2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
31 #include "print-tree.h"
35 #include "free-space-cache.h"
40 #undef SCRAMBLE_DELAYED_REFS
43 * control flags for do_chunk_alloc's force field
44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45 * if we really need one.
47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
48 * if we have very few chunks already allocated. This is
49 * used as part of the clustering code to help make sure
50 * we have a good pool of storage to cluster in, without
51 * filling the FS with empty chunks
53 * CHUNK_ALLOC_FORCE means it must try to allocate one
57 CHUNK_ALLOC_NO_FORCE
= 0,
58 CHUNK_ALLOC_LIMITED
= 1,
59 CHUNK_ALLOC_FORCE
= 2,
63 * Control how reservations are dealt with.
65 * RESERVE_FREE - freeing a reservation.
66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69 * bytes_may_use as the ENOSPC accounting is done elsewhere
74 RESERVE_ALLOC_NO_ACCOUNT
= 2,
77 static int update_block_group(struct btrfs_trans_handle
*trans
,
78 struct btrfs_root
*root
, u64 bytenr
,
79 u64 num_bytes
, int alloc
);
80 static int __btrfs_free_extent(struct btrfs_trans_handle
*trans
,
81 struct btrfs_root
*root
,
82 u64 bytenr
, u64 num_bytes
, u64 parent
,
83 u64 root_objectid
, u64 owner_objectid
,
84 u64 owner_offset
, int refs_to_drop
,
85 struct btrfs_delayed_extent_op
*extra_op
,
87 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op
*extent_op
,
88 struct extent_buffer
*leaf
,
89 struct btrfs_extent_item
*ei
);
90 static int alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
91 struct btrfs_root
*root
,
92 u64 parent
, u64 root_objectid
,
93 u64 flags
, u64 owner
, u64 offset
,
94 struct btrfs_key
*ins
, int ref_mod
);
95 static int alloc_reserved_tree_block(struct btrfs_trans_handle
*trans
,
96 struct btrfs_root
*root
,
97 u64 parent
, u64 root_objectid
,
98 u64 flags
, struct btrfs_disk_key
*key
,
99 int level
, struct btrfs_key
*ins
,
101 static int do_chunk_alloc(struct btrfs_trans_handle
*trans
,
102 struct btrfs_root
*extent_root
, u64 flags
,
104 static int find_next_key(struct btrfs_path
*path
, int level
,
105 struct btrfs_key
*key
);
106 static void dump_space_info(struct btrfs_space_info
*info
, u64 bytes
,
107 int dump_block_groups
);
108 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache
*cache
,
109 u64 num_bytes
, int reserve
,
111 static int block_rsv_use_bytes(struct btrfs_block_rsv
*block_rsv
,
113 int btrfs_pin_extent(struct btrfs_root
*root
,
114 u64 bytenr
, u64 num_bytes
, int reserved
);
117 block_group_cache_done(struct btrfs_block_group_cache
*cache
)
120 return cache
->cached
== BTRFS_CACHE_FINISHED
||
121 cache
->cached
== BTRFS_CACHE_ERROR
;
124 static int block_group_bits(struct btrfs_block_group_cache
*cache
, u64 bits
)
126 return (cache
->flags
& bits
) == bits
;
129 static void btrfs_get_block_group(struct btrfs_block_group_cache
*cache
)
131 atomic_inc(&cache
->count
);
134 void btrfs_put_block_group(struct btrfs_block_group_cache
*cache
)
136 if (atomic_dec_and_test(&cache
->count
)) {
137 WARN_ON(cache
->pinned
> 0);
138 WARN_ON(cache
->reserved
> 0);
139 kfree(cache
->free_space_ctl
);
145 * this adds the block group to the fs_info rb tree for the block group
148 static int btrfs_add_block_group_cache(struct btrfs_fs_info
*info
,
149 struct btrfs_block_group_cache
*block_group
)
152 struct rb_node
*parent
= NULL
;
153 struct btrfs_block_group_cache
*cache
;
155 spin_lock(&info
->block_group_cache_lock
);
156 p
= &info
->block_group_cache_tree
.rb_node
;
160 cache
= rb_entry(parent
, struct btrfs_block_group_cache
,
162 if (block_group
->key
.objectid
< cache
->key
.objectid
) {
164 } else if (block_group
->key
.objectid
> cache
->key
.objectid
) {
167 spin_unlock(&info
->block_group_cache_lock
);
172 rb_link_node(&block_group
->cache_node
, parent
, p
);
173 rb_insert_color(&block_group
->cache_node
,
174 &info
->block_group_cache_tree
);
176 if (info
->first_logical_byte
> block_group
->key
.objectid
)
177 info
->first_logical_byte
= block_group
->key
.objectid
;
179 spin_unlock(&info
->block_group_cache_lock
);
185 * This will return the block group at or after bytenr if contains is 0, else
186 * it will return the block group that contains the bytenr
188 static struct btrfs_block_group_cache
*
189 block_group_cache_tree_search(struct btrfs_fs_info
*info
, u64 bytenr
,
192 struct btrfs_block_group_cache
*cache
, *ret
= NULL
;
196 spin_lock(&info
->block_group_cache_lock
);
197 n
= info
->block_group_cache_tree
.rb_node
;
200 cache
= rb_entry(n
, struct btrfs_block_group_cache
,
202 end
= cache
->key
.objectid
+ cache
->key
.offset
- 1;
203 start
= cache
->key
.objectid
;
205 if (bytenr
< start
) {
206 if (!contains
&& (!ret
|| start
< ret
->key
.objectid
))
209 } else if (bytenr
> start
) {
210 if (contains
&& bytenr
<= end
) {
221 btrfs_get_block_group(ret
);
222 if (bytenr
== 0 && info
->first_logical_byte
> ret
->key
.objectid
)
223 info
->first_logical_byte
= ret
->key
.objectid
;
225 spin_unlock(&info
->block_group_cache_lock
);
230 static int add_excluded_extent(struct btrfs_root
*root
,
231 u64 start
, u64 num_bytes
)
233 u64 end
= start
+ num_bytes
- 1;
234 set_extent_bits(&root
->fs_info
->freed_extents
[0],
235 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
236 set_extent_bits(&root
->fs_info
->freed_extents
[1],
237 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
241 static void free_excluded_extents(struct btrfs_root
*root
,
242 struct btrfs_block_group_cache
*cache
)
246 start
= cache
->key
.objectid
;
247 end
= start
+ cache
->key
.offset
- 1;
249 clear_extent_bits(&root
->fs_info
->freed_extents
[0],
250 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
251 clear_extent_bits(&root
->fs_info
->freed_extents
[1],
252 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
255 static int exclude_super_stripes(struct btrfs_root
*root
,
256 struct btrfs_block_group_cache
*cache
)
263 if (cache
->key
.objectid
< BTRFS_SUPER_INFO_OFFSET
) {
264 stripe_len
= BTRFS_SUPER_INFO_OFFSET
- cache
->key
.objectid
;
265 cache
->bytes_super
+= stripe_len
;
266 ret
= add_excluded_extent(root
, cache
->key
.objectid
,
272 for (i
= 0; i
< BTRFS_SUPER_MIRROR_MAX
; i
++) {
273 bytenr
= btrfs_sb_offset(i
);
274 ret
= btrfs_rmap_block(&root
->fs_info
->mapping_tree
,
275 cache
->key
.objectid
, bytenr
,
276 0, &logical
, &nr
, &stripe_len
);
283 if (logical
[nr
] > cache
->key
.objectid
+
287 if (logical
[nr
] + stripe_len
<= cache
->key
.objectid
)
291 if (start
< cache
->key
.objectid
) {
292 start
= cache
->key
.objectid
;
293 len
= (logical
[nr
] + stripe_len
) - start
;
295 len
= min_t(u64
, stripe_len
,
296 cache
->key
.objectid
+
297 cache
->key
.offset
- start
);
300 cache
->bytes_super
+= len
;
301 ret
= add_excluded_extent(root
, start
, len
);
313 static struct btrfs_caching_control
*
314 get_caching_control(struct btrfs_block_group_cache
*cache
)
316 struct btrfs_caching_control
*ctl
;
318 spin_lock(&cache
->lock
);
319 if (!cache
->caching_ctl
) {
320 spin_unlock(&cache
->lock
);
324 ctl
= cache
->caching_ctl
;
325 atomic_inc(&ctl
->count
);
326 spin_unlock(&cache
->lock
);
330 static void put_caching_control(struct btrfs_caching_control
*ctl
)
332 if (atomic_dec_and_test(&ctl
->count
))
337 * this is only called by cache_block_group, since we could have freed extents
338 * we need to check the pinned_extents for any extents that can't be used yet
339 * since their free space will be released as soon as the transaction commits.
341 static u64
add_new_free_space(struct btrfs_block_group_cache
*block_group
,
342 struct btrfs_fs_info
*info
, u64 start
, u64 end
)
344 u64 extent_start
, extent_end
, size
, total_added
= 0;
347 while (start
< end
) {
348 ret
= find_first_extent_bit(info
->pinned_extents
, start
,
349 &extent_start
, &extent_end
,
350 EXTENT_DIRTY
| EXTENT_UPTODATE
,
355 if (extent_start
<= start
) {
356 start
= extent_end
+ 1;
357 } else if (extent_start
> start
&& extent_start
< end
) {
358 size
= extent_start
- start
;
360 ret
= btrfs_add_free_space(block_group
, start
,
362 BUG_ON(ret
); /* -ENOMEM or logic error */
363 start
= extent_end
+ 1;
372 ret
= btrfs_add_free_space(block_group
, start
, size
);
373 BUG_ON(ret
); /* -ENOMEM or logic error */
379 static noinline
void caching_thread(struct btrfs_work
*work
)
381 struct btrfs_block_group_cache
*block_group
;
382 struct btrfs_fs_info
*fs_info
;
383 struct btrfs_caching_control
*caching_ctl
;
384 struct btrfs_root
*extent_root
;
385 struct btrfs_path
*path
;
386 struct extent_buffer
*leaf
;
387 struct btrfs_key key
;
393 caching_ctl
= container_of(work
, struct btrfs_caching_control
, work
);
394 block_group
= caching_ctl
->block_group
;
395 fs_info
= block_group
->fs_info
;
396 extent_root
= fs_info
->extent_root
;
398 path
= btrfs_alloc_path();
402 last
= max_t(u64
, block_group
->key
.objectid
, BTRFS_SUPER_INFO_OFFSET
);
405 * We don't want to deadlock with somebody trying to allocate a new
406 * extent for the extent root while also trying to search the extent
407 * root to add free space. So we skip locking and search the commit
408 * root, since its read-only
410 path
->skip_locking
= 1;
411 path
->search_commit_root
= 1;
416 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
418 mutex_lock(&caching_ctl
->mutex
);
419 /* need to make sure the commit_root doesn't disappear */
420 down_read(&fs_info
->commit_root_sem
);
423 ret
= btrfs_search_slot(NULL
, extent_root
, &key
, path
, 0, 0);
427 leaf
= path
->nodes
[0];
428 nritems
= btrfs_header_nritems(leaf
);
431 if (btrfs_fs_closing(fs_info
) > 1) {
436 if (path
->slots
[0] < nritems
) {
437 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
439 ret
= find_next_key(path
, 0, &key
);
443 if (need_resched() ||
444 rwsem_is_contended(&fs_info
->commit_root_sem
)) {
445 caching_ctl
->progress
= last
;
446 btrfs_release_path(path
);
447 up_read(&fs_info
->commit_root_sem
);
448 mutex_unlock(&caching_ctl
->mutex
);
453 ret
= btrfs_next_leaf(extent_root
, path
);
458 leaf
= path
->nodes
[0];
459 nritems
= btrfs_header_nritems(leaf
);
463 if (key
.objectid
< last
) {
466 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
468 caching_ctl
->progress
= last
;
469 btrfs_release_path(path
);
473 if (key
.objectid
< block_group
->key
.objectid
) {
478 if (key
.objectid
>= block_group
->key
.objectid
+
479 block_group
->key
.offset
)
482 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
||
483 key
.type
== BTRFS_METADATA_ITEM_KEY
) {
484 total_found
+= add_new_free_space(block_group
,
487 if (key
.type
== BTRFS_METADATA_ITEM_KEY
)
488 last
= key
.objectid
+
489 fs_info
->tree_root
->nodesize
;
491 last
= key
.objectid
+ key
.offset
;
493 if (total_found
> (1024 * 1024 * 2)) {
495 wake_up(&caching_ctl
->wait
);
502 total_found
+= add_new_free_space(block_group
, fs_info
, last
,
503 block_group
->key
.objectid
+
504 block_group
->key
.offset
);
505 caching_ctl
->progress
= (u64
)-1;
507 spin_lock(&block_group
->lock
);
508 block_group
->caching_ctl
= NULL
;
509 block_group
->cached
= BTRFS_CACHE_FINISHED
;
510 spin_unlock(&block_group
->lock
);
513 btrfs_free_path(path
);
514 up_read(&fs_info
->commit_root_sem
);
516 free_excluded_extents(extent_root
, block_group
);
518 mutex_unlock(&caching_ctl
->mutex
);
521 spin_lock(&block_group
->lock
);
522 block_group
->caching_ctl
= NULL
;
523 block_group
->cached
= BTRFS_CACHE_ERROR
;
524 spin_unlock(&block_group
->lock
);
526 wake_up(&caching_ctl
->wait
);
528 put_caching_control(caching_ctl
);
529 btrfs_put_block_group(block_group
);
532 static int cache_block_group(struct btrfs_block_group_cache
*cache
,
536 struct btrfs_fs_info
*fs_info
= cache
->fs_info
;
537 struct btrfs_caching_control
*caching_ctl
;
540 caching_ctl
= kzalloc(sizeof(*caching_ctl
), GFP_NOFS
);
544 INIT_LIST_HEAD(&caching_ctl
->list
);
545 mutex_init(&caching_ctl
->mutex
);
546 init_waitqueue_head(&caching_ctl
->wait
);
547 caching_ctl
->block_group
= cache
;
548 caching_ctl
->progress
= cache
->key
.objectid
;
549 atomic_set(&caching_ctl
->count
, 1);
550 btrfs_init_work(&caching_ctl
->work
, btrfs_cache_helper
,
551 caching_thread
, NULL
, NULL
);
553 spin_lock(&cache
->lock
);
555 * This should be a rare occasion, but this could happen I think in the
556 * case where one thread starts to load the space cache info, and then
557 * some other thread starts a transaction commit which tries to do an
558 * allocation while the other thread is still loading the space cache
559 * info. The previous loop should have kept us from choosing this block
560 * group, but if we've moved to the state where we will wait on caching
561 * block groups we need to first check if we're doing a fast load here,
562 * so we can wait for it to finish, otherwise we could end up allocating
563 * from a block group who's cache gets evicted for one reason or
566 while (cache
->cached
== BTRFS_CACHE_FAST
) {
567 struct btrfs_caching_control
*ctl
;
569 ctl
= cache
->caching_ctl
;
570 atomic_inc(&ctl
->count
);
571 prepare_to_wait(&ctl
->wait
, &wait
, TASK_UNINTERRUPTIBLE
);
572 spin_unlock(&cache
->lock
);
576 finish_wait(&ctl
->wait
, &wait
);
577 put_caching_control(ctl
);
578 spin_lock(&cache
->lock
);
581 if (cache
->cached
!= BTRFS_CACHE_NO
) {
582 spin_unlock(&cache
->lock
);
586 WARN_ON(cache
->caching_ctl
);
587 cache
->caching_ctl
= caching_ctl
;
588 cache
->cached
= BTRFS_CACHE_FAST
;
589 spin_unlock(&cache
->lock
);
591 if (fs_info
->mount_opt
& BTRFS_MOUNT_SPACE_CACHE
) {
592 mutex_lock(&caching_ctl
->mutex
);
593 ret
= load_free_space_cache(fs_info
, cache
);
595 spin_lock(&cache
->lock
);
597 cache
->caching_ctl
= NULL
;
598 cache
->cached
= BTRFS_CACHE_FINISHED
;
599 cache
->last_byte_to_unpin
= (u64
)-1;
600 caching_ctl
->progress
= (u64
)-1;
602 if (load_cache_only
) {
603 cache
->caching_ctl
= NULL
;
604 cache
->cached
= BTRFS_CACHE_NO
;
606 cache
->cached
= BTRFS_CACHE_STARTED
;
607 cache
->has_caching_ctl
= 1;
610 spin_unlock(&cache
->lock
);
611 mutex_unlock(&caching_ctl
->mutex
);
613 wake_up(&caching_ctl
->wait
);
615 put_caching_control(caching_ctl
);
616 free_excluded_extents(fs_info
->extent_root
, cache
);
621 * We are not going to do the fast caching, set cached to the
622 * appropriate value and wakeup any waiters.
624 spin_lock(&cache
->lock
);
625 if (load_cache_only
) {
626 cache
->caching_ctl
= NULL
;
627 cache
->cached
= BTRFS_CACHE_NO
;
629 cache
->cached
= BTRFS_CACHE_STARTED
;
630 cache
->has_caching_ctl
= 1;
632 spin_unlock(&cache
->lock
);
633 wake_up(&caching_ctl
->wait
);
636 if (load_cache_only
) {
637 put_caching_control(caching_ctl
);
641 down_write(&fs_info
->commit_root_sem
);
642 atomic_inc(&caching_ctl
->count
);
643 list_add_tail(&caching_ctl
->list
, &fs_info
->caching_block_groups
);
644 up_write(&fs_info
->commit_root_sem
);
646 btrfs_get_block_group(cache
);
648 btrfs_queue_work(fs_info
->caching_workers
, &caching_ctl
->work
);
654 * return the block group that starts at or after bytenr
656 static struct btrfs_block_group_cache
*
657 btrfs_lookup_first_block_group(struct btrfs_fs_info
*info
, u64 bytenr
)
659 struct btrfs_block_group_cache
*cache
;
661 cache
= block_group_cache_tree_search(info
, bytenr
, 0);
667 * return the block group that contains the given bytenr
669 struct btrfs_block_group_cache
*btrfs_lookup_block_group(
670 struct btrfs_fs_info
*info
,
673 struct btrfs_block_group_cache
*cache
;
675 cache
= block_group_cache_tree_search(info
, bytenr
, 1);
680 static struct btrfs_space_info
*__find_space_info(struct btrfs_fs_info
*info
,
683 struct list_head
*head
= &info
->space_info
;
684 struct btrfs_space_info
*found
;
686 flags
&= BTRFS_BLOCK_GROUP_TYPE_MASK
;
689 list_for_each_entry_rcu(found
, head
, list
) {
690 if (found
->flags
& flags
) {
700 * after adding space to the filesystem, we need to clear the full flags
701 * on all the space infos.
703 void btrfs_clear_space_info_full(struct btrfs_fs_info
*info
)
705 struct list_head
*head
= &info
->space_info
;
706 struct btrfs_space_info
*found
;
709 list_for_each_entry_rcu(found
, head
, list
)
714 /* simple helper to search for an existing data extent at a given offset */
715 int btrfs_lookup_data_extent(struct btrfs_root
*root
, u64 start
, u64 len
)
718 struct btrfs_key key
;
719 struct btrfs_path
*path
;
721 path
= btrfs_alloc_path();
725 key
.objectid
= start
;
727 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
728 ret
= btrfs_search_slot(NULL
, root
->fs_info
->extent_root
, &key
, path
,
730 btrfs_free_path(path
);
735 * helper function to lookup reference count and flags of a tree block.
737 * the head node for delayed ref is used to store the sum of all the
738 * reference count modifications queued up in the rbtree. the head
739 * node may also store the extent flags to set. This way you can check
740 * to see what the reference count and extent flags would be if all of
741 * the delayed refs are not processed.
743 int btrfs_lookup_extent_info(struct btrfs_trans_handle
*trans
,
744 struct btrfs_root
*root
, u64 bytenr
,
745 u64 offset
, int metadata
, u64
*refs
, u64
*flags
)
747 struct btrfs_delayed_ref_head
*head
;
748 struct btrfs_delayed_ref_root
*delayed_refs
;
749 struct btrfs_path
*path
;
750 struct btrfs_extent_item
*ei
;
751 struct extent_buffer
*leaf
;
752 struct btrfs_key key
;
759 * If we don't have skinny metadata, don't bother doing anything
762 if (metadata
&& !btrfs_fs_incompat(root
->fs_info
, SKINNY_METADATA
)) {
763 offset
= root
->nodesize
;
767 path
= btrfs_alloc_path();
772 path
->skip_locking
= 1;
773 path
->search_commit_root
= 1;
777 key
.objectid
= bytenr
;
780 key
.type
= BTRFS_METADATA_ITEM_KEY
;
782 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
784 ret
= btrfs_search_slot(trans
, root
->fs_info
->extent_root
,
789 if (ret
> 0 && metadata
&& key
.type
== BTRFS_METADATA_ITEM_KEY
) {
790 if (path
->slots
[0]) {
792 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
794 if (key
.objectid
== bytenr
&&
795 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
796 key
.offset
== root
->nodesize
)
802 leaf
= path
->nodes
[0];
803 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
804 if (item_size
>= sizeof(*ei
)) {
805 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
806 struct btrfs_extent_item
);
807 num_refs
= btrfs_extent_refs(leaf
, ei
);
808 extent_flags
= btrfs_extent_flags(leaf
, ei
);
810 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
811 struct btrfs_extent_item_v0
*ei0
;
812 BUG_ON(item_size
!= sizeof(*ei0
));
813 ei0
= btrfs_item_ptr(leaf
, path
->slots
[0],
814 struct btrfs_extent_item_v0
);
815 num_refs
= btrfs_extent_refs_v0(leaf
, ei0
);
816 /* FIXME: this isn't correct for data */
817 extent_flags
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
822 BUG_ON(num_refs
== 0);
832 delayed_refs
= &trans
->transaction
->delayed_refs
;
833 spin_lock(&delayed_refs
->lock
);
834 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
836 if (!mutex_trylock(&head
->mutex
)) {
837 atomic_inc(&head
->node
.refs
);
838 spin_unlock(&delayed_refs
->lock
);
840 btrfs_release_path(path
);
843 * Mutex was contended, block until it's released and try
846 mutex_lock(&head
->mutex
);
847 mutex_unlock(&head
->mutex
);
848 btrfs_put_delayed_ref(&head
->node
);
851 spin_lock(&head
->lock
);
852 if (head
->extent_op
&& head
->extent_op
->update_flags
)
853 extent_flags
|= head
->extent_op
->flags_to_set
;
855 BUG_ON(num_refs
== 0);
857 num_refs
+= head
->node
.ref_mod
;
858 spin_unlock(&head
->lock
);
859 mutex_unlock(&head
->mutex
);
861 spin_unlock(&delayed_refs
->lock
);
863 WARN_ON(num_refs
== 0);
867 *flags
= extent_flags
;
869 btrfs_free_path(path
);
874 * Back reference rules. Back refs have three main goals:
876 * 1) differentiate between all holders of references to an extent so that
877 * when a reference is dropped we can make sure it was a valid reference
878 * before freeing the extent.
880 * 2) Provide enough information to quickly find the holders of an extent
881 * if we notice a given block is corrupted or bad.
883 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
884 * maintenance. This is actually the same as #2, but with a slightly
885 * different use case.
887 * There are two kinds of back refs. The implicit back refs is optimized
888 * for pointers in non-shared tree blocks. For a given pointer in a block,
889 * back refs of this kind provide information about the block's owner tree
890 * and the pointer's key. These information allow us to find the block by
891 * b-tree searching. The full back refs is for pointers in tree blocks not
892 * referenced by their owner trees. The location of tree block is recorded
893 * in the back refs. Actually the full back refs is generic, and can be
894 * used in all cases the implicit back refs is used. The major shortcoming
895 * of the full back refs is its overhead. Every time a tree block gets
896 * COWed, we have to update back refs entry for all pointers in it.
898 * For a newly allocated tree block, we use implicit back refs for
899 * pointers in it. This means most tree related operations only involve
900 * implicit back refs. For a tree block created in old transaction, the
901 * only way to drop a reference to it is COW it. So we can detect the
902 * event that tree block loses its owner tree's reference and do the
903 * back refs conversion.
905 * When a tree block is COW'd through a tree, there are four cases:
907 * The reference count of the block is one and the tree is the block's
908 * owner tree. Nothing to do in this case.
910 * The reference count of the block is one and the tree is not the
911 * block's owner tree. In this case, full back refs is used for pointers
912 * in the block. Remove these full back refs, add implicit back refs for
913 * every pointers in the new block.
915 * The reference count of the block is greater than one and the tree is
916 * the block's owner tree. In this case, implicit back refs is used for
917 * pointers in the block. Add full back refs for every pointers in the
918 * block, increase lower level extents' reference counts. The original
919 * implicit back refs are entailed to the new block.
921 * The reference count of the block is greater than one and the tree is
922 * not the block's owner tree. Add implicit back refs for every pointer in
923 * the new block, increase lower level extents' reference count.
925 * Back Reference Key composing:
927 * The key objectid corresponds to the first byte in the extent,
928 * The key type is used to differentiate between types of back refs.
929 * There are different meanings of the key offset for different types
932 * File extents can be referenced by:
934 * - multiple snapshots, subvolumes, or different generations in one subvol
935 * - different files inside a single subvolume
936 * - different offsets inside a file (bookend extents in file.c)
938 * The extent ref structure for the implicit back refs has fields for:
940 * - Objectid of the subvolume root
941 * - objectid of the file holding the reference
942 * - original offset in the file
943 * - how many bookend extents
945 * The key offset for the implicit back refs is hash of the first
948 * The extent ref structure for the full back refs has field for:
950 * - number of pointers in the tree leaf
952 * The key offset for the implicit back refs is the first byte of
955 * When a file extent is allocated, The implicit back refs is used.
956 * the fields are filled in:
958 * (root_key.objectid, inode objectid, offset in file, 1)
960 * When a file extent is removed file truncation, we find the
961 * corresponding implicit back refs and check the following fields:
963 * (btrfs_header_owner(leaf), inode objectid, offset in file)
965 * Btree extents can be referenced by:
967 * - Different subvolumes
969 * Both the implicit back refs and the full back refs for tree blocks
970 * only consist of key. The key offset for the implicit back refs is
971 * objectid of block's owner tree. The key offset for the full back refs
972 * is the first byte of parent block.
974 * When implicit back refs is used, information about the lowest key and
975 * level of the tree block are required. These information are stored in
976 * tree block info structure.
979 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
980 static int convert_extent_item_v0(struct btrfs_trans_handle
*trans
,
981 struct btrfs_root
*root
,
982 struct btrfs_path
*path
,
983 u64 owner
, u32 extra_size
)
985 struct btrfs_extent_item
*item
;
986 struct btrfs_extent_item_v0
*ei0
;
987 struct btrfs_extent_ref_v0
*ref0
;
988 struct btrfs_tree_block_info
*bi
;
989 struct extent_buffer
*leaf
;
990 struct btrfs_key key
;
991 struct btrfs_key found_key
;
992 u32 new_size
= sizeof(*item
);
996 leaf
= path
->nodes
[0];
997 BUG_ON(btrfs_item_size_nr(leaf
, path
->slots
[0]) != sizeof(*ei0
));
999 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1000 ei0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1001 struct btrfs_extent_item_v0
);
1002 refs
= btrfs_extent_refs_v0(leaf
, ei0
);
1004 if (owner
== (u64
)-1) {
1006 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
1007 ret
= btrfs_next_leaf(root
, path
);
1010 BUG_ON(ret
> 0); /* Corruption */
1011 leaf
= path
->nodes
[0];
1013 btrfs_item_key_to_cpu(leaf
, &found_key
,
1015 BUG_ON(key
.objectid
!= found_key
.objectid
);
1016 if (found_key
.type
!= BTRFS_EXTENT_REF_V0_KEY
) {
1020 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1021 struct btrfs_extent_ref_v0
);
1022 owner
= btrfs_ref_objectid_v0(leaf
, ref0
);
1026 btrfs_release_path(path
);
1028 if (owner
< BTRFS_FIRST_FREE_OBJECTID
)
1029 new_size
+= sizeof(*bi
);
1031 new_size
-= sizeof(*ei0
);
1032 ret
= btrfs_search_slot(trans
, root
, &key
, path
,
1033 new_size
+ extra_size
, 1);
1036 BUG_ON(ret
); /* Corruption */
1038 btrfs_extend_item(root
, path
, new_size
);
1040 leaf
= path
->nodes
[0];
1041 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1042 btrfs_set_extent_refs(leaf
, item
, refs
);
1043 /* FIXME: get real generation */
1044 btrfs_set_extent_generation(leaf
, item
, 0);
1045 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1046 btrfs_set_extent_flags(leaf
, item
,
1047 BTRFS_EXTENT_FLAG_TREE_BLOCK
|
1048 BTRFS_BLOCK_FLAG_FULL_BACKREF
);
1049 bi
= (struct btrfs_tree_block_info
*)(item
+ 1);
1050 /* FIXME: get first key of the block */
1051 memset_extent_buffer(leaf
, 0, (unsigned long)bi
, sizeof(*bi
));
1052 btrfs_set_tree_block_level(leaf
, bi
, (int)owner
);
1054 btrfs_set_extent_flags(leaf
, item
, BTRFS_EXTENT_FLAG_DATA
);
1056 btrfs_mark_buffer_dirty(leaf
);
1061 static u64
hash_extent_data_ref(u64 root_objectid
, u64 owner
, u64 offset
)
1063 u32 high_crc
= ~(u32
)0;
1064 u32 low_crc
= ~(u32
)0;
1067 lenum
= cpu_to_le64(root_objectid
);
1068 high_crc
= btrfs_crc32c(high_crc
, &lenum
, sizeof(lenum
));
1069 lenum
= cpu_to_le64(owner
);
1070 low_crc
= btrfs_crc32c(low_crc
, &lenum
, sizeof(lenum
));
1071 lenum
= cpu_to_le64(offset
);
1072 low_crc
= btrfs_crc32c(low_crc
, &lenum
, sizeof(lenum
));
1074 return ((u64
)high_crc
<< 31) ^ (u64
)low_crc
;
1077 static u64
hash_extent_data_ref_item(struct extent_buffer
*leaf
,
1078 struct btrfs_extent_data_ref
*ref
)
1080 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf
, ref
),
1081 btrfs_extent_data_ref_objectid(leaf
, ref
),
1082 btrfs_extent_data_ref_offset(leaf
, ref
));
1085 static int match_extent_data_ref(struct extent_buffer
*leaf
,
1086 struct btrfs_extent_data_ref
*ref
,
1087 u64 root_objectid
, u64 owner
, u64 offset
)
1089 if (btrfs_extent_data_ref_root(leaf
, ref
) != root_objectid
||
1090 btrfs_extent_data_ref_objectid(leaf
, ref
) != owner
||
1091 btrfs_extent_data_ref_offset(leaf
, ref
) != offset
)
1096 static noinline
int lookup_extent_data_ref(struct btrfs_trans_handle
*trans
,
1097 struct btrfs_root
*root
,
1098 struct btrfs_path
*path
,
1099 u64 bytenr
, u64 parent
,
1101 u64 owner
, u64 offset
)
1103 struct btrfs_key key
;
1104 struct btrfs_extent_data_ref
*ref
;
1105 struct extent_buffer
*leaf
;
1111 key
.objectid
= bytenr
;
1113 key
.type
= BTRFS_SHARED_DATA_REF_KEY
;
1114 key
.offset
= parent
;
1116 key
.type
= BTRFS_EXTENT_DATA_REF_KEY
;
1117 key
.offset
= hash_extent_data_ref(root_objectid
,
1122 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1131 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1132 key
.type
= BTRFS_EXTENT_REF_V0_KEY
;
1133 btrfs_release_path(path
);
1134 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1145 leaf
= path
->nodes
[0];
1146 nritems
= btrfs_header_nritems(leaf
);
1148 if (path
->slots
[0] >= nritems
) {
1149 ret
= btrfs_next_leaf(root
, path
);
1155 leaf
= path
->nodes
[0];
1156 nritems
= btrfs_header_nritems(leaf
);
1160 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1161 if (key
.objectid
!= bytenr
||
1162 key
.type
!= BTRFS_EXTENT_DATA_REF_KEY
)
1165 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1166 struct btrfs_extent_data_ref
);
1168 if (match_extent_data_ref(leaf
, ref
, root_objectid
,
1171 btrfs_release_path(path
);
1183 static noinline
int insert_extent_data_ref(struct btrfs_trans_handle
*trans
,
1184 struct btrfs_root
*root
,
1185 struct btrfs_path
*path
,
1186 u64 bytenr
, u64 parent
,
1187 u64 root_objectid
, u64 owner
,
1188 u64 offset
, int refs_to_add
)
1190 struct btrfs_key key
;
1191 struct extent_buffer
*leaf
;
1196 key
.objectid
= bytenr
;
1198 key
.type
= BTRFS_SHARED_DATA_REF_KEY
;
1199 key
.offset
= parent
;
1200 size
= sizeof(struct btrfs_shared_data_ref
);
1202 key
.type
= BTRFS_EXTENT_DATA_REF_KEY
;
1203 key
.offset
= hash_extent_data_ref(root_objectid
,
1205 size
= sizeof(struct btrfs_extent_data_ref
);
1208 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, size
);
1209 if (ret
&& ret
!= -EEXIST
)
1212 leaf
= path
->nodes
[0];
1214 struct btrfs_shared_data_ref
*ref
;
1215 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1216 struct btrfs_shared_data_ref
);
1218 btrfs_set_shared_data_ref_count(leaf
, ref
, refs_to_add
);
1220 num_refs
= btrfs_shared_data_ref_count(leaf
, ref
);
1221 num_refs
+= refs_to_add
;
1222 btrfs_set_shared_data_ref_count(leaf
, ref
, num_refs
);
1225 struct btrfs_extent_data_ref
*ref
;
1226 while (ret
== -EEXIST
) {
1227 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1228 struct btrfs_extent_data_ref
);
1229 if (match_extent_data_ref(leaf
, ref
, root_objectid
,
1232 btrfs_release_path(path
);
1234 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1236 if (ret
&& ret
!= -EEXIST
)
1239 leaf
= path
->nodes
[0];
1241 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1242 struct btrfs_extent_data_ref
);
1244 btrfs_set_extent_data_ref_root(leaf
, ref
,
1246 btrfs_set_extent_data_ref_objectid(leaf
, ref
, owner
);
1247 btrfs_set_extent_data_ref_offset(leaf
, ref
, offset
);
1248 btrfs_set_extent_data_ref_count(leaf
, ref
, refs_to_add
);
1250 num_refs
= btrfs_extent_data_ref_count(leaf
, ref
);
1251 num_refs
+= refs_to_add
;
1252 btrfs_set_extent_data_ref_count(leaf
, ref
, num_refs
);
1255 btrfs_mark_buffer_dirty(leaf
);
1258 btrfs_release_path(path
);
1262 static noinline
int remove_extent_data_ref(struct btrfs_trans_handle
*trans
,
1263 struct btrfs_root
*root
,
1264 struct btrfs_path
*path
,
1265 int refs_to_drop
, int *last_ref
)
1267 struct btrfs_key key
;
1268 struct btrfs_extent_data_ref
*ref1
= NULL
;
1269 struct btrfs_shared_data_ref
*ref2
= NULL
;
1270 struct extent_buffer
*leaf
;
1274 leaf
= path
->nodes
[0];
1275 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1277 if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1278 ref1
= btrfs_item_ptr(leaf
, path
->slots
[0],
1279 struct btrfs_extent_data_ref
);
1280 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1281 } else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
) {
1282 ref2
= btrfs_item_ptr(leaf
, path
->slots
[0],
1283 struct btrfs_shared_data_ref
);
1284 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1285 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1286 } else if (key
.type
== BTRFS_EXTENT_REF_V0_KEY
) {
1287 struct btrfs_extent_ref_v0
*ref0
;
1288 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1289 struct btrfs_extent_ref_v0
);
1290 num_refs
= btrfs_ref_count_v0(leaf
, ref0
);
1296 BUG_ON(num_refs
< refs_to_drop
);
1297 num_refs
-= refs_to_drop
;
1299 if (num_refs
== 0) {
1300 ret
= btrfs_del_item(trans
, root
, path
);
1303 if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
)
1304 btrfs_set_extent_data_ref_count(leaf
, ref1
, num_refs
);
1305 else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
)
1306 btrfs_set_shared_data_ref_count(leaf
, ref2
, num_refs
);
1307 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1309 struct btrfs_extent_ref_v0
*ref0
;
1310 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1311 struct btrfs_extent_ref_v0
);
1312 btrfs_set_ref_count_v0(leaf
, ref0
, num_refs
);
1315 btrfs_mark_buffer_dirty(leaf
);
1320 static noinline u32
extent_data_ref_count(struct btrfs_root
*root
,
1321 struct btrfs_path
*path
,
1322 struct btrfs_extent_inline_ref
*iref
)
1324 struct btrfs_key key
;
1325 struct extent_buffer
*leaf
;
1326 struct btrfs_extent_data_ref
*ref1
;
1327 struct btrfs_shared_data_ref
*ref2
;
1330 leaf
= path
->nodes
[0];
1331 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1333 if (btrfs_extent_inline_ref_type(leaf
, iref
) ==
1334 BTRFS_EXTENT_DATA_REF_KEY
) {
1335 ref1
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1336 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1338 ref2
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1339 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1341 } else if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1342 ref1
= btrfs_item_ptr(leaf
, path
->slots
[0],
1343 struct btrfs_extent_data_ref
);
1344 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1345 } else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
) {
1346 ref2
= btrfs_item_ptr(leaf
, path
->slots
[0],
1347 struct btrfs_shared_data_ref
);
1348 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1349 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1350 } else if (key
.type
== BTRFS_EXTENT_REF_V0_KEY
) {
1351 struct btrfs_extent_ref_v0
*ref0
;
1352 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1353 struct btrfs_extent_ref_v0
);
1354 num_refs
= btrfs_ref_count_v0(leaf
, ref0
);
1362 static noinline
int lookup_tree_block_ref(struct btrfs_trans_handle
*trans
,
1363 struct btrfs_root
*root
,
1364 struct btrfs_path
*path
,
1365 u64 bytenr
, u64 parent
,
1368 struct btrfs_key key
;
1371 key
.objectid
= bytenr
;
1373 key
.type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1374 key
.offset
= parent
;
1376 key
.type
= BTRFS_TREE_BLOCK_REF_KEY
;
1377 key
.offset
= root_objectid
;
1380 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1383 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1384 if (ret
== -ENOENT
&& parent
) {
1385 btrfs_release_path(path
);
1386 key
.type
= BTRFS_EXTENT_REF_V0_KEY
;
1387 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1395 static noinline
int insert_tree_block_ref(struct btrfs_trans_handle
*trans
,
1396 struct btrfs_root
*root
,
1397 struct btrfs_path
*path
,
1398 u64 bytenr
, u64 parent
,
1401 struct btrfs_key key
;
1404 key
.objectid
= bytenr
;
1406 key
.type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1407 key
.offset
= parent
;
1409 key
.type
= BTRFS_TREE_BLOCK_REF_KEY
;
1410 key
.offset
= root_objectid
;
1413 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, 0);
1414 btrfs_release_path(path
);
1418 static inline int extent_ref_type(u64 parent
, u64 owner
)
1421 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1423 type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1425 type
= BTRFS_TREE_BLOCK_REF_KEY
;
1428 type
= BTRFS_SHARED_DATA_REF_KEY
;
1430 type
= BTRFS_EXTENT_DATA_REF_KEY
;
1435 static int find_next_key(struct btrfs_path
*path
, int level
,
1436 struct btrfs_key
*key
)
1439 for (; level
< BTRFS_MAX_LEVEL
; level
++) {
1440 if (!path
->nodes
[level
])
1442 if (path
->slots
[level
] + 1 >=
1443 btrfs_header_nritems(path
->nodes
[level
]))
1446 btrfs_item_key_to_cpu(path
->nodes
[level
], key
,
1447 path
->slots
[level
] + 1);
1449 btrfs_node_key_to_cpu(path
->nodes
[level
], key
,
1450 path
->slots
[level
] + 1);
1457 * look for inline back ref. if back ref is found, *ref_ret is set
1458 * to the address of inline back ref, and 0 is returned.
1460 * if back ref isn't found, *ref_ret is set to the address where it
1461 * should be inserted, and -ENOENT is returned.
1463 * if insert is true and there are too many inline back refs, the path
1464 * points to the extent item, and -EAGAIN is returned.
1466 * NOTE: inline back refs are ordered in the same way that back ref
1467 * items in the tree are ordered.
1469 static noinline_for_stack
1470 int lookup_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1471 struct btrfs_root
*root
,
1472 struct btrfs_path
*path
,
1473 struct btrfs_extent_inline_ref
**ref_ret
,
1474 u64 bytenr
, u64 num_bytes
,
1475 u64 parent
, u64 root_objectid
,
1476 u64 owner
, u64 offset
, int insert
)
1478 struct btrfs_key key
;
1479 struct extent_buffer
*leaf
;
1480 struct btrfs_extent_item
*ei
;
1481 struct btrfs_extent_inline_ref
*iref
;
1491 bool skinny_metadata
= btrfs_fs_incompat(root
->fs_info
,
1494 key
.objectid
= bytenr
;
1495 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1496 key
.offset
= num_bytes
;
1498 want
= extent_ref_type(parent
, owner
);
1500 extra_size
= btrfs_extent_inline_ref_size(want
);
1501 path
->keep_locks
= 1;
1506 * Owner is our parent level, so we can just add one to get the level
1507 * for the block we are interested in.
1509 if (skinny_metadata
&& owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1510 key
.type
= BTRFS_METADATA_ITEM_KEY
;
1515 ret
= btrfs_search_slot(trans
, root
, &key
, path
, extra_size
, 1);
1522 * We may be a newly converted file system which still has the old fat
1523 * extent entries for metadata, so try and see if we have one of those.
1525 if (ret
> 0 && skinny_metadata
) {
1526 skinny_metadata
= false;
1527 if (path
->slots
[0]) {
1529 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
1531 if (key
.objectid
== bytenr
&&
1532 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
1533 key
.offset
== num_bytes
)
1537 key
.objectid
= bytenr
;
1538 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1539 key
.offset
= num_bytes
;
1540 btrfs_release_path(path
);
1545 if (ret
&& !insert
) {
1548 } else if (WARN_ON(ret
)) {
1553 leaf
= path
->nodes
[0];
1554 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1555 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1556 if (item_size
< sizeof(*ei
)) {
1561 ret
= convert_extent_item_v0(trans
, root
, path
, owner
,
1567 leaf
= path
->nodes
[0];
1568 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1571 BUG_ON(item_size
< sizeof(*ei
));
1573 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1574 flags
= btrfs_extent_flags(leaf
, ei
);
1576 ptr
= (unsigned long)(ei
+ 1);
1577 end
= (unsigned long)ei
+ item_size
;
1579 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
&& !skinny_metadata
) {
1580 ptr
+= sizeof(struct btrfs_tree_block_info
);
1590 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
1591 type
= btrfs_extent_inline_ref_type(leaf
, iref
);
1595 ptr
+= btrfs_extent_inline_ref_size(type
);
1599 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1600 struct btrfs_extent_data_ref
*dref
;
1601 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1602 if (match_extent_data_ref(leaf
, dref
, root_objectid
,
1607 if (hash_extent_data_ref_item(leaf
, dref
) <
1608 hash_extent_data_ref(root_objectid
, owner
, offset
))
1612 ref_offset
= btrfs_extent_inline_ref_offset(leaf
, iref
);
1614 if (parent
== ref_offset
) {
1618 if (ref_offset
< parent
)
1621 if (root_objectid
== ref_offset
) {
1625 if (ref_offset
< root_objectid
)
1629 ptr
+= btrfs_extent_inline_ref_size(type
);
1631 if (err
== -ENOENT
&& insert
) {
1632 if (item_size
+ extra_size
>=
1633 BTRFS_MAX_EXTENT_ITEM_SIZE(root
)) {
1638 * To add new inline back ref, we have to make sure
1639 * there is no corresponding back ref item.
1640 * For simplicity, we just do not add new inline back
1641 * ref if there is any kind of item for this block
1643 if (find_next_key(path
, 0, &key
) == 0 &&
1644 key
.objectid
== bytenr
&&
1645 key
.type
< BTRFS_BLOCK_GROUP_ITEM_KEY
) {
1650 *ref_ret
= (struct btrfs_extent_inline_ref
*)ptr
;
1653 path
->keep_locks
= 0;
1654 btrfs_unlock_up_safe(path
, 1);
1660 * helper to add new inline back ref
1662 static noinline_for_stack
1663 void setup_inline_extent_backref(struct btrfs_root
*root
,
1664 struct btrfs_path
*path
,
1665 struct btrfs_extent_inline_ref
*iref
,
1666 u64 parent
, u64 root_objectid
,
1667 u64 owner
, u64 offset
, int refs_to_add
,
1668 struct btrfs_delayed_extent_op
*extent_op
)
1670 struct extent_buffer
*leaf
;
1671 struct btrfs_extent_item
*ei
;
1674 unsigned long item_offset
;
1679 leaf
= path
->nodes
[0];
1680 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1681 item_offset
= (unsigned long)iref
- (unsigned long)ei
;
1683 type
= extent_ref_type(parent
, owner
);
1684 size
= btrfs_extent_inline_ref_size(type
);
1686 btrfs_extend_item(root
, path
, size
);
1688 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1689 refs
= btrfs_extent_refs(leaf
, ei
);
1690 refs
+= refs_to_add
;
1691 btrfs_set_extent_refs(leaf
, ei
, refs
);
1693 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1695 ptr
= (unsigned long)ei
+ item_offset
;
1696 end
= (unsigned long)ei
+ btrfs_item_size_nr(leaf
, path
->slots
[0]);
1697 if (ptr
< end
- size
)
1698 memmove_extent_buffer(leaf
, ptr
+ size
, ptr
,
1701 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
1702 btrfs_set_extent_inline_ref_type(leaf
, iref
, type
);
1703 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1704 struct btrfs_extent_data_ref
*dref
;
1705 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1706 btrfs_set_extent_data_ref_root(leaf
, dref
, root_objectid
);
1707 btrfs_set_extent_data_ref_objectid(leaf
, dref
, owner
);
1708 btrfs_set_extent_data_ref_offset(leaf
, dref
, offset
);
1709 btrfs_set_extent_data_ref_count(leaf
, dref
, refs_to_add
);
1710 } else if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1711 struct btrfs_shared_data_ref
*sref
;
1712 sref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1713 btrfs_set_shared_data_ref_count(leaf
, sref
, refs_to_add
);
1714 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
1715 } else if (type
== BTRFS_SHARED_BLOCK_REF_KEY
) {
1716 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
1718 btrfs_set_extent_inline_ref_offset(leaf
, iref
, root_objectid
);
1720 btrfs_mark_buffer_dirty(leaf
);
1723 static int lookup_extent_backref(struct btrfs_trans_handle
*trans
,
1724 struct btrfs_root
*root
,
1725 struct btrfs_path
*path
,
1726 struct btrfs_extent_inline_ref
**ref_ret
,
1727 u64 bytenr
, u64 num_bytes
, u64 parent
,
1728 u64 root_objectid
, u64 owner
, u64 offset
)
1732 ret
= lookup_inline_extent_backref(trans
, root
, path
, ref_ret
,
1733 bytenr
, num_bytes
, parent
,
1734 root_objectid
, owner
, offset
, 0);
1738 btrfs_release_path(path
);
1741 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1742 ret
= lookup_tree_block_ref(trans
, root
, path
, bytenr
, parent
,
1745 ret
= lookup_extent_data_ref(trans
, root
, path
, bytenr
, parent
,
1746 root_objectid
, owner
, offset
);
1752 * helper to update/remove inline back ref
1754 static noinline_for_stack
1755 void update_inline_extent_backref(struct btrfs_root
*root
,
1756 struct btrfs_path
*path
,
1757 struct btrfs_extent_inline_ref
*iref
,
1759 struct btrfs_delayed_extent_op
*extent_op
,
1762 struct extent_buffer
*leaf
;
1763 struct btrfs_extent_item
*ei
;
1764 struct btrfs_extent_data_ref
*dref
= NULL
;
1765 struct btrfs_shared_data_ref
*sref
= NULL
;
1773 leaf
= path
->nodes
[0];
1774 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1775 refs
= btrfs_extent_refs(leaf
, ei
);
1776 WARN_ON(refs_to_mod
< 0 && refs
+ refs_to_mod
<= 0);
1777 refs
+= refs_to_mod
;
1778 btrfs_set_extent_refs(leaf
, ei
, refs
);
1780 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1782 type
= btrfs_extent_inline_ref_type(leaf
, iref
);
1784 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1785 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1786 refs
= btrfs_extent_data_ref_count(leaf
, dref
);
1787 } else if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1788 sref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1789 refs
= btrfs_shared_data_ref_count(leaf
, sref
);
1792 BUG_ON(refs_to_mod
!= -1);
1795 BUG_ON(refs_to_mod
< 0 && refs
< -refs_to_mod
);
1796 refs
+= refs_to_mod
;
1799 if (type
== BTRFS_EXTENT_DATA_REF_KEY
)
1800 btrfs_set_extent_data_ref_count(leaf
, dref
, refs
);
1802 btrfs_set_shared_data_ref_count(leaf
, sref
, refs
);
1805 size
= btrfs_extent_inline_ref_size(type
);
1806 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1807 ptr
= (unsigned long)iref
;
1808 end
= (unsigned long)ei
+ item_size
;
1809 if (ptr
+ size
< end
)
1810 memmove_extent_buffer(leaf
, ptr
, ptr
+ size
,
1813 btrfs_truncate_item(root
, path
, item_size
, 1);
1815 btrfs_mark_buffer_dirty(leaf
);
1818 static noinline_for_stack
1819 int insert_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1820 struct btrfs_root
*root
,
1821 struct btrfs_path
*path
,
1822 u64 bytenr
, u64 num_bytes
, u64 parent
,
1823 u64 root_objectid
, u64 owner
,
1824 u64 offset
, int refs_to_add
,
1825 struct btrfs_delayed_extent_op
*extent_op
)
1827 struct btrfs_extent_inline_ref
*iref
;
1830 ret
= lookup_inline_extent_backref(trans
, root
, path
, &iref
,
1831 bytenr
, num_bytes
, parent
,
1832 root_objectid
, owner
, offset
, 1);
1834 BUG_ON(owner
< BTRFS_FIRST_FREE_OBJECTID
);
1835 update_inline_extent_backref(root
, path
, iref
,
1836 refs_to_add
, extent_op
, NULL
);
1837 } else if (ret
== -ENOENT
) {
1838 setup_inline_extent_backref(root
, path
, iref
, parent
,
1839 root_objectid
, owner
, offset
,
1840 refs_to_add
, extent_op
);
1846 static int insert_extent_backref(struct btrfs_trans_handle
*trans
,
1847 struct btrfs_root
*root
,
1848 struct btrfs_path
*path
,
1849 u64 bytenr
, u64 parent
, u64 root_objectid
,
1850 u64 owner
, u64 offset
, int refs_to_add
)
1853 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1854 BUG_ON(refs_to_add
!= 1);
1855 ret
= insert_tree_block_ref(trans
, root
, path
, bytenr
,
1856 parent
, root_objectid
);
1858 ret
= insert_extent_data_ref(trans
, root
, path
, bytenr
,
1859 parent
, root_objectid
,
1860 owner
, offset
, refs_to_add
);
1865 static int remove_extent_backref(struct btrfs_trans_handle
*trans
,
1866 struct btrfs_root
*root
,
1867 struct btrfs_path
*path
,
1868 struct btrfs_extent_inline_ref
*iref
,
1869 int refs_to_drop
, int is_data
, int *last_ref
)
1873 BUG_ON(!is_data
&& refs_to_drop
!= 1);
1875 update_inline_extent_backref(root
, path
, iref
,
1876 -refs_to_drop
, NULL
, last_ref
);
1877 } else if (is_data
) {
1878 ret
= remove_extent_data_ref(trans
, root
, path
, refs_to_drop
,
1882 ret
= btrfs_del_item(trans
, root
, path
);
1887 static int btrfs_issue_discard(struct block_device
*bdev
,
1890 return blkdev_issue_discard(bdev
, start
>> 9, len
>> 9, GFP_NOFS
, 0);
1893 int btrfs_discard_extent(struct btrfs_root
*root
, u64 bytenr
,
1894 u64 num_bytes
, u64
*actual_bytes
)
1897 u64 discarded_bytes
= 0;
1898 struct btrfs_bio
*bbio
= NULL
;
1901 /* Tell the block device(s) that the sectors can be discarded */
1902 ret
= btrfs_map_block(root
->fs_info
, REQ_DISCARD
,
1903 bytenr
, &num_bytes
, &bbio
, 0);
1904 /* Error condition is -ENOMEM */
1906 struct btrfs_bio_stripe
*stripe
= bbio
->stripes
;
1910 for (i
= 0; i
< bbio
->num_stripes
; i
++, stripe
++) {
1911 if (!stripe
->dev
->can_discard
)
1914 ret
= btrfs_issue_discard(stripe
->dev
->bdev
,
1918 discarded_bytes
+= stripe
->length
;
1919 else if (ret
!= -EOPNOTSUPP
)
1920 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1923 * Just in case we get back EOPNOTSUPP for some reason,
1924 * just ignore the return value so we don't screw up
1925 * people calling discard_extent.
1929 btrfs_put_bbio(bbio
);
1933 *actual_bytes
= discarded_bytes
;
1936 if (ret
== -EOPNOTSUPP
)
1941 /* Can return -ENOMEM */
1942 int btrfs_inc_extent_ref(struct btrfs_trans_handle
*trans
,
1943 struct btrfs_root
*root
,
1944 u64 bytenr
, u64 num_bytes
, u64 parent
,
1945 u64 root_objectid
, u64 owner
, u64 offset
,
1949 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1951 BUG_ON(owner
< BTRFS_FIRST_FREE_OBJECTID
&&
1952 root_objectid
== BTRFS_TREE_LOG_OBJECTID
);
1954 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1955 ret
= btrfs_add_delayed_tree_ref(fs_info
, trans
, bytenr
,
1957 parent
, root_objectid
, (int)owner
,
1958 BTRFS_ADD_DELAYED_REF
, NULL
, no_quota
);
1960 ret
= btrfs_add_delayed_data_ref(fs_info
, trans
, bytenr
,
1962 parent
, root_objectid
, owner
, offset
,
1963 BTRFS_ADD_DELAYED_REF
, NULL
, no_quota
);
1968 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle
*trans
,
1969 struct btrfs_root
*root
,
1970 u64 bytenr
, u64 num_bytes
,
1971 u64 parent
, u64 root_objectid
,
1972 u64 owner
, u64 offset
, int refs_to_add
,
1974 struct btrfs_delayed_extent_op
*extent_op
)
1976 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1977 struct btrfs_path
*path
;
1978 struct extent_buffer
*leaf
;
1979 struct btrfs_extent_item
*item
;
1980 struct btrfs_key key
;
1983 enum btrfs_qgroup_operation_type type
= BTRFS_QGROUP_OPER_ADD_EXCL
;
1985 path
= btrfs_alloc_path();
1989 if (!is_fstree(root_objectid
) || !root
->fs_info
->quota_enabled
)
1993 path
->leave_spinning
= 1;
1994 /* this will setup the path even if it fails to insert the back ref */
1995 ret
= insert_inline_extent_backref(trans
, fs_info
->extent_root
, path
,
1996 bytenr
, num_bytes
, parent
,
1997 root_objectid
, owner
, offset
,
1998 refs_to_add
, extent_op
);
1999 if ((ret
< 0 && ret
!= -EAGAIN
) || (!ret
&& no_quota
))
2002 * Ok we were able to insert an inline extent and it appears to be a new
2003 * reference, deal with the qgroup accounting.
2005 if (!ret
&& !no_quota
) {
2006 ASSERT(root
->fs_info
->quota_enabled
);
2007 leaf
= path
->nodes
[0];
2008 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2009 item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2010 struct btrfs_extent_item
);
2011 if (btrfs_extent_refs(leaf
, item
) > (u64
)refs_to_add
)
2012 type
= BTRFS_QGROUP_OPER_ADD_SHARED
;
2013 btrfs_release_path(path
);
2015 ret
= btrfs_qgroup_record_ref(trans
, fs_info
, root_objectid
,
2016 bytenr
, num_bytes
, type
, 0);
2021 * Ok we had -EAGAIN which means we didn't have space to insert and
2022 * inline extent ref, so just update the reference count and add a
2025 leaf
= path
->nodes
[0];
2026 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2027 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
2028 refs
= btrfs_extent_refs(leaf
, item
);
2030 type
= BTRFS_QGROUP_OPER_ADD_SHARED
;
2031 btrfs_set_extent_refs(leaf
, item
, refs
+ refs_to_add
);
2033 __run_delayed_extent_op(extent_op
, leaf
, item
);
2035 btrfs_mark_buffer_dirty(leaf
);
2036 btrfs_release_path(path
);
2039 ret
= btrfs_qgroup_record_ref(trans
, fs_info
, root_objectid
,
2040 bytenr
, num_bytes
, type
, 0);
2046 path
->leave_spinning
= 1;
2047 /* now insert the actual backref */
2048 ret
= insert_extent_backref(trans
, root
->fs_info
->extent_root
,
2049 path
, bytenr
, parent
, root_objectid
,
2050 owner
, offset
, refs_to_add
);
2052 btrfs_abort_transaction(trans
, root
, ret
);
2054 btrfs_free_path(path
);
2058 static int run_delayed_data_ref(struct btrfs_trans_handle
*trans
,
2059 struct btrfs_root
*root
,
2060 struct btrfs_delayed_ref_node
*node
,
2061 struct btrfs_delayed_extent_op
*extent_op
,
2062 int insert_reserved
)
2065 struct btrfs_delayed_data_ref
*ref
;
2066 struct btrfs_key ins
;
2071 ins
.objectid
= node
->bytenr
;
2072 ins
.offset
= node
->num_bytes
;
2073 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
2075 ref
= btrfs_delayed_node_to_data_ref(node
);
2076 trace_run_delayed_data_ref(node
, ref
, node
->action
);
2078 if (node
->type
== BTRFS_SHARED_DATA_REF_KEY
)
2079 parent
= ref
->parent
;
2080 ref_root
= ref
->root
;
2082 if (node
->action
== BTRFS_ADD_DELAYED_REF
&& insert_reserved
) {
2084 flags
|= extent_op
->flags_to_set
;
2085 ret
= alloc_reserved_file_extent(trans
, root
,
2086 parent
, ref_root
, flags
,
2087 ref
->objectid
, ref
->offset
,
2088 &ins
, node
->ref_mod
);
2089 } else if (node
->action
== BTRFS_ADD_DELAYED_REF
) {
2090 ret
= __btrfs_inc_extent_ref(trans
, root
, node
->bytenr
,
2091 node
->num_bytes
, parent
,
2092 ref_root
, ref
->objectid
,
2093 ref
->offset
, node
->ref_mod
,
2094 node
->no_quota
, extent_op
);
2095 } else if (node
->action
== BTRFS_DROP_DELAYED_REF
) {
2096 ret
= __btrfs_free_extent(trans
, root
, node
->bytenr
,
2097 node
->num_bytes
, parent
,
2098 ref_root
, ref
->objectid
,
2099 ref
->offset
, node
->ref_mod
,
2100 extent_op
, node
->no_quota
);
2107 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op
*extent_op
,
2108 struct extent_buffer
*leaf
,
2109 struct btrfs_extent_item
*ei
)
2111 u64 flags
= btrfs_extent_flags(leaf
, ei
);
2112 if (extent_op
->update_flags
) {
2113 flags
|= extent_op
->flags_to_set
;
2114 btrfs_set_extent_flags(leaf
, ei
, flags
);
2117 if (extent_op
->update_key
) {
2118 struct btrfs_tree_block_info
*bi
;
2119 BUG_ON(!(flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
));
2120 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
2121 btrfs_set_tree_block_key(leaf
, bi
, &extent_op
->key
);
2125 static int run_delayed_extent_op(struct btrfs_trans_handle
*trans
,
2126 struct btrfs_root
*root
,
2127 struct btrfs_delayed_ref_node
*node
,
2128 struct btrfs_delayed_extent_op
*extent_op
)
2130 struct btrfs_key key
;
2131 struct btrfs_path
*path
;
2132 struct btrfs_extent_item
*ei
;
2133 struct extent_buffer
*leaf
;
2137 int metadata
= !extent_op
->is_data
;
2142 if (metadata
&& !btrfs_fs_incompat(root
->fs_info
, SKINNY_METADATA
))
2145 path
= btrfs_alloc_path();
2149 key
.objectid
= node
->bytenr
;
2152 key
.type
= BTRFS_METADATA_ITEM_KEY
;
2153 key
.offset
= extent_op
->level
;
2155 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2156 key
.offset
= node
->num_bytes
;
2161 path
->leave_spinning
= 1;
2162 ret
= btrfs_search_slot(trans
, root
->fs_info
->extent_root
, &key
,
2170 if (path
->slots
[0] > 0) {
2172 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
2174 if (key
.objectid
== node
->bytenr
&&
2175 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
2176 key
.offset
== node
->num_bytes
)
2180 btrfs_release_path(path
);
2183 key
.objectid
= node
->bytenr
;
2184 key
.offset
= node
->num_bytes
;
2185 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2194 leaf
= path
->nodes
[0];
2195 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
2196 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2197 if (item_size
< sizeof(*ei
)) {
2198 ret
= convert_extent_item_v0(trans
, root
->fs_info
->extent_root
,
2204 leaf
= path
->nodes
[0];
2205 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
2208 BUG_ON(item_size
< sizeof(*ei
));
2209 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
2210 __run_delayed_extent_op(extent_op
, leaf
, ei
);
2212 btrfs_mark_buffer_dirty(leaf
);
2214 btrfs_free_path(path
);
2218 static int run_delayed_tree_ref(struct btrfs_trans_handle
*trans
,
2219 struct btrfs_root
*root
,
2220 struct btrfs_delayed_ref_node
*node
,
2221 struct btrfs_delayed_extent_op
*extent_op
,
2222 int insert_reserved
)
2225 struct btrfs_delayed_tree_ref
*ref
;
2226 struct btrfs_key ins
;
2229 bool skinny_metadata
= btrfs_fs_incompat(root
->fs_info
,
2232 ref
= btrfs_delayed_node_to_tree_ref(node
);
2233 trace_run_delayed_tree_ref(node
, ref
, node
->action
);
2235 if (node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
)
2236 parent
= ref
->parent
;
2237 ref_root
= ref
->root
;
2239 ins
.objectid
= node
->bytenr
;
2240 if (skinny_metadata
) {
2241 ins
.offset
= ref
->level
;
2242 ins
.type
= BTRFS_METADATA_ITEM_KEY
;
2244 ins
.offset
= node
->num_bytes
;
2245 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
2248 BUG_ON(node
->ref_mod
!= 1);
2249 if (node
->action
== BTRFS_ADD_DELAYED_REF
&& insert_reserved
) {
2250 BUG_ON(!extent_op
|| !extent_op
->update_flags
);
2251 ret
= alloc_reserved_tree_block(trans
, root
,
2253 extent_op
->flags_to_set
,
2257 } else if (node
->action
== BTRFS_ADD_DELAYED_REF
) {
2258 ret
= __btrfs_inc_extent_ref(trans
, root
, node
->bytenr
,
2259 node
->num_bytes
, parent
, ref_root
,
2260 ref
->level
, 0, 1, node
->no_quota
,
2262 } else if (node
->action
== BTRFS_DROP_DELAYED_REF
) {
2263 ret
= __btrfs_free_extent(trans
, root
, node
->bytenr
,
2264 node
->num_bytes
, parent
, ref_root
,
2265 ref
->level
, 0, 1, extent_op
,
2273 /* helper function to actually process a single delayed ref entry */
2274 static int run_one_delayed_ref(struct btrfs_trans_handle
*trans
,
2275 struct btrfs_root
*root
,
2276 struct btrfs_delayed_ref_node
*node
,
2277 struct btrfs_delayed_extent_op
*extent_op
,
2278 int insert_reserved
)
2282 if (trans
->aborted
) {
2283 if (insert_reserved
)
2284 btrfs_pin_extent(root
, node
->bytenr
,
2285 node
->num_bytes
, 1);
2289 if (btrfs_delayed_ref_is_head(node
)) {
2290 struct btrfs_delayed_ref_head
*head
;
2292 * we've hit the end of the chain and we were supposed
2293 * to insert this extent into the tree. But, it got
2294 * deleted before we ever needed to insert it, so all
2295 * we have to do is clean up the accounting
2298 head
= btrfs_delayed_node_to_head(node
);
2299 trace_run_delayed_ref_head(node
, head
, node
->action
);
2301 if (insert_reserved
) {
2302 btrfs_pin_extent(root
, node
->bytenr
,
2303 node
->num_bytes
, 1);
2304 if (head
->is_data
) {
2305 ret
= btrfs_del_csums(trans
, root
,
2313 if (node
->type
== BTRFS_TREE_BLOCK_REF_KEY
||
2314 node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
)
2315 ret
= run_delayed_tree_ref(trans
, root
, node
, extent_op
,
2317 else if (node
->type
== BTRFS_EXTENT_DATA_REF_KEY
||
2318 node
->type
== BTRFS_SHARED_DATA_REF_KEY
)
2319 ret
= run_delayed_data_ref(trans
, root
, node
, extent_op
,
2326 static noinline
struct btrfs_delayed_ref_node
*
2327 select_delayed_ref(struct btrfs_delayed_ref_head
*head
)
2329 struct rb_node
*node
;
2330 struct btrfs_delayed_ref_node
*ref
, *last
= NULL
;;
2333 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2334 * this prevents ref count from going down to zero when
2335 * there still are pending delayed ref.
2337 node
= rb_first(&head
->ref_root
);
2339 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
,
2341 if (ref
->action
== BTRFS_ADD_DELAYED_REF
)
2343 else if (last
== NULL
)
2345 node
= rb_next(node
);
2351 * Returns 0 on success or if called with an already aborted transaction.
2352 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2354 static noinline
int __btrfs_run_delayed_refs(struct btrfs_trans_handle
*trans
,
2355 struct btrfs_root
*root
,
2358 struct btrfs_delayed_ref_root
*delayed_refs
;
2359 struct btrfs_delayed_ref_node
*ref
;
2360 struct btrfs_delayed_ref_head
*locked_ref
= NULL
;
2361 struct btrfs_delayed_extent_op
*extent_op
;
2362 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2363 ktime_t start
= ktime_get();
2365 unsigned long count
= 0;
2366 unsigned long actual_count
= 0;
2367 int must_insert_reserved
= 0;
2369 delayed_refs
= &trans
->transaction
->delayed_refs
;
2375 spin_lock(&delayed_refs
->lock
);
2376 locked_ref
= btrfs_select_ref_head(trans
);
2378 spin_unlock(&delayed_refs
->lock
);
2382 /* grab the lock that says we are going to process
2383 * all the refs for this head */
2384 ret
= btrfs_delayed_ref_lock(trans
, locked_ref
);
2385 spin_unlock(&delayed_refs
->lock
);
2387 * we may have dropped the spin lock to get the head
2388 * mutex lock, and that might have given someone else
2389 * time to free the head. If that's true, it has been
2390 * removed from our list and we can move on.
2392 if (ret
== -EAGAIN
) {
2400 * We need to try and merge add/drops of the same ref since we
2401 * can run into issues with relocate dropping the implicit ref
2402 * and then it being added back again before the drop can
2403 * finish. If we merged anything we need to re-loop so we can
2406 spin_lock(&locked_ref
->lock
);
2407 btrfs_merge_delayed_refs(trans
, fs_info
, delayed_refs
,
2411 * locked_ref is the head node, so we have to go one
2412 * node back for any delayed ref updates
2414 ref
= select_delayed_ref(locked_ref
);
2416 if (ref
&& ref
->seq
&&
2417 btrfs_check_delayed_seq(fs_info
, delayed_refs
, ref
->seq
)) {
2418 spin_unlock(&locked_ref
->lock
);
2419 btrfs_delayed_ref_unlock(locked_ref
);
2420 spin_lock(&delayed_refs
->lock
);
2421 locked_ref
->processing
= 0;
2422 delayed_refs
->num_heads_ready
++;
2423 spin_unlock(&delayed_refs
->lock
);
2431 * record the must insert reserved flag before we
2432 * drop the spin lock.
2434 must_insert_reserved
= locked_ref
->must_insert_reserved
;
2435 locked_ref
->must_insert_reserved
= 0;
2437 extent_op
= locked_ref
->extent_op
;
2438 locked_ref
->extent_op
= NULL
;
2443 /* All delayed refs have been processed, Go ahead
2444 * and send the head node to run_one_delayed_ref,
2445 * so that any accounting fixes can happen
2447 ref
= &locked_ref
->node
;
2449 if (extent_op
&& must_insert_reserved
) {
2450 btrfs_free_delayed_extent_op(extent_op
);
2455 spin_unlock(&locked_ref
->lock
);
2456 ret
= run_delayed_extent_op(trans
, root
,
2458 btrfs_free_delayed_extent_op(extent_op
);
2462 * Need to reset must_insert_reserved if
2463 * there was an error so the abort stuff
2464 * can cleanup the reserved space
2467 if (must_insert_reserved
)
2468 locked_ref
->must_insert_reserved
= 1;
2469 locked_ref
->processing
= 0;
2470 btrfs_debug(fs_info
, "run_delayed_extent_op returned %d", ret
);
2471 btrfs_delayed_ref_unlock(locked_ref
);
2478 * Need to drop our head ref lock and re-aqcuire the
2479 * delayed ref lock and then re-check to make sure
2482 spin_unlock(&locked_ref
->lock
);
2483 spin_lock(&delayed_refs
->lock
);
2484 spin_lock(&locked_ref
->lock
);
2485 if (rb_first(&locked_ref
->ref_root
) ||
2486 locked_ref
->extent_op
) {
2487 spin_unlock(&locked_ref
->lock
);
2488 spin_unlock(&delayed_refs
->lock
);
2492 delayed_refs
->num_heads
--;
2493 rb_erase(&locked_ref
->href_node
,
2494 &delayed_refs
->href_root
);
2495 spin_unlock(&delayed_refs
->lock
);
2499 rb_erase(&ref
->rb_node
, &locked_ref
->ref_root
);
2501 atomic_dec(&delayed_refs
->num_entries
);
2503 if (!btrfs_delayed_ref_is_head(ref
)) {
2505 * when we play the delayed ref, also correct the
2508 switch (ref
->action
) {
2509 case BTRFS_ADD_DELAYED_REF
:
2510 case BTRFS_ADD_DELAYED_EXTENT
:
2511 locked_ref
->node
.ref_mod
-= ref
->ref_mod
;
2513 case BTRFS_DROP_DELAYED_REF
:
2514 locked_ref
->node
.ref_mod
+= ref
->ref_mod
;
2520 spin_unlock(&locked_ref
->lock
);
2522 ret
= run_one_delayed_ref(trans
, root
, ref
, extent_op
,
2523 must_insert_reserved
);
2525 btrfs_free_delayed_extent_op(extent_op
);
2527 locked_ref
->processing
= 0;
2528 btrfs_delayed_ref_unlock(locked_ref
);
2529 btrfs_put_delayed_ref(ref
);
2530 btrfs_debug(fs_info
, "run_one_delayed_ref returned %d", ret
);
2535 * If this node is a head, that means all the refs in this head
2536 * have been dealt with, and we will pick the next head to deal
2537 * with, so we must unlock the head and drop it from the cluster
2538 * list before we release it.
2540 if (btrfs_delayed_ref_is_head(ref
)) {
2541 btrfs_delayed_ref_unlock(locked_ref
);
2544 btrfs_put_delayed_ref(ref
);
2550 * We don't want to include ref heads since we can have empty ref heads
2551 * and those will drastically skew our runtime down since we just do
2552 * accounting, no actual extent tree updates.
2554 if (actual_count
> 0) {
2555 u64 runtime
= ktime_to_ns(ktime_sub(ktime_get(), start
));
2559 * We weigh the current average higher than our current runtime
2560 * to avoid large swings in the average.
2562 spin_lock(&delayed_refs
->lock
);
2563 avg
= fs_info
->avg_delayed_ref_runtime
* 3 + runtime
;
2564 fs_info
->avg_delayed_ref_runtime
= avg
>> 2; /* div by 4 */
2565 spin_unlock(&delayed_refs
->lock
);
2570 #ifdef SCRAMBLE_DELAYED_REFS
2572 * Normally delayed refs get processed in ascending bytenr order. This
2573 * correlates in most cases to the order added. To expose dependencies on this
2574 * order, we start to process the tree in the middle instead of the beginning
2576 static u64
find_middle(struct rb_root
*root
)
2578 struct rb_node
*n
= root
->rb_node
;
2579 struct btrfs_delayed_ref_node
*entry
;
2582 u64 first
= 0, last
= 0;
2586 entry
= rb_entry(n
, struct btrfs_delayed_ref_node
, rb_node
);
2587 first
= entry
->bytenr
;
2591 entry
= rb_entry(n
, struct btrfs_delayed_ref_node
, rb_node
);
2592 last
= entry
->bytenr
;
2597 entry
= rb_entry(n
, struct btrfs_delayed_ref_node
, rb_node
);
2598 WARN_ON(!entry
->in_tree
);
2600 middle
= entry
->bytenr
;
2613 static inline u64
heads_to_leaves(struct btrfs_root
*root
, u64 heads
)
2617 num_bytes
= heads
* (sizeof(struct btrfs_extent_item
) +
2618 sizeof(struct btrfs_extent_inline_ref
));
2619 if (!btrfs_fs_incompat(root
->fs_info
, SKINNY_METADATA
))
2620 num_bytes
+= heads
* sizeof(struct btrfs_tree_block_info
);
2623 * We don't ever fill up leaves all the way so multiply by 2 just to be
2624 * closer to what we're really going to want to ouse.
2626 return div_u64(num_bytes
, BTRFS_LEAF_DATA_SIZE(root
));
2629 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle
*trans
,
2630 struct btrfs_root
*root
)
2632 struct btrfs_block_rsv
*global_rsv
;
2633 u64 num_heads
= trans
->transaction
->delayed_refs
.num_heads_ready
;
2637 num_bytes
= btrfs_calc_trans_metadata_size(root
, 1);
2638 num_heads
= heads_to_leaves(root
, num_heads
);
2640 num_bytes
+= (num_heads
- 1) * root
->nodesize
;
2642 global_rsv
= &root
->fs_info
->global_block_rsv
;
2645 * If we can't allocate any more chunks lets make sure we have _lots_ of
2646 * wiggle room since running delayed refs can create more delayed refs.
2648 if (global_rsv
->space_info
->full
)
2651 spin_lock(&global_rsv
->lock
);
2652 if (global_rsv
->reserved
<= num_bytes
)
2654 spin_unlock(&global_rsv
->lock
);
2658 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle
*trans
,
2659 struct btrfs_root
*root
)
2661 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2663 atomic_read(&trans
->transaction
->delayed_refs
.num_entries
);
2668 avg_runtime
= fs_info
->avg_delayed_ref_runtime
;
2669 val
= num_entries
* avg_runtime
;
2670 if (num_entries
* avg_runtime
>= NSEC_PER_SEC
)
2672 if (val
>= NSEC_PER_SEC
/ 2)
2675 return btrfs_check_space_for_delayed_refs(trans
, root
);
2678 struct async_delayed_refs
{
2679 struct btrfs_root
*root
;
2683 struct completion wait
;
2684 struct btrfs_work work
;
2687 static void delayed_ref_async_start(struct btrfs_work
*work
)
2689 struct async_delayed_refs
*async
;
2690 struct btrfs_trans_handle
*trans
;
2693 async
= container_of(work
, struct async_delayed_refs
, work
);
2695 trans
= btrfs_join_transaction(async
->root
);
2696 if (IS_ERR(trans
)) {
2697 async
->error
= PTR_ERR(trans
);
2702 * trans->sync means that when we call end_transaciton, we won't
2703 * wait on delayed refs
2706 ret
= btrfs_run_delayed_refs(trans
, async
->root
, async
->count
);
2710 ret
= btrfs_end_transaction(trans
, async
->root
);
2711 if (ret
&& !async
->error
)
2715 complete(&async
->wait
);
2720 int btrfs_async_run_delayed_refs(struct btrfs_root
*root
,
2721 unsigned long count
, int wait
)
2723 struct async_delayed_refs
*async
;
2726 async
= kmalloc(sizeof(*async
), GFP_NOFS
);
2730 async
->root
= root
->fs_info
->tree_root
;
2731 async
->count
= count
;
2737 init_completion(&async
->wait
);
2739 btrfs_init_work(&async
->work
, btrfs_extent_refs_helper
,
2740 delayed_ref_async_start
, NULL
, NULL
);
2742 btrfs_queue_work(root
->fs_info
->extent_workers
, &async
->work
);
2745 wait_for_completion(&async
->wait
);
2754 * this starts processing the delayed reference count updates and
2755 * extent insertions we have queued up so far. count can be
2756 * 0, which means to process everything in the tree at the start
2757 * of the run (but not newly added entries), or it can be some target
2758 * number you'd like to process.
2760 * Returns 0 on success or if called with an aborted transaction
2761 * Returns <0 on error and aborts the transaction
2763 int btrfs_run_delayed_refs(struct btrfs_trans_handle
*trans
,
2764 struct btrfs_root
*root
, unsigned long count
)
2766 struct rb_node
*node
;
2767 struct btrfs_delayed_ref_root
*delayed_refs
;
2768 struct btrfs_delayed_ref_head
*head
;
2770 int run_all
= count
== (unsigned long)-1;
2772 /* We'll clean this up in btrfs_cleanup_transaction */
2776 if (root
== root
->fs_info
->extent_root
)
2777 root
= root
->fs_info
->tree_root
;
2779 delayed_refs
= &trans
->transaction
->delayed_refs
;
2781 count
= atomic_read(&delayed_refs
->num_entries
) * 2;
2784 #ifdef SCRAMBLE_DELAYED_REFS
2785 delayed_refs
->run_delayed_start
= find_middle(&delayed_refs
->root
);
2787 ret
= __btrfs_run_delayed_refs(trans
, root
, count
);
2789 btrfs_abort_transaction(trans
, root
, ret
);
2794 if (!list_empty(&trans
->new_bgs
))
2795 btrfs_create_pending_block_groups(trans
, root
);
2797 spin_lock(&delayed_refs
->lock
);
2798 node
= rb_first(&delayed_refs
->href_root
);
2800 spin_unlock(&delayed_refs
->lock
);
2803 count
= (unsigned long)-1;
2806 head
= rb_entry(node
, struct btrfs_delayed_ref_head
,
2808 if (btrfs_delayed_ref_is_head(&head
->node
)) {
2809 struct btrfs_delayed_ref_node
*ref
;
2812 atomic_inc(&ref
->refs
);
2814 spin_unlock(&delayed_refs
->lock
);
2816 * Mutex was contended, block until it's
2817 * released and try again
2819 mutex_lock(&head
->mutex
);
2820 mutex_unlock(&head
->mutex
);
2822 btrfs_put_delayed_ref(ref
);
2828 node
= rb_next(node
);
2830 spin_unlock(&delayed_refs
->lock
);
2835 ret
= btrfs_delayed_qgroup_accounting(trans
, root
->fs_info
);
2838 assert_qgroups_uptodate(trans
);
2842 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle
*trans
,
2843 struct btrfs_root
*root
,
2844 u64 bytenr
, u64 num_bytes
, u64 flags
,
2845 int level
, int is_data
)
2847 struct btrfs_delayed_extent_op
*extent_op
;
2850 extent_op
= btrfs_alloc_delayed_extent_op();
2854 extent_op
->flags_to_set
= flags
;
2855 extent_op
->update_flags
= 1;
2856 extent_op
->update_key
= 0;
2857 extent_op
->is_data
= is_data
? 1 : 0;
2858 extent_op
->level
= level
;
2860 ret
= btrfs_add_delayed_extent_op(root
->fs_info
, trans
, bytenr
,
2861 num_bytes
, extent_op
);
2863 btrfs_free_delayed_extent_op(extent_op
);
2867 static noinline
int check_delayed_ref(struct btrfs_trans_handle
*trans
,
2868 struct btrfs_root
*root
,
2869 struct btrfs_path
*path
,
2870 u64 objectid
, u64 offset
, u64 bytenr
)
2872 struct btrfs_delayed_ref_head
*head
;
2873 struct btrfs_delayed_ref_node
*ref
;
2874 struct btrfs_delayed_data_ref
*data_ref
;
2875 struct btrfs_delayed_ref_root
*delayed_refs
;
2876 struct rb_node
*node
;
2879 delayed_refs
= &trans
->transaction
->delayed_refs
;
2880 spin_lock(&delayed_refs
->lock
);
2881 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
2883 spin_unlock(&delayed_refs
->lock
);
2887 if (!mutex_trylock(&head
->mutex
)) {
2888 atomic_inc(&head
->node
.refs
);
2889 spin_unlock(&delayed_refs
->lock
);
2891 btrfs_release_path(path
);
2894 * Mutex was contended, block until it's released and let
2897 mutex_lock(&head
->mutex
);
2898 mutex_unlock(&head
->mutex
);
2899 btrfs_put_delayed_ref(&head
->node
);
2902 spin_unlock(&delayed_refs
->lock
);
2904 spin_lock(&head
->lock
);
2905 node
= rb_first(&head
->ref_root
);
2907 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
, rb_node
);
2908 node
= rb_next(node
);
2910 /* If it's a shared ref we know a cross reference exists */
2911 if (ref
->type
!= BTRFS_EXTENT_DATA_REF_KEY
) {
2916 data_ref
= btrfs_delayed_node_to_data_ref(ref
);
2919 * If our ref doesn't match the one we're currently looking at
2920 * then we have a cross reference.
2922 if (data_ref
->root
!= root
->root_key
.objectid
||
2923 data_ref
->objectid
!= objectid
||
2924 data_ref
->offset
!= offset
) {
2929 spin_unlock(&head
->lock
);
2930 mutex_unlock(&head
->mutex
);
2934 static noinline
int check_committed_ref(struct btrfs_trans_handle
*trans
,
2935 struct btrfs_root
*root
,
2936 struct btrfs_path
*path
,
2937 u64 objectid
, u64 offset
, u64 bytenr
)
2939 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
2940 struct extent_buffer
*leaf
;
2941 struct btrfs_extent_data_ref
*ref
;
2942 struct btrfs_extent_inline_ref
*iref
;
2943 struct btrfs_extent_item
*ei
;
2944 struct btrfs_key key
;
2948 key
.objectid
= bytenr
;
2949 key
.offset
= (u64
)-1;
2950 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2952 ret
= btrfs_search_slot(NULL
, extent_root
, &key
, path
, 0, 0);
2955 BUG_ON(ret
== 0); /* Corruption */
2958 if (path
->slots
[0] == 0)
2962 leaf
= path
->nodes
[0];
2963 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2965 if (key
.objectid
!= bytenr
|| key
.type
!= BTRFS_EXTENT_ITEM_KEY
)
2969 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
2970 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2971 if (item_size
< sizeof(*ei
)) {
2972 WARN_ON(item_size
!= sizeof(struct btrfs_extent_item_v0
));
2976 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
2978 if (item_size
!= sizeof(*ei
) +
2979 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY
))
2982 if (btrfs_extent_generation(leaf
, ei
) <=
2983 btrfs_root_last_snapshot(&root
->root_item
))
2986 iref
= (struct btrfs_extent_inline_ref
*)(ei
+ 1);
2987 if (btrfs_extent_inline_ref_type(leaf
, iref
) !=
2988 BTRFS_EXTENT_DATA_REF_KEY
)
2991 ref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
2992 if (btrfs_extent_refs(leaf
, ei
) !=
2993 btrfs_extent_data_ref_count(leaf
, ref
) ||
2994 btrfs_extent_data_ref_root(leaf
, ref
) !=
2995 root
->root_key
.objectid
||
2996 btrfs_extent_data_ref_objectid(leaf
, ref
) != objectid
||
2997 btrfs_extent_data_ref_offset(leaf
, ref
) != offset
)
3005 int btrfs_cross_ref_exist(struct btrfs_trans_handle
*trans
,
3006 struct btrfs_root
*root
,
3007 u64 objectid
, u64 offset
, u64 bytenr
)
3009 struct btrfs_path
*path
;
3013 path
= btrfs_alloc_path();
3018 ret
= check_committed_ref(trans
, root
, path
, objectid
,
3020 if (ret
&& ret
!= -ENOENT
)
3023 ret2
= check_delayed_ref(trans
, root
, path
, objectid
,
3025 } while (ret2
== -EAGAIN
);
3027 if (ret2
&& ret2
!= -ENOENT
) {
3032 if (ret
!= -ENOENT
|| ret2
!= -ENOENT
)
3035 btrfs_free_path(path
);
3036 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
3041 static int __btrfs_mod_ref(struct btrfs_trans_handle
*trans
,
3042 struct btrfs_root
*root
,
3043 struct extent_buffer
*buf
,
3044 int full_backref
, int inc
)
3051 struct btrfs_key key
;
3052 struct btrfs_file_extent_item
*fi
;
3056 int (*process_func
)(struct btrfs_trans_handle
*, struct btrfs_root
*,
3057 u64
, u64
, u64
, u64
, u64
, u64
, int);
3060 if (btrfs_test_is_dummy_root(root
))
3063 ref_root
= btrfs_header_owner(buf
);
3064 nritems
= btrfs_header_nritems(buf
);
3065 level
= btrfs_header_level(buf
);
3067 if (!test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) && level
== 0)
3071 process_func
= btrfs_inc_extent_ref
;
3073 process_func
= btrfs_free_extent
;
3076 parent
= buf
->start
;
3080 for (i
= 0; i
< nritems
; i
++) {
3082 btrfs_item_key_to_cpu(buf
, &key
, i
);
3083 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
3085 fi
= btrfs_item_ptr(buf
, i
,
3086 struct btrfs_file_extent_item
);
3087 if (btrfs_file_extent_type(buf
, fi
) ==
3088 BTRFS_FILE_EXTENT_INLINE
)
3090 bytenr
= btrfs_file_extent_disk_bytenr(buf
, fi
);
3094 num_bytes
= btrfs_file_extent_disk_num_bytes(buf
, fi
);
3095 key
.offset
-= btrfs_file_extent_offset(buf
, fi
);
3096 ret
= process_func(trans
, root
, bytenr
, num_bytes
,
3097 parent
, ref_root
, key
.objectid
,
3102 bytenr
= btrfs_node_blockptr(buf
, i
);
3103 num_bytes
= root
->nodesize
;
3104 ret
= process_func(trans
, root
, bytenr
, num_bytes
,
3105 parent
, ref_root
, level
- 1, 0,
3116 int btrfs_inc_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
3117 struct extent_buffer
*buf
, int full_backref
)
3119 return __btrfs_mod_ref(trans
, root
, buf
, full_backref
, 1);
3122 int btrfs_dec_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
3123 struct extent_buffer
*buf
, int full_backref
)
3125 return __btrfs_mod_ref(trans
, root
, buf
, full_backref
, 0);
3128 static int write_one_cache_group(struct btrfs_trans_handle
*trans
,
3129 struct btrfs_root
*root
,
3130 struct btrfs_path
*path
,
3131 struct btrfs_block_group_cache
*cache
)
3134 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
3136 struct extent_buffer
*leaf
;
3138 ret
= btrfs_search_slot(trans
, extent_root
, &cache
->key
, path
, 0, 1);
3145 leaf
= path
->nodes
[0];
3146 bi
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
3147 write_extent_buffer(leaf
, &cache
->item
, bi
, sizeof(cache
->item
));
3148 btrfs_mark_buffer_dirty(leaf
);
3149 btrfs_release_path(path
);
3152 btrfs_abort_transaction(trans
, root
, ret
);
3157 static struct btrfs_block_group_cache
*
3158 next_block_group(struct btrfs_root
*root
,
3159 struct btrfs_block_group_cache
*cache
)
3161 struct rb_node
*node
;
3163 spin_lock(&root
->fs_info
->block_group_cache_lock
);
3165 /* If our block group was removed, we need a full search. */
3166 if (RB_EMPTY_NODE(&cache
->cache_node
)) {
3167 const u64 next_bytenr
= cache
->key
.objectid
+ cache
->key
.offset
;
3169 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
3170 btrfs_put_block_group(cache
);
3171 cache
= btrfs_lookup_first_block_group(root
->fs_info
,
3175 node
= rb_next(&cache
->cache_node
);
3176 btrfs_put_block_group(cache
);
3178 cache
= rb_entry(node
, struct btrfs_block_group_cache
,
3180 btrfs_get_block_group(cache
);
3183 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
3187 static int cache_save_setup(struct btrfs_block_group_cache
*block_group
,
3188 struct btrfs_trans_handle
*trans
,
3189 struct btrfs_path
*path
)
3191 struct btrfs_root
*root
= block_group
->fs_info
->tree_root
;
3192 struct inode
*inode
= NULL
;
3194 int dcs
= BTRFS_DC_ERROR
;
3200 * If this block group is smaller than 100 megs don't bother caching the
3203 if (block_group
->key
.offset
< (100 * 1024 * 1024)) {
3204 spin_lock(&block_group
->lock
);
3205 block_group
->disk_cache_state
= BTRFS_DC_WRITTEN
;
3206 spin_unlock(&block_group
->lock
);
3211 inode
= lookup_free_space_inode(root
, block_group
, path
);
3212 if (IS_ERR(inode
) && PTR_ERR(inode
) != -ENOENT
) {
3213 ret
= PTR_ERR(inode
);
3214 btrfs_release_path(path
);
3218 if (IS_ERR(inode
)) {
3222 if (block_group
->ro
)
3225 ret
= create_free_space_inode(root
, trans
, block_group
, path
);
3231 /* We've already setup this transaction, go ahead and exit */
3232 if (block_group
->cache_generation
== trans
->transid
&&
3233 i_size_read(inode
)) {
3234 dcs
= BTRFS_DC_SETUP
;
3239 * We want to set the generation to 0, that way if anything goes wrong
3240 * from here on out we know not to trust this cache when we load up next
3243 BTRFS_I(inode
)->generation
= 0;
3244 ret
= btrfs_update_inode(trans
, root
, inode
);
3247 if (i_size_read(inode
) > 0) {
3248 ret
= btrfs_check_trunc_cache_free_space(root
,
3249 &root
->fs_info
->global_block_rsv
);
3253 ret
= btrfs_truncate_free_space_cache(root
, trans
, inode
);
3258 spin_lock(&block_group
->lock
);
3259 if (block_group
->cached
!= BTRFS_CACHE_FINISHED
||
3260 !btrfs_test_opt(root
, SPACE_CACHE
) ||
3261 block_group
->delalloc_bytes
) {
3263 * don't bother trying to write stuff out _if_
3264 * a) we're not cached,
3265 * b) we're with nospace_cache mount option.
3267 dcs
= BTRFS_DC_WRITTEN
;
3268 spin_unlock(&block_group
->lock
);
3271 spin_unlock(&block_group
->lock
);
3274 * Try to preallocate enough space based on how big the block group is.
3275 * Keep in mind this has to include any pinned space which could end up
3276 * taking up quite a bit since it's not folded into the other space
3279 num_pages
= div_u64(block_group
->key
.offset
, 256 * 1024 * 1024);
3284 num_pages
*= PAGE_CACHE_SIZE
;
3286 ret
= btrfs_check_data_free_space(inode
, num_pages
);
3290 ret
= btrfs_prealloc_file_range_trans(inode
, trans
, 0, 0, num_pages
,
3291 num_pages
, num_pages
,
3294 dcs
= BTRFS_DC_SETUP
;
3295 btrfs_free_reserved_data_space(inode
, num_pages
);
3300 btrfs_release_path(path
);
3302 spin_lock(&block_group
->lock
);
3303 if (!ret
&& dcs
== BTRFS_DC_SETUP
)
3304 block_group
->cache_generation
= trans
->transid
;
3305 block_group
->disk_cache_state
= dcs
;
3306 spin_unlock(&block_group
->lock
);
3311 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle
*trans
,
3312 struct btrfs_root
*root
)
3314 struct btrfs_block_group_cache
*cache
;
3315 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
3317 struct btrfs_path
*path
;
3319 if (list_empty(&cur_trans
->dirty_bgs
))
3322 path
= btrfs_alloc_path();
3327 * We don't need the lock here since we are protected by the transaction
3328 * commit. We want to do the cache_save_setup first and then run the
3329 * delayed refs to make sure we have the best chance at doing this all
3332 while (!list_empty(&cur_trans
->dirty_bgs
)) {
3333 cache
= list_first_entry(&cur_trans
->dirty_bgs
,
3334 struct btrfs_block_group_cache
,
3336 list_del_init(&cache
->dirty_list
);
3337 if (cache
->disk_cache_state
== BTRFS_DC_CLEAR
)
3338 cache_save_setup(cache
, trans
, path
);
3340 ret
= btrfs_run_delayed_refs(trans
, root
,
3341 (unsigned long) -1);
3342 if (!ret
&& cache
->disk_cache_state
== BTRFS_DC_SETUP
)
3343 btrfs_write_out_cache(root
, trans
, cache
, path
);
3345 ret
= write_one_cache_group(trans
, root
, path
, cache
);
3346 btrfs_put_block_group(cache
);
3349 btrfs_free_path(path
);
3353 int btrfs_extent_readonly(struct btrfs_root
*root
, u64 bytenr
)
3355 struct btrfs_block_group_cache
*block_group
;
3358 block_group
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
3359 if (!block_group
|| block_group
->ro
)
3362 btrfs_put_block_group(block_group
);
3366 static const char *alloc_name(u64 flags
)
3369 case BTRFS_BLOCK_GROUP_METADATA
|BTRFS_BLOCK_GROUP_DATA
:
3371 case BTRFS_BLOCK_GROUP_METADATA
:
3373 case BTRFS_BLOCK_GROUP_DATA
:
3375 case BTRFS_BLOCK_GROUP_SYSTEM
:
3379 return "invalid-combination";
3383 static int update_space_info(struct btrfs_fs_info
*info
, u64 flags
,
3384 u64 total_bytes
, u64 bytes_used
,
3385 struct btrfs_space_info
**space_info
)
3387 struct btrfs_space_info
*found
;
3392 if (flags
& (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
|
3393 BTRFS_BLOCK_GROUP_RAID10
))
3398 found
= __find_space_info(info
, flags
);
3400 spin_lock(&found
->lock
);
3401 found
->total_bytes
+= total_bytes
;
3402 found
->disk_total
+= total_bytes
* factor
;
3403 found
->bytes_used
+= bytes_used
;
3404 found
->disk_used
+= bytes_used
* factor
;
3406 spin_unlock(&found
->lock
);
3407 *space_info
= found
;
3410 found
= kzalloc(sizeof(*found
), GFP_NOFS
);
3414 ret
= percpu_counter_init(&found
->total_bytes_pinned
, 0, GFP_KERNEL
);
3420 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++)
3421 INIT_LIST_HEAD(&found
->block_groups
[i
]);
3422 init_rwsem(&found
->groups_sem
);
3423 spin_lock_init(&found
->lock
);
3424 found
->flags
= flags
& BTRFS_BLOCK_GROUP_TYPE_MASK
;
3425 found
->total_bytes
= total_bytes
;
3426 found
->disk_total
= total_bytes
* factor
;
3427 found
->bytes_used
= bytes_used
;
3428 found
->disk_used
= bytes_used
* factor
;
3429 found
->bytes_pinned
= 0;
3430 found
->bytes_reserved
= 0;
3431 found
->bytes_readonly
= 0;
3432 found
->bytes_may_use
= 0;
3434 found
->force_alloc
= CHUNK_ALLOC_NO_FORCE
;
3435 found
->chunk_alloc
= 0;
3437 init_waitqueue_head(&found
->wait
);
3438 INIT_LIST_HEAD(&found
->ro_bgs
);
3440 ret
= kobject_init_and_add(&found
->kobj
, &space_info_ktype
,
3441 info
->space_info_kobj
, "%s",
3442 alloc_name(found
->flags
));
3448 *space_info
= found
;
3449 list_add_rcu(&found
->list
, &info
->space_info
);
3450 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
3451 info
->data_sinfo
= found
;
3456 static void set_avail_alloc_bits(struct btrfs_fs_info
*fs_info
, u64 flags
)
3458 u64 extra_flags
= chunk_to_extended(flags
) &
3459 BTRFS_EXTENDED_PROFILE_MASK
;
3461 write_seqlock(&fs_info
->profiles_lock
);
3462 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
3463 fs_info
->avail_data_alloc_bits
|= extra_flags
;
3464 if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
3465 fs_info
->avail_metadata_alloc_bits
|= extra_flags
;
3466 if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
3467 fs_info
->avail_system_alloc_bits
|= extra_flags
;
3468 write_sequnlock(&fs_info
->profiles_lock
);
3472 * returns target flags in extended format or 0 if restripe for this
3473 * chunk_type is not in progress
3475 * should be called with either volume_mutex or balance_lock held
3477 static u64
get_restripe_target(struct btrfs_fs_info
*fs_info
, u64 flags
)
3479 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3485 if (flags
& BTRFS_BLOCK_GROUP_DATA
&&
3486 bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
3487 target
= BTRFS_BLOCK_GROUP_DATA
| bctl
->data
.target
;
3488 } else if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
&&
3489 bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
3490 target
= BTRFS_BLOCK_GROUP_SYSTEM
| bctl
->sys
.target
;
3491 } else if (flags
& BTRFS_BLOCK_GROUP_METADATA
&&
3492 bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
3493 target
= BTRFS_BLOCK_GROUP_METADATA
| bctl
->meta
.target
;
3500 * @flags: available profiles in extended format (see ctree.h)
3502 * Returns reduced profile in chunk format. If profile changing is in
3503 * progress (either running or paused) picks the target profile (if it's
3504 * already available), otherwise falls back to plain reducing.
3506 static u64
btrfs_reduce_alloc_profile(struct btrfs_root
*root
, u64 flags
)
3508 u64 num_devices
= root
->fs_info
->fs_devices
->rw_devices
;
3513 * see if restripe for this chunk_type is in progress, if so
3514 * try to reduce to the target profile
3516 spin_lock(&root
->fs_info
->balance_lock
);
3517 target
= get_restripe_target(root
->fs_info
, flags
);
3519 /* pick target profile only if it's already available */
3520 if ((flags
& target
) & BTRFS_EXTENDED_PROFILE_MASK
) {
3521 spin_unlock(&root
->fs_info
->balance_lock
);
3522 return extended_to_chunk(target
);
3525 spin_unlock(&root
->fs_info
->balance_lock
);
3527 /* First, mask out the RAID levels which aren't possible */
3528 if (num_devices
== 1)
3529 flags
&= ~(BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID0
|
3530 BTRFS_BLOCK_GROUP_RAID5
);
3531 if (num_devices
< 3)
3532 flags
&= ~BTRFS_BLOCK_GROUP_RAID6
;
3533 if (num_devices
< 4)
3534 flags
&= ~BTRFS_BLOCK_GROUP_RAID10
;
3536 tmp
= flags
& (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID0
|
3537 BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID5
|
3538 BTRFS_BLOCK_GROUP_RAID6
| BTRFS_BLOCK_GROUP_RAID10
);
3541 if (tmp
& BTRFS_BLOCK_GROUP_RAID6
)
3542 tmp
= BTRFS_BLOCK_GROUP_RAID6
;
3543 else if (tmp
& BTRFS_BLOCK_GROUP_RAID5
)
3544 tmp
= BTRFS_BLOCK_GROUP_RAID5
;
3545 else if (tmp
& BTRFS_BLOCK_GROUP_RAID10
)
3546 tmp
= BTRFS_BLOCK_GROUP_RAID10
;
3547 else if (tmp
& BTRFS_BLOCK_GROUP_RAID1
)
3548 tmp
= BTRFS_BLOCK_GROUP_RAID1
;
3549 else if (tmp
& BTRFS_BLOCK_GROUP_RAID0
)
3550 tmp
= BTRFS_BLOCK_GROUP_RAID0
;
3552 return extended_to_chunk(flags
| tmp
);
3555 static u64
get_alloc_profile(struct btrfs_root
*root
, u64 orig_flags
)
3562 seq
= read_seqbegin(&root
->fs_info
->profiles_lock
);
3564 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
3565 flags
|= root
->fs_info
->avail_data_alloc_bits
;
3566 else if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
3567 flags
|= root
->fs_info
->avail_system_alloc_bits
;
3568 else if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
3569 flags
|= root
->fs_info
->avail_metadata_alloc_bits
;
3570 } while (read_seqretry(&root
->fs_info
->profiles_lock
, seq
));
3572 return btrfs_reduce_alloc_profile(root
, flags
);
3575 u64
btrfs_get_alloc_profile(struct btrfs_root
*root
, int data
)
3581 flags
= BTRFS_BLOCK_GROUP_DATA
;
3582 else if (root
== root
->fs_info
->chunk_root
)
3583 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
3585 flags
= BTRFS_BLOCK_GROUP_METADATA
;
3587 ret
= get_alloc_profile(root
, flags
);
3592 * This will check the space that the inode allocates from to make sure we have
3593 * enough space for bytes.
3595 int btrfs_check_data_free_space(struct inode
*inode
, u64 bytes
)
3597 struct btrfs_space_info
*data_sinfo
;
3598 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3599 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3601 int ret
= 0, committed
= 0, alloc_chunk
= 1;
3603 /* make sure bytes are sectorsize aligned */
3604 bytes
= ALIGN(bytes
, root
->sectorsize
);
3606 if (btrfs_is_free_space_inode(inode
)) {
3608 ASSERT(current
->journal_info
);
3611 data_sinfo
= fs_info
->data_sinfo
;
3616 /* make sure we have enough space to handle the data first */
3617 spin_lock(&data_sinfo
->lock
);
3618 used
= data_sinfo
->bytes_used
+ data_sinfo
->bytes_reserved
+
3619 data_sinfo
->bytes_pinned
+ data_sinfo
->bytes_readonly
+
3620 data_sinfo
->bytes_may_use
;
3622 if (used
+ bytes
> data_sinfo
->total_bytes
) {
3623 struct btrfs_trans_handle
*trans
;
3626 * if we don't have enough free bytes in this space then we need
3627 * to alloc a new chunk.
3629 if (!data_sinfo
->full
&& alloc_chunk
) {
3632 data_sinfo
->force_alloc
= CHUNK_ALLOC_FORCE
;
3633 spin_unlock(&data_sinfo
->lock
);
3635 alloc_target
= btrfs_get_alloc_profile(root
, 1);
3637 * It is ugly that we don't call nolock join
3638 * transaction for the free space inode case here.
3639 * But it is safe because we only do the data space
3640 * reservation for the free space cache in the
3641 * transaction context, the common join transaction
3642 * just increase the counter of the current transaction
3643 * handler, doesn't try to acquire the trans_lock of
3646 trans
= btrfs_join_transaction(root
);
3648 return PTR_ERR(trans
);
3650 ret
= do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
3652 CHUNK_ALLOC_NO_FORCE
);
3653 btrfs_end_transaction(trans
, root
);
3662 data_sinfo
= fs_info
->data_sinfo
;
3668 * If we don't have enough pinned space to deal with this
3669 * allocation don't bother committing the transaction.
3671 if (percpu_counter_compare(&data_sinfo
->total_bytes_pinned
,
3674 spin_unlock(&data_sinfo
->lock
);
3676 /* commit the current transaction and try again */
3679 !atomic_read(&root
->fs_info
->open_ioctl_trans
)) {
3682 trans
= btrfs_join_transaction(root
);
3684 return PTR_ERR(trans
);
3685 ret
= btrfs_commit_transaction(trans
, root
);
3691 trace_btrfs_space_reservation(root
->fs_info
,
3692 "space_info:enospc",
3693 data_sinfo
->flags
, bytes
, 1);
3696 data_sinfo
->bytes_may_use
+= bytes
;
3697 trace_btrfs_space_reservation(root
->fs_info
, "space_info",
3698 data_sinfo
->flags
, bytes
, 1);
3699 spin_unlock(&data_sinfo
->lock
);
3705 * Called if we need to clear a data reservation for this inode.
3707 void btrfs_free_reserved_data_space(struct inode
*inode
, u64 bytes
)
3709 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3710 struct btrfs_space_info
*data_sinfo
;
3712 /* make sure bytes are sectorsize aligned */
3713 bytes
= ALIGN(bytes
, root
->sectorsize
);
3715 data_sinfo
= root
->fs_info
->data_sinfo
;
3716 spin_lock(&data_sinfo
->lock
);
3717 WARN_ON(data_sinfo
->bytes_may_use
< bytes
);
3718 data_sinfo
->bytes_may_use
-= bytes
;
3719 trace_btrfs_space_reservation(root
->fs_info
, "space_info",
3720 data_sinfo
->flags
, bytes
, 0);
3721 spin_unlock(&data_sinfo
->lock
);
3724 static void force_metadata_allocation(struct btrfs_fs_info
*info
)
3726 struct list_head
*head
= &info
->space_info
;
3727 struct btrfs_space_info
*found
;
3730 list_for_each_entry_rcu(found
, head
, list
) {
3731 if (found
->flags
& BTRFS_BLOCK_GROUP_METADATA
)
3732 found
->force_alloc
= CHUNK_ALLOC_FORCE
;
3737 static inline u64
calc_global_rsv_need_space(struct btrfs_block_rsv
*global
)
3739 return (global
->size
<< 1);
3742 static int should_alloc_chunk(struct btrfs_root
*root
,
3743 struct btrfs_space_info
*sinfo
, int force
)
3745 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
3746 u64 num_bytes
= sinfo
->total_bytes
- sinfo
->bytes_readonly
;
3747 u64 num_allocated
= sinfo
->bytes_used
+ sinfo
->bytes_reserved
;
3750 if (force
== CHUNK_ALLOC_FORCE
)
3754 * We need to take into account the global rsv because for all intents
3755 * and purposes it's used space. Don't worry about locking the
3756 * global_rsv, it doesn't change except when the transaction commits.
3758 if (sinfo
->flags
& BTRFS_BLOCK_GROUP_METADATA
)
3759 num_allocated
+= calc_global_rsv_need_space(global_rsv
);
3762 * in limited mode, we want to have some free space up to
3763 * about 1% of the FS size.
3765 if (force
== CHUNK_ALLOC_LIMITED
) {
3766 thresh
= btrfs_super_total_bytes(root
->fs_info
->super_copy
);
3767 thresh
= max_t(u64
, 64 * 1024 * 1024,
3768 div_factor_fine(thresh
, 1));
3770 if (num_bytes
- num_allocated
< thresh
)
3774 if (num_allocated
+ 2 * 1024 * 1024 < div_factor(num_bytes
, 8))
3779 static u64
get_system_chunk_thresh(struct btrfs_root
*root
, u64 type
)
3783 if (type
& (BTRFS_BLOCK_GROUP_RAID10
|
3784 BTRFS_BLOCK_GROUP_RAID0
|
3785 BTRFS_BLOCK_GROUP_RAID5
|
3786 BTRFS_BLOCK_GROUP_RAID6
))
3787 num_dev
= root
->fs_info
->fs_devices
->rw_devices
;
3788 else if (type
& BTRFS_BLOCK_GROUP_RAID1
)
3791 num_dev
= 1; /* DUP or single */
3793 /* metadata for updaing devices and chunk tree */
3794 return btrfs_calc_trans_metadata_size(root
, num_dev
+ 1);
3797 static void check_system_chunk(struct btrfs_trans_handle
*trans
,
3798 struct btrfs_root
*root
, u64 type
)
3800 struct btrfs_space_info
*info
;
3804 info
= __find_space_info(root
->fs_info
, BTRFS_BLOCK_GROUP_SYSTEM
);
3805 spin_lock(&info
->lock
);
3806 left
= info
->total_bytes
- info
->bytes_used
- info
->bytes_pinned
-
3807 info
->bytes_reserved
- info
->bytes_readonly
;
3808 spin_unlock(&info
->lock
);
3810 thresh
= get_system_chunk_thresh(root
, type
);
3811 if (left
< thresh
&& btrfs_test_opt(root
, ENOSPC_DEBUG
)) {
3812 btrfs_info(root
->fs_info
, "left=%llu, need=%llu, flags=%llu",
3813 left
, thresh
, type
);
3814 dump_space_info(info
, 0, 0);
3817 if (left
< thresh
) {
3820 flags
= btrfs_get_alloc_profile(root
->fs_info
->chunk_root
, 0);
3821 btrfs_alloc_chunk(trans
, root
, flags
);
3825 static int do_chunk_alloc(struct btrfs_trans_handle
*trans
,
3826 struct btrfs_root
*extent_root
, u64 flags
, int force
)
3828 struct btrfs_space_info
*space_info
;
3829 struct btrfs_fs_info
*fs_info
= extent_root
->fs_info
;
3830 int wait_for_alloc
= 0;
3833 /* Don't re-enter if we're already allocating a chunk */
3834 if (trans
->allocating_chunk
)
3837 space_info
= __find_space_info(extent_root
->fs_info
, flags
);
3839 ret
= update_space_info(extent_root
->fs_info
, flags
,
3841 BUG_ON(ret
); /* -ENOMEM */
3843 BUG_ON(!space_info
); /* Logic error */
3846 spin_lock(&space_info
->lock
);
3847 if (force
< space_info
->force_alloc
)
3848 force
= space_info
->force_alloc
;
3849 if (space_info
->full
) {
3850 if (should_alloc_chunk(extent_root
, space_info
, force
))
3854 spin_unlock(&space_info
->lock
);
3858 if (!should_alloc_chunk(extent_root
, space_info
, force
)) {
3859 spin_unlock(&space_info
->lock
);
3861 } else if (space_info
->chunk_alloc
) {
3864 space_info
->chunk_alloc
= 1;
3867 spin_unlock(&space_info
->lock
);
3869 mutex_lock(&fs_info
->chunk_mutex
);
3872 * The chunk_mutex is held throughout the entirety of a chunk
3873 * allocation, so once we've acquired the chunk_mutex we know that the
3874 * other guy is done and we need to recheck and see if we should
3877 if (wait_for_alloc
) {
3878 mutex_unlock(&fs_info
->chunk_mutex
);
3883 trans
->allocating_chunk
= true;
3886 * If we have mixed data/metadata chunks we want to make sure we keep
3887 * allocating mixed chunks instead of individual chunks.
3889 if (btrfs_mixed_space_info(space_info
))
3890 flags
|= (BTRFS_BLOCK_GROUP_DATA
| BTRFS_BLOCK_GROUP_METADATA
);
3893 * if we're doing a data chunk, go ahead and make sure that
3894 * we keep a reasonable number of metadata chunks allocated in the
3897 if (flags
& BTRFS_BLOCK_GROUP_DATA
&& fs_info
->metadata_ratio
) {
3898 fs_info
->data_chunk_allocations
++;
3899 if (!(fs_info
->data_chunk_allocations
%
3900 fs_info
->metadata_ratio
))
3901 force_metadata_allocation(fs_info
);
3905 * Check if we have enough space in SYSTEM chunk because we may need
3906 * to update devices.
3908 check_system_chunk(trans
, extent_root
, flags
);
3910 ret
= btrfs_alloc_chunk(trans
, extent_root
, flags
);
3911 trans
->allocating_chunk
= false;
3913 spin_lock(&space_info
->lock
);
3914 if (ret
< 0 && ret
!= -ENOSPC
)
3917 space_info
->full
= 1;
3921 space_info
->force_alloc
= CHUNK_ALLOC_NO_FORCE
;
3923 space_info
->chunk_alloc
= 0;
3924 spin_unlock(&space_info
->lock
);
3925 mutex_unlock(&fs_info
->chunk_mutex
);
3929 static int can_overcommit(struct btrfs_root
*root
,
3930 struct btrfs_space_info
*space_info
, u64 bytes
,
3931 enum btrfs_reserve_flush_enum flush
)
3933 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
3934 u64 profile
= btrfs_get_alloc_profile(root
, 0);
3939 used
= space_info
->bytes_used
+ space_info
->bytes_reserved
+
3940 space_info
->bytes_pinned
+ space_info
->bytes_readonly
;
3943 * We only want to allow over committing if we have lots of actual space
3944 * free, but if we don't have enough space to handle the global reserve
3945 * space then we could end up having a real enospc problem when trying
3946 * to allocate a chunk or some other such important allocation.
3948 spin_lock(&global_rsv
->lock
);
3949 space_size
= calc_global_rsv_need_space(global_rsv
);
3950 spin_unlock(&global_rsv
->lock
);
3951 if (used
+ space_size
>= space_info
->total_bytes
)
3954 used
+= space_info
->bytes_may_use
;
3956 spin_lock(&root
->fs_info
->free_chunk_lock
);
3957 avail
= root
->fs_info
->free_chunk_space
;
3958 spin_unlock(&root
->fs_info
->free_chunk_lock
);
3961 * If we have dup, raid1 or raid10 then only half of the free
3962 * space is actually useable. For raid56, the space info used
3963 * doesn't include the parity drive, so we don't have to
3966 if (profile
& (BTRFS_BLOCK_GROUP_DUP
|
3967 BTRFS_BLOCK_GROUP_RAID1
|
3968 BTRFS_BLOCK_GROUP_RAID10
))
3972 * If we aren't flushing all things, let us overcommit up to
3973 * 1/2th of the space. If we can flush, don't let us overcommit
3974 * too much, let it overcommit up to 1/8 of the space.
3976 if (flush
== BTRFS_RESERVE_FLUSH_ALL
)
3981 if (used
+ bytes
< space_info
->total_bytes
+ avail
)
3986 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root
*root
,
3987 unsigned long nr_pages
, int nr_items
)
3989 struct super_block
*sb
= root
->fs_info
->sb
;
3991 if (down_read_trylock(&sb
->s_umount
)) {
3992 writeback_inodes_sb_nr(sb
, nr_pages
, WB_REASON_FS_FREE_SPACE
);
3993 up_read(&sb
->s_umount
);
3996 * We needn't worry the filesystem going from r/w to r/o though
3997 * we don't acquire ->s_umount mutex, because the filesystem
3998 * should guarantee the delalloc inodes list be empty after
3999 * the filesystem is readonly(all dirty pages are written to
4002 btrfs_start_delalloc_roots(root
->fs_info
, 0, nr_items
);
4003 if (!current
->journal_info
)
4004 btrfs_wait_ordered_roots(root
->fs_info
, nr_items
);
4008 static inline int calc_reclaim_items_nr(struct btrfs_root
*root
, u64 to_reclaim
)
4013 bytes
= btrfs_calc_trans_metadata_size(root
, 1);
4014 nr
= (int)div64_u64(to_reclaim
, bytes
);
4020 #define EXTENT_SIZE_PER_ITEM (256 * 1024)
4023 * shrink metadata reservation for delalloc
4025 static void shrink_delalloc(struct btrfs_root
*root
, u64 to_reclaim
, u64 orig
,
4028 struct btrfs_block_rsv
*block_rsv
;
4029 struct btrfs_space_info
*space_info
;
4030 struct btrfs_trans_handle
*trans
;
4034 unsigned long nr_pages
;
4037 enum btrfs_reserve_flush_enum flush
;
4039 /* Calc the number of the pages we need flush for space reservation */
4040 items
= calc_reclaim_items_nr(root
, to_reclaim
);
4041 to_reclaim
= items
* EXTENT_SIZE_PER_ITEM
;
4043 trans
= (struct btrfs_trans_handle
*)current
->journal_info
;
4044 block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
4045 space_info
= block_rsv
->space_info
;
4047 delalloc_bytes
= percpu_counter_sum_positive(
4048 &root
->fs_info
->delalloc_bytes
);
4049 if (delalloc_bytes
== 0) {
4053 btrfs_wait_ordered_roots(root
->fs_info
, items
);
4058 while (delalloc_bytes
&& loops
< 3) {
4059 max_reclaim
= min(delalloc_bytes
, to_reclaim
);
4060 nr_pages
= max_reclaim
>> PAGE_CACHE_SHIFT
;
4061 btrfs_writeback_inodes_sb_nr(root
, nr_pages
, items
);
4063 * We need to wait for the async pages to actually start before
4066 max_reclaim
= atomic_read(&root
->fs_info
->async_delalloc_pages
);
4070 if (max_reclaim
<= nr_pages
)
4073 max_reclaim
-= nr_pages
;
4075 wait_event(root
->fs_info
->async_submit_wait
,
4076 atomic_read(&root
->fs_info
->async_delalloc_pages
) <=
4080 flush
= BTRFS_RESERVE_FLUSH_ALL
;
4082 flush
= BTRFS_RESERVE_NO_FLUSH
;
4083 spin_lock(&space_info
->lock
);
4084 if (can_overcommit(root
, space_info
, orig
, flush
)) {
4085 spin_unlock(&space_info
->lock
);
4088 spin_unlock(&space_info
->lock
);
4091 if (wait_ordered
&& !trans
) {
4092 btrfs_wait_ordered_roots(root
->fs_info
, items
);
4094 time_left
= schedule_timeout_killable(1);
4098 delalloc_bytes
= percpu_counter_sum_positive(
4099 &root
->fs_info
->delalloc_bytes
);
4104 * maybe_commit_transaction - possibly commit the transaction if its ok to
4105 * @root - the root we're allocating for
4106 * @bytes - the number of bytes we want to reserve
4107 * @force - force the commit
4109 * This will check to make sure that committing the transaction will actually
4110 * get us somewhere and then commit the transaction if it does. Otherwise it
4111 * will return -ENOSPC.
4113 static int may_commit_transaction(struct btrfs_root
*root
,
4114 struct btrfs_space_info
*space_info
,
4115 u64 bytes
, int force
)
4117 struct btrfs_block_rsv
*delayed_rsv
= &root
->fs_info
->delayed_block_rsv
;
4118 struct btrfs_trans_handle
*trans
;
4120 trans
= (struct btrfs_trans_handle
*)current
->journal_info
;
4127 /* See if there is enough pinned space to make this reservation */
4128 if (percpu_counter_compare(&space_info
->total_bytes_pinned
,
4133 * See if there is some space in the delayed insertion reservation for
4136 if (space_info
!= delayed_rsv
->space_info
)
4139 spin_lock(&delayed_rsv
->lock
);
4140 if (percpu_counter_compare(&space_info
->total_bytes_pinned
,
4141 bytes
- delayed_rsv
->size
) >= 0) {
4142 spin_unlock(&delayed_rsv
->lock
);
4145 spin_unlock(&delayed_rsv
->lock
);
4148 trans
= btrfs_join_transaction(root
);
4152 return btrfs_commit_transaction(trans
, root
);
4156 FLUSH_DELAYED_ITEMS_NR
= 1,
4157 FLUSH_DELAYED_ITEMS
= 2,
4159 FLUSH_DELALLOC_WAIT
= 4,
4164 static int flush_space(struct btrfs_root
*root
,
4165 struct btrfs_space_info
*space_info
, u64 num_bytes
,
4166 u64 orig_bytes
, int state
)
4168 struct btrfs_trans_handle
*trans
;
4173 case FLUSH_DELAYED_ITEMS_NR
:
4174 case FLUSH_DELAYED_ITEMS
:
4175 if (state
== FLUSH_DELAYED_ITEMS_NR
)
4176 nr
= calc_reclaim_items_nr(root
, num_bytes
) * 2;
4180 trans
= btrfs_join_transaction(root
);
4181 if (IS_ERR(trans
)) {
4182 ret
= PTR_ERR(trans
);
4185 ret
= btrfs_run_delayed_items_nr(trans
, root
, nr
);
4186 btrfs_end_transaction(trans
, root
);
4188 case FLUSH_DELALLOC
:
4189 case FLUSH_DELALLOC_WAIT
:
4190 shrink_delalloc(root
, num_bytes
* 2, orig_bytes
,
4191 state
== FLUSH_DELALLOC_WAIT
);
4194 trans
= btrfs_join_transaction(root
);
4195 if (IS_ERR(trans
)) {
4196 ret
= PTR_ERR(trans
);
4199 ret
= do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
4200 btrfs_get_alloc_profile(root
, 0),
4201 CHUNK_ALLOC_NO_FORCE
);
4202 btrfs_end_transaction(trans
, root
);
4207 ret
= may_commit_transaction(root
, space_info
, orig_bytes
, 0);
4218 btrfs_calc_reclaim_metadata_size(struct btrfs_root
*root
,
4219 struct btrfs_space_info
*space_info
)
4225 to_reclaim
= min_t(u64
, num_online_cpus() * 1024 * 1024,
4227 spin_lock(&space_info
->lock
);
4228 if (can_overcommit(root
, space_info
, to_reclaim
,
4229 BTRFS_RESERVE_FLUSH_ALL
)) {
4234 used
= space_info
->bytes_used
+ space_info
->bytes_reserved
+
4235 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
4236 space_info
->bytes_may_use
;
4237 if (can_overcommit(root
, space_info
, 1024 * 1024,
4238 BTRFS_RESERVE_FLUSH_ALL
))
4239 expected
= div_factor_fine(space_info
->total_bytes
, 95);
4241 expected
= div_factor_fine(space_info
->total_bytes
, 90);
4243 if (used
> expected
)
4244 to_reclaim
= used
- expected
;
4247 to_reclaim
= min(to_reclaim
, space_info
->bytes_may_use
+
4248 space_info
->bytes_reserved
);
4250 spin_unlock(&space_info
->lock
);
4255 static inline int need_do_async_reclaim(struct btrfs_space_info
*space_info
,
4256 struct btrfs_fs_info
*fs_info
, u64 used
)
4258 return (used
>= div_factor_fine(space_info
->total_bytes
, 98) &&
4259 !btrfs_fs_closing(fs_info
) &&
4260 !test_bit(BTRFS_FS_STATE_REMOUNTING
, &fs_info
->fs_state
));
4263 static int btrfs_need_do_async_reclaim(struct btrfs_space_info
*space_info
,
4264 struct btrfs_fs_info
*fs_info
,
4269 spin_lock(&space_info
->lock
);
4271 * We run out of space and have not got any free space via flush_space,
4272 * so don't bother doing async reclaim.
4274 if (flush_state
> COMMIT_TRANS
&& space_info
->full
) {
4275 spin_unlock(&space_info
->lock
);
4279 used
= space_info
->bytes_used
+ space_info
->bytes_reserved
+
4280 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
4281 space_info
->bytes_may_use
;
4282 if (need_do_async_reclaim(space_info
, fs_info
, used
)) {
4283 spin_unlock(&space_info
->lock
);
4286 spin_unlock(&space_info
->lock
);
4291 static void btrfs_async_reclaim_metadata_space(struct work_struct
*work
)
4293 struct btrfs_fs_info
*fs_info
;
4294 struct btrfs_space_info
*space_info
;
4298 fs_info
= container_of(work
, struct btrfs_fs_info
, async_reclaim_work
);
4299 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_METADATA
);
4301 to_reclaim
= btrfs_calc_reclaim_metadata_size(fs_info
->fs_root
,
4306 flush_state
= FLUSH_DELAYED_ITEMS_NR
;
4308 flush_space(fs_info
->fs_root
, space_info
, to_reclaim
,
4309 to_reclaim
, flush_state
);
4311 if (!btrfs_need_do_async_reclaim(space_info
, fs_info
,
4314 } while (flush_state
<= COMMIT_TRANS
);
4316 if (btrfs_need_do_async_reclaim(space_info
, fs_info
, flush_state
))
4317 queue_work(system_unbound_wq
, work
);
4320 void btrfs_init_async_reclaim_work(struct work_struct
*work
)
4322 INIT_WORK(work
, btrfs_async_reclaim_metadata_space
);
4326 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4327 * @root - the root we're allocating for
4328 * @block_rsv - the block_rsv we're allocating for
4329 * @orig_bytes - the number of bytes we want
4330 * @flush - whether or not we can flush to make our reservation
4332 * This will reserve orgi_bytes number of bytes from the space info associated
4333 * with the block_rsv. If there is not enough space it will make an attempt to
4334 * flush out space to make room. It will do this by flushing delalloc if
4335 * possible or committing the transaction. If flush is 0 then no attempts to
4336 * regain reservations will be made and this will fail if there is not enough
4339 static int reserve_metadata_bytes(struct btrfs_root
*root
,
4340 struct btrfs_block_rsv
*block_rsv
,
4342 enum btrfs_reserve_flush_enum flush
)
4344 struct btrfs_space_info
*space_info
= block_rsv
->space_info
;
4346 u64 num_bytes
= orig_bytes
;
4347 int flush_state
= FLUSH_DELAYED_ITEMS_NR
;
4349 bool flushing
= false;
4353 spin_lock(&space_info
->lock
);
4355 * We only want to wait if somebody other than us is flushing and we
4356 * are actually allowed to flush all things.
4358 while (flush
== BTRFS_RESERVE_FLUSH_ALL
&& !flushing
&&
4359 space_info
->flush
) {
4360 spin_unlock(&space_info
->lock
);
4362 * If we have a trans handle we can't wait because the flusher
4363 * may have to commit the transaction, which would mean we would
4364 * deadlock since we are waiting for the flusher to finish, but
4365 * hold the current transaction open.
4367 if (current
->journal_info
)
4369 ret
= wait_event_killable(space_info
->wait
, !space_info
->flush
);
4370 /* Must have been killed, return */
4374 spin_lock(&space_info
->lock
);
4378 used
= space_info
->bytes_used
+ space_info
->bytes_reserved
+
4379 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
4380 space_info
->bytes_may_use
;
4383 * The idea here is that we've not already over-reserved the block group
4384 * then we can go ahead and save our reservation first and then start
4385 * flushing if we need to. Otherwise if we've already overcommitted
4386 * lets start flushing stuff first and then come back and try to make
4389 if (used
<= space_info
->total_bytes
) {
4390 if (used
+ orig_bytes
<= space_info
->total_bytes
) {
4391 space_info
->bytes_may_use
+= orig_bytes
;
4392 trace_btrfs_space_reservation(root
->fs_info
,
4393 "space_info", space_info
->flags
, orig_bytes
, 1);
4397 * Ok set num_bytes to orig_bytes since we aren't
4398 * overocmmitted, this way we only try and reclaim what
4401 num_bytes
= orig_bytes
;
4405 * Ok we're over committed, set num_bytes to the overcommitted
4406 * amount plus the amount of bytes that we need for this
4409 num_bytes
= used
- space_info
->total_bytes
+
4413 if (ret
&& can_overcommit(root
, space_info
, orig_bytes
, flush
)) {
4414 space_info
->bytes_may_use
+= orig_bytes
;
4415 trace_btrfs_space_reservation(root
->fs_info
, "space_info",
4416 space_info
->flags
, orig_bytes
,
4422 * Couldn't make our reservation, save our place so while we're trying
4423 * to reclaim space we can actually use it instead of somebody else
4424 * stealing it from us.
4426 * We make the other tasks wait for the flush only when we can flush
4429 if (ret
&& flush
!= BTRFS_RESERVE_NO_FLUSH
) {
4431 space_info
->flush
= 1;
4432 } else if (!ret
&& space_info
->flags
& BTRFS_BLOCK_GROUP_METADATA
) {
4435 * We will do the space reservation dance during log replay,
4436 * which means we won't have fs_info->fs_root set, so don't do
4437 * the async reclaim as we will panic.
4439 if (!root
->fs_info
->log_root_recovering
&&
4440 need_do_async_reclaim(space_info
, root
->fs_info
, used
) &&
4441 !work_busy(&root
->fs_info
->async_reclaim_work
))
4442 queue_work(system_unbound_wq
,
4443 &root
->fs_info
->async_reclaim_work
);
4445 spin_unlock(&space_info
->lock
);
4447 if (!ret
|| flush
== BTRFS_RESERVE_NO_FLUSH
)
4450 ret
= flush_space(root
, space_info
, num_bytes
, orig_bytes
,
4455 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4456 * would happen. So skip delalloc flush.
4458 if (flush
== BTRFS_RESERVE_FLUSH_LIMIT
&&
4459 (flush_state
== FLUSH_DELALLOC
||
4460 flush_state
== FLUSH_DELALLOC_WAIT
))
4461 flush_state
= ALLOC_CHUNK
;
4465 else if (flush
== BTRFS_RESERVE_FLUSH_LIMIT
&&
4466 flush_state
< COMMIT_TRANS
)
4468 else if (flush
== BTRFS_RESERVE_FLUSH_ALL
&&
4469 flush_state
<= COMMIT_TRANS
)
4473 if (ret
== -ENOSPC
&&
4474 unlikely(root
->orphan_cleanup_state
== ORPHAN_CLEANUP_STARTED
)) {
4475 struct btrfs_block_rsv
*global_rsv
=
4476 &root
->fs_info
->global_block_rsv
;
4478 if (block_rsv
!= global_rsv
&&
4479 !block_rsv_use_bytes(global_rsv
, orig_bytes
))
4483 trace_btrfs_space_reservation(root
->fs_info
,
4484 "space_info:enospc",
4485 space_info
->flags
, orig_bytes
, 1);
4487 spin_lock(&space_info
->lock
);
4488 space_info
->flush
= 0;
4489 wake_up_all(&space_info
->wait
);
4490 spin_unlock(&space_info
->lock
);
4495 static struct btrfs_block_rsv
*get_block_rsv(
4496 const struct btrfs_trans_handle
*trans
,
4497 const struct btrfs_root
*root
)
4499 struct btrfs_block_rsv
*block_rsv
= NULL
;
4501 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
))
4502 block_rsv
= trans
->block_rsv
;
4504 if (root
== root
->fs_info
->csum_root
&& trans
->adding_csums
)
4505 block_rsv
= trans
->block_rsv
;
4507 if (root
== root
->fs_info
->uuid_root
)
4508 block_rsv
= trans
->block_rsv
;
4511 block_rsv
= root
->block_rsv
;
4514 block_rsv
= &root
->fs_info
->empty_block_rsv
;
4519 static int block_rsv_use_bytes(struct btrfs_block_rsv
*block_rsv
,
4523 spin_lock(&block_rsv
->lock
);
4524 if (block_rsv
->reserved
>= num_bytes
) {
4525 block_rsv
->reserved
-= num_bytes
;
4526 if (block_rsv
->reserved
< block_rsv
->size
)
4527 block_rsv
->full
= 0;
4530 spin_unlock(&block_rsv
->lock
);
4534 static void block_rsv_add_bytes(struct btrfs_block_rsv
*block_rsv
,
4535 u64 num_bytes
, int update_size
)
4537 spin_lock(&block_rsv
->lock
);
4538 block_rsv
->reserved
+= num_bytes
;
4540 block_rsv
->size
+= num_bytes
;
4541 else if (block_rsv
->reserved
>= block_rsv
->size
)
4542 block_rsv
->full
= 1;
4543 spin_unlock(&block_rsv
->lock
);
4546 int btrfs_cond_migrate_bytes(struct btrfs_fs_info
*fs_info
,
4547 struct btrfs_block_rsv
*dest
, u64 num_bytes
,
4550 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
4553 if (global_rsv
->space_info
!= dest
->space_info
)
4556 spin_lock(&global_rsv
->lock
);
4557 min_bytes
= div_factor(global_rsv
->size
, min_factor
);
4558 if (global_rsv
->reserved
< min_bytes
+ num_bytes
) {
4559 spin_unlock(&global_rsv
->lock
);
4562 global_rsv
->reserved
-= num_bytes
;
4563 if (global_rsv
->reserved
< global_rsv
->size
)
4564 global_rsv
->full
= 0;
4565 spin_unlock(&global_rsv
->lock
);
4567 block_rsv_add_bytes(dest
, num_bytes
, 1);
4571 static void block_rsv_release_bytes(struct btrfs_fs_info
*fs_info
,
4572 struct btrfs_block_rsv
*block_rsv
,
4573 struct btrfs_block_rsv
*dest
, u64 num_bytes
)
4575 struct btrfs_space_info
*space_info
= block_rsv
->space_info
;
4577 spin_lock(&block_rsv
->lock
);
4578 if (num_bytes
== (u64
)-1)
4579 num_bytes
= block_rsv
->size
;
4580 block_rsv
->size
-= num_bytes
;
4581 if (block_rsv
->reserved
>= block_rsv
->size
) {
4582 num_bytes
= block_rsv
->reserved
- block_rsv
->size
;
4583 block_rsv
->reserved
= block_rsv
->size
;
4584 block_rsv
->full
= 1;
4588 spin_unlock(&block_rsv
->lock
);
4590 if (num_bytes
> 0) {
4592 spin_lock(&dest
->lock
);
4596 bytes_to_add
= dest
->size
- dest
->reserved
;
4597 bytes_to_add
= min(num_bytes
, bytes_to_add
);
4598 dest
->reserved
+= bytes_to_add
;
4599 if (dest
->reserved
>= dest
->size
)
4601 num_bytes
-= bytes_to_add
;
4603 spin_unlock(&dest
->lock
);
4606 spin_lock(&space_info
->lock
);
4607 space_info
->bytes_may_use
-= num_bytes
;
4608 trace_btrfs_space_reservation(fs_info
, "space_info",
4609 space_info
->flags
, num_bytes
, 0);
4610 spin_unlock(&space_info
->lock
);
4615 static int block_rsv_migrate_bytes(struct btrfs_block_rsv
*src
,
4616 struct btrfs_block_rsv
*dst
, u64 num_bytes
)
4620 ret
= block_rsv_use_bytes(src
, num_bytes
);
4624 block_rsv_add_bytes(dst
, num_bytes
, 1);
4628 void btrfs_init_block_rsv(struct btrfs_block_rsv
*rsv
, unsigned short type
)
4630 memset(rsv
, 0, sizeof(*rsv
));
4631 spin_lock_init(&rsv
->lock
);
4635 struct btrfs_block_rsv
*btrfs_alloc_block_rsv(struct btrfs_root
*root
,
4636 unsigned short type
)
4638 struct btrfs_block_rsv
*block_rsv
;
4639 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4641 block_rsv
= kmalloc(sizeof(*block_rsv
), GFP_NOFS
);
4645 btrfs_init_block_rsv(block_rsv
, type
);
4646 block_rsv
->space_info
= __find_space_info(fs_info
,
4647 BTRFS_BLOCK_GROUP_METADATA
);
4651 void btrfs_free_block_rsv(struct btrfs_root
*root
,
4652 struct btrfs_block_rsv
*rsv
)
4656 btrfs_block_rsv_release(root
, rsv
, (u64
)-1);
4660 int btrfs_block_rsv_add(struct btrfs_root
*root
,
4661 struct btrfs_block_rsv
*block_rsv
, u64 num_bytes
,
4662 enum btrfs_reserve_flush_enum flush
)
4669 ret
= reserve_metadata_bytes(root
, block_rsv
, num_bytes
, flush
);
4671 block_rsv_add_bytes(block_rsv
, num_bytes
, 1);
4678 int btrfs_block_rsv_check(struct btrfs_root
*root
,
4679 struct btrfs_block_rsv
*block_rsv
, int min_factor
)
4687 spin_lock(&block_rsv
->lock
);
4688 num_bytes
= div_factor(block_rsv
->size
, min_factor
);
4689 if (block_rsv
->reserved
>= num_bytes
)
4691 spin_unlock(&block_rsv
->lock
);
4696 int btrfs_block_rsv_refill(struct btrfs_root
*root
,
4697 struct btrfs_block_rsv
*block_rsv
, u64 min_reserved
,
4698 enum btrfs_reserve_flush_enum flush
)
4706 spin_lock(&block_rsv
->lock
);
4707 num_bytes
= min_reserved
;
4708 if (block_rsv
->reserved
>= num_bytes
)
4711 num_bytes
-= block_rsv
->reserved
;
4712 spin_unlock(&block_rsv
->lock
);
4717 ret
= reserve_metadata_bytes(root
, block_rsv
, num_bytes
, flush
);
4719 block_rsv_add_bytes(block_rsv
, num_bytes
, 0);
4726 int btrfs_block_rsv_migrate(struct btrfs_block_rsv
*src_rsv
,
4727 struct btrfs_block_rsv
*dst_rsv
,
4730 return block_rsv_migrate_bytes(src_rsv
, dst_rsv
, num_bytes
);
4733 void btrfs_block_rsv_release(struct btrfs_root
*root
,
4734 struct btrfs_block_rsv
*block_rsv
,
4737 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
4738 if (global_rsv
== block_rsv
||
4739 block_rsv
->space_info
!= global_rsv
->space_info
)
4741 block_rsv_release_bytes(root
->fs_info
, block_rsv
, global_rsv
,
4746 * helper to calculate size of global block reservation.
4747 * the desired value is sum of space used by extent tree,
4748 * checksum tree and root tree
4750 static u64
calc_global_metadata_size(struct btrfs_fs_info
*fs_info
)
4752 struct btrfs_space_info
*sinfo
;
4756 int csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
4758 sinfo
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_DATA
);
4759 spin_lock(&sinfo
->lock
);
4760 data_used
= sinfo
->bytes_used
;
4761 spin_unlock(&sinfo
->lock
);
4763 sinfo
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_METADATA
);
4764 spin_lock(&sinfo
->lock
);
4765 if (sinfo
->flags
& BTRFS_BLOCK_GROUP_DATA
)
4767 meta_used
= sinfo
->bytes_used
;
4768 spin_unlock(&sinfo
->lock
);
4770 num_bytes
= (data_used
>> fs_info
->sb
->s_blocksize_bits
) *
4772 num_bytes
+= div_u64(data_used
+ meta_used
, 50);
4774 if (num_bytes
* 3 > meta_used
)
4775 num_bytes
= div_u64(meta_used
, 3);
4777 return ALIGN(num_bytes
, fs_info
->extent_root
->nodesize
<< 10);
4780 static void update_global_block_rsv(struct btrfs_fs_info
*fs_info
)
4782 struct btrfs_block_rsv
*block_rsv
= &fs_info
->global_block_rsv
;
4783 struct btrfs_space_info
*sinfo
= block_rsv
->space_info
;
4786 num_bytes
= calc_global_metadata_size(fs_info
);
4788 spin_lock(&sinfo
->lock
);
4789 spin_lock(&block_rsv
->lock
);
4791 block_rsv
->size
= min_t(u64
, num_bytes
, 512 * 1024 * 1024);
4793 num_bytes
= sinfo
->bytes_used
+ sinfo
->bytes_pinned
+
4794 sinfo
->bytes_reserved
+ sinfo
->bytes_readonly
+
4795 sinfo
->bytes_may_use
;
4797 if (sinfo
->total_bytes
> num_bytes
) {
4798 num_bytes
= sinfo
->total_bytes
- num_bytes
;
4799 block_rsv
->reserved
+= num_bytes
;
4800 sinfo
->bytes_may_use
+= num_bytes
;
4801 trace_btrfs_space_reservation(fs_info
, "space_info",
4802 sinfo
->flags
, num_bytes
, 1);
4805 if (block_rsv
->reserved
>= block_rsv
->size
) {
4806 num_bytes
= block_rsv
->reserved
- block_rsv
->size
;
4807 sinfo
->bytes_may_use
-= num_bytes
;
4808 trace_btrfs_space_reservation(fs_info
, "space_info",
4809 sinfo
->flags
, num_bytes
, 0);
4810 block_rsv
->reserved
= block_rsv
->size
;
4811 block_rsv
->full
= 1;
4814 spin_unlock(&block_rsv
->lock
);
4815 spin_unlock(&sinfo
->lock
);
4818 static void init_global_block_rsv(struct btrfs_fs_info
*fs_info
)
4820 struct btrfs_space_info
*space_info
;
4822 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_SYSTEM
);
4823 fs_info
->chunk_block_rsv
.space_info
= space_info
;
4825 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_METADATA
);
4826 fs_info
->global_block_rsv
.space_info
= space_info
;
4827 fs_info
->delalloc_block_rsv
.space_info
= space_info
;
4828 fs_info
->trans_block_rsv
.space_info
= space_info
;
4829 fs_info
->empty_block_rsv
.space_info
= space_info
;
4830 fs_info
->delayed_block_rsv
.space_info
= space_info
;
4832 fs_info
->extent_root
->block_rsv
= &fs_info
->global_block_rsv
;
4833 fs_info
->csum_root
->block_rsv
= &fs_info
->global_block_rsv
;
4834 fs_info
->dev_root
->block_rsv
= &fs_info
->global_block_rsv
;
4835 fs_info
->tree_root
->block_rsv
= &fs_info
->global_block_rsv
;
4836 if (fs_info
->quota_root
)
4837 fs_info
->quota_root
->block_rsv
= &fs_info
->global_block_rsv
;
4838 fs_info
->chunk_root
->block_rsv
= &fs_info
->chunk_block_rsv
;
4840 update_global_block_rsv(fs_info
);
4843 static void release_global_block_rsv(struct btrfs_fs_info
*fs_info
)
4845 block_rsv_release_bytes(fs_info
, &fs_info
->global_block_rsv
, NULL
,
4847 WARN_ON(fs_info
->delalloc_block_rsv
.size
> 0);
4848 WARN_ON(fs_info
->delalloc_block_rsv
.reserved
> 0);
4849 WARN_ON(fs_info
->trans_block_rsv
.size
> 0);
4850 WARN_ON(fs_info
->trans_block_rsv
.reserved
> 0);
4851 WARN_ON(fs_info
->chunk_block_rsv
.size
> 0);
4852 WARN_ON(fs_info
->chunk_block_rsv
.reserved
> 0);
4853 WARN_ON(fs_info
->delayed_block_rsv
.size
> 0);
4854 WARN_ON(fs_info
->delayed_block_rsv
.reserved
> 0);
4857 void btrfs_trans_release_metadata(struct btrfs_trans_handle
*trans
,
4858 struct btrfs_root
*root
)
4860 if (!trans
->block_rsv
)
4863 if (!trans
->bytes_reserved
)
4866 trace_btrfs_space_reservation(root
->fs_info
, "transaction",
4867 trans
->transid
, trans
->bytes_reserved
, 0);
4868 btrfs_block_rsv_release(root
, trans
->block_rsv
, trans
->bytes_reserved
);
4869 trans
->bytes_reserved
= 0;
4872 /* Can only return 0 or -ENOSPC */
4873 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle
*trans
,
4874 struct inode
*inode
)
4876 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4877 struct btrfs_block_rsv
*src_rsv
= get_block_rsv(trans
, root
);
4878 struct btrfs_block_rsv
*dst_rsv
= root
->orphan_block_rsv
;
4881 * We need to hold space in order to delete our orphan item once we've
4882 * added it, so this takes the reservation so we can release it later
4883 * when we are truly done with the orphan item.
4885 u64 num_bytes
= btrfs_calc_trans_metadata_size(root
, 1);
4886 trace_btrfs_space_reservation(root
->fs_info
, "orphan",
4887 btrfs_ino(inode
), num_bytes
, 1);
4888 return block_rsv_migrate_bytes(src_rsv
, dst_rsv
, num_bytes
);
4891 void btrfs_orphan_release_metadata(struct inode
*inode
)
4893 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4894 u64 num_bytes
= btrfs_calc_trans_metadata_size(root
, 1);
4895 trace_btrfs_space_reservation(root
->fs_info
, "orphan",
4896 btrfs_ino(inode
), num_bytes
, 0);
4897 btrfs_block_rsv_release(root
, root
->orphan_block_rsv
, num_bytes
);
4901 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
4902 * root: the root of the parent directory
4903 * rsv: block reservation
4904 * items: the number of items that we need do reservation
4905 * qgroup_reserved: used to return the reserved size in qgroup
4907 * This function is used to reserve the space for snapshot/subvolume
4908 * creation and deletion. Those operations are different with the
4909 * common file/directory operations, they change two fs/file trees
4910 * and root tree, the number of items that the qgroup reserves is
4911 * different with the free space reservation. So we can not use
4912 * the space reseravtion mechanism in start_transaction().
4914 int btrfs_subvolume_reserve_metadata(struct btrfs_root
*root
,
4915 struct btrfs_block_rsv
*rsv
,
4917 u64
*qgroup_reserved
,
4918 bool use_global_rsv
)
4922 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
4924 if (root
->fs_info
->quota_enabled
) {
4925 /* One for parent inode, two for dir entries */
4926 num_bytes
= 3 * root
->nodesize
;
4927 ret
= btrfs_qgroup_reserve(root
, num_bytes
);
4934 *qgroup_reserved
= num_bytes
;
4936 num_bytes
= btrfs_calc_trans_metadata_size(root
, items
);
4937 rsv
->space_info
= __find_space_info(root
->fs_info
,
4938 BTRFS_BLOCK_GROUP_METADATA
);
4939 ret
= btrfs_block_rsv_add(root
, rsv
, num_bytes
,
4940 BTRFS_RESERVE_FLUSH_ALL
);
4942 if (ret
== -ENOSPC
&& use_global_rsv
)
4943 ret
= btrfs_block_rsv_migrate(global_rsv
, rsv
, num_bytes
);
4946 if (*qgroup_reserved
)
4947 btrfs_qgroup_free(root
, *qgroup_reserved
);
4953 void btrfs_subvolume_release_metadata(struct btrfs_root
*root
,
4954 struct btrfs_block_rsv
*rsv
,
4955 u64 qgroup_reserved
)
4957 btrfs_block_rsv_release(root
, rsv
, (u64
)-1);
4958 if (qgroup_reserved
)
4959 btrfs_qgroup_free(root
, qgroup_reserved
);
4963 * drop_outstanding_extent - drop an outstanding extent
4964 * @inode: the inode we're dropping the extent for
4965 * @num_bytes: the number of bytes we're relaseing.
4967 * This is called when we are freeing up an outstanding extent, either called
4968 * after an error or after an extent is written. This will return the number of
4969 * reserved extents that need to be freed. This must be called with
4970 * BTRFS_I(inode)->lock held.
4972 static unsigned drop_outstanding_extent(struct inode
*inode
, u64 num_bytes
)
4974 unsigned drop_inode_space
= 0;
4975 unsigned dropped_extents
= 0;
4976 unsigned num_extents
= 0;
4978 num_extents
= (unsigned)div64_u64(num_bytes
+
4979 BTRFS_MAX_EXTENT_SIZE
- 1,
4980 BTRFS_MAX_EXTENT_SIZE
);
4981 ASSERT(num_extents
);
4982 ASSERT(BTRFS_I(inode
)->outstanding_extents
>= num_extents
);
4983 BTRFS_I(inode
)->outstanding_extents
-= num_extents
;
4985 if (BTRFS_I(inode
)->outstanding_extents
== 0 &&
4986 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED
,
4987 &BTRFS_I(inode
)->runtime_flags
))
4988 drop_inode_space
= 1;
4991 * If we have more or the same amount of outsanding extents than we have
4992 * reserved then we need to leave the reserved extents count alone.
4994 if (BTRFS_I(inode
)->outstanding_extents
>=
4995 BTRFS_I(inode
)->reserved_extents
)
4996 return drop_inode_space
;
4998 dropped_extents
= BTRFS_I(inode
)->reserved_extents
-
4999 BTRFS_I(inode
)->outstanding_extents
;
5000 BTRFS_I(inode
)->reserved_extents
-= dropped_extents
;
5001 return dropped_extents
+ drop_inode_space
;
5005 * calc_csum_metadata_size - return the amount of metada space that must be
5006 * reserved/free'd for the given bytes.
5007 * @inode: the inode we're manipulating
5008 * @num_bytes: the number of bytes in question
5009 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5011 * This adjusts the number of csum_bytes in the inode and then returns the
5012 * correct amount of metadata that must either be reserved or freed. We
5013 * calculate how many checksums we can fit into one leaf and then divide the
5014 * number of bytes that will need to be checksumed by this value to figure out
5015 * how many checksums will be required. If we are adding bytes then the number
5016 * may go up and we will return the number of additional bytes that must be
5017 * reserved. If it is going down we will return the number of bytes that must
5020 * This must be called with BTRFS_I(inode)->lock held.
5022 static u64
calc_csum_metadata_size(struct inode
*inode
, u64 num_bytes
,
5025 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5027 int num_csums_per_leaf
;
5031 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
&&
5032 BTRFS_I(inode
)->csum_bytes
== 0)
5035 old_csums
= (int)div_u64(BTRFS_I(inode
)->csum_bytes
, root
->sectorsize
);
5037 BTRFS_I(inode
)->csum_bytes
+= num_bytes
;
5039 BTRFS_I(inode
)->csum_bytes
-= num_bytes
;
5040 csum_size
= BTRFS_LEAF_DATA_SIZE(root
) - sizeof(struct btrfs_item
);
5041 num_csums_per_leaf
= (int)div_u64(csum_size
,
5042 sizeof(struct btrfs_csum_item
) +
5043 sizeof(struct btrfs_disk_key
));
5044 num_csums
= (int)div_u64(BTRFS_I(inode
)->csum_bytes
, root
->sectorsize
);
5045 num_csums
= num_csums
+ num_csums_per_leaf
- 1;
5046 num_csums
= num_csums
/ num_csums_per_leaf
;
5048 old_csums
= old_csums
+ num_csums_per_leaf
- 1;
5049 old_csums
= old_csums
/ num_csums_per_leaf
;
5051 /* No change, no need to reserve more */
5052 if (old_csums
== num_csums
)
5056 return btrfs_calc_trans_metadata_size(root
,
5057 num_csums
- old_csums
);
5059 return btrfs_calc_trans_metadata_size(root
, old_csums
- num_csums
);
5062 int btrfs_delalloc_reserve_metadata(struct inode
*inode
, u64 num_bytes
)
5064 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5065 struct btrfs_block_rsv
*block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
5068 unsigned nr_extents
= 0;
5069 int extra_reserve
= 0;
5070 enum btrfs_reserve_flush_enum flush
= BTRFS_RESERVE_FLUSH_ALL
;
5072 bool delalloc_lock
= true;
5076 /* If we are a free space inode we need to not flush since we will be in
5077 * the middle of a transaction commit. We also don't need the delalloc
5078 * mutex since we won't race with anybody. We need this mostly to make
5079 * lockdep shut its filthy mouth.
5081 if (btrfs_is_free_space_inode(inode
)) {
5082 flush
= BTRFS_RESERVE_NO_FLUSH
;
5083 delalloc_lock
= false;
5086 if (flush
!= BTRFS_RESERVE_NO_FLUSH
&&
5087 btrfs_transaction_in_commit(root
->fs_info
))
5088 schedule_timeout(1);
5091 mutex_lock(&BTRFS_I(inode
)->delalloc_mutex
);
5093 num_bytes
= ALIGN(num_bytes
, root
->sectorsize
);
5095 spin_lock(&BTRFS_I(inode
)->lock
);
5096 BTRFS_I(inode
)->outstanding_extents
++;
5098 if (BTRFS_I(inode
)->outstanding_extents
>
5099 BTRFS_I(inode
)->reserved_extents
)
5100 nr_extents
= BTRFS_I(inode
)->outstanding_extents
-
5101 BTRFS_I(inode
)->reserved_extents
;
5104 * Add an item to reserve for updating the inode when we complete the
5107 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED
,
5108 &BTRFS_I(inode
)->runtime_flags
)) {
5113 to_reserve
= btrfs_calc_trans_metadata_size(root
, nr_extents
);
5114 to_reserve
+= calc_csum_metadata_size(inode
, num_bytes
, 1);
5115 csum_bytes
= BTRFS_I(inode
)->csum_bytes
;
5116 spin_unlock(&BTRFS_I(inode
)->lock
);
5118 if (root
->fs_info
->quota_enabled
) {
5119 ret
= btrfs_qgroup_reserve(root
, num_bytes
+
5120 nr_extents
* root
->nodesize
);
5125 ret
= reserve_metadata_bytes(root
, block_rsv
, to_reserve
, flush
);
5126 if (unlikely(ret
)) {
5127 if (root
->fs_info
->quota_enabled
)
5128 btrfs_qgroup_free(root
, num_bytes
+
5129 nr_extents
* root
->nodesize
);
5133 spin_lock(&BTRFS_I(inode
)->lock
);
5134 if (extra_reserve
) {
5135 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED
,
5136 &BTRFS_I(inode
)->runtime_flags
);
5139 BTRFS_I(inode
)->reserved_extents
+= nr_extents
;
5140 spin_unlock(&BTRFS_I(inode
)->lock
);
5143 mutex_unlock(&BTRFS_I(inode
)->delalloc_mutex
);
5146 trace_btrfs_space_reservation(root
->fs_info
, "delalloc",
5147 btrfs_ino(inode
), to_reserve
, 1);
5148 block_rsv_add_bytes(block_rsv
, to_reserve
, 1);
5153 spin_lock(&BTRFS_I(inode
)->lock
);
5154 dropped
= drop_outstanding_extent(inode
, num_bytes
);
5156 * If the inodes csum_bytes is the same as the original
5157 * csum_bytes then we know we haven't raced with any free()ers
5158 * so we can just reduce our inodes csum bytes and carry on.
5160 if (BTRFS_I(inode
)->csum_bytes
== csum_bytes
) {
5161 calc_csum_metadata_size(inode
, num_bytes
, 0);
5163 u64 orig_csum_bytes
= BTRFS_I(inode
)->csum_bytes
;
5167 * This is tricky, but first we need to figure out how much we
5168 * free'd from any free-ers that occured during this
5169 * reservation, so we reset ->csum_bytes to the csum_bytes
5170 * before we dropped our lock, and then call the free for the
5171 * number of bytes that were freed while we were trying our
5174 bytes
= csum_bytes
- BTRFS_I(inode
)->csum_bytes
;
5175 BTRFS_I(inode
)->csum_bytes
= csum_bytes
;
5176 to_free
= calc_csum_metadata_size(inode
, bytes
, 0);
5180 * Now we need to see how much we would have freed had we not
5181 * been making this reservation and our ->csum_bytes were not
5182 * artificially inflated.
5184 BTRFS_I(inode
)->csum_bytes
= csum_bytes
- num_bytes
;
5185 bytes
= csum_bytes
- orig_csum_bytes
;
5186 bytes
= calc_csum_metadata_size(inode
, bytes
, 0);
5189 * Now reset ->csum_bytes to what it should be. If bytes is
5190 * more than to_free then we would have free'd more space had we
5191 * not had an artificially high ->csum_bytes, so we need to free
5192 * the remainder. If bytes is the same or less then we don't
5193 * need to do anything, the other free-ers did the correct
5196 BTRFS_I(inode
)->csum_bytes
= orig_csum_bytes
- num_bytes
;
5197 if (bytes
> to_free
)
5198 to_free
= bytes
- to_free
;
5202 spin_unlock(&BTRFS_I(inode
)->lock
);
5204 to_free
+= btrfs_calc_trans_metadata_size(root
, dropped
);
5207 btrfs_block_rsv_release(root
, block_rsv
, to_free
);
5208 trace_btrfs_space_reservation(root
->fs_info
, "delalloc",
5209 btrfs_ino(inode
), to_free
, 0);
5212 mutex_unlock(&BTRFS_I(inode
)->delalloc_mutex
);
5217 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5218 * @inode: the inode to release the reservation for
5219 * @num_bytes: the number of bytes we're releasing
5221 * This will release the metadata reservation for an inode. This can be called
5222 * once we complete IO for a given set of bytes to release their metadata
5225 void btrfs_delalloc_release_metadata(struct inode
*inode
, u64 num_bytes
)
5227 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5231 num_bytes
= ALIGN(num_bytes
, root
->sectorsize
);
5232 spin_lock(&BTRFS_I(inode
)->lock
);
5233 dropped
= drop_outstanding_extent(inode
, num_bytes
);
5236 to_free
= calc_csum_metadata_size(inode
, num_bytes
, 0);
5237 spin_unlock(&BTRFS_I(inode
)->lock
);
5239 to_free
+= btrfs_calc_trans_metadata_size(root
, dropped
);
5241 trace_btrfs_space_reservation(root
->fs_info
, "delalloc",
5242 btrfs_ino(inode
), to_free
, 0);
5243 if (root
->fs_info
->quota_enabled
) {
5244 btrfs_qgroup_free(root
, num_bytes
+
5245 dropped
* root
->nodesize
);
5248 btrfs_block_rsv_release(root
, &root
->fs_info
->delalloc_block_rsv
,
5253 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5254 * @inode: inode we're writing to
5255 * @num_bytes: the number of bytes we want to allocate
5257 * This will do the following things
5259 * o reserve space in the data space info for num_bytes
5260 * o reserve space in the metadata space info based on number of outstanding
5261 * extents and how much csums will be needed
5262 * o add to the inodes ->delalloc_bytes
5263 * o add it to the fs_info's delalloc inodes list.
5265 * This will return 0 for success and -ENOSPC if there is no space left.
5267 int btrfs_delalloc_reserve_space(struct inode
*inode
, u64 num_bytes
)
5271 ret
= btrfs_check_data_free_space(inode
, num_bytes
);
5275 ret
= btrfs_delalloc_reserve_metadata(inode
, num_bytes
);
5277 btrfs_free_reserved_data_space(inode
, num_bytes
);
5285 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5286 * @inode: inode we're releasing space for
5287 * @num_bytes: the number of bytes we want to free up
5289 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5290 * called in the case that we don't need the metadata AND data reservations
5291 * anymore. So if there is an error or we insert an inline extent.
5293 * This function will release the metadata space that was not used and will
5294 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5295 * list if there are no delalloc bytes left.
5297 void btrfs_delalloc_release_space(struct inode
*inode
, u64 num_bytes
)
5299 btrfs_delalloc_release_metadata(inode
, num_bytes
);
5300 btrfs_free_reserved_data_space(inode
, num_bytes
);
5303 static int update_block_group(struct btrfs_trans_handle
*trans
,
5304 struct btrfs_root
*root
, u64 bytenr
,
5305 u64 num_bytes
, int alloc
)
5307 struct btrfs_block_group_cache
*cache
= NULL
;
5308 struct btrfs_fs_info
*info
= root
->fs_info
;
5309 u64 total
= num_bytes
;
5314 /* block accounting for super block */
5315 spin_lock(&info
->delalloc_root_lock
);
5316 old_val
= btrfs_super_bytes_used(info
->super_copy
);
5318 old_val
+= num_bytes
;
5320 old_val
-= num_bytes
;
5321 btrfs_set_super_bytes_used(info
->super_copy
, old_val
);
5322 spin_unlock(&info
->delalloc_root_lock
);
5325 cache
= btrfs_lookup_block_group(info
, bytenr
);
5328 if (cache
->flags
& (BTRFS_BLOCK_GROUP_DUP
|
5329 BTRFS_BLOCK_GROUP_RAID1
|
5330 BTRFS_BLOCK_GROUP_RAID10
))
5335 * If this block group has free space cache written out, we
5336 * need to make sure to load it if we are removing space. This
5337 * is because we need the unpinning stage to actually add the
5338 * space back to the block group, otherwise we will leak space.
5340 if (!alloc
&& cache
->cached
== BTRFS_CACHE_NO
)
5341 cache_block_group(cache
, 1);
5343 spin_lock(&trans
->transaction
->dirty_bgs_lock
);
5344 if (list_empty(&cache
->dirty_list
)) {
5345 list_add_tail(&cache
->dirty_list
,
5346 &trans
->transaction
->dirty_bgs
);
5347 btrfs_get_block_group(cache
);
5349 spin_unlock(&trans
->transaction
->dirty_bgs_lock
);
5351 byte_in_group
= bytenr
- cache
->key
.objectid
;
5352 WARN_ON(byte_in_group
> cache
->key
.offset
);
5354 spin_lock(&cache
->space_info
->lock
);
5355 spin_lock(&cache
->lock
);
5357 if (btrfs_test_opt(root
, SPACE_CACHE
) &&
5358 cache
->disk_cache_state
< BTRFS_DC_CLEAR
)
5359 cache
->disk_cache_state
= BTRFS_DC_CLEAR
;
5361 old_val
= btrfs_block_group_used(&cache
->item
);
5362 num_bytes
= min(total
, cache
->key
.offset
- byte_in_group
);
5364 old_val
+= num_bytes
;
5365 btrfs_set_block_group_used(&cache
->item
, old_val
);
5366 cache
->reserved
-= num_bytes
;
5367 cache
->space_info
->bytes_reserved
-= num_bytes
;
5368 cache
->space_info
->bytes_used
+= num_bytes
;
5369 cache
->space_info
->disk_used
+= num_bytes
* factor
;
5370 spin_unlock(&cache
->lock
);
5371 spin_unlock(&cache
->space_info
->lock
);
5373 old_val
-= num_bytes
;
5374 btrfs_set_block_group_used(&cache
->item
, old_val
);
5375 cache
->pinned
+= num_bytes
;
5376 cache
->space_info
->bytes_pinned
+= num_bytes
;
5377 cache
->space_info
->bytes_used
-= num_bytes
;
5378 cache
->space_info
->disk_used
-= num_bytes
* factor
;
5379 spin_unlock(&cache
->lock
);
5380 spin_unlock(&cache
->space_info
->lock
);
5382 set_extent_dirty(info
->pinned_extents
,
5383 bytenr
, bytenr
+ num_bytes
- 1,
5384 GFP_NOFS
| __GFP_NOFAIL
);
5386 * No longer have used bytes in this block group, queue
5390 spin_lock(&info
->unused_bgs_lock
);
5391 if (list_empty(&cache
->bg_list
)) {
5392 btrfs_get_block_group(cache
);
5393 list_add_tail(&cache
->bg_list
,
5396 spin_unlock(&info
->unused_bgs_lock
);
5399 btrfs_put_block_group(cache
);
5401 bytenr
+= num_bytes
;
5406 static u64
first_logical_byte(struct btrfs_root
*root
, u64 search_start
)
5408 struct btrfs_block_group_cache
*cache
;
5411 spin_lock(&root
->fs_info
->block_group_cache_lock
);
5412 bytenr
= root
->fs_info
->first_logical_byte
;
5413 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
5415 if (bytenr
< (u64
)-1)
5418 cache
= btrfs_lookup_first_block_group(root
->fs_info
, search_start
);
5422 bytenr
= cache
->key
.objectid
;
5423 btrfs_put_block_group(cache
);
5428 static int pin_down_extent(struct btrfs_root
*root
,
5429 struct btrfs_block_group_cache
*cache
,
5430 u64 bytenr
, u64 num_bytes
, int reserved
)
5432 spin_lock(&cache
->space_info
->lock
);
5433 spin_lock(&cache
->lock
);
5434 cache
->pinned
+= num_bytes
;
5435 cache
->space_info
->bytes_pinned
+= num_bytes
;
5437 cache
->reserved
-= num_bytes
;
5438 cache
->space_info
->bytes_reserved
-= num_bytes
;
5440 spin_unlock(&cache
->lock
);
5441 spin_unlock(&cache
->space_info
->lock
);
5443 set_extent_dirty(root
->fs_info
->pinned_extents
, bytenr
,
5444 bytenr
+ num_bytes
- 1, GFP_NOFS
| __GFP_NOFAIL
);
5446 trace_btrfs_reserved_extent_free(root
, bytenr
, num_bytes
);
5451 * this function must be called within transaction
5453 int btrfs_pin_extent(struct btrfs_root
*root
,
5454 u64 bytenr
, u64 num_bytes
, int reserved
)
5456 struct btrfs_block_group_cache
*cache
;
5458 cache
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
5459 BUG_ON(!cache
); /* Logic error */
5461 pin_down_extent(root
, cache
, bytenr
, num_bytes
, reserved
);
5463 btrfs_put_block_group(cache
);
5468 * this function must be called within transaction
5470 int btrfs_pin_extent_for_log_replay(struct btrfs_root
*root
,
5471 u64 bytenr
, u64 num_bytes
)
5473 struct btrfs_block_group_cache
*cache
;
5476 cache
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
5481 * pull in the free space cache (if any) so that our pin
5482 * removes the free space from the cache. We have load_only set
5483 * to one because the slow code to read in the free extents does check
5484 * the pinned extents.
5486 cache_block_group(cache
, 1);
5488 pin_down_extent(root
, cache
, bytenr
, num_bytes
, 0);
5490 /* remove us from the free space cache (if we're there at all) */
5491 ret
= btrfs_remove_free_space(cache
, bytenr
, num_bytes
);
5492 btrfs_put_block_group(cache
);
5496 static int __exclude_logged_extent(struct btrfs_root
*root
, u64 start
, u64 num_bytes
)
5499 struct btrfs_block_group_cache
*block_group
;
5500 struct btrfs_caching_control
*caching_ctl
;
5502 block_group
= btrfs_lookup_block_group(root
->fs_info
, start
);
5506 cache_block_group(block_group
, 0);
5507 caching_ctl
= get_caching_control(block_group
);
5511 BUG_ON(!block_group_cache_done(block_group
));
5512 ret
= btrfs_remove_free_space(block_group
, start
, num_bytes
);
5514 mutex_lock(&caching_ctl
->mutex
);
5516 if (start
>= caching_ctl
->progress
) {
5517 ret
= add_excluded_extent(root
, start
, num_bytes
);
5518 } else if (start
+ num_bytes
<= caching_ctl
->progress
) {
5519 ret
= btrfs_remove_free_space(block_group
,
5522 num_bytes
= caching_ctl
->progress
- start
;
5523 ret
= btrfs_remove_free_space(block_group
,
5528 num_bytes
= (start
+ num_bytes
) -
5529 caching_ctl
->progress
;
5530 start
= caching_ctl
->progress
;
5531 ret
= add_excluded_extent(root
, start
, num_bytes
);
5534 mutex_unlock(&caching_ctl
->mutex
);
5535 put_caching_control(caching_ctl
);
5537 btrfs_put_block_group(block_group
);
5541 int btrfs_exclude_logged_extents(struct btrfs_root
*log
,
5542 struct extent_buffer
*eb
)
5544 struct btrfs_file_extent_item
*item
;
5545 struct btrfs_key key
;
5549 if (!btrfs_fs_incompat(log
->fs_info
, MIXED_GROUPS
))
5552 for (i
= 0; i
< btrfs_header_nritems(eb
); i
++) {
5553 btrfs_item_key_to_cpu(eb
, &key
, i
);
5554 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
5556 item
= btrfs_item_ptr(eb
, i
, struct btrfs_file_extent_item
);
5557 found_type
= btrfs_file_extent_type(eb
, item
);
5558 if (found_type
== BTRFS_FILE_EXTENT_INLINE
)
5560 if (btrfs_file_extent_disk_bytenr(eb
, item
) == 0)
5562 key
.objectid
= btrfs_file_extent_disk_bytenr(eb
, item
);
5563 key
.offset
= btrfs_file_extent_disk_num_bytes(eb
, item
);
5564 __exclude_logged_extent(log
, key
.objectid
, key
.offset
);
5571 * btrfs_update_reserved_bytes - update the block_group and space info counters
5572 * @cache: The cache we are manipulating
5573 * @num_bytes: The number of bytes in question
5574 * @reserve: One of the reservation enums
5575 * @delalloc: The blocks are allocated for the delalloc write
5577 * This is called by the allocator when it reserves space, or by somebody who is
5578 * freeing space that was never actually used on disk. For example if you
5579 * reserve some space for a new leaf in transaction A and before transaction A
5580 * commits you free that leaf, you call this with reserve set to 0 in order to
5581 * clear the reservation.
5583 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5584 * ENOSPC accounting. For data we handle the reservation through clearing the
5585 * delalloc bits in the io_tree. We have to do this since we could end up
5586 * allocating less disk space for the amount of data we have reserved in the
5587 * case of compression.
5589 * If this is a reservation and the block group has become read only we cannot
5590 * make the reservation and return -EAGAIN, otherwise this function always
5593 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache
*cache
,
5594 u64 num_bytes
, int reserve
, int delalloc
)
5596 struct btrfs_space_info
*space_info
= cache
->space_info
;
5599 spin_lock(&space_info
->lock
);
5600 spin_lock(&cache
->lock
);
5601 if (reserve
!= RESERVE_FREE
) {
5605 cache
->reserved
+= num_bytes
;
5606 space_info
->bytes_reserved
+= num_bytes
;
5607 if (reserve
== RESERVE_ALLOC
) {
5608 trace_btrfs_space_reservation(cache
->fs_info
,
5609 "space_info", space_info
->flags
,
5611 space_info
->bytes_may_use
-= num_bytes
;
5615 cache
->delalloc_bytes
+= num_bytes
;
5619 space_info
->bytes_readonly
+= num_bytes
;
5620 cache
->reserved
-= num_bytes
;
5621 space_info
->bytes_reserved
-= num_bytes
;
5624 cache
->delalloc_bytes
-= num_bytes
;
5626 spin_unlock(&cache
->lock
);
5627 spin_unlock(&space_info
->lock
);
5631 void btrfs_prepare_extent_commit(struct btrfs_trans_handle
*trans
,
5632 struct btrfs_root
*root
)
5634 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5635 struct btrfs_caching_control
*next
;
5636 struct btrfs_caching_control
*caching_ctl
;
5637 struct btrfs_block_group_cache
*cache
;
5639 down_write(&fs_info
->commit_root_sem
);
5641 list_for_each_entry_safe(caching_ctl
, next
,
5642 &fs_info
->caching_block_groups
, list
) {
5643 cache
= caching_ctl
->block_group
;
5644 if (block_group_cache_done(cache
)) {
5645 cache
->last_byte_to_unpin
= (u64
)-1;
5646 list_del_init(&caching_ctl
->list
);
5647 put_caching_control(caching_ctl
);
5649 cache
->last_byte_to_unpin
= caching_ctl
->progress
;
5653 if (fs_info
->pinned_extents
== &fs_info
->freed_extents
[0])
5654 fs_info
->pinned_extents
= &fs_info
->freed_extents
[1];
5656 fs_info
->pinned_extents
= &fs_info
->freed_extents
[0];
5658 up_write(&fs_info
->commit_root_sem
);
5660 update_global_block_rsv(fs_info
);
5663 static int unpin_extent_range(struct btrfs_root
*root
, u64 start
, u64 end
,
5664 const bool return_free_space
)
5666 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5667 struct btrfs_block_group_cache
*cache
= NULL
;
5668 struct btrfs_space_info
*space_info
;
5669 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
5673 while (start
<= end
) {
5676 start
>= cache
->key
.objectid
+ cache
->key
.offset
) {
5678 btrfs_put_block_group(cache
);
5679 cache
= btrfs_lookup_block_group(fs_info
, start
);
5680 BUG_ON(!cache
); /* Logic error */
5683 len
= cache
->key
.objectid
+ cache
->key
.offset
- start
;
5684 len
= min(len
, end
+ 1 - start
);
5686 if (start
< cache
->last_byte_to_unpin
) {
5687 len
= min(len
, cache
->last_byte_to_unpin
- start
);
5688 if (return_free_space
)
5689 btrfs_add_free_space(cache
, start
, len
);
5693 space_info
= cache
->space_info
;
5695 spin_lock(&space_info
->lock
);
5696 spin_lock(&cache
->lock
);
5697 cache
->pinned
-= len
;
5698 space_info
->bytes_pinned
-= len
;
5699 percpu_counter_add(&space_info
->total_bytes_pinned
, -len
);
5701 space_info
->bytes_readonly
+= len
;
5704 spin_unlock(&cache
->lock
);
5705 if (!readonly
&& global_rsv
->space_info
== space_info
) {
5706 spin_lock(&global_rsv
->lock
);
5707 if (!global_rsv
->full
) {
5708 len
= min(len
, global_rsv
->size
-
5709 global_rsv
->reserved
);
5710 global_rsv
->reserved
+= len
;
5711 space_info
->bytes_may_use
+= len
;
5712 if (global_rsv
->reserved
>= global_rsv
->size
)
5713 global_rsv
->full
= 1;
5715 spin_unlock(&global_rsv
->lock
);
5717 spin_unlock(&space_info
->lock
);
5721 btrfs_put_block_group(cache
);
5725 int btrfs_finish_extent_commit(struct btrfs_trans_handle
*trans
,
5726 struct btrfs_root
*root
)
5728 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5729 struct extent_io_tree
*unpin
;
5737 if (fs_info
->pinned_extents
== &fs_info
->freed_extents
[0])
5738 unpin
= &fs_info
->freed_extents
[1];
5740 unpin
= &fs_info
->freed_extents
[0];
5743 mutex_lock(&fs_info
->unused_bg_unpin_mutex
);
5744 ret
= find_first_extent_bit(unpin
, 0, &start
, &end
,
5745 EXTENT_DIRTY
, NULL
);
5747 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
5751 if (btrfs_test_opt(root
, DISCARD
))
5752 ret
= btrfs_discard_extent(root
, start
,
5753 end
+ 1 - start
, NULL
);
5755 clear_extent_dirty(unpin
, start
, end
, GFP_NOFS
);
5756 unpin_extent_range(root
, start
, end
, true);
5757 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
5764 static void add_pinned_bytes(struct btrfs_fs_info
*fs_info
, u64 num_bytes
,
5765 u64 owner
, u64 root_objectid
)
5767 struct btrfs_space_info
*space_info
;
5770 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
5771 if (root_objectid
== BTRFS_CHUNK_TREE_OBJECTID
)
5772 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
5774 flags
= BTRFS_BLOCK_GROUP_METADATA
;
5776 flags
= BTRFS_BLOCK_GROUP_DATA
;
5779 space_info
= __find_space_info(fs_info
, flags
);
5780 BUG_ON(!space_info
); /* Logic bug */
5781 percpu_counter_add(&space_info
->total_bytes_pinned
, num_bytes
);
5785 static int __btrfs_free_extent(struct btrfs_trans_handle
*trans
,
5786 struct btrfs_root
*root
,
5787 u64 bytenr
, u64 num_bytes
, u64 parent
,
5788 u64 root_objectid
, u64 owner_objectid
,
5789 u64 owner_offset
, int refs_to_drop
,
5790 struct btrfs_delayed_extent_op
*extent_op
,
5793 struct btrfs_key key
;
5794 struct btrfs_path
*path
;
5795 struct btrfs_fs_info
*info
= root
->fs_info
;
5796 struct btrfs_root
*extent_root
= info
->extent_root
;
5797 struct extent_buffer
*leaf
;
5798 struct btrfs_extent_item
*ei
;
5799 struct btrfs_extent_inline_ref
*iref
;
5802 int extent_slot
= 0;
5803 int found_extent
= 0;
5808 enum btrfs_qgroup_operation_type type
= BTRFS_QGROUP_OPER_SUB_EXCL
;
5809 bool skinny_metadata
= btrfs_fs_incompat(root
->fs_info
,
5812 if (!info
->quota_enabled
|| !is_fstree(root_objectid
))
5815 path
= btrfs_alloc_path();
5820 path
->leave_spinning
= 1;
5822 is_data
= owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
;
5823 BUG_ON(!is_data
&& refs_to_drop
!= 1);
5826 skinny_metadata
= 0;
5828 ret
= lookup_extent_backref(trans
, extent_root
, path
, &iref
,
5829 bytenr
, num_bytes
, parent
,
5830 root_objectid
, owner_objectid
,
5833 extent_slot
= path
->slots
[0];
5834 while (extent_slot
>= 0) {
5835 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
5837 if (key
.objectid
!= bytenr
)
5839 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
5840 key
.offset
== num_bytes
) {
5844 if (key
.type
== BTRFS_METADATA_ITEM_KEY
&&
5845 key
.offset
== owner_objectid
) {
5849 if (path
->slots
[0] - extent_slot
> 5)
5853 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5854 item_size
= btrfs_item_size_nr(path
->nodes
[0], extent_slot
);
5855 if (found_extent
&& item_size
< sizeof(*ei
))
5858 if (!found_extent
) {
5860 ret
= remove_extent_backref(trans
, extent_root
, path
,
5862 is_data
, &last_ref
);
5864 btrfs_abort_transaction(trans
, extent_root
, ret
);
5867 btrfs_release_path(path
);
5868 path
->leave_spinning
= 1;
5870 key
.objectid
= bytenr
;
5871 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
5872 key
.offset
= num_bytes
;
5874 if (!is_data
&& skinny_metadata
) {
5875 key
.type
= BTRFS_METADATA_ITEM_KEY
;
5876 key
.offset
= owner_objectid
;
5879 ret
= btrfs_search_slot(trans
, extent_root
,
5881 if (ret
> 0 && skinny_metadata
&& path
->slots
[0]) {
5883 * Couldn't find our skinny metadata item,
5884 * see if we have ye olde extent item.
5887 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
5889 if (key
.objectid
== bytenr
&&
5890 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
5891 key
.offset
== num_bytes
)
5895 if (ret
> 0 && skinny_metadata
) {
5896 skinny_metadata
= false;
5897 key
.objectid
= bytenr
;
5898 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
5899 key
.offset
= num_bytes
;
5900 btrfs_release_path(path
);
5901 ret
= btrfs_search_slot(trans
, extent_root
,
5906 btrfs_err(info
, "umm, got %d back from search, was looking for %llu",
5909 btrfs_print_leaf(extent_root
,
5913 btrfs_abort_transaction(trans
, extent_root
, ret
);
5916 extent_slot
= path
->slots
[0];
5918 } else if (WARN_ON(ret
== -ENOENT
)) {
5919 btrfs_print_leaf(extent_root
, path
->nodes
[0]);
5921 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
5922 bytenr
, parent
, root_objectid
, owner_objectid
,
5924 btrfs_abort_transaction(trans
, extent_root
, ret
);
5927 btrfs_abort_transaction(trans
, extent_root
, ret
);
5931 leaf
= path
->nodes
[0];
5932 item_size
= btrfs_item_size_nr(leaf
, extent_slot
);
5933 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5934 if (item_size
< sizeof(*ei
)) {
5935 BUG_ON(found_extent
|| extent_slot
!= path
->slots
[0]);
5936 ret
= convert_extent_item_v0(trans
, extent_root
, path
,
5939 btrfs_abort_transaction(trans
, extent_root
, ret
);
5943 btrfs_release_path(path
);
5944 path
->leave_spinning
= 1;
5946 key
.objectid
= bytenr
;
5947 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
5948 key
.offset
= num_bytes
;
5950 ret
= btrfs_search_slot(trans
, extent_root
, &key
, path
,
5953 btrfs_err(info
, "umm, got %d back from search, was looking for %llu",
5955 btrfs_print_leaf(extent_root
, path
->nodes
[0]);
5958 btrfs_abort_transaction(trans
, extent_root
, ret
);
5962 extent_slot
= path
->slots
[0];
5963 leaf
= path
->nodes
[0];
5964 item_size
= btrfs_item_size_nr(leaf
, extent_slot
);
5967 BUG_ON(item_size
< sizeof(*ei
));
5968 ei
= btrfs_item_ptr(leaf
, extent_slot
,
5969 struct btrfs_extent_item
);
5970 if (owner_objectid
< BTRFS_FIRST_FREE_OBJECTID
&&
5971 key
.type
== BTRFS_EXTENT_ITEM_KEY
) {
5972 struct btrfs_tree_block_info
*bi
;
5973 BUG_ON(item_size
< sizeof(*ei
) + sizeof(*bi
));
5974 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
5975 WARN_ON(owner_objectid
!= btrfs_tree_block_level(leaf
, bi
));
5978 refs
= btrfs_extent_refs(leaf
, ei
);
5979 if (refs
< refs_to_drop
) {
5980 btrfs_err(info
, "trying to drop %d refs but we only have %Lu "
5981 "for bytenr %Lu", refs_to_drop
, refs
, bytenr
);
5983 btrfs_abort_transaction(trans
, extent_root
, ret
);
5986 refs
-= refs_to_drop
;
5989 type
= BTRFS_QGROUP_OPER_SUB_SHARED
;
5991 __run_delayed_extent_op(extent_op
, leaf
, ei
);
5993 * In the case of inline back ref, reference count will
5994 * be updated by remove_extent_backref
5997 BUG_ON(!found_extent
);
5999 btrfs_set_extent_refs(leaf
, ei
, refs
);
6000 btrfs_mark_buffer_dirty(leaf
);
6003 ret
= remove_extent_backref(trans
, extent_root
, path
,
6005 is_data
, &last_ref
);
6007 btrfs_abort_transaction(trans
, extent_root
, ret
);
6011 add_pinned_bytes(root
->fs_info
, -num_bytes
, owner_objectid
,
6015 BUG_ON(is_data
&& refs_to_drop
!=
6016 extent_data_ref_count(root
, path
, iref
));
6018 BUG_ON(path
->slots
[0] != extent_slot
);
6020 BUG_ON(path
->slots
[0] != extent_slot
+ 1);
6021 path
->slots
[0] = extent_slot
;
6027 ret
= btrfs_del_items(trans
, extent_root
, path
, path
->slots
[0],
6030 btrfs_abort_transaction(trans
, extent_root
, ret
);
6033 btrfs_release_path(path
);
6036 ret
= btrfs_del_csums(trans
, root
, bytenr
, num_bytes
);
6038 btrfs_abort_transaction(trans
, extent_root
, ret
);
6043 ret
= update_block_group(trans
, root
, bytenr
, num_bytes
, 0);
6045 btrfs_abort_transaction(trans
, extent_root
, ret
);
6049 btrfs_release_path(path
);
6051 /* Deal with the quota accounting */
6052 if (!ret
&& last_ref
&& !no_quota
) {
6055 if (owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
&&
6056 type
== BTRFS_QGROUP_OPER_SUB_SHARED
)
6059 ret
= btrfs_qgroup_record_ref(trans
, info
, root_objectid
,
6060 bytenr
, num_bytes
, type
,
6064 btrfs_free_path(path
);
6069 * when we free an block, it is possible (and likely) that we free the last
6070 * delayed ref for that extent as well. This searches the delayed ref tree for
6071 * a given extent, and if there are no other delayed refs to be processed, it
6072 * removes it from the tree.
6074 static noinline
int check_ref_cleanup(struct btrfs_trans_handle
*trans
,
6075 struct btrfs_root
*root
, u64 bytenr
)
6077 struct btrfs_delayed_ref_head
*head
;
6078 struct btrfs_delayed_ref_root
*delayed_refs
;
6081 delayed_refs
= &trans
->transaction
->delayed_refs
;
6082 spin_lock(&delayed_refs
->lock
);
6083 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
6085 goto out_delayed_unlock
;
6087 spin_lock(&head
->lock
);
6088 if (rb_first(&head
->ref_root
))
6091 if (head
->extent_op
) {
6092 if (!head
->must_insert_reserved
)
6094 btrfs_free_delayed_extent_op(head
->extent_op
);
6095 head
->extent_op
= NULL
;
6099 * waiting for the lock here would deadlock. If someone else has it
6100 * locked they are already in the process of dropping it anyway
6102 if (!mutex_trylock(&head
->mutex
))
6106 * at this point we have a head with no other entries. Go
6107 * ahead and process it.
6109 head
->node
.in_tree
= 0;
6110 rb_erase(&head
->href_node
, &delayed_refs
->href_root
);
6112 atomic_dec(&delayed_refs
->num_entries
);
6115 * we don't take a ref on the node because we're removing it from the
6116 * tree, so we just steal the ref the tree was holding.
6118 delayed_refs
->num_heads
--;
6119 if (head
->processing
== 0)
6120 delayed_refs
->num_heads_ready
--;
6121 head
->processing
= 0;
6122 spin_unlock(&head
->lock
);
6123 spin_unlock(&delayed_refs
->lock
);
6125 BUG_ON(head
->extent_op
);
6126 if (head
->must_insert_reserved
)
6129 mutex_unlock(&head
->mutex
);
6130 btrfs_put_delayed_ref(&head
->node
);
6133 spin_unlock(&head
->lock
);
6136 spin_unlock(&delayed_refs
->lock
);
6140 void btrfs_free_tree_block(struct btrfs_trans_handle
*trans
,
6141 struct btrfs_root
*root
,
6142 struct extent_buffer
*buf
,
6143 u64 parent
, int last_ref
)
6148 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
6149 ret
= btrfs_add_delayed_tree_ref(root
->fs_info
, trans
,
6150 buf
->start
, buf
->len
,
6151 parent
, root
->root_key
.objectid
,
6152 btrfs_header_level(buf
),
6153 BTRFS_DROP_DELAYED_REF
, NULL
, 0);
6154 BUG_ON(ret
); /* -ENOMEM */
6160 if (btrfs_header_generation(buf
) == trans
->transid
) {
6161 struct btrfs_block_group_cache
*cache
;
6163 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
6164 ret
= check_ref_cleanup(trans
, root
, buf
->start
);
6169 cache
= btrfs_lookup_block_group(root
->fs_info
, buf
->start
);
6171 if (btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_WRITTEN
)) {
6172 pin_down_extent(root
, cache
, buf
->start
, buf
->len
, 1);
6173 btrfs_put_block_group(cache
);
6177 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
));
6179 btrfs_add_free_space(cache
, buf
->start
, buf
->len
);
6180 btrfs_update_reserved_bytes(cache
, buf
->len
, RESERVE_FREE
, 0);
6181 btrfs_put_block_group(cache
);
6182 trace_btrfs_reserved_extent_free(root
, buf
->start
, buf
->len
);
6187 add_pinned_bytes(root
->fs_info
, buf
->len
,
6188 btrfs_header_level(buf
),
6189 root
->root_key
.objectid
);
6192 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6195 clear_bit(EXTENT_BUFFER_CORRUPT
, &buf
->bflags
);
6198 /* Can return -ENOMEM */
6199 int btrfs_free_extent(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
6200 u64 bytenr
, u64 num_bytes
, u64 parent
, u64 root_objectid
,
6201 u64 owner
, u64 offset
, int no_quota
)
6204 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
6206 if (btrfs_test_is_dummy_root(root
))
6209 add_pinned_bytes(root
->fs_info
, num_bytes
, owner
, root_objectid
);
6212 * tree log blocks never actually go into the extent allocation
6213 * tree, just update pinning info and exit early.
6215 if (root_objectid
== BTRFS_TREE_LOG_OBJECTID
) {
6216 WARN_ON(owner
>= BTRFS_FIRST_FREE_OBJECTID
);
6217 /* unlocks the pinned mutex */
6218 btrfs_pin_extent(root
, bytenr
, num_bytes
, 1);
6220 } else if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
6221 ret
= btrfs_add_delayed_tree_ref(fs_info
, trans
, bytenr
,
6223 parent
, root_objectid
, (int)owner
,
6224 BTRFS_DROP_DELAYED_REF
, NULL
, no_quota
);
6226 ret
= btrfs_add_delayed_data_ref(fs_info
, trans
, bytenr
,
6228 parent
, root_objectid
, owner
,
6229 offset
, BTRFS_DROP_DELAYED_REF
,
6236 * when we wait for progress in the block group caching, its because
6237 * our allocation attempt failed at least once. So, we must sleep
6238 * and let some progress happen before we try again.
6240 * This function will sleep at least once waiting for new free space to
6241 * show up, and then it will check the block group free space numbers
6242 * for our min num_bytes. Another option is to have it go ahead
6243 * and look in the rbtree for a free extent of a given size, but this
6246 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6247 * any of the information in this block group.
6249 static noinline
void
6250 wait_block_group_cache_progress(struct btrfs_block_group_cache
*cache
,
6253 struct btrfs_caching_control
*caching_ctl
;
6255 caching_ctl
= get_caching_control(cache
);
6259 wait_event(caching_ctl
->wait
, block_group_cache_done(cache
) ||
6260 (cache
->free_space_ctl
->free_space
>= num_bytes
));
6262 put_caching_control(caching_ctl
);
6266 wait_block_group_cache_done(struct btrfs_block_group_cache
*cache
)
6268 struct btrfs_caching_control
*caching_ctl
;
6271 caching_ctl
= get_caching_control(cache
);
6273 return (cache
->cached
== BTRFS_CACHE_ERROR
) ? -EIO
: 0;
6275 wait_event(caching_ctl
->wait
, block_group_cache_done(cache
));
6276 if (cache
->cached
== BTRFS_CACHE_ERROR
)
6278 put_caching_control(caching_ctl
);
6282 int __get_raid_index(u64 flags
)
6284 if (flags
& BTRFS_BLOCK_GROUP_RAID10
)
6285 return BTRFS_RAID_RAID10
;
6286 else if (flags
& BTRFS_BLOCK_GROUP_RAID1
)
6287 return BTRFS_RAID_RAID1
;
6288 else if (flags
& BTRFS_BLOCK_GROUP_DUP
)
6289 return BTRFS_RAID_DUP
;
6290 else if (flags
& BTRFS_BLOCK_GROUP_RAID0
)
6291 return BTRFS_RAID_RAID0
;
6292 else if (flags
& BTRFS_BLOCK_GROUP_RAID5
)
6293 return BTRFS_RAID_RAID5
;
6294 else if (flags
& BTRFS_BLOCK_GROUP_RAID6
)
6295 return BTRFS_RAID_RAID6
;
6297 return BTRFS_RAID_SINGLE
; /* BTRFS_BLOCK_GROUP_SINGLE */
6300 int get_block_group_index(struct btrfs_block_group_cache
*cache
)
6302 return __get_raid_index(cache
->flags
);
6305 static const char *btrfs_raid_type_names
[BTRFS_NR_RAID_TYPES
] = {
6306 [BTRFS_RAID_RAID10
] = "raid10",
6307 [BTRFS_RAID_RAID1
] = "raid1",
6308 [BTRFS_RAID_DUP
] = "dup",
6309 [BTRFS_RAID_RAID0
] = "raid0",
6310 [BTRFS_RAID_SINGLE
] = "single",
6311 [BTRFS_RAID_RAID5
] = "raid5",
6312 [BTRFS_RAID_RAID6
] = "raid6",
6315 static const char *get_raid_name(enum btrfs_raid_types type
)
6317 if (type
>= BTRFS_NR_RAID_TYPES
)
6320 return btrfs_raid_type_names
[type
];
6323 enum btrfs_loop_type
{
6324 LOOP_CACHING_NOWAIT
= 0,
6325 LOOP_CACHING_WAIT
= 1,
6326 LOOP_ALLOC_CHUNK
= 2,
6327 LOOP_NO_EMPTY_SIZE
= 3,
6331 btrfs_lock_block_group(struct btrfs_block_group_cache
*cache
,
6335 down_read(&cache
->data_rwsem
);
6339 btrfs_grab_block_group(struct btrfs_block_group_cache
*cache
,
6342 btrfs_get_block_group(cache
);
6344 down_read(&cache
->data_rwsem
);
6347 static struct btrfs_block_group_cache
*
6348 btrfs_lock_cluster(struct btrfs_block_group_cache
*block_group
,
6349 struct btrfs_free_cluster
*cluster
,
6352 struct btrfs_block_group_cache
*used_bg
;
6353 bool locked
= false;
6355 spin_lock(&cluster
->refill_lock
);
6357 if (used_bg
== cluster
->block_group
)
6360 up_read(&used_bg
->data_rwsem
);
6361 btrfs_put_block_group(used_bg
);
6364 used_bg
= cluster
->block_group
;
6368 if (used_bg
== block_group
)
6371 btrfs_get_block_group(used_bg
);
6376 if (down_read_trylock(&used_bg
->data_rwsem
))
6379 spin_unlock(&cluster
->refill_lock
);
6380 down_read(&used_bg
->data_rwsem
);
6386 btrfs_release_block_group(struct btrfs_block_group_cache
*cache
,
6390 up_read(&cache
->data_rwsem
);
6391 btrfs_put_block_group(cache
);
6395 * walks the btree of allocated extents and find a hole of a given size.
6396 * The key ins is changed to record the hole:
6397 * ins->objectid == start position
6398 * ins->flags = BTRFS_EXTENT_ITEM_KEY
6399 * ins->offset == the size of the hole.
6400 * Any available blocks before search_start are skipped.
6402 * If there is no suitable free space, we will record the max size of
6403 * the free space extent currently.
6405 static noinline
int find_free_extent(struct btrfs_root
*orig_root
,
6406 u64 num_bytes
, u64 empty_size
,
6407 u64 hint_byte
, struct btrfs_key
*ins
,
6408 u64 flags
, int delalloc
)
6411 struct btrfs_root
*root
= orig_root
->fs_info
->extent_root
;
6412 struct btrfs_free_cluster
*last_ptr
= NULL
;
6413 struct btrfs_block_group_cache
*block_group
= NULL
;
6414 u64 search_start
= 0;
6415 u64 max_extent_size
= 0;
6416 int empty_cluster
= 2 * 1024 * 1024;
6417 struct btrfs_space_info
*space_info
;
6419 int index
= __get_raid_index(flags
);
6420 int alloc_type
= (flags
& BTRFS_BLOCK_GROUP_DATA
) ?
6421 RESERVE_ALLOC_NO_ACCOUNT
: RESERVE_ALLOC
;
6422 bool failed_cluster_refill
= false;
6423 bool failed_alloc
= false;
6424 bool use_cluster
= true;
6425 bool have_caching_bg
= false;
6427 WARN_ON(num_bytes
< root
->sectorsize
);
6428 ins
->type
= BTRFS_EXTENT_ITEM_KEY
;
6432 trace_find_free_extent(orig_root
, num_bytes
, empty_size
, flags
);
6434 space_info
= __find_space_info(root
->fs_info
, flags
);
6436 btrfs_err(root
->fs_info
, "No space info for %llu", flags
);
6441 * If the space info is for both data and metadata it means we have a
6442 * small filesystem and we can't use the clustering stuff.
6444 if (btrfs_mixed_space_info(space_info
))
6445 use_cluster
= false;
6447 if (flags
& BTRFS_BLOCK_GROUP_METADATA
&& use_cluster
) {
6448 last_ptr
= &root
->fs_info
->meta_alloc_cluster
;
6449 if (!btrfs_test_opt(root
, SSD
))
6450 empty_cluster
= 64 * 1024;
6453 if ((flags
& BTRFS_BLOCK_GROUP_DATA
) && use_cluster
&&
6454 btrfs_test_opt(root
, SSD
)) {
6455 last_ptr
= &root
->fs_info
->data_alloc_cluster
;
6459 spin_lock(&last_ptr
->lock
);
6460 if (last_ptr
->block_group
)
6461 hint_byte
= last_ptr
->window_start
;
6462 spin_unlock(&last_ptr
->lock
);
6465 search_start
= max(search_start
, first_logical_byte(root
, 0));
6466 search_start
= max(search_start
, hint_byte
);
6471 if (search_start
== hint_byte
) {
6472 block_group
= btrfs_lookup_block_group(root
->fs_info
,
6475 * we don't want to use the block group if it doesn't match our
6476 * allocation bits, or if its not cached.
6478 * However if we are re-searching with an ideal block group
6479 * picked out then we don't care that the block group is cached.
6481 if (block_group
&& block_group_bits(block_group
, flags
) &&
6482 block_group
->cached
!= BTRFS_CACHE_NO
) {
6483 down_read(&space_info
->groups_sem
);
6484 if (list_empty(&block_group
->list
) ||
6487 * someone is removing this block group,
6488 * we can't jump into the have_block_group
6489 * target because our list pointers are not
6492 btrfs_put_block_group(block_group
);
6493 up_read(&space_info
->groups_sem
);
6495 index
= get_block_group_index(block_group
);
6496 btrfs_lock_block_group(block_group
, delalloc
);
6497 goto have_block_group
;
6499 } else if (block_group
) {
6500 btrfs_put_block_group(block_group
);
6504 have_caching_bg
= false;
6505 down_read(&space_info
->groups_sem
);
6506 list_for_each_entry(block_group
, &space_info
->block_groups
[index
],
6511 btrfs_grab_block_group(block_group
, delalloc
);
6512 search_start
= block_group
->key
.objectid
;
6515 * this can happen if we end up cycling through all the
6516 * raid types, but we want to make sure we only allocate
6517 * for the proper type.
6519 if (!block_group_bits(block_group
, flags
)) {
6520 u64 extra
= BTRFS_BLOCK_GROUP_DUP
|
6521 BTRFS_BLOCK_GROUP_RAID1
|
6522 BTRFS_BLOCK_GROUP_RAID5
|
6523 BTRFS_BLOCK_GROUP_RAID6
|
6524 BTRFS_BLOCK_GROUP_RAID10
;
6527 * if they asked for extra copies and this block group
6528 * doesn't provide them, bail. This does allow us to
6529 * fill raid0 from raid1.
6531 if ((flags
& extra
) && !(block_group
->flags
& extra
))
6536 cached
= block_group_cache_done(block_group
);
6537 if (unlikely(!cached
)) {
6538 ret
= cache_block_group(block_group
, 0);
6543 if (unlikely(block_group
->cached
== BTRFS_CACHE_ERROR
))
6545 if (unlikely(block_group
->ro
))
6549 * Ok we want to try and use the cluster allocator, so
6553 struct btrfs_block_group_cache
*used_block_group
;
6554 unsigned long aligned_cluster
;
6556 * the refill lock keeps out other
6557 * people trying to start a new cluster
6559 used_block_group
= btrfs_lock_cluster(block_group
,
6562 if (!used_block_group
)
6563 goto refill_cluster
;
6565 if (used_block_group
!= block_group
&&
6566 (used_block_group
->ro
||
6567 !block_group_bits(used_block_group
, flags
)))
6568 goto release_cluster
;
6570 offset
= btrfs_alloc_from_cluster(used_block_group
,
6573 used_block_group
->key
.objectid
,
6576 /* we have a block, we're done */
6577 spin_unlock(&last_ptr
->refill_lock
);
6578 trace_btrfs_reserve_extent_cluster(root
,
6580 search_start
, num_bytes
);
6581 if (used_block_group
!= block_group
) {
6582 btrfs_release_block_group(block_group
,
6584 block_group
= used_block_group
;
6589 WARN_ON(last_ptr
->block_group
!= used_block_group
);
6591 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
6592 * set up a new clusters, so lets just skip it
6593 * and let the allocator find whatever block
6594 * it can find. If we reach this point, we
6595 * will have tried the cluster allocator
6596 * plenty of times and not have found
6597 * anything, so we are likely way too
6598 * fragmented for the clustering stuff to find
6601 * However, if the cluster is taken from the
6602 * current block group, release the cluster
6603 * first, so that we stand a better chance of
6604 * succeeding in the unclustered
6606 if (loop
>= LOOP_NO_EMPTY_SIZE
&&
6607 used_block_group
!= block_group
) {
6608 spin_unlock(&last_ptr
->refill_lock
);
6609 btrfs_release_block_group(used_block_group
,
6611 goto unclustered_alloc
;
6615 * this cluster didn't work out, free it and
6618 btrfs_return_cluster_to_free_space(NULL
, last_ptr
);
6620 if (used_block_group
!= block_group
)
6621 btrfs_release_block_group(used_block_group
,
6624 if (loop
>= LOOP_NO_EMPTY_SIZE
) {
6625 spin_unlock(&last_ptr
->refill_lock
);
6626 goto unclustered_alloc
;
6629 aligned_cluster
= max_t(unsigned long,
6630 empty_cluster
+ empty_size
,
6631 block_group
->full_stripe_len
);
6633 /* allocate a cluster in this block group */
6634 ret
= btrfs_find_space_cluster(root
, block_group
,
6635 last_ptr
, search_start
,
6640 * now pull our allocation out of this
6643 offset
= btrfs_alloc_from_cluster(block_group
,
6649 /* we found one, proceed */
6650 spin_unlock(&last_ptr
->refill_lock
);
6651 trace_btrfs_reserve_extent_cluster(root
,
6652 block_group
, search_start
,
6656 } else if (!cached
&& loop
> LOOP_CACHING_NOWAIT
6657 && !failed_cluster_refill
) {
6658 spin_unlock(&last_ptr
->refill_lock
);
6660 failed_cluster_refill
= true;
6661 wait_block_group_cache_progress(block_group
,
6662 num_bytes
+ empty_cluster
+ empty_size
);
6663 goto have_block_group
;
6667 * at this point we either didn't find a cluster
6668 * or we weren't able to allocate a block from our
6669 * cluster. Free the cluster we've been trying
6670 * to use, and go to the next block group
6672 btrfs_return_cluster_to_free_space(NULL
, last_ptr
);
6673 spin_unlock(&last_ptr
->refill_lock
);
6678 spin_lock(&block_group
->free_space_ctl
->tree_lock
);
6680 block_group
->free_space_ctl
->free_space
<
6681 num_bytes
+ empty_cluster
+ empty_size
) {
6682 if (block_group
->free_space_ctl
->free_space
>
6685 block_group
->free_space_ctl
->free_space
;
6686 spin_unlock(&block_group
->free_space_ctl
->tree_lock
);
6689 spin_unlock(&block_group
->free_space_ctl
->tree_lock
);
6691 offset
= btrfs_find_space_for_alloc(block_group
, search_start
,
6692 num_bytes
, empty_size
,
6695 * If we didn't find a chunk, and we haven't failed on this
6696 * block group before, and this block group is in the middle of
6697 * caching and we are ok with waiting, then go ahead and wait
6698 * for progress to be made, and set failed_alloc to true.
6700 * If failed_alloc is true then we've already waited on this
6701 * block group once and should move on to the next block group.
6703 if (!offset
&& !failed_alloc
&& !cached
&&
6704 loop
> LOOP_CACHING_NOWAIT
) {
6705 wait_block_group_cache_progress(block_group
,
6706 num_bytes
+ empty_size
);
6707 failed_alloc
= true;
6708 goto have_block_group
;
6709 } else if (!offset
) {
6711 have_caching_bg
= true;
6715 search_start
= ALIGN(offset
, root
->stripesize
);
6717 /* move on to the next group */
6718 if (search_start
+ num_bytes
>
6719 block_group
->key
.objectid
+ block_group
->key
.offset
) {
6720 btrfs_add_free_space(block_group
, offset
, num_bytes
);
6724 if (offset
< search_start
)
6725 btrfs_add_free_space(block_group
, offset
,
6726 search_start
- offset
);
6727 BUG_ON(offset
> search_start
);
6729 ret
= btrfs_update_reserved_bytes(block_group
, num_bytes
,
6730 alloc_type
, delalloc
);
6731 if (ret
== -EAGAIN
) {
6732 btrfs_add_free_space(block_group
, offset
, num_bytes
);
6736 /* we are all good, lets return */
6737 ins
->objectid
= search_start
;
6738 ins
->offset
= num_bytes
;
6740 trace_btrfs_reserve_extent(orig_root
, block_group
,
6741 search_start
, num_bytes
);
6742 btrfs_release_block_group(block_group
, delalloc
);
6745 failed_cluster_refill
= false;
6746 failed_alloc
= false;
6747 BUG_ON(index
!= get_block_group_index(block_group
));
6748 btrfs_release_block_group(block_group
, delalloc
);
6750 up_read(&space_info
->groups_sem
);
6752 if (!ins
->objectid
&& loop
>= LOOP_CACHING_WAIT
&& have_caching_bg
)
6755 if (!ins
->objectid
&& ++index
< BTRFS_NR_RAID_TYPES
)
6759 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
6760 * caching kthreads as we move along
6761 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
6762 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
6763 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
6766 if (!ins
->objectid
&& loop
< LOOP_NO_EMPTY_SIZE
) {
6769 if (loop
== LOOP_ALLOC_CHUNK
) {
6770 struct btrfs_trans_handle
*trans
;
6773 trans
= current
->journal_info
;
6777 trans
= btrfs_join_transaction(root
);
6779 if (IS_ERR(trans
)) {
6780 ret
= PTR_ERR(trans
);
6784 ret
= do_chunk_alloc(trans
, root
, flags
,
6787 * Do not bail out on ENOSPC since we
6788 * can do more things.
6790 if (ret
< 0 && ret
!= -ENOSPC
)
6791 btrfs_abort_transaction(trans
,
6796 btrfs_end_transaction(trans
, root
);
6801 if (loop
== LOOP_NO_EMPTY_SIZE
) {
6807 } else if (!ins
->objectid
) {
6809 } else if (ins
->objectid
) {
6814 ins
->offset
= max_extent_size
;
6818 static void dump_space_info(struct btrfs_space_info
*info
, u64 bytes
,
6819 int dump_block_groups
)
6821 struct btrfs_block_group_cache
*cache
;
6824 spin_lock(&info
->lock
);
6825 printk(KERN_INFO
"BTRFS: space_info %llu has %llu free, is %sfull\n",
6827 info
->total_bytes
- info
->bytes_used
- info
->bytes_pinned
-
6828 info
->bytes_reserved
- info
->bytes_readonly
,
6829 (info
->full
) ? "" : "not ");
6830 printk(KERN_INFO
"BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
6831 "reserved=%llu, may_use=%llu, readonly=%llu\n",
6832 info
->total_bytes
, info
->bytes_used
, info
->bytes_pinned
,
6833 info
->bytes_reserved
, info
->bytes_may_use
,
6834 info
->bytes_readonly
);
6835 spin_unlock(&info
->lock
);
6837 if (!dump_block_groups
)
6840 down_read(&info
->groups_sem
);
6842 list_for_each_entry(cache
, &info
->block_groups
[index
], list
) {
6843 spin_lock(&cache
->lock
);
6844 printk(KERN_INFO
"BTRFS: "
6845 "block group %llu has %llu bytes, "
6846 "%llu used %llu pinned %llu reserved %s\n",
6847 cache
->key
.objectid
, cache
->key
.offset
,
6848 btrfs_block_group_used(&cache
->item
), cache
->pinned
,
6849 cache
->reserved
, cache
->ro
? "[readonly]" : "");
6850 btrfs_dump_free_space(cache
, bytes
);
6851 spin_unlock(&cache
->lock
);
6853 if (++index
< BTRFS_NR_RAID_TYPES
)
6855 up_read(&info
->groups_sem
);
6858 int btrfs_reserve_extent(struct btrfs_root
*root
,
6859 u64 num_bytes
, u64 min_alloc_size
,
6860 u64 empty_size
, u64 hint_byte
,
6861 struct btrfs_key
*ins
, int is_data
, int delalloc
)
6863 bool final_tried
= false;
6867 flags
= btrfs_get_alloc_profile(root
, is_data
);
6869 WARN_ON(num_bytes
< root
->sectorsize
);
6870 ret
= find_free_extent(root
, num_bytes
, empty_size
, hint_byte
, ins
,
6873 if (ret
== -ENOSPC
) {
6874 if (!final_tried
&& ins
->offset
) {
6875 num_bytes
= min(num_bytes
>> 1, ins
->offset
);
6876 num_bytes
= round_down(num_bytes
, root
->sectorsize
);
6877 num_bytes
= max(num_bytes
, min_alloc_size
);
6878 if (num_bytes
== min_alloc_size
)
6881 } else if (btrfs_test_opt(root
, ENOSPC_DEBUG
)) {
6882 struct btrfs_space_info
*sinfo
;
6884 sinfo
= __find_space_info(root
->fs_info
, flags
);
6885 btrfs_err(root
->fs_info
, "allocation failed flags %llu, wanted %llu",
6888 dump_space_info(sinfo
, num_bytes
, 1);
6895 static int __btrfs_free_reserved_extent(struct btrfs_root
*root
,
6897 int pin
, int delalloc
)
6899 struct btrfs_block_group_cache
*cache
;
6902 cache
= btrfs_lookup_block_group(root
->fs_info
, start
);
6904 btrfs_err(root
->fs_info
, "Unable to find block group for %llu",
6909 if (btrfs_test_opt(root
, DISCARD
))
6910 ret
= btrfs_discard_extent(root
, start
, len
, NULL
);
6913 pin_down_extent(root
, cache
, start
, len
, 1);
6915 btrfs_add_free_space(cache
, start
, len
);
6916 btrfs_update_reserved_bytes(cache
, len
, RESERVE_FREE
, delalloc
);
6918 btrfs_put_block_group(cache
);
6920 trace_btrfs_reserved_extent_free(root
, start
, len
);
6925 int btrfs_free_reserved_extent(struct btrfs_root
*root
,
6926 u64 start
, u64 len
, int delalloc
)
6928 return __btrfs_free_reserved_extent(root
, start
, len
, 0, delalloc
);
6931 int btrfs_free_and_pin_reserved_extent(struct btrfs_root
*root
,
6934 return __btrfs_free_reserved_extent(root
, start
, len
, 1, 0);
6937 static int alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
6938 struct btrfs_root
*root
,
6939 u64 parent
, u64 root_objectid
,
6940 u64 flags
, u64 owner
, u64 offset
,
6941 struct btrfs_key
*ins
, int ref_mod
)
6944 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
6945 struct btrfs_extent_item
*extent_item
;
6946 struct btrfs_extent_inline_ref
*iref
;
6947 struct btrfs_path
*path
;
6948 struct extent_buffer
*leaf
;
6953 type
= BTRFS_SHARED_DATA_REF_KEY
;
6955 type
= BTRFS_EXTENT_DATA_REF_KEY
;
6957 size
= sizeof(*extent_item
) + btrfs_extent_inline_ref_size(type
);
6959 path
= btrfs_alloc_path();
6963 path
->leave_spinning
= 1;
6964 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
, path
,
6967 btrfs_free_path(path
);
6971 leaf
= path
->nodes
[0];
6972 extent_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
6973 struct btrfs_extent_item
);
6974 btrfs_set_extent_refs(leaf
, extent_item
, ref_mod
);
6975 btrfs_set_extent_generation(leaf
, extent_item
, trans
->transid
);
6976 btrfs_set_extent_flags(leaf
, extent_item
,
6977 flags
| BTRFS_EXTENT_FLAG_DATA
);
6979 iref
= (struct btrfs_extent_inline_ref
*)(extent_item
+ 1);
6980 btrfs_set_extent_inline_ref_type(leaf
, iref
, type
);
6982 struct btrfs_shared_data_ref
*ref
;
6983 ref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
6984 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
6985 btrfs_set_shared_data_ref_count(leaf
, ref
, ref_mod
);
6987 struct btrfs_extent_data_ref
*ref
;
6988 ref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
6989 btrfs_set_extent_data_ref_root(leaf
, ref
, root_objectid
);
6990 btrfs_set_extent_data_ref_objectid(leaf
, ref
, owner
);
6991 btrfs_set_extent_data_ref_offset(leaf
, ref
, offset
);
6992 btrfs_set_extent_data_ref_count(leaf
, ref
, ref_mod
);
6995 btrfs_mark_buffer_dirty(path
->nodes
[0]);
6996 btrfs_free_path(path
);
6998 /* Always set parent to 0 here since its exclusive anyway. */
6999 ret
= btrfs_qgroup_record_ref(trans
, fs_info
, root_objectid
,
7000 ins
->objectid
, ins
->offset
,
7001 BTRFS_QGROUP_OPER_ADD_EXCL
, 0);
7005 ret
= update_block_group(trans
, root
, ins
->objectid
, ins
->offset
, 1);
7006 if (ret
) { /* -ENOENT, logic error */
7007 btrfs_err(fs_info
, "update block group failed for %llu %llu",
7008 ins
->objectid
, ins
->offset
);
7011 trace_btrfs_reserved_extent_alloc(root
, ins
->objectid
, ins
->offset
);
7015 static int alloc_reserved_tree_block(struct btrfs_trans_handle
*trans
,
7016 struct btrfs_root
*root
,
7017 u64 parent
, u64 root_objectid
,
7018 u64 flags
, struct btrfs_disk_key
*key
,
7019 int level
, struct btrfs_key
*ins
,
7023 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
7024 struct btrfs_extent_item
*extent_item
;
7025 struct btrfs_tree_block_info
*block_info
;
7026 struct btrfs_extent_inline_ref
*iref
;
7027 struct btrfs_path
*path
;
7028 struct extent_buffer
*leaf
;
7029 u32 size
= sizeof(*extent_item
) + sizeof(*iref
);
7030 u64 num_bytes
= ins
->offset
;
7031 bool skinny_metadata
= btrfs_fs_incompat(root
->fs_info
,
7034 if (!skinny_metadata
)
7035 size
+= sizeof(*block_info
);
7037 path
= btrfs_alloc_path();
7039 btrfs_free_and_pin_reserved_extent(root
, ins
->objectid
,
7044 path
->leave_spinning
= 1;
7045 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
, path
,
7048 btrfs_free_and_pin_reserved_extent(root
, ins
->objectid
,
7050 btrfs_free_path(path
);
7054 leaf
= path
->nodes
[0];
7055 extent_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
7056 struct btrfs_extent_item
);
7057 btrfs_set_extent_refs(leaf
, extent_item
, 1);
7058 btrfs_set_extent_generation(leaf
, extent_item
, trans
->transid
);
7059 btrfs_set_extent_flags(leaf
, extent_item
,
7060 flags
| BTRFS_EXTENT_FLAG_TREE_BLOCK
);
7062 if (skinny_metadata
) {
7063 iref
= (struct btrfs_extent_inline_ref
*)(extent_item
+ 1);
7064 num_bytes
= root
->nodesize
;
7066 block_info
= (struct btrfs_tree_block_info
*)(extent_item
+ 1);
7067 btrfs_set_tree_block_key(leaf
, block_info
, key
);
7068 btrfs_set_tree_block_level(leaf
, block_info
, level
);
7069 iref
= (struct btrfs_extent_inline_ref
*)(block_info
+ 1);
7073 BUG_ON(!(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
));
7074 btrfs_set_extent_inline_ref_type(leaf
, iref
,
7075 BTRFS_SHARED_BLOCK_REF_KEY
);
7076 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
7078 btrfs_set_extent_inline_ref_type(leaf
, iref
,
7079 BTRFS_TREE_BLOCK_REF_KEY
);
7080 btrfs_set_extent_inline_ref_offset(leaf
, iref
, root_objectid
);
7083 btrfs_mark_buffer_dirty(leaf
);
7084 btrfs_free_path(path
);
7087 ret
= btrfs_qgroup_record_ref(trans
, fs_info
, root_objectid
,
7088 ins
->objectid
, num_bytes
,
7089 BTRFS_QGROUP_OPER_ADD_EXCL
, 0);
7094 ret
= update_block_group(trans
, root
, ins
->objectid
, root
->nodesize
,
7096 if (ret
) { /* -ENOENT, logic error */
7097 btrfs_err(fs_info
, "update block group failed for %llu %llu",
7098 ins
->objectid
, ins
->offset
);
7102 trace_btrfs_reserved_extent_alloc(root
, ins
->objectid
, root
->nodesize
);
7106 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
7107 struct btrfs_root
*root
,
7108 u64 root_objectid
, u64 owner
,
7109 u64 offset
, struct btrfs_key
*ins
)
7113 BUG_ON(root_objectid
== BTRFS_TREE_LOG_OBJECTID
);
7115 ret
= btrfs_add_delayed_data_ref(root
->fs_info
, trans
, ins
->objectid
,
7117 root_objectid
, owner
, offset
,
7118 BTRFS_ADD_DELAYED_EXTENT
, NULL
, 0);
7123 * this is used by the tree logging recovery code. It records that
7124 * an extent has been allocated and makes sure to clear the free
7125 * space cache bits as well
7127 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle
*trans
,
7128 struct btrfs_root
*root
,
7129 u64 root_objectid
, u64 owner
, u64 offset
,
7130 struct btrfs_key
*ins
)
7133 struct btrfs_block_group_cache
*block_group
;
7136 * Mixed block groups will exclude before processing the log so we only
7137 * need to do the exlude dance if this fs isn't mixed.
7139 if (!btrfs_fs_incompat(root
->fs_info
, MIXED_GROUPS
)) {
7140 ret
= __exclude_logged_extent(root
, ins
->objectid
, ins
->offset
);
7145 block_group
= btrfs_lookup_block_group(root
->fs_info
, ins
->objectid
);
7149 ret
= btrfs_update_reserved_bytes(block_group
, ins
->offset
,
7150 RESERVE_ALLOC_NO_ACCOUNT
, 0);
7151 BUG_ON(ret
); /* logic error */
7152 ret
= alloc_reserved_file_extent(trans
, root
, 0, root_objectid
,
7153 0, owner
, offset
, ins
, 1);
7154 btrfs_put_block_group(block_group
);
7158 static struct extent_buffer
*
7159 btrfs_init_new_buffer(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
7160 u64 bytenr
, int level
)
7162 struct extent_buffer
*buf
;
7164 buf
= btrfs_find_create_tree_block(root
, bytenr
);
7166 return ERR_PTR(-ENOMEM
);
7167 btrfs_set_header_generation(buf
, trans
->transid
);
7168 btrfs_set_buffer_lockdep_class(root
->root_key
.objectid
, buf
, level
);
7169 btrfs_tree_lock(buf
);
7170 clean_tree_block(trans
, root
, buf
);
7171 clear_bit(EXTENT_BUFFER_STALE
, &buf
->bflags
);
7173 btrfs_set_lock_blocking(buf
);
7174 btrfs_set_buffer_uptodate(buf
);
7176 if (root
->root_key
.objectid
== BTRFS_TREE_LOG_OBJECTID
) {
7177 buf
->log_index
= root
->log_transid
% 2;
7179 * we allow two log transactions at a time, use different
7180 * EXENT bit to differentiate dirty pages.
7182 if (buf
->log_index
== 0)
7183 set_extent_dirty(&root
->dirty_log_pages
, buf
->start
,
7184 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
7186 set_extent_new(&root
->dirty_log_pages
, buf
->start
,
7187 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
7189 buf
->log_index
= -1;
7190 set_extent_dirty(&trans
->transaction
->dirty_pages
, buf
->start
,
7191 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
7193 trans
->blocks_used
++;
7194 /* this returns a buffer locked for blocking */
7198 static struct btrfs_block_rsv
*
7199 use_block_rsv(struct btrfs_trans_handle
*trans
,
7200 struct btrfs_root
*root
, u32 blocksize
)
7202 struct btrfs_block_rsv
*block_rsv
;
7203 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
7205 bool global_updated
= false;
7207 block_rsv
= get_block_rsv(trans
, root
);
7209 if (unlikely(block_rsv
->size
== 0))
7212 ret
= block_rsv_use_bytes(block_rsv
, blocksize
);
7216 if (block_rsv
->failfast
)
7217 return ERR_PTR(ret
);
7219 if (block_rsv
->type
== BTRFS_BLOCK_RSV_GLOBAL
&& !global_updated
) {
7220 global_updated
= true;
7221 update_global_block_rsv(root
->fs_info
);
7225 if (btrfs_test_opt(root
, ENOSPC_DEBUG
)) {
7226 static DEFINE_RATELIMIT_STATE(_rs
,
7227 DEFAULT_RATELIMIT_INTERVAL
* 10,
7228 /*DEFAULT_RATELIMIT_BURST*/ 1);
7229 if (__ratelimit(&_rs
))
7231 "BTRFS: block rsv returned %d\n", ret
);
7234 ret
= reserve_metadata_bytes(root
, block_rsv
, blocksize
,
7235 BTRFS_RESERVE_NO_FLUSH
);
7239 * If we couldn't reserve metadata bytes try and use some from
7240 * the global reserve if its space type is the same as the global
7243 if (block_rsv
->type
!= BTRFS_BLOCK_RSV_GLOBAL
&&
7244 block_rsv
->space_info
== global_rsv
->space_info
) {
7245 ret
= block_rsv_use_bytes(global_rsv
, blocksize
);
7249 return ERR_PTR(ret
);
7252 static void unuse_block_rsv(struct btrfs_fs_info
*fs_info
,
7253 struct btrfs_block_rsv
*block_rsv
, u32 blocksize
)
7255 block_rsv_add_bytes(block_rsv
, blocksize
, 0);
7256 block_rsv_release_bytes(fs_info
, block_rsv
, NULL
, 0);
7260 * finds a free extent and does all the dirty work required for allocation
7261 * returns the key for the extent through ins, and a tree buffer for
7262 * the first block of the extent through buf.
7264 * returns the tree buffer or NULL.
7266 struct extent_buffer
*btrfs_alloc_tree_block(struct btrfs_trans_handle
*trans
,
7267 struct btrfs_root
*root
,
7268 u64 parent
, u64 root_objectid
,
7269 struct btrfs_disk_key
*key
, int level
,
7270 u64 hint
, u64 empty_size
)
7272 struct btrfs_key ins
;
7273 struct btrfs_block_rsv
*block_rsv
;
7274 struct extent_buffer
*buf
;
7277 u32 blocksize
= root
->nodesize
;
7278 bool skinny_metadata
= btrfs_fs_incompat(root
->fs_info
,
7281 if (btrfs_test_is_dummy_root(root
)) {
7282 buf
= btrfs_init_new_buffer(trans
, root
, root
->alloc_bytenr
,
7285 root
->alloc_bytenr
+= blocksize
;
7289 block_rsv
= use_block_rsv(trans
, root
, blocksize
);
7290 if (IS_ERR(block_rsv
))
7291 return ERR_CAST(block_rsv
);
7293 ret
= btrfs_reserve_extent(root
, blocksize
, blocksize
,
7294 empty_size
, hint
, &ins
, 0, 0);
7296 unuse_block_rsv(root
->fs_info
, block_rsv
, blocksize
);
7297 return ERR_PTR(ret
);
7300 buf
= btrfs_init_new_buffer(trans
, root
, ins
.objectid
, level
);
7301 BUG_ON(IS_ERR(buf
)); /* -ENOMEM */
7303 if (root_objectid
== BTRFS_TREE_RELOC_OBJECTID
) {
7305 parent
= ins
.objectid
;
7306 flags
|= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
7310 if (root_objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
7311 struct btrfs_delayed_extent_op
*extent_op
;
7312 extent_op
= btrfs_alloc_delayed_extent_op();
7313 BUG_ON(!extent_op
); /* -ENOMEM */
7315 memcpy(&extent_op
->key
, key
, sizeof(extent_op
->key
));
7317 memset(&extent_op
->key
, 0, sizeof(extent_op
->key
));
7318 extent_op
->flags_to_set
= flags
;
7319 if (skinny_metadata
)
7320 extent_op
->update_key
= 0;
7322 extent_op
->update_key
= 1;
7323 extent_op
->update_flags
= 1;
7324 extent_op
->is_data
= 0;
7325 extent_op
->level
= level
;
7327 ret
= btrfs_add_delayed_tree_ref(root
->fs_info
, trans
,
7329 ins
.offset
, parent
, root_objectid
,
7330 level
, BTRFS_ADD_DELAYED_EXTENT
,
7332 BUG_ON(ret
); /* -ENOMEM */
7337 struct walk_control
{
7338 u64 refs
[BTRFS_MAX_LEVEL
];
7339 u64 flags
[BTRFS_MAX_LEVEL
];
7340 struct btrfs_key update_progress
;
7351 #define DROP_REFERENCE 1
7352 #define UPDATE_BACKREF 2
7354 static noinline
void reada_walk_down(struct btrfs_trans_handle
*trans
,
7355 struct btrfs_root
*root
,
7356 struct walk_control
*wc
,
7357 struct btrfs_path
*path
)
7365 struct btrfs_key key
;
7366 struct extent_buffer
*eb
;
7371 if (path
->slots
[wc
->level
] < wc
->reada_slot
) {
7372 wc
->reada_count
= wc
->reada_count
* 2 / 3;
7373 wc
->reada_count
= max(wc
->reada_count
, 2);
7375 wc
->reada_count
= wc
->reada_count
* 3 / 2;
7376 wc
->reada_count
= min_t(int, wc
->reada_count
,
7377 BTRFS_NODEPTRS_PER_BLOCK(root
));
7380 eb
= path
->nodes
[wc
->level
];
7381 nritems
= btrfs_header_nritems(eb
);
7382 blocksize
= root
->nodesize
;
7384 for (slot
= path
->slots
[wc
->level
]; slot
< nritems
; slot
++) {
7385 if (nread
>= wc
->reada_count
)
7389 bytenr
= btrfs_node_blockptr(eb
, slot
);
7390 generation
= btrfs_node_ptr_generation(eb
, slot
);
7392 if (slot
== path
->slots
[wc
->level
])
7395 if (wc
->stage
== UPDATE_BACKREF
&&
7396 generation
<= root
->root_key
.offset
)
7399 /* We don't lock the tree block, it's OK to be racy here */
7400 ret
= btrfs_lookup_extent_info(trans
, root
, bytenr
,
7401 wc
->level
- 1, 1, &refs
,
7403 /* We don't care about errors in readahead. */
7408 if (wc
->stage
== DROP_REFERENCE
) {
7412 if (wc
->level
== 1 &&
7413 (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))
7415 if (!wc
->update_ref
||
7416 generation
<= root
->root_key
.offset
)
7418 btrfs_node_key_to_cpu(eb
, &key
, slot
);
7419 ret
= btrfs_comp_cpu_keys(&key
,
7420 &wc
->update_progress
);
7424 if (wc
->level
== 1 &&
7425 (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))
7429 readahead_tree_block(root
, bytenr
);
7432 wc
->reada_slot
= slot
;
7435 static int account_leaf_items(struct btrfs_trans_handle
*trans
,
7436 struct btrfs_root
*root
,
7437 struct extent_buffer
*eb
)
7439 int nr
= btrfs_header_nritems(eb
);
7440 int i
, extent_type
, ret
;
7441 struct btrfs_key key
;
7442 struct btrfs_file_extent_item
*fi
;
7443 u64 bytenr
, num_bytes
;
7445 for (i
= 0; i
< nr
; i
++) {
7446 btrfs_item_key_to_cpu(eb
, &key
, i
);
7448 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
7451 fi
= btrfs_item_ptr(eb
, i
, struct btrfs_file_extent_item
);
7452 /* filter out non qgroup-accountable extents */
7453 extent_type
= btrfs_file_extent_type(eb
, fi
);
7455 if (extent_type
== BTRFS_FILE_EXTENT_INLINE
)
7458 bytenr
= btrfs_file_extent_disk_bytenr(eb
, fi
);
7462 num_bytes
= btrfs_file_extent_disk_num_bytes(eb
, fi
);
7464 ret
= btrfs_qgroup_record_ref(trans
, root
->fs_info
,
7467 BTRFS_QGROUP_OPER_SUB_SUBTREE
, 0);
7475 * Walk up the tree from the bottom, freeing leaves and any interior
7476 * nodes which have had all slots visited. If a node (leaf or
7477 * interior) is freed, the node above it will have it's slot
7478 * incremented. The root node will never be freed.
7480 * At the end of this function, we should have a path which has all
7481 * slots incremented to the next position for a search. If we need to
7482 * read a new node it will be NULL and the node above it will have the
7483 * correct slot selected for a later read.
7485 * If we increment the root nodes slot counter past the number of
7486 * elements, 1 is returned to signal completion of the search.
7488 static int adjust_slots_upwards(struct btrfs_root
*root
,
7489 struct btrfs_path
*path
, int root_level
)
7493 struct extent_buffer
*eb
;
7495 if (root_level
== 0)
7498 while (level
<= root_level
) {
7499 eb
= path
->nodes
[level
];
7500 nr
= btrfs_header_nritems(eb
);
7501 path
->slots
[level
]++;
7502 slot
= path
->slots
[level
];
7503 if (slot
>= nr
|| level
== 0) {
7505 * Don't free the root - we will detect this
7506 * condition after our loop and return a
7507 * positive value for caller to stop walking the tree.
7509 if (level
!= root_level
) {
7510 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
7511 path
->locks
[level
] = 0;
7513 free_extent_buffer(eb
);
7514 path
->nodes
[level
] = NULL
;
7515 path
->slots
[level
] = 0;
7519 * We have a valid slot to walk back down
7520 * from. Stop here so caller can process these
7529 eb
= path
->nodes
[root_level
];
7530 if (path
->slots
[root_level
] >= btrfs_header_nritems(eb
))
7537 * root_eb is the subtree root and is locked before this function is called.
7539 static int account_shared_subtree(struct btrfs_trans_handle
*trans
,
7540 struct btrfs_root
*root
,
7541 struct extent_buffer
*root_eb
,
7547 struct extent_buffer
*eb
= root_eb
;
7548 struct btrfs_path
*path
= NULL
;
7550 BUG_ON(root_level
< 0 || root_level
> BTRFS_MAX_LEVEL
);
7551 BUG_ON(root_eb
== NULL
);
7553 if (!root
->fs_info
->quota_enabled
)
7556 if (!extent_buffer_uptodate(root_eb
)) {
7557 ret
= btrfs_read_buffer(root_eb
, root_gen
);
7562 if (root_level
== 0) {
7563 ret
= account_leaf_items(trans
, root
, root_eb
);
7567 path
= btrfs_alloc_path();
7572 * Walk down the tree. Missing extent blocks are filled in as
7573 * we go. Metadata is accounted every time we read a new
7576 * When we reach a leaf, we account for file extent items in it,
7577 * walk back up the tree (adjusting slot pointers as we go)
7578 * and restart the search process.
7580 extent_buffer_get(root_eb
); /* For path */
7581 path
->nodes
[root_level
] = root_eb
;
7582 path
->slots
[root_level
] = 0;
7583 path
->locks
[root_level
] = 0; /* so release_path doesn't try to unlock */
7586 while (level
>= 0) {
7587 if (path
->nodes
[level
] == NULL
) {
7592 /* We need to get child blockptr/gen from
7593 * parent before we can read it. */
7594 eb
= path
->nodes
[level
+ 1];
7595 parent_slot
= path
->slots
[level
+ 1];
7596 child_bytenr
= btrfs_node_blockptr(eb
, parent_slot
);
7597 child_gen
= btrfs_node_ptr_generation(eb
, parent_slot
);
7599 eb
= read_tree_block(root
, child_bytenr
, child_gen
);
7600 if (!eb
|| !extent_buffer_uptodate(eb
)) {
7605 path
->nodes
[level
] = eb
;
7606 path
->slots
[level
] = 0;
7608 btrfs_tree_read_lock(eb
);
7609 btrfs_set_lock_blocking_rw(eb
, BTRFS_READ_LOCK
);
7610 path
->locks
[level
] = BTRFS_READ_LOCK_BLOCKING
;
7612 ret
= btrfs_qgroup_record_ref(trans
, root
->fs_info
,
7616 BTRFS_QGROUP_OPER_SUB_SUBTREE
,
7624 ret
= account_leaf_items(trans
, root
, path
->nodes
[level
]);
7628 /* Nonzero return here means we completed our search */
7629 ret
= adjust_slots_upwards(root
, path
, root_level
);
7633 /* Restart search with new slots */
7642 btrfs_free_path(path
);
7648 * helper to process tree block while walking down the tree.
7650 * when wc->stage == UPDATE_BACKREF, this function updates
7651 * back refs for pointers in the block.
7653 * NOTE: return value 1 means we should stop walking down.
7655 static noinline
int walk_down_proc(struct btrfs_trans_handle
*trans
,
7656 struct btrfs_root
*root
,
7657 struct btrfs_path
*path
,
7658 struct walk_control
*wc
, int lookup_info
)
7660 int level
= wc
->level
;
7661 struct extent_buffer
*eb
= path
->nodes
[level
];
7662 u64 flag
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
7665 if (wc
->stage
== UPDATE_BACKREF
&&
7666 btrfs_header_owner(eb
) != root
->root_key
.objectid
)
7670 * when reference count of tree block is 1, it won't increase
7671 * again. once full backref flag is set, we never clear it.
7674 ((wc
->stage
== DROP_REFERENCE
&& wc
->refs
[level
] != 1) ||
7675 (wc
->stage
== UPDATE_BACKREF
&& !(wc
->flags
[level
] & flag
)))) {
7676 BUG_ON(!path
->locks
[level
]);
7677 ret
= btrfs_lookup_extent_info(trans
, root
,
7678 eb
->start
, level
, 1,
7681 BUG_ON(ret
== -ENOMEM
);
7684 BUG_ON(wc
->refs
[level
] == 0);
7687 if (wc
->stage
== DROP_REFERENCE
) {
7688 if (wc
->refs
[level
] > 1)
7691 if (path
->locks
[level
] && !wc
->keep_locks
) {
7692 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
7693 path
->locks
[level
] = 0;
7698 /* wc->stage == UPDATE_BACKREF */
7699 if (!(wc
->flags
[level
] & flag
)) {
7700 BUG_ON(!path
->locks
[level
]);
7701 ret
= btrfs_inc_ref(trans
, root
, eb
, 1);
7702 BUG_ON(ret
); /* -ENOMEM */
7703 ret
= btrfs_dec_ref(trans
, root
, eb
, 0);
7704 BUG_ON(ret
); /* -ENOMEM */
7705 ret
= btrfs_set_disk_extent_flags(trans
, root
, eb
->start
,
7707 btrfs_header_level(eb
), 0);
7708 BUG_ON(ret
); /* -ENOMEM */
7709 wc
->flags
[level
] |= flag
;
7713 * the block is shared by multiple trees, so it's not good to
7714 * keep the tree lock
7716 if (path
->locks
[level
] && level
> 0) {
7717 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
7718 path
->locks
[level
] = 0;
7724 * helper to process tree block pointer.
7726 * when wc->stage == DROP_REFERENCE, this function checks
7727 * reference count of the block pointed to. if the block
7728 * is shared and we need update back refs for the subtree
7729 * rooted at the block, this function changes wc->stage to
7730 * UPDATE_BACKREF. if the block is shared and there is no
7731 * need to update back, this function drops the reference
7734 * NOTE: return value 1 means we should stop walking down.
7736 static noinline
int do_walk_down(struct btrfs_trans_handle
*trans
,
7737 struct btrfs_root
*root
,
7738 struct btrfs_path
*path
,
7739 struct walk_control
*wc
, int *lookup_info
)
7745 struct btrfs_key key
;
7746 struct extent_buffer
*next
;
7747 int level
= wc
->level
;
7750 bool need_account
= false;
7752 generation
= btrfs_node_ptr_generation(path
->nodes
[level
],
7753 path
->slots
[level
]);
7755 * if the lower level block was created before the snapshot
7756 * was created, we know there is no need to update back refs
7759 if (wc
->stage
== UPDATE_BACKREF
&&
7760 generation
<= root
->root_key
.offset
) {
7765 bytenr
= btrfs_node_blockptr(path
->nodes
[level
], path
->slots
[level
]);
7766 blocksize
= root
->nodesize
;
7768 next
= btrfs_find_tree_block(root
, bytenr
);
7770 next
= btrfs_find_create_tree_block(root
, bytenr
);
7773 btrfs_set_buffer_lockdep_class(root
->root_key
.objectid
, next
,
7777 btrfs_tree_lock(next
);
7778 btrfs_set_lock_blocking(next
);
7780 ret
= btrfs_lookup_extent_info(trans
, root
, bytenr
, level
- 1, 1,
7781 &wc
->refs
[level
- 1],
7782 &wc
->flags
[level
- 1]);
7784 btrfs_tree_unlock(next
);
7788 if (unlikely(wc
->refs
[level
- 1] == 0)) {
7789 btrfs_err(root
->fs_info
, "Missing references.");
7794 if (wc
->stage
== DROP_REFERENCE
) {
7795 if (wc
->refs
[level
- 1] > 1) {
7796 need_account
= true;
7798 (wc
->flags
[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF
))
7801 if (!wc
->update_ref
||
7802 generation
<= root
->root_key
.offset
)
7805 btrfs_node_key_to_cpu(path
->nodes
[level
], &key
,
7806 path
->slots
[level
]);
7807 ret
= btrfs_comp_cpu_keys(&key
, &wc
->update_progress
);
7811 wc
->stage
= UPDATE_BACKREF
;
7812 wc
->shared_level
= level
- 1;
7816 (wc
->flags
[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF
))
7820 if (!btrfs_buffer_uptodate(next
, generation
, 0)) {
7821 btrfs_tree_unlock(next
);
7822 free_extent_buffer(next
);
7828 if (reada
&& level
== 1)
7829 reada_walk_down(trans
, root
, wc
, path
);
7830 next
= read_tree_block(root
, bytenr
, generation
);
7831 if (!next
|| !extent_buffer_uptodate(next
)) {
7832 free_extent_buffer(next
);
7835 btrfs_tree_lock(next
);
7836 btrfs_set_lock_blocking(next
);
7840 BUG_ON(level
!= btrfs_header_level(next
));
7841 path
->nodes
[level
] = next
;
7842 path
->slots
[level
] = 0;
7843 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
7849 wc
->refs
[level
- 1] = 0;
7850 wc
->flags
[level
- 1] = 0;
7851 if (wc
->stage
== DROP_REFERENCE
) {
7852 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
) {
7853 parent
= path
->nodes
[level
]->start
;
7855 BUG_ON(root
->root_key
.objectid
!=
7856 btrfs_header_owner(path
->nodes
[level
]));
7861 ret
= account_shared_subtree(trans
, root
, next
,
7862 generation
, level
- 1);
7864 printk_ratelimited(KERN_ERR
"BTRFS: %s Error "
7865 "%d accounting shared subtree. Quota "
7866 "is out of sync, rescan required.\n",
7867 root
->fs_info
->sb
->s_id
, ret
);
7870 ret
= btrfs_free_extent(trans
, root
, bytenr
, blocksize
, parent
,
7871 root
->root_key
.objectid
, level
- 1, 0, 0);
7872 BUG_ON(ret
); /* -ENOMEM */
7874 btrfs_tree_unlock(next
);
7875 free_extent_buffer(next
);
7881 * helper to process tree block while walking up the tree.
7883 * when wc->stage == DROP_REFERENCE, this function drops
7884 * reference count on the block.
7886 * when wc->stage == UPDATE_BACKREF, this function changes
7887 * wc->stage back to DROP_REFERENCE if we changed wc->stage
7888 * to UPDATE_BACKREF previously while processing the block.
7890 * NOTE: return value 1 means we should stop walking up.
7892 static noinline
int walk_up_proc(struct btrfs_trans_handle
*trans
,
7893 struct btrfs_root
*root
,
7894 struct btrfs_path
*path
,
7895 struct walk_control
*wc
)
7898 int level
= wc
->level
;
7899 struct extent_buffer
*eb
= path
->nodes
[level
];
7902 if (wc
->stage
== UPDATE_BACKREF
) {
7903 BUG_ON(wc
->shared_level
< level
);
7904 if (level
< wc
->shared_level
)
7907 ret
= find_next_key(path
, level
+ 1, &wc
->update_progress
);
7911 wc
->stage
= DROP_REFERENCE
;
7912 wc
->shared_level
= -1;
7913 path
->slots
[level
] = 0;
7916 * check reference count again if the block isn't locked.
7917 * we should start walking down the tree again if reference
7920 if (!path
->locks
[level
]) {
7922 btrfs_tree_lock(eb
);
7923 btrfs_set_lock_blocking(eb
);
7924 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
7926 ret
= btrfs_lookup_extent_info(trans
, root
,
7927 eb
->start
, level
, 1,
7931 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
7932 path
->locks
[level
] = 0;
7935 BUG_ON(wc
->refs
[level
] == 0);
7936 if (wc
->refs
[level
] == 1) {
7937 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
7938 path
->locks
[level
] = 0;
7944 /* wc->stage == DROP_REFERENCE */
7945 BUG_ON(wc
->refs
[level
] > 1 && !path
->locks
[level
]);
7947 if (wc
->refs
[level
] == 1) {
7949 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
7950 ret
= btrfs_dec_ref(trans
, root
, eb
, 1);
7952 ret
= btrfs_dec_ref(trans
, root
, eb
, 0);
7953 BUG_ON(ret
); /* -ENOMEM */
7954 ret
= account_leaf_items(trans
, root
, eb
);
7956 printk_ratelimited(KERN_ERR
"BTRFS: %s Error "
7957 "%d accounting leaf items. Quota "
7958 "is out of sync, rescan required.\n",
7959 root
->fs_info
->sb
->s_id
, ret
);
7962 /* make block locked assertion in clean_tree_block happy */
7963 if (!path
->locks
[level
] &&
7964 btrfs_header_generation(eb
) == trans
->transid
) {
7965 btrfs_tree_lock(eb
);
7966 btrfs_set_lock_blocking(eb
);
7967 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
7969 clean_tree_block(trans
, root
, eb
);
7972 if (eb
== root
->node
) {
7973 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
7976 BUG_ON(root
->root_key
.objectid
!=
7977 btrfs_header_owner(eb
));
7979 if (wc
->flags
[level
+ 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
7980 parent
= path
->nodes
[level
+ 1]->start
;
7982 BUG_ON(root
->root_key
.objectid
!=
7983 btrfs_header_owner(path
->nodes
[level
+ 1]));
7986 btrfs_free_tree_block(trans
, root
, eb
, parent
, wc
->refs
[level
] == 1);
7988 wc
->refs
[level
] = 0;
7989 wc
->flags
[level
] = 0;
7993 static noinline
int walk_down_tree(struct btrfs_trans_handle
*trans
,
7994 struct btrfs_root
*root
,
7995 struct btrfs_path
*path
,
7996 struct walk_control
*wc
)
7998 int level
= wc
->level
;
7999 int lookup_info
= 1;
8002 while (level
>= 0) {
8003 ret
= walk_down_proc(trans
, root
, path
, wc
, lookup_info
);
8010 if (path
->slots
[level
] >=
8011 btrfs_header_nritems(path
->nodes
[level
]))
8014 ret
= do_walk_down(trans
, root
, path
, wc
, &lookup_info
);
8016 path
->slots
[level
]++;
8025 static noinline
int walk_up_tree(struct btrfs_trans_handle
*trans
,
8026 struct btrfs_root
*root
,
8027 struct btrfs_path
*path
,
8028 struct walk_control
*wc
, int max_level
)
8030 int level
= wc
->level
;
8033 path
->slots
[level
] = btrfs_header_nritems(path
->nodes
[level
]);
8034 while (level
< max_level
&& path
->nodes
[level
]) {
8036 if (path
->slots
[level
] + 1 <
8037 btrfs_header_nritems(path
->nodes
[level
])) {
8038 path
->slots
[level
]++;
8041 ret
= walk_up_proc(trans
, root
, path
, wc
);
8045 if (path
->locks
[level
]) {
8046 btrfs_tree_unlock_rw(path
->nodes
[level
],
8047 path
->locks
[level
]);
8048 path
->locks
[level
] = 0;
8050 free_extent_buffer(path
->nodes
[level
]);
8051 path
->nodes
[level
] = NULL
;
8059 * drop a subvolume tree.
8061 * this function traverses the tree freeing any blocks that only
8062 * referenced by the tree.
8064 * when a shared tree block is found. this function decreases its
8065 * reference count by one. if update_ref is true, this function
8066 * also make sure backrefs for the shared block and all lower level
8067 * blocks are properly updated.
8069 * If called with for_reloc == 0, may exit early with -EAGAIN
8071 int btrfs_drop_snapshot(struct btrfs_root
*root
,
8072 struct btrfs_block_rsv
*block_rsv
, int update_ref
,
8075 struct btrfs_path
*path
;
8076 struct btrfs_trans_handle
*trans
;
8077 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
8078 struct btrfs_root_item
*root_item
= &root
->root_item
;
8079 struct walk_control
*wc
;
8080 struct btrfs_key key
;
8084 bool root_dropped
= false;
8086 btrfs_debug(root
->fs_info
, "Drop subvolume %llu", root
->objectid
);
8088 path
= btrfs_alloc_path();
8094 wc
= kzalloc(sizeof(*wc
), GFP_NOFS
);
8096 btrfs_free_path(path
);
8101 trans
= btrfs_start_transaction(tree_root
, 0);
8102 if (IS_ERR(trans
)) {
8103 err
= PTR_ERR(trans
);
8108 trans
->block_rsv
= block_rsv
;
8110 if (btrfs_disk_key_objectid(&root_item
->drop_progress
) == 0) {
8111 level
= btrfs_header_level(root
->node
);
8112 path
->nodes
[level
] = btrfs_lock_root_node(root
);
8113 btrfs_set_lock_blocking(path
->nodes
[level
]);
8114 path
->slots
[level
] = 0;
8115 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
8116 memset(&wc
->update_progress
, 0,
8117 sizeof(wc
->update_progress
));
8119 btrfs_disk_key_to_cpu(&key
, &root_item
->drop_progress
);
8120 memcpy(&wc
->update_progress
, &key
,
8121 sizeof(wc
->update_progress
));
8123 level
= root_item
->drop_level
;
8125 path
->lowest_level
= level
;
8126 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
8127 path
->lowest_level
= 0;
8135 * unlock our path, this is safe because only this
8136 * function is allowed to delete this snapshot
8138 btrfs_unlock_up_safe(path
, 0);
8140 level
= btrfs_header_level(root
->node
);
8142 btrfs_tree_lock(path
->nodes
[level
]);
8143 btrfs_set_lock_blocking(path
->nodes
[level
]);
8144 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
8146 ret
= btrfs_lookup_extent_info(trans
, root
,
8147 path
->nodes
[level
]->start
,
8148 level
, 1, &wc
->refs
[level
],
8154 BUG_ON(wc
->refs
[level
] == 0);
8156 if (level
== root_item
->drop_level
)
8159 btrfs_tree_unlock(path
->nodes
[level
]);
8160 path
->locks
[level
] = 0;
8161 WARN_ON(wc
->refs
[level
] != 1);
8167 wc
->shared_level
= -1;
8168 wc
->stage
= DROP_REFERENCE
;
8169 wc
->update_ref
= update_ref
;
8171 wc
->for_reloc
= for_reloc
;
8172 wc
->reada_count
= BTRFS_NODEPTRS_PER_BLOCK(root
);
8176 ret
= walk_down_tree(trans
, root
, path
, wc
);
8182 ret
= walk_up_tree(trans
, root
, path
, wc
, BTRFS_MAX_LEVEL
);
8189 BUG_ON(wc
->stage
!= DROP_REFERENCE
);
8193 if (wc
->stage
== DROP_REFERENCE
) {
8195 btrfs_node_key(path
->nodes
[level
],
8196 &root_item
->drop_progress
,
8197 path
->slots
[level
]);
8198 root_item
->drop_level
= level
;
8201 BUG_ON(wc
->level
== 0);
8202 if (btrfs_should_end_transaction(trans
, tree_root
) ||
8203 (!for_reloc
&& btrfs_need_cleaner_sleep(root
))) {
8204 ret
= btrfs_update_root(trans
, tree_root
,
8208 btrfs_abort_transaction(trans
, tree_root
, ret
);
8214 * Qgroup update accounting is run from
8215 * delayed ref handling. This usually works
8216 * out because delayed refs are normally the
8217 * only way qgroup updates are added. However,
8218 * we may have added updates during our tree
8219 * walk so run qgroups here to make sure we
8220 * don't lose any updates.
8222 ret
= btrfs_delayed_qgroup_accounting(trans
,
8225 printk_ratelimited(KERN_ERR
"BTRFS: Failure %d "
8226 "running qgroup updates "
8227 "during snapshot delete. "
8228 "Quota is out of sync, "
8229 "rescan required.\n", ret
);
8231 btrfs_end_transaction_throttle(trans
, tree_root
);
8232 if (!for_reloc
&& btrfs_need_cleaner_sleep(root
)) {
8233 pr_debug("BTRFS: drop snapshot early exit\n");
8238 trans
= btrfs_start_transaction(tree_root
, 0);
8239 if (IS_ERR(trans
)) {
8240 err
= PTR_ERR(trans
);
8244 trans
->block_rsv
= block_rsv
;
8247 btrfs_release_path(path
);
8251 ret
= btrfs_del_root(trans
, tree_root
, &root
->root_key
);
8253 btrfs_abort_transaction(trans
, tree_root
, ret
);
8257 if (root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
) {
8258 ret
= btrfs_find_root(tree_root
, &root
->root_key
, path
,
8261 btrfs_abort_transaction(trans
, tree_root
, ret
);
8264 } else if (ret
> 0) {
8265 /* if we fail to delete the orphan item this time
8266 * around, it'll get picked up the next time.
8268 * The most common failure here is just -ENOENT.
8270 btrfs_del_orphan_item(trans
, tree_root
,
8271 root
->root_key
.objectid
);
8275 if (test_bit(BTRFS_ROOT_IN_RADIX
, &root
->state
)) {
8276 btrfs_drop_and_free_fs_root(tree_root
->fs_info
, root
);
8278 free_extent_buffer(root
->node
);
8279 free_extent_buffer(root
->commit_root
);
8280 btrfs_put_fs_root(root
);
8282 root_dropped
= true;
8284 ret
= btrfs_delayed_qgroup_accounting(trans
, tree_root
->fs_info
);
8286 printk_ratelimited(KERN_ERR
"BTRFS: Failure %d "
8287 "running qgroup updates "
8288 "during snapshot delete. "
8289 "Quota is out of sync, "
8290 "rescan required.\n", ret
);
8292 btrfs_end_transaction_throttle(trans
, tree_root
);
8295 btrfs_free_path(path
);
8298 * So if we need to stop dropping the snapshot for whatever reason we
8299 * need to make sure to add it back to the dead root list so that we
8300 * keep trying to do the work later. This also cleans up roots if we
8301 * don't have it in the radix (like when we recover after a power fail
8302 * or unmount) so we don't leak memory.
8304 if (!for_reloc
&& root_dropped
== false)
8305 btrfs_add_dead_root(root
);
8306 if (err
&& err
!= -EAGAIN
)
8307 btrfs_std_error(root
->fs_info
, err
);
8312 * drop subtree rooted at tree block 'node'.
8314 * NOTE: this function will unlock and release tree block 'node'
8315 * only used by relocation code
8317 int btrfs_drop_subtree(struct btrfs_trans_handle
*trans
,
8318 struct btrfs_root
*root
,
8319 struct extent_buffer
*node
,
8320 struct extent_buffer
*parent
)
8322 struct btrfs_path
*path
;
8323 struct walk_control
*wc
;
8329 BUG_ON(root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
);
8331 path
= btrfs_alloc_path();
8335 wc
= kzalloc(sizeof(*wc
), GFP_NOFS
);
8337 btrfs_free_path(path
);
8341 btrfs_assert_tree_locked(parent
);
8342 parent_level
= btrfs_header_level(parent
);
8343 extent_buffer_get(parent
);
8344 path
->nodes
[parent_level
] = parent
;
8345 path
->slots
[parent_level
] = btrfs_header_nritems(parent
);
8347 btrfs_assert_tree_locked(node
);
8348 level
= btrfs_header_level(node
);
8349 path
->nodes
[level
] = node
;
8350 path
->slots
[level
] = 0;
8351 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
8353 wc
->refs
[parent_level
] = 1;
8354 wc
->flags
[parent_level
] = BTRFS_BLOCK_FLAG_FULL_BACKREF
;
8356 wc
->shared_level
= -1;
8357 wc
->stage
= DROP_REFERENCE
;
8361 wc
->reada_count
= BTRFS_NODEPTRS_PER_BLOCK(root
);
8364 wret
= walk_down_tree(trans
, root
, path
, wc
);
8370 wret
= walk_up_tree(trans
, root
, path
, wc
, parent_level
);
8378 btrfs_free_path(path
);
8382 static u64
update_block_group_flags(struct btrfs_root
*root
, u64 flags
)
8388 * if restripe for this chunk_type is on pick target profile and
8389 * return, otherwise do the usual balance
8391 stripped
= get_restripe_target(root
->fs_info
, flags
);
8393 return extended_to_chunk(stripped
);
8395 num_devices
= root
->fs_info
->fs_devices
->rw_devices
;
8397 stripped
= BTRFS_BLOCK_GROUP_RAID0
|
8398 BTRFS_BLOCK_GROUP_RAID5
| BTRFS_BLOCK_GROUP_RAID6
|
8399 BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID10
;
8401 if (num_devices
== 1) {
8402 stripped
|= BTRFS_BLOCK_GROUP_DUP
;
8403 stripped
= flags
& ~stripped
;
8405 /* turn raid0 into single device chunks */
8406 if (flags
& BTRFS_BLOCK_GROUP_RAID0
)
8409 /* turn mirroring into duplication */
8410 if (flags
& (BTRFS_BLOCK_GROUP_RAID1
|
8411 BTRFS_BLOCK_GROUP_RAID10
))
8412 return stripped
| BTRFS_BLOCK_GROUP_DUP
;
8414 /* they already had raid on here, just return */
8415 if (flags
& stripped
)
8418 stripped
|= BTRFS_BLOCK_GROUP_DUP
;
8419 stripped
= flags
& ~stripped
;
8421 /* switch duplicated blocks with raid1 */
8422 if (flags
& BTRFS_BLOCK_GROUP_DUP
)
8423 return stripped
| BTRFS_BLOCK_GROUP_RAID1
;
8425 /* this is drive concat, leave it alone */
8431 static int set_block_group_ro(struct btrfs_block_group_cache
*cache
, int force
)
8433 struct btrfs_space_info
*sinfo
= cache
->space_info
;
8435 u64 min_allocable_bytes
;
8440 * We need some metadata space and system metadata space for
8441 * allocating chunks in some corner cases until we force to set
8442 * it to be readonly.
8445 (BTRFS_BLOCK_GROUP_SYSTEM
| BTRFS_BLOCK_GROUP_METADATA
)) &&
8447 min_allocable_bytes
= 1 * 1024 * 1024;
8449 min_allocable_bytes
= 0;
8451 spin_lock(&sinfo
->lock
);
8452 spin_lock(&cache
->lock
);
8459 num_bytes
= cache
->key
.offset
- cache
->reserved
- cache
->pinned
-
8460 cache
->bytes_super
- btrfs_block_group_used(&cache
->item
);
8462 if (sinfo
->bytes_used
+ sinfo
->bytes_reserved
+ sinfo
->bytes_pinned
+
8463 sinfo
->bytes_may_use
+ sinfo
->bytes_readonly
+ num_bytes
+
8464 min_allocable_bytes
<= sinfo
->total_bytes
) {
8465 sinfo
->bytes_readonly
+= num_bytes
;
8467 list_add_tail(&cache
->ro_list
, &sinfo
->ro_bgs
);
8471 spin_unlock(&cache
->lock
);
8472 spin_unlock(&sinfo
->lock
);
8476 int btrfs_set_block_group_ro(struct btrfs_root
*root
,
8477 struct btrfs_block_group_cache
*cache
)
8480 struct btrfs_trans_handle
*trans
;
8486 trans
= btrfs_join_transaction(root
);
8488 return PTR_ERR(trans
);
8490 ret
= set_block_group_ro(cache
, 0);
8493 alloc_flags
= get_alloc_profile(root
, cache
->space_info
->flags
);
8494 ret
= do_chunk_alloc(trans
, root
, alloc_flags
,
8498 ret
= set_block_group_ro(cache
, 0);
8500 if (cache
->flags
& BTRFS_BLOCK_GROUP_SYSTEM
) {
8501 alloc_flags
= update_block_group_flags(root
, cache
->flags
);
8502 check_system_chunk(trans
, root
, alloc_flags
);
8505 btrfs_end_transaction(trans
, root
);
8509 int btrfs_force_chunk_alloc(struct btrfs_trans_handle
*trans
,
8510 struct btrfs_root
*root
, u64 type
)
8512 u64 alloc_flags
= get_alloc_profile(root
, type
);
8513 return do_chunk_alloc(trans
, root
, alloc_flags
,
8518 * helper to account the unused space of all the readonly block group in the
8519 * space_info. takes mirrors into account.
8521 u64
btrfs_account_ro_block_groups_free_space(struct btrfs_space_info
*sinfo
)
8523 struct btrfs_block_group_cache
*block_group
;
8527 /* It's df, we don't care if it's racey */
8528 if (list_empty(&sinfo
->ro_bgs
))
8531 spin_lock(&sinfo
->lock
);
8532 list_for_each_entry(block_group
, &sinfo
->ro_bgs
, ro_list
) {
8533 spin_lock(&block_group
->lock
);
8535 if (!block_group
->ro
) {
8536 spin_unlock(&block_group
->lock
);
8540 if (block_group
->flags
& (BTRFS_BLOCK_GROUP_RAID1
|
8541 BTRFS_BLOCK_GROUP_RAID10
|
8542 BTRFS_BLOCK_GROUP_DUP
))
8547 free_bytes
+= (block_group
->key
.offset
-
8548 btrfs_block_group_used(&block_group
->item
)) *
8551 spin_unlock(&block_group
->lock
);
8553 spin_unlock(&sinfo
->lock
);
8558 void btrfs_set_block_group_rw(struct btrfs_root
*root
,
8559 struct btrfs_block_group_cache
*cache
)
8561 struct btrfs_space_info
*sinfo
= cache
->space_info
;
8566 spin_lock(&sinfo
->lock
);
8567 spin_lock(&cache
->lock
);
8568 num_bytes
= cache
->key
.offset
- cache
->reserved
- cache
->pinned
-
8569 cache
->bytes_super
- btrfs_block_group_used(&cache
->item
);
8570 sinfo
->bytes_readonly
-= num_bytes
;
8572 list_del_init(&cache
->ro_list
);
8573 spin_unlock(&cache
->lock
);
8574 spin_unlock(&sinfo
->lock
);
8578 * checks to see if its even possible to relocate this block group.
8580 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8581 * ok to go ahead and try.
8583 int btrfs_can_relocate(struct btrfs_root
*root
, u64 bytenr
)
8585 struct btrfs_block_group_cache
*block_group
;
8586 struct btrfs_space_info
*space_info
;
8587 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
8588 struct btrfs_device
*device
;
8589 struct btrfs_trans_handle
*trans
;
8598 block_group
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
8600 /* odd, couldn't find the block group, leave it alone */
8604 min_free
= btrfs_block_group_used(&block_group
->item
);
8606 /* no bytes used, we're good */
8610 space_info
= block_group
->space_info
;
8611 spin_lock(&space_info
->lock
);
8613 full
= space_info
->full
;
8616 * if this is the last block group we have in this space, we can't
8617 * relocate it unless we're able to allocate a new chunk below.
8619 * Otherwise, we need to make sure we have room in the space to handle
8620 * all of the extents from this block group. If we can, we're good
8622 if ((space_info
->total_bytes
!= block_group
->key
.offset
) &&
8623 (space_info
->bytes_used
+ space_info
->bytes_reserved
+
8624 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
8625 min_free
< space_info
->total_bytes
)) {
8626 spin_unlock(&space_info
->lock
);
8629 spin_unlock(&space_info
->lock
);
8632 * ok we don't have enough space, but maybe we have free space on our
8633 * devices to allocate new chunks for relocation, so loop through our
8634 * alloc devices and guess if we have enough space. if this block
8635 * group is going to be restriped, run checks against the target
8636 * profile instead of the current one.
8648 target
= get_restripe_target(root
->fs_info
, block_group
->flags
);
8650 index
= __get_raid_index(extended_to_chunk(target
));
8653 * this is just a balance, so if we were marked as full
8654 * we know there is no space for a new chunk
8659 index
= get_block_group_index(block_group
);
8662 if (index
== BTRFS_RAID_RAID10
) {
8666 } else if (index
== BTRFS_RAID_RAID1
) {
8668 } else if (index
== BTRFS_RAID_DUP
) {
8671 } else if (index
== BTRFS_RAID_RAID0
) {
8672 dev_min
= fs_devices
->rw_devices
;
8673 min_free
= div64_u64(min_free
, dev_min
);
8676 /* We need to do this so that we can look at pending chunks */
8677 trans
= btrfs_join_transaction(root
);
8678 if (IS_ERR(trans
)) {
8679 ret
= PTR_ERR(trans
);
8683 mutex_lock(&root
->fs_info
->chunk_mutex
);
8684 list_for_each_entry(device
, &fs_devices
->alloc_list
, dev_alloc_list
) {
8688 * check to make sure we can actually find a chunk with enough
8689 * space to fit our block group in.
8691 if (device
->total_bytes
> device
->bytes_used
+ min_free
&&
8692 !device
->is_tgtdev_for_dev_replace
) {
8693 ret
= find_free_dev_extent(trans
, device
, min_free
,
8698 if (dev_nr
>= dev_min
)
8704 mutex_unlock(&root
->fs_info
->chunk_mutex
);
8705 btrfs_end_transaction(trans
, root
);
8707 btrfs_put_block_group(block_group
);
8711 static int find_first_block_group(struct btrfs_root
*root
,
8712 struct btrfs_path
*path
, struct btrfs_key
*key
)
8715 struct btrfs_key found_key
;
8716 struct extent_buffer
*leaf
;
8719 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
8724 slot
= path
->slots
[0];
8725 leaf
= path
->nodes
[0];
8726 if (slot
>= btrfs_header_nritems(leaf
)) {
8727 ret
= btrfs_next_leaf(root
, path
);
8734 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
8736 if (found_key
.objectid
>= key
->objectid
&&
8737 found_key
.type
== BTRFS_BLOCK_GROUP_ITEM_KEY
) {
8747 void btrfs_put_block_group_cache(struct btrfs_fs_info
*info
)
8749 struct btrfs_block_group_cache
*block_group
;
8753 struct inode
*inode
;
8755 block_group
= btrfs_lookup_first_block_group(info
, last
);
8756 while (block_group
) {
8757 spin_lock(&block_group
->lock
);
8758 if (block_group
->iref
)
8760 spin_unlock(&block_group
->lock
);
8761 block_group
= next_block_group(info
->tree_root
,
8771 inode
= block_group
->inode
;
8772 block_group
->iref
= 0;
8773 block_group
->inode
= NULL
;
8774 spin_unlock(&block_group
->lock
);
8776 last
= block_group
->key
.objectid
+ block_group
->key
.offset
;
8777 btrfs_put_block_group(block_group
);
8781 int btrfs_free_block_groups(struct btrfs_fs_info
*info
)
8783 struct btrfs_block_group_cache
*block_group
;
8784 struct btrfs_space_info
*space_info
;
8785 struct btrfs_caching_control
*caching_ctl
;
8788 down_write(&info
->commit_root_sem
);
8789 while (!list_empty(&info
->caching_block_groups
)) {
8790 caching_ctl
= list_entry(info
->caching_block_groups
.next
,
8791 struct btrfs_caching_control
, list
);
8792 list_del(&caching_ctl
->list
);
8793 put_caching_control(caching_ctl
);
8795 up_write(&info
->commit_root_sem
);
8797 spin_lock(&info
->unused_bgs_lock
);
8798 while (!list_empty(&info
->unused_bgs
)) {
8799 block_group
= list_first_entry(&info
->unused_bgs
,
8800 struct btrfs_block_group_cache
,
8802 list_del_init(&block_group
->bg_list
);
8803 btrfs_put_block_group(block_group
);
8805 spin_unlock(&info
->unused_bgs_lock
);
8807 spin_lock(&info
->block_group_cache_lock
);
8808 while ((n
= rb_last(&info
->block_group_cache_tree
)) != NULL
) {
8809 block_group
= rb_entry(n
, struct btrfs_block_group_cache
,
8811 rb_erase(&block_group
->cache_node
,
8812 &info
->block_group_cache_tree
);
8813 RB_CLEAR_NODE(&block_group
->cache_node
);
8814 spin_unlock(&info
->block_group_cache_lock
);
8816 down_write(&block_group
->space_info
->groups_sem
);
8817 list_del(&block_group
->list
);
8818 up_write(&block_group
->space_info
->groups_sem
);
8820 if (block_group
->cached
== BTRFS_CACHE_STARTED
)
8821 wait_block_group_cache_done(block_group
);
8824 * We haven't cached this block group, which means we could
8825 * possibly have excluded extents on this block group.
8827 if (block_group
->cached
== BTRFS_CACHE_NO
||
8828 block_group
->cached
== BTRFS_CACHE_ERROR
)
8829 free_excluded_extents(info
->extent_root
, block_group
);
8831 btrfs_remove_free_space_cache(block_group
);
8832 btrfs_put_block_group(block_group
);
8834 spin_lock(&info
->block_group_cache_lock
);
8836 spin_unlock(&info
->block_group_cache_lock
);
8838 /* now that all the block groups are freed, go through and
8839 * free all the space_info structs. This is only called during
8840 * the final stages of unmount, and so we know nobody is
8841 * using them. We call synchronize_rcu() once before we start,
8842 * just to be on the safe side.
8846 release_global_block_rsv(info
);
8848 while (!list_empty(&info
->space_info
)) {
8851 space_info
= list_entry(info
->space_info
.next
,
8852 struct btrfs_space_info
,
8854 if (btrfs_test_opt(info
->tree_root
, ENOSPC_DEBUG
)) {
8855 if (WARN_ON(space_info
->bytes_pinned
> 0 ||
8856 space_info
->bytes_reserved
> 0 ||
8857 space_info
->bytes_may_use
> 0)) {
8858 dump_space_info(space_info
, 0, 0);
8861 list_del(&space_info
->list
);
8862 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++) {
8863 struct kobject
*kobj
;
8864 kobj
= space_info
->block_group_kobjs
[i
];
8865 space_info
->block_group_kobjs
[i
] = NULL
;
8871 kobject_del(&space_info
->kobj
);
8872 kobject_put(&space_info
->kobj
);
8877 static void __link_block_group(struct btrfs_space_info
*space_info
,
8878 struct btrfs_block_group_cache
*cache
)
8880 int index
= get_block_group_index(cache
);
8883 down_write(&space_info
->groups_sem
);
8884 if (list_empty(&space_info
->block_groups
[index
]))
8886 list_add_tail(&cache
->list
, &space_info
->block_groups
[index
]);
8887 up_write(&space_info
->groups_sem
);
8890 struct raid_kobject
*rkobj
;
8893 rkobj
= kzalloc(sizeof(*rkobj
), GFP_NOFS
);
8896 rkobj
->raid_type
= index
;
8897 kobject_init(&rkobj
->kobj
, &btrfs_raid_ktype
);
8898 ret
= kobject_add(&rkobj
->kobj
, &space_info
->kobj
,
8899 "%s", get_raid_name(index
));
8901 kobject_put(&rkobj
->kobj
);
8904 space_info
->block_group_kobjs
[index
] = &rkobj
->kobj
;
8909 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
8912 static struct btrfs_block_group_cache
*
8913 btrfs_create_block_group_cache(struct btrfs_root
*root
, u64 start
, u64 size
)
8915 struct btrfs_block_group_cache
*cache
;
8917 cache
= kzalloc(sizeof(*cache
), GFP_NOFS
);
8921 cache
->free_space_ctl
= kzalloc(sizeof(*cache
->free_space_ctl
),
8923 if (!cache
->free_space_ctl
) {
8928 cache
->key
.objectid
= start
;
8929 cache
->key
.offset
= size
;
8930 cache
->key
.type
= BTRFS_BLOCK_GROUP_ITEM_KEY
;
8932 cache
->sectorsize
= root
->sectorsize
;
8933 cache
->fs_info
= root
->fs_info
;
8934 cache
->full_stripe_len
= btrfs_full_stripe_len(root
,
8935 &root
->fs_info
->mapping_tree
,
8937 atomic_set(&cache
->count
, 1);
8938 spin_lock_init(&cache
->lock
);
8939 init_rwsem(&cache
->data_rwsem
);
8940 INIT_LIST_HEAD(&cache
->list
);
8941 INIT_LIST_HEAD(&cache
->cluster_list
);
8942 INIT_LIST_HEAD(&cache
->bg_list
);
8943 INIT_LIST_HEAD(&cache
->ro_list
);
8944 INIT_LIST_HEAD(&cache
->dirty_list
);
8945 btrfs_init_free_space_ctl(cache
);
8946 atomic_set(&cache
->trimming
, 0);
8951 int btrfs_read_block_groups(struct btrfs_root
*root
)
8953 struct btrfs_path
*path
;
8955 struct btrfs_block_group_cache
*cache
;
8956 struct btrfs_fs_info
*info
= root
->fs_info
;
8957 struct btrfs_space_info
*space_info
;
8958 struct btrfs_key key
;
8959 struct btrfs_key found_key
;
8960 struct extent_buffer
*leaf
;
8964 root
= info
->extent_root
;
8967 key
.type
= BTRFS_BLOCK_GROUP_ITEM_KEY
;
8968 path
= btrfs_alloc_path();
8973 cache_gen
= btrfs_super_cache_generation(root
->fs_info
->super_copy
);
8974 if (btrfs_test_opt(root
, SPACE_CACHE
) &&
8975 btrfs_super_generation(root
->fs_info
->super_copy
) != cache_gen
)
8977 if (btrfs_test_opt(root
, CLEAR_CACHE
))
8981 ret
= find_first_block_group(root
, path
, &key
);
8987 leaf
= path
->nodes
[0];
8988 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
8990 cache
= btrfs_create_block_group_cache(root
, found_key
.objectid
,
8999 * When we mount with old space cache, we need to
9000 * set BTRFS_DC_CLEAR and set dirty flag.
9002 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9003 * truncate the old free space cache inode and
9005 * b) Setting 'dirty flag' makes sure that we flush
9006 * the new space cache info onto disk.
9008 if (btrfs_test_opt(root
, SPACE_CACHE
))
9009 cache
->disk_cache_state
= BTRFS_DC_CLEAR
;
9012 read_extent_buffer(leaf
, &cache
->item
,
9013 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
9014 sizeof(cache
->item
));
9015 cache
->flags
= btrfs_block_group_flags(&cache
->item
);
9017 key
.objectid
= found_key
.objectid
+ found_key
.offset
;
9018 btrfs_release_path(path
);
9021 * We need to exclude the super stripes now so that the space
9022 * info has super bytes accounted for, otherwise we'll think
9023 * we have more space than we actually do.
9025 ret
= exclude_super_stripes(root
, cache
);
9028 * We may have excluded something, so call this just in
9031 free_excluded_extents(root
, cache
);
9032 btrfs_put_block_group(cache
);
9037 * check for two cases, either we are full, and therefore
9038 * don't need to bother with the caching work since we won't
9039 * find any space, or we are empty, and we can just add all
9040 * the space in and be done with it. This saves us _alot_ of
9041 * time, particularly in the full case.
9043 if (found_key
.offset
== btrfs_block_group_used(&cache
->item
)) {
9044 cache
->last_byte_to_unpin
= (u64
)-1;
9045 cache
->cached
= BTRFS_CACHE_FINISHED
;
9046 free_excluded_extents(root
, cache
);
9047 } else if (btrfs_block_group_used(&cache
->item
) == 0) {
9048 cache
->last_byte_to_unpin
= (u64
)-1;
9049 cache
->cached
= BTRFS_CACHE_FINISHED
;
9050 add_new_free_space(cache
, root
->fs_info
,
9052 found_key
.objectid
+
9054 free_excluded_extents(root
, cache
);
9057 ret
= btrfs_add_block_group_cache(root
->fs_info
, cache
);
9059 btrfs_remove_free_space_cache(cache
);
9060 btrfs_put_block_group(cache
);
9064 ret
= update_space_info(info
, cache
->flags
, found_key
.offset
,
9065 btrfs_block_group_used(&cache
->item
),
9068 btrfs_remove_free_space_cache(cache
);
9069 spin_lock(&info
->block_group_cache_lock
);
9070 rb_erase(&cache
->cache_node
,
9071 &info
->block_group_cache_tree
);
9072 RB_CLEAR_NODE(&cache
->cache_node
);
9073 spin_unlock(&info
->block_group_cache_lock
);
9074 btrfs_put_block_group(cache
);
9078 cache
->space_info
= space_info
;
9079 spin_lock(&cache
->space_info
->lock
);
9080 cache
->space_info
->bytes_readonly
+= cache
->bytes_super
;
9081 spin_unlock(&cache
->space_info
->lock
);
9083 __link_block_group(space_info
, cache
);
9085 set_avail_alloc_bits(root
->fs_info
, cache
->flags
);
9086 if (btrfs_chunk_readonly(root
, cache
->key
.objectid
)) {
9087 set_block_group_ro(cache
, 1);
9088 } else if (btrfs_block_group_used(&cache
->item
) == 0) {
9089 spin_lock(&info
->unused_bgs_lock
);
9090 /* Should always be true but just in case. */
9091 if (list_empty(&cache
->bg_list
)) {
9092 btrfs_get_block_group(cache
);
9093 list_add_tail(&cache
->bg_list
,
9096 spin_unlock(&info
->unused_bgs_lock
);
9100 list_for_each_entry_rcu(space_info
, &root
->fs_info
->space_info
, list
) {
9101 if (!(get_alloc_profile(root
, space_info
->flags
) &
9102 (BTRFS_BLOCK_GROUP_RAID10
|
9103 BTRFS_BLOCK_GROUP_RAID1
|
9104 BTRFS_BLOCK_GROUP_RAID5
|
9105 BTRFS_BLOCK_GROUP_RAID6
|
9106 BTRFS_BLOCK_GROUP_DUP
)))
9109 * avoid allocating from un-mirrored block group if there are
9110 * mirrored block groups.
9112 list_for_each_entry(cache
,
9113 &space_info
->block_groups
[BTRFS_RAID_RAID0
],
9115 set_block_group_ro(cache
, 1);
9116 list_for_each_entry(cache
,
9117 &space_info
->block_groups
[BTRFS_RAID_SINGLE
],
9119 set_block_group_ro(cache
, 1);
9122 init_global_block_rsv(info
);
9125 btrfs_free_path(path
);
9129 void btrfs_create_pending_block_groups(struct btrfs_trans_handle
*trans
,
9130 struct btrfs_root
*root
)
9132 struct btrfs_block_group_cache
*block_group
, *tmp
;
9133 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
9134 struct btrfs_block_group_item item
;
9135 struct btrfs_key key
;
9138 list_for_each_entry_safe(block_group
, tmp
, &trans
->new_bgs
, bg_list
) {
9142 spin_lock(&block_group
->lock
);
9143 memcpy(&item
, &block_group
->item
, sizeof(item
));
9144 memcpy(&key
, &block_group
->key
, sizeof(key
));
9145 spin_unlock(&block_group
->lock
);
9147 ret
= btrfs_insert_item(trans
, extent_root
, &key
, &item
,
9150 btrfs_abort_transaction(trans
, extent_root
, ret
);
9151 ret
= btrfs_finish_chunk_alloc(trans
, extent_root
,
9152 key
.objectid
, key
.offset
);
9154 btrfs_abort_transaction(trans
, extent_root
, ret
);
9156 list_del_init(&block_group
->bg_list
);
9160 int btrfs_make_block_group(struct btrfs_trans_handle
*trans
,
9161 struct btrfs_root
*root
, u64 bytes_used
,
9162 u64 type
, u64 chunk_objectid
, u64 chunk_offset
,
9166 struct btrfs_root
*extent_root
;
9167 struct btrfs_block_group_cache
*cache
;
9169 extent_root
= root
->fs_info
->extent_root
;
9171 btrfs_set_log_full_commit(root
->fs_info
, trans
);
9173 cache
= btrfs_create_block_group_cache(root
, chunk_offset
, size
);
9177 btrfs_set_block_group_used(&cache
->item
, bytes_used
);
9178 btrfs_set_block_group_chunk_objectid(&cache
->item
, chunk_objectid
);
9179 btrfs_set_block_group_flags(&cache
->item
, type
);
9181 cache
->flags
= type
;
9182 cache
->last_byte_to_unpin
= (u64
)-1;
9183 cache
->cached
= BTRFS_CACHE_FINISHED
;
9184 ret
= exclude_super_stripes(root
, cache
);
9187 * We may have excluded something, so call this just in
9190 free_excluded_extents(root
, cache
);
9191 btrfs_put_block_group(cache
);
9195 add_new_free_space(cache
, root
->fs_info
, chunk_offset
,
9196 chunk_offset
+ size
);
9198 free_excluded_extents(root
, cache
);
9200 ret
= btrfs_add_block_group_cache(root
->fs_info
, cache
);
9202 btrfs_remove_free_space_cache(cache
);
9203 btrfs_put_block_group(cache
);
9207 ret
= update_space_info(root
->fs_info
, cache
->flags
, size
, bytes_used
,
9208 &cache
->space_info
);
9210 btrfs_remove_free_space_cache(cache
);
9211 spin_lock(&root
->fs_info
->block_group_cache_lock
);
9212 rb_erase(&cache
->cache_node
,
9213 &root
->fs_info
->block_group_cache_tree
);
9214 RB_CLEAR_NODE(&cache
->cache_node
);
9215 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
9216 btrfs_put_block_group(cache
);
9219 update_global_block_rsv(root
->fs_info
);
9221 spin_lock(&cache
->space_info
->lock
);
9222 cache
->space_info
->bytes_readonly
+= cache
->bytes_super
;
9223 spin_unlock(&cache
->space_info
->lock
);
9225 __link_block_group(cache
->space_info
, cache
);
9227 list_add_tail(&cache
->bg_list
, &trans
->new_bgs
);
9229 set_avail_alloc_bits(extent_root
->fs_info
, type
);
9234 static void clear_avail_alloc_bits(struct btrfs_fs_info
*fs_info
, u64 flags
)
9236 u64 extra_flags
= chunk_to_extended(flags
) &
9237 BTRFS_EXTENDED_PROFILE_MASK
;
9239 write_seqlock(&fs_info
->profiles_lock
);
9240 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
9241 fs_info
->avail_data_alloc_bits
&= ~extra_flags
;
9242 if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
9243 fs_info
->avail_metadata_alloc_bits
&= ~extra_flags
;
9244 if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
9245 fs_info
->avail_system_alloc_bits
&= ~extra_flags
;
9246 write_sequnlock(&fs_info
->profiles_lock
);
9249 int btrfs_remove_block_group(struct btrfs_trans_handle
*trans
,
9250 struct btrfs_root
*root
, u64 group_start
,
9251 struct extent_map
*em
)
9253 struct btrfs_path
*path
;
9254 struct btrfs_block_group_cache
*block_group
;
9255 struct btrfs_free_cluster
*cluster
;
9256 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
9257 struct btrfs_key key
;
9258 struct inode
*inode
;
9259 struct kobject
*kobj
= NULL
;
9263 struct btrfs_caching_control
*caching_ctl
= NULL
;
9266 root
= root
->fs_info
->extent_root
;
9268 block_group
= btrfs_lookup_block_group(root
->fs_info
, group_start
);
9269 BUG_ON(!block_group
);
9270 BUG_ON(!block_group
->ro
);
9273 * Free the reserved super bytes from this block group before
9276 free_excluded_extents(root
, block_group
);
9278 memcpy(&key
, &block_group
->key
, sizeof(key
));
9279 index
= get_block_group_index(block_group
);
9280 if (block_group
->flags
& (BTRFS_BLOCK_GROUP_DUP
|
9281 BTRFS_BLOCK_GROUP_RAID1
|
9282 BTRFS_BLOCK_GROUP_RAID10
))
9287 /* make sure this block group isn't part of an allocation cluster */
9288 cluster
= &root
->fs_info
->data_alloc_cluster
;
9289 spin_lock(&cluster
->refill_lock
);
9290 btrfs_return_cluster_to_free_space(block_group
, cluster
);
9291 spin_unlock(&cluster
->refill_lock
);
9294 * make sure this block group isn't part of a metadata
9295 * allocation cluster
9297 cluster
= &root
->fs_info
->meta_alloc_cluster
;
9298 spin_lock(&cluster
->refill_lock
);
9299 btrfs_return_cluster_to_free_space(block_group
, cluster
);
9300 spin_unlock(&cluster
->refill_lock
);
9302 path
= btrfs_alloc_path();
9308 inode
= lookup_free_space_inode(tree_root
, block_group
, path
);
9309 if (!IS_ERR(inode
)) {
9310 ret
= btrfs_orphan_add(trans
, inode
);
9312 btrfs_add_delayed_iput(inode
);
9316 /* One for the block groups ref */
9317 spin_lock(&block_group
->lock
);
9318 if (block_group
->iref
) {
9319 block_group
->iref
= 0;
9320 block_group
->inode
= NULL
;
9321 spin_unlock(&block_group
->lock
);
9324 spin_unlock(&block_group
->lock
);
9326 /* One for our lookup ref */
9327 btrfs_add_delayed_iput(inode
);
9330 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
9331 key
.offset
= block_group
->key
.objectid
;
9334 ret
= btrfs_search_slot(trans
, tree_root
, &key
, path
, -1, 1);
9338 btrfs_release_path(path
);
9340 ret
= btrfs_del_item(trans
, tree_root
, path
);
9343 btrfs_release_path(path
);
9346 spin_lock(&root
->fs_info
->block_group_cache_lock
);
9347 rb_erase(&block_group
->cache_node
,
9348 &root
->fs_info
->block_group_cache_tree
);
9349 RB_CLEAR_NODE(&block_group
->cache_node
);
9351 if (root
->fs_info
->first_logical_byte
== block_group
->key
.objectid
)
9352 root
->fs_info
->first_logical_byte
= (u64
)-1;
9353 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
9355 down_write(&block_group
->space_info
->groups_sem
);
9357 * we must use list_del_init so people can check to see if they
9358 * are still on the list after taking the semaphore
9360 list_del_init(&block_group
->list
);
9361 list_del_init(&block_group
->ro_list
);
9362 if (list_empty(&block_group
->space_info
->block_groups
[index
])) {
9363 kobj
= block_group
->space_info
->block_group_kobjs
[index
];
9364 block_group
->space_info
->block_group_kobjs
[index
] = NULL
;
9365 clear_avail_alloc_bits(root
->fs_info
, block_group
->flags
);
9367 up_write(&block_group
->space_info
->groups_sem
);
9373 if (block_group
->has_caching_ctl
)
9374 caching_ctl
= get_caching_control(block_group
);
9375 if (block_group
->cached
== BTRFS_CACHE_STARTED
)
9376 wait_block_group_cache_done(block_group
);
9377 if (block_group
->has_caching_ctl
) {
9378 down_write(&root
->fs_info
->commit_root_sem
);
9380 struct btrfs_caching_control
*ctl
;
9382 list_for_each_entry(ctl
,
9383 &root
->fs_info
->caching_block_groups
, list
)
9384 if (ctl
->block_group
== block_group
) {
9386 atomic_inc(&caching_ctl
->count
);
9391 list_del_init(&caching_ctl
->list
);
9392 up_write(&root
->fs_info
->commit_root_sem
);
9394 /* Once for the caching bgs list and once for us. */
9395 put_caching_control(caching_ctl
);
9396 put_caching_control(caching_ctl
);
9400 spin_lock(&trans
->transaction
->dirty_bgs_lock
);
9401 if (!list_empty(&block_group
->dirty_list
)) {
9402 list_del_init(&block_group
->dirty_list
);
9403 btrfs_put_block_group(block_group
);
9405 spin_unlock(&trans
->transaction
->dirty_bgs_lock
);
9407 btrfs_remove_free_space_cache(block_group
);
9409 spin_lock(&block_group
->space_info
->lock
);
9410 block_group
->space_info
->total_bytes
-= block_group
->key
.offset
;
9411 block_group
->space_info
->bytes_readonly
-= block_group
->key
.offset
;
9412 block_group
->space_info
->disk_total
-= block_group
->key
.offset
* factor
;
9413 spin_unlock(&block_group
->space_info
->lock
);
9415 memcpy(&key
, &block_group
->key
, sizeof(key
));
9418 if (!list_empty(&em
->list
)) {
9419 /* We're in the transaction->pending_chunks list. */
9420 free_extent_map(em
);
9422 spin_lock(&block_group
->lock
);
9423 block_group
->removed
= 1;
9425 * At this point trimming can't start on this block group, because we
9426 * removed the block group from the tree fs_info->block_group_cache_tree
9427 * so no one can't find it anymore and even if someone already got this
9428 * block group before we removed it from the rbtree, they have already
9429 * incremented block_group->trimming - if they didn't, they won't find
9430 * any free space entries because we already removed them all when we
9431 * called btrfs_remove_free_space_cache().
9433 * And we must not remove the extent map from the fs_info->mapping_tree
9434 * to prevent the same logical address range and physical device space
9435 * ranges from being reused for a new block group. This is because our
9436 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
9437 * completely transactionless, so while it is trimming a range the
9438 * currently running transaction might finish and a new one start,
9439 * allowing for new block groups to be created that can reuse the same
9440 * physical device locations unless we take this special care.
9442 remove_em
= (atomic_read(&block_group
->trimming
) == 0);
9444 * Make sure a trimmer task always sees the em in the pinned_chunks list
9445 * if it sees block_group->removed == 1 (needs to lock block_group->lock
9446 * before checking block_group->removed).
9450 * Our em might be in trans->transaction->pending_chunks which
9451 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
9452 * and so is the fs_info->pinned_chunks list.
9454 * So at this point we must be holding the chunk_mutex to avoid
9455 * any races with chunk allocation (more specifically at
9456 * volumes.c:contains_pending_extent()), to ensure it always
9457 * sees the em, either in the pending_chunks list or in the
9458 * pinned_chunks list.
9460 list_move_tail(&em
->list
, &root
->fs_info
->pinned_chunks
);
9462 spin_unlock(&block_group
->lock
);
9465 struct extent_map_tree
*em_tree
;
9467 em_tree
= &root
->fs_info
->mapping_tree
.map_tree
;
9468 write_lock(&em_tree
->lock
);
9470 * The em might be in the pending_chunks list, so make sure the
9471 * chunk mutex is locked, since remove_extent_mapping() will
9472 * delete us from that list.
9474 remove_extent_mapping(em_tree
, em
);
9475 write_unlock(&em_tree
->lock
);
9476 /* once for the tree */
9477 free_extent_map(em
);
9480 unlock_chunks(root
);
9482 btrfs_put_block_group(block_group
);
9483 btrfs_put_block_group(block_group
);
9485 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
9491 ret
= btrfs_del_item(trans
, root
, path
);
9493 btrfs_free_path(path
);
9498 * Process the unused_bgs list and remove any that don't have any allocated
9499 * space inside of them.
9501 void btrfs_delete_unused_bgs(struct btrfs_fs_info
*fs_info
)
9503 struct btrfs_block_group_cache
*block_group
;
9504 struct btrfs_space_info
*space_info
;
9505 struct btrfs_root
*root
= fs_info
->extent_root
;
9506 struct btrfs_trans_handle
*trans
;
9512 spin_lock(&fs_info
->unused_bgs_lock
);
9513 while (!list_empty(&fs_info
->unused_bgs
)) {
9516 block_group
= list_first_entry(&fs_info
->unused_bgs
,
9517 struct btrfs_block_group_cache
,
9519 space_info
= block_group
->space_info
;
9520 list_del_init(&block_group
->bg_list
);
9521 if (ret
|| btrfs_mixed_space_info(space_info
)) {
9522 btrfs_put_block_group(block_group
);
9525 spin_unlock(&fs_info
->unused_bgs_lock
);
9527 /* Don't want to race with allocators so take the groups_sem */
9528 down_write(&space_info
->groups_sem
);
9529 spin_lock(&block_group
->lock
);
9530 if (block_group
->reserved
||
9531 btrfs_block_group_used(&block_group
->item
) ||
9534 * We want to bail if we made new allocations or have
9535 * outstanding allocations in this block group. We do
9536 * the ro check in case balance is currently acting on
9539 spin_unlock(&block_group
->lock
);
9540 up_write(&space_info
->groups_sem
);
9543 spin_unlock(&block_group
->lock
);
9545 /* We don't want to force the issue, only flip if it's ok. */
9546 ret
= set_block_group_ro(block_group
, 0);
9547 up_write(&space_info
->groups_sem
);
9554 * Want to do this before we do anything else so we can recover
9555 * properly if we fail to join the transaction.
9557 /* 1 for btrfs_orphan_reserve_metadata() */
9558 trans
= btrfs_start_transaction(root
, 1);
9559 if (IS_ERR(trans
)) {
9560 btrfs_set_block_group_rw(root
, block_group
);
9561 ret
= PTR_ERR(trans
);
9566 * We could have pending pinned extents for this block group,
9567 * just delete them, we don't care about them anymore.
9569 start
= block_group
->key
.objectid
;
9570 end
= start
+ block_group
->key
.offset
- 1;
9572 * Hold the unused_bg_unpin_mutex lock to avoid racing with
9573 * btrfs_finish_extent_commit(). If we are at transaction N,
9574 * another task might be running finish_extent_commit() for the
9575 * previous transaction N - 1, and have seen a range belonging
9576 * to the block group in freed_extents[] before we were able to
9577 * clear the whole block group range from freed_extents[]. This
9578 * means that task can lookup for the block group after we
9579 * unpinned it from freed_extents[] and removed it, leading to
9580 * a BUG_ON() at btrfs_unpin_extent_range().
9582 mutex_lock(&fs_info
->unused_bg_unpin_mutex
);
9583 ret
= clear_extent_bits(&fs_info
->freed_extents
[0], start
, end
,
9584 EXTENT_DIRTY
, GFP_NOFS
);
9586 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
9587 btrfs_set_block_group_rw(root
, block_group
);
9590 ret
= clear_extent_bits(&fs_info
->freed_extents
[1], start
, end
,
9591 EXTENT_DIRTY
, GFP_NOFS
);
9593 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
9594 btrfs_set_block_group_rw(root
, block_group
);
9597 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
9599 /* Reset pinned so btrfs_put_block_group doesn't complain */
9600 block_group
->pinned
= 0;
9603 * Btrfs_remove_chunk will abort the transaction if things go
9606 ret
= btrfs_remove_chunk(trans
, root
,
9607 block_group
->key
.objectid
);
9609 btrfs_end_transaction(trans
, root
);
9611 btrfs_put_block_group(block_group
);
9612 spin_lock(&fs_info
->unused_bgs_lock
);
9614 spin_unlock(&fs_info
->unused_bgs_lock
);
9617 int btrfs_init_space_info(struct btrfs_fs_info
*fs_info
)
9619 struct btrfs_space_info
*space_info
;
9620 struct btrfs_super_block
*disk_super
;
9626 disk_super
= fs_info
->super_copy
;
9627 if (!btrfs_super_root(disk_super
))
9630 features
= btrfs_super_incompat_flags(disk_super
);
9631 if (features
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
)
9634 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
9635 ret
= update_space_info(fs_info
, flags
, 0, 0, &space_info
);
9640 flags
= BTRFS_BLOCK_GROUP_METADATA
| BTRFS_BLOCK_GROUP_DATA
;
9641 ret
= update_space_info(fs_info
, flags
, 0, 0, &space_info
);
9643 flags
= BTRFS_BLOCK_GROUP_METADATA
;
9644 ret
= update_space_info(fs_info
, flags
, 0, 0, &space_info
);
9648 flags
= BTRFS_BLOCK_GROUP_DATA
;
9649 ret
= update_space_info(fs_info
, flags
, 0, 0, &space_info
);
9655 int btrfs_error_unpin_extent_range(struct btrfs_root
*root
, u64 start
, u64 end
)
9657 return unpin_extent_range(root
, start
, end
, false);
9660 int btrfs_trim_fs(struct btrfs_root
*root
, struct fstrim_range
*range
)
9662 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
9663 struct btrfs_block_group_cache
*cache
= NULL
;
9668 u64 total_bytes
= btrfs_super_total_bytes(fs_info
->super_copy
);
9672 * try to trim all FS space, our block group may start from non-zero.
9674 if (range
->len
== total_bytes
)
9675 cache
= btrfs_lookup_first_block_group(fs_info
, range
->start
);
9677 cache
= btrfs_lookup_block_group(fs_info
, range
->start
);
9680 if (cache
->key
.objectid
>= (range
->start
+ range
->len
)) {
9681 btrfs_put_block_group(cache
);
9685 start
= max(range
->start
, cache
->key
.objectid
);
9686 end
= min(range
->start
+ range
->len
,
9687 cache
->key
.objectid
+ cache
->key
.offset
);
9689 if (end
- start
>= range
->minlen
) {
9690 if (!block_group_cache_done(cache
)) {
9691 ret
= cache_block_group(cache
, 0);
9693 btrfs_put_block_group(cache
);
9696 ret
= wait_block_group_cache_done(cache
);
9698 btrfs_put_block_group(cache
);
9702 ret
= btrfs_trim_block_group(cache
,
9708 trimmed
+= group_trimmed
;
9710 btrfs_put_block_group(cache
);
9715 cache
= next_block_group(fs_info
->tree_root
, cache
);
9718 range
->len
= trimmed
;
9723 * btrfs_{start,end}_write_no_snapshoting() are similar to
9724 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
9725 * data into the page cache through nocow before the subvolume is snapshoted,
9726 * but flush the data into disk after the snapshot creation, or to prevent
9727 * operations while snapshoting is ongoing and that cause the snapshot to be
9728 * inconsistent (writes followed by expanding truncates for example).
9730 void btrfs_end_write_no_snapshoting(struct btrfs_root
*root
)
9732 percpu_counter_dec(&root
->subv_writers
->counter
);
9734 * Make sure counter is updated before we wake up
9738 if (waitqueue_active(&root
->subv_writers
->wait
))
9739 wake_up(&root
->subv_writers
->wait
);
9742 int btrfs_start_write_no_snapshoting(struct btrfs_root
*root
)
9744 if (atomic_read(&root
->will_be_snapshoted
))
9747 percpu_counter_inc(&root
->subv_writers
->counter
);
9749 * Make sure counter is updated before we check for snapshot creation.
9752 if (atomic_read(&root
->will_be_snapshoted
)) {
9753 btrfs_end_write_no_snapshoting(root
);