2 * Generic waiting primitives.
4 * (C) 2004 Nadia Yvette Chambers, Oracle
6 #include <linux/init.h>
7 #include <linux/export.h>
8 #include <linux/sched.h>
10 #include <linux/wait.h>
11 #include <linux/hash.h>
12 #include <linux/kthread.h>
14 void __init_waitqueue_head(wait_queue_head_t
*q
, const char *name
, struct lock_class_key
*key
)
16 spin_lock_init(&q
->lock
);
17 lockdep_set_class_and_name(&q
->lock
, key
, name
);
18 INIT_LIST_HEAD(&q
->task_list
);
21 EXPORT_SYMBOL(__init_waitqueue_head
);
23 void add_wait_queue(wait_queue_head_t
*q
, wait_queue_t
*wait
)
27 wait
->flags
&= ~WQ_FLAG_EXCLUSIVE
;
28 spin_lock_irqsave(&q
->lock
, flags
);
29 __add_wait_queue(q
, wait
);
30 spin_unlock_irqrestore(&q
->lock
, flags
);
32 EXPORT_SYMBOL(add_wait_queue
);
34 void add_wait_queue_exclusive(wait_queue_head_t
*q
, wait_queue_t
*wait
)
38 wait
->flags
|= WQ_FLAG_EXCLUSIVE
;
39 spin_lock_irqsave(&q
->lock
, flags
);
40 __add_wait_queue_tail(q
, wait
);
41 spin_unlock_irqrestore(&q
->lock
, flags
);
43 EXPORT_SYMBOL(add_wait_queue_exclusive
);
45 void remove_wait_queue(wait_queue_head_t
*q
, wait_queue_t
*wait
)
49 spin_lock_irqsave(&q
->lock
, flags
);
50 __remove_wait_queue(q
, wait
);
51 spin_unlock_irqrestore(&q
->lock
, flags
);
53 EXPORT_SYMBOL(remove_wait_queue
);
57 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
58 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
59 * number) then we wake all the non-exclusive tasks and one exclusive task.
61 * There are circumstances in which we can try to wake a task which has already
62 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
63 * zero in this (rare) case, and we handle it by continuing to scan the queue.
65 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
66 int nr_exclusive
, int wake_flags
, void *key
)
68 wait_queue_t
*curr
, *next
;
70 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
71 unsigned flags
= curr
->flags
;
73 if (curr
->func(curr
, mode
, wake_flags
, key
) &&
74 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
80 * __wake_up - wake up threads blocked on a waitqueue.
82 * @mode: which threads
83 * @nr_exclusive: how many wake-one or wake-many threads to wake up
84 * @key: is directly passed to the wakeup function
86 * It may be assumed that this function implies a write memory barrier before
87 * changing the task state if and only if any tasks are woken up.
89 void __wake_up(wait_queue_head_t
*q
, unsigned int mode
,
90 int nr_exclusive
, void *key
)
94 spin_lock_irqsave(&q
->lock
, flags
);
95 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
96 spin_unlock_irqrestore(&q
->lock
, flags
);
98 EXPORT_SYMBOL(__wake_up
);
101 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
103 void __wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
, int nr
)
105 __wake_up_common(q
, mode
, nr
, 0, NULL
);
107 EXPORT_SYMBOL_GPL(__wake_up_locked
);
109 void __wake_up_locked_key(wait_queue_head_t
*q
, unsigned int mode
, void *key
)
111 __wake_up_common(q
, mode
, 1, 0, key
);
113 EXPORT_SYMBOL_GPL(__wake_up_locked_key
);
116 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
118 * @mode: which threads
119 * @nr_exclusive: how many wake-one or wake-many threads to wake up
120 * @key: opaque value to be passed to wakeup targets
122 * The sync wakeup differs that the waker knows that it will schedule
123 * away soon, so while the target thread will be woken up, it will not
124 * be migrated to another CPU - ie. the two threads are 'synchronized'
125 * with each other. This can prevent needless bouncing between CPUs.
127 * On UP it can prevent extra preemption.
129 * It may be assumed that this function implies a write memory barrier before
130 * changing the task state if and only if any tasks are woken up.
132 void __wake_up_sync_key(wait_queue_head_t
*q
, unsigned int mode
,
133 int nr_exclusive
, void *key
)
136 int wake_flags
= 1; /* XXX WF_SYNC */
141 if (unlikely(nr_exclusive
!= 1))
144 spin_lock_irqsave(&q
->lock
, flags
);
145 __wake_up_common(q
, mode
, nr_exclusive
, wake_flags
, key
);
146 spin_unlock_irqrestore(&q
->lock
, flags
);
148 EXPORT_SYMBOL_GPL(__wake_up_sync_key
);
151 * __wake_up_sync - see __wake_up_sync_key()
153 void __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
155 __wake_up_sync_key(q
, mode
, nr_exclusive
, NULL
);
157 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
160 * Note: we use "set_current_state()" _after_ the wait-queue add,
161 * because we need a memory barrier there on SMP, so that any
162 * wake-function that tests for the wait-queue being active
163 * will be guaranteed to see waitqueue addition _or_ subsequent
164 * tests in this thread will see the wakeup having taken place.
166 * The spin_unlock() itself is semi-permeable and only protects
167 * one way (it only protects stuff inside the critical region and
168 * stops them from bleeding out - it would still allow subsequent
169 * loads to move into the critical region).
172 prepare_to_wait(wait_queue_head_t
*q
, wait_queue_t
*wait
, int state
)
176 wait
->flags
&= ~WQ_FLAG_EXCLUSIVE
;
177 spin_lock_irqsave(&q
->lock
, flags
);
178 if (list_empty(&wait
->task_list
))
179 __add_wait_queue(q
, wait
);
180 set_current_state(state
);
181 spin_unlock_irqrestore(&q
->lock
, flags
);
183 EXPORT_SYMBOL(prepare_to_wait
);
186 prepare_to_wait_exclusive(wait_queue_head_t
*q
, wait_queue_t
*wait
, int state
)
190 wait
->flags
|= WQ_FLAG_EXCLUSIVE
;
191 spin_lock_irqsave(&q
->lock
, flags
);
192 if (list_empty(&wait
->task_list
))
193 __add_wait_queue_tail(q
, wait
);
194 set_current_state(state
);
195 spin_unlock_irqrestore(&q
->lock
, flags
);
197 EXPORT_SYMBOL(prepare_to_wait_exclusive
);
199 void init_wait_entry(wait_queue_t
*wait
, int flags
)
202 wait
->private = current
;
203 wait
->func
= autoremove_wake_function
;
204 INIT_LIST_HEAD(&wait
->task_list
);
206 EXPORT_SYMBOL(init_wait_entry
);
208 long prepare_to_wait_event(wait_queue_head_t
*q
, wait_queue_t
*wait
, int state
)
213 spin_lock_irqsave(&q
->lock
, flags
);
214 if (unlikely(signal_pending_state(state
, current
))) {
216 * Exclusive waiter must not fail if it was selected by wakeup,
217 * it should "consume" the condition we were waiting for.
219 * The caller will recheck the condition and return success if
220 * we were already woken up, we can not miss the event because
221 * wakeup locks/unlocks the same q->lock.
223 * But we need to ensure that set-condition + wakeup after that
224 * can't see us, it should wake up another exclusive waiter if
227 list_del_init(&wait
->task_list
);
230 if (list_empty(&wait
->task_list
)) {
231 if (wait
->flags
& WQ_FLAG_EXCLUSIVE
)
232 __add_wait_queue_tail(q
, wait
);
234 __add_wait_queue(q
, wait
);
236 set_current_state(state
);
238 spin_unlock_irqrestore(&q
->lock
, flags
);
242 EXPORT_SYMBOL(prepare_to_wait_event
);
245 * finish_wait - clean up after waiting in a queue
246 * @q: waitqueue waited on
247 * @wait: wait descriptor
249 * Sets current thread back to running state and removes
250 * the wait descriptor from the given waitqueue if still
253 void finish_wait(wait_queue_head_t
*q
, wait_queue_t
*wait
)
257 __set_current_state(TASK_RUNNING
);
259 * We can check for list emptiness outside the lock
261 * - we use the "careful" check that verifies both
262 * the next and prev pointers, so that there cannot
263 * be any half-pending updates in progress on other
264 * CPU's that we haven't seen yet (and that might
265 * still change the stack area.
267 * - all other users take the lock (ie we can only
268 * have _one_ other CPU that looks at or modifies
271 if (!list_empty_careful(&wait
->task_list
)) {
272 spin_lock_irqsave(&q
->lock
, flags
);
273 list_del_init(&wait
->task_list
);
274 spin_unlock_irqrestore(&q
->lock
, flags
);
277 EXPORT_SYMBOL(finish_wait
);
279 int autoremove_wake_function(wait_queue_t
*wait
, unsigned mode
, int sync
, void *key
)
281 int ret
= default_wake_function(wait
, mode
, sync
, key
);
284 list_del_init(&wait
->task_list
);
287 EXPORT_SYMBOL(autoremove_wake_function
);
289 static inline bool is_kthread_should_stop(void)
291 return (current
->flags
& PF_KTHREAD
) && kthread_should_stop();
295 * DEFINE_WAIT_FUNC(wait, woken_wake_func);
297 * add_wait_queue(&wq, &wait);
302 * p->state = mode; condition = true;
303 * smp_mb(); // A smp_wmb(); // C
304 * if (!wait->flags & WQ_FLAG_WOKEN) wait->flags |= WQ_FLAG_WOKEN;
305 * schedule() try_to_wake_up();
306 * p->state = TASK_RUNNING; ~~~~~~~~~~~~~~~~~~
307 * wait->flags &= ~WQ_FLAG_WOKEN; condition = true;
308 * smp_mb() // B smp_wmb(); // C
309 * wait->flags |= WQ_FLAG_WOKEN;
311 * remove_wait_queue(&wq, &wait);
314 long wait_woken(wait_queue_t
*wait
, unsigned mode
, long timeout
)
316 set_current_state(mode
); /* A */
318 * The above implies an smp_mb(), which matches with the smp_wmb() from
319 * woken_wake_function() such that if we observe WQ_FLAG_WOKEN we must
320 * also observe all state before the wakeup.
322 if (!(wait
->flags
& WQ_FLAG_WOKEN
) && !is_kthread_should_stop())
323 timeout
= schedule_timeout(timeout
);
324 __set_current_state(TASK_RUNNING
);
327 * The below implies an smp_mb(), it too pairs with the smp_wmb() from
328 * woken_wake_function() such that we must either observe the wait
329 * condition being true _OR_ WQ_FLAG_WOKEN such that we will not miss
332 smp_store_mb(wait
->flags
, wait
->flags
& ~WQ_FLAG_WOKEN
); /* B */
336 EXPORT_SYMBOL(wait_woken
);
338 int woken_wake_function(wait_queue_t
*wait
, unsigned mode
, int sync
, void *key
)
341 * Although this function is called under waitqueue lock, LOCK
342 * doesn't imply write barrier and the users expects write
343 * barrier semantics on wakeup functions. The following
344 * smp_wmb() is equivalent to smp_wmb() in try_to_wake_up()
345 * and is paired with smp_store_mb() in wait_woken().
348 wait
->flags
|= WQ_FLAG_WOKEN
;
350 return default_wake_function(wait
, mode
, sync
, key
);
352 EXPORT_SYMBOL(woken_wake_function
);
354 int wake_bit_function(wait_queue_t
*wait
, unsigned mode
, int sync
, void *arg
)
356 struct wait_bit_key
*key
= arg
;
357 struct wait_bit_queue
*wait_bit
358 = container_of(wait
, struct wait_bit_queue
, wait
);
360 if (wait_bit
->key
.flags
!= key
->flags
||
361 wait_bit
->key
.bit_nr
!= key
->bit_nr
||
362 test_bit(key
->bit_nr
, key
->flags
))
365 return autoremove_wake_function(wait
, mode
, sync
, key
);
367 EXPORT_SYMBOL(wake_bit_function
);
370 * To allow interruptible waiting and asynchronous (i.e. nonblocking)
371 * waiting, the actions of __wait_on_bit() and __wait_on_bit_lock() are
372 * permitted return codes. Nonzero return codes halt waiting and return.
375 __wait_on_bit(wait_queue_head_t
*wq
, struct wait_bit_queue
*q
,
376 wait_bit_action_f
*action
, unsigned mode
)
381 prepare_to_wait(wq
, &q
->wait
, mode
);
382 if (test_bit(q
->key
.bit_nr
, q
->key
.flags
))
383 ret
= (*action
)(&q
->key
, mode
);
384 } while (test_bit(q
->key
.bit_nr
, q
->key
.flags
) && !ret
);
385 finish_wait(wq
, &q
->wait
);
388 EXPORT_SYMBOL(__wait_on_bit
);
390 int __sched
out_of_line_wait_on_bit(void *word
, int bit
,
391 wait_bit_action_f
*action
, unsigned mode
)
393 wait_queue_head_t
*wq
= bit_waitqueue(word
, bit
);
394 DEFINE_WAIT_BIT(wait
, word
, bit
);
396 return __wait_on_bit(wq
, &wait
, action
, mode
);
398 EXPORT_SYMBOL(out_of_line_wait_on_bit
);
400 int __sched
out_of_line_wait_on_bit_timeout(
401 void *word
, int bit
, wait_bit_action_f
*action
,
402 unsigned mode
, unsigned long timeout
)
404 wait_queue_head_t
*wq
= bit_waitqueue(word
, bit
);
405 DEFINE_WAIT_BIT(wait
, word
, bit
);
407 wait
.key
.timeout
= jiffies
+ timeout
;
408 return __wait_on_bit(wq
, &wait
, action
, mode
);
410 EXPORT_SYMBOL_GPL(out_of_line_wait_on_bit_timeout
);
413 __wait_on_bit_lock(wait_queue_head_t
*wq
, struct wait_bit_queue
*q
,
414 wait_bit_action_f
*action
, unsigned mode
)
419 prepare_to_wait_exclusive(wq
, &q
->wait
, mode
);
420 if (test_bit(q
->key
.bit_nr
, q
->key
.flags
)) {
421 ret
= action(&q
->key
, mode
);
423 * See the comment in prepare_to_wait_event().
424 * finish_wait() does not necessarily takes wq->lock,
425 * but test_and_set_bit() implies mb() which pairs with
426 * smp_mb__after_atomic() before wake_up_page().
429 finish_wait(wq
, &q
->wait
);
431 if (!test_and_set_bit(q
->key
.bit_nr
, q
->key
.flags
)) {
433 finish_wait(wq
, &q
->wait
);
440 EXPORT_SYMBOL(__wait_on_bit_lock
);
442 int __sched
out_of_line_wait_on_bit_lock(void *word
, int bit
,
443 wait_bit_action_f
*action
, unsigned mode
)
445 wait_queue_head_t
*wq
= bit_waitqueue(word
, bit
);
446 DEFINE_WAIT_BIT(wait
, word
, bit
);
448 return __wait_on_bit_lock(wq
, &wait
, action
, mode
);
450 EXPORT_SYMBOL(out_of_line_wait_on_bit_lock
);
452 void __wake_up_bit(wait_queue_head_t
*wq
, void *word
, int bit
)
454 struct wait_bit_key key
= __WAIT_BIT_KEY_INITIALIZER(word
, bit
);
455 if (waitqueue_active(wq
))
456 __wake_up(wq
, TASK_NORMAL
, 1, &key
);
458 EXPORT_SYMBOL(__wake_up_bit
);
461 * wake_up_bit - wake up a waiter on a bit
462 * @word: the word being waited on, a kernel virtual address
463 * @bit: the bit of the word being waited on
465 * There is a standard hashed waitqueue table for generic use. This
466 * is the part of the hashtable's accessor API that wakes up waiters
467 * on a bit. For instance, if one were to have waiters on a bitflag,
468 * one would call wake_up_bit() after clearing the bit.
470 * In order for this to function properly, as it uses waitqueue_active()
471 * internally, some kind of memory barrier must be done prior to calling
472 * this. Typically, this will be smp_mb__after_atomic(), but in some
473 * cases where bitflags are manipulated non-atomically under a lock, one
474 * may need to use a less regular barrier, such fs/inode.c's smp_mb(),
475 * because spin_unlock() does not guarantee a memory barrier.
477 void wake_up_bit(void *word
, int bit
)
479 __wake_up_bit(bit_waitqueue(word
, bit
), word
, bit
);
481 EXPORT_SYMBOL(wake_up_bit
);
484 * Manipulate the atomic_t address to produce a better bit waitqueue table hash
485 * index (we're keying off bit -1, but that would produce a horrible hash
488 static inline wait_queue_head_t
*atomic_t_waitqueue(atomic_t
*p
)
490 if (BITS_PER_LONG
== 64) {
491 unsigned long q
= (unsigned long)p
;
492 return bit_waitqueue((void *)(q
& ~1), q
& 1);
494 return bit_waitqueue(p
, 0);
497 static int wake_atomic_t_function(wait_queue_t
*wait
, unsigned mode
, int sync
,
500 struct wait_bit_key
*key
= arg
;
501 struct wait_bit_queue
*wait_bit
502 = container_of(wait
, struct wait_bit_queue
, wait
);
503 atomic_t
*val
= key
->flags
;
505 if (wait_bit
->key
.flags
!= key
->flags
||
506 wait_bit
->key
.bit_nr
!= key
->bit_nr
||
507 atomic_read(val
) != 0)
509 return autoremove_wake_function(wait
, mode
, sync
, key
);
513 * To allow interruptible waiting and asynchronous (i.e. nonblocking) waiting,
514 * the actions of __wait_on_atomic_t() are permitted return codes. Nonzero
515 * return codes halt waiting and return.
518 int __wait_on_atomic_t(wait_queue_head_t
*wq
, struct wait_bit_queue
*q
,
519 int (*action
)(atomic_t
*), unsigned mode
)
525 prepare_to_wait(wq
, &q
->wait
, mode
);
527 if (atomic_read(val
) == 0)
529 ret
= (*action
)(val
);
530 } while (!ret
&& atomic_read(val
) != 0);
531 finish_wait(wq
, &q
->wait
);
535 #define DEFINE_WAIT_ATOMIC_T(name, p) \
536 struct wait_bit_queue name = { \
537 .key = __WAIT_ATOMIC_T_KEY_INITIALIZER(p), \
539 .private = current, \
540 .func = wake_atomic_t_function, \
542 LIST_HEAD_INIT((name).wait.task_list), \
546 __sched
int out_of_line_wait_on_atomic_t(atomic_t
*p
, int (*action
)(atomic_t
*),
549 wait_queue_head_t
*wq
= atomic_t_waitqueue(p
);
550 DEFINE_WAIT_ATOMIC_T(wait
, p
);
552 return __wait_on_atomic_t(wq
, &wait
, action
, mode
);
554 EXPORT_SYMBOL(out_of_line_wait_on_atomic_t
);
557 * wake_up_atomic_t - Wake up a waiter on a atomic_t
558 * @p: The atomic_t being waited on, a kernel virtual address
560 * Wake up anyone waiting for the atomic_t to go to zero.
562 * Abuse the bit-waker function and its waitqueue hash table set (the atomic_t
563 * check is done by the waiter's wake function, not the by the waker itself).
565 void wake_up_atomic_t(atomic_t
*p
)
567 __wake_up_bit(atomic_t_waitqueue(p
), p
, WAIT_ATOMIC_T_BIT_NR
);
569 EXPORT_SYMBOL(wake_up_atomic_t
);
571 __sched
int bit_wait(struct wait_bit_key
*word
, int mode
)
574 if (signal_pending_state(mode
, current
))
578 EXPORT_SYMBOL(bit_wait
);
580 __sched
int bit_wait_io(struct wait_bit_key
*word
, int mode
)
583 if (signal_pending_state(mode
, current
))
587 EXPORT_SYMBOL(bit_wait_io
);
589 __sched
int bit_wait_timeout(struct wait_bit_key
*word
, int mode
)
591 unsigned long now
= READ_ONCE(jiffies
);
592 if (time_after_eq(now
, word
->timeout
))
594 schedule_timeout(word
->timeout
- now
);
595 if (signal_pending_state(mode
, current
))
599 EXPORT_SYMBOL_GPL(bit_wait_timeout
);
601 __sched
int bit_wait_io_timeout(struct wait_bit_key
*word
, int mode
)
603 unsigned long now
= READ_ONCE(jiffies
);
604 if (time_after_eq(now
, word
->timeout
))
606 io_schedule_timeout(word
->timeout
- now
);
607 if (signal_pending_state(mode
, current
))
611 EXPORT_SYMBOL_GPL(bit_wait_io_timeout
);