9422 spin_lock(&block_group->lock);
9423 block_group->removed = 1;
9425 * At this point trimming can't start on this block group, because we
9426 * removed the block group from the tree fs_info->block_group_cache_tree
9427 * so no one can't find it anymore and even if someone already got this
9428 * block group before we removed it from the rbtree, they have already
9429 * incremented block_group->trimming - if they didn't, they won't find
9430 * any free space entries because we already removed them all when we
9431 * called btrfs_remove_free_space_cache().
9433 * And we must not remove the extent map from the fs_info->mapping_tree
9434 * to prevent the same logical address range and physical device space
9435 * ranges from being reused for a new block group. This is because our
9436 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
9437 * completely transactionless, so while it is trimming a range the
9438 * currently running transaction might finish and a new one start,
9439 * allowing for new block groups to be created that can reuse the same
9440 * physical device locations unless we take this special care.
9442 remove_em = (atomic_read(&block_group->trimming) == 0);
9444 * Make sure a trimmer task always sees the em in the pinned_chunks list
9445 * if it sees block_group->removed == 1 (needs to lock block_group->lock
9446 * before checking block_group->removed).
9448 if (!remove_em) {
9450 * Our em might be in trans->transaction->pending_chunks which
9451 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
9452 * and so is the fs_info->pinned_chunks list.
9454 * So at this point we must be holding the chunk_mutex to avoid
9455 * any races with chunk allocation (more specifically at
9456 * volumes.c:contains_pending_extent()), to ensure it always
9457 * sees the em, either in the pending_chunks list or in the
9458 * pinned_chunks list.
9460 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
9462 spin_unlock(&block_group->lock);
9464 if (remove_em) {
9465 struct extent_map_tree *em_tree;
9467 em_tree = &root->fs_info->mapping_tree.map_tree;
9468 write_lock(&em_tree->lock);
9470 * The em might be in the pending_chunks list, so make sure the
9471 * chunk mutex is locked, since remove_extent_mapping() will
9472 * delete us from that list.
9474 remove_extent_mapping(em_tree, em);
9475 write_unlock(&em_tree->lock);
9476 /* once for the tree */
9477 free_extent_map(em);
9480 unlock_chunks(root);
9482 btrfs_put_block_group(block_group);
9483 btrfs_put_block_group(block_group);
9485 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
9486 if (ret > 0)
9487 ret = -EIO;
9488 if (ret < 0)
9489 goto out;
9491 ret = btrfs_del_item(trans, root, path);
9492 out:
9493 btrfs_free_path(path);
9494 return ret;
9498 * Process the unused_bgs list and remove any that don't have any allocated
9499 * space inside of them.
9501 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
9503 struct btrfs_block_group_cache *block_group;
9504 struct btrfs_space_info *space_info;
9505 struct btrfs_root *root = fs_info->extent_root;
9506 struct btrfs_trans_handle *trans;
9507 int ret = 0;
9509 if (!fs_info->open)
9510 return;
9512 spin_lock(&fs_info->unused_bgs_lock);
9513 while (!list_empty(&fs_info->unused_bgs)) {
9514 u64 start, end;
9516 block_group = list_first_entry(&fs_info->unused_bgs,
9517 struct btrfs_block_group_cache,
9518 bg_list);
9519 space_info = block_group->space_info;
9520 list_del_init(&block_group->bg_list);
9521 if (ret || btrfs_mixed_space_info(space_info)) {
9522 btrfs_put_block_group(block_group);
9523 continue;
9525 spin_unlock(&fs_info->unused_bgs_lock);
9527 /* Don't want to race with allocators so take the groups_sem */
9528 down_write(&space_info->groups_sem);
9529 spin_lock(&block_group->lock);
9530 if (block_group->reserved ||
9531 btrfs_block_group_used(&block_group->item) ||
9532 block_group->ro) {
9534 * We want to bail if we made new allocations or have
9535 * outstanding allocations in this block group. We do
9536 * the ro check in case balance is currently acting on
9537 * this block group.
9539 spin_unlock(&block_group->lock);
9540 up_write(&space_info->groups_sem);
9541 goto next;
9543 spin_unlock(&block_group->lock);
9545 /* We don't want to force the issue, only flip if it's ok. */
9546 ret = set_block_group_ro(block_group, 0);
9547 up_write(&space_info->groups_sem);
9548 if (ret < 0) {
9549 ret = 0;
9550 goto next;
9554 * Want to do this before we do anything else so we can recover
9555 * properly if we fail to join the transaction.
9557 /* 1 for btrfs_orphan_reserve_metadata() */
9558 trans = btrfs_start_transaction(root, 1);
9559 if (IS_ERR(trans)) {
9560 btrfs_set_block_group_rw(root, block_group);
9561 ret = PTR_ERR(trans);
9562 goto next;
9566 * We could have pending pinned extents for this block group,
9567 * just delete them, we don't care about them anymore.
9569 start = block_group->key.objectid;
9570 end = start + block_group->key.offset - 1;
9572 * Hold the unused_bg_unpin_mutex lock to avoid racing with
9573 * btrfs_finish_extent_commit(). If we are at transaction N,
9574 * another task might be running finish_extent_commit() for the
9575 * previous transaction N - 1, and have seen a range belonging
9576 * to the block group in freed_extents[] before we were able to
9577 * clear the whole block group range from freed_extents[]. This
9578 * means that task can lookup for the block group after we
9579 * unpinned it from freed_extents[] and removed it, leading to
9580 * a BUG_ON() at btrfs_unpin_extent_range().
9582 mutex_lock(&fs_info->unused_bg_unpin_mutex);
9583 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
9584 EXTENT_DIRTY, GFP_NOFS);
9585 if (ret) {
9586 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
9587 btrfs_set_block_group_rw(root, block_group);
9588 goto end_trans;
9590 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
9591 EXTENT_DIRTY, GFP_NOFS);
9592 if (ret) {
9593 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
9594 btrfs_set_block_group_rw(root, block_group);
9595 goto end_trans;
9597 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
9599 /* Reset pinned so btrfs_put_block_group doesn't complain */
9600 block_group->pinned = 0;
9603 * Btrfs_remove_chunk will abort the transaction if things go
9604 * horribly wrong.
9606 ret = btrfs_remove_chunk(trans, root,
9607 block_group->key.objectid);
9608 end_trans:
9609 btrfs_end_transaction(trans, root);
9610 next:
9611 btrfs_put_block_group(block_group);
9612 spin_lock(&fs_info->unused_bgs_lock);
9614 spin_unlock(&fs_info->unused_bgs_lock);
9617 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
9619 struct btrfs_space_info *space_info;
9620 struct btrfs_super_block *disk_super;
9621 u64 features;
9622 u64 flags;
9623 int mixed = 0;
9624 int ret;
9626 disk_super = fs_info->super_copy;
9627 if (!btrfs_super_root(disk_super))
9628 return 1;
9630 features = btrfs_super_incompat_flags(disk_super);
9631 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
9632 mixed = 1;
9634 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9635 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9636 if (ret)
9637 goto out;
9639 if (mixed) {
9640 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
9641 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9642 } else {
9643 flags = BTRFS_BLOCK_GROUP_METADATA;
9644 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9645 if (ret)
9646 goto out;
9648 flags = BTRFS_BLOCK_GROUP_DATA;
9649 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9651 out:
9652 return ret;
9655 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
9657 return unpin_extent_range(root, start, end, false);
9660 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
9662 struct btrfs_fs_info *fs_info = root->fs_info;
9663 struct btrfs_block_group_cache *cache = NULL;
9664 u64 group_trimmed;
9665 u64 start;
9666 u64 end;
9667 u64 trimmed = 0;
9668 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
9669 int ret = 0;
9672 * try to trim all FS space, our block group may start from non-zero.
9674 if (range->len == total_bytes)
9675 cache = btrfs_lookup_first_block_group(fs_info, range->start);
9676 else
9677 cache = btrfs_lookup_block_group(fs_info, range->start);
9679 while (cache) {
9680 if (cache->key.objectid >= (range->start + range->len)) {
9681 btrfs_put_block_group(cache);
9682 break;
9685 start = max(range->start, cache->key.objectid);
9686 end = min(range->start + range->len,
9687 cache->key.objectid + cache->key.offset);
9689 if (end - start >= range->minlen) {
9690 if (!block_group_cache_done(cache)) {
9691 ret = cache_block_group(cache, 0);
9692 if (ret) {
9693 btrfs_put_block_group(cache);
9694 break;
9696 ret = wait_block_group_cache_done(cache);
9697 if (ret) {
9698 btrfs_put_block_group(cache);
9699 break;
9702 ret = btrfs_trim_block_group(cache,
9703 &group_trimmed,
9704 start,
9705 end,
9706 range->minlen);
9708 trimmed += group_trimmed;
9709 if (ret) {
9710 btrfs_put_block_group(cache);
9711 break;
9715 cache = next_block_group(fs_info->tree_root, cache);
9718 range->len = trimmed;
9719 return ret;
9723 * btrfs_{start,end}_write_no_snapshoting() are similar to
9724 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
9725 * data into the page cache through nocow before the subvolume is snapshoted,
9726 * but flush the data into disk after the snapshot creation, or to prevent
9727 * operations while snapshoting is ongoing and that cause the snapshot to be
9728 * inconsistent (writes followed by expanding truncates for example).
9730 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
9732 percpu_counter_dec(&root->subv_writers->counter);
9734 * Make sure counter is updated before we wake up
9735 * waiters.
9737 smp_mb();
9738 if (waitqueue_active(&root->subv_writers->wait))
9739 wake_up(&root->subv_writers->wait);
9742 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
9744 if (atomic_read(&root->will_be_snapshoted))
9745 return 0;
9747 percpu_counter_inc(&root->subv_writers->counter);
9749 * Make sure counter is updated before we check for snapshot creation.
9751 smp_mb();
9752 if (atomic_read(&root->will_be_snapshoted)) {
9753 btrfs_end_write_no_snapshoting(root);
9754 return 0;
9756 return 1;