2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
31 #include "print-tree.h"
35 #include "free-space-cache.h"
36 #include "free-space-tree.h"
41 #undef SCRAMBLE_DELAYED_REFS
44 * control flags for do_chunk_alloc's force field
45 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
46 * if we really need one.
48 * CHUNK_ALLOC_LIMITED means to only try and allocate one
49 * if we have very few chunks already allocated. This is
50 * used as part of the clustering code to help make sure
51 * we have a good pool of storage to cluster in, without
52 * filling the FS with empty chunks
54 * CHUNK_ALLOC_FORCE means it must try to allocate one
58 CHUNK_ALLOC_NO_FORCE
= 0,
59 CHUNK_ALLOC_LIMITED
= 1,
60 CHUNK_ALLOC_FORCE
= 2,
63 static int update_block_group(struct btrfs_trans_handle
*trans
,
64 struct btrfs_root
*root
, u64 bytenr
,
65 u64 num_bytes
, int alloc
);
66 static int __btrfs_free_extent(struct btrfs_trans_handle
*trans
,
67 struct btrfs_root
*root
,
68 struct btrfs_delayed_ref_node
*node
, u64 parent
,
69 u64 root_objectid
, u64 owner_objectid
,
70 u64 owner_offset
, int refs_to_drop
,
71 struct btrfs_delayed_extent_op
*extra_op
);
72 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op
*extent_op
,
73 struct extent_buffer
*leaf
,
74 struct btrfs_extent_item
*ei
);
75 static int alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
76 struct btrfs_root
*root
,
77 u64 parent
, u64 root_objectid
,
78 u64 flags
, u64 owner
, u64 offset
,
79 struct btrfs_key
*ins
, int ref_mod
);
80 static int alloc_reserved_tree_block(struct btrfs_trans_handle
*trans
,
81 struct btrfs_root
*root
,
82 u64 parent
, u64 root_objectid
,
83 u64 flags
, struct btrfs_disk_key
*key
,
84 int level
, struct btrfs_key
*ins
);
85 static int do_chunk_alloc(struct btrfs_trans_handle
*trans
,
86 struct btrfs_root
*extent_root
, u64 flags
,
88 static int find_next_key(struct btrfs_path
*path
, int level
,
89 struct btrfs_key
*key
);
90 static void dump_space_info(struct btrfs_fs_info
*fs_info
,
91 struct btrfs_space_info
*info
, u64 bytes
,
92 int dump_block_groups
);
93 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache
*cache
,
94 u64 ram_bytes
, u64 num_bytes
, int delalloc
);
95 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache
*cache
,
96 u64 num_bytes
, int delalloc
);
97 static int block_rsv_use_bytes(struct btrfs_block_rsv
*block_rsv
,
99 int btrfs_pin_extent(struct btrfs_root
*root
,
100 u64 bytenr
, u64 num_bytes
, int reserved
);
101 static int __reserve_metadata_bytes(struct btrfs_root
*root
,
102 struct btrfs_space_info
*space_info
,
104 enum btrfs_reserve_flush_enum flush
);
105 static void space_info_add_new_bytes(struct btrfs_fs_info
*fs_info
,
106 struct btrfs_space_info
*space_info
,
108 static void space_info_add_old_bytes(struct btrfs_fs_info
*fs_info
,
109 struct btrfs_space_info
*space_info
,
113 block_group_cache_done(struct btrfs_block_group_cache
*cache
)
116 return cache
->cached
== BTRFS_CACHE_FINISHED
||
117 cache
->cached
== BTRFS_CACHE_ERROR
;
120 static int block_group_bits(struct btrfs_block_group_cache
*cache
, u64 bits
)
122 return (cache
->flags
& bits
) == bits
;
125 void btrfs_get_block_group(struct btrfs_block_group_cache
*cache
)
127 atomic_inc(&cache
->count
);
130 void btrfs_put_block_group(struct btrfs_block_group_cache
*cache
)
132 if (atomic_dec_and_test(&cache
->count
)) {
133 WARN_ON(cache
->pinned
> 0);
134 WARN_ON(cache
->reserved
> 0);
135 kfree(cache
->free_space_ctl
);
141 * this adds the block group to the fs_info rb tree for the block group
144 static int btrfs_add_block_group_cache(struct btrfs_fs_info
*info
,
145 struct btrfs_block_group_cache
*block_group
)
148 struct rb_node
*parent
= NULL
;
149 struct btrfs_block_group_cache
*cache
;
151 spin_lock(&info
->block_group_cache_lock
);
152 p
= &info
->block_group_cache_tree
.rb_node
;
156 cache
= rb_entry(parent
, struct btrfs_block_group_cache
,
158 if (block_group
->key
.objectid
< cache
->key
.objectid
) {
160 } else if (block_group
->key
.objectid
> cache
->key
.objectid
) {
163 spin_unlock(&info
->block_group_cache_lock
);
168 rb_link_node(&block_group
->cache_node
, parent
, p
);
169 rb_insert_color(&block_group
->cache_node
,
170 &info
->block_group_cache_tree
);
172 if (info
->first_logical_byte
> block_group
->key
.objectid
)
173 info
->first_logical_byte
= block_group
->key
.objectid
;
175 spin_unlock(&info
->block_group_cache_lock
);
181 * This will return the block group at or after bytenr if contains is 0, else
182 * it will return the block group that contains the bytenr
184 static struct btrfs_block_group_cache
*
185 block_group_cache_tree_search(struct btrfs_fs_info
*info
, u64 bytenr
,
188 struct btrfs_block_group_cache
*cache
, *ret
= NULL
;
192 spin_lock(&info
->block_group_cache_lock
);
193 n
= info
->block_group_cache_tree
.rb_node
;
196 cache
= rb_entry(n
, struct btrfs_block_group_cache
,
198 end
= cache
->key
.objectid
+ cache
->key
.offset
- 1;
199 start
= cache
->key
.objectid
;
201 if (bytenr
< start
) {
202 if (!contains
&& (!ret
|| start
< ret
->key
.objectid
))
205 } else if (bytenr
> start
) {
206 if (contains
&& bytenr
<= end
) {
217 btrfs_get_block_group(ret
);
218 if (bytenr
== 0 && info
->first_logical_byte
> ret
->key
.objectid
)
219 info
->first_logical_byte
= ret
->key
.objectid
;
221 spin_unlock(&info
->block_group_cache_lock
);
226 static int add_excluded_extent(struct btrfs_root
*root
,
227 u64 start
, u64 num_bytes
)
229 u64 end
= start
+ num_bytes
- 1;
230 set_extent_bits(&root
->fs_info
->freed_extents
[0],
231 start
, end
, EXTENT_UPTODATE
);
232 set_extent_bits(&root
->fs_info
->freed_extents
[1],
233 start
, end
, EXTENT_UPTODATE
);
237 static void free_excluded_extents(struct btrfs_root
*root
,
238 struct btrfs_block_group_cache
*cache
)
242 start
= cache
->key
.objectid
;
243 end
= start
+ cache
->key
.offset
- 1;
245 clear_extent_bits(&root
->fs_info
->freed_extents
[0],
246 start
, end
, EXTENT_UPTODATE
);
247 clear_extent_bits(&root
->fs_info
->freed_extents
[1],
248 start
, end
, EXTENT_UPTODATE
);
251 static int exclude_super_stripes(struct btrfs_root
*root
,
252 struct btrfs_block_group_cache
*cache
)
259 if (cache
->key
.objectid
< BTRFS_SUPER_INFO_OFFSET
) {
260 stripe_len
= BTRFS_SUPER_INFO_OFFSET
- cache
->key
.objectid
;
261 cache
->bytes_super
+= stripe_len
;
262 ret
= add_excluded_extent(root
, cache
->key
.objectid
,
268 for (i
= 0; i
< BTRFS_SUPER_MIRROR_MAX
; i
++) {
269 bytenr
= btrfs_sb_offset(i
);
270 ret
= btrfs_rmap_block(root
->fs_info
, cache
->key
.objectid
,
271 bytenr
, 0, &logical
, &nr
, &stripe_len
);
278 if (logical
[nr
] > cache
->key
.objectid
+
282 if (logical
[nr
] + stripe_len
<= cache
->key
.objectid
)
286 if (start
< cache
->key
.objectid
) {
287 start
= cache
->key
.objectid
;
288 len
= (logical
[nr
] + stripe_len
) - start
;
290 len
= min_t(u64
, stripe_len
,
291 cache
->key
.objectid
+
292 cache
->key
.offset
- start
);
295 cache
->bytes_super
+= len
;
296 ret
= add_excluded_extent(root
, start
, len
);
308 static struct btrfs_caching_control
*
309 get_caching_control(struct btrfs_block_group_cache
*cache
)
311 struct btrfs_caching_control
*ctl
;
313 spin_lock(&cache
->lock
);
314 if (!cache
->caching_ctl
) {
315 spin_unlock(&cache
->lock
);
319 ctl
= cache
->caching_ctl
;
320 atomic_inc(&ctl
->count
);
321 spin_unlock(&cache
->lock
);
325 static void put_caching_control(struct btrfs_caching_control
*ctl
)
327 if (atomic_dec_and_test(&ctl
->count
))
331 #ifdef CONFIG_BTRFS_DEBUG
332 static void fragment_free_space(struct btrfs_root
*root
,
333 struct btrfs_block_group_cache
*block_group
)
335 u64 start
= block_group
->key
.objectid
;
336 u64 len
= block_group
->key
.offset
;
337 u64 chunk
= block_group
->flags
& BTRFS_BLOCK_GROUP_METADATA
?
338 root
->nodesize
: root
->sectorsize
;
339 u64 step
= chunk
<< 1;
341 while (len
> chunk
) {
342 btrfs_remove_free_space(block_group
, start
, chunk
);
353 * this is only called by cache_block_group, since we could have freed extents
354 * we need to check the pinned_extents for any extents that can't be used yet
355 * since their free space will be released as soon as the transaction commits.
357 u64
add_new_free_space(struct btrfs_block_group_cache
*block_group
,
358 struct btrfs_fs_info
*info
, u64 start
, u64 end
)
360 u64 extent_start
, extent_end
, size
, total_added
= 0;
363 while (start
< end
) {
364 ret
= find_first_extent_bit(info
->pinned_extents
, start
,
365 &extent_start
, &extent_end
,
366 EXTENT_DIRTY
| EXTENT_UPTODATE
,
371 if (extent_start
<= start
) {
372 start
= extent_end
+ 1;
373 } else if (extent_start
> start
&& extent_start
< end
) {
374 size
= extent_start
- start
;
376 ret
= btrfs_add_free_space(block_group
, start
,
378 BUG_ON(ret
); /* -ENOMEM or logic error */
379 start
= extent_end
+ 1;
388 ret
= btrfs_add_free_space(block_group
, start
, size
);
389 BUG_ON(ret
); /* -ENOMEM or logic error */
395 static int load_extent_tree_free(struct btrfs_caching_control
*caching_ctl
)
397 struct btrfs_block_group_cache
*block_group
;
398 struct btrfs_fs_info
*fs_info
;
399 struct btrfs_root
*extent_root
;
400 struct btrfs_path
*path
;
401 struct extent_buffer
*leaf
;
402 struct btrfs_key key
;
409 block_group
= caching_ctl
->block_group
;
410 fs_info
= block_group
->fs_info
;
411 extent_root
= fs_info
->extent_root
;
413 path
= btrfs_alloc_path();
417 last
= max_t(u64
, block_group
->key
.objectid
, BTRFS_SUPER_INFO_OFFSET
);
419 #ifdef CONFIG_BTRFS_DEBUG
421 * If we're fragmenting we don't want to make anybody think we can
422 * allocate from this block group until we've had a chance to fragment
425 if (btrfs_should_fragment_free_space(extent_root
, block_group
))
429 * We don't want to deadlock with somebody trying to allocate a new
430 * extent for the extent root while also trying to search the extent
431 * root to add free space. So we skip locking and search the commit
432 * root, since its read-only
434 path
->skip_locking
= 1;
435 path
->search_commit_root
= 1;
436 path
->reada
= READA_FORWARD
;
440 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
443 ret
= btrfs_search_slot(NULL
, extent_root
, &key
, path
, 0, 0);
447 leaf
= path
->nodes
[0];
448 nritems
= btrfs_header_nritems(leaf
);
451 if (btrfs_fs_closing(fs_info
) > 1) {
456 if (path
->slots
[0] < nritems
) {
457 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
459 ret
= find_next_key(path
, 0, &key
);
463 if (need_resched() ||
464 rwsem_is_contended(&fs_info
->commit_root_sem
)) {
466 caching_ctl
->progress
= last
;
467 btrfs_release_path(path
);
468 up_read(&fs_info
->commit_root_sem
);
469 mutex_unlock(&caching_ctl
->mutex
);
471 mutex_lock(&caching_ctl
->mutex
);
472 down_read(&fs_info
->commit_root_sem
);
476 ret
= btrfs_next_leaf(extent_root
, path
);
481 leaf
= path
->nodes
[0];
482 nritems
= btrfs_header_nritems(leaf
);
486 if (key
.objectid
< last
) {
489 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
492 caching_ctl
->progress
= last
;
493 btrfs_release_path(path
);
497 if (key
.objectid
< block_group
->key
.objectid
) {
502 if (key
.objectid
>= block_group
->key
.objectid
+
503 block_group
->key
.offset
)
506 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
||
507 key
.type
== BTRFS_METADATA_ITEM_KEY
) {
508 total_found
+= add_new_free_space(block_group
,
511 if (key
.type
== BTRFS_METADATA_ITEM_KEY
)
512 last
= key
.objectid
+
513 fs_info
->tree_root
->nodesize
;
515 last
= key
.objectid
+ key
.offset
;
517 if (total_found
> CACHING_CTL_WAKE_UP
) {
520 wake_up(&caching_ctl
->wait
);
527 total_found
+= add_new_free_space(block_group
, fs_info
, last
,
528 block_group
->key
.objectid
+
529 block_group
->key
.offset
);
530 caching_ctl
->progress
= (u64
)-1;
533 btrfs_free_path(path
);
537 static noinline
void caching_thread(struct btrfs_work
*work
)
539 struct btrfs_block_group_cache
*block_group
;
540 struct btrfs_fs_info
*fs_info
;
541 struct btrfs_caching_control
*caching_ctl
;
542 struct btrfs_root
*extent_root
;
545 caching_ctl
= container_of(work
, struct btrfs_caching_control
, work
);
546 block_group
= caching_ctl
->block_group
;
547 fs_info
= block_group
->fs_info
;
548 extent_root
= fs_info
->extent_root
;
550 mutex_lock(&caching_ctl
->mutex
);
551 down_read(&fs_info
->commit_root_sem
);
553 if (btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
))
554 ret
= load_free_space_tree(caching_ctl
);
556 ret
= load_extent_tree_free(caching_ctl
);
558 spin_lock(&block_group
->lock
);
559 block_group
->caching_ctl
= NULL
;
560 block_group
->cached
= ret
? BTRFS_CACHE_ERROR
: BTRFS_CACHE_FINISHED
;
561 spin_unlock(&block_group
->lock
);
563 #ifdef CONFIG_BTRFS_DEBUG
564 if (btrfs_should_fragment_free_space(extent_root
, block_group
)) {
567 spin_lock(&block_group
->space_info
->lock
);
568 spin_lock(&block_group
->lock
);
569 bytes_used
= block_group
->key
.offset
-
570 btrfs_block_group_used(&block_group
->item
);
571 block_group
->space_info
->bytes_used
+= bytes_used
>> 1;
572 spin_unlock(&block_group
->lock
);
573 spin_unlock(&block_group
->space_info
->lock
);
574 fragment_free_space(extent_root
, block_group
);
578 caching_ctl
->progress
= (u64
)-1;
580 up_read(&fs_info
->commit_root_sem
);
581 free_excluded_extents(fs_info
->extent_root
, block_group
);
582 mutex_unlock(&caching_ctl
->mutex
);
584 wake_up(&caching_ctl
->wait
);
586 put_caching_control(caching_ctl
);
587 btrfs_put_block_group(block_group
);
590 static int cache_block_group(struct btrfs_block_group_cache
*cache
,
594 struct btrfs_fs_info
*fs_info
= cache
->fs_info
;
595 struct btrfs_caching_control
*caching_ctl
;
598 caching_ctl
= kzalloc(sizeof(*caching_ctl
), GFP_NOFS
);
602 INIT_LIST_HEAD(&caching_ctl
->list
);
603 mutex_init(&caching_ctl
->mutex
);
604 init_waitqueue_head(&caching_ctl
->wait
);
605 caching_ctl
->block_group
= cache
;
606 caching_ctl
->progress
= cache
->key
.objectid
;
607 atomic_set(&caching_ctl
->count
, 1);
608 btrfs_init_work(&caching_ctl
->work
, btrfs_cache_helper
,
609 caching_thread
, NULL
, NULL
);
611 spin_lock(&cache
->lock
);
613 * This should be a rare occasion, but this could happen I think in the
614 * case where one thread starts to load the space cache info, and then
615 * some other thread starts a transaction commit which tries to do an
616 * allocation while the other thread is still loading the space cache
617 * info. The previous loop should have kept us from choosing this block
618 * group, but if we've moved to the state where we will wait on caching
619 * block groups we need to first check if we're doing a fast load here,
620 * so we can wait for it to finish, otherwise we could end up allocating
621 * from a block group who's cache gets evicted for one reason or
624 while (cache
->cached
== BTRFS_CACHE_FAST
) {
625 struct btrfs_caching_control
*ctl
;
627 ctl
= cache
->caching_ctl
;
628 atomic_inc(&ctl
->count
);
629 prepare_to_wait(&ctl
->wait
, &wait
, TASK_UNINTERRUPTIBLE
);
630 spin_unlock(&cache
->lock
);
634 finish_wait(&ctl
->wait
, &wait
);
635 put_caching_control(ctl
);
636 spin_lock(&cache
->lock
);
639 if (cache
->cached
!= BTRFS_CACHE_NO
) {
640 spin_unlock(&cache
->lock
);
644 WARN_ON(cache
->caching_ctl
);
645 cache
->caching_ctl
= caching_ctl
;
646 cache
->cached
= BTRFS_CACHE_FAST
;
647 spin_unlock(&cache
->lock
);
649 if (fs_info
->mount_opt
& BTRFS_MOUNT_SPACE_CACHE
) {
650 mutex_lock(&caching_ctl
->mutex
);
651 ret
= load_free_space_cache(fs_info
, cache
);
653 spin_lock(&cache
->lock
);
655 cache
->caching_ctl
= NULL
;
656 cache
->cached
= BTRFS_CACHE_FINISHED
;
657 cache
->last_byte_to_unpin
= (u64
)-1;
658 caching_ctl
->progress
= (u64
)-1;
660 if (load_cache_only
) {
661 cache
->caching_ctl
= NULL
;
662 cache
->cached
= BTRFS_CACHE_NO
;
664 cache
->cached
= BTRFS_CACHE_STARTED
;
665 cache
->has_caching_ctl
= 1;
668 spin_unlock(&cache
->lock
);
669 #ifdef CONFIG_BTRFS_DEBUG
671 btrfs_should_fragment_free_space(fs_info
->extent_root
,
675 spin_lock(&cache
->space_info
->lock
);
676 spin_lock(&cache
->lock
);
677 bytes_used
= cache
->key
.offset
-
678 btrfs_block_group_used(&cache
->item
);
679 cache
->space_info
->bytes_used
+= bytes_used
>> 1;
680 spin_unlock(&cache
->lock
);
681 spin_unlock(&cache
->space_info
->lock
);
682 fragment_free_space(fs_info
->extent_root
, cache
);
685 mutex_unlock(&caching_ctl
->mutex
);
687 wake_up(&caching_ctl
->wait
);
689 put_caching_control(caching_ctl
);
690 free_excluded_extents(fs_info
->extent_root
, cache
);
695 * We're either using the free space tree or no caching at all.
696 * Set cached to the appropriate value and wakeup any waiters.
698 spin_lock(&cache
->lock
);
699 if (load_cache_only
) {
700 cache
->caching_ctl
= NULL
;
701 cache
->cached
= BTRFS_CACHE_NO
;
703 cache
->cached
= BTRFS_CACHE_STARTED
;
704 cache
->has_caching_ctl
= 1;
706 spin_unlock(&cache
->lock
);
707 wake_up(&caching_ctl
->wait
);
710 if (load_cache_only
) {
711 put_caching_control(caching_ctl
);
715 down_write(&fs_info
->commit_root_sem
);
716 atomic_inc(&caching_ctl
->count
);
717 list_add_tail(&caching_ctl
->list
, &fs_info
->caching_block_groups
);
718 up_write(&fs_info
->commit_root_sem
);
720 btrfs_get_block_group(cache
);
722 btrfs_queue_work(fs_info
->caching_workers
, &caching_ctl
->work
);
728 * return the block group that starts at or after bytenr
730 static struct btrfs_block_group_cache
*
731 btrfs_lookup_first_block_group(struct btrfs_fs_info
*info
, u64 bytenr
)
733 return block_group_cache_tree_search(info
, bytenr
, 0);
737 * return the block group that contains the given bytenr
739 struct btrfs_block_group_cache
*btrfs_lookup_block_group(
740 struct btrfs_fs_info
*info
,
743 return block_group_cache_tree_search(info
, bytenr
, 1);
746 static struct btrfs_space_info
*__find_space_info(struct btrfs_fs_info
*info
,
749 struct list_head
*head
= &info
->space_info
;
750 struct btrfs_space_info
*found
;
752 flags
&= BTRFS_BLOCK_GROUP_TYPE_MASK
;
755 list_for_each_entry_rcu(found
, head
, list
) {
756 if (found
->flags
& flags
) {
766 * after adding space to the filesystem, we need to clear the full flags
767 * on all the space infos.
769 void btrfs_clear_space_info_full(struct btrfs_fs_info
*info
)
771 struct list_head
*head
= &info
->space_info
;
772 struct btrfs_space_info
*found
;
775 list_for_each_entry_rcu(found
, head
, list
)
780 /* simple helper to search for an existing data extent at a given offset */
781 int btrfs_lookup_data_extent(struct btrfs_root
*root
, u64 start
, u64 len
)
784 struct btrfs_key key
;
785 struct btrfs_path
*path
;
787 path
= btrfs_alloc_path();
791 key
.objectid
= start
;
793 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
794 ret
= btrfs_search_slot(NULL
, root
->fs_info
->extent_root
, &key
, path
,
796 btrfs_free_path(path
);
801 * helper function to lookup reference count and flags of a tree block.
803 * the head node for delayed ref is used to store the sum of all the
804 * reference count modifications queued up in the rbtree. the head
805 * node may also store the extent flags to set. This way you can check
806 * to see what the reference count and extent flags would be if all of
807 * the delayed refs are not processed.
809 int btrfs_lookup_extent_info(struct btrfs_trans_handle
*trans
,
810 struct btrfs_root
*root
, u64 bytenr
,
811 u64 offset
, int metadata
, u64
*refs
, u64
*flags
)
813 struct btrfs_delayed_ref_head
*head
;
814 struct btrfs_delayed_ref_root
*delayed_refs
;
815 struct btrfs_path
*path
;
816 struct btrfs_extent_item
*ei
;
817 struct extent_buffer
*leaf
;
818 struct btrfs_key key
;
825 * If we don't have skinny metadata, don't bother doing anything
828 if (metadata
&& !btrfs_fs_incompat(root
->fs_info
, SKINNY_METADATA
)) {
829 offset
= root
->nodesize
;
833 path
= btrfs_alloc_path();
838 path
->skip_locking
= 1;
839 path
->search_commit_root
= 1;
843 key
.objectid
= bytenr
;
846 key
.type
= BTRFS_METADATA_ITEM_KEY
;
848 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
850 ret
= btrfs_search_slot(trans
, root
->fs_info
->extent_root
,
855 if (ret
> 0 && metadata
&& key
.type
== BTRFS_METADATA_ITEM_KEY
) {
856 if (path
->slots
[0]) {
858 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
860 if (key
.objectid
== bytenr
&&
861 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
862 key
.offset
== root
->nodesize
)
868 leaf
= path
->nodes
[0];
869 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
870 if (item_size
>= sizeof(*ei
)) {
871 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
872 struct btrfs_extent_item
);
873 num_refs
= btrfs_extent_refs(leaf
, ei
);
874 extent_flags
= btrfs_extent_flags(leaf
, ei
);
876 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
877 struct btrfs_extent_item_v0
*ei0
;
878 BUG_ON(item_size
!= sizeof(*ei0
));
879 ei0
= btrfs_item_ptr(leaf
, path
->slots
[0],
880 struct btrfs_extent_item_v0
);
881 num_refs
= btrfs_extent_refs_v0(leaf
, ei0
);
882 /* FIXME: this isn't correct for data */
883 extent_flags
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
888 BUG_ON(num_refs
== 0);
898 delayed_refs
= &trans
->transaction
->delayed_refs
;
899 spin_lock(&delayed_refs
->lock
);
900 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
902 if (!mutex_trylock(&head
->mutex
)) {
903 atomic_inc(&head
->node
.refs
);
904 spin_unlock(&delayed_refs
->lock
);
906 btrfs_release_path(path
);
909 * Mutex was contended, block until it's released and try
912 mutex_lock(&head
->mutex
);
913 mutex_unlock(&head
->mutex
);
914 btrfs_put_delayed_ref(&head
->node
);
917 spin_lock(&head
->lock
);
918 if (head
->extent_op
&& head
->extent_op
->update_flags
)
919 extent_flags
|= head
->extent_op
->flags_to_set
;
921 BUG_ON(num_refs
== 0);
923 num_refs
+= head
->node
.ref_mod
;
924 spin_unlock(&head
->lock
);
925 mutex_unlock(&head
->mutex
);
927 spin_unlock(&delayed_refs
->lock
);
929 WARN_ON(num_refs
== 0);
933 *flags
= extent_flags
;
935 btrfs_free_path(path
);
940 * Back reference rules. Back refs have three main goals:
942 * 1) differentiate between all holders of references to an extent so that
943 * when a reference is dropped we can make sure it was a valid reference
944 * before freeing the extent.
946 * 2) Provide enough information to quickly find the holders of an extent
947 * if we notice a given block is corrupted or bad.
949 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
950 * maintenance. This is actually the same as #2, but with a slightly
951 * different use case.
953 * There are two kinds of back refs. The implicit back refs is optimized
954 * for pointers in non-shared tree blocks. For a given pointer in a block,
955 * back refs of this kind provide information about the block's owner tree
956 * and the pointer's key. These information allow us to find the block by
957 * b-tree searching. The full back refs is for pointers in tree blocks not
958 * referenced by their owner trees. The location of tree block is recorded
959 * in the back refs. Actually the full back refs is generic, and can be
960 * used in all cases the implicit back refs is used. The major shortcoming
961 * of the full back refs is its overhead. Every time a tree block gets
962 * COWed, we have to update back refs entry for all pointers in it.
964 * For a newly allocated tree block, we use implicit back refs for
965 * pointers in it. This means most tree related operations only involve
966 * implicit back refs. For a tree block created in old transaction, the
967 * only way to drop a reference to it is COW it. So we can detect the
968 * event that tree block loses its owner tree's reference and do the
969 * back refs conversion.
971 * When a tree block is COWed through a tree, there are four cases:
973 * The reference count of the block is one and the tree is the block's
974 * owner tree. Nothing to do in this case.
976 * The reference count of the block is one and the tree is not the
977 * block's owner tree. In this case, full back refs is used for pointers
978 * in the block. Remove these full back refs, add implicit back refs for
979 * every pointers in the new block.
981 * The reference count of the block is greater than one and the tree is
982 * the block's owner tree. In this case, implicit back refs is used for
983 * pointers in the block. Add full back refs for every pointers in the
984 * block, increase lower level extents' reference counts. The original
985 * implicit back refs are entailed to the new block.
987 * The reference count of the block is greater than one and the tree is
988 * not the block's owner tree. Add implicit back refs for every pointer in
989 * the new block, increase lower level extents' reference count.
991 * Back Reference Key composing:
993 * The key objectid corresponds to the first byte in the extent,
994 * The key type is used to differentiate between types of back refs.
995 * There are different meanings of the key offset for different types
998 * File extents can be referenced by:
1000 * - multiple snapshots, subvolumes, or different generations in one subvol
1001 * - different files inside a single subvolume
1002 * - different offsets inside a file (bookend extents in file.c)
1004 * The extent ref structure for the implicit back refs has fields for:
1006 * - Objectid of the subvolume root
1007 * - objectid of the file holding the reference
1008 * - original offset in the file
1009 * - how many bookend extents
1011 * The key offset for the implicit back refs is hash of the first
1014 * The extent ref structure for the full back refs has field for:
1016 * - number of pointers in the tree leaf
1018 * The key offset for the implicit back refs is the first byte of
1021 * When a file extent is allocated, The implicit back refs is used.
1022 * the fields are filled in:
1024 * (root_key.objectid, inode objectid, offset in file, 1)
1026 * When a file extent is removed file truncation, we find the
1027 * corresponding implicit back refs and check the following fields:
1029 * (btrfs_header_owner(leaf), inode objectid, offset in file)
1031 * Btree extents can be referenced by:
1033 * - Different subvolumes
1035 * Both the implicit back refs and the full back refs for tree blocks
1036 * only consist of key. The key offset for the implicit back refs is
1037 * objectid of block's owner tree. The key offset for the full back refs
1038 * is the first byte of parent block.
1040 * When implicit back refs is used, information about the lowest key and
1041 * level of the tree block are required. These information are stored in
1042 * tree block info structure.
1045 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1046 static int convert_extent_item_v0(struct btrfs_trans_handle
*trans
,
1047 struct btrfs_root
*root
,
1048 struct btrfs_path
*path
,
1049 u64 owner
, u32 extra_size
)
1051 struct btrfs_extent_item
*item
;
1052 struct btrfs_extent_item_v0
*ei0
;
1053 struct btrfs_extent_ref_v0
*ref0
;
1054 struct btrfs_tree_block_info
*bi
;
1055 struct extent_buffer
*leaf
;
1056 struct btrfs_key key
;
1057 struct btrfs_key found_key
;
1058 u32 new_size
= sizeof(*item
);
1062 leaf
= path
->nodes
[0];
1063 BUG_ON(btrfs_item_size_nr(leaf
, path
->slots
[0]) != sizeof(*ei0
));
1065 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1066 ei0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1067 struct btrfs_extent_item_v0
);
1068 refs
= btrfs_extent_refs_v0(leaf
, ei0
);
1070 if (owner
== (u64
)-1) {
1072 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
1073 ret
= btrfs_next_leaf(root
, path
);
1076 BUG_ON(ret
> 0); /* Corruption */
1077 leaf
= path
->nodes
[0];
1079 btrfs_item_key_to_cpu(leaf
, &found_key
,
1081 BUG_ON(key
.objectid
!= found_key
.objectid
);
1082 if (found_key
.type
!= BTRFS_EXTENT_REF_V0_KEY
) {
1086 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1087 struct btrfs_extent_ref_v0
);
1088 owner
= btrfs_ref_objectid_v0(leaf
, ref0
);
1092 btrfs_release_path(path
);
1094 if (owner
< BTRFS_FIRST_FREE_OBJECTID
)
1095 new_size
+= sizeof(*bi
);
1097 new_size
-= sizeof(*ei0
);
1098 ret
= btrfs_search_slot(trans
, root
, &key
, path
,
1099 new_size
+ extra_size
, 1);
1102 BUG_ON(ret
); /* Corruption */
1104 btrfs_extend_item(root
, path
, new_size
);
1106 leaf
= path
->nodes
[0];
1107 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1108 btrfs_set_extent_refs(leaf
, item
, refs
);
1109 /* FIXME: get real generation */
1110 btrfs_set_extent_generation(leaf
, item
, 0);
1111 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1112 btrfs_set_extent_flags(leaf
, item
,
1113 BTRFS_EXTENT_FLAG_TREE_BLOCK
|
1114 BTRFS_BLOCK_FLAG_FULL_BACKREF
);
1115 bi
= (struct btrfs_tree_block_info
*)(item
+ 1);
1116 /* FIXME: get first key of the block */
1117 memset_extent_buffer(leaf
, 0, (unsigned long)bi
, sizeof(*bi
));
1118 btrfs_set_tree_block_level(leaf
, bi
, (int)owner
);
1120 btrfs_set_extent_flags(leaf
, item
, BTRFS_EXTENT_FLAG_DATA
);
1122 btrfs_mark_buffer_dirty(leaf
);
1127 static u64
hash_extent_data_ref(u64 root_objectid
, u64 owner
, u64 offset
)
1129 u32 high_crc
= ~(u32
)0;
1130 u32 low_crc
= ~(u32
)0;
1133 lenum
= cpu_to_le64(root_objectid
);
1134 high_crc
= btrfs_crc32c(high_crc
, &lenum
, sizeof(lenum
));
1135 lenum
= cpu_to_le64(owner
);
1136 low_crc
= btrfs_crc32c(low_crc
, &lenum
, sizeof(lenum
));
1137 lenum
= cpu_to_le64(offset
);
1138 low_crc
= btrfs_crc32c(low_crc
, &lenum
, sizeof(lenum
));
1140 return ((u64
)high_crc
<< 31) ^ (u64
)low_crc
;
1143 static u64
hash_extent_data_ref_item(struct extent_buffer
*leaf
,
1144 struct btrfs_extent_data_ref
*ref
)
1146 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf
, ref
),
1147 btrfs_extent_data_ref_objectid(leaf
, ref
),
1148 btrfs_extent_data_ref_offset(leaf
, ref
));
1151 static int match_extent_data_ref(struct extent_buffer
*leaf
,
1152 struct btrfs_extent_data_ref
*ref
,
1153 u64 root_objectid
, u64 owner
, u64 offset
)
1155 if (btrfs_extent_data_ref_root(leaf
, ref
) != root_objectid
||
1156 btrfs_extent_data_ref_objectid(leaf
, ref
) != owner
||
1157 btrfs_extent_data_ref_offset(leaf
, ref
) != offset
)
1162 static noinline
int lookup_extent_data_ref(struct btrfs_trans_handle
*trans
,
1163 struct btrfs_root
*root
,
1164 struct btrfs_path
*path
,
1165 u64 bytenr
, u64 parent
,
1167 u64 owner
, u64 offset
)
1169 struct btrfs_key key
;
1170 struct btrfs_extent_data_ref
*ref
;
1171 struct extent_buffer
*leaf
;
1177 key
.objectid
= bytenr
;
1179 key
.type
= BTRFS_SHARED_DATA_REF_KEY
;
1180 key
.offset
= parent
;
1182 key
.type
= BTRFS_EXTENT_DATA_REF_KEY
;
1183 key
.offset
= hash_extent_data_ref(root_objectid
,
1188 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1197 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1198 key
.type
= BTRFS_EXTENT_REF_V0_KEY
;
1199 btrfs_release_path(path
);
1200 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1211 leaf
= path
->nodes
[0];
1212 nritems
= btrfs_header_nritems(leaf
);
1214 if (path
->slots
[0] >= nritems
) {
1215 ret
= btrfs_next_leaf(root
, path
);
1221 leaf
= path
->nodes
[0];
1222 nritems
= btrfs_header_nritems(leaf
);
1226 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1227 if (key
.objectid
!= bytenr
||
1228 key
.type
!= BTRFS_EXTENT_DATA_REF_KEY
)
1231 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1232 struct btrfs_extent_data_ref
);
1234 if (match_extent_data_ref(leaf
, ref
, root_objectid
,
1237 btrfs_release_path(path
);
1249 static noinline
int insert_extent_data_ref(struct btrfs_trans_handle
*trans
,
1250 struct btrfs_root
*root
,
1251 struct btrfs_path
*path
,
1252 u64 bytenr
, u64 parent
,
1253 u64 root_objectid
, u64 owner
,
1254 u64 offset
, int refs_to_add
)
1256 struct btrfs_key key
;
1257 struct extent_buffer
*leaf
;
1262 key
.objectid
= bytenr
;
1264 key
.type
= BTRFS_SHARED_DATA_REF_KEY
;
1265 key
.offset
= parent
;
1266 size
= sizeof(struct btrfs_shared_data_ref
);
1268 key
.type
= BTRFS_EXTENT_DATA_REF_KEY
;
1269 key
.offset
= hash_extent_data_ref(root_objectid
,
1271 size
= sizeof(struct btrfs_extent_data_ref
);
1274 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, size
);
1275 if (ret
&& ret
!= -EEXIST
)
1278 leaf
= path
->nodes
[0];
1280 struct btrfs_shared_data_ref
*ref
;
1281 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1282 struct btrfs_shared_data_ref
);
1284 btrfs_set_shared_data_ref_count(leaf
, ref
, refs_to_add
);
1286 num_refs
= btrfs_shared_data_ref_count(leaf
, ref
);
1287 num_refs
+= refs_to_add
;
1288 btrfs_set_shared_data_ref_count(leaf
, ref
, num_refs
);
1291 struct btrfs_extent_data_ref
*ref
;
1292 while (ret
== -EEXIST
) {
1293 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1294 struct btrfs_extent_data_ref
);
1295 if (match_extent_data_ref(leaf
, ref
, root_objectid
,
1298 btrfs_release_path(path
);
1300 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1302 if (ret
&& ret
!= -EEXIST
)
1305 leaf
= path
->nodes
[0];
1307 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1308 struct btrfs_extent_data_ref
);
1310 btrfs_set_extent_data_ref_root(leaf
, ref
,
1312 btrfs_set_extent_data_ref_objectid(leaf
, ref
, owner
);
1313 btrfs_set_extent_data_ref_offset(leaf
, ref
, offset
);
1314 btrfs_set_extent_data_ref_count(leaf
, ref
, refs_to_add
);
1316 num_refs
= btrfs_extent_data_ref_count(leaf
, ref
);
1317 num_refs
+= refs_to_add
;
1318 btrfs_set_extent_data_ref_count(leaf
, ref
, num_refs
);
1321 btrfs_mark_buffer_dirty(leaf
);
1324 btrfs_release_path(path
);
1328 static noinline
int remove_extent_data_ref(struct btrfs_trans_handle
*trans
,
1329 struct btrfs_root
*root
,
1330 struct btrfs_path
*path
,
1331 int refs_to_drop
, int *last_ref
)
1333 struct btrfs_key key
;
1334 struct btrfs_extent_data_ref
*ref1
= NULL
;
1335 struct btrfs_shared_data_ref
*ref2
= NULL
;
1336 struct extent_buffer
*leaf
;
1340 leaf
= path
->nodes
[0];
1341 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1343 if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1344 ref1
= btrfs_item_ptr(leaf
, path
->slots
[0],
1345 struct btrfs_extent_data_ref
);
1346 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1347 } else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
) {
1348 ref2
= btrfs_item_ptr(leaf
, path
->slots
[0],
1349 struct btrfs_shared_data_ref
);
1350 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1351 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1352 } else if (key
.type
== BTRFS_EXTENT_REF_V0_KEY
) {
1353 struct btrfs_extent_ref_v0
*ref0
;
1354 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1355 struct btrfs_extent_ref_v0
);
1356 num_refs
= btrfs_ref_count_v0(leaf
, ref0
);
1362 BUG_ON(num_refs
< refs_to_drop
);
1363 num_refs
-= refs_to_drop
;
1365 if (num_refs
== 0) {
1366 ret
= btrfs_del_item(trans
, root
, path
);
1369 if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
)
1370 btrfs_set_extent_data_ref_count(leaf
, ref1
, num_refs
);
1371 else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
)
1372 btrfs_set_shared_data_ref_count(leaf
, ref2
, num_refs
);
1373 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1375 struct btrfs_extent_ref_v0
*ref0
;
1376 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1377 struct btrfs_extent_ref_v0
);
1378 btrfs_set_ref_count_v0(leaf
, ref0
, num_refs
);
1381 btrfs_mark_buffer_dirty(leaf
);
1386 static noinline u32
extent_data_ref_count(struct btrfs_path
*path
,
1387 struct btrfs_extent_inline_ref
*iref
)
1389 struct btrfs_key key
;
1390 struct extent_buffer
*leaf
;
1391 struct btrfs_extent_data_ref
*ref1
;
1392 struct btrfs_shared_data_ref
*ref2
;
1395 leaf
= path
->nodes
[0];
1396 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1398 if (btrfs_extent_inline_ref_type(leaf
, iref
) ==
1399 BTRFS_EXTENT_DATA_REF_KEY
) {
1400 ref1
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1401 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1403 ref2
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1404 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1406 } else if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1407 ref1
= btrfs_item_ptr(leaf
, path
->slots
[0],
1408 struct btrfs_extent_data_ref
);
1409 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1410 } else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
) {
1411 ref2
= btrfs_item_ptr(leaf
, path
->slots
[0],
1412 struct btrfs_shared_data_ref
);
1413 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1414 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1415 } else if (key
.type
== BTRFS_EXTENT_REF_V0_KEY
) {
1416 struct btrfs_extent_ref_v0
*ref0
;
1417 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1418 struct btrfs_extent_ref_v0
);
1419 num_refs
= btrfs_ref_count_v0(leaf
, ref0
);
1427 static noinline
int lookup_tree_block_ref(struct btrfs_trans_handle
*trans
,
1428 struct btrfs_root
*root
,
1429 struct btrfs_path
*path
,
1430 u64 bytenr
, u64 parent
,
1433 struct btrfs_key key
;
1436 key
.objectid
= bytenr
;
1438 key
.type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1439 key
.offset
= parent
;
1441 key
.type
= BTRFS_TREE_BLOCK_REF_KEY
;
1442 key
.offset
= root_objectid
;
1445 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1448 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1449 if (ret
== -ENOENT
&& parent
) {
1450 btrfs_release_path(path
);
1451 key
.type
= BTRFS_EXTENT_REF_V0_KEY
;
1452 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1460 static noinline
int insert_tree_block_ref(struct btrfs_trans_handle
*trans
,
1461 struct btrfs_root
*root
,
1462 struct btrfs_path
*path
,
1463 u64 bytenr
, u64 parent
,
1466 struct btrfs_key key
;
1469 key
.objectid
= bytenr
;
1471 key
.type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1472 key
.offset
= parent
;
1474 key
.type
= BTRFS_TREE_BLOCK_REF_KEY
;
1475 key
.offset
= root_objectid
;
1478 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, 0);
1479 btrfs_release_path(path
);
1483 static inline int extent_ref_type(u64 parent
, u64 owner
)
1486 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1488 type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1490 type
= BTRFS_TREE_BLOCK_REF_KEY
;
1493 type
= BTRFS_SHARED_DATA_REF_KEY
;
1495 type
= BTRFS_EXTENT_DATA_REF_KEY
;
1500 static int find_next_key(struct btrfs_path
*path
, int level
,
1501 struct btrfs_key
*key
)
1504 for (; level
< BTRFS_MAX_LEVEL
; level
++) {
1505 if (!path
->nodes
[level
])
1507 if (path
->slots
[level
] + 1 >=
1508 btrfs_header_nritems(path
->nodes
[level
]))
1511 btrfs_item_key_to_cpu(path
->nodes
[level
], key
,
1512 path
->slots
[level
] + 1);
1514 btrfs_node_key_to_cpu(path
->nodes
[level
], key
,
1515 path
->slots
[level
] + 1);
1522 * look for inline back ref. if back ref is found, *ref_ret is set
1523 * to the address of inline back ref, and 0 is returned.
1525 * if back ref isn't found, *ref_ret is set to the address where it
1526 * should be inserted, and -ENOENT is returned.
1528 * if insert is true and there are too many inline back refs, the path
1529 * points to the extent item, and -EAGAIN is returned.
1531 * NOTE: inline back refs are ordered in the same way that back ref
1532 * items in the tree are ordered.
1534 static noinline_for_stack
1535 int lookup_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1536 struct btrfs_root
*root
,
1537 struct btrfs_path
*path
,
1538 struct btrfs_extent_inline_ref
**ref_ret
,
1539 u64 bytenr
, u64 num_bytes
,
1540 u64 parent
, u64 root_objectid
,
1541 u64 owner
, u64 offset
, int insert
)
1543 struct btrfs_key key
;
1544 struct extent_buffer
*leaf
;
1545 struct btrfs_extent_item
*ei
;
1546 struct btrfs_extent_inline_ref
*iref
;
1556 bool skinny_metadata
= btrfs_fs_incompat(root
->fs_info
,
1559 key
.objectid
= bytenr
;
1560 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1561 key
.offset
= num_bytes
;
1563 want
= extent_ref_type(parent
, owner
);
1565 extra_size
= btrfs_extent_inline_ref_size(want
);
1566 path
->keep_locks
= 1;
1571 * Owner is our parent level, so we can just add one to get the level
1572 * for the block we are interested in.
1574 if (skinny_metadata
&& owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1575 key
.type
= BTRFS_METADATA_ITEM_KEY
;
1580 ret
= btrfs_search_slot(trans
, root
, &key
, path
, extra_size
, 1);
1587 * We may be a newly converted file system which still has the old fat
1588 * extent entries for metadata, so try and see if we have one of those.
1590 if (ret
> 0 && skinny_metadata
) {
1591 skinny_metadata
= false;
1592 if (path
->slots
[0]) {
1594 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
1596 if (key
.objectid
== bytenr
&&
1597 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
1598 key
.offset
== num_bytes
)
1602 key
.objectid
= bytenr
;
1603 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1604 key
.offset
= num_bytes
;
1605 btrfs_release_path(path
);
1610 if (ret
&& !insert
) {
1613 } else if (WARN_ON(ret
)) {
1618 leaf
= path
->nodes
[0];
1619 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1620 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1621 if (item_size
< sizeof(*ei
)) {
1626 ret
= convert_extent_item_v0(trans
, root
, path
, owner
,
1632 leaf
= path
->nodes
[0];
1633 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1636 BUG_ON(item_size
< sizeof(*ei
));
1638 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1639 flags
= btrfs_extent_flags(leaf
, ei
);
1641 ptr
= (unsigned long)(ei
+ 1);
1642 end
= (unsigned long)ei
+ item_size
;
1644 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
&& !skinny_metadata
) {
1645 ptr
+= sizeof(struct btrfs_tree_block_info
);
1655 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
1656 type
= btrfs_extent_inline_ref_type(leaf
, iref
);
1660 ptr
+= btrfs_extent_inline_ref_size(type
);
1664 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1665 struct btrfs_extent_data_ref
*dref
;
1666 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1667 if (match_extent_data_ref(leaf
, dref
, root_objectid
,
1672 if (hash_extent_data_ref_item(leaf
, dref
) <
1673 hash_extent_data_ref(root_objectid
, owner
, offset
))
1677 ref_offset
= btrfs_extent_inline_ref_offset(leaf
, iref
);
1679 if (parent
== ref_offset
) {
1683 if (ref_offset
< parent
)
1686 if (root_objectid
== ref_offset
) {
1690 if (ref_offset
< root_objectid
)
1694 ptr
+= btrfs_extent_inline_ref_size(type
);
1696 if (err
== -ENOENT
&& insert
) {
1697 if (item_size
+ extra_size
>=
1698 BTRFS_MAX_EXTENT_ITEM_SIZE(root
)) {
1703 * To add new inline back ref, we have to make sure
1704 * there is no corresponding back ref item.
1705 * For simplicity, we just do not add new inline back
1706 * ref if there is any kind of item for this block
1708 if (find_next_key(path
, 0, &key
) == 0 &&
1709 key
.objectid
== bytenr
&&
1710 key
.type
< BTRFS_BLOCK_GROUP_ITEM_KEY
) {
1715 *ref_ret
= (struct btrfs_extent_inline_ref
*)ptr
;
1718 path
->keep_locks
= 0;
1719 btrfs_unlock_up_safe(path
, 1);
1725 * helper to add new inline back ref
1727 static noinline_for_stack
1728 void setup_inline_extent_backref(struct btrfs_root
*root
,
1729 struct btrfs_path
*path
,
1730 struct btrfs_extent_inline_ref
*iref
,
1731 u64 parent
, u64 root_objectid
,
1732 u64 owner
, u64 offset
, int refs_to_add
,
1733 struct btrfs_delayed_extent_op
*extent_op
)
1735 struct extent_buffer
*leaf
;
1736 struct btrfs_extent_item
*ei
;
1739 unsigned long item_offset
;
1744 leaf
= path
->nodes
[0];
1745 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1746 item_offset
= (unsigned long)iref
- (unsigned long)ei
;
1748 type
= extent_ref_type(parent
, owner
);
1749 size
= btrfs_extent_inline_ref_size(type
);
1751 btrfs_extend_item(root
, path
, size
);
1753 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1754 refs
= btrfs_extent_refs(leaf
, ei
);
1755 refs
+= refs_to_add
;
1756 btrfs_set_extent_refs(leaf
, ei
, refs
);
1758 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1760 ptr
= (unsigned long)ei
+ item_offset
;
1761 end
= (unsigned long)ei
+ btrfs_item_size_nr(leaf
, path
->slots
[0]);
1762 if (ptr
< end
- size
)
1763 memmove_extent_buffer(leaf
, ptr
+ size
, ptr
,
1766 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
1767 btrfs_set_extent_inline_ref_type(leaf
, iref
, type
);
1768 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1769 struct btrfs_extent_data_ref
*dref
;
1770 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1771 btrfs_set_extent_data_ref_root(leaf
, dref
, root_objectid
);
1772 btrfs_set_extent_data_ref_objectid(leaf
, dref
, owner
);
1773 btrfs_set_extent_data_ref_offset(leaf
, dref
, offset
);
1774 btrfs_set_extent_data_ref_count(leaf
, dref
, refs_to_add
);
1775 } else if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1776 struct btrfs_shared_data_ref
*sref
;
1777 sref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1778 btrfs_set_shared_data_ref_count(leaf
, sref
, refs_to_add
);
1779 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
1780 } else if (type
== BTRFS_SHARED_BLOCK_REF_KEY
) {
1781 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
1783 btrfs_set_extent_inline_ref_offset(leaf
, iref
, root_objectid
);
1785 btrfs_mark_buffer_dirty(leaf
);
1788 static int lookup_extent_backref(struct btrfs_trans_handle
*trans
,
1789 struct btrfs_root
*root
,
1790 struct btrfs_path
*path
,
1791 struct btrfs_extent_inline_ref
**ref_ret
,
1792 u64 bytenr
, u64 num_bytes
, u64 parent
,
1793 u64 root_objectid
, u64 owner
, u64 offset
)
1797 ret
= lookup_inline_extent_backref(trans
, root
, path
, ref_ret
,
1798 bytenr
, num_bytes
, parent
,
1799 root_objectid
, owner
, offset
, 0);
1803 btrfs_release_path(path
);
1806 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1807 ret
= lookup_tree_block_ref(trans
, root
, path
, bytenr
, parent
,
1810 ret
= lookup_extent_data_ref(trans
, root
, path
, bytenr
, parent
,
1811 root_objectid
, owner
, offset
);
1817 * helper to update/remove inline back ref
1819 static noinline_for_stack
1820 void update_inline_extent_backref(struct btrfs_root
*root
,
1821 struct btrfs_path
*path
,
1822 struct btrfs_extent_inline_ref
*iref
,
1824 struct btrfs_delayed_extent_op
*extent_op
,
1827 struct extent_buffer
*leaf
;
1828 struct btrfs_extent_item
*ei
;
1829 struct btrfs_extent_data_ref
*dref
= NULL
;
1830 struct btrfs_shared_data_ref
*sref
= NULL
;
1838 leaf
= path
->nodes
[0];
1839 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1840 refs
= btrfs_extent_refs(leaf
, ei
);
1841 WARN_ON(refs_to_mod
< 0 && refs
+ refs_to_mod
<= 0);
1842 refs
+= refs_to_mod
;
1843 btrfs_set_extent_refs(leaf
, ei
, refs
);
1845 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1847 type
= btrfs_extent_inline_ref_type(leaf
, iref
);
1849 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1850 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1851 refs
= btrfs_extent_data_ref_count(leaf
, dref
);
1852 } else if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1853 sref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1854 refs
= btrfs_shared_data_ref_count(leaf
, sref
);
1857 BUG_ON(refs_to_mod
!= -1);
1860 BUG_ON(refs_to_mod
< 0 && refs
< -refs_to_mod
);
1861 refs
+= refs_to_mod
;
1864 if (type
== BTRFS_EXTENT_DATA_REF_KEY
)
1865 btrfs_set_extent_data_ref_count(leaf
, dref
, refs
);
1867 btrfs_set_shared_data_ref_count(leaf
, sref
, refs
);
1870 size
= btrfs_extent_inline_ref_size(type
);
1871 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1872 ptr
= (unsigned long)iref
;
1873 end
= (unsigned long)ei
+ item_size
;
1874 if (ptr
+ size
< end
)
1875 memmove_extent_buffer(leaf
, ptr
, ptr
+ size
,
1878 btrfs_truncate_item(root
, path
, item_size
, 1);
1880 btrfs_mark_buffer_dirty(leaf
);
1883 static noinline_for_stack
1884 int insert_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1885 struct btrfs_root
*root
,
1886 struct btrfs_path
*path
,
1887 u64 bytenr
, u64 num_bytes
, u64 parent
,
1888 u64 root_objectid
, u64 owner
,
1889 u64 offset
, int refs_to_add
,
1890 struct btrfs_delayed_extent_op
*extent_op
)
1892 struct btrfs_extent_inline_ref
*iref
;
1895 ret
= lookup_inline_extent_backref(trans
, root
, path
, &iref
,
1896 bytenr
, num_bytes
, parent
,
1897 root_objectid
, owner
, offset
, 1);
1899 BUG_ON(owner
< BTRFS_FIRST_FREE_OBJECTID
);
1900 update_inline_extent_backref(root
, path
, iref
,
1901 refs_to_add
, extent_op
, NULL
);
1902 } else if (ret
== -ENOENT
) {
1903 setup_inline_extent_backref(root
, path
, iref
, parent
,
1904 root_objectid
, owner
, offset
,
1905 refs_to_add
, extent_op
);
1911 static int insert_extent_backref(struct btrfs_trans_handle
*trans
,
1912 struct btrfs_root
*root
,
1913 struct btrfs_path
*path
,
1914 u64 bytenr
, u64 parent
, u64 root_objectid
,
1915 u64 owner
, u64 offset
, int refs_to_add
)
1918 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1919 BUG_ON(refs_to_add
!= 1);
1920 ret
= insert_tree_block_ref(trans
, root
, path
, bytenr
,
1921 parent
, root_objectid
);
1923 ret
= insert_extent_data_ref(trans
, root
, path
, bytenr
,
1924 parent
, root_objectid
,
1925 owner
, offset
, refs_to_add
);
1930 static int remove_extent_backref(struct btrfs_trans_handle
*trans
,
1931 struct btrfs_root
*root
,
1932 struct btrfs_path
*path
,
1933 struct btrfs_extent_inline_ref
*iref
,
1934 int refs_to_drop
, int is_data
, int *last_ref
)
1938 BUG_ON(!is_data
&& refs_to_drop
!= 1);
1940 update_inline_extent_backref(root
, path
, iref
,
1941 -refs_to_drop
, NULL
, last_ref
);
1942 } else if (is_data
) {
1943 ret
= remove_extent_data_ref(trans
, root
, path
, refs_to_drop
,
1947 ret
= btrfs_del_item(trans
, root
, path
);
1952 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
1953 static int btrfs_issue_discard(struct block_device
*bdev
, u64 start
, u64 len
,
1954 u64
*discarded_bytes
)
1957 u64 bytes_left
, end
;
1958 u64 aligned_start
= ALIGN(start
, 1 << 9);
1960 if (WARN_ON(start
!= aligned_start
)) {
1961 len
-= aligned_start
- start
;
1962 len
= round_down(len
, 1 << 9);
1963 start
= aligned_start
;
1966 *discarded_bytes
= 0;
1974 /* Skip any superblocks on this device. */
1975 for (j
= 0; j
< BTRFS_SUPER_MIRROR_MAX
; j
++) {
1976 u64 sb_start
= btrfs_sb_offset(j
);
1977 u64 sb_end
= sb_start
+ BTRFS_SUPER_INFO_SIZE
;
1978 u64 size
= sb_start
- start
;
1980 if (!in_range(sb_start
, start
, bytes_left
) &&
1981 !in_range(sb_end
, start
, bytes_left
) &&
1982 !in_range(start
, sb_start
, BTRFS_SUPER_INFO_SIZE
))
1986 * Superblock spans beginning of range. Adjust start and
1989 if (sb_start
<= start
) {
1990 start
+= sb_end
- start
;
1995 bytes_left
= end
- start
;
2000 ret
= blkdev_issue_discard(bdev
, start
>> 9, size
>> 9,
2003 *discarded_bytes
+= size
;
2004 else if (ret
!= -EOPNOTSUPP
)
2013 bytes_left
= end
- start
;
2017 ret
= blkdev_issue_discard(bdev
, start
>> 9, bytes_left
>> 9,
2020 *discarded_bytes
+= bytes_left
;
2025 int btrfs_discard_extent(struct btrfs_root
*root
, u64 bytenr
,
2026 u64 num_bytes
, u64
*actual_bytes
)
2029 u64 discarded_bytes
= 0;
2030 struct btrfs_bio
*bbio
= NULL
;
2034 * Avoid races with device replace and make sure our bbio has devices
2035 * associated to its stripes that don't go away while we are discarding.
2037 btrfs_bio_counter_inc_blocked(root
->fs_info
);
2038 /* Tell the block device(s) that the sectors can be discarded */
2039 ret
= btrfs_map_block(root
->fs_info
, REQ_OP_DISCARD
,
2040 bytenr
, &num_bytes
, &bbio
, 0);
2041 /* Error condition is -ENOMEM */
2043 struct btrfs_bio_stripe
*stripe
= bbio
->stripes
;
2047 for (i
= 0; i
< bbio
->num_stripes
; i
++, stripe
++) {
2049 if (!stripe
->dev
->can_discard
)
2052 ret
= btrfs_issue_discard(stripe
->dev
->bdev
,
2057 discarded_bytes
+= bytes
;
2058 else if (ret
!= -EOPNOTSUPP
)
2059 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2062 * Just in case we get back EOPNOTSUPP for some reason,
2063 * just ignore the return value so we don't screw up
2064 * people calling discard_extent.
2068 btrfs_put_bbio(bbio
);
2070 btrfs_bio_counter_dec(root
->fs_info
);
2073 *actual_bytes
= discarded_bytes
;
2076 if (ret
== -EOPNOTSUPP
)
2081 /* Can return -ENOMEM */
2082 int btrfs_inc_extent_ref(struct btrfs_trans_handle
*trans
,
2083 struct btrfs_root
*root
,
2084 u64 bytenr
, u64 num_bytes
, u64 parent
,
2085 u64 root_objectid
, u64 owner
, u64 offset
)
2088 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2090 BUG_ON(owner
< BTRFS_FIRST_FREE_OBJECTID
&&
2091 root_objectid
== BTRFS_TREE_LOG_OBJECTID
);
2093 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
2094 ret
= btrfs_add_delayed_tree_ref(fs_info
, trans
, bytenr
,
2096 parent
, root_objectid
, (int)owner
,
2097 BTRFS_ADD_DELAYED_REF
, NULL
);
2099 ret
= btrfs_add_delayed_data_ref(fs_info
, trans
, bytenr
,
2100 num_bytes
, parent
, root_objectid
,
2102 BTRFS_ADD_DELAYED_REF
, NULL
);
2107 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle
*trans
,
2108 struct btrfs_root
*root
,
2109 struct btrfs_delayed_ref_node
*node
,
2110 u64 parent
, u64 root_objectid
,
2111 u64 owner
, u64 offset
, int refs_to_add
,
2112 struct btrfs_delayed_extent_op
*extent_op
)
2114 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2115 struct btrfs_path
*path
;
2116 struct extent_buffer
*leaf
;
2117 struct btrfs_extent_item
*item
;
2118 struct btrfs_key key
;
2119 u64 bytenr
= node
->bytenr
;
2120 u64 num_bytes
= node
->num_bytes
;
2124 path
= btrfs_alloc_path();
2128 path
->reada
= READA_FORWARD
;
2129 path
->leave_spinning
= 1;
2130 /* this will setup the path even if it fails to insert the back ref */
2131 ret
= insert_inline_extent_backref(trans
, fs_info
->extent_root
, path
,
2132 bytenr
, num_bytes
, parent
,
2133 root_objectid
, owner
, offset
,
2134 refs_to_add
, extent_op
);
2135 if ((ret
< 0 && ret
!= -EAGAIN
) || !ret
)
2139 * Ok we had -EAGAIN which means we didn't have space to insert and
2140 * inline extent ref, so just update the reference count and add a
2143 leaf
= path
->nodes
[0];
2144 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2145 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
2146 refs
= btrfs_extent_refs(leaf
, item
);
2147 btrfs_set_extent_refs(leaf
, item
, refs
+ refs_to_add
);
2149 __run_delayed_extent_op(extent_op
, leaf
, item
);
2151 btrfs_mark_buffer_dirty(leaf
);
2152 btrfs_release_path(path
);
2154 path
->reada
= READA_FORWARD
;
2155 path
->leave_spinning
= 1;
2156 /* now insert the actual backref */
2157 ret
= insert_extent_backref(trans
, root
->fs_info
->extent_root
,
2158 path
, bytenr
, parent
, root_objectid
,
2159 owner
, offset
, refs_to_add
);
2161 btrfs_abort_transaction(trans
, ret
);
2163 btrfs_free_path(path
);
2167 static int run_delayed_data_ref(struct btrfs_trans_handle
*trans
,
2168 struct btrfs_root
*root
,
2169 struct btrfs_delayed_ref_node
*node
,
2170 struct btrfs_delayed_extent_op
*extent_op
,
2171 int insert_reserved
)
2174 struct btrfs_delayed_data_ref
*ref
;
2175 struct btrfs_key ins
;
2180 ins
.objectid
= node
->bytenr
;
2181 ins
.offset
= node
->num_bytes
;
2182 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
2184 ref
= btrfs_delayed_node_to_data_ref(node
);
2185 trace_run_delayed_data_ref(root
->fs_info
, node
, ref
, node
->action
);
2187 if (node
->type
== BTRFS_SHARED_DATA_REF_KEY
)
2188 parent
= ref
->parent
;
2189 ref_root
= ref
->root
;
2191 if (node
->action
== BTRFS_ADD_DELAYED_REF
&& insert_reserved
) {
2193 flags
|= extent_op
->flags_to_set
;
2194 ret
= alloc_reserved_file_extent(trans
, root
,
2195 parent
, ref_root
, flags
,
2196 ref
->objectid
, ref
->offset
,
2197 &ins
, node
->ref_mod
);
2198 } else if (node
->action
== BTRFS_ADD_DELAYED_REF
) {
2199 ret
= __btrfs_inc_extent_ref(trans
, root
, node
, parent
,
2200 ref_root
, ref
->objectid
,
2201 ref
->offset
, node
->ref_mod
,
2203 } else if (node
->action
== BTRFS_DROP_DELAYED_REF
) {
2204 ret
= __btrfs_free_extent(trans
, root
, node
, parent
,
2205 ref_root
, ref
->objectid
,
2206 ref
->offset
, node
->ref_mod
,
2214 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op
*extent_op
,
2215 struct extent_buffer
*leaf
,
2216 struct btrfs_extent_item
*ei
)
2218 u64 flags
= btrfs_extent_flags(leaf
, ei
);
2219 if (extent_op
->update_flags
) {
2220 flags
|= extent_op
->flags_to_set
;
2221 btrfs_set_extent_flags(leaf
, ei
, flags
);
2224 if (extent_op
->update_key
) {
2225 struct btrfs_tree_block_info
*bi
;
2226 BUG_ON(!(flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
));
2227 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
2228 btrfs_set_tree_block_key(leaf
, bi
, &extent_op
->key
);
2232 static int run_delayed_extent_op(struct btrfs_trans_handle
*trans
,
2233 struct btrfs_root
*root
,
2234 struct btrfs_delayed_ref_node
*node
,
2235 struct btrfs_delayed_extent_op
*extent_op
)
2237 struct btrfs_key key
;
2238 struct btrfs_path
*path
;
2239 struct btrfs_extent_item
*ei
;
2240 struct extent_buffer
*leaf
;
2244 int metadata
= !extent_op
->is_data
;
2249 if (metadata
&& !btrfs_fs_incompat(root
->fs_info
, SKINNY_METADATA
))
2252 path
= btrfs_alloc_path();
2256 key
.objectid
= node
->bytenr
;
2259 key
.type
= BTRFS_METADATA_ITEM_KEY
;
2260 key
.offset
= extent_op
->level
;
2262 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2263 key
.offset
= node
->num_bytes
;
2267 path
->reada
= READA_FORWARD
;
2268 path
->leave_spinning
= 1;
2269 ret
= btrfs_search_slot(trans
, root
->fs_info
->extent_root
, &key
,
2277 if (path
->slots
[0] > 0) {
2279 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
2281 if (key
.objectid
== node
->bytenr
&&
2282 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
2283 key
.offset
== node
->num_bytes
)
2287 btrfs_release_path(path
);
2290 key
.objectid
= node
->bytenr
;
2291 key
.offset
= node
->num_bytes
;
2292 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2301 leaf
= path
->nodes
[0];
2302 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
2303 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2304 if (item_size
< sizeof(*ei
)) {
2305 ret
= convert_extent_item_v0(trans
, root
->fs_info
->extent_root
,
2311 leaf
= path
->nodes
[0];
2312 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
2315 BUG_ON(item_size
< sizeof(*ei
));
2316 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
2317 __run_delayed_extent_op(extent_op
, leaf
, ei
);
2319 btrfs_mark_buffer_dirty(leaf
);
2321 btrfs_free_path(path
);
2325 static int run_delayed_tree_ref(struct btrfs_trans_handle
*trans
,
2326 struct btrfs_root
*root
,
2327 struct btrfs_delayed_ref_node
*node
,
2328 struct btrfs_delayed_extent_op
*extent_op
,
2329 int insert_reserved
)
2332 struct btrfs_delayed_tree_ref
*ref
;
2333 struct btrfs_key ins
;
2336 bool skinny_metadata
= btrfs_fs_incompat(root
->fs_info
,
2339 ref
= btrfs_delayed_node_to_tree_ref(node
);
2340 trace_run_delayed_tree_ref(root
->fs_info
, node
, ref
, node
->action
);
2342 if (node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
)
2343 parent
= ref
->parent
;
2344 ref_root
= ref
->root
;
2346 ins
.objectid
= node
->bytenr
;
2347 if (skinny_metadata
) {
2348 ins
.offset
= ref
->level
;
2349 ins
.type
= BTRFS_METADATA_ITEM_KEY
;
2351 ins
.offset
= node
->num_bytes
;
2352 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
2355 if (node
->ref_mod
!= 1) {
2356 btrfs_err(root
->fs_info
,
2357 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2358 node
->bytenr
, node
->ref_mod
, node
->action
, ref_root
,
2362 if (node
->action
== BTRFS_ADD_DELAYED_REF
&& insert_reserved
) {
2363 BUG_ON(!extent_op
|| !extent_op
->update_flags
);
2364 ret
= alloc_reserved_tree_block(trans
, root
,
2366 extent_op
->flags_to_set
,
2369 } else if (node
->action
== BTRFS_ADD_DELAYED_REF
) {
2370 ret
= __btrfs_inc_extent_ref(trans
, root
, node
,
2374 } else if (node
->action
== BTRFS_DROP_DELAYED_REF
) {
2375 ret
= __btrfs_free_extent(trans
, root
, node
,
2377 ref
->level
, 0, 1, extent_op
);
2384 /* helper function to actually process a single delayed ref entry */
2385 static int run_one_delayed_ref(struct btrfs_trans_handle
*trans
,
2386 struct btrfs_root
*root
,
2387 struct btrfs_delayed_ref_node
*node
,
2388 struct btrfs_delayed_extent_op
*extent_op
,
2389 int insert_reserved
)
2393 if (trans
->aborted
) {
2394 if (insert_reserved
)
2395 btrfs_pin_extent(root
, node
->bytenr
,
2396 node
->num_bytes
, 1);
2400 if (btrfs_delayed_ref_is_head(node
)) {
2401 struct btrfs_delayed_ref_head
*head
;
2403 * we've hit the end of the chain and we were supposed
2404 * to insert this extent into the tree. But, it got
2405 * deleted before we ever needed to insert it, so all
2406 * we have to do is clean up the accounting
2409 head
= btrfs_delayed_node_to_head(node
);
2410 trace_run_delayed_ref_head(root
->fs_info
, node
, head
,
2413 if (insert_reserved
) {
2414 btrfs_pin_extent(root
, node
->bytenr
,
2415 node
->num_bytes
, 1);
2416 if (head
->is_data
) {
2417 ret
= btrfs_del_csums(trans
, root
,
2423 /* Also free its reserved qgroup space */
2424 btrfs_qgroup_free_delayed_ref(root
->fs_info
,
2425 head
->qgroup_ref_root
,
2426 head
->qgroup_reserved
);
2430 if (node
->type
== BTRFS_TREE_BLOCK_REF_KEY
||
2431 node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
)
2432 ret
= run_delayed_tree_ref(trans
, root
, node
, extent_op
,
2434 else if (node
->type
== BTRFS_EXTENT_DATA_REF_KEY
||
2435 node
->type
== BTRFS_SHARED_DATA_REF_KEY
)
2436 ret
= run_delayed_data_ref(trans
, root
, node
, extent_op
,
2443 static inline struct btrfs_delayed_ref_node
*
2444 select_delayed_ref(struct btrfs_delayed_ref_head
*head
)
2446 struct btrfs_delayed_ref_node
*ref
;
2448 if (list_empty(&head
->ref_list
))
2452 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2453 * This is to prevent a ref count from going down to zero, which deletes
2454 * the extent item from the extent tree, when there still are references
2455 * to add, which would fail because they would not find the extent item.
2457 list_for_each_entry(ref
, &head
->ref_list
, list
) {
2458 if (ref
->action
== BTRFS_ADD_DELAYED_REF
)
2462 return list_entry(head
->ref_list
.next
, struct btrfs_delayed_ref_node
,
2467 * Returns 0 on success or if called with an already aborted transaction.
2468 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2470 static noinline
int __btrfs_run_delayed_refs(struct btrfs_trans_handle
*trans
,
2471 struct btrfs_root
*root
,
2474 struct btrfs_delayed_ref_root
*delayed_refs
;
2475 struct btrfs_delayed_ref_node
*ref
;
2476 struct btrfs_delayed_ref_head
*locked_ref
= NULL
;
2477 struct btrfs_delayed_extent_op
*extent_op
;
2478 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2479 ktime_t start
= ktime_get();
2481 unsigned long count
= 0;
2482 unsigned long actual_count
= 0;
2483 int must_insert_reserved
= 0;
2485 delayed_refs
= &trans
->transaction
->delayed_refs
;
2491 spin_lock(&delayed_refs
->lock
);
2492 locked_ref
= btrfs_select_ref_head(trans
);
2494 spin_unlock(&delayed_refs
->lock
);
2498 /* grab the lock that says we are going to process
2499 * all the refs for this head */
2500 ret
= btrfs_delayed_ref_lock(trans
, locked_ref
);
2501 spin_unlock(&delayed_refs
->lock
);
2503 * we may have dropped the spin lock to get the head
2504 * mutex lock, and that might have given someone else
2505 * time to free the head. If that's true, it has been
2506 * removed from our list and we can move on.
2508 if (ret
== -EAGAIN
) {
2516 * We need to try and merge add/drops of the same ref since we
2517 * can run into issues with relocate dropping the implicit ref
2518 * and then it being added back again before the drop can
2519 * finish. If we merged anything we need to re-loop so we can
2521 * Or we can get node references of the same type that weren't
2522 * merged when created due to bumps in the tree mod seq, and
2523 * we need to merge them to prevent adding an inline extent
2524 * backref before dropping it (triggering a BUG_ON at
2525 * insert_inline_extent_backref()).
2527 spin_lock(&locked_ref
->lock
);
2528 btrfs_merge_delayed_refs(trans
, fs_info
, delayed_refs
,
2532 * locked_ref is the head node, so we have to go one
2533 * node back for any delayed ref updates
2535 ref
= select_delayed_ref(locked_ref
);
2537 if (ref
&& ref
->seq
&&
2538 btrfs_check_delayed_seq(fs_info
, delayed_refs
, ref
->seq
)) {
2539 spin_unlock(&locked_ref
->lock
);
2540 btrfs_delayed_ref_unlock(locked_ref
);
2541 spin_lock(&delayed_refs
->lock
);
2542 locked_ref
->processing
= 0;
2543 delayed_refs
->num_heads_ready
++;
2544 spin_unlock(&delayed_refs
->lock
);
2552 * record the must insert reserved flag before we
2553 * drop the spin lock.
2555 must_insert_reserved
= locked_ref
->must_insert_reserved
;
2556 locked_ref
->must_insert_reserved
= 0;
2558 extent_op
= locked_ref
->extent_op
;
2559 locked_ref
->extent_op
= NULL
;
2564 /* All delayed refs have been processed, Go ahead
2565 * and send the head node to run_one_delayed_ref,
2566 * so that any accounting fixes can happen
2568 ref
= &locked_ref
->node
;
2570 if (extent_op
&& must_insert_reserved
) {
2571 btrfs_free_delayed_extent_op(extent_op
);
2576 spin_unlock(&locked_ref
->lock
);
2577 ret
= run_delayed_extent_op(trans
, root
,
2579 btrfs_free_delayed_extent_op(extent_op
);
2583 * Need to reset must_insert_reserved if
2584 * there was an error so the abort stuff
2585 * can cleanup the reserved space
2588 if (must_insert_reserved
)
2589 locked_ref
->must_insert_reserved
= 1;
2590 locked_ref
->processing
= 0;
2591 btrfs_debug(fs_info
,
2592 "run_delayed_extent_op returned %d",
2594 btrfs_delayed_ref_unlock(locked_ref
);
2601 * Need to drop our head ref lock and re-acquire the
2602 * delayed ref lock and then re-check to make sure
2605 spin_unlock(&locked_ref
->lock
);
2606 spin_lock(&delayed_refs
->lock
);
2607 spin_lock(&locked_ref
->lock
);
2608 if (!list_empty(&locked_ref
->ref_list
) ||
2609 locked_ref
->extent_op
) {
2610 spin_unlock(&locked_ref
->lock
);
2611 spin_unlock(&delayed_refs
->lock
);
2615 delayed_refs
->num_heads
--;
2616 rb_erase(&locked_ref
->href_node
,
2617 &delayed_refs
->href_root
);
2618 spin_unlock(&delayed_refs
->lock
);
2622 list_del(&ref
->list
);
2624 atomic_dec(&delayed_refs
->num_entries
);
2626 if (!btrfs_delayed_ref_is_head(ref
)) {
2628 * when we play the delayed ref, also correct the
2631 switch (ref
->action
) {
2632 case BTRFS_ADD_DELAYED_REF
:
2633 case BTRFS_ADD_DELAYED_EXTENT
:
2634 locked_ref
->node
.ref_mod
-= ref
->ref_mod
;
2636 case BTRFS_DROP_DELAYED_REF
:
2637 locked_ref
->node
.ref_mod
+= ref
->ref_mod
;
2643 spin_unlock(&locked_ref
->lock
);
2645 ret
= run_one_delayed_ref(trans
, root
, ref
, extent_op
,
2646 must_insert_reserved
);
2648 btrfs_free_delayed_extent_op(extent_op
);
2650 locked_ref
->processing
= 0;
2651 btrfs_delayed_ref_unlock(locked_ref
);
2652 btrfs_put_delayed_ref(ref
);
2653 btrfs_debug(fs_info
, "run_one_delayed_ref returned %d",
2659 * If this node is a head, that means all the refs in this head
2660 * have been dealt with, and we will pick the next head to deal
2661 * with, so we must unlock the head and drop it from the cluster
2662 * list before we release it.
2664 if (btrfs_delayed_ref_is_head(ref
)) {
2665 if (locked_ref
->is_data
&&
2666 locked_ref
->total_ref_mod
< 0) {
2667 spin_lock(&delayed_refs
->lock
);
2668 delayed_refs
->pending_csums
-= ref
->num_bytes
;
2669 spin_unlock(&delayed_refs
->lock
);
2671 btrfs_delayed_ref_unlock(locked_ref
);
2674 btrfs_put_delayed_ref(ref
);
2680 * We don't want to include ref heads since we can have empty ref heads
2681 * and those will drastically skew our runtime down since we just do
2682 * accounting, no actual extent tree updates.
2684 if (actual_count
> 0) {
2685 u64 runtime
= ktime_to_ns(ktime_sub(ktime_get(), start
));
2689 * We weigh the current average higher than our current runtime
2690 * to avoid large swings in the average.
2692 spin_lock(&delayed_refs
->lock
);
2693 avg
= fs_info
->avg_delayed_ref_runtime
* 3 + runtime
;
2694 fs_info
->avg_delayed_ref_runtime
= avg
>> 2; /* div by 4 */
2695 spin_unlock(&delayed_refs
->lock
);
2700 #ifdef SCRAMBLE_DELAYED_REFS
2702 * Normally delayed refs get processed in ascending bytenr order. This
2703 * correlates in most cases to the order added. To expose dependencies on this
2704 * order, we start to process the tree in the middle instead of the beginning
2706 static u64
find_middle(struct rb_root
*root
)
2708 struct rb_node
*n
= root
->rb_node
;
2709 struct btrfs_delayed_ref_node
*entry
;
2712 u64 first
= 0, last
= 0;
2716 entry
= rb_entry(n
, struct btrfs_delayed_ref_node
, rb_node
);
2717 first
= entry
->bytenr
;
2721 entry
= rb_entry(n
, struct btrfs_delayed_ref_node
, rb_node
);
2722 last
= entry
->bytenr
;
2727 entry
= rb_entry(n
, struct btrfs_delayed_ref_node
, rb_node
);
2728 WARN_ON(!entry
->in_tree
);
2730 middle
= entry
->bytenr
;
2743 static inline u64
heads_to_leaves(struct btrfs_root
*root
, u64 heads
)
2747 num_bytes
= heads
* (sizeof(struct btrfs_extent_item
) +
2748 sizeof(struct btrfs_extent_inline_ref
));
2749 if (!btrfs_fs_incompat(root
->fs_info
, SKINNY_METADATA
))
2750 num_bytes
+= heads
* sizeof(struct btrfs_tree_block_info
);
2753 * We don't ever fill up leaves all the way so multiply by 2 just to be
2754 * closer to what we're really going to want to use.
2756 return div_u64(num_bytes
, BTRFS_LEAF_DATA_SIZE(root
));
2760 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2761 * would require to store the csums for that many bytes.
2763 u64
btrfs_csum_bytes_to_leaves(struct btrfs_root
*root
, u64 csum_bytes
)
2766 u64 num_csums_per_leaf
;
2769 csum_size
= BTRFS_MAX_ITEM_SIZE(root
);
2770 num_csums_per_leaf
= div64_u64(csum_size
,
2771 (u64
)btrfs_super_csum_size(root
->fs_info
->super_copy
));
2772 num_csums
= div64_u64(csum_bytes
, root
->sectorsize
);
2773 num_csums
+= num_csums_per_leaf
- 1;
2774 num_csums
= div64_u64(num_csums
, num_csums_per_leaf
);
2778 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle
*trans
,
2779 struct btrfs_root
*root
)
2781 struct btrfs_block_rsv
*global_rsv
;
2782 u64 num_heads
= trans
->transaction
->delayed_refs
.num_heads_ready
;
2783 u64 csum_bytes
= trans
->transaction
->delayed_refs
.pending_csums
;
2784 u64 num_dirty_bgs
= trans
->transaction
->num_dirty_bgs
;
2785 u64 num_bytes
, num_dirty_bgs_bytes
;
2788 num_bytes
= btrfs_calc_trans_metadata_size(root
, 1);
2789 num_heads
= heads_to_leaves(root
, num_heads
);
2791 num_bytes
+= (num_heads
- 1) * root
->nodesize
;
2793 num_bytes
+= btrfs_csum_bytes_to_leaves(root
, csum_bytes
) * root
->nodesize
;
2794 num_dirty_bgs_bytes
= btrfs_calc_trans_metadata_size(root
,
2796 global_rsv
= &root
->fs_info
->global_block_rsv
;
2799 * If we can't allocate any more chunks lets make sure we have _lots_ of
2800 * wiggle room since running delayed refs can create more delayed refs.
2802 if (global_rsv
->space_info
->full
) {
2803 num_dirty_bgs_bytes
<<= 1;
2807 spin_lock(&global_rsv
->lock
);
2808 if (global_rsv
->reserved
<= num_bytes
+ num_dirty_bgs_bytes
)
2810 spin_unlock(&global_rsv
->lock
);
2814 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle
*trans
,
2815 struct btrfs_root
*root
)
2817 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2819 atomic_read(&trans
->transaction
->delayed_refs
.num_entries
);
2824 avg_runtime
= fs_info
->avg_delayed_ref_runtime
;
2825 val
= num_entries
* avg_runtime
;
2826 if (num_entries
* avg_runtime
>= NSEC_PER_SEC
)
2828 if (val
>= NSEC_PER_SEC
/ 2)
2831 return btrfs_check_space_for_delayed_refs(trans
, root
);
2834 struct async_delayed_refs
{
2835 struct btrfs_root
*root
;
2840 struct completion wait
;
2841 struct btrfs_work work
;
2844 static void delayed_ref_async_start(struct btrfs_work
*work
)
2846 struct async_delayed_refs
*async
;
2847 struct btrfs_trans_handle
*trans
;
2850 async
= container_of(work
, struct async_delayed_refs
, work
);
2852 /* if the commit is already started, we don't need to wait here */
2853 if (btrfs_transaction_blocked(async
->root
->fs_info
))
2856 trans
= btrfs_join_transaction(async
->root
);
2857 if (IS_ERR(trans
)) {
2858 async
->error
= PTR_ERR(trans
);
2863 * trans->sync means that when we call end_transaction, we won't
2864 * wait on delayed refs
2868 /* Don't bother flushing if we got into a different transaction */
2869 if (trans
->transid
> async
->transid
)
2872 ret
= btrfs_run_delayed_refs(trans
, async
->root
, async
->count
);
2876 ret
= btrfs_end_transaction(trans
, async
->root
);
2877 if (ret
&& !async
->error
)
2881 complete(&async
->wait
);
2886 int btrfs_async_run_delayed_refs(struct btrfs_root
*root
,
2887 unsigned long count
, u64 transid
, int wait
)
2889 struct async_delayed_refs
*async
;
2892 async
= kmalloc(sizeof(*async
), GFP_NOFS
);
2896 async
->root
= root
->fs_info
->tree_root
;
2897 async
->count
= count
;
2899 async
->transid
= transid
;
2904 init_completion(&async
->wait
);
2906 btrfs_init_work(&async
->work
, btrfs_extent_refs_helper
,
2907 delayed_ref_async_start
, NULL
, NULL
);
2909 btrfs_queue_work(root
->fs_info
->extent_workers
, &async
->work
);
2912 wait_for_completion(&async
->wait
);
2921 * this starts processing the delayed reference count updates and
2922 * extent insertions we have queued up so far. count can be
2923 * 0, which means to process everything in the tree at the start
2924 * of the run (but not newly added entries), or it can be some target
2925 * number you'd like to process.
2927 * Returns 0 on success or if called with an aborted transaction
2928 * Returns <0 on error and aborts the transaction
2930 int btrfs_run_delayed_refs(struct btrfs_trans_handle
*trans
,
2931 struct btrfs_root
*root
, unsigned long count
)
2933 struct rb_node
*node
;
2934 struct btrfs_delayed_ref_root
*delayed_refs
;
2935 struct btrfs_delayed_ref_head
*head
;
2937 int run_all
= count
== (unsigned long)-1;
2938 bool can_flush_pending_bgs
= trans
->can_flush_pending_bgs
;
2940 /* We'll clean this up in btrfs_cleanup_transaction */
2944 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE
, &root
->fs_info
->flags
))
2947 if (root
== root
->fs_info
->extent_root
)
2948 root
= root
->fs_info
->tree_root
;
2950 delayed_refs
= &trans
->transaction
->delayed_refs
;
2952 count
= atomic_read(&delayed_refs
->num_entries
) * 2;
2955 #ifdef SCRAMBLE_DELAYED_REFS
2956 delayed_refs
->run_delayed_start
= find_middle(&delayed_refs
->root
);
2958 trans
->can_flush_pending_bgs
= false;
2959 ret
= __btrfs_run_delayed_refs(trans
, root
, count
);
2961 btrfs_abort_transaction(trans
, ret
);
2966 if (!list_empty(&trans
->new_bgs
))
2967 btrfs_create_pending_block_groups(trans
, root
);
2969 spin_lock(&delayed_refs
->lock
);
2970 node
= rb_first(&delayed_refs
->href_root
);
2972 spin_unlock(&delayed_refs
->lock
);
2977 head
= rb_entry(node
, struct btrfs_delayed_ref_head
,
2979 if (btrfs_delayed_ref_is_head(&head
->node
)) {
2980 struct btrfs_delayed_ref_node
*ref
;
2983 atomic_inc(&ref
->refs
);
2985 spin_unlock(&delayed_refs
->lock
);
2987 * Mutex was contended, block until it's
2988 * released and try again
2990 mutex_lock(&head
->mutex
);
2991 mutex_unlock(&head
->mutex
);
2993 btrfs_put_delayed_ref(ref
);
2999 node
= rb_next(node
);
3001 spin_unlock(&delayed_refs
->lock
);
3006 assert_qgroups_uptodate(trans
);
3007 trans
->can_flush_pending_bgs
= can_flush_pending_bgs
;
3011 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle
*trans
,
3012 struct btrfs_root
*root
,
3013 u64 bytenr
, u64 num_bytes
, u64 flags
,
3014 int level
, int is_data
)
3016 struct btrfs_delayed_extent_op
*extent_op
;
3019 extent_op
= btrfs_alloc_delayed_extent_op();
3023 extent_op
->flags_to_set
= flags
;
3024 extent_op
->update_flags
= true;
3025 extent_op
->update_key
= false;
3026 extent_op
->is_data
= is_data
? true : false;
3027 extent_op
->level
= level
;
3029 ret
= btrfs_add_delayed_extent_op(root
->fs_info
, trans
, bytenr
,
3030 num_bytes
, extent_op
);
3032 btrfs_free_delayed_extent_op(extent_op
);
3036 static noinline
int check_delayed_ref(struct btrfs_trans_handle
*trans
,
3037 struct btrfs_root
*root
,
3038 struct btrfs_path
*path
,
3039 u64 objectid
, u64 offset
, u64 bytenr
)
3041 struct btrfs_delayed_ref_head
*head
;
3042 struct btrfs_delayed_ref_node
*ref
;
3043 struct btrfs_delayed_data_ref
*data_ref
;
3044 struct btrfs_delayed_ref_root
*delayed_refs
;
3047 delayed_refs
= &trans
->transaction
->delayed_refs
;
3048 spin_lock(&delayed_refs
->lock
);
3049 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
3051 spin_unlock(&delayed_refs
->lock
);
3055 if (!mutex_trylock(&head
->mutex
)) {
3056 atomic_inc(&head
->node
.refs
);
3057 spin_unlock(&delayed_refs
->lock
);
3059 btrfs_release_path(path
);
3062 * Mutex was contended, block until it's released and let
3065 mutex_lock(&head
->mutex
);
3066 mutex_unlock(&head
->mutex
);
3067 btrfs_put_delayed_ref(&head
->node
);
3070 spin_unlock(&delayed_refs
->lock
);
3072 spin_lock(&head
->lock
);
3073 list_for_each_entry(ref
, &head
->ref_list
, list
) {
3074 /* If it's a shared ref we know a cross reference exists */
3075 if (ref
->type
!= BTRFS_EXTENT_DATA_REF_KEY
) {
3080 data_ref
= btrfs_delayed_node_to_data_ref(ref
);
3083 * If our ref doesn't match the one we're currently looking at
3084 * then we have a cross reference.
3086 if (data_ref
->root
!= root
->root_key
.objectid
||
3087 data_ref
->objectid
!= objectid
||
3088 data_ref
->offset
!= offset
) {
3093 spin_unlock(&head
->lock
);
3094 mutex_unlock(&head
->mutex
);
3098 static noinline
int check_committed_ref(struct btrfs_trans_handle
*trans
,
3099 struct btrfs_root
*root
,
3100 struct btrfs_path
*path
,
3101 u64 objectid
, u64 offset
, u64 bytenr
)
3103 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
3104 struct extent_buffer
*leaf
;
3105 struct btrfs_extent_data_ref
*ref
;
3106 struct btrfs_extent_inline_ref
*iref
;
3107 struct btrfs_extent_item
*ei
;
3108 struct btrfs_key key
;
3112 key
.objectid
= bytenr
;
3113 key
.offset
= (u64
)-1;
3114 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
3116 ret
= btrfs_search_slot(NULL
, extent_root
, &key
, path
, 0, 0);
3119 BUG_ON(ret
== 0); /* Corruption */
3122 if (path
->slots
[0] == 0)
3126 leaf
= path
->nodes
[0];
3127 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
3129 if (key
.objectid
!= bytenr
|| key
.type
!= BTRFS_EXTENT_ITEM_KEY
)
3133 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
3134 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3135 if (item_size
< sizeof(*ei
)) {
3136 WARN_ON(item_size
!= sizeof(struct btrfs_extent_item_v0
));
3140 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
3142 if (item_size
!= sizeof(*ei
) +
3143 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY
))
3146 if (btrfs_extent_generation(leaf
, ei
) <=
3147 btrfs_root_last_snapshot(&root
->root_item
))
3150 iref
= (struct btrfs_extent_inline_ref
*)(ei
+ 1);
3151 if (btrfs_extent_inline_ref_type(leaf
, iref
) !=
3152 BTRFS_EXTENT_DATA_REF_KEY
)
3155 ref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
3156 if (btrfs_extent_refs(leaf
, ei
) !=
3157 btrfs_extent_data_ref_count(leaf
, ref
) ||
3158 btrfs_extent_data_ref_root(leaf
, ref
) !=
3159 root
->root_key
.objectid
||
3160 btrfs_extent_data_ref_objectid(leaf
, ref
) != objectid
||
3161 btrfs_extent_data_ref_offset(leaf
, ref
) != offset
)
3169 int btrfs_cross_ref_exist(struct btrfs_trans_handle
*trans
,
3170 struct btrfs_root
*root
,
3171 u64 objectid
, u64 offset
, u64 bytenr
)
3173 struct btrfs_path
*path
;
3177 path
= btrfs_alloc_path();
3182 ret
= check_committed_ref(trans
, root
, path
, objectid
,
3184 if (ret
&& ret
!= -ENOENT
)
3187 ret2
= check_delayed_ref(trans
, root
, path
, objectid
,
3189 } while (ret2
== -EAGAIN
);
3191 if (ret2
&& ret2
!= -ENOENT
) {
3196 if (ret
!= -ENOENT
|| ret2
!= -ENOENT
)
3199 btrfs_free_path(path
);
3200 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
3205 static int __btrfs_mod_ref(struct btrfs_trans_handle
*trans
,
3206 struct btrfs_root
*root
,
3207 struct extent_buffer
*buf
,
3208 int full_backref
, int inc
)
3215 struct btrfs_key key
;
3216 struct btrfs_file_extent_item
*fi
;
3220 int (*process_func
)(struct btrfs_trans_handle
*, struct btrfs_root
*,
3221 u64
, u64
, u64
, u64
, u64
, u64
);
3224 if (btrfs_is_testing(root
->fs_info
))
3227 ref_root
= btrfs_header_owner(buf
);
3228 nritems
= btrfs_header_nritems(buf
);
3229 level
= btrfs_header_level(buf
);
3231 if (!test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) && level
== 0)
3235 process_func
= btrfs_inc_extent_ref
;
3237 process_func
= btrfs_free_extent
;
3240 parent
= buf
->start
;
3244 for (i
= 0; i
< nritems
; i
++) {
3246 btrfs_item_key_to_cpu(buf
, &key
, i
);
3247 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
3249 fi
= btrfs_item_ptr(buf
, i
,
3250 struct btrfs_file_extent_item
);
3251 if (btrfs_file_extent_type(buf
, fi
) ==
3252 BTRFS_FILE_EXTENT_INLINE
)
3254 bytenr
= btrfs_file_extent_disk_bytenr(buf
, fi
);
3258 num_bytes
= btrfs_file_extent_disk_num_bytes(buf
, fi
);
3259 key
.offset
-= btrfs_file_extent_offset(buf
, fi
);
3260 ret
= process_func(trans
, root
, bytenr
, num_bytes
,
3261 parent
, ref_root
, key
.objectid
,
3266 bytenr
= btrfs_node_blockptr(buf
, i
);
3267 num_bytes
= root
->nodesize
;
3268 ret
= process_func(trans
, root
, bytenr
, num_bytes
,
3269 parent
, ref_root
, level
- 1, 0);
3279 int btrfs_inc_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
3280 struct extent_buffer
*buf
, int full_backref
)
3282 return __btrfs_mod_ref(trans
, root
, buf
, full_backref
, 1);
3285 int btrfs_dec_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
3286 struct extent_buffer
*buf
, int full_backref
)
3288 return __btrfs_mod_ref(trans
, root
, buf
, full_backref
, 0);
3291 static int write_one_cache_group(struct btrfs_trans_handle
*trans
,
3292 struct btrfs_root
*root
,
3293 struct btrfs_path
*path
,
3294 struct btrfs_block_group_cache
*cache
)
3297 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
3299 struct extent_buffer
*leaf
;
3301 ret
= btrfs_search_slot(trans
, extent_root
, &cache
->key
, path
, 0, 1);
3308 leaf
= path
->nodes
[0];
3309 bi
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
3310 write_extent_buffer(leaf
, &cache
->item
, bi
, sizeof(cache
->item
));
3311 btrfs_mark_buffer_dirty(leaf
);
3313 btrfs_release_path(path
);
3318 static struct btrfs_block_group_cache
*
3319 next_block_group(struct btrfs_root
*root
,
3320 struct btrfs_block_group_cache
*cache
)
3322 struct rb_node
*node
;
3324 spin_lock(&root
->fs_info
->block_group_cache_lock
);
3326 /* If our block group was removed, we need a full search. */
3327 if (RB_EMPTY_NODE(&cache
->cache_node
)) {
3328 const u64 next_bytenr
= cache
->key
.objectid
+ cache
->key
.offset
;
3330 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
3331 btrfs_put_block_group(cache
);
3332 cache
= btrfs_lookup_first_block_group(root
->fs_info
,
3336 node
= rb_next(&cache
->cache_node
);
3337 btrfs_put_block_group(cache
);
3339 cache
= rb_entry(node
, struct btrfs_block_group_cache
,
3341 btrfs_get_block_group(cache
);
3344 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
3348 static int cache_save_setup(struct btrfs_block_group_cache
*block_group
,
3349 struct btrfs_trans_handle
*trans
,
3350 struct btrfs_path
*path
)
3352 struct btrfs_root
*root
= block_group
->fs_info
->tree_root
;
3353 struct inode
*inode
= NULL
;
3355 int dcs
= BTRFS_DC_ERROR
;
3361 * If this block group is smaller than 100 megs don't bother caching the
3364 if (block_group
->key
.offset
< (100 * SZ_1M
)) {
3365 spin_lock(&block_group
->lock
);
3366 block_group
->disk_cache_state
= BTRFS_DC_WRITTEN
;
3367 spin_unlock(&block_group
->lock
);
3374 inode
= lookup_free_space_inode(root
, block_group
, path
);
3375 if (IS_ERR(inode
) && PTR_ERR(inode
) != -ENOENT
) {
3376 ret
= PTR_ERR(inode
);
3377 btrfs_release_path(path
);
3381 if (IS_ERR(inode
)) {
3385 if (block_group
->ro
)
3388 ret
= create_free_space_inode(root
, trans
, block_group
, path
);
3394 /* We've already setup this transaction, go ahead and exit */
3395 if (block_group
->cache_generation
== trans
->transid
&&
3396 i_size_read(inode
)) {
3397 dcs
= BTRFS_DC_SETUP
;
3402 * We want to set the generation to 0, that way if anything goes wrong
3403 * from here on out we know not to trust this cache when we load up next
3406 BTRFS_I(inode
)->generation
= 0;
3407 ret
= btrfs_update_inode(trans
, root
, inode
);
3410 * So theoretically we could recover from this, simply set the
3411 * super cache generation to 0 so we know to invalidate the
3412 * cache, but then we'd have to keep track of the block groups
3413 * that fail this way so we know we _have_ to reset this cache
3414 * before the next commit or risk reading stale cache. So to
3415 * limit our exposure to horrible edge cases lets just abort the
3416 * transaction, this only happens in really bad situations
3419 btrfs_abort_transaction(trans
, ret
);
3424 if (i_size_read(inode
) > 0) {
3425 ret
= btrfs_check_trunc_cache_free_space(root
,
3426 &root
->fs_info
->global_block_rsv
);
3430 ret
= btrfs_truncate_free_space_cache(root
, trans
, NULL
, inode
);
3435 spin_lock(&block_group
->lock
);
3436 if (block_group
->cached
!= BTRFS_CACHE_FINISHED
||
3437 !btrfs_test_opt(root
->fs_info
, SPACE_CACHE
)) {
3439 * don't bother trying to write stuff out _if_
3440 * a) we're not cached,
3441 * b) we're with nospace_cache mount option.
3443 dcs
= BTRFS_DC_WRITTEN
;
3444 spin_unlock(&block_group
->lock
);
3447 spin_unlock(&block_group
->lock
);
3450 * We hit an ENOSPC when setting up the cache in this transaction, just
3451 * skip doing the setup, we've already cleared the cache so we're safe.
3453 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC
, &trans
->transaction
->flags
)) {
3459 * Try to preallocate enough space based on how big the block group is.
3460 * Keep in mind this has to include any pinned space which could end up
3461 * taking up quite a bit since it's not folded into the other space
3464 num_pages
= div_u64(block_group
->key
.offset
, SZ_256M
);
3469 num_pages
*= PAGE_SIZE
;
3471 ret
= btrfs_check_data_free_space(inode
, 0, num_pages
);
3475 ret
= btrfs_prealloc_file_range_trans(inode
, trans
, 0, 0, num_pages
,
3476 num_pages
, num_pages
,
3479 * Our cache requires contiguous chunks so that we don't modify a bunch
3480 * of metadata or split extents when writing the cache out, which means
3481 * we can enospc if we are heavily fragmented in addition to just normal
3482 * out of space conditions. So if we hit this just skip setting up any
3483 * other block groups for this transaction, maybe we'll unpin enough
3484 * space the next time around.
3487 dcs
= BTRFS_DC_SETUP
;
3488 else if (ret
== -ENOSPC
)
3489 set_bit(BTRFS_TRANS_CACHE_ENOSPC
, &trans
->transaction
->flags
);
3494 btrfs_release_path(path
);
3496 spin_lock(&block_group
->lock
);
3497 if (!ret
&& dcs
== BTRFS_DC_SETUP
)
3498 block_group
->cache_generation
= trans
->transid
;
3499 block_group
->disk_cache_state
= dcs
;
3500 spin_unlock(&block_group
->lock
);
3505 int btrfs_setup_space_cache(struct btrfs_trans_handle
*trans
,
3506 struct btrfs_root
*root
)
3508 struct btrfs_block_group_cache
*cache
, *tmp
;
3509 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
3510 struct btrfs_path
*path
;
3512 if (list_empty(&cur_trans
->dirty_bgs
) ||
3513 !btrfs_test_opt(root
->fs_info
, SPACE_CACHE
))
3516 path
= btrfs_alloc_path();
3520 /* Could add new block groups, use _safe just in case */
3521 list_for_each_entry_safe(cache
, tmp
, &cur_trans
->dirty_bgs
,
3523 if (cache
->disk_cache_state
== BTRFS_DC_CLEAR
)
3524 cache_save_setup(cache
, trans
, path
);
3527 btrfs_free_path(path
);
3532 * transaction commit does final block group cache writeback during a
3533 * critical section where nothing is allowed to change the FS. This is
3534 * required in order for the cache to actually match the block group,
3535 * but can introduce a lot of latency into the commit.
3537 * So, btrfs_start_dirty_block_groups is here to kick off block group
3538 * cache IO. There's a chance we'll have to redo some of it if the
3539 * block group changes again during the commit, but it greatly reduces
3540 * the commit latency by getting rid of the easy block groups while
3541 * we're still allowing others to join the commit.
3543 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle
*trans
,
3544 struct btrfs_root
*root
)
3546 struct btrfs_block_group_cache
*cache
;
3547 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
3550 struct btrfs_path
*path
= NULL
;
3552 struct list_head
*io
= &cur_trans
->io_bgs
;
3553 int num_started
= 0;
3556 spin_lock(&cur_trans
->dirty_bgs_lock
);
3557 if (list_empty(&cur_trans
->dirty_bgs
)) {
3558 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3561 list_splice_init(&cur_trans
->dirty_bgs
, &dirty
);
3562 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3566 * make sure all the block groups on our dirty list actually
3569 btrfs_create_pending_block_groups(trans
, root
);
3572 path
= btrfs_alloc_path();
3578 * cache_write_mutex is here only to save us from balance or automatic
3579 * removal of empty block groups deleting this block group while we are
3580 * writing out the cache
3582 mutex_lock(&trans
->transaction
->cache_write_mutex
);
3583 while (!list_empty(&dirty
)) {
3584 cache
= list_first_entry(&dirty
,
3585 struct btrfs_block_group_cache
,
3588 * this can happen if something re-dirties a block
3589 * group that is already under IO. Just wait for it to
3590 * finish and then do it all again
3592 if (!list_empty(&cache
->io_list
)) {
3593 list_del_init(&cache
->io_list
);
3594 btrfs_wait_cache_io(root
, trans
, cache
,
3595 &cache
->io_ctl
, path
,
3596 cache
->key
.objectid
);
3597 btrfs_put_block_group(cache
);
3602 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3603 * if it should update the cache_state. Don't delete
3604 * until after we wait.
3606 * Since we're not running in the commit critical section
3607 * we need the dirty_bgs_lock to protect from update_block_group
3609 spin_lock(&cur_trans
->dirty_bgs_lock
);
3610 list_del_init(&cache
->dirty_list
);
3611 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3615 cache_save_setup(cache
, trans
, path
);
3617 if (cache
->disk_cache_state
== BTRFS_DC_SETUP
) {
3618 cache
->io_ctl
.inode
= NULL
;
3619 ret
= btrfs_write_out_cache(root
, trans
, cache
, path
);
3620 if (ret
== 0 && cache
->io_ctl
.inode
) {
3625 * the cache_write_mutex is protecting
3628 list_add_tail(&cache
->io_list
, io
);
3631 * if we failed to write the cache, the
3632 * generation will be bad and life goes on
3638 ret
= write_one_cache_group(trans
, root
, path
, cache
);
3640 * Our block group might still be attached to the list
3641 * of new block groups in the transaction handle of some
3642 * other task (struct btrfs_trans_handle->new_bgs). This
3643 * means its block group item isn't yet in the extent
3644 * tree. If this happens ignore the error, as we will
3645 * try again later in the critical section of the
3646 * transaction commit.
3648 if (ret
== -ENOENT
) {
3650 spin_lock(&cur_trans
->dirty_bgs_lock
);
3651 if (list_empty(&cache
->dirty_list
)) {
3652 list_add_tail(&cache
->dirty_list
,
3653 &cur_trans
->dirty_bgs
);
3654 btrfs_get_block_group(cache
);
3656 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3658 btrfs_abort_transaction(trans
, ret
);
3662 /* if its not on the io list, we need to put the block group */
3664 btrfs_put_block_group(cache
);
3670 * Avoid blocking other tasks for too long. It might even save
3671 * us from writing caches for block groups that are going to be
3674 mutex_unlock(&trans
->transaction
->cache_write_mutex
);
3675 mutex_lock(&trans
->transaction
->cache_write_mutex
);
3677 mutex_unlock(&trans
->transaction
->cache_write_mutex
);
3680 * go through delayed refs for all the stuff we've just kicked off
3681 * and then loop back (just once)
3683 ret
= btrfs_run_delayed_refs(trans
, root
, 0);
3684 if (!ret
&& loops
== 0) {
3686 spin_lock(&cur_trans
->dirty_bgs_lock
);
3687 list_splice_init(&cur_trans
->dirty_bgs
, &dirty
);
3689 * dirty_bgs_lock protects us from concurrent block group
3690 * deletes too (not just cache_write_mutex).
3692 if (!list_empty(&dirty
)) {
3693 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3696 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3697 } else if (ret
< 0) {
3698 btrfs_cleanup_dirty_bgs(cur_trans
, root
);
3701 btrfs_free_path(path
);
3705 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle
*trans
,
3706 struct btrfs_root
*root
)
3708 struct btrfs_block_group_cache
*cache
;
3709 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
3712 struct btrfs_path
*path
;
3713 struct list_head
*io
= &cur_trans
->io_bgs
;
3714 int num_started
= 0;
3716 path
= btrfs_alloc_path();
3721 * Even though we are in the critical section of the transaction commit,
3722 * we can still have concurrent tasks adding elements to this
3723 * transaction's list of dirty block groups. These tasks correspond to
3724 * endio free space workers started when writeback finishes for a
3725 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3726 * allocate new block groups as a result of COWing nodes of the root
3727 * tree when updating the free space inode. The writeback for the space
3728 * caches is triggered by an earlier call to
3729 * btrfs_start_dirty_block_groups() and iterations of the following
3731 * Also we want to do the cache_save_setup first and then run the
3732 * delayed refs to make sure we have the best chance at doing this all
3735 spin_lock(&cur_trans
->dirty_bgs_lock
);
3736 while (!list_empty(&cur_trans
->dirty_bgs
)) {
3737 cache
= list_first_entry(&cur_trans
->dirty_bgs
,
3738 struct btrfs_block_group_cache
,
3742 * this can happen if cache_save_setup re-dirties a block
3743 * group that is already under IO. Just wait for it to
3744 * finish and then do it all again
3746 if (!list_empty(&cache
->io_list
)) {
3747 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3748 list_del_init(&cache
->io_list
);
3749 btrfs_wait_cache_io(root
, trans
, cache
,
3750 &cache
->io_ctl
, path
,
3751 cache
->key
.objectid
);
3752 btrfs_put_block_group(cache
);
3753 spin_lock(&cur_trans
->dirty_bgs_lock
);
3757 * don't remove from the dirty list until after we've waited
3760 list_del_init(&cache
->dirty_list
);
3761 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3764 cache_save_setup(cache
, trans
, path
);
3767 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long) -1);
3769 if (!ret
&& cache
->disk_cache_state
== BTRFS_DC_SETUP
) {
3770 cache
->io_ctl
.inode
= NULL
;
3771 ret
= btrfs_write_out_cache(root
, trans
, cache
, path
);
3772 if (ret
== 0 && cache
->io_ctl
.inode
) {
3775 list_add_tail(&cache
->io_list
, io
);
3778 * if we failed to write the cache, the
3779 * generation will be bad and life goes on
3785 ret
= write_one_cache_group(trans
, root
, path
, cache
);
3787 * One of the free space endio workers might have
3788 * created a new block group while updating a free space
3789 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3790 * and hasn't released its transaction handle yet, in
3791 * which case the new block group is still attached to
3792 * its transaction handle and its creation has not
3793 * finished yet (no block group item in the extent tree
3794 * yet, etc). If this is the case, wait for all free
3795 * space endio workers to finish and retry. This is a
3796 * a very rare case so no need for a more efficient and
3799 if (ret
== -ENOENT
) {
3800 wait_event(cur_trans
->writer_wait
,
3801 atomic_read(&cur_trans
->num_writers
) == 1);
3802 ret
= write_one_cache_group(trans
, root
, path
,
3806 btrfs_abort_transaction(trans
, ret
);
3809 /* if its not on the io list, we need to put the block group */
3811 btrfs_put_block_group(cache
);
3812 spin_lock(&cur_trans
->dirty_bgs_lock
);
3814 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3816 while (!list_empty(io
)) {
3817 cache
= list_first_entry(io
, struct btrfs_block_group_cache
,
3819 list_del_init(&cache
->io_list
);
3820 btrfs_wait_cache_io(root
, trans
, cache
,
3821 &cache
->io_ctl
, path
, cache
->key
.objectid
);
3822 btrfs_put_block_group(cache
);
3825 btrfs_free_path(path
);
3829 int btrfs_extent_readonly(struct btrfs_root
*root
, u64 bytenr
)
3831 struct btrfs_block_group_cache
*block_group
;
3834 block_group
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
3835 if (!block_group
|| block_group
->ro
)
3838 btrfs_put_block_group(block_group
);
3842 bool btrfs_inc_nocow_writers(struct btrfs_fs_info
*fs_info
, u64 bytenr
)
3844 struct btrfs_block_group_cache
*bg
;
3847 bg
= btrfs_lookup_block_group(fs_info
, bytenr
);
3851 spin_lock(&bg
->lock
);
3855 atomic_inc(&bg
->nocow_writers
);
3856 spin_unlock(&bg
->lock
);
3858 /* no put on block group, done by btrfs_dec_nocow_writers */
3860 btrfs_put_block_group(bg
);
3866 void btrfs_dec_nocow_writers(struct btrfs_fs_info
*fs_info
, u64 bytenr
)
3868 struct btrfs_block_group_cache
*bg
;
3870 bg
= btrfs_lookup_block_group(fs_info
, bytenr
);
3872 if (atomic_dec_and_test(&bg
->nocow_writers
))
3873 wake_up_atomic_t(&bg
->nocow_writers
);
3875 * Once for our lookup and once for the lookup done by a previous call
3876 * to btrfs_inc_nocow_writers()
3878 btrfs_put_block_group(bg
);
3879 btrfs_put_block_group(bg
);
3882 static int btrfs_wait_nocow_writers_atomic_t(atomic_t
*a
)
3888 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache
*bg
)
3890 wait_on_atomic_t(&bg
->nocow_writers
,
3891 btrfs_wait_nocow_writers_atomic_t
,
3892 TASK_UNINTERRUPTIBLE
);
3895 static const char *alloc_name(u64 flags
)
3898 case BTRFS_BLOCK_GROUP_METADATA
|BTRFS_BLOCK_GROUP_DATA
:
3900 case BTRFS_BLOCK_GROUP_METADATA
:
3902 case BTRFS_BLOCK_GROUP_DATA
:
3904 case BTRFS_BLOCK_GROUP_SYSTEM
:
3908 return "invalid-combination";
3912 static int update_space_info(struct btrfs_fs_info
*info
, u64 flags
,
3913 u64 total_bytes
, u64 bytes_used
,
3915 struct btrfs_space_info
**space_info
)
3917 struct btrfs_space_info
*found
;
3922 if (flags
& (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
|
3923 BTRFS_BLOCK_GROUP_RAID10
))
3928 found
= __find_space_info(info
, flags
);
3930 spin_lock(&found
->lock
);
3931 found
->total_bytes
+= total_bytes
;
3932 found
->disk_total
+= total_bytes
* factor
;
3933 found
->bytes_used
+= bytes_used
;
3934 found
->disk_used
+= bytes_used
* factor
;
3935 found
->bytes_readonly
+= bytes_readonly
;
3936 if (total_bytes
> 0)
3938 space_info_add_new_bytes(info
, found
, total_bytes
-
3939 bytes_used
- bytes_readonly
);
3940 spin_unlock(&found
->lock
);
3941 *space_info
= found
;
3944 found
= kzalloc(sizeof(*found
), GFP_NOFS
);
3948 ret
= percpu_counter_init(&found
->total_bytes_pinned
, 0, GFP_KERNEL
);
3954 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++)
3955 INIT_LIST_HEAD(&found
->block_groups
[i
]);
3956 init_rwsem(&found
->groups_sem
);
3957 spin_lock_init(&found
->lock
);
3958 found
->flags
= flags
& BTRFS_BLOCK_GROUP_TYPE_MASK
;
3959 found
->total_bytes
= total_bytes
;
3960 found
->disk_total
= total_bytes
* factor
;
3961 found
->bytes_used
= bytes_used
;
3962 found
->disk_used
= bytes_used
* factor
;
3963 found
->bytes_pinned
= 0;
3964 found
->bytes_reserved
= 0;
3965 found
->bytes_readonly
= bytes_readonly
;
3966 found
->bytes_may_use
= 0;
3968 found
->max_extent_size
= 0;
3969 found
->force_alloc
= CHUNK_ALLOC_NO_FORCE
;
3970 found
->chunk_alloc
= 0;
3972 init_waitqueue_head(&found
->wait
);
3973 INIT_LIST_HEAD(&found
->ro_bgs
);
3974 INIT_LIST_HEAD(&found
->tickets
);
3975 INIT_LIST_HEAD(&found
->priority_tickets
);
3977 ret
= kobject_init_and_add(&found
->kobj
, &space_info_ktype
,
3978 info
->space_info_kobj
, "%s",
3979 alloc_name(found
->flags
));
3985 *space_info
= found
;
3986 list_add_rcu(&found
->list
, &info
->space_info
);
3987 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
3988 info
->data_sinfo
= found
;
3993 static void set_avail_alloc_bits(struct btrfs_fs_info
*fs_info
, u64 flags
)
3995 u64 extra_flags
= chunk_to_extended(flags
) &
3996 BTRFS_EXTENDED_PROFILE_MASK
;
3998 write_seqlock(&fs_info
->profiles_lock
);
3999 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
4000 fs_info
->avail_data_alloc_bits
|= extra_flags
;
4001 if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
4002 fs_info
->avail_metadata_alloc_bits
|= extra_flags
;
4003 if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
4004 fs_info
->avail_system_alloc_bits
|= extra_flags
;
4005 write_sequnlock(&fs_info
->profiles_lock
);
4009 * returns target flags in extended format or 0 if restripe for this
4010 * chunk_type is not in progress
4012 * should be called with either volume_mutex or balance_lock held
4014 static u64
get_restripe_target(struct btrfs_fs_info
*fs_info
, u64 flags
)
4016 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
4022 if (flags
& BTRFS_BLOCK_GROUP_DATA
&&
4023 bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
4024 target
= BTRFS_BLOCK_GROUP_DATA
| bctl
->data
.target
;
4025 } else if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
&&
4026 bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
4027 target
= BTRFS_BLOCK_GROUP_SYSTEM
| bctl
->sys
.target
;
4028 } else if (flags
& BTRFS_BLOCK_GROUP_METADATA
&&
4029 bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
4030 target
= BTRFS_BLOCK_GROUP_METADATA
| bctl
->meta
.target
;
4037 * @flags: available profiles in extended format (see ctree.h)
4039 * Returns reduced profile in chunk format. If profile changing is in
4040 * progress (either running or paused) picks the target profile (if it's
4041 * already available), otherwise falls back to plain reducing.
4043 static u64
btrfs_reduce_alloc_profile(struct btrfs_root
*root
, u64 flags
)
4045 u64 num_devices
= root
->fs_info
->fs_devices
->rw_devices
;
4051 * see if restripe for this chunk_type is in progress, if so
4052 * try to reduce to the target profile
4054 spin_lock(&root
->fs_info
->balance_lock
);
4055 target
= get_restripe_target(root
->fs_info
, flags
);
4057 /* pick target profile only if it's already available */
4058 if ((flags
& target
) & BTRFS_EXTENDED_PROFILE_MASK
) {
4059 spin_unlock(&root
->fs_info
->balance_lock
);
4060 return extended_to_chunk(target
);
4063 spin_unlock(&root
->fs_info
->balance_lock
);
4065 /* First, mask out the RAID levels which aren't possible */
4066 for (raid_type
= 0; raid_type
< BTRFS_NR_RAID_TYPES
; raid_type
++) {
4067 if (num_devices
>= btrfs_raid_array
[raid_type
].devs_min
)
4068 allowed
|= btrfs_raid_group
[raid_type
];
4072 if (allowed
& BTRFS_BLOCK_GROUP_RAID6
)
4073 allowed
= BTRFS_BLOCK_GROUP_RAID6
;
4074 else if (allowed
& BTRFS_BLOCK_GROUP_RAID5
)
4075 allowed
= BTRFS_BLOCK_GROUP_RAID5
;
4076 else if (allowed
& BTRFS_BLOCK_GROUP_RAID10
)
4077 allowed
= BTRFS_BLOCK_GROUP_RAID10
;
4078 else if (allowed
& BTRFS_BLOCK_GROUP_RAID1
)
4079 allowed
= BTRFS_BLOCK_GROUP_RAID1
;
4080 else if (allowed
& BTRFS_BLOCK_GROUP_RAID0
)
4081 allowed
= BTRFS_BLOCK_GROUP_RAID0
;
4083 flags
&= ~BTRFS_BLOCK_GROUP_PROFILE_MASK
;
4085 return extended_to_chunk(flags
| allowed
);
4088 static u64
get_alloc_profile(struct btrfs_root
*root
, u64 orig_flags
)
4095 seq
= read_seqbegin(&root
->fs_info
->profiles_lock
);
4097 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
4098 flags
|= root
->fs_info
->avail_data_alloc_bits
;
4099 else if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
4100 flags
|= root
->fs_info
->avail_system_alloc_bits
;
4101 else if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
4102 flags
|= root
->fs_info
->avail_metadata_alloc_bits
;
4103 } while (read_seqretry(&root
->fs_info
->profiles_lock
, seq
));
4105 return btrfs_reduce_alloc_profile(root
, flags
);
4108 u64
btrfs_get_alloc_profile(struct btrfs_root
*root
, int data
)
4114 flags
= BTRFS_BLOCK_GROUP_DATA
;
4115 else if (root
== root
->fs_info
->chunk_root
)
4116 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
4118 flags
= BTRFS_BLOCK_GROUP_METADATA
;
4120 ret
= get_alloc_profile(root
, flags
);
4124 int btrfs_alloc_data_chunk_ondemand(struct inode
*inode
, u64 bytes
)
4126 struct btrfs_space_info
*data_sinfo
;
4127 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4128 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4131 int need_commit
= 2;
4132 int have_pinned_space
;
4134 /* make sure bytes are sectorsize aligned */
4135 bytes
= ALIGN(bytes
, root
->sectorsize
);
4137 if (btrfs_is_free_space_inode(inode
)) {
4139 ASSERT(current
->journal_info
);
4142 data_sinfo
= fs_info
->data_sinfo
;
4147 /* make sure we have enough space to handle the data first */
4148 spin_lock(&data_sinfo
->lock
);
4149 used
= data_sinfo
->bytes_used
+ data_sinfo
->bytes_reserved
+
4150 data_sinfo
->bytes_pinned
+ data_sinfo
->bytes_readonly
+
4151 data_sinfo
->bytes_may_use
;
4153 if (used
+ bytes
> data_sinfo
->total_bytes
) {
4154 struct btrfs_trans_handle
*trans
;
4157 * if we don't have enough free bytes in this space then we need
4158 * to alloc a new chunk.
4160 if (!data_sinfo
->full
) {
4163 data_sinfo
->force_alloc
= CHUNK_ALLOC_FORCE
;
4164 spin_unlock(&data_sinfo
->lock
);
4166 alloc_target
= btrfs_get_alloc_profile(root
, 1);
4168 * It is ugly that we don't call nolock join
4169 * transaction for the free space inode case here.
4170 * But it is safe because we only do the data space
4171 * reservation for the free space cache in the
4172 * transaction context, the common join transaction
4173 * just increase the counter of the current transaction
4174 * handler, doesn't try to acquire the trans_lock of
4177 trans
= btrfs_join_transaction(root
);
4179 return PTR_ERR(trans
);
4181 ret
= do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
4183 CHUNK_ALLOC_NO_FORCE
);
4184 btrfs_end_transaction(trans
, root
);
4189 have_pinned_space
= 1;
4195 data_sinfo
= fs_info
->data_sinfo
;
4201 * If we don't have enough pinned space to deal with this
4202 * allocation, and no removed chunk in current transaction,
4203 * don't bother committing the transaction.
4205 have_pinned_space
= percpu_counter_compare(
4206 &data_sinfo
->total_bytes_pinned
,
4207 used
+ bytes
- data_sinfo
->total_bytes
);
4208 spin_unlock(&data_sinfo
->lock
);
4210 /* commit the current transaction and try again */
4213 !atomic_read(&root
->fs_info
->open_ioctl_trans
)) {
4216 if (need_commit
> 0) {
4217 btrfs_start_delalloc_roots(fs_info
, 0, -1);
4218 btrfs_wait_ordered_roots(fs_info
, -1, 0, (u64
)-1);
4221 trans
= btrfs_join_transaction(root
);
4223 return PTR_ERR(trans
);
4224 if (have_pinned_space
>= 0 ||
4225 test_bit(BTRFS_TRANS_HAVE_FREE_BGS
,
4226 &trans
->transaction
->flags
) ||
4228 ret
= btrfs_commit_transaction(trans
, root
);
4232 * The cleaner kthread might still be doing iput
4233 * operations. Wait for it to finish so that
4234 * more space is released.
4236 mutex_lock(&root
->fs_info
->cleaner_delayed_iput_mutex
);
4237 mutex_unlock(&root
->fs_info
->cleaner_delayed_iput_mutex
);
4240 btrfs_end_transaction(trans
, root
);
4244 trace_btrfs_space_reservation(root
->fs_info
,
4245 "space_info:enospc",
4246 data_sinfo
->flags
, bytes
, 1);
4249 data_sinfo
->bytes_may_use
+= bytes
;
4250 trace_btrfs_space_reservation(root
->fs_info
, "space_info",
4251 data_sinfo
->flags
, bytes
, 1);
4252 spin_unlock(&data_sinfo
->lock
);
4258 * New check_data_free_space() with ability for precious data reservation
4259 * Will replace old btrfs_check_data_free_space(), but for patch split,
4260 * add a new function first and then replace it.
4262 int btrfs_check_data_free_space(struct inode
*inode
, u64 start
, u64 len
)
4264 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4267 /* align the range */
4268 len
= round_up(start
+ len
, root
->sectorsize
) -
4269 round_down(start
, root
->sectorsize
);
4270 start
= round_down(start
, root
->sectorsize
);
4272 ret
= btrfs_alloc_data_chunk_ondemand(inode
, len
);
4276 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4277 ret
= btrfs_qgroup_reserve_data(inode
, start
, len
);
4279 btrfs_free_reserved_data_space_noquota(inode
, start
, len
);
4284 * Called if we need to clear a data reservation for this inode
4285 * Normally in a error case.
4287 * This one will *NOT* use accurate qgroup reserved space API, just for case
4288 * which we can't sleep and is sure it won't affect qgroup reserved space.
4289 * Like clear_bit_hook().
4291 void btrfs_free_reserved_data_space_noquota(struct inode
*inode
, u64 start
,
4294 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4295 struct btrfs_space_info
*data_sinfo
;
4297 /* Make sure the range is aligned to sectorsize */
4298 len
= round_up(start
+ len
, root
->sectorsize
) -
4299 round_down(start
, root
->sectorsize
);
4300 start
= round_down(start
, root
->sectorsize
);
4302 data_sinfo
= root
->fs_info
->data_sinfo
;
4303 spin_lock(&data_sinfo
->lock
);
4304 if (WARN_ON(data_sinfo
->bytes_may_use
< len
))
4305 data_sinfo
->bytes_may_use
= 0;
4307 data_sinfo
->bytes_may_use
-= len
;
4308 trace_btrfs_space_reservation(root
->fs_info
, "space_info",
4309 data_sinfo
->flags
, len
, 0);
4310 spin_unlock(&data_sinfo
->lock
);
4314 * Called if we need to clear a data reservation for this inode
4315 * Normally in a error case.
4317 * This one will handle the per-inode data rsv map for accurate reserved
4320 void btrfs_free_reserved_data_space(struct inode
*inode
, u64 start
, u64 len
)
4322 btrfs_free_reserved_data_space_noquota(inode
, start
, len
);
4323 btrfs_qgroup_free_data(inode
, start
, len
);
4326 static void force_metadata_allocation(struct btrfs_fs_info
*info
)
4328 struct list_head
*head
= &info
->space_info
;
4329 struct btrfs_space_info
*found
;
4332 list_for_each_entry_rcu(found
, head
, list
) {
4333 if (found
->flags
& BTRFS_BLOCK_GROUP_METADATA
)
4334 found
->force_alloc
= CHUNK_ALLOC_FORCE
;
4339 static inline u64
calc_global_rsv_need_space(struct btrfs_block_rsv
*global
)
4341 return (global
->size
<< 1);
4344 static int should_alloc_chunk(struct btrfs_root
*root
,
4345 struct btrfs_space_info
*sinfo
, int force
)
4347 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
4348 u64 num_bytes
= sinfo
->total_bytes
- sinfo
->bytes_readonly
;
4349 u64 num_allocated
= sinfo
->bytes_used
+ sinfo
->bytes_reserved
;
4352 if (force
== CHUNK_ALLOC_FORCE
)
4356 * We need to take into account the global rsv because for all intents
4357 * and purposes it's used space. Don't worry about locking the
4358 * global_rsv, it doesn't change except when the transaction commits.
4360 if (sinfo
->flags
& BTRFS_BLOCK_GROUP_METADATA
)
4361 num_allocated
+= calc_global_rsv_need_space(global_rsv
);
4364 * in limited mode, we want to have some free space up to
4365 * about 1% of the FS size.
4367 if (force
== CHUNK_ALLOC_LIMITED
) {
4368 thresh
= btrfs_super_total_bytes(root
->fs_info
->super_copy
);
4369 thresh
= max_t(u64
, SZ_64M
, div_factor_fine(thresh
, 1));
4371 if (num_bytes
- num_allocated
< thresh
)
4375 if (num_allocated
+ SZ_2M
< div_factor(num_bytes
, 8))
4380 static u64
get_profile_num_devs(struct btrfs_root
*root
, u64 type
)
4384 if (type
& (BTRFS_BLOCK_GROUP_RAID10
|
4385 BTRFS_BLOCK_GROUP_RAID0
|
4386 BTRFS_BLOCK_GROUP_RAID5
|
4387 BTRFS_BLOCK_GROUP_RAID6
))
4388 num_dev
= root
->fs_info
->fs_devices
->rw_devices
;
4389 else if (type
& BTRFS_BLOCK_GROUP_RAID1
)
4392 num_dev
= 1; /* DUP or single */
4398 * If @is_allocation is true, reserve space in the system space info necessary
4399 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4402 void check_system_chunk(struct btrfs_trans_handle
*trans
,
4403 struct btrfs_root
*root
,
4406 struct btrfs_space_info
*info
;
4413 * Needed because we can end up allocating a system chunk and for an
4414 * atomic and race free space reservation in the chunk block reserve.
4416 ASSERT(mutex_is_locked(&root
->fs_info
->chunk_mutex
));
4418 info
= __find_space_info(root
->fs_info
, BTRFS_BLOCK_GROUP_SYSTEM
);
4419 spin_lock(&info
->lock
);
4420 left
= info
->total_bytes
- info
->bytes_used
- info
->bytes_pinned
-
4421 info
->bytes_reserved
- info
->bytes_readonly
-
4422 info
->bytes_may_use
;
4423 spin_unlock(&info
->lock
);
4425 num_devs
= get_profile_num_devs(root
, type
);
4427 /* num_devs device items to update and 1 chunk item to add or remove */
4428 thresh
= btrfs_calc_trunc_metadata_size(root
, num_devs
) +
4429 btrfs_calc_trans_metadata_size(root
, 1);
4431 if (left
< thresh
&& btrfs_test_opt(root
->fs_info
, ENOSPC_DEBUG
)) {
4432 btrfs_info(root
->fs_info
, "left=%llu, need=%llu, flags=%llu",
4433 left
, thresh
, type
);
4434 dump_space_info(root
->fs_info
, info
, 0, 0);
4437 if (left
< thresh
) {
4440 flags
= btrfs_get_alloc_profile(root
->fs_info
->chunk_root
, 0);
4442 * Ignore failure to create system chunk. We might end up not
4443 * needing it, as we might not need to COW all nodes/leafs from
4444 * the paths we visit in the chunk tree (they were already COWed
4445 * or created in the current transaction for example).
4447 ret
= btrfs_alloc_chunk(trans
, root
, flags
);
4451 ret
= btrfs_block_rsv_add(root
->fs_info
->chunk_root
,
4452 &root
->fs_info
->chunk_block_rsv
,
4453 thresh
, BTRFS_RESERVE_NO_FLUSH
);
4455 trans
->chunk_bytes_reserved
+= thresh
;
4460 * If force is CHUNK_ALLOC_FORCE:
4461 * - return 1 if it successfully allocates a chunk,
4462 * - return errors including -ENOSPC otherwise.
4463 * If force is NOT CHUNK_ALLOC_FORCE:
4464 * - return 0 if it doesn't need to allocate a new chunk,
4465 * - return 1 if it successfully allocates a chunk,
4466 * - return errors including -ENOSPC otherwise.
4468 static int do_chunk_alloc(struct btrfs_trans_handle
*trans
,
4469 struct btrfs_root
*extent_root
, u64 flags
, int force
)
4471 struct btrfs_space_info
*space_info
;
4472 struct btrfs_fs_info
*fs_info
= extent_root
->fs_info
;
4473 int wait_for_alloc
= 0;
4476 /* Don't re-enter if we're already allocating a chunk */
4477 if (trans
->allocating_chunk
)
4480 space_info
= __find_space_info(extent_root
->fs_info
, flags
);
4482 ret
= update_space_info(extent_root
->fs_info
, flags
,
4483 0, 0, 0, &space_info
);
4484 BUG_ON(ret
); /* -ENOMEM */
4486 BUG_ON(!space_info
); /* Logic error */
4489 spin_lock(&space_info
->lock
);
4490 if (force
< space_info
->force_alloc
)
4491 force
= space_info
->force_alloc
;
4492 if (space_info
->full
) {
4493 if (should_alloc_chunk(extent_root
, space_info
, force
))
4497 spin_unlock(&space_info
->lock
);
4501 if (!should_alloc_chunk(extent_root
, space_info
, force
)) {
4502 spin_unlock(&space_info
->lock
);
4504 } else if (space_info
->chunk_alloc
) {
4507 space_info
->chunk_alloc
= 1;
4510 spin_unlock(&space_info
->lock
);
4512 mutex_lock(&fs_info
->chunk_mutex
);
4515 * The chunk_mutex is held throughout the entirety of a chunk
4516 * allocation, so once we've acquired the chunk_mutex we know that the
4517 * other guy is done and we need to recheck and see if we should
4520 if (wait_for_alloc
) {
4521 mutex_unlock(&fs_info
->chunk_mutex
);
4526 trans
->allocating_chunk
= true;
4529 * If we have mixed data/metadata chunks we want to make sure we keep
4530 * allocating mixed chunks instead of individual chunks.
4532 if (btrfs_mixed_space_info(space_info
))
4533 flags
|= (BTRFS_BLOCK_GROUP_DATA
| BTRFS_BLOCK_GROUP_METADATA
);
4536 * if we're doing a data chunk, go ahead and make sure that
4537 * we keep a reasonable number of metadata chunks allocated in the
4540 if (flags
& BTRFS_BLOCK_GROUP_DATA
&& fs_info
->metadata_ratio
) {
4541 fs_info
->data_chunk_allocations
++;
4542 if (!(fs_info
->data_chunk_allocations
%
4543 fs_info
->metadata_ratio
))
4544 force_metadata_allocation(fs_info
);
4548 * Check if we have enough space in SYSTEM chunk because we may need
4549 * to update devices.
4551 check_system_chunk(trans
, extent_root
, flags
);
4553 ret
= btrfs_alloc_chunk(trans
, extent_root
, flags
);
4554 trans
->allocating_chunk
= false;
4556 spin_lock(&space_info
->lock
);
4557 if (ret
< 0 && ret
!= -ENOSPC
)
4560 space_info
->full
= 1;
4564 space_info
->force_alloc
= CHUNK_ALLOC_NO_FORCE
;
4566 space_info
->chunk_alloc
= 0;
4567 spin_unlock(&space_info
->lock
);
4568 mutex_unlock(&fs_info
->chunk_mutex
);
4570 * When we allocate a new chunk we reserve space in the chunk block
4571 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4572 * add new nodes/leafs to it if we end up needing to do it when
4573 * inserting the chunk item and updating device items as part of the
4574 * second phase of chunk allocation, performed by
4575 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4576 * large number of new block groups to create in our transaction
4577 * handle's new_bgs list to avoid exhausting the chunk block reserve
4578 * in extreme cases - like having a single transaction create many new
4579 * block groups when starting to write out the free space caches of all
4580 * the block groups that were made dirty during the lifetime of the
4583 if (trans
->can_flush_pending_bgs
&&
4584 trans
->chunk_bytes_reserved
>= (u64
)SZ_2M
) {
4585 btrfs_create_pending_block_groups(trans
, extent_root
);
4586 btrfs_trans_release_chunk_metadata(trans
);
4591 static int can_overcommit(struct btrfs_root
*root
,
4592 struct btrfs_space_info
*space_info
, u64 bytes
,
4593 enum btrfs_reserve_flush_enum flush
)
4595 struct btrfs_block_rsv
*global_rsv
;
4601 /* Don't overcommit when in mixed mode. */
4602 if (space_info
->flags
& BTRFS_BLOCK_GROUP_DATA
)
4605 BUG_ON(root
->fs_info
== NULL
);
4606 global_rsv
= &root
->fs_info
->global_block_rsv
;
4607 profile
= btrfs_get_alloc_profile(root
, 0);
4608 used
= space_info
->bytes_used
+ space_info
->bytes_reserved
+
4609 space_info
->bytes_pinned
+ space_info
->bytes_readonly
;
4612 * We only want to allow over committing if we have lots of actual space
4613 * free, but if we don't have enough space to handle the global reserve
4614 * space then we could end up having a real enospc problem when trying
4615 * to allocate a chunk or some other such important allocation.
4617 spin_lock(&global_rsv
->lock
);
4618 space_size
= calc_global_rsv_need_space(global_rsv
);
4619 spin_unlock(&global_rsv
->lock
);
4620 if (used
+ space_size
>= space_info
->total_bytes
)
4623 used
+= space_info
->bytes_may_use
;
4625 spin_lock(&root
->fs_info
->free_chunk_lock
);
4626 avail
= root
->fs_info
->free_chunk_space
;
4627 spin_unlock(&root
->fs_info
->free_chunk_lock
);
4630 * If we have dup, raid1 or raid10 then only half of the free
4631 * space is actually useable. For raid56, the space info used
4632 * doesn't include the parity drive, so we don't have to
4635 if (profile
& (BTRFS_BLOCK_GROUP_DUP
|
4636 BTRFS_BLOCK_GROUP_RAID1
|
4637 BTRFS_BLOCK_GROUP_RAID10
))
4641 * If we aren't flushing all things, let us overcommit up to
4642 * 1/2th of the space. If we can flush, don't let us overcommit
4643 * too much, let it overcommit up to 1/8 of the space.
4645 if (flush
== BTRFS_RESERVE_FLUSH_ALL
)
4650 if (used
+ bytes
< space_info
->total_bytes
+ avail
)
4655 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root
*root
,
4656 unsigned long nr_pages
, int nr_items
)
4658 struct super_block
*sb
= root
->fs_info
->sb
;
4660 if (down_read_trylock(&sb
->s_umount
)) {
4661 writeback_inodes_sb_nr(sb
, nr_pages
, WB_REASON_FS_FREE_SPACE
);
4662 up_read(&sb
->s_umount
);
4665 * We needn't worry the filesystem going from r/w to r/o though
4666 * we don't acquire ->s_umount mutex, because the filesystem
4667 * should guarantee the delalloc inodes list be empty after
4668 * the filesystem is readonly(all dirty pages are written to
4671 btrfs_start_delalloc_roots(root
->fs_info
, 0, nr_items
);
4672 if (!current
->journal_info
)
4673 btrfs_wait_ordered_roots(root
->fs_info
, nr_items
,
4678 static inline int calc_reclaim_items_nr(struct btrfs_root
*root
, u64 to_reclaim
)
4683 bytes
= btrfs_calc_trans_metadata_size(root
, 1);
4684 nr
= (int)div64_u64(to_reclaim
, bytes
);
4690 #define EXTENT_SIZE_PER_ITEM SZ_256K
4693 * shrink metadata reservation for delalloc
4695 static void shrink_delalloc(struct btrfs_root
*root
, u64 to_reclaim
, u64 orig
,
4698 struct btrfs_block_rsv
*block_rsv
;
4699 struct btrfs_space_info
*space_info
;
4700 struct btrfs_trans_handle
*trans
;
4704 unsigned long nr_pages
;
4707 enum btrfs_reserve_flush_enum flush
;
4709 /* Calc the number of the pages we need flush for space reservation */
4710 items
= calc_reclaim_items_nr(root
, to_reclaim
);
4711 to_reclaim
= (u64
)items
* EXTENT_SIZE_PER_ITEM
;
4713 trans
= (struct btrfs_trans_handle
*)current
->journal_info
;
4714 block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
4715 space_info
= block_rsv
->space_info
;
4717 delalloc_bytes
= percpu_counter_sum_positive(
4718 &root
->fs_info
->delalloc_bytes
);
4719 if (delalloc_bytes
== 0) {
4723 btrfs_wait_ordered_roots(root
->fs_info
, items
,
4729 while (delalloc_bytes
&& loops
< 3) {
4730 max_reclaim
= min(delalloc_bytes
, to_reclaim
);
4731 nr_pages
= max_reclaim
>> PAGE_SHIFT
;
4732 btrfs_writeback_inodes_sb_nr(root
, nr_pages
, items
);
4734 * We need to wait for the async pages to actually start before
4737 max_reclaim
= atomic_read(&root
->fs_info
->async_delalloc_pages
);
4741 if (max_reclaim
<= nr_pages
)
4744 max_reclaim
-= nr_pages
;
4746 wait_event(root
->fs_info
->async_submit_wait
,
4747 atomic_read(&root
->fs_info
->async_delalloc_pages
) <=
4751 flush
= BTRFS_RESERVE_FLUSH_ALL
;
4753 flush
= BTRFS_RESERVE_NO_FLUSH
;
4754 spin_lock(&space_info
->lock
);
4755 if (can_overcommit(root
, space_info
, orig
, flush
)) {
4756 spin_unlock(&space_info
->lock
);
4759 if (list_empty(&space_info
->tickets
) &&
4760 list_empty(&space_info
->priority_tickets
)) {
4761 spin_unlock(&space_info
->lock
);
4764 spin_unlock(&space_info
->lock
);
4767 if (wait_ordered
&& !trans
) {
4768 btrfs_wait_ordered_roots(root
->fs_info
, items
,
4771 time_left
= schedule_timeout_killable(1);
4775 delalloc_bytes
= percpu_counter_sum_positive(
4776 &root
->fs_info
->delalloc_bytes
);
4781 * maybe_commit_transaction - possibly commit the transaction if its ok to
4782 * @root - the root we're allocating for
4783 * @bytes - the number of bytes we want to reserve
4784 * @force - force the commit
4786 * This will check to make sure that committing the transaction will actually
4787 * get us somewhere and then commit the transaction if it does. Otherwise it
4788 * will return -ENOSPC.
4790 static int may_commit_transaction(struct btrfs_root
*root
,
4791 struct btrfs_space_info
*space_info
,
4792 u64 bytes
, int force
)
4794 struct btrfs_block_rsv
*delayed_rsv
= &root
->fs_info
->delayed_block_rsv
;
4795 struct btrfs_trans_handle
*trans
;
4797 trans
= (struct btrfs_trans_handle
*)current
->journal_info
;
4804 /* See if there is enough pinned space to make this reservation */
4805 if (percpu_counter_compare(&space_info
->total_bytes_pinned
,
4810 * See if there is some space in the delayed insertion reservation for
4813 if (space_info
!= delayed_rsv
->space_info
)
4816 spin_lock(&delayed_rsv
->lock
);
4817 if (percpu_counter_compare(&space_info
->total_bytes_pinned
,
4818 bytes
- delayed_rsv
->size
) >= 0) {
4819 spin_unlock(&delayed_rsv
->lock
);
4822 spin_unlock(&delayed_rsv
->lock
);
4825 trans
= btrfs_join_transaction(root
);
4829 return btrfs_commit_transaction(trans
, root
);
4832 struct reserve_ticket
{
4835 struct list_head list
;
4836 wait_queue_head_t wait
;
4839 static int flush_space(struct btrfs_root
*root
,
4840 struct btrfs_space_info
*space_info
, u64 num_bytes
,
4841 u64 orig_bytes
, int state
)
4843 struct btrfs_trans_handle
*trans
;
4848 case FLUSH_DELAYED_ITEMS_NR
:
4849 case FLUSH_DELAYED_ITEMS
:
4850 if (state
== FLUSH_DELAYED_ITEMS_NR
)
4851 nr
= calc_reclaim_items_nr(root
, num_bytes
) * 2;
4855 trans
= btrfs_join_transaction(root
);
4856 if (IS_ERR(trans
)) {
4857 ret
= PTR_ERR(trans
);
4860 ret
= btrfs_run_delayed_items_nr(trans
, root
, nr
);
4861 btrfs_end_transaction(trans
, root
);
4863 case FLUSH_DELALLOC
:
4864 case FLUSH_DELALLOC_WAIT
:
4865 shrink_delalloc(root
, num_bytes
* 2, orig_bytes
,
4866 state
== FLUSH_DELALLOC_WAIT
);
4869 trans
= btrfs_join_transaction(root
);
4870 if (IS_ERR(trans
)) {
4871 ret
= PTR_ERR(trans
);
4874 ret
= do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
4875 btrfs_get_alloc_profile(root
, 0),
4876 CHUNK_ALLOC_NO_FORCE
);
4877 btrfs_end_transaction(trans
, root
);
4878 if (ret
> 0 || ret
== -ENOSPC
)
4882 ret
= may_commit_transaction(root
, space_info
, orig_bytes
, 0);
4889 trace_btrfs_flush_space(root
->fs_info
, space_info
->flags
, num_bytes
,
4890 orig_bytes
, state
, ret
);
4895 btrfs_calc_reclaim_metadata_size(struct btrfs_root
*root
,
4896 struct btrfs_space_info
*space_info
)
4898 struct reserve_ticket
*ticket
;
4903 list_for_each_entry(ticket
, &space_info
->tickets
, list
)
4904 to_reclaim
+= ticket
->bytes
;
4905 list_for_each_entry(ticket
, &space_info
->priority_tickets
, list
)
4906 to_reclaim
+= ticket
->bytes
;
4910 to_reclaim
= min_t(u64
, num_online_cpus() * SZ_1M
, SZ_16M
);
4911 if (can_overcommit(root
, space_info
, to_reclaim
,
4912 BTRFS_RESERVE_FLUSH_ALL
))
4915 used
= space_info
->bytes_used
+ space_info
->bytes_reserved
+
4916 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
4917 space_info
->bytes_may_use
;
4918 if (can_overcommit(root
, space_info
, SZ_1M
, BTRFS_RESERVE_FLUSH_ALL
))
4919 expected
= div_factor_fine(space_info
->total_bytes
, 95);
4921 expected
= div_factor_fine(space_info
->total_bytes
, 90);
4923 if (used
> expected
)
4924 to_reclaim
= used
- expected
;
4927 to_reclaim
= min(to_reclaim
, space_info
->bytes_may_use
+
4928 space_info
->bytes_reserved
);
4932 static inline int need_do_async_reclaim(struct btrfs_space_info
*space_info
,
4933 struct btrfs_root
*root
, u64 used
)
4935 u64 thresh
= div_factor_fine(space_info
->total_bytes
, 98);
4937 /* If we're just plain full then async reclaim just slows us down. */
4938 if ((space_info
->bytes_used
+ space_info
->bytes_reserved
) >= thresh
)
4941 if (!btrfs_calc_reclaim_metadata_size(root
, space_info
))
4944 return (used
>= thresh
&& !btrfs_fs_closing(root
->fs_info
) &&
4945 !test_bit(BTRFS_FS_STATE_REMOUNTING
,
4946 &root
->fs_info
->fs_state
));
4949 static void wake_all_tickets(struct list_head
*head
)
4951 struct reserve_ticket
*ticket
;
4953 while (!list_empty(head
)) {
4954 ticket
= list_first_entry(head
, struct reserve_ticket
, list
);
4955 list_del_init(&ticket
->list
);
4956 ticket
->error
= -ENOSPC
;
4957 wake_up(&ticket
->wait
);
4962 * This is for normal flushers, we can wait all goddamned day if we want to. We
4963 * will loop and continuously try to flush as long as we are making progress.
4964 * We count progress as clearing off tickets each time we have to loop.
4966 static void btrfs_async_reclaim_metadata_space(struct work_struct
*work
)
4968 struct btrfs_fs_info
*fs_info
;
4969 struct btrfs_space_info
*space_info
;
4972 int commit_cycles
= 0;
4973 u64 last_tickets_id
;
4975 fs_info
= container_of(work
, struct btrfs_fs_info
, async_reclaim_work
);
4976 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_METADATA
);
4978 spin_lock(&space_info
->lock
);
4979 to_reclaim
= btrfs_calc_reclaim_metadata_size(fs_info
->fs_root
,
4982 space_info
->flush
= 0;
4983 spin_unlock(&space_info
->lock
);
4986 last_tickets_id
= space_info
->tickets_id
;
4987 spin_unlock(&space_info
->lock
);
4989 flush_state
= FLUSH_DELAYED_ITEMS_NR
;
4991 struct reserve_ticket
*ticket
;
4994 ret
= flush_space(fs_info
->fs_root
, space_info
, to_reclaim
,
4995 to_reclaim
, flush_state
);
4996 spin_lock(&space_info
->lock
);
4997 if (list_empty(&space_info
->tickets
)) {
4998 space_info
->flush
= 0;
4999 spin_unlock(&space_info
->lock
);
5002 to_reclaim
= btrfs_calc_reclaim_metadata_size(fs_info
->fs_root
,
5004 ticket
= list_first_entry(&space_info
->tickets
,
5005 struct reserve_ticket
, list
);
5006 if (last_tickets_id
== space_info
->tickets_id
) {
5009 last_tickets_id
= space_info
->tickets_id
;
5010 flush_state
= FLUSH_DELAYED_ITEMS_NR
;
5015 if (flush_state
> COMMIT_TRANS
) {
5017 if (commit_cycles
> 2) {
5018 wake_all_tickets(&space_info
->tickets
);
5019 space_info
->flush
= 0;
5021 flush_state
= FLUSH_DELAYED_ITEMS_NR
;
5024 spin_unlock(&space_info
->lock
);
5025 } while (flush_state
<= COMMIT_TRANS
);
5028 void btrfs_init_async_reclaim_work(struct work_struct
*work
)
5030 INIT_WORK(work
, btrfs_async_reclaim_metadata_space
);
5033 static void priority_reclaim_metadata_space(struct btrfs_fs_info
*fs_info
,
5034 struct btrfs_space_info
*space_info
,
5035 struct reserve_ticket
*ticket
)
5038 int flush_state
= FLUSH_DELAYED_ITEMS_NR
;
5040 spin_lock(&space_info
->lock
);
5041 to_reclaim
= btrfs_calc_reclaim_metadata_size(fs_info
->fs_root
,
5044 spin_unlock(&space_info
->lock
);
5047 spin_unlock(&space_info
->lock
);
5050 flush_space(fs_info
->fs_root
, space_info
, to_reclaim
,
5051 to_reclaim
, flush_state
);
5053 spin_lock(&space_info
->lock
);
5054 if (ticket
->bytes
== 0) {
5055 spin_unlock(&space_info
->lock
);
5058 spin_unlock(&space_info
->lock
);
5061 * Priority flushers can't wait on delalloc without
5064 if (flush_state
== FLUSH_DELALLOC
||
5065 flush_state
== FLUSH_DELALLOC_WAIT
)
5066 flush_state
= ALLOC_CHUNK
;
5067 } while (flush_state
< COMMIT_TRANS
);
5070 static int wait_reserve_ticket(struct btrfs_fs_info
*fs_info
,
5071 struct btrfs_space_info
*space_info
,
5072 struct reserve_ticket
*ticket
, u64 orig_bytes
)
5078 spin_lock(&space_info
->lock
);
5079 while (ticket
->bytes
> 0 && ticket
->error
== 0) {
5080 ret
= prepare_to_wait_event(&ticket
->wait
, &wait
, TASK_KILLABLE
);
5085 spin_unlock(&space_info
->lock
);
5089 finish_wait(&ticket
->wait
, &wait
);
5090 spin_lock(&space_info
->lock
);
5093 ret
= ticket
->error
;
5094 if (!list_empty(&ticket
->list
))
5095 list_del_init(&ticket
->list
);
5096 if (ticket
->bytes
&& ticket
->bytes
< orig_bytes
) {
5097 u64 num_bytes
= orig_bytes
- ticket
->bytes
;
5098 space_info
->bytes_may_use
-= num_bytes
;
5099 trace_btrfs_space_reservation(fs_info
, "space_info",
5100 space_info
->flags
, num_bytes
, 0);
5102 spin_unlock(&space_info
->lock
);
5108 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5109 * @root - the root we're allocating for
5110 * @space_info - the space info we want to allocate from
5111 * @orig_bytes - the number of bytes we want
5112 * @flush - whether or not we can flush to make our reservation
5114 * This will reserve orig_bytes number of bytes from the space info associated
5115 * with the block_rsv. If there is not enough space it will make an attempt to
5116 * flush out space to make room. It will do this by flushing delalloc if
5117 * possible or committing the transaction. If flush is 0 then no attempts to
5118 * regain reservations will be made and this will fail if there is not enough
5121 static int __reserve_metadata_bytes(struct btrfs_root
*root
,
5122 struct btrfs_space_info
*space_info
,
5124 enum btrfs_reserve_flush_enum flush
)
5126 struct reserve_ticket ticket
;
5131 ASSERT(!current
->journal_info
|| flush
!= BTRFS_RESERVE_FLUSH_ALL
);
5133 spin_lock(&space_info
->lock
);
5135 used
= space_info
->bytes_used
+ space_info
->bytes_reserved
+
5136 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
5137 space_info
->bytes_may_use
;
5140 * If we have enough space then hooray, make our reservation and carry
5141 * on. If not see if we can overcommit, and if we can, hooray carry on.
5142 * If not things get more complicated.
5144 if (used
+ orig_bytes
<= space_info
->total_bytes
) {
5145 space_info
->bytes_may_use
+= orig_bytes
;
5146 trace_btrfs_space_reservation(root
->fs_info
, "space_info",
5147 space_info
->flags
, orig_bytes
,
5150 } else if (can_overcommit(root
, space_info
, orig_bytes
, flush
)) {
5151 space_info
->bytes_may_use
+= orig_bytes
;
5152 trace_btrfs_space_reservation(root
->fs_info
, "space_info",
5153 space_info
->flags
, orig_bytes
,
5159 * If we couldn't make a reservation then setup our reservation ticket
5160 * and kick the async worker if it's not already running.
5162 * If we are a priority flusher then we just need to add our ticket to
5163 * the list and we will do our own flushing further down.
5165 if (ret
&& flush
!= BTRFS_RESERVE_NO_FLUSH
) {
5166 ticket
.bytes
= orig_bytes
;
5168 init_waitqueue_head(&ticket
.wait
);
5169 if (flush
== BTRFS_RESERVE_FLUSH_ALL
) {
5170 list_add_tail(&ticket
.list
, &space_info
->tickets
);
5171 if (!space_info
->flush
) {
5172 space_info
->flush
= 1;
5173 trace_btrfs_trigger_flush(root
->fs_info
,
5177 queue_work(system_unbound_wq
,
5178 &root
->fs_info
->async_reclaim_work
);
5181 list_add_tail(&ticket
.list
,
5182 &space_info
->priority_tickets
);
5184 } else if (!ret
&& space_info
->flags
& BTRFS_BLOCK_GROUP_METADATA
) {
5187 * We will do the space reservation dance during log replay,
5188 * which means we won't have fs_info->fs_root set, so don't do
5189 * the async reclaim as we will panic.
5191 if (!test_bit(BTRFS_FS_LOG_RECOVERING
, &root
->fs_info
->flags
) &&
5192 need_do_async_reclaim(space_info
, root
, used
) &&
5193 !work_busy(&root
->fs_info
->async_reclaim_work
)) {
5194 trace_btrfs_trigger_flush(root
->fs_info
,
5198 queue_work(system_unbound_wq
,
5199 &root
->fs_info
->async_reclaim_work
);
5202 spin_unlock(&space_info
->lock
);
5203 if (!ret
|| flush
== BTRFS_RESERVE_NO_FLUSH
)
5206 if (flush
== BTRFS_RESERVE_FLUSH_ALL
)
5207 return wait_reserve_ticket(root
->fs_info
, space_info
, &ticket
,
5211 priority_reclaim_metadata_space(root
->fs_info
, space_info
, &ticket
);
5212 spin_lock(&space_info
->lock
);
5214 if (ticket
.bytes
< orig_bytes
) {
5215 u64 num_bytes
= orig_bytes
- ticket
.bytes
;
5216 space_info
->bytes_may_use
-= num_bytes
;
5217 trace_btrfs_space_reservation(root
->fs_info
,
5218 "space_info", space_info
->flags
,
5222 list_del_init(&ticket
.list
);
5225 spin_unlock(&space_info
->lock
);
5226 ASSERT(list_empty(&ticket
.list
));
5231 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5232 * @root - the root we're allocating for
5233 * @block_rsv - the block_rsv we're allocating for
5234 * @orig_bytes - the number of bytes we want
5235 * @flush - whether or not we can flush to make our reservation
5237 * This will reserve orgi_bytes number of bytes from the space info associated
5238 * with the block_rsv. If there is not enough space it will make an attempt to
5239 * flush out space to make room. It will do this by flushing delalloc if
5240 * possible or committing the transaction. If flush is 0 then no attempts to
5241 * regain reservations will be made and this will fail if there is not enough
5244 static int reserve_metadata_bytes(struct btrfs_root
*root
,
5245 struct btrfs_block_rsv
*block_rsv
,
5247 enum btrfs_reserve_flush_enum flush
)
5251 ret
= __reserve_metadata_bytes(root
, block_rsv
->space_info
, orig_bytes
,
5253 if (ret
== -ENOSPC
&&
5254 unlikely(root
->orphan_cleanup_state
== ORPHAN_CLEANUP_STARTED
)) {
5255 struct btrfs_block_rsv
*global_rsv
=
5256 &root
->fs_info
->global_block_rsv
;
5258 if (block_rsv
!= global_rsv
&&
5259 !block_rsv_use_bytes(global_rsv
, orig_bytes
))
5263 trace_btrfs_space_reservation(root
->fs_info
,
5264 "space_info:enospc",
5265 block_rsv
->space_info
->flags
,
5270 static struct btrfs_block_rsv
*get_block_rsv(
5271 const struct btrfs_trans_handle
*trans
,
5272 const struct btrfs_root
*root
)
5274 struct btrfs_block_rsv
*block_rsv
= NULL
;
5276 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) ||
5277 (root
== root
->fs_info
->csum_root
&& trans
->adding_csums
) ||
5278 (root
== root
->fs_info
->uuid_root
))
5279 block_rsv
= trans
->block_rsv
;
5282 block_rsv
= root
->block_rsv
;
5285 block_rsv
= &root
->fs_info
->empty_block_rsv
;
5290 static int block_rsv_use_bytes(struct btrfs_block_rsv
*block_rsv
,
5294 spin_lock(&block_rsv
->lock
);
5295 if (block_rsv
->reserved
>= num_bytes
) {
5296 block_rsv
->reserved
-= num_bytes
;
5297 if (block_rsv
->reserved
< block_rsv
->size
)
5298 block_rsv
->full
= 0;
5301 spin_unlock(&block_rsv
->lock
);
5305 static void block_rsv_add_bytes(struct btrfs_block_rsv
*block_rsv
,
5306 u64 num_bytes
, int update_size
)
5308 spin_lock(&block_rsv
->lock
);
5309 block_rsv
->reserved
+= num_bytes
;
5311 block_rsv
->size
+= num_bytes
;
5312 else if (block_rsv
->reserved
>= block_rsv
->size
)
5313 block_rsv
->full
= 1;
5314 spin_unlock(&block_rsv
->lock
);
5317 int btrfs_cond_migrate_bytes(struct btrfs_fs_info
*fs_info
,
5318 struct btrfs_block_rsv
*dest
, u64 num_bytes
,
5321 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
5324 if (global_rsv
->space_info
!= dest
->space_info
)
5327 spin_lock(&global_rsv
->lock
);
5328 min_bytes
= div_factor(global_rsv
->size
, min_factor
);
5329 if (global_rsv
->reserved
< min_bytes
+ num_bytes
) {
5330 spin_unlock(&global_rsv
->lock
);
5333 global_rsv
->reserved
-= num_bytes
;
5334 if (global_rsv
->reserved
< global_rsv
->size
)
5335 global_rsv
->full
= 0;
5336 spin_unlock(&global_rsv
->lock
);
5338 block_rsv_add_bytes(dest
, num_bytes
, 1);
5343 * This is for space we already have accounted in space_info->bytes_may_use, so
5344 * basically when we're returning space from block_rsv's.
5346 static void space_info_add_old_bytes(struct btrfs_fs_info
*fs_info
,
5347 struct btrfs_space_info
*space_info
,
5350 struct reserve_ticket
*ticket
;
5351 struct list_head
*head
;
5353 enum btrfs_reserve_flush_enum flush
= BTRFS_RESERVE_NO_FLUSH
;
5354 bool check_overcommit
= false;
5356 spin_lock(&space_info
->lock
);
5357 head
= &space_info
->priority_tickets
;
5360 * If we are over our limit then we need to check and see if we can
5361 * overcommit, and if we can't then we just need to free up our space
5362 * and not satisfy any requests.
5364 used
= space_info
->bytes_used
+ space_info
->bytes_reserved
+
5365 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
5366 space_info
->bytes_may_use
;
5367 if (used
- num_bytes
>= space_info
->total_bytes
)
5368 check_overcommit
= true;
5370 while (!list_empty(head
) && num_bytes
) {
5371 ticket
= list_first_entry(head
, struct reserve_ticket
,
5374 * We use 0 bytes because this space is already reserved, so
5375 * adding the ticket space would be a double count.
5377 if (check_overcommit
&&
5378 !can_overcommit(fs_info
->extent_root
, space_info
, 0,
5381 if (num_bytes
>= ticket
->bytes
) {
5382 list_del_init(&ticket
->list
);
5383 num_bytes
-= ticket
->bytes
;
5385 space_info
->tickets_id
++;
5386 wake_up(&ticket
->wait
);
5388 ticket
->bytes
-= num_bytes
;
5393 if (num_bytes
&& head
== &space_info
->priority_tickets
) {
5394 head
= &space_info
->tickets
;
5395 flush
= BTRFS_RESERVE_FLUSH_ALL
;
5398 space_info
->bytes_may_use
-= num_bytes
;
5399 trace_btrfs_space_reservation(fs_info
, "space_info",
5400 space_info
->flags
, num_bytes
, 0);
5401 spin_unlock(&space_info
->lock
);
5405 * This is for newly allocated space that isn't accounted in
5406 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5407 * we use this helper.
5409 static void space_info_add_new_bytes(struct btrfs_fs_info
*fs_info
,
5410 struct btrfs_space_info
*space_info
,
5413 struct reserve_ticket
*ticket
;
5414 struct list_head
*head
= &space_info
->priority_tickets
;
5417 while (!list_empty(head
) && num_bytes
) {
5418 ticket
= list_first_entry(head
, struct reserve_ticket
,
5420 if (num_bytes
>= ticket
->bytes
) {
5421 trace_btrfs_space_reservation(fs_info
, "space_info",
5424 list_del_init(&ticket
->list
);
5425 num_bytes
-= ticket
->bytes
;
5426 space_info
->bytes_may_use
+= ticket
->bytes
;
5428 space_info
->tickets_id
++;
5429 wake_up(&ticket
->wait
);
5431 trace_btrfs_space_reservation(fs_info
, "space_info",
5434 space_info
->bytes_may_use
+= num_bytes
;
5435 ticket
->bytes
-= num_bytes
;
5440 if (num_bytes
&& head
== &space_info
->priority_tickets
) {
5441 head
= &space_info
->tickets
;
5446 static void block_rsv_release_bytes(struct btrfs_fs_info
*fs_info
,
5447 struct btrfs_block_rsv
*block_rsv
,
5448 struct btrfs_block_rsv
*dest
, u64 num_bytes
)
5450 struct btrfs_space_info
*space_info
= block_rsv
->space_info
;
5452 spin_lock(&block_rsv
->lock
);
5453 if (num_bytes
== (u64
)-1)
5454 num_bytes
= block_rsv
->size
;
5455 block_rsv
->size
-= num_bytes
;
5456 if (block_rsv
->reserved
>= block_rsv
->size
) {
5457 num_bytes
= block_rsv
->reserved
- block_rsv
->size
;
5458 block_rsv
->reserved
= block_rsv
->size
;
5459 block_rsv
->full
= 1;
5463 spin_unlock(&block_rsv
->lock
);
5465 if (num_bytes
> 0) {
5467 spin_lock(&dest
->lock
);
5471 bytes_to_add
= dest
->size
- dest
->reserved
;
5472 bytes_to_add
= min(num_bytes
, bytes_to_add
);
5473 dest
->reserved
+= bytes_to_add
;
5474 if (dest
->reserved
>= dest
->size
)
5476 num_bytes
-= bytes_to_add
;
5478 spin_unlock(&dest
->lock
);
5481 space_info_add_old_bytes(fs_info
, space_info
,
5486 int btrfs_block_rsv_migrate(struct btrfs_block_rsv
*src
,
5487 struct btrfs_block_rsv
*dst
, u64 num_bytes
,
5492 ret
= block_rsv_use_bytes(src
, num_bytes
);
5496 block_rsv_add_bytes(dst
, num_bytes
, update_size
);
5500 void btrfs_init_block_rsv(struct btrfs_block_rsv
*rsv
, unsigned short type
)
5502 memset(rsv
, 0, sizeof(*rsv
));
5503 spin_lock_init(&rsv
->lock
);
5507 struct btrfs_block_rsv
*btrfs_alloc_block_rsv(struct btrfs_root
*root
,
5508 unsigned short type
)
5510 struct btrfs_block_rsv
*block_rsv
;
5511 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5513 block_rsv
= kmalloc(sizeof(*block_rsv
), GFP_NOFS
);
5517 btrfs_init_block_rsv(block_rsv
, type
);
5518 block_rsv
->space_info
= __find_space_info(fs_info
,
5519 BTRFS_BLOCK_GROUP_METADATA
);
5523 void btrfs_free_block_rsv(struct btrfs_root
*root
,
5524 struct btrfs_block_rsv
*rsv
)
5528 btrfs_block_rsv_release(root
, rsv
, (u64
)-1);
5532 void __btrfs_free_block_rsv(struct btrfs_block_rsv
*rsv
)
5537 int btrfs_block_rsv_add(struct btrfs_root
*root
,
5538 struct btrfs_block_rsv
*block_rsv
, u64 num_bytes
,
5539 enum btrfs_reserve_flush_enum flush
)
5546 ret
= reserve_metadata_bytes(root
, block_rsv
, num_bytes
, flush
);
5548 block_rsv_add_bytes(block_rsv
, num_bytes
, 1);
5555 int btrfs_block_rsv_check(struct btrfs_root
*root
,
5556 struct btrfs_block_rsv
*block_rsv
, int min_factor
)
5564 spin_lock(&block_rsv
->lock
);
5565 num_bytes
= div_factor(block_rsv
->size
, min_factor
);
5566 if (block_rsv
->reserved
>= num_bytes
)
5568 spin_unlock(&block_rsv
->lock
);
5573 int btrfs_block_rsv_refill(struct btrfs_root
*root
,
5574 struct btrfs_block_rsv
*block_rsv
, u64 min_reserved
,
5575 enum btrfs_reserve_flush_enum flush
)
5583 spin_lock(&block_rsv
->lock
);
5584 num_bytes
= min_reserved
;
5585 if (block_rsv
->reserved
>= num_bytes
)
5588 num_bytes
-= block_rsv
->reserved
;
5589 spin_unlock(&block_rsv
->lock
);
5594 ret
= reserve_metadata_bytes(root
, block_rsv
, num_bytes
, flush
);
5596 block_rsv_add_bytes(block_rsv
, num_bytes
, 0);
5603 void btrfs_block_rsv_release(struct btrfs_root
*root
,
5604 struct btrfs_block_rsv
*block_rsv
,
5607 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
5608 if (global_rsv
== block_rsv
||
5609 block_rsv
->space_info
!= global_rsv
->space_info
)
5611 block_rsv_release_bytes(root
->fs_info
, block_rsv
, global_rsv
,
5615 static void update_global_block_rsv(struct btrfs_fs_info
*fs_info
)
5617 struct btrfs_block_rsv
*block_rsv
= &fs_info
->global_block_rsv
;
5618 struct btrfs_space_info
*sinfo
= block_rsv
->space_info
;
5622 * The global block rsv is based on the size of the extent tree, the
5623 * checksum tree and the root tree. If the fs is empty we want to set
5624 * it to a minimal amount for safety.
5626 num_bytes
= btrfs_root_used(&fs_info
->extent_root
->root_item
) +
5627 btrfs_root_used(&fs_info
->csum_root
->root_item
) +
5628 btrfs_root_used(&fs_info
->tree_root
->root_item
);
5629 num_bytes
= max_t(u64
, num_bytes
, SZ_16M
);
5631 spin_lock(&sinfo
->lock
);
5632 spin_lock(&block_rsv
->lock
);
5634 block_rsv
->size
= min_t(u64
, num_bytes
, SZ_512M
);
5636 if (block_rsv
->reserved
< block_rsv
->size
) {
5637 num_bytes
= sinfo
->bytes_used
+ sinfo
->bytes_pinned
+
5638 sinfo
->bytes_reserved
+ sinfo
->bytes_readonly
+
5639 sinfo
->bytes_may_use
;
5640 if (sinfo
->total_bytes
> num_bytes
) {
5641 num_bytes
= sinfo
->total_bytes
- num_bytes
;
5642 num_bytes
= min(num_bytes
,
5643 block_rsv
->size
- block_rsv
->reserved
);
5644 block_rsv
->reserved
+= num_bytes
;
5645 sinfo
->bytes_may_use
+= num_bytes
;
5646 trace_btrfs_space_reservation(fs_info
, "space_info",
5647 sinfo
->flags
, num_bytes
,
5650 } else if (block_rsv
->reserved
> block_rsv
->size
) {
5651 num_bytes
= block_rsv
->reserved
- block_rsv
->size
;
5652 sinfo
->bytes_may_use
-= num_bytes
;
5653 trace_btrfs_space_reservation(fs_info
, "space_info",
5654 sinfo
->flags
, num_bytes
, 0);
5655 block_rsv
->reserved
= block_rsv
->size
;
5658 if (block_rsv
->reserved
== block_rsv
->size
)
5659 block_rsv
->full
= 1;
5661 block_rsv
->full
= 0;
5663 spin_unlock(&block_rsv
->lock
);
5664 spin_unlock(&sinfo
->lock
);
5667 static void init_global_block_rsv(struct btrfs_fs_info
*fs_info
)
5669 struct btrfs_space_info
*space_info
;
5671 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_SYSTEM
);
5672 fs_info
->chunk_block_rsv
.space_info
= space_info
;
5674 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_METADATA
);
5675 fs_info
->global_block_rsv
.space_info
= space_info
;
5676 fs_info
->delalloc_block_rsv
.space_info
= space_info
;
5677 fs_info
->trans_block_rsv
.space_info
= space_info
;
5678 fs_info
->empty_block_rsv
.space_info
= space_info
;
5679 fs_info
->delayed_block_rsv
.space_info
= space_info
;
5681 fs_info
->extent_root
->block_rsv
= &fs_info
->global_block_rsv
;
5682 fs_info
->csum_root
->block_rsv
= &fs_info
->global_block_rsv
;
5683 fs_info
->dev_root
->block_rsv
= &fs_info
->global_block_rsv
;
5684 fs_info
->tree_root
->block_rsv
= &fs_info
->global_block_rsv
;
5685 if (fs_info
->quota_root
)
5686 fs_info
->quota_root
->block_rsv
= &fs_info
->global_block_rsv
;
5687 fs_info
->chunk_root
->block_rsv
= &fs_info
->chunk_block_rsv
;
5689 update_global_block_rsv(fs_info
);
5692 static void release_global_block_rsv(struct btrfs_fs_info
*fs_info
)
5694 block_rsv_release_bytes(fs_info
, &fs_info
->global_block_rsv
, NULL
,
5696 WARN_ON(fs_info
->delalloc_block_rsv
.size
> 0);
5697 WARN_ON(fs_info
->delalloc_block_rsv
.reserved
> 0);
5698 WARN_ON(fs_info
->trans_block_rsv
.size
> 0);
5699 WARN_ON(fs_info
->trans_block_rsv
.reserved
> 0);
5700 WARN_ON(fs_info
->chunk_block_rsv
.size
> 0);
5701 WARN_ON(fs_info
->chunk_block_rsv
.reserved
> 0);
5702 WARN_ON(fs_info
->delayed_block_rsv
.size
> 0);
5703 WARN_ON(fs_info
->delayed_block_rsv
.reserved
> 0);
5706 void btrfs_trans_release_metadata(struct btrfs_trans_handle
*trans
,
5707 struct btrfs_root
*root
)
5709 if (!trans
->block_rsv
)
5712 if (!trans
->bytes_reserved
)
5715 trace_btrfs_space_reservation(root
->fs_info
, "transaction",
5716 trans
->transid
, trans
->bytes_reserved
, 0);
5717 btrfs_block_rsv_release(root
, trans
->block_rsv
, trans
->bytes_reserved
);
5718 trans
->bytes_reserved
= 0;
5722 * To be called after all the new block groups attached to the transaction
5723 * handle have been created (btrfs_create_pending_block_groups()).
5725 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle
*trans
)
5727 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
5729 if (!trans
->chunk_bytes_reserved
)
5732 WARN_ON_ONCE(!list_empty(&trans
->new_bgs
));
5734 block_rsv_release_bytes(fs_info
, &fs_info
->chunk_block_rsv
, NULL
,
5735 trans
->chunk_bytes_reserved
);
5736 trans
->chunk_bytes_reserved
= 0;
5739 /* Can only return 0 or -ENOSPC */
5740 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle
*trans
,
5741 struct inode
*inode
)
5743 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5745 * We always use trans->block_rsv here as we will have reserved space
5746 * for our orphan when starting the transaction, using get_block_rsv()
5747 * here will sometimes make us choose the wrong block rsv as we could be
5748 * doing a reloc inode for a non refcounted root.
5750 struct btrfs_block_rsv
*src_rsv
= trans
->block_rsv
;
5751 struct btrfs_block_rsv
*dst_rsv
= root
->orphan_block_rsv
;
5754 * We need to hold space in order to delete our orphan item once we've
5755 * added it, so this takes the reservation so we can release it later
5756 * when we are truly done with the orphan item.
5758 u64 num_bytes
= btrfs_calc_trans_metadata_size(root
, 1);
5759 trace_btrfs_space_reservation(root
->fs_info
, "orphan",
5760 btrfs_ino(inode
), num_bytes
, 1);
5761 return btrfs_block_rsv_migrate(src_rsv
, dst_rsv
, num_bytes
, 1);
5764 void btrfs_orphan_release_metadata(struct inode
*inode
)
5766 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5767 u64 num_bytes
= btrfs_calc_trans_metadata_size(root
, 1);
5768 trace_btrfs_space_reservation(root
->fs_info
, "orphan",
5769 btrfs_ino(inode
), num_bytes
, 0);
5770 btrfs_block_rsv_release(root
, root
->orphan_block_rsv
, num_bytes
);
5774 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5775 * root: the root of the parent directory
5776 * rsv: block reservation
5777 * items: the number of items that we need do reservation
5778 * qgroup_reserved: used to return the reserved size in qgroup
5780 * This function is used to reserve the space for snapshot/subvolume
5781 * creation and deletion. Those operations are different with the
5782 * common file/directory operations, they change two fs/file trees
5783 * and root tree, the number of items that the qgroup reserves is
5784 * different with the free space reservation. So we can not use
5785 * the space reservation mechanism in start_transaction().
5787 int btrfs_subvolume_reserve_metadata(struct btrfs_root
*root
,
5788 struct btrfs_block_rsv
*rsv
,
5790 u64
*qgroup_reserved
,
5791 bool use_global_rsv
)
5795 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
5797 if (test_bit(BTRFS_FS_QUOTA_ENABLED
, &root
->fs_info
->flags
)) {
5798 /* One for parent inode, two for dir entries */
5799 num_bytes
= 3 * root
->nodesize
;
5800 ret
= btrfs_qgroup_reserve_meta(root
, num_bytes
);
5807 *qgroup_reserved
= num_bytes
;
5809 num_bytes
= btrfs_calc_trans_metadata_size(root
, items
);
5810 rsv
->space_info
= __find_space_info(root
->fs_info
,
5811 BTRFS_BLOCK_GROUP_METADATA
);
5812 ret
= btrfs_block_rsv_add(root
, rsv
, num_bytes
,
5813 BTRFS_RESERVE_FLUSH_ALL
);
5815 if (ret
== -ENOSPC
&& use_global_rsv
)
5816 ret
= btrfs_block_rsv_migrate(global_rsv
, rsv
, num_bytes
, 1);
5818 if (ret
&& *qgroup_reserved
)
5819 btrfs_qgroup_free_meta(root
, *qgroup_reserved
);
5824 void btrfs_subvolume_release_metadata(struct btrfs_root
*root
,
5825 struct btrfs_block_rsv
*rsv
,
5826 u64 qgroup_reserved
)
5828 btrfs_block_rsv_release(root
, rsv
, (u64
)-1);
5832 * drop_outstanding_extent - drop an outstanding extent
5833 * @inode: the inode we're dropping the extent for
5834 * @num_bytes: the number of bytes we're releasing.
5836 * This is called when we are freeing up an outstanding extent, either called
5837 * after an error or after an extent is written. This will return the number of
5838 * reserved extents that need to be freed. This must be called with
5839 * BTRFS_I(inode)->lock held.
5841 static unsigned drop_outstanding_extent(struct inode
*inode
, u64 num_bytes
)
5843 unsigned drop_inode_space
= 0;
5844 unsigned dropped_extents
= 0;
5845 unsigned num_extents
= 0;
5847 num_extents
= (unsigned)div64_u64(num_bytes
+
5848 BTRFS_MAX_EXTENT_SIZE
- 1,
5849 BTRFS_MAX_EXTENT_SIZE
);
5850 ASSERT(num_extents
);
5851 ASSERT(BTRFS_I(inode
)->outstanding_extents
>= num_extents
);
5852 BTRFS_I(inode
)->outstanding_extents
-= num_extents
;
5854 if (BTRFS_I(inode
)->outstanding_extents
== 0 &&
5855 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED
,
5856 &BTRFS_I(inode
)->runtime_flags
))
5857 drop_inode_space
= 1;
5860 * If we have more or the same amount of outstanding extents than we have
5861 * reserved then we need to leave the reserved extents count alone.
5863 if (BTRFS_I(inode
)->outstanding_extents
>=
5864 BTRFS_I(inode
)->reserved_extents
)
5865 return drop_inode_space
;
5867 dropped_extents
= BTRFS_I(inode
)->reserved_extents
-
5868 BTRFS_I(inode
)->outstanding_extents
;
5869 BTRFS_I(inode
)->reserved_extents
-= dropped_extents
;
5870 return dropped_extents
+ drop_inode_space
;
5874 * calc_csum_metadata_size - return the amount of metadata space that must be
5875 * reserved/freed for the given bytes.
5876 * @inode: the inode we're manipulating
5877 * @num_bytes: the number of bytes in question
5878 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5880 * This adjusts the number of csum_bytes in the inode and then returns the
5881 * correct amount of metadata that must either be reserved or freed. We
5882 * calculate how many checksums we can fit into one leaf and then divide the
5883 * number of bytes that will need to be checksumed by this value to figure out
5884 * how many checksums will be required. If we are adding bytes then the number
5885 * may go up and we will return the number of additional bytes that must be
5886 * reserved. If it is going down we will return the number of bytes that must
5889 * This must be called with BTRFS_I(inode)->lock held.
5891 static u64
calc_csum_metadata_size(struct inode
*inode
, u64 num_bytes
,
5894 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5895 u64 old_csums
, num_csums
;
5897 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
&&
5898 BTRFS_I(inode
)->csum_bytes
== 0)
5901 old_csums
= btrfs_csum_bytes_to_leaves(root
, BTRFS_I(inode
)->csum_bytes
);
5903 BTRFS_I(inode
)->csum_bytes
+= num_bytes
;
5905 BTRFS_I(inode
)->csum_bytes
-= num_bytes
;
5906 num_csums
= btrfs_csum_bytes_to_leaves(root
, BTRFS_I(inode
)->csum_bytes
);
5908 /* No change, no need to reserve more */
5909 if (old_csums
== num_csums
)
5913 return btrfs_calc_trans_metadata_size(root
,
5914 num_csums
- old_csums
);
5916 return btrfs_calc_trans_metadata_size(root
, old_csums
- num_csums
);
5919 int btrfs_delalloc_reserve_metadata(struct inode
*inode
, u64 num_bytes
)
5921 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5922 struct btrfs_block_rsv
*block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
5925 unsigned nr_extents
= 0;
5926 enum btrfs_reserve_flush_enum flush
= BTRFS_RESERVE_FLUSH_ALL
;
5928 bool delalloc_lock
= true;
5931 bool release_extra
= false;
5933 /* If we are a free space inode we need to not flush since we will be in
5934 * the middle of a transaction commit. We also don't need the delalloc
5935 * mutex since we won't race with anybody. We need this mostly to make
5936 * lockdep shut its filthy mouth.
5938 * If we have a transaction open (can happen if we call truncate_block
5939 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
5941 if (btrfs_is_free_space_inode(inode
)) {
5942 flush
= BTRFS_RESERVE_NO_FLUSH
;
5943 delalloc_lock
= false;
5944 } else if (current
->journal_info
) {
5945 flush
= BTRFS_RESERVE_FLUSH_LIMIT
;
5948 if (flush
!= BTRFS_RESERVE_NO_FLUSH
&&
5949 btrfs_transaction_in_commit(root
->fs_info
))
5950 schedule_timeout(1);
5953 mutex_lock(&BTRFS_I(inode
)->delalloc_mutex
);
5955 num_bytes
= ALIGN(num_bytes
, root
->sectorsize
);
5957 spin_lock(&BTRFS_I(inode
)->lock
);
5958 nr_extents
= (unsigned)div64_u64(num_bytes
+
5959 BTRFS_MAX_EXTENT_SIZE
- 1,
5960 BTRFS_MAX_EXTENT_SIZE
);
5961 BTRFS_I(inode
)->outstanding_extents
+= nr_extents
;
5964 if (BTRFS_I(inode
)->outstanding_extents
>
5965 BTRFS_I(inode
)->reserved_extents
)
5966 nr_extents
+= BTRFS_I(inode
)->outstanding_extents
-
5967 BTRFS_I(inode
)->reserved_extents
;
5969 /* We always want to reserve a slot for updating the inode. */
5970 to_reserve
= btrfs_calc_trans_metadata_size(root
, nr_extents
+ 1);
5971 to_reserve
+= calc_csum_metadata_size(inode
, num_bytes
, 1);
5972 csum_bytes
= BTRFS_I(inode
)->csum_bytes
;
5973 spin_unlock(&BTRFS_I(inode
)->lock
);
5975 if (test_bit(BTRFS_FS_QUOTA_ENABLED
, &root
->fs_info
->flags
)) {
5976 ret
= btrfs_qgroup_reserve_meta(root
,
5977 nr_extents
* root
->nodesize
);
5982 ret
= btrfs_block_rsv_add(root
, block_rsv
, to_reserve
, flush
);
5983 if (unlikely(ret
)) {
5984 btrfs_qgroup_free_meta(root
, nr_extents
* root
->nodesize
);
5988 spin_lock(&BTRFS_I(inode
)->lock
);
5989 if (test_and_set_bit(BTRFS_INODE_DELALLOC_META_RESERVED
,
5990 &BTRFS_I(inode
)->runtime_flags
)) {
5991 to_reserve
-= btrfs_calc_trans_metadata_size(root
, 1);
5992 release_extra
= true;
5994 BTRFS_I(inode
)->reserved_extents
+= nr_extents
;
5995 spin_unlock(&BTRFS_I(inode
)->lock
);
5998 mutex_unlock(&BTRFS_I(inode
)->delalloc_mutex
);
6001 trace_btrfs_space_reservation(root
->fs_info
, "delalloc",
6002 btrfs_ino(inode
), to_reserve
, 1);
6004 btrfs_block_rsv_release(root
, block_rsv
,
6005 btrfs_calc_trans_metadata_size(root
,
6010 spin_lock(&BTRFS_I(inode
)->lock
);
6011 dropped
= drop_outstanding_extent(inode
, num_bytes
);
6013 * If the inodes csum_bytes is the same as the original
6014 * csum_bytes then we know we haven't raced with any free()ers
6015 * so we can just reduce our inodes csum bytes and carry on.
6017 if (BTRFS_I(inode
)->csum_bytes
== csum_bytes
) {
6018 calc_csum_metadata_size(inode
, num_bytes
, 0);
6020 u64 orig_csum_bytes
= BTRFS_I(inode
)->csum_bytes
;
6024 * This is tricky, but first we need to figure out how much we
6025 * freed from any free-ers that occurred during this
6026 * reservation, so we reset ->csum_bytes to the csum_bytes
6027 * before we dropped our lock, and then call the free for the
6028 * number of bytes that were freed while we were trying our
6031 bytes
= csum_bytes
- BTRFS_I(inode
)->csum_bytes
;
6032 BTRFS_I(inode
)->csum_bytes
= csum_bytes
;
6033 to_free
= calc_csum_metadata_size(inode
, bytes
, 0);
6037 * Now we need to see how much we would have freed had we not
6038 * been making this reservation and our ->csum_bytes were not
6039 * artificially inflated.
6041 BTRFS_I(inode
)->csum_bytes
= csum_bytes
- num_bytes
;
6042 bytes
= csum_bytes
- orig_csum_bytes
;
6043 bytes
= calc_csum_metadata_size(inode
, bytes
, 0);
6046 * Now reset ->csum_bytes to what it should be. If bytes is
6047 * more than to_free then we would have freed more space had we
6048 * not had an artificially high ->csum_bytes, so we need to free
6049 * the remainder. If bytes is the same or less then we don't
6050 * need to do anything, the other free-ers did the correct
6053 BTRFS_I(inode
)->csum_bytes
= orig_csum_bytes
- num_bytes
;
6054 if (bytes
> to_free
)
6055 to_free
= bytes
- to_free
;
6059 spin_unlock(&BTRFS_I(inode
)->lock
);
6061 to_free
+= btrfs_calc_trans_metadata_size(root
, dropped
);
6064 btrfs_block_rsv_release(root
, block_rsv
, to_free
);
6065 trace_btrfs_space_reservation(root
->fs_info
, "delalloc",
6066 btrfs_ino(inode
), to_free
, 0);
6069 mutex_unlock(&BTRFS_I(inode
)->delalloc_mutex
);
6074 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6075 * @inode: the inode to release the reservation for
6076 * @num_bytes: the number of bytes we're releasing
6078 * This will release the metadata reservation for an inode. This can be called
6079 * once we complete IO for a given set of bytes to release their metadata
6082 void btrfs_delalloc_release_metadata(struct inode
*inode
, u64 num_bytes
)
6084 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6088 num_bytes
= ALIGN(num_bytes
, root
->sectorsize
);
6089 spin_lock(&BTRFS_I(inode
)->lock
);
6090 dropped
= drop_outstanding_extent(inode
, num_bytes
);
6093 to_free
= calc_csum_metadata_size(inode
, num_bytes
, 0);
6094 spin_unlock(&BTRFS_I(inode
)->lock
);
6096 to_free
+= btrfs_calc_trans_metadata_size(root
, dropped
);
6098 if (btrfs_is_testing(root
->fs_info
))
6101 trace_btrfs_space_reservation(root
->fs_info
, "delalloc",
6102 btrfs_ino(inode
), to_free
, 0);
6104 btrfs_block_rsv_release(root
, &root
->fs_info
->delalloc_block_rsv
,
6109 * btrfs_delalloc_reserve_space - reserve data and metadata space for
6111 * @inode: inode we're writing to
6112 * @start: start range we are writing to
6113 * @len: how long the range we are writing to
6115 * This will do the following things
6117 * o reserve space in data space info for num bytes
6118 * and reserve precious corresponding qgroup space
6119 * (Done in check_data_free_space)
6121 * o reserve space for metadata space, based on the number of outstanding
6122 * extents and how much csums will be needed
6123 * also reserve metadata space in a per root over-reserve method.
6124 * o add to the inodes->delalloc_bytes
6125 * o add it to the fs_info's delalloc inodes list.
6126 * (Above 3 all done in delalloc_reserve_metadata)
6128 * Return 0 for success
6129 * Return <0 for error(-ENOSPC or -EQUOT)
6131 int btrfs_delalloc_reserve_space(struct inode
*inode
, u64 start
, u64 len
)
6135 ret
= btrfs_check_data_free_space(inode
, start
, len
);
6138 ret
= btrfs_delalloc_reserve_metadata(inode
, len
);
6140 btrfs_free_reserved_data_space(inode
, start
, len
);
6145 * btrfs_delalloc_release_space - release data and metadata space for delalloc
6146 * @inode: inode we're releasing space for
6147 * @start: start position of the space already reserved
6148 * @len: the len of the space already reserved
6150 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
6151 * called in the case that we don't need the metadata AND data reservations
6152 * anymore. So if there is an error or we insert an inline extent.
6154 * This function will release the metadata space that was not used and will
6155 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6156 * list if there are no delalloc bytes left.
6157 * Also it will handle the qgroup reserved space.
6159 void btrfs_delalloc_release_space(struct inode
*inode
, u64 start
, u64 len
)
6161 btrfs_delalloc_release_metadata(inode
, len
);
6162 btrfs_free_reserved_data_space(inode
, start
, len
);
6165 static int update_block_group(struct btrfs_trans_handle
*trans
,
6166 struct btrfs_root
*root
, u64 bytenr
,
6167 u64 num_bytes
, int alloc
)
6169 struct btrfs_block_group_cache
*cache
= NULL
;
6170 struct btrfs_fs_info
*info
= root
->fs_info
;
6171 u64 total
= num_bytes
;
6176 /* block accounting for super block */
6177 spin_lock(&info
->delalloc_root_lock
);
6178 old_val
= btrfs_super_bytes_used(info
->super_copy
);
6180 old_val
+= num_bytes
;
6182 old_val
-= num_bytes
;
6183 btrfs_set_super_bytes_used(info
->super_copy
, old_val
);
6184 spin_unlock(&info
->delalloc_root_lock
);
6187 cache
= btrfs_lookup_block_group(info
, bytenr
);
6190 if (cache
->flags
& (BTRFS_BLOCK_GROUP_DUP
|
6191 BTRFS_BLOCK_GROUP_RAID1
|
6192 BTRFS_BLOCK_GROUP_RAID10
))
6197 * If this block group has free space cache written out, we
6198 * need to make sure to load it if we are removing space. This
6199 * is because we need the unpinning stage to actually add the
6200 * space back to the block group, otherwise we will leak space.
6202 if (!alloc
&& cache
->cached
== BTRFS_CACHE_NO
)
6203 cache_block_group(cache
, 1);
6205 byte_in_group
= bytenr
- cache
->key
.objectid
;
6206 WARN_ON(byte_in_group
> cache
->key
.offset
);
6208 spin_lock(&cache
->space_info
->lock
);
6209 spin_lock(&cache
->lock
);
6211 if (btrfs_test_opt(root
->fs_info
, SPACE_CACHE
) &&
6212 cache
->disk_cache_state
< BTRFS_DC_CLEAR
)
6213 cache
->disk_cache_state
= BTRFS_DC_CLEAR
;
6215 old_val
= btrfs_block_group_used(&cache
->item
);
6216 num_bytes
= min(total
, cache
->key
.offset
- byte_in_group
);
6218 old_val
+= num_bytes
;
6219 btrfs_set_block_group_used(&cache
->item
, old_val
);
6220 cache
->reserved
-= num_bytes
;
6221 cache
->space_info
->bytes_reserved
-= num_bytes
;
6222 cache
->space_info
->bytes_used
+= num_bytes
;
6223 cache
->space_info
->disk_used
+= num_bytes
* factor
;
6224 spin_unlock(&cache
->lock
);
6225 spin_unlock(&cache
->space_info
->lock
);
6227 old_val
-= num_bytes
;
6228 btrfs_set_block_group_used(&cache
->item
, old_val
);
6229 cache
->pinned
+= num_bytes
;
6230 cache
->space_info
->bytes_pinned
+= num_bytes
;
6231 cache
->space_info
->bytes_used
-= num_bytes
;
6232 cache
->space_info
->disk_used
-= num_bytes
* factor
;
6233 spin_unlock(&cache
->lock
);
6234 spin_unlock(&cache
->space_info
->lock
);
6236 trace_btrfs_space_reservation(root
->fs_info
, "pinned",
6237 cache
->space_info
->flags
,
6239 set_extent_dirty(info
->pinned_extents
,
6240 bytenr
, bytenr
+ num_bytes
- 1,
6241 GFP_NOFS
| __GFP_NOFAIL
);
6244 spin_lock(&trans
->transaction
->dirty_bgs_lock
);
6245 if (list_empty(&cache
->dirty_list
)) {
6246 list_add_tail(&cache
->dirty_list
,
6247 &trans
->transaction
->dirty_bgs
);
6248 trans
->transaction
->num_dirty_bgs
++;
6249 btrfs_get_block_group(cache
);
6251 spin_unlock(&trans
->transaction
->dirty_bgs_lock
);
6254 * No longer have used bytes in this block group, queue it for
6255 * deletion. We do this after adding the block group to the
6256 * dirty list to avoid races between cleaner kthread and space
6259 if (!alloc
&& old_val
== 0) {
6260 spin_lock(&info
->unused_bgs_lock
);
6261 if (list_empty(&cache
->bg_list
)) {
6262 btrfs_get_block_group(cache
);
6263 list_add_tail(&cache
->bg_list
,
6266 spin_unlock(&info
->unused_bgs_lock
);
6269 btrfs_put_block_group(cache
);
6271 bytenr
+= num_bytes
;
6276 static u64
first_logical_byte(struct btrfs_root
*root
, u64 search_start
)
6278 struct btrfs_block_group_cache
*cache
;
6281 spin_lock(&root
->fs_info
->block_group_cache_lock
);
6282 bytenr
= root
->fs_info
->first_logical_byte
;
6283 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
6285 if (bytenr
< (u64
)-1)
6288 cache
= btrfs_lookup_first_block_group(root
->fs_info
, search_start
);
6292 bytenr
= cache
->key
.objectid
;
6293 btrfs_put_block_group(cache
);
6298 static int pin_down_extent(struct btrfs_root
*root
,
6299 struct btrfs_block_group_cache
*cache
,
6300 u64 bytenr
, u64 num_bytes
, int reserved
)
6302 spin_lock(&cache
->space_info
->lock
);
6303 spin_lock(&cache
->lock
);
6304 cache
->pinned
+= num_bytes
;
6305 cache
->space_info
->bytes_pinned
+= num_bytes
;
6307 cache
->reserved
-= num_bytes
;
6308 cache
->space_info
->bytes_reserved
-= num_bytes
;
6310 spin_unlock(&cache
->lock
);
6311 spin_unlock(&cache
->space_info
->lock
);
6313 trace_btrfs_space_reservation(root
->fs_info
, "pinned",
6314 cache
->space_info
->flags
, num_bytes
, 1);
6315 set_extent_dirty(root
->fs_info
->pinned_extents
, bytenr
,
6316 bytenr
+ num_bytes
- 1, GFP_NOFS
| __GFP_NOFAIL
);
6321 * this function must be called within transaction
6323 int btrfs_pin_extent(struct btrfs_root
*root
,
6324 u64 bytenr
, u64 num_bytes
, int reserved
)
6326 struct btrfs_block_group_cache
*cache
;
6328 cache
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
6329 BUG_ON(!cache
); /* Logic error */
6331 pin_down_extent(root
, cache
, bytenr
, num_bytes
, reserved
);
6333 btrfs_put_block_group(cache
);
6338 * this function must be called within transaction
6340 int btrfs_pin_extent_for_log_replay(struct btrfs_root
*root
,
6341 u64 bytenr
, u64 num_bytes
)
6343 struct btrfs_block_group_cache
*cache
;
6346 cache
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
6351 * pull in the free space cache (if any) so that our pin
6352 * removes the free space from the cache. We have load_only set
6353 * to one because the slow code to read in the free extents does check
6354 * the pinned extents.
6356 cache_block_group(cache
, 1);
6358 pin_down_extent(root
, cache
, bytenr
, num_bytes
, 0);
6360 /* remove us from the free space cache (if we're there at all) */
6361 ret
= btrfs_remove_free_space(cache
, bytenr
, num_bytes
);
6362 btrfs_put_block_group(cache
);
6366 static int __exclude_logged_extent(struct btrfs_root
*root
, u64 start
, u64 num_bytes
)
6369 struct btrfs_block_group_cache
*block_group
;
6370 struct btrfs_caching_control
*caching_ctl
;
6372 block_group
= btrfs_lookup_block_group(root
->fs_info
, start
);
6376 cache_block_group(block_group
, 0);
6377 caching_ctl
= get_caching_control(block_group
);
6381 BUG_ON(!block_group_cache_done(block_group
));
6382 ret
= btrfs_remove_free_space(block_group
, start
, num_bytes
);
6384 mutex_lock(&caching_ctl
->mutex
);
6386 if (start
>= caching_ctl
->progress
) {
6387 ret
= add_excluded_extent(root
, start
, num_bytes
);
6388 } else if (start
+ num_bytes
<= caching_ctl
->progress
) {
6389 ret
= btrfs_remove_free_space(block_group
,
6392 num_bytes
= caching_ctl
->progress
- start
;
6393 ret
= btrfs_remove_free_space(block_group
,
6398 num_bytes
= (start
+ num_bytes
) -
6399 caching_ctl
->progress
;
6400 start
= caching_ctl
->progress
;
6401 ret
= add_excluded_extent(root
, start
, num_bytes
);
6404 mutex_unlock(&caching_ctl
->mutex
);
6405 put_caching_control(caching_ctl
);
6407 btrfs_put_block_group(block_group
);
6411 int btrfs_exclude_logged_extents(struct btrfs_root
*log
,
6412 struct extent_buffer
*eb
)
6414 struct btrfs_file_extent_item
*item
;
6415 struct btrfs_key key
;
6419 if (!btrfs_fs_incompat(log
->fs_info
, MIXED_GROUPS
))
6422 for (i
= 0; i
< btrfs_header_nritems(eb
); i
++) {
6423 btrfs_item_key_to_cpu(eb
, &key
, i
);
6424 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
6426 item
= btrfs_item_ptr(eb
, i
, struct btrfs_file_extent_item
);
6427 found_type
= btrfs_file_extent_type(eb
, item
);
6428 if (found_type
== BTRFS_FILE_EXTENT_INLINE
)
6430 if (btrfs_file_extent_disk_bytenr(eb
, item
) == 0)
6432 key
.objectid
= btrfs_file_extent_disk_bytenr(eb
, item
);
6433 key
.offset
= btrfs_file_extent_disk_num_bytes(eb
, item
);
6434 __exclude_logged_extent(log
, key
.objectid
, key
.offset
);
6441 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache
*bg
)
6443 atomic_inc(&bg
->reservations
);
6446 void btrfs_dec_block_group_reservations(struct btrfs_fs_info
*fs_info
,
6449 struct btrfs_block_group_cache
*bg
;
6451 bg
= btrfs_lookup_block_group(fs_info
, start
);
6453 if (atomic_dec_and_test(&bg
->reservations
))
6454 wake_up_atomic_t(&bg
->reservations
);
6455 btrfs_put_block_group(bg
);
6458 static int btrfs_wait_bg_reservations_atomic_t(atomic_t
*a
)
6464 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache
*bg
)
6466 struct btrfs_space_info
*space_info
= bg
->space_info
;
6470 if (!(bg
->flags
& BTRFS_BLOCK_GROUP_DATA
))
6474 * Our block group is read only but before we set it to read only,
6475 * some task might have had allocated an extent from it already, but it
6476 * has not yet created a respective ordered extent (and added it to a
6477 * root's list of ordered extents).
6478 * Therefore wait for any task currently allocating extents, since the
6479 * block group's reservations counter is incremented while a read lock
6480 * on the groups' semaphore is held and decremented after releasing
6481 * the read access on that semaphore and creating the ordered extent.
6483 down_write(&space_info
->groups_sem
);
6484 up_write(&space_info
->groups_sem
);
6486 wait_on_atomic_t(&bg
->reservations
,
6487 btrfs_wait_bg_reservations_atomic_t
,
6488 TASK_UNINTERRUPTIBLE
);
6492 * btrfs_add_reserved_bytes - update the block_group and space info counters
6493 * @cache: The cache we are manipulating
6494 * @ram_bytes: The number of bytes of file content, and will be same to
6495 * @num_bytes except for the compress path.
6496 * @num_bytes: The number of bytes in question
6497 * @delalloc: The blocks are allocated for the delalloc write
6499 * This is called by the allocator when it reserves space. Metadata
6500 * reservations should be called with RESERVE_ALLOC so we do the proper
6501 * ENOSPC accounting. For data we handle the reservation through clearing the
6502 * delalloc bits in the io_tree. We have to do this since we could end up
6503 * allocating less disk space for the amount of data we have reserved in the
6504 * case of compression.
6506 * If this is a reservation and the block group has become read only we cannot
6507 * make the reservation and return -EAGAIN, otherwise this function always
6510 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache
*cache
,
6511 u64 ram_bytes
, u64 num_bytes
, int delalloc
)
6513 struct btrfs_space_info
*space_info
= cache
->space_info
;
6516 spin_lock(&space_info
->lock
);
6517 spin_lock(&cache
->lock
);
6521 cache
->reserved
+= num_bytes
;
6522 space_info
->bytes_reserved
+= num_bytes
;
6524 trace_btrfs_space_reservation(cache
->fs_info
,
6525 "space_info", space_info
->flags
,
6527 space_info
->bytes_may_use
-= ram_bytes
;
6529 cache
->delalloc_bytes
+= num_bytes
;
6531 spin_unlock(&cache
->lock
);
6532 spin_unlock(&space_info
->lock
);
6537 * btrfs_free_reserved_bytes - update the block_group and space info counters
6538 * @cache: The cache we are manipulating
6539 * @num_bytes: The number of bytes in question
6540 * @delalloc: The blocks are allocated for the delalloc write
6542 * This is called by somebody who is freeing space that was never actually used
6543 * on disk. For example if you reserve some space for a new leaf in transaction
6544 * A and before transaction A commits you free that leaf, you call this with
6545 * reserve set to 0 in order to clear the reservation.
6548 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache
*cache
,
6549 u64 num_bytes
, int delalloc
)
6551 struct btrfs_space_info
*space_info
= cache
->space_info
;
6554 spin_lock(&space_info
->lock
);
6555 spin_lock(&cache
->lock
);
6557 space_info
->bytes_readonly
+= num_bytes
;
6558 cache
->reserved
-= num_bytes
;
6559 space_info
->bytes_reserved
-= num_bytes
;
6562 cache
->delalloc_bytes
-= num_bytes
;
6563 spin_unlock(&cache
->lock
);
6564 spin_unlock(&space_info
->lock
);
6567 void btrfs_prepare_extent_commit(struct btrfs_trans_handle
*trans
,
6568 struct btrfs_root
*root
)
6570 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
6571 struct btrfs_caching_control
*next
;
6572 struct btrfs_caching_control
*caching_ctl
;
6573 struct btrfs_block_group_cache
*cache
;
6575 down_write(&fs_info
->commit_root_sem
);
6577 list_for_each_entry_safe(caching_ctl
, next
,
6578 &fs_info
->caching_block_groups
, list
) {
6579 cache
= caching_ctl
->block_group
;
6580 if (block_group_cache_done(cache
)) {
6581 cache
->last_byte_to_unpin
= (u64
)-1;
6582 list_del_init(&caching_ctl
->list
);
6583 put_caching_control(caching_ctl
);
6585 cache
->last_byte_to_unpin
= caching_ctl
->progress
;
6589 if (fs_info
->pinned_extents
== &fs_info
->freed_extents
[0])
6590 fs_info
->pinned_extents
= &fs_info
->freed_extents
[1];
6592 fs_info
->pinned_extents
= &fs_info
->freed_extents
[0];
6594 up_write(&fs_info
->commit_root_sem
);
6596 update_global_block_rsv(fs_info
);
6600 * Returns the free cluster for the given space info and sets empty_cluster to
6601 * what it should be based on the mount options.
6603 static struct btrfs_free_cluster
*
6604 fetch_cluster_info(struct btrfs_root
*root
, struct btrfs_space_info
*space_info
,
6607 struct btrfs_free_cluster
*ret
= NULL
;
6608 bool ssd
= btrfs_test_opt(root
->fs_info
, SSD
);
6611 if (btrfs_mixed_space_info(space_info
))
6615 *empty_cluster
= SZ_2M
;
6616 if (space_info
->flags
& BTRFS_BLOCK_GROUP_METADATA
) {
6617 ret
= &root
->fs_info
->meta_alloc_cluster
;
6619 *empty_cluster
= SZ_64K
;
6620 } else if ((space_info
->flags
& BTRFS_BLOCK_GROUP_DATA
) && ssd
) {
6621 ret
= &root
->fs_info
->data_alloc_cluster
;
6627 static int unpin_extent_range(struct btrfs_root
*root
, u64 start
, u64 end
,
6628 const bool return_free_space
)
6630 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
6631 struct btrfs_block_group_cache
*cache
= NULL
;
6632 struct btrfs_space_info
*space_info
;
6633 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
6634 struct btrfs_free_cluster
*cluster
= NULL
;
6636 u64 total_unpinned
= 0;
6637 u64 empty_cluster
= 0;
6640 while (start
<= end
) {
6643 start
>= cache
->key
.objectid
+ cache
->key
.offset
) {
6645 btrfs_put_block_group(cache
);
6647 cache
= btrfs_lookup_block_group(fs_info
, start
);
6648 BUG_ON(!cache
); /* Logic error */
6650 cluster
= fetch_cluster_info(root
,
6653 empty_cluster
<<= 1;
6656 len
= cache
->key
.objectid
+ cache
->key
.offset
- start
;
6657 len
= min(len
, end
+ 1 - start
);
6659 if (start
< cache
->last_byte_to_unpin
) {
6660 len
= min(len
, cache
->last_byte_to_unpin
- start
);
6661 if (return_free_space
)
6662 btrfs_add_free_space(cache
, start
, len
);
6666 total_unpinned
+= len
;
6667 space_info
= cache
->space_info
;
6670 * If this space cluster has been marked as fragmented and we've
6671 * unpinned enough in this block group to potentially allow a
6672 * cluster to be created inside of it go ahead and clear the
6675 if (cluster
&& cluster
->fragmented
&&
6676 total_unpinned
> empty_cluster
) {
6677 spin_lock(&cluster
->lock
);
6678 cluster
->fragmented
= 0;
6679 spin_unlock(&cluster
->lock
);
6682 spin_lock(&space_info
->lock
);
6683 spin_lock(&cache
->lock
);
6684 cache
->pinned
-= len
;
6685 space_info
->bytes_pinned
-= len
;
6687 trace_btrfs_space_reservation(fs_info
, "pinned",
6688 space_info
->flags
, len
, 0);
6689 space_info
->max_extent_size
= 0;
6690 percpu_counter_add(&space_info
->total_bytes_pinned
, -len
);
6692 space_info
->bytes_readonly
+= len
;
6695 spin_unlock(&cache
->lock
);
6696 if (!readonly
&& return_free_space
&&
6697 global_rsv
->space_info
== space_info
) {
6699 WARN_ON(!return_free_space
);
6700 spin_lock(&global_rsv
->lock
);
6701 if (!global_rsv
->full
) {
6702 to_add
= min(len
, global_rsv
->size
-
6703 global_rsv
->reserved
);
6704 global_rsv
->reserved
+= to_add
;
6705 space_info
->bytes_may_use
+= to_add
;
6706 if (global_rsv
->reserved
>= global_rsv
->size
)
6707 global_rsv
->full
= 1;
6708 trace_btrfs_space_reservation(fs_info
,
6714 spin_unlock(&global_rsv
->lock
);
6715 /* Add to any tickets we may have */
6717 space_info_add_new_bytes(fs_info
, space_info
,
6720 spin_unlock(&space_info
->lock
);
6724 btrfs_put_block_group(cache
);
6728 int btrfs_finish_extent_commit(struct btrfs_trans_handle
*trans
,
6729 struct btrfs_root
*root
)
6731 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
6732 struct btrfs_block_group_cache
*block_group
, *tmp
;
6733 struct list_head
*deleted_bgs
;
6734 struct extent_io_tree
*unpin
;
6739 if (fs_info
->pinned_extents
== &fs_info
->freed_extents
[0])
6740 unpin
= &fs_info
->freed_extents
[1];
6742 unpin
= &fs_info
->freed_extents
[0];
6744 while (!trans
->aborted
) {
6745 mutex_lock(&fs_info
->unused_bg_unpin_mutex
);
6746 ret
= find_first_extent_bit(unpin
, 0, &start
, &end
,
6747 EXTENT_DIRTY
, NULL
);
6749 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
6753 if (btrfs_test_opt(root
->fs_info
, DISCARD
))
6754 ret
= btrfs_discard_extent(root
, start
,
6755 end
+ 1 - start
, NULL
);
6757 clear_extent_dirty(unpin
, start
, end
);
6758 unpin_extent_range(root
, start
, end
, true);
6759 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
6764 * Transaction is finished. We don't need the lock anymore. We
6765 * do need to clean up the block groups in case of a transaction
6768 deleted_bgs
= &trans
->transaction
->deleted_bgs
;
6769 list_for_each_entry_safe(block_group
, tmp
, deleted_bgs
, bg_list
) {
6773 if (!trans
->aborted
)
6774 ret
= btrfs_discard_extent(root
,
6775 block_group
->key
.objectid
,
6776 block_group
->key
.offset
,
6779 list_del_init(&block_group
->bg_list
);
6780 btrfs_put_block_group_trimming(block_group
);
6781 btrfs_put_block_group(block_group
);
6784 const char *errstr
= btrfs_decode_error(ret
);
6786 "Discard failed while removing blockgroup: errno=%d %s\n",
6794 static void add_pinned_bytes(struct btrfs_fs_info
*fs_info
, u64 num_bytes
,
6795 u64 owner
, u64 root_objectid
)
6797 struct btrfs_space_info
*space_info
;
6800 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
6801 if (root_objectid
== BTRFS_CHUNK_TREE_OBJECTID
)
6802 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
6804 flags
= BTRFS_BLOCK_GROUP_METADATA
;
6806 flags
= BTRFS_BLOCK_GROUP_DATA
;
6809 space_info
= __find_space_info(fs_info
, flags
);
6810 BUG_ON(!space_info
); /* Logic bug */
6811 percpu_counter_add(&space_info
->total_bytes_pinned
, num_bytes
);
6815 static int __btrfs_free_extent(struct btrfs_trans_handle
*trans
,
6816 struct btrfs_root
*root
,
6817 struct btrfs_delayed_ref_node
*node
, u64 parent
,
6818 u64 root_objectid
, u64 owner_objectid
,
6819 u64 owner_offset
, int refs_to_drop
,
6820 struct btrfs_delayed_extent_op
*extent_op
)
6822 struct btrfs_key key
;
6823 struct btrfs_path
*path
;
6824 struct btrfs_fs_info
*info
= root
->fs_info
;
6825 struct btrfs_root
*extent_root
= info
->extent_root
;
6826 struct extent_buffer
*leaf
;
6827 struct btrfs_extent_item
*ei
;
6828 struct btrfs_extent_inline_ref
*iref
;
6831 int extent_slot
= 0;
6832 int found_extent
= 0;
6836 u64 bytenr
= node
->bytenr
;
6837 u64 num_bytes
= node
->num_bytes
;
6839 bool skinny_metadata
= btrfs_fs_incompat(root
->fs_info
,
6842 path
= btrfs_alloc_path();
6846 path
->reada
= READA_FORWARD
;
6847 path
->leave_spinning
= 1;
6849 is_data
= owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
;
6850 BUG_ON(!is_data
&& refs_to_drop
!= 1);
6853 skinny_metadata
= 0;
6855 ret
= lookup_extent_backref(trans
, extent_root
, path
, &iref
,
6856 bytenr
, num_bytes
, parent
,
6857 root_objectid
, owner_objectid
,
6860 extent_slot
= path
->slots
[0];
6861 while (extent_slot
>= 0) {
6862 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
6864 if (key
.objectid
!= bytenr
)
6866 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
6867 key
.offset
== num_bytes
) {
6871 if (key
.type
== BTRFS_METADATA_ITEM_KEY
&&
6872 key
.offset
== owner_objectid
) {
6876 if (path
->slots
[0] - extent_slot
> 5)
6880 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6881 item_size
= btrfs_item_size_nr(path
->nodes
[0], extent_slot
);
6882 if (found_extent
&& item_size
< sizeof(*ei
))
6885 if (!found_extent
) {
6887 ret
= remove_extent_backref(trans
, extent_root
, path
,
6889 is_data
, &last_ref
);
6891 btrfs_abort_transaction(trans
, ret
);
6894 btrfs_release_path(path
);
6895 path
->leave_spinning
= 1;
6897 key
.objectid
= bytenr
;
6898 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
6899 key
.offset
= num_bytes
;
6901 if (!is_data
&& skinny_metadata
) {
6902 key
.type
= BTRFS_METADATA_ITEM_KEY
;
6903 key
.offset
= owner_objectid
;
6906 ret
= btrfs_search_slot(trans
, extent_root
,
6908 if (ret
> 0 && skinny_metadata
&& path
->slots
[0]) {
6910 * Couldn't find our skinny metadata item,
6911 * see if we have ye olde extent item.
6914 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
6916 if (key
.objectid
== bytenr
&&
6917 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
6918 key
.offset
== num_bytes
)
6922 if (ret
> 0 && skinny_metadata
) {
6923 skinny_metadata
= false;
6924 key
.objectid
= bytenr
;
6925 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
6926 key
.offset
= num_bytes
;
6927 btrfs_release_path(path
);
6928 ret
= btrfs_search_slot(trans
, extent_root
,
6934 "umm, got %d back from search, was looking for %llu",
6937 btrfs_print_leaf(extent_root
,
6941 btrfs_abort_transaction(trans
, ret
);
6944 extent_slot
= path
->slots
[0];
6946 } else if (WARN_ON(ret
== -ENOENT
)) {
6947 btrfs_print_leaf(extent_root
, path
->nodes
[0]);
6949 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
6950 bytenr
, parent
, root_objectid
, owner_objectid
,
6952 btrfs_abort_transaction(trans
, ret
);
6955 btrfs_abort_transaction(trans
, ret
);
6959 leaf
= path
->nodes
[0];
6960 item_size
= btrfs_item_size_nr(leaf
, extent_slot
);
6961 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6962 if (item_size
< sizeof(*ei
)) {
6963 BUG_ON(found_extent
|| extent_slot
!= path
->slots
[0]);
6964 ret
= convert_extent_item_v0(trans
, extent_root
, path
,
6967 btrfs_abort_transaction(trans
, ret
);
6971 btrfs_release_path(path
);
6972 path
->leave_spinning
= 1;
6974 key
.objectid
= bytenr
;
6975 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
6976 key
.offset
= num_bytes
;
6978 ret
= btrfs_search_slot(trans
, extent_root
, &key
, path
,
6982 "umm, got %d back from search, was looking for %llu",
6984 btrfs_print_leaf(extent_root
, path
->nodes
[0]);
6987 btrfs_abort_transaction(trans
, ret
);
6991 extent_slot
= path
->slots
[0];
6992 leaf
= path
->nodes
[0];
6993 item_size
= btrfs_item_size_nr(leaf
, extent_slot
);
6996 BUG_ON(item_size
< sizeof(*ei
));
6997 ei
= btrfs_item_ptr(leaf
, extent_slot
,
6998 struct btrfs_extent_item
);
6999 if (owner_objectid
< BTRFS_FIRST_FREE_OBJECTID
&&
7000 key
.type
== BTRFS_EXTENT_ITEM_KEY
) {
7001 struct btrfs_tree_block_info
*bi
;
7002 BUG_ON(item_size
< sizeof(*ei
) + sizeof(*bi
));
7003 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
7004 WARN_ON(owner_objectid
!= btrfs_tree_block_level(leaf
, bi
));
7007 refs
= btrfs_extent_refs(leaf
, ei
);
7008 if (refs
< refs_to_drop
) {
7010 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7011 refs_to_drop
, refs
, bytenr
);
7013 btrfs_abort_transaction(trans
, ret
);
7016 refs
-= refs_to_drop
;
7020 __run_delayed_extent_op(extent_op
, leaf
, ei
);
7022 * In the case of inline back ref, reference count will
7023 * be updated by remove_extent_backref
7026 BUG_ON(!found_extent
);
7028 btrfs_set_extent_refs(leaf
, ei
, refs
);
7029 btrfs_mark_buffer_dirty(leaf
);
7032 ret
= remove_extent_backref(trans
, extent_root
, path
,
7034 is_data
, &last_ref
);
7036 btrfs_abort_transaction(trans
, ret
);
7040 add_pinned_bytes(root
->fs_info
, -num_bytes
, owner_objectid
,
7044 BUG_ON(is_data
&& refs_to_drop
!=
7045 extent_data_ref_count(path
, iref
));
7047 BUG_ON(path
->slots
[0] != extent_slot
);
7049 BUG_ON(path
->slots
[0] != extent_slot
+ 1);
7050 path
->slots
[0] = extent_slot
;
7056 ret
= btrfs_del_items(trans
, extent_root
, path
, path
->slots
[0],
7059 btrfs_abort_transaction(trans
, ret
);
7062 btrfs_release_path(path
);
7065 ret
= btrfs_del_csums(trans
, root
, bytenr
, num_bytes
);
7067 btrfs_abort_transaction(trans
, ret
);
7072 ret
= add_to_free_space_tree(trans
, root
->fs_info
, bytenr
,
7075 btrfs_abort_transaction(trans
, ret
);
7079 ret
= update_block_group(trans
, root
, bytenr
, num_bytes
, 0);
7081 btrfs_abort_transaction(trans
, ret
);
7085 btrfs_release_path(path
);
7088 btrfs_free_path(path
);
7093 * when we free an block, it is possible (and likely) that we free the last
7094 * delayed ref for that extent as well. This searches the delayed ref tree for
7095 * a given extent, and if there are no other delayed refs to be processed, it
7096 * removes it from the tree.
7098 static noinline
int check_ref_cleanup(struct btrfs_trans_handle
*trans
,
7099 struct btrfs_root
*root
, u64 bytenr
)
7101 struct btrfs_delayed_ref_head
*head
;
7102 struct btrfs_delayed_ref_root
*delayed_refs
;
7105 delayed_refs
= &trans
->transaction
->delayed_refs
;
7106 spin_lock(&delayed_refs
->lock
);
7107 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
7109 goto out_delayed_unlock
;
7111 spin_lock(&head
->lock
);
7112 if (!list_empty(&head
->ref_list
))
7115 if (head
->extent_op
) {
7116 if (!head
->must_insert_reserved
)
7118 btrfs_free_delayed_extent_op(head
->extent_op
);
7119 head
->extent_op
= NULL
;
7123 * waiting for the lock here would deadlock. If someone else has it
7124 * locked they are already in the process of dropping it anyway
7126 if (!mutex_trylock(&head
->mutex
))
7130 * at this point we have a head with no other entries. Go
7131 * ahead and process it.
7133 head
->node
.in_tree
= 0;
7134 rb_erase(&head
->href_node
, &delayed_refs
->href_root
);
7136 atomic_dec(&delayed_refs
->num_entries
);
7139 * we don't take a ref on the node because we're removing it from the
7140 * tree, so we just steal the ref the tree was holding.
7142 delayed_refs
->num_heads
--;
7143 if (head
->processing
== 0)
7144 delayed_refs
->num_heads_ready
--;
7145 head
->processing
= 0;
7146 spin_unlock(&head
->lock
);
7147 spin_unlock(&delayed_refs
->lock
);
7149 BUG_ON(head
->extent_op
);
7150 if (head
->must_insert_reserved
)
7153 mutex_unlock(&head
->mutex
);
7154 btrfs_put_delayed_ref(&head
->node
);
7157 spin_unlock(&head
->lock
);
7160 spin_unlock(&delayed_refs
->lock
);
7164 void btrfs_free_tree_block(struct btrfs_trans_handle
*trans
,
7165 struct btrfs_root
*root
,
7166 struct extent_buffer
*buf
,
7167 u64 parent
, int last_ref
)
7172 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
7173 ret
= btrfs_add_delayed_tree_ref(root
->fs_info
, trans
,
7174 buf
->start
, buf
->len
,
7175 parent
, root
->root_key
.objectid
,
7176 btrfs_header_level(buf
),
7177 BTRFS_DROP_DELAYED_REF
, NULL
);
7178 BUG_ON(ret
); /* -ENOMEM */
7184 if (btrfs_header_generation(buf
) == trans
->transid
) {
7185 struct btrfs_block_group_cache
*cache
;
7187 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
7188 ret
= check_ref_cleanup(trans
, root
, buf
->start
);
7193 cache
= btrfs_lookup_block_group(root
->fs_info
, buf
->start
);
7195 if (btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_WRITTEN
)) {
7196 pin_down_extent(root
, cache
, buf
->start
, buf
->len
, 1);
7197 btrfs_put_block_group(cache
);
7201 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
));
7203 btrfs_add_free_space(cache
, buf
->start
, buf
->len
);
7204 btrfs_free_reserved_bytes(cache
, buf
->len
, 0);
7205 btrfs_put_block_group(cache
);
7206 trace_btrfs_reserved_extent_free(root
, buf
->start
, buf
->len
);
7211 add_pinned_bytes(root
->fs_info
, buf
->len
,
7212 btrfs_header_level(buf
),
7213 root
->root_key
.objectid
);
7216 * Deleting the buffer, clear the corrupt flag since it doesn't matter
7219 clear_bit(EXTENT_BUFFER_CORRUPT
, &buf
->bflags
);
7222 /* Can return -ENOMEM */
7223 int btrfs_free_extent(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
7224 u64 bytenr
, u64 num_bytes
, u64 parent
, u64 root_objectid
,
7225 u64 owner
, u64 offset
)
7228 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
7230 if (btrfs_is_testing(fs_info
))
7233 add_pinned_bytes(root
->fs_info
, num_bytes
, owner
, root_objectid
);
7236 * tree log blocks never actually go into the extent allocation
7237 * tree, just update pinning info and exit early.
7239 if (root_objectid
== BTRFS_TREE_LOG_OBJECTID
) {
7240 WARN_ON(owner
>= BTRFS_FIRST_FREE_OBJECTID
);
7241 /* unlocks the pinned mutex */
7242 btrfs_pin_extent(root
, bytenr
, num_bytes
, 1);
7244 } else if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
7245 ret
= btrfs_add_delayed_tree_ref(fs_info
, trans
, bytenr
,
7247 parent
, root_objectid
, (int)owner
,
7248 BTRFS_DROP_DELAYED_REF
, NULL
);
7250 ret
= btrfs_add_delayed_data_ref(fs_info
, trans
, bytenr
,
7252 parent
, root_objectid
, owner
,
7254 BTRFS_DROP_DELAYED_REF
, NULL
);
7260 * when we wait for progress in the block group caching, its because
7261 * our allocation attempt failed at least once. So, we must sleep
7262 * and let some progress happen before we try again.
7264 * This function will sleep at least once waiting for new free space to
7265 * show up, and then it will check the block group free space numbers
7266 * for our min num_bytes. Another option is to have it go ahead
7267 * and look in the rbtree for a free extent of a given size, but this
7270 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7271 * any of the information in this block group.
7273 static noinline
void
7274 wait_block_group_cache_progress(struct btrfs_block_group_cache
*cache
,
7277 struct btrfs_caching_control
*caching_ctl
;
7279 caching_ctl
= get_caching_control(cache
);
7283 wait_event(caching_ctl
->wait
, block_group_cache_done(cache
) ||
7284 (cache
->free_space_ctl
->free_space
>= num_bytes
));
7286 put_caching_control(caching_ctl
);
7290 wait_block_group_cache_done(struct btrfs_block_group_cache
*cache
)
7292 struct btrfs_caching_control
*caching_ctl
;
7295 caching_ctl
= get_caching_control(cache
);
7297 return (cache
->cached
== BTRFS_CACHE_ERROR
) ? -EIO
: 0;
7299 wait_event(caching_ctl
->wait
, block_group_cache_done(cache
));
7300 if (cache
->cached
== BTRFS_CACHE_ERROR
)
7302 put_caching_control(caching_ctl
);
7306 int __get_raid_index(u64 flags
)
7308 if (flags
& BTRFS_BLOCK_GROUP_RAID10
)
7309 return BTRFS_RAID_RAID10
;
7310 else if (flags
& BTRFS_BLOCK_GROUP_RAID1
)
7311 return BTRFS_RAID_RAID1
;
7312 else if (flags
& BTRFS_BLOCK_GROUP_DUP
)
7313 return BTRFS_RAID_DUP
;
7314 else if (flags
& BTRFS_BLOCK_GROUP_RAID0
)
7315 return BTRFS_RAID_RAID0
;
7316 else if (flags
& BTRFS_BLOCK_GROUP_RAID5
)
7317 return BTRFS_RAID_RAID5
;
7318 else if (flags
& BTRFS_BLOCK_GROUP_RAID6
)
7319 return BTRFS_RAID_RAID6
;
7321 return BTRFS_RAID_SINGLE
; /* BTRFS_BLOCK_GROUP_SINGLE */
7324 int get_block_group_index(struct btrfs_block_group_cache
*cache
)
7326 return __get_raid_index(cache
->flags
);
7329 static const char *btrfs_raid_type_names
[BTRFS_NR_RAID_TYPES
] = {
7330 [BTRFS_RAID_RAID10
] = "raid10",
7331 [BTRFS_RAID_RAID1
] = "raid1",
7332 [BTRFS_RAID_DUP
] = "dup",
7333 [BTRFS_RAID_RAID0
] = "raid0",
7334 [BTRFS_RAID_SINGLE
] = "single",
7335 [BTRFS_RAID_RAID5
] = "raid5",
7336 [BTRFS_RAID_RAID6
] = "raid6",
7339 static const char *get_raid_name(enum btrfs_raid_types type
)
7341 if (type
>= BTRFS_NR_RAID_TYPES
)
7344 return btrfs_raid_type_names
[type
];
7347 enum btrfs_loop_type
{
7348 LOOP_CACHING_NOWAIT
= 0,
7349 LOOP_CACHING_WAIT
= 1,
7350 LOOP_ALLOC_CHUNK
= 2,
7351 LOOP_NO_EMPTY_SIZE
= 3,
7355 btrfs_lock_block_group(struct btrfs_block_group_cache
*cache
,
7359 down_read(&cache
->data_rwsem
);
7363 btrfs_grab_block_group(struct btrfs_block_group_cache
*cache
,
7366 btrfs_get_block_group(cache
);
7368 down_read(&cache
->data_rwsem
);
7371 static struct btrfs_block_group_cache
*
7372 btrfs_lock_cluster(struct btrfs_block_group_cache
*block_group
,
7373 struct btrfs_free_cluster
*cluster
,
7376 struct btrfs_block_group_cache
*used_bg
= NULL
;
7378 spin_lock(&cluster
->refill_lock
);
7380 used_bg
= cluster
->block_group
;
7384 if (used_bg
== block_group
)
7387 btrfs_get_block_group(used_bg
);
7392 if (down_read_trylock(&used_bg
->data_rwsem
))
7395 spin_unlock(&cluster
->refill_lock
);
7397 down_read(&used_bg
->data_rwsem
);
7399 spin_lock(&cluster
->refill_lock
);
7400 if (used_bg
== cluster
->block_group
)
7403 up_read(&used_bg
->data_rwsem
);
7404 btrfs_put_block_group(used_bg
);
7409 btrfs_release_block_group(struct btrfs_block_group_cache
*cache
,
7413 up_read(&cache
->data_rwsem
);
7414 btrfs_put_block_group(cache
);
7418 * walks the btree of allocated extents and find a hole of a given size.
7419 * The key ins is changed to record the hole:
7420 * ins->objectid == start position
7421 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7422 * ins->offset == the size of the hole.
7423 * Any available blocks before search_start are skipped.
7425 * If there is no suitable free space, we will record the max size of
7426 * the free space extent currently.
7428 static noinline
int find_free_extent(struct btrfs_root
*orig_root
,
7429 u64 ram_bytes
, u64 num_bytes
, u64 empty_size
,
7430 u64 hint_byte
, struct btrfs_key
*ins
,
7431 u64 flags
, int delalloc
)
7434 struct btrfs_root
*root
= orig_root
->fs_info
->extent_root
;
7435 struct btrfs_free_cluster
*last_ptr
= NULL
;
7436 struct btrfs_block_group_cache
*block_group
= NULL
;
7437 u64 search_start
= 0;
7438 u64 max_extent_size
= 0;
7439 u64 empty_cluster
= 0;
7440 struct btrfs_space_info
*space_info
;
7442 int index
= __get_raid_index(flags
);
7443 bool failed_cluster_refill
= false;
7444 bool failed_alloc
= false;
7445 bool use_cluster
= true;
7446 bool have_caching_bg
= false;
7447 bool orig_have_caching_bg
= false;
7448 bool full_search
= false;
7450 WARN_ON(num_bytes
< root
->sectorsize
);
7451 ins
->type
= BTRFS_EXTENT_ITEM_KEY
;
7455 trace_find_free_extent(orig_root
, num_bytes
, empty_size
, flags
);
7457 space_info
= __find_space_info(root
->fs_info
, flags
);
7459 btrfs_err(root
->fs_info
, "No space info for %llu", flags
);
7464 * If our free space is heavily fragmented we may not be able to make
7465 * big contiguous allocations, so instead of doing the expensive search
7466 * for free space, simply return ENOSPC with our max_extent_size so we
7467 * can go ahead and search for a more manageable chunk.
7469 * If our max_extent_size is large enough for our allocation simply
7470 * disable clustering since we will likely not be able to find enough
7471 * space to create a cluster and induce latency trying.
7473 if (unlikely(space_info
->max_extent_size
)) {
7474 spin_lock(&space_info
->lock
);
7475 if (space_info
->max_extent_size
&&
7476 num_bytes
> space_info
->max_extent_size
) {
7477 ins
->offset
= space_info
->max_extent_size
;
7478 spin_unlock(&space_info
->lock
);
7480 } else if (space_info
->max_extent_size
) {
7481 use_cluster
= false;
7483 spin_unlock(&space_info
->lock
);
7486 last_ptr
= fetch_cluster_info(orig_root
, space_info
, &empty_cluster
);
7488 spin_lock(&last_ptr
->lock
);
7489 if (last_ptr
->block_group
)
7490 hint_byte
= last_ptr
->window_start
;
7491 if (last_ptr
->fragmented
) {
7493 * We still set window_start so we can keep track of the
7494 * last place we found an allocation to try and save
7497 hint_byte
= last_ptr
->window_start
;
7498 use_cluster
= false;
7500 spin_unlock(&last_ptr
->lock
);
7503 search_start
= max(search_start
, first_logical_byte(root
, 0));
7504 search_start
= max(search_start
, hint_byte
);
7505 if (search_start
== hint_byte
) {
7506 block_group
= btrfs_lookup_block_group(root
->fs_info
,
7509 * we don't want to use the block group if it doesn't match our
7510 * allocation bits, or if its not cached.
7512 * However if we are re-searching with an ideal block group
7513 * picked out then we don't care that the block group is cached.
7515 if (block_group
&& block_group_bits(block_group
, flags
) &&
7516 block_group
->cached
!= BTRFS_CACHE_NO
) {
7517 down_read(&space_info
->groups_sem
);
7518 if (list_empty(&block_group
->list
) ||
7521 * someone is removing this block group,
7522 * we can't jump into the have_block_group
7523 * target because our list pointers are not
7526 btrfs_put_block_group(block_group
);
7527 up_read(&space_info
->groups_sem
);
7529 index
= get_block_group_index(block_group
);
7530 btrfs_lock_block_group(block_group
, delalloc
);
7531 goto have_block_group
;
7533 } else if (block_group
) {
7534 btrfs_put_block_group(block_group
);
7538 have_caching_bg
= false;
7539 if (index
== 0 || index
== __get_raid_index(flags
))
7541 down_read(&space_info
->groups_sem
);
7542 list_for_each_entry(block_group
, &space_info
->block_groups
[index
],
7547 btrfs_grab_block_group(block_group
, delalloc
);
7548 search_start
= block_group
->key
.objectid
;
7551 * this can happen if we end up cycling through all the
7552 * raid types, but we want to make sure we only allocate
7553 * for the proper type.
7555 if (!block_group_bits(block_group
, flags
)) {
7556 u64 extra
= BTRFS_BLOCK_GROUP_DUP
|
7557 BTRFS_BLOCK_GROUP_RAID1
|
7558 BTRFS_BLOCK_GROUP_RAID5
|
7559 BTRFS_BLOCK_GROUP_RAID6
|
7560 BTRFS_BLOCK_GROUP_RAID10
;
7563 * if they asked for extra copies and this block group
7564 * doesn't provide them, bail. This does allow us to
7565 * fill raid0 from raid1.
7567 if ((flags
& extra
) && !(block_group
->flags
& extra
))
7572 cached
= block_group_cache_done(block_group
);
7573 if (unlikely(!cached
)) {
7574 have_caching_bg
= true;
7575 ret
= cache_block_group(block_group
, 0);
7580 if (unlikely(block_group
->cached
== BTRFS_CACHE_ERROR
))
7582 if (unlikely(block_group
->ro
))
7586 * Ok we want to try and use the cluster allocator, so
7589 if (last_ptr
&& use_cluster
) {
7590 struct btrfs_block_group_cache
*used_block_group
;
7591 unsigned long aligned_cluster
;
7593 * the refill lock keeps out other
7594 * people trying to start a new cluster
7596 used_block_group
= btrfs_lock_cluster(block_group
,
7599 if (!used_block_group
)
7600 goto refill_cluster
;
7602 if (used_block_group
!= block_group
&&
7603 (used_block_group
->ro
||
7604 !block_group_bits(used_block_group
, flags
)))
7605 goto release_cluster
;
7607 offset
= btrfs_alloc_from_cluster(used_block_group
,
7610 used_block_group
->key
.objectid
,
7613 /* we have a block, we're done */
7614 spin_unlock(&last_ptr
->refill_lock
);
7615 trace_btrfs_reserve_extent_cluster(root
,
7617 search_start
, num_bytes
);
7618 if (used_block_group
!= block_group
) {
7619 btrfs_release_block_group(block_group
,
7621 block_group
= used_block_group
;
7626 WARN_ON(last_ptr
->block_group
!= used_block_group
);
7628 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7629 * set up a new clusters, so lets just skip it
7630 * and let the allocator find whatever block
7631 * it can find. If we reach this point, we
7632 * will have tried the cluster allocator
7633 * plenty of times and not have found
7634 * anything, so we are likely way too
7635 * fragmented for the clustering stuff to find
7638 * However, if the cluster is taken from the
7639 * current block group, release the cluster
7640 * first, so that we stand a better chance of
7641 * succeeding in the unclustered
7643 if (loop
>= LOOP_NO_EMPTY_SIZE
&&
7644 used_block_group
!= block_group
) {
7645 spin_unlock(&last_ptr
->refill_lock
);
7646 btrfs_release_block_group(used_block_group
,
7648 goto unclustered_alloc
;
7652 * this cluster didn't work out, free it and
7655 btrfs_return_cluster_to_free_space(NULL
, last_ptr
);
7657 if (used_block_group
!= block_group
)
7658 btrfs_release_block_group(used_block_group
,
7661 if (loop
>= LOOP_NO_EMPTY_SIZE
) {
7662 spin_unlock(&last_ptr
->refill_lock
);
7663 goto unclustered_alloc
;
7666 aligned_cluster
= max_t(unsigned long,
7667 empty_cluster
+ empty_size
,
7668 block_group
->full_stripe_len
);
7670 /* allocate a cluster in this block group */
7671 ret
= btrfs_find_space_cluster(root
, block_group
,
7672 last_ptr
, search_start
,
7677 * now pull our allocation out of this
7680 offset
= btrfs_alloc_from_cluster(block_group
,
7686 /* we found one, proceed */
7687 spin_unlock(&last_ptr
->refill_lock
);
7688 trace_btrfs_reserve_extent_cluster(root
,
7689 block_group
, search_start
,
7693 } else if (!cached
&& loop
> LOOP_CACHING_NOWAIT
7694 && !failed_cluster_refill
) {
7695 spin_unlock(&last_ptr
->refill_lock
);
7697 failed_cluster_refill
= true;
7698 wait_block_group_cache_progress(block_group
,
7699 num_bytes
+ empty_cluster
+ empty_size
);
7700 goto have_block_group
;
7704 * at this point we either didn't find a cluster
7705 * or we weren't able to allocate a block from our
7706 * cluster. Free the cluster we've been trying
7707 * to use, and go to the next block group
7709 btrfs_return_cluster_to_free_space(NULL
, last_ptr
);
7710 spin_unlock(&last_ptr
->refill_lock
);
7716 * We are doing an unclustered alloc, set the fragmented flag so
7717 * we don't bother trying to setup a cluster again until we get
7720 if (unlikely(last_ptr
)) {
7721 spin_lock(&last_ptr
->lock
);
7722 last_ptr
->fragmented
= 1;
7723 spin_unlock(&last_ptr
->lock
);
7725 spin_lock(&block_group
->free_space_ctl
->tree_lock
);
7727 block_group
->free_space_ctl
->free_space
<
7728 num_bytes
+ empty_cluster
+ empty_size
) {
7729 if (block_group
->free_space_ctl
->free_space
>
7732 block_group
->free_space_ctl
->free_space
;
7733 spin_unlock(&block_group
->free_space_ctl
->tree_lock
);
7736 spin_unlock(&block_group
->free_space_ctl
->tree_lock
);
7738 offset
= btrfs_find_space_for_alloc(block_group
, search_start
,
7739 num_bytes
, empty_size
,
7742 * If we didn't find a chunk, and we haven't failed on this
7743 * block group before, and this block group is in the middle of
7744 * caching and we are ok with waiting, then go ahead and wait
7745 * for progress to be made, and set failed_alloc to true.
7747 * If failed_alloc is true then we've already waited on this
7748 * block group once and should move on to the next block group.
7750 if (!offset
&& !failed_alloc
&& !cached
&&
7751 loop
> LOOP_CACHING_NOWAIT
) {
7752 wait_block_group_cache_progress(block_group
,
7753 num_bytes
+ empty_size
);
7754 failed_alloc
= true;
7755 goto have_block_group
;
7756 } else if (!offset
) {
7760 search_start
= ALIGN(offset
, root
->stripesize
);
7762 /* move on to the next group */
7763 if (search_start
+ num_bytes
>
7764 block_group
->key
.objectid
+ block_group
->key
.offset
) {
7765 btrfs_add_free_space(block_group
, offset
, num_bytes
);
7769 if (offset
< search_start
)
7770 btrfs_add_free_space(block_group
, offset
,
7771 search_start
- offset
);
7772 BUG_ON(offset
> search_start
);
7774 ret
= btrfs_add_reserved_bytes(block_group
, ram_bytes
,
7775 num_bytes
, delalloc
);
7776 if (ret
== -EAGAIN
) {
7777 btrfs_add_free_space(block_group
, offset
, num_bytes
);
7780 btrfs_inc_block_group_reservations(block_group
);
7782 /* we are all good, lets return */
7783 ins
->objectid
= search_start
;
7784 ins
->offset
= num_bytes
;
7786 trace_btrfs_reserve_extent(orig_root
, block_group
,
7787 search_start
, num_bytes
);
7788 btrfs_release_block_group(block_group
, delalloc
);
7791 failed_cluster_refill
= false;
7792 failed_alloc
= false;
7793 BUG_ON(index
!= get_block_group_index(block_group
));
7794 btrfs_release_block_group(block_group
, delalloc
);
7796 up_read(&space_info
->groups_sem
);
7798 if ((loop
== LOOP_CACHING_NOWAIT
) && have_caching_bg
7799 && !orig_have_caching_bg
)
7800 orig_have_caching_bg
= true;
7802 if (!ins
->objectid
&& loop
>= LOOP_CACHING_WAIT
&& have_caching_bg
)
7805 if (!ins
->objectid
&& ++index
< BTRFS_NR_RAID_TYPES
)
7809 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7810 * caching kthreads as we move along
7811 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7812 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7813 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7816 if (!ins
->objectid
&& loop
< LOOP_NO_EMPTY_SIZE
) {
7818 if (loop
== LOOP_CACHING_NOWAIT
) {
7820 * We want to skip the LOOP_CACHING_WAIT step if we
7821 * don't have any uncached bgs and we've already done a
7822 * full search through.
7824 if (orig_have_caching_bg
|| !full_search
)
7825 loop
= LOOP_CACHING_WAIT
;
7827 loop
= LOOP_ALLOC_CHUNK
;
7832 if (loop
== LOOP_ALLOC_CHUNK
) {
7833 struct btrfs_trans_handle
*trans
;
7836 trans
= current
->journal_info
;
7840 trans
= btrfs_join_transaction(root
);
7842 if (IS_ERR(trans
)) {
7843 ret
= PTR_ERR(trans
);
7847 ret
= do_chunk_alloc(trans
, root
, flags
,
7851 * If we can't allocate a new chunk we've already looped
7852 * through at least once, move on to the NO_EMPTY_SIZE
7856 loop
= LOOP_NO_EMPTY_SIZE
;
7859 * Do not bail out on ENOSPC since we
7860 * can do more things.
7862 if (ret
< 0 && ret
!= -ENOSPC
)
7863 btrfs_abort_transaction(trans
, ret
);
7867 btrfs_end_transaction(trans
, root
);
7872 if (loop
== LOOP_NO_EMPTY_SIZE
) {
7874 * Don't loop again if we already have no empty_size and
7877 if (empty_size
== 0 &&
7878 empty_cluster
== 0) {
7887 } else if (!ins
->objectid
) {
7889 } else if (ins
->objectid
) {
7890 if (!use_cluster
&& last_ptr
) {
7891 spin_lock(&last_ptr
->lock
);
7892 last_ptr
->window_start
= ins
->objectid
;
7893 spin_unlock(&last_ptr
->lock
);
7898 if (ret
== -ENOSPC
) {
7899 spin_lock(&space_info
->lock
);
7900 space_info
->max_extent_size
= max_extent_size
;
7901 spin_unlock(&space_info
->lock
);
7902 ins
->offset
= max_extent_size
;
7907 static void dump_space_info(struct btrfs_fs_info
*fs_info
,
7908 struct btrfs_space_info
*info
, u64 bytes
,
7909 int dump_block_groups
)
7911 struct btrfs_block_group_cache
*cache
;
7914 spin_lock(&info
->lock
);
7915 btrfs_info(fs_info
, "space_info %llu has %llu free, is %sfull",
7917 info
->total_bytes
- info
->bytes_used
- info
->bytes_pinned
-
7918 info
->bytes_reserved
- info
->bytes_readonly
-
7919 info
->bytes_may_use
, (info
->full
) ? "" : "not ");
7921 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7922 info
->total_bytes
, info
->bytes_used
, info
->bytes_pinned
,
7923 info
->bytes_reserved
, info
->bytes_may_use
,
7924 info
->bytes_readonly
);
7925 spin_unlock(&info
->lock
);
7927 if (!dump_block_groups
)
7930 down_read(&info
->groups_sem
);
7932 list_for_each_entry(cache
, &info
->block_groups
[index
], list
) {
7933 spin_lock(&cache
->lock
);
7935 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7936 cache
->key
.objectid
, cache
->key
.offset
,
7937 btrfs_block_group_used(&cache
->item
), cache
->pinned
,
7938 cache
->reserved
, cache
->ro
? "[readonly]" : "");
7939 btrfs_dump_free_space(cache
, bytes
);
7940 spin_unlock(&cache
->lock
);
7942 if (++index
< BTRFS_NR_RAID_TYPES
)
7944 up_read(&info
->groups_sem
);
7947 int btrfs_reserve_extent(struct btrfs_root
*root
, u64 ram_bytes
,
7948 u64 num_bytes
, u64 min_alloc_size
,
7949 u64 empty_size
, u64 hint_byte
,
7950 struct btrfs_key
*ins
, int is_data
, int delalloc
)
7952 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
7953 bool final_tried
= num_bytes
== min_alloc_size
;
7957 flags
= btrfs_get_alloc_profile(root
, is_data
);
7959 WARN_ON(num_bytes
< root
->sectorsize
);
7960 ret
= find_free_extent(root
, ram_bytes
, num_bytes
, empty_size
,
7961 hint_byte
, ins
, flags
, delalloc
);
7962 if (!ret
&& !is_data
) {
7963 btrfs_dec_block_group_reservations(fs_info
, ins
->objectid
);
7964 } else if (ret
== -ENOSPC
) {
7965 if (!final_tried
&& ins
->offset
) {
7966 num_bytes
= min(num_bytes
>> 1, ins
->offset
);
7967 num_bytes
= round_down(num_bytes
, root
->sectorsize
);
7968 num_bytes
= max(num_bytes
, min_alloc_size
);
7969 ram_bytes
= num_bytes
;
7970 if (num_bytes
== min_alloc_size
)
7973 } else if (btrfs_test_opt(fs_info
, ENOSPC_DEBUG
)) {
7974 struct btrfs_space_info
*sinfo
;
7976 sinfo
= __find_space_info(fs_info
, flags
);
7977 btrfs_err(root
->fs_info
,
7978 "allocation failed flags %llu, wanted %llu",
7981 dump_space_info(fs_info
, sinfo
, num_bytes
, 1);
7988 static int __btrfs_free_reserved_extent(struct btrfs_root
*root
,
7990 int pin
, int delalloc
)
7992 struct btrfs_block_group_cache
*cache
;
7995 cache
= btrfs_lookup_block_group(root
->fs_info
, start
);
7997 btrfs_err(root
->fs_info
, "Unable to find block group for %llu",
8003 pin_down_extent(root
, cache
, start
, len
, 1);
8005 if (btrfs_test_opt(root
->fs_info
, DISCARD
))
8006 ret
= btrfs_discard_extent(root
, start
, len
, NULL
);
8007 btrfs_add_free_space(cache
, start
, len
);
8008 btrfs_free_reserved_bytes(cache
, len
, delalloc
);
8009 trace_btrfs_reserved_extent_free(root
, start
, len
);
8012 btrfs_put_block_group(cache
);
8016 int btrfs_free_reserved_extent(struct btrfs_root
*root
,
8017 u64 start
, u64 len
, int delalloc
)
8019 return __btrfs_free_reserved_extent(root
, start
, len
, 0, delalloc
);
8022 int btrfs_free_and_pin_reserved_extent(struct btrfs_root
*root
,
8025 return __btrfs_free_reserved_extent(root
, start
, len
, 1, 0);
8028 static int alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
8029 struct btrfs_root
*root
,
8030 u64 parent
, u64 root_objectid
,
8031 u64 flags
, u64 owner
, u64 offset
,
8032 struct btrfs_key
*ins
, int ref_mod
)
8035 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
8036 struct btrfs_extent_item
*extent_item
;
8037 struct btrfs_extent_inline_ref
*iref
;
8038 struct btrfs_path
*path
;
8039 struct extent_buffer
*leaf
;
8044 type
= BTRFS_SHARED_DATA_REF_KEY
;
8046 type
= BTRFS_EXTENT_DATA_REF_KEY
;
8048 size
= sizeof(*extent_item
) + btrfs_extent_inline_ref_size(type
);
8050 path
= btrfs_alloc_path();
8054 path
->leave_spinning
= 1;
8055 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
, path
,
8058 btrfs_free_path(path
);
8062 leaf
= path
->nodes
[0];
8063 extent_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
8064 struct btrfs_extent_item
);
8065 btrfs_set_extent_refs(leaf
, extent_item
, ref_mod
);
8066 btrfs_set_extent_generation(leaf
, extent_item
, trans
->transid
);
8067 btrfs_set_extent_flags(leaf
, extent_item
,
8068 flags
| BTRFS_EXTENT_FLAG_DATA
);
8070 iref
= (struct btrfs_extent_inline_ref
*)(extent_item
+ 1);
8071 btrfs_set_extent_inline_ref_type(leaf
, iref
, type
);
8073 struct btrfs_shared_data_ref
*ref
;
8074 ref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
8075 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
8076 btrfs_set_shared_data_ref_count(leaf
, ref
, ref_mod
);
8078 struct btrfs_extent_data_ref
*ref
;
8079 ref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
8080 btrfs_set_extent_data_ref_root(leaf
, ref
, root_objectid
);
8081 btrfs_set_extent_data_ref_objectid(leaf
, ref
, owner
);
8082 btrfs_set_extent_data_ref_offset(leaf
, ref
, offset
);
8083 btrfs_set_extent_data_ref_count(leaf
, ref
, ref_mod
);
8086 btrfs_mark_buffer_dirty(path
->nodes
[0]);
8087 btrfs_free_path(path
);
8089 ret
= remove_from_free_space_tree(trans
, fs_info
, ins
->objectid
,
8094 ret
= update_block_group(trans
, root
, ins
->objectid
, ins
->offset
, 1);
8095 if (ret
) { /* -ENOENT, logic error */
8096 btrfs_err(fs_info
, "update block group failed for %llu %llu",
8097 ins
->objectid
, ins
->offset
);
8100 trace_btrfs_reserved_extent_alloc(root
, ins
->objectid
, ins
->offset
);
8104 static int alloc_reserved_tree_block(struct btrfs_trans_handle
*trans
,
8105 struct btrfs_root
*root
,
8106 u64 parent
, u64 root_objectid
,
8107 u64 flags
, struct btrfs_disk_key
*key
,
8108 int level
, struct btrfs_key
*ins
)
8111 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
8112 struct btrfs_extent_item
*extent_item
;
8113 struct btrfs_tree_block_info
*block_info
;
8114 struct btrfs_extent_inline_ref
*iref
;
8115 struct btrfs_path
*path
;
8116 struct extent_buffer
*leaf
;
8117 u32 size
= sizeof(*extent_item
) + sizeof(*iref
);
8118 u64 num_bytes
= ins
->offset
;
8119 bool skinny_metadata
= btrfs_fs_incompat(root
->fs_info
,
8122 if (!skinny_metadata
)
8123 size
+= sizeof(*block_info
);
8125 path
= btrfs_alloc_path();
8127 btrfs_free_and_pin_reserved_extent(root
, ins
->objectid
,
8132 path
->leave_spinning
= 1;
8133 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
, path
,
8136 btrfs_free_path(path
);
8137 btrfs_free_and_pin_reserved_extent(root
, ins
->objectid
,
8142 leaf
= path
->nodes
[0];
8143 extent_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
8144 struct btrfs_extent_item
);
8145 btrfs_set_extent_refs(leaf
, extent_item
, 1);
8146 btrfs_set_extent_generation(leaf
, extent_item
, trans
->transid
);
8147 btrfs_set_extent_flags(leaf
, extent_item
,
8148 flags
| BTRFS_EXTENT_FLAG_TREE_BLOCK
);
8150 if (skinny_metadata
) {
8151 iref
= (struct btrfs_extent_inline_ref
*)(extent_item
+ 1);
8152 num_bytes
= root
->nodesize
;
8154 block_info
= (struct btrfs_tree_block_info
*)(extent_item
+ 1);
8155 btrfs_set_tree_block_key(leaf
, block_info
, key
);
8156 btrfs_set_tree_block_level(leaf
, block_info
, level
);
8157 iref
= (struct btrfs_extent_inline_ref
*)(block_info
+ 1);
8161 BUG_ON(!(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
));
8162 btrfs_set_extent_inline_ref_type(leaf
, iref
,
8163 BTRFS_SHARED_BLOCK_REF_KEY
);
8164 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
8166 btrfs_set_extent_inline_ref_type(leaf
, iref
,
8167 BTRFS_TREE_BLOCK_REF_KEY
);
8168 btrfs_set_extent_inline_ref_offset(leaf
, iref
, root_objectid
);
8171 btrfs_mark_buffer_dirty(leaf
);
8172 btrfs_free_path(path
);
8174 ret
= remove_from_free_space_tree(trans
, fs_info
, ins
->objectid
,
8179 ret
= update_block_group(trans
, root
, ins
->objectid
, root
->nodesize
,
8181 if (ret
) { /* -ENOENT, logic error */
8182 btrfs_err(fs_info
, "update block group failed for %llu %llu",
8183 ins
->objectid
, ins
->offset
);
8187 trace_btrfs_reserved_extent_alloc(root
, ins
->objectid
, root
->nodesize
);
8191 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
8192 struct btrfs_root
*root
,
8193 u64 root_objectid
, u64 owner
,
8194 u64 offset
, u64 ram_bytes
,
8195 struct btrfs_key
*ins
)
8199 BUG_ON(root_objectid
== BTRFS_TREE_LOG_OBJECTID
);
8201 ret
= btrfs_add_delayed_data_ref(root
->fs_info
, trans
, ins
->objectid
,
8203 root_objectid
, owner
, offset
,
8204 ram_bytes
, BTRFS_ADD_DELAYED_EXTENT
,
8210 * this is used by the tree logging recovery code. It records that
8211 * an extent has been allocated and makes sure to clear the free
8212 * space cache bits as well
8214 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle
*trans
,
8215 struct btrfs_root
*root
,
8216 u64 root_objectid
, u64 owner
, u64 offset
,
8217 struct btrfs_key
*ins
)
8220 struct btrfs_block_group_cache
*block_group
;
8221 struct btrfs_space_info
*space_info
;
8224 * Mixed block groups will exclude before processing the log so we only
8225 * need to do the exclude dance if this fs isn't mixed.
8227 if (!btrfs_fs_incompat(root
->fs_info
, MIXED_GROUPS
)) {
8228 ret
= __exclude_logged_extent(root
, ins
->objectid
, ins
->offset
);
8233 block_group
= btrfs_lookup_block_group(root
->fs_info
, ins
->objectid
);
8237 space_info
= block_group
->space_info
;
8238 spin_lock(&space_info
->lock
);
8239 spin_lock(&block_group
->lock
);
8240 space_info
->bytes_reserved
+= ins
->offset
;
8241 block_group
->reserved
+= ins
->offset
;
8242 spin_unlock(&block_group
->lock
);
8243 spin_unlock(&space_info
->lock
);
8245 ret
= alloc_reserved_file_extent(trans
, root
, 0, root_objectid
,
8246 0, owner
, offset
, ins
, 1);
8247 btrfs_put_block_group(block_group
);
8251 static struct extent_buffer
*
8252 btrfs_init_new_buffer(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
8253 u64 bytenr
, int level
)
8255 struct extent_buffer
*buf
;
8257 buf
= btrfs_find_create_tree_block(root
, bytenr
);
8261 btrfs_set_header_generation(buf
, trans
->transid
);
8262 btrfs_set_buffer_lockdep_class(root
->root_key
.objectid
, buf
, level
);
8263 btrfs_tree_lock(buf
);
8264 clean_tree_block(trans
, root
->fs_info
, buf
);
8265 clear_bit(EXTENT_BUFFER_STALE
, &buf
->bflags
);
8267 btrfs_set_lock_blocking(buf
);
8268 set_extent_buffer_uptodate(buf
);
8270 if (root
->root_key
.objectid
== BTRFS_TREE_LOG_OBJECTID
) {
8271 buf
->log_index
= root
->log_transid
% 2;
8273 * we allow two log transactions at a time, use different
8274 * EXENT bit to differentiate dirty pages.
8276 if (buf
->log_index
== 0)
8277 set_extent_dirty(&root
->dirty_log_pages
, buf
->start
,
8278 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
8280 set_extent_new(&root
->dirty_log_pages
, buf
->start
,
8281 buf
->start
+ buf
->len
- 1);
8283 buf
->log_index
= -1;
8284 set_extent_dirty(&trans
->transaction
->dirty_pages
, buf
->start
,
8285 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
8287 trans
->dirty
= true;
8288 /* this returns a buffer locked for blocking */
8292 static struct btrfs_block_rsv
*
8293 use_block_rsv(struct btrfs_trans_handle
*trans
,
8294 struct btrfs_root
*root
, u32 blocksize
)
8296 struct btrfs_block_rsv
*block_rsv
;
8297 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
8299 bool global_updated
= false;
8301 block_rsv
= get_block_rsv(trans
, root
);
8303 if (unlikely(block_rsv
->size
== 0))
8306 ret
= block_rsv_use_bytes(block_rsv
, blocksize
);
8310 if (block_rsv
->failfast
)
8311 return ERR_PTR(ret
);
8313 if (block_rsv
->type
== BTRFS_BLOCK_RSV_GLOBAL
&& !global_updated
) {
8314 global_updated
= true;
8315 update_global_block_rsv(root
->fs_info
);
8319 if (btrfs_test_opt(root
->fs_info
, ENOSPC_DEBUG
)) {
8320 static DEFINE_RATELIMIT_STATE(_rs
,
8321 DEFAULT_RATELIMIT_INTERVAL
* 10,
8322 /*DEFAULT_RATELIMIT_BURST*/ 1);
8323 if (__ratelimit(&_rs
))
8325 "BTRFS: block rsv returned %d\n", ret
);
8328 ret
= reserve_metadata_bytes(root
, block_rsv
, blocksize
,
8329 BTRFS_RESERVE_NO_FLUSH
);
8333 * If we couldn't reserve metadata bytes try and use some from
8334 * the global reserve if its space type is the same as the global
8337 if (block_rsv
->type
!= BTRFS_BLOCK_RSV_GLOBAL
&&
8338 block_rsv
->space_info
== global_rsv
->space_info
) {
8339 ret
= block_rsv_use_bytes(global_rsv
, blocksize
);
8343 return ERR_PTR(ret
);
8346 static void unuse_block_rsv(struct btrfs_fs_info
*fs_info
,
8347 struct btrfs_block_rsv
*block_rsv
, u32 blocksize
)
8349 block_rsv_add_bytes(block_rsv
, blocksize
, 0);
8350 block_rsv_release_bytes(fs_info
, block_rsv
, NULL
, 0);
8354 * finds a free extent and does all the dirty work required for allocation
8355 * returns the tree buffer or an ERR_PTR on error.
8357 struct extent_buffer
*btrfs_alloc_tree_block(struct btrfs_trans_handle
*trans
,
8358 struct btrfs_root
*root
,
8359 u64 parent
, u64 root_objectid
,
8360 struct btrfs_disk_key
*key
, int level
,
8361 u64 hint
, u64 empty_size
)
8363 struct btrfs_key ins
;
8364 struct btrfs_block_rsv
*block_rsv
;
8365 struct extent_buffer
*buf
;
8366 struct btrfs_delayed_extent_op
*extent_op
;
8369 u32 blocksize
= root
->nodesize
;
8370 bool skinny_metadata
= btrfs_fs_incompat(root
->fs_info
,
8373 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8374 if (btrfs_is_testing(root
->fs_info
)) {
8375 buf
= btrfs_init_new_buffer(trans
, root
, root
->alloc_bytenr
,
8378 root
->alloc_bytenr
+= blocksize
;
8383 block_rsv
= use_block_rsv(trans
, root
, blocksize
);
8384 if (IS_ERR(block_rsv
))
8385 return ERR_CAST(block_rsv
);
8387 ret
= btrfs_reserve_extent(root
, blocksize
, blocksize
, blocksize
,
8388 empty_size
, hint
, &ins
, 0, 0);
8392 buf
= btrfs_init_new_buffer(trans
, root
, ins
.objectid
, level
);
8395 goto out_free_reserved
;
8398 if (root_objectid
== BTRFS_TREE_RELOC_OBJECTID
) {
8400 parent
= ins
.objectid
;
8401 flags
|= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
8405 if (root_objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
8406 extent_op
= btrfs_alloc_delayed_extent_op();
8412 memcpy(&extent_op
->key
, key
, sizeof(extent_op
->key
));
8414 memset(&extent_op
->key
, 0, sizeof(extent_op
->key
));
8415 extent_op
->flags_to_set
= flags
;
8416 extent_op
->update_key
= skinny_metadata
? false : true;
8417 extent_op
->update_flags
= true;
8418 extent_op
->is_data
= false;
8419 extent_op
->level
= level
;
8421 ret
= btrfs_add_delayed_tree_ref(root
->fs_info
, trans
,
8422 ins
.objectid
, ins
.offset
,
8423 parent
, root_objectid
, level
,
8424 BTRFS_ADD_DELAYED_EXTENT
,
8427 goto out_free_delayed
;
8432 btrfs_free_delayed_extent_op(extent_op
);
8434 free_extent_buffer(buf
);
8436 btrfs_free_reserved_extent(root
, ins
.objectid
, ins
.offset
, 0);
8438 unuse_block_rsv(root
->fs_info
, block_rsv
, blocksize
);
8439 return ERR_PTR(ret
);
8442 struct walk_control
{
8443 u64 refs
[BTRFS_MAX_LEVEL
];
8444 u64 flags
[BTRFS_MAX_LEVEL
];
8445 struct btrfs_key update_progress
;
8456 #define DROP_REFERENCE 1
8457 #define UPDATE_BACKREF 2
8459 static noinline
void reada_walk_down(struct btrfs_trans_handle
*trans
,
8460 struct btrfs_root
*root
,
8461 struct walk_control
*wc
,
8462 struct btrfs_path
*path
)
8469 struct btrfs_key key
;
8470 struct extent_buffer
*eb
;
8475 if (path
->slots
[wc
->level
] < wc
->reada_slot
) {
8476 wc
->reada_count
= wc
->reada_count
* 2 / 3;
8477 wc
->reada_count
= max(wc
->reada_count
, 2);
8479 wc
->reada_count
= wc
->reada_count
* 3 / 2;
8480 wc
->reada_count
= min_t(int, wc
->reada_count
,
8481 BTRFS_NODEPTRS_PER_BLOCK(root
));
8484 eb
= path
->nodes
[wc
->level
];
8485 nritems
= btrfs_header_nritems(eb
);
8487 for (slot
= path
->slots
[wc
->level
]; slot
< nritems
; slot
++) {
8488 if (nread
>= wc
->reada_count
)
8492 bytenr
= btrfs_node_blockptr(eb
, slot
);
8493 generation
= btrfs_node_ptr_generation(eb
, slot
);
8495 if (slot
== path
->slots
[wc
->level
])
8498 if (wc
->stage
== UPDATE_BACKREF
&&
8499 generation
<= root
->root_key
.offset
)
8502 /* We don't lock the tree block, it's OK to be racy here */
8503 ret
= btrfs_lookup_extent_info(trans
, root
, bytenr
,
8504 wc
->level
- 1, 1, &refs
,
8506 /* We don't care about errors in readahead. */
8511 if (wc
->stage
== DROP_REFERENCE
) {
8515 if (wc
->level
== 1 &&
8516 (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))
8518 if (!wc
->update_ref
||
8519 generation
<= root
->root_key
.offset
)
8521 btrfs_node_key_to_cpu(eb
, &key
, slot
);
8522 ret
= btrfs_comp_cpu_keys(&key
,
8523 &wc
->update_progress
);
8527 if (wc
->level
== 1 &&
8528 (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))
8532 readahead_tree_block(root
, bytenr
);
8535 wc
->reada_slot
= slot
;
8538 static int account_leaf_items(struct btrfs_trans_handle
*trans
,
8539 struct btrfs_root
*root
,
8540 struct extent_buffer
*eb
)
8542 int nr
= btrfs_header_nritems(eb
);
8543 int i
, extent_type
, ret
;
8544 struct btrfs_key key
;
8545 struct btrfs_file_extent_item
*fi
;
8546 u64 bytenr
, num_bytes
;
8548 /* We can be called directly from walk_up_proc() */
8549 if (!test_bit(BTRFS_FS_QUOTA_ENABLED
, &root
->fs_info
->flags
))
8552 for (i
= 0; i
< nr
; i
++) {
8553 btrfs_item_key_to_cpu(eb
, &key
, i
);
8555 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
8558 fi
= btrfs_item_ptr(eb
, i
, struct btrfs_file_extent_item
);
8559 /* filter out non qgroup-accountable extents */
8560 extent_type
= btrfs_file_extent_type(eb
, fi
);
8562 if (extent_type
== BTRFS_FILE_EXTENT_INLINE
)
8565 bytenr
= btrfs_file_extent_disk_bytenr(eb
, fi
);
8569 num_bytes
= btrfs_file_extent_disk_num_bytes(eb
, fi
);
8571 ret
= btrfs_qgroup_insert_dirty_extent(trans
, root
->fs_info
,
8572 bytenr
, num_bytes
, GFP_NOFS
);
8580 * Walk up the tree from the bottom, freeing leaves and any interior
8581 * nodes which have had all slots visited. If a node (leaf or
8582 * interior) is freed, the node above it will have it's slot
8583 * incremented. The root node will never be freed.
8585 * At the end of this function, we should have a path which has all
8586 * slots incremented to the next position for a search. If we need to
8587 * read a new node it will be NULL and the node above it will have the
8588 * correct slot selected for a later read.
8590 * If we increment the root nodes slot counter past the number of
8591 * elements, 1 is returned to signal completion of the search.
8593 static int adjust_slots_upwards(struct btrfs_root
*root
,
8594 struct btrfs_path
*path
, int root_level
)
8598 struct extent_buffer
*eb
;
8600 if (root_level
== 0)
8603 while (level
<= root_level
) {
8604 eb
= path
->nodes
[level
];
8605 nr
= btrfs_header_nritems(eb
);
8606 path
->slots
[level
]++;
8607 slot
= path
->slots
[level
];
8608 if (slot
>= nr
|| level
== 0) {
8610 * Don't free the root - we will detect this
8611 * condition after our loop and return a
8612 * positive value for caller to stop walking the tree.
8614 if (level
!= root_level
) {
8615 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
8616 path
->locks
[level
] = 0;
8618 free_extent_buffer(eb
);
8619 path
->nodes
[level
] = NULL
;
8620 path
->slots
[level
] = 0;
8624 * We have a valid slot to walk back down
8625 * from. Stop here so caller can process these
8634 eb
= path
->nodes
[root_level
];
8635 if (path
->slots
[root_level
] >= btrfs_header_nritems(eb
))
8642 * root_eb is the subtree root and is locked before this function is called.
8644 static int account_shared_subtree(struct btrfs_trans_handle
*trans
,
8645 struct btrfs_root
*root
,
8646 struct extent_buffer
*root_eb
,
8652 struct extent_buffer
*eb
= root_eb
;
8653 struct btrfs_path
*path
= NULL
;
8655 BUG_ON(root_level
< 0 || root_level
> BTRFS_MAX_LEVEL
);
8656 BUG_ON(root_eb
== NULL
);
8658 if (!test_bit(BTRFS_FS_QUOTA_ENABLED
, &root
->fs_info
->flags
))
8661 if (!extent_buffer_uptodate(root_eb
)) {
8662 ret
= btrfs_read_buffer(root_eb
, root_gen
);
8667 if (root_level
== 0) {
8668 ret
= account_leaf_items(trans
, root
, root_eb
);
8672 path
= btrfs_alloc_path();
8677 * Walk down the tree. Missing extent blocks are filled in as
8678 * we go. Metadata is accounted every time we read a new
8681 * When we reach a leaf, we account for file extent items in it,
8682 * walk back up the tree (adjusting slot pointers as we go)
8683 * and restart the search process.
8685 extent_buffer_get(root_eb
); /* For path */
8686 path
->nodes
[root_level
] = root_eb
;
8687 path
->slots
[root_level
] = 0;
8688 path
->locks
[root_level
] = 0; /* so release_path doesn't try to unlock */
8691 while (level
>= 0) {
8692 if (path
->nodes
[level
] == NULL
) {
8697 /* We need to get child blockptr/gen from
8698 * parent before we can read it. */
8699 eb
= path
->nodes
[level
+ 1];
8700 parent_slot
= path
->slots
[level
+ 1];
8701 child_bytenr
= btrfs_node_blockptr(eb
, parent_slot
);
8702 child_gen
= btrfs_node_ptr_generation(eb
, parent_slot
);
8704 eb
= read_tree_block(root
, child_bytenr
, child_gen
);
8708 } else if (!extent_buffer_uptodate(eb
)) {
8709 free_extent_buffer(eb
);
8714 path
->nodes
[level
] = eb
;
8715 path
->slots
[level
] = 0;
8717 btrfs_tree_read_lock(eb
);
8718 btrfs_set_lock_blocking_rw(eb
, BTRFS_READ_LOCK
);
8719 path
->locks
[level
] = BTRFS_READ_LOCK_BLOCKING
;
8721 ret
= btrfs_qgroup_insert_dirty_extent(trans
,
8722 root
->fs_info
, child_bytenr
,
8723 root
->nodesize
, GFP_NOFS
);
8729 ret
= account_leaf_items(trans
, root
, path
->nodes
[level
]);
8733 /* Nonzero return here means we completed our search */
8734 ret
= adjust_slots_upwards(root
, path
, root_level
);
8738 /* Restart search with new slots */
8747 btrfs_free_path(path
);
8753 * helper to process tree block while walking down the tree.
8755 * when wc->stage == UPDATE_BACKREF, this function updates
8756 * back refs for pointers in the block.
8758 * NOTE: return value 1 means we should stop walking down.
8760 static noinline
int walk_down_proc(struct btrfs_trans_handle
*trans
,
8761 struct btrfs_root
*root
,
8762 struct btrfs_path
*path
,
8763 struct walk_control
*wc
, int lookup_info
)
8765 int level
= wc
->level
;
8766 struct extent_buffer
*eb
= path
->nodes
[level
];
8767 u64 flag
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
8770 if (wc
->stage
== UPDATE_BACKREF
&&
8771 btrfs_header_owner(eb
) != root
->root_key
.objectid
)
8775 * when reference count of tree block is 1, it won't increase
8776 * again. once full backref flag is set, we never clear it.
8779 ((wc
->stage
== DROP_REFERENCE
&& wc
->refs
[level
] != 1) ||
8780 (wc
->stage
== UPDATE_BACKREF
&& !(wc
->flags
[level
] & flag
)))) {
8781 BUG_ON(!path
->locks
[level
]);
8782 ret
= btrfs_lookup_extent_info(trans
, root
,
8783 eb
->start
, level
, 1,
8786 BUG_ON(ret
== -ENOMEM
);
8789 BUG_ON(wc
->refs
[level
] == 0);
8792 if (wc
->stage
== DROP_REFERENCE
) {
8793 if (wc
->refs
[level
] > 1)
8796 if (path
->locks
[level
] && !wc
->keep_locks
) {
8797 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
8798 path
->locks
[level
] = 0;
8803 /* wc->stage == UPDATE_BACKREF */
8804 if (!(wc
->flags
[level
] & flag
)) {
8805 BUG_ON(!path
->locks
[level
]);
8806 ret
= btrfs_inc_ref(trans
, root
, eb
, 1);
8807 BUG_ON(ret
); /* -ENOMEM */
8808 ret
= btrfs_dec_ref(trans
, root
, eb
, 0);
8809 BUG_ON(ret
); /* -ENOMEM */
8810 ret
= btrfs_set_disk_extent_flags(trans
, root
, eb
->start
,
8812 btrfs_header_level(eb
), 0);
8813 BUG_ON(ret
); /* -ENOMEM */
8814 wc
->flags
[level
] |= flag
;
8818 * the block is shared by multiple trees, so it's not good to
8819 * keep the tree lock
8821 if (path
->locks
[level
] && level
> 0) {
8822 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
8823 path
->locks
[level
] = 0;
8829 * helper to process tree block pointer.
8831 * when wc->stage == DROP_REFERENCE, this function checks
8832 * reference count of the block pointed to. if the block
8833 * is shared and we need update back refs for the subtree
8834 * rooted at the block, this function changes wc->stage to
8835 * UPDATE_BACKREF. if the block is shared and there is no
8836 * need to update back, this function drops the reference
8839 * NOTE: return value 1 means we should stop walking down.
8841 static noinline
int do_walk_down(struct btrfs_trans_handle
*trans
,
8842 struct btrfs_root
*root
,
8843 struct btrfs_path
*path
,
8844 struct walk_control
*wc
, int *lookup_info
)
8850 struct btrfs_key key
;
8851 struct extent_buffer
*next
;
8852 int level
= wc
->level
;
8855 bool need_account
= false;
8857 generation
= btrfs_node_ptr_generation(path
->nodes
[level
],
8858 path
->slots
[level
]);
8860 * if the lower level block was created before the snapshot
8861 * was created, we know there is no need to update back refs
8864 if (wc
->stage
== UPDATE_BACKREF
&&
8865 generation
<= root
->root_key
.offset
) {
8870 bytenr
= btrfs_node_blockptr(path
->nodes
[level
], path
->slots
[level
]);
8871 blocksize
= root
->nodesize
;
8873 next
= btrfs_find_tree_block(root
->fs_info
, bytenr
);
8875 next
= btrfs_find_create_tree_block(root
, bytenr
);
8877 return PTR_ERR(next
);
8879 btrfs_set_buffer_lockdep_class(root
->root_key
.objectid
, next
,
8883 btrfs_tree_lock(next
);
8884 btrfs_set_lock_blocking(next
);
8886 ret
= btrfs_lookup_extent_info(trans
, root
, bytenr
, level
- 1, 1,
8887 &wc
->refs
[level
- 1],
8888 &wc
->flags
[level
- 1]);
8892 if (unlikely(wc
->refs
[level
- 1] == 0)) {
8893 btrfs_err(root
->fs_info
, "Missing references.");
8899 if (wc
->stage
== DROP_REFERENCE
) {
8900 if (wc
->refs
[level
- 1] > 1) {
8901 need_account
= true;
8903 (wc
->flags
[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF
))
8906 if (!wc
->update_ref
||
8907 generation
<= root
->root_key
.offset
)
8910 btrfs_node_key_to_cpu(path
->nodes
[level
], &key
,
8911 path
->slots
[level
]);
8912 ret
= btrfs_comp_cpu_keys(&key
, &wc
->update_progress
);
8916 wc
->stage
= UPDATE_BACKREF
;
8917 wc
->shared_level
= level
- 1;
8921 (wc
->flags
[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF
))
8925 if (!btrfs_buffer_uptodate(next
, generation
, 0)) {
8926 btrfs_tree_unlock(next
);
8927 free_extent_buffer(next
);
8933 if (reada
&& level
== 1)
8934 reada_walk_down(trans
, root
, wc
, path
);
8935 next
= read_tree_block(root
, bytenr
, generation
);
8937 return PTR_ERR(next
);
8938 } else if (!extent_buffer_uptodate(next
)) {
8939 free_extent_buffer(next
);
8942 btrfs_tree_lock(next
);
8943 btrfs_set_lock_blocking(next
);
8947 ASSERT(level
== btrfs_header_level(next
));
8948 if (level
!= btrfs_header_level(next
)) {
8949 btrfs_err(root
->fs_info
, "mismatched level");
8953 path
->nodes
[level
] = next
;
8954 path
->slots
[level
] = 0;
8955 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
8961 wc
->refs
[level
- 1] = 0;
8962 wc
->flags
[level
- 1] = 0;
8963 if (wc
->stage
== DROP_REFERENCE
) {
8964 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
) {
8965 parent
= path
->nodes
[level
]->start
;
8967 ASSERT(root
->root_key
.objectid
==
8968 btrfs_header_owner(path
->nodes
[level
]));
8969 if (root
->root_key
.objectid
!=
8970 btrfs_header_owner(path
->nodes
[level
])) {
8971 btrfs_err(root
->fs_info
,
8972 "mismatched block owner");
8980 ret
= account_shared_subtree(trans
, root
, next
,
8981 generation
, level
- 1);
8983 btrfs_err_rl(root
->fs_info
,
8984 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8988 ret
= btrfs_free_extent(trans
, root
, bytenr
, blocksize
, parent
,
8989 root
->root_key
.objectid
, level
- 1, 0);
8998 btrfs_tree_unlock(next
);
8999 free_extent_buffer(next
);
9005 * helper to process tree block while walking up the tree.
9007 * when wc->stage == DROP_REFERENCE, this function drops
9008 * reference count on the block.
9010 * when wc->stage == UPDATE_BACKREF, this function changes
9011 * wc->stage back to DROP_REFERENCE if we changed wc->stage
9012 * to UPDATE_BACKREF previously while processing the block.
9014 * NOTE: return value 1 means we should stop walking up.
9016 static noinline
int walk_up_proc(struct btrfs_trans_handle
*trans
,
9017 struct btrfs_root
*root
,
9018 struct btrfs_path
*path
,
9019 struct walk_control
*wc
)
9022 int level
= wc
->level
;
9023 struct extent_buffer
*eb
= path
->nodes
[level
];
9026 if (wc
->stage
== UPDATE_BACKREF
) {
9027 BUG_ON(wc
->shared_level
< level
);
9028 if (level
< wc
->shared_level
)
9031 ret
= find_next_key(path
, level
+ 1, &wc
->update_progress
);
9035 wc
->stage
= DROP_REFERENCE
;
9036 wc
->shared_level
= -1;
9037 path
->slots
[level
] = 0;
9040 * check reference count again if the block isn't locked.
9041 * we should start walking down the tree again if reference
9044 if (!path
->locks
[level
]) {
9046 btrfs_tree_lock(eb
);
9047 btrfs_set_lock_blocking(eb
);
9048 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
9050 ret
= btrfs_lookup_extent_info(trans
, root
,
9051 eb
->start
, level
, 1,
9055 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
9056 path
->locks
[level
] = 0;
9059 BUG_ON(wc
->refs
[level
] == 0);
9060 if (wc
->refs
[level
] == 1) {
9061 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
9062 path
->locks
[level
] = 0;
9068 /* wc->stage == DROP_REFERENCE */
9069 BUG_ON(wc
->refs
[level
] > 1 && !path
->locks
[level
]);
9071 if (wc
->refs
[level
] == 1) {
9073 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
9074 ret
= btrfs_dec_ref(trans
, root
, eb
, 1);
9076 ret
= btrfs_dec_ref(trans
, root
, eb
, 0);
9077 BUG_ON(ret
); /* -ENOMEM */
9078 ret
= account_leaf_items(trans
, root
, eb
);
9080 btrfs_err_rl(root
->fs_info
,
9081 "error %d accounting leaf items. Quota is out of sync, rescan required.",
9085 /* make block locked assertion in clean_tree_block happy */
9086 if (!path
->locks
[level
] &&
9087 btrfs_header_generation(eb
) == trans
->transid
) {
9088 btrfs_tree_lock(eb
);
9089 btrfs_set_lock_blocking(eb
);
9090 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
9092 clean_tree_block(trans
, root
->fs_info
, eb
);
9095 if (eb
== root
->node
) {
9096 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
9099 BUG_ON(root
->root_key
.objectid
!=
9100 btrfs_header_owner(eb
));
9102 if (wc
->flags
[level
+ 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
9103 parent
= path
->nodes
[level
+ 1]->start
;
9105 BUG_ON(root
->root_key
.objectid
!=
9106 btrfs_header_owner(path
->nodes
[level
+ 1]));
9109 btrfs_free_tree_block(trans
, root
, eb
, parent
, wc
->refs
[level
] == 1);
9111 wc
->refs
[level
] = 0;
9112 wc
->flags
[level
] = 0;
9116 static noinline
int walk_down_tree(struct btrfs_trans_handle
*trans
,
9117 struct btrfs_root
*root
,
9118 struct btrfs_path
*path
,
9119 struct walk_control
*wc
)
9121 int level
= wc
->level
;
9122 int lookup_info
= 1;
9125 while (level
>= 0) {
9126 ret
= walk_down_proc(trans
, root
, path
, wc
, lookup_info
);
9133 if (path
->slots
[level
] >=
9134 btrfs_header_nritems(path
->nodes
[level
]))
9137 ret
= do_walk_down(trans
, root
, path
, wc
, &lookup_info
);
9139 path
->slots
[level
]++;
9148 static noinline
int walk_up_tree(struct btrfs_trans_handle
*trans
,
9149 struct btrfs_root
*root
,
9150 struct btrfs_path
*path
,
9151 struct walk_control
*wc
, int max_level
)
9153 int level
= wc
->level
;
9156 path
->slots
[level
] = btrfs_header_nritems(path
->nodes
[level
]);
9157 while (level
< max_level
&& path
->nodes
[level
]) {
9159 if (path
->slots
[level
] + 1 <
9160 btrfs_header_nritems(path
->nodes
[level
])) {
9161 path
->slots
[level
]++;
9164 ret
= walk_up_proc(trans
, root
, path
, wc
);
9168 if (path
->locks
[level
]) {
9169 btrfs_tree_unlock_rw(path
->nodes
[level
],
9170 path
->locks
[level
]);
9171 path
->locks
[level
] = 0;
9173 free_extent_buffer(path
->nodes
[level
]);
9174 path
->nodes
[level
] = NULL
;
9182 * drop a subvolume tree.
9184 * this function traverses the tree freeing any blocks that only
9185 * referenced by the tree.
9187 * when a shared tree block is found. this function decreases its
9188 * reference count by one. if update_ref is true, this function
9189 * also make sure backrefs for the shared block and all lower level
9190 * blocks are properly updated.
9192 * If called with for_reloc == 0, may exit early with -EAGAIN
9194 int btrfs_drop_snapshot(struct btrfs_root
*root
,
9195 struct btrfs_block_rsv
*block_rsv
, int update_ref
,
9198 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
9199 struct btrfs_path
*path
;
9200 struct btrfs_trans_handle
*trans
;
9201 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
9202 struct btrfs_root_item
*root_item
= &root
->root_item
;
9203 struct walk_control
*wc
;
9204 struct btrfs_key key
;
9208 bool root_dropped
= false;
9210 btrfs_debug(fs_info
, "Drop subvolume %llu", root
->objectid
);
9212 path
= btrfs_alloc_path();
9218 wc
= kzalloc(sizeof(*wc
), GFP_NOFS
);
9220 btrfs_free_path(path
);
9225 trans
= btrfs_start_transaction(tree_root
, 0);
9226 if (IS_ERR(trans
)) {
9227 err
= PTR_ERR(trans
);
9232 trans
->block_rsv
= block_rsv
;
9234 if (btrfs_disk_key_objectid(&root_item
->drop_progress
) == 0) {
9235 level
= btrfs_header_level(root
->node
);
9236 path
->nodes
[level
] = btrfs_lock_root_node(root
);
9237 btrfs_set_lock_blocking(path
->nodes
[level
]);
9238 path
->slots
[level
] = 0;
9239 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
9240 memset(&wc
->update_progress
, 0,
9241 sizeof(wc
->update_progress
));
9243 btrfs_disk_key_to_cpu(&key
, &root_item
->drop_progress
);
9244 memcpy(&wc
->update_progress
, &key
,
9245 sizeof(wc
->update_progress
));
9247 level
= root_item
->drop_level
;
9249 path
->lowest_level
= level
;
9250 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
9251 path
->lowest_level
= 0;
9259 * unlock our path, this is safe because only this
9260 * function is allowed to delete this snapshot
9262 btrfs_unlock_up_safe(path
, 0);
9264 level
= btrfs_header_level(root
->node
);
9266 btrfs_tree_lock(path
->nodes
[level
]);
9267 btrfs_set_lock_blocking(path
->nodes
[level
]);
9268 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
9270 ret
= btrfs_lookup_extent_info(trans
, root
,
9271 path
->nodes
[level
]->start
,
9272 level
, 1, &wc
->refs
[level
],
9278 BUG_ON(wc
->refs
[level
] == 0);
9280 if (level
== root_item
->drop_level
)
9283 btrfs_tree_unlock(path
->nodes
[level
]);
9284 path
->locks
[level
] = 0;
9285 WARN_ON(wc
->refs
[level
] != 1);
9291 wc
->shared_level
= -1;
9292 wc
->stage
= DROP_REFERENCE
;
9293 wc
->update_ref
= update_ref
;
9295 wc
->for_reloc
= for_reloc
;
9296 wc
->reada_count
= BTRFS_NODEPTRS_PER_BLOCK(root
);
9300 ret
= walk_down_tree(trans
, root
, path
, wc
);
9306 ret
= walk_up_tree(trans
, root
, path
, wc
, BTRFS_MAX_LEVEL
);
9313 BUG_ON(wc
->stage
!= DROP_REFERENCE
);
9317 if (wc
->stage
== DROP_REFERENCE
) {
9319 btrfs_node_key(path
->nodes
[level
],
9320 &root_item
->drop_progress
,
9321 path
->slots
[level
]);
9322 root_item
->drop_level
= level
;
9325 BUG_ON(wc
->level
== 0);
9326 if (btrfs_should_end_transaction(trans
, tree_root
) ||
9327 (!for_reloc
&& btrfs_need_cleaner_sleep(root
))) {
9328 ret
= btrfs_update_root(trans
, tree_root
,
9332 btrfs_abort_transaction(trans
, ret
);
9337 btrfs_end_transaction_throttle(trans
, tree_root
);
9338 if (!for_reloc
&& btrfs_need_cleaner_sleep(root
)) {
9339 btrfs_debug(fs_info
,
9340 "drop snapshot early exit");
9345 trans
= btrfs_start_transaction(tree_root
, 0);
9346 if (IS_ERR(trans
)) {
9347 err
= PTR_ERR(trans
);
9351 trans
->block_rsv
= block_rsv
;
9354 btrfs_release_path(path
);
9358 ret
= btrfs_del_root(trans
, tree_root
, &root
->root_key
);
9360 btrfs_abort_transaction(trans
, ret
);
9364 if (root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
) {
9365 ret
= btrfs_find_root(tree_root
, &root
->root_key
, path
,
9368 btrfs_abort_transaction(trans
, ret
);
9371 } else if (ret
> 0) {
9372 /* if we fail to delete the orphan item this time
9373 * around, it'll get picked up the next time.
9375 * The most common failure here is just -ENOENT.
9377 btrfs_del_orphan_item(trans
, tree_root
,
9378 root
->root_key
.objectid
);
9382 if (test_bit(BTRFS_ROOT_IN_RADIX
, &root
->state
)) {
9383 btrfs_add_dropped_root(trans
, root
);
9385 free_extent_buffer(root
->node
);
9386 free_extent_buffer(root
->commit_root
);
9387 btrfs_put_fs_root(root
);
9389 root_dropped
= true;
9391 btrfs_end_transaction_throttle(trans
, tree_root
);
9394 btrfs_free_path(path
);
9397 * So if we need to stop dropping the snapshot for whatever reason we
9398 * need to make sure to add it back to the dead root list so that we
9399 * keep trying to do the work later. This also cleans up roots if we
9400 * don't have it in the radix (like when we recover after a power fail
9401 * or unmount) so we don't leak memory.
9403 if (!for_reloc
&& root_dropped
== false)
9404 btrfs_add_dead_root(root
);
9405 if (err
&& err
!= -EAGAIN
)
9406 btrfs_handle_fs_error(fs_info
, err
, NULL
);
9411 * drop subtree rooted at tree block 'node'.
9413 * NOTE: this function will unlock and release tree block 'node'
9414 * only used by relocation code
9416 int btrfs_drop_subtree(struct btrfs_trans_handle
*trans
,
9417 struct btrfs_root
*root
,
9418 struct extent_buffer
*node
,
9419 struct extent_buffer
*parent
)
9421 struct btrfs_path
*path
;
9422 struct walk_control
*wc
;
9428 BUG_ON(root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
);
9430 path
= btrfs_alloc_path();
9434 wc
= kzalloc(sizeof(*wc
), GFP_NOFS
);
9436 btrfs_free_path(path
);
9440 btrfs_assert_tree_locked(parent
);
9441 parent_level
= btrfs_header_level(parent
);
9442 extent_buffer_get(parent
);
9443 path
->nodes
[parent_level
] = parent
;
9444 path
->slots
[parent_level
] = btrfs_header_nritems(parent
);
9446 btrfs_assert_tree_locked(node
);
9447 level
= btrfs_header_level(node
);
9448 path
->nodes
[level
] = node
;
9449 path
->slots
[level
] = 0;
9450 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
9452 wc
->refs
[parent_level
] = 1;
9453 wc
->flags
[parent_level
] = BTRFS_BLOCK_FLAG_FULL_BACKREF
;
9455 wc
->shared_level
= -1;
9456 wc
->stage
= DROP_REFERENCE
;
9460 wc
->reada_count
= BTRFS_NODEPTRS_PER_BLOCK(root
);
9463 wret
= walk_down_tree(trans
, root
, path
, wc
);
9469 wret
= walk_up_tree(trans
, root
, path
, wc
, parent_level
);
9477 btrfs_free_path(path
);
9481 static u64
update_block_group_flags(struct btrfs_root
*root
, u64 flags
)
9487 * if restripe for this chunk_type is on pick target profile and
9488 * return, otherwise do the usual balance
9490 stripped
= get_restripe_target(root
->fs_info
, flags
);
9492 return extended_to_chunk(stripped
);
9494 num_devices
= root
->fs_info
->fs_devices
->rw_devices
;
9496 stripped
= BTRFS_BLOCK_GROUP_RAID0
|
9497 BTRFS_BLOCK_GROUP_RAID5
| BTRFS_BLOCK_GROUP_RAID6
|
9498 BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID10
;
9500 if (num_devices
== 1) {
9501 stripped
|= BTRFS_BLOCK_GROUP_DUP
;
9502 stripped
= flags
& ~stripped
;
9504 /* turn raid0 into single device chunks */
9505 if (flags
& BTRFS_BLOCK_GROUP_RAID0
)
9508 /* turn mirroring into duplication */
9509 if (flags
& (BTRFS_BLOCK_GROUP_RAID1
|
9510 BTRFS_BLOCK_GROUP_RAID10
))
9511 return stripped
| BTRFS_BLOCK_GROUP_DUP
;
9513 /* they already had raid on here, just return */
9514 if (flags
& stripped
)
9517 stripped
|= BTRFS_BLOCK_GROUP_DUP
;
9518 stripped
= flags
& ~stripped
;
9520 /* switch duplicated blocks with raid1 */
9521 if (flags
& BTRFS_BLOCK_GROUP_DUP
)
9522 return stripped
| BTRFS_BLOCK_GROUP_RAID1
;
9524 /* this is drive concat, leave it alone */
9530 static int inc_block_group_ro(struct btrfs_block_group_cache
*cache
, int force
)
9532 struct btrfs_space_info
*sinfo
= cache
->space_info
;
9534 u64 min_allocable_bytes
;
9538 * We need some metadata space and system metadata space for
9539 * allocating chunks in some corner cases until we force to set
9540 * it to be readonly.
9543 (BTRFS_BLOCK_GROUP_SYSTEM
| BTRFS_BLOCK_GROUP_METADATA
)) &&
9545 min_allocable_bytes
= SZ_1M
;
9547 min_allocable_bytes
= 0;
9549 spin_lock(&sinfo
->lock
);
9550 spin_lock(&cache
->lock
);
9558 num_bytes
= cache
->key
.offset
- cache
->reserved
- cache
->pinned
-
9559 cache
->bytes_super
- btrfs_block_group_used(&cache
->item
);
9561 if (sinfo
->bytes_used
+ sinfo
->bytes_reserved
+ sinfo
->bytes_pinned
+
9562 sinfo
->bytes_may_use
+ sinfo
->bytes_readonly
+ num_bytes
+
9563 min_allocable_bytes
<= sinfo
->total_bytes
) {
9564 sinfo
->bytes_readonly
+= num_bytes
;
9566 list_add_tail(&cache
->ro_list
, &sinfo
->ro_bgs
);
9570 spin_unlock(&cache
->lock
);
9571 spin_unlock(&sinfo
->lock
);
9575 int btrfs_inc_block_group_ro(struct btrfs_root
*root
,
9576 struct btrfs_block_group_cache
*cache
)
9579 struct btrfs_trans_handle
*trans
;
9584 trans
= btrfs_join_transaction(root
);
9586 return PTR_ERR(trans
);
9589 * we're not allowed to set block groups readonly after the dirty
9590 * block groups cache has started writing. If it already started,
9591 * back off and let this transaction commit
9593 mutex_lock(&root
->fs_info
->ro_block_group_mutex
);
9594 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN
, &trans
->transaction
->flags
)) {
9595 u64 transid
= trans
->transid
;
9597 mutex_unlock(&root
->fs_info
->ro_block_group_mutex
);
9598 btrfs_end_transaction(trans
, root
);
9600 ret
= btrfs_wait_for_commit(root
, transid
);
9607 * if we are changing raid levels, try to allocate a corresponding
9608 * block group with the new raid level.
9610 alloc_flags
= update_block_group_flags(root
, cache
->flags
);
9611 if (alloc_flags
!= cache
->flags
) {
9612 ret
= do_chunk_alloc(trans
, root
, alloc_flags
,
9615 * ENOSPC is allowed here, we may have enough space
9616 * already allocated at the new raid level to
9625 ret
= inc_block_group_ro(cache
, 0);
9628 alloc_flags
= get_alloc_profile(root
, cache
->space_info
->flags
);
9629 ret
= do_chunk_alloc(trans
, root
, alloc_flags
,
9633 ret
= inc_block_group_ro(cache
, 0);
9635 if (cache
->flags
& BTRFS_BLOCK_GROUP_SYSTEM
) {
9636 alloc_flags
= update_block_group_flags(root
, cache
->flags
);
9637 lock_chunks(root
->fs_info
->chunk_root
);
9638 check_system_chunk(trans
, root
, alloc_flags
);
9639 unlock_chunks(root
->fs_info
->chunk_root
);
9641 mutex_unlock(&root
->fs_info
->ro_block_group_mutex
);
9643 btrfs_end_transaction(trans
, root
);
9647 int btrfs_force_chunk_alloc(struct btrfs_trans_handle
*trans
,
9648 struct btrfs_root
*root
, u64 type
)
9650 u64 alloc_flags
= get_alloc_profile(root
, type
);
9651 return do_chunk_alloc(trans
, root
, alloc_flags
,
9656 * helper to account the unused space of all the readonly block group in the
9657 * space_info. takes mirrors into account.
9659 u64
btrfs_account_ro_block_groups_free_space(struct btrfs_space_info
*sinfo
)
9661 struct btrfs_block_group_cache
*block_group
;
9665 /* It's df, we don't care if it's racy */
9666 if (list_empty(&sinfo
->ro_bgs
))
9669 spin_lock(&sinfo
->lock
);
9670 list_for_each_entry(block_group
, &sinfo
->ro_bgs
, ro_list
) {
9671 spin_lock(&block_group
->lock
);
9673 if (!block_group
->ro
) {
9674 spin_unlock(&block_group
->lock
);
9678 if (block_group
->flags
& (BTRFS_BLOCK_GROUP_RAID1
|
9679 BTRFS_BLOCK_GROUP_RAID10
|
9680 BTRFS_BLOCK_GROUP_DUP
))
9685 free_bytes
+= (block_group
->key
.offset
-
9686 btrfs_block_group_used(&block_group
->item
)) *
9689 spin_unlock(&block_group
->lock
);
9691 spin_unlock(&sinfo
->lock
);
9696 void btrfs_dec_block_group_ro(struct btrfs_root
*root
,
9697 struct btrfs_block_group_cache
*cache
)
9699 struct btrfs_space_info
*sinfo
= cache
->space_info
;
9704 spin_lock(&sinfo
->lock
);
9705 spin_lock(&cache
->lock
);
9707 num_bytes
= cache
->key
.offset
- cache
->reserved
-
9708 cache
->pinned
- cache
->bytes_super
-
9709 btrfs_block_group_used(&cache
->item
);
9710 sinfo
->bytes_readonly
-= num_bytes
;
9711 list_del_init(&cache
->ro_list
);
9713 spin_unlock(&cache
->lock
);
9714 spin_unlock(&sinfo
->lock
);
9718 * checks to see if its even possible to relocate this block group.
9720 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9721 * ok to go ahead and try.
9723 int btrfs_can_relocate(struct btrfs_root
*root
, u64 bytenr
)
9725 struct btrfs_block_group_cache
*block_group
;
9726 struct btrfs_space_info
*space_info
;
9727 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
9728 struct btrfs_device
*device
;
9729 struct btrfs_trans_handle
*trans
;
9739 debug
= btrfs_test_opt(root
->fs_info
, ENOSPC_DEBUG
);
9741 block_group
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
9743 /* odd, couldn't find the block group, leave it alone */
9746 btrfs_warn(root
->fs_info
,
9747 "can't find block group for bytenr %llu",
9752 min_free
= btrfs_block_group_used(&block_group
->item
);
9754 /* no bytes used, we're good */
9758 space_info
= block_group
->space_info
;
9759 spin_lock(&space_info
->lock
);
9761 full
= space_info
->full
;
9764 * if this is the last block group we have in this space, we can't
9765 * relocate it unless we're able to allocate a new chunk below.
9767 * Otherwise, we need to make sure we have room in the space to handle
9768 * all of the extents from this block group. If we can, we're good
9770 if ((space_info
->total_bytes
!= block_group
->key
.offset
) &&
9771 (space_info
->bytes_used
+ space_info
->bytes_reserved
+
9772 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
9773 min_free
< space_info
->total_bytes
)) {
9774 spin_unlock(&space_info
->lock
);
9777 spin_unlock(&space_info
->lock
);
9780 * ok we don't have enough space, but maybe we have free space on our
9781 * devices to allocate new chunks for relocation, so loop through our
9782 * alloc devices and guess if we have enough space. if this block
9783 * group is going to be restriped, run checks against the target
9784 * profile instead of the current one.
9796 target
= get_restripe_target(root
->fs_info
, block_group
->flags
);
9798 index
= __get_raid_index(extended_to_chunk(target
));
9801 * this is just a balance, so if we were marked as full
9802 * we know there is no space for a new chunk
9806 btrfs_warn(root
->fs_info
,
9807 "no space to alloc new chunk for block group %llu",
9808 block_group
->key
.objectid
);
9812 index
= get_block_group_index(block_group
);
9815 if (index
== BTRFS_RAID_RAID10
) {
9819 } else if (index
== BTRFS_RAID_RAID1
) {
9821 } else if (index
== BTRFS_RAID_DUP
) {
9824 } else if (index
== BTRFS_RAID_RAID0
) {
9825 dev_min
= fs_devices
->rw_devices
;
9826 min_free
= div64_u64(min_free
, dev_min
);
9829 /* We need to do this so that we can look at pending chunks */
9830 trans
= btrfs_join_transaction(root
);
9831 if (IS_ERR(trans
)) {
9832 ret
= PTR_ERR(trans
);
9836 mutex_lock(&root
->fs_info
->chunk_mutex
);
9837 list_for_each_entry(device
, &fs_devices
->alloc_list
, dev_alloc_list
) {
9841 * check to make sure we can actually find a chunk with enough
9842 * space to fit our block group in.
9844 if (device
->total_bytes
> device
->bytes_used
+ min_free
&&
9845 !device
->is_tgtdev_for_dev_replace
) {
9846 ret
= find_free_dev_extent(trans
, device
, min_free
,
9851 if (dev_nr
>= dev_min
)
9857 if (debug
&& ret
== -1)
9858 btrfs_warn(root
->fs_info
,
9859 "no space to allocate a new chunk for block group %llu",
9860 block_group
->key
.objectid
);
9861 mutex_unlock(&root
->fs_info
->chunk_mutex
);
9862 btrfs_end_transaction(trans
, root
);
9864 btrfs_put_block_group(block_group
);
9868 static int find_first_block_group(struct btrfs_root
*root
,
9869 struct btrfs_path
*path
, struct btrfs_key
*key
)
9872 struct btrfs_key found_key
;
9873 struct extent_buffer
*leaf
;
9876 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
9881 slot
= path
->slots
[0];
9882 leaf
= path
->nodes
[0];
9883 if (slot
>= btrfs_header_nritems(leaf
)) {
9884 ret
= btrfs_next_leaf(root
, path
);
9891 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
9893 if (found_key
.objectid
>= key
->objectid
&&
9894 found_key
.type
== BTRFS_BLOCK_GROUP_ITEM_KEY
) {
9895 struct extent_map_tree
*em_tree
;
9896 struct extent_map
*em
;
9898 em_tree
= &root
->fs_info
->mapping_tree
.map_tree
;
9899 read_lock(&em_tree
->lock
);
9900 em
= lookup_extent_mapping(em_tree
, found_key
.objectid
,
9902 read_unlock(&em_tree
->lock
);
9904 btrfs_err(root
->fs_info
,
9905 "logical %llu len %llu found bg but no related chunk",
9906 found_key
.objectid
, found_key
.offset
);
9911 free_extent_map(em
);
9920 void btrfs_put_block_group_cache(struct btrfs_fs_info
*info
)
9922 struct btrfs_block_group_cache
*block_group
;
9926 struct inode
*inode
;
9928 block_group
= btrfs_lookup_first_block_group(info
, last
);
9929 while (block_group
) {
9930 spin_lock(&block_group
->lock
);
9931 if (block_group
->iref
)
9933 spin_unlock(&block_group
->lock
);
9934 block_group
= next_block_group(info
->tree_root
,
9944 inode
= block_group
->inode
;
9945 block_group
->iref
= 0;
9946 block_group
->inode
= NULL
;
9947 spin_unlock(&block_group
->lock
);
9948 ASSERT(block_group
->io_ctl
.inode
== NULL
);
9950 last
= block_group
->key
.objectid
+ block_group
->key
.offset
;
9951 btrfs_put_block_group(block_group
);
9955 int btrfs_free_block_groups(struct btrfs_fs_info
*info
)
9957 struct btrfs_block_group_cache
*block_group
;
9958 struct btrfs_space_info
*space_info
;
9959 struct btrfs_caching_control
*caching_ctl
;
9962 down_write(&info
->commit_root_sem
);
9963 while (!list_empty(&info
->caching_block_groups
)) {
9964 caching_ctl
= list_entry(info
->caching_block_groups
.next
,
9965 struct btrfs_caching_control
, list
);
9966 list_del(&caching_ctl
->list
);
9967 put_caching_control(caching_ctl
);
9969 up_write(&info
->commit_root_sem
);
9971 spin_lock(&info
->unused_bgs_lock
);
9972 while (!list_empty(&info
->unused_bgs
)) {
9973 block_group
= list_first_entry(&info
->unused_bgs
,
9974 struct btrfs_block_group_cache
,
9976 list_del_init(&block_group
->bg_list
);
9977 btrfs_put_block_group(block_group
);
9979 spin_unlock(&info
->unused_bgs_lock
);
9981 spin_lock(&info
->block_group_cache_lock
);
9982 while ((n
= rb_last(&info
->block_group_cache_tree
)) != NULL
) {
9983 block_group
= rb_entry(n
, struct btrfs_block_group_cache
,
9985 rb_erase(&block_group
->cache_node
,
9986 &info
->block_group_cache_tree
);
9987 RB_CLEAR_NODE(&block_group
->cache_node
);
9988 spin_unlock(&info
->block_group_cache_lock
);
9990 down_write(&block_group
->space_info
->groups_sem
);
9991 list_del(&block_group
->list
);
9992 up_write(&block_group
->space_info
->groups_sem
);
9994 if (block_group
->cached
== BTRFS_CACHE_STARTED
)
9995 wait_block_group_cache_done(block_group
);
9998 * We haven't cached this block group, which means we could
9999 * possibly have excluded extents on this block group.
10001 if (block_group
->cached
== BTRFS_CACHE_NO
||
10002 block_group
->cached
== BTRFS_CACHE_ERROR
)
10003 free_excluded_extents(info
->extent_root
, block_group
);
10005 btrfs_remove_free_space_cache(block_group
);
10006 ASSERT(list_empty(&block_group
->dirty_list
));
10007 ASSERT(list_empty(&block_group
->io_list
));
10008 ASSERT(list_empty(&block_group
->bg_list
));
10009 ASSERT(atomic_read(&block_group
->count
) == 1);
10010 btrfs_put_block_group(block_group
);
10012 spin_lock(&info
->block_group_cache_lock
);
10014 spin_unlock(&info
->block_group_cache_lock
);
10016 /* now that all the block groups are freed, go through and
10017 * free all the space_info structs. This is only called during
10018 * the final stages of unmount, and so we know nobody is
10019 * using them. We call synchronize_rcu() once before we start,
10020 * just to be on the safe side.
10024 release_global_block_rsv(info
);
10026 while (!list_empty(&info
->space_info
)) {
10029 space_info
= list_entry(info
->space_info
.next
,
10030 struct btrfs_space_info
,
10034 * Do not hide this behind enospc_debug, this is actually
10035 * important and indicates a real bug if this happens.
10037 if (WARN_ON(space_info
->bytes_pinned
> 0 ||
10038 space_info
->bytes_reserved
> 0 ||
10039 space_info
->bytes_may_use
> 0))
10040 dump_space_info(info
, space_info
, 0, 0);
10041 list_del(&space_info
->list
);
10042 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++) {
10043 struct kobject
*kobj
;
10044 kobj
= space_info
->block_group_kobjs
[i
];
10045 space_info
->block_group_kobjs
[i
] = NULL
;
10051 kobject_del(&space_info
->kobj
);
10052 kobject_put(&space_info
->kobj
);
10057 static void __link_block_group(struct btrfs_space_info
*space_info
,
10058 struct btrfs_block_group_cache
*cache
)
10060 int index
= get_block_group_index(cache
);
10061 bool first
= false;
10063 down_write(&space_info
->groups_sem
);
10064 if (list_empty(&space_info
->block_groups
[index
]))
10066 list_add_tail(&cache
->list
, &space_info
->block_groups
[index
]);
10067 up_write(&space_info
->groups_sem
);
10070 struct raid_kobject
*rkobj
;
10073 rkobj
= kzalloc(sizeof(*rkobj
), GFP_NOFS
);
10076 rkobj
->raid_type
= index
;
10077 kobject_init(&rkobj
->kobj
, &btrfs_raid_ktype
);
10078 ret
= kobject_add(&rkobj
->kobj
, &space_info
->kobj
,
10079 "%s", get_raid_name(index
));
10081 kobject_put(&rkobj
->kobj
);
10084 space_info
->block_group_kobjs
[index
] = &rkobj
->kobj
;
10089 btrfs_warn(cache
->fs_info
,
10090 "failed to add kobject for block cache, ignoring");
10093 static struct btrfs_block_group_cache
*
10094 btrfs_create_block_group_cache(struct btrfs_root
*root
, u64 start
, u64 size
)
10096 struct btrfs_block_group_cache
*cache
;
10098 cache
= kzalloc(sizeof(*cache
), GFP_NOFS
);
10102 cache
->free_space_ctl
= kzalloc(sizeof(*cache
->free_space_ctl
),
10104 if (!cache
->free_space_ctl
) {
10109 cache
->key
.objectid
= start
;
10110 cache
->key
.offset
= size
;
10111 cache
->key
.type
= BTRFS_BLOCK_GROUP_ITEM_KEY
;
10113 cache
->sectorsize
= root
->sectorsize
;
10114 cache
->fs_info
= root
->fs_info
;
10115 cache
->full_stripe_len
= btrfs_full_stripe_len(root
,
10116 &root
->fs_info
->mapping_tree
,
10118 set_free_space_tree_thresholds(cache
);
10120 atomic_set(&cache
->count
, 1);
10121 spin_lock_init(&cache
->lock
);
10122 init_rwsem(&cache
->data_rwsem
);
10123 INIT_LIST_HEAD(&cache
->list
);
10124 INIT_LIST_HEAD(&cache
->cluster_list
);
10125 INIT_LIST_HEAD(&cache
->bg_list
);
10126 INIT_LIST_HEAD(&cache
->ro_list
);
10127 INIT_LIST_HEAD(&cache
->dirty_list
);
10128 INIT_LIST_HEAD(&cache
->io_list
);
10129 btrfs_init_free_space_ctl(cache
);
10130 atomic_set(&cache
->trimming
, 0);
10131 mutex_init(&cache
->free_space_lock
);
10136 int btrfs_read_block_groups(struct btrfs_root
*root
)
10138 struct btrfs_path
*path
;
10140 struct btrfs_block_group_cache
*cache
;
10141 struct btrfs_fs_info
*info
= root
->fs_info
;
10142 struct btrfs_space_info
*space_info
;
10143 struct btrfs_key key
;
10144 struct btrfs_key found_key
;
10145 struct extent_buffer
*leaf
;
10146 int need_clear
= 0;
10151 feature
= btrfs_super_incompat_flags(info
->super_copy
);
10152 mixed
= !!(feature
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
);
10154 root
= info
->extent_root
;
10157 key
.type
= BTRFS_BLOCK_GROUP_ITEM_KEY
;
10158 path
= btrfs_alloc_path();
10161 path
->reada
= READA_FORWARD
;
10163 cache_gen
= btrfs_super_cache_generation(root
->fs_info
->super_copy
);
10164 if (btrfs_test_opt(root
->fs_info
, SPACE_CACHE
) &&
10165 btrfs_super_generation(root
->fs_info
->super_copy
) != cache_gen
)
10167 if (btrfs_test_opt(root
->fs_info
, CLEAR_CACHE
))
10171 ret
= find_first_block_group(root
, path
, &key
);
10177 leaf
= path
->nodes
[0];
10178 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
10180 cache
= btrfs_create_block_group_cache(root
, found_key
.objectid
,
10189 * When we mount with old space cache, we need to
10190 * set BTRFS_DC_CLEAR and set dirty flag.
10192 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10193 * truncate the old free space cache inode and
10195 * b) Setting 'dirty flag' makes sure that we flush
10196 * the new space cache info onto disk.
10198 if (btrfs_test_opt(root
->fs_info
, SPACE_CACHE
))
10199 cache
->disk_cache_state
= BTRFS_DC_CLEAR
;
10202 read_extent_buffer(leaf
, &cache
->item
,
10203 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
10204 sizeof(cache
->item
));
10205 cache
->flags
= btrfs_block_group_flags(&cache
->item
);
10207 ((cache
->flags
& BTRFS_BLOCK_GROUP_METADATA
) &&
10208 (cache
->flags
& BTRFS_BLOCK_GROUP_DATA
))) {
10210 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10211 cache
->key
.objectid
);
10216 key
.objectid
= found_key
.objectid
+ found_key
.offset
;
10217 btrfs_release_path(path
);
10220 * We need to exclude the super stripes now so that the space
10221 * info has super bytes accounted for, otherwise we'll think
10222 * we have more space than we actually do.
10224 ret
= exclude_super_stripes(root
, cache
);
10227 * We may have excluded something, so call this just in
10230 free_excluded_extents(root
, cache
);
10231 btrfs_put_block_group(cache
);
10236 * check for two cases, either we are full, and therefore
10237 * don't need to bother with the caching work since we won't
10238 * find any space, or we are empty, and we can just add all
10239 * the space in and be done with it. This saves us _alot_ of
10240 * time, particularly in the full case.
10242 if (found_key
.offset
== btrfs_block_group_used(&cache
->item
)) {
10243 cache
->last_byte_to_unpin
= (u64
)-1;
10244 cache
->cached
= BTRFS_CACHE_FINISHED
;
10245 free_excluded_extents(root
, cache
);
10246 } else if (btrfs_block_group_used(&cache
->item
) == 0) {
10247 cache
->last_byte_to_unpin
= (u64
)-1;
10248 cache
->cached
= BTRFS_CACHE_FINISHED
;
10249 add_new_free_space(cache
, root
->fs_info
,
10250 found_key
.objectid
,
10251 found_key
.objectid
+
10253 free_excluded_extents(root
, cache
);
10256 ret
= btrfs_add_block_group_cache(root
->fs_info
, cache
);
10258 btrfs_remove_free_space_cache(cache
);
10259 btrfs_put_block_group(cache
);
10263 trace_btrfs_add_block_group(root
->fs_info
, cache
, 0);
10264 ret
= update_space_info(info
, cache
->flags
, found_key
.offset
,
10265 btrfs_block_group_used(&cache
->item
),
10266 cache
->bytes_super
, &space_info
);
10268 btrfs_remove_free_space_cache(cache
);
10269 spin_lock(&info
->block_group_cache_lock
);
10270 rb_erase(&cache
->cache_node
,
10271 &info
->block_group_cache_tree
);
10272 RB_CLEAR_NODE(&cache
->cache_node
);
10273 spin_unlock(&info
->block_group_cache_lock
);
10274 btrfs_put_block_group(cache
);
10278 cache
->space_info
= space_info
;
10280 __link_block_group(space_info
, cache
);
10282 set_avail_alloc_bits(root
->fs_info
, cache
->flags
);
10283 if (btrfs_chunk_readonly(root
, cache
->key
.objectid
)) {
10284 inc_block_group_ro(cache
, 1);
10285 } else if (btrfs_block_group_used(&cache
->item
) == 0) {
10286 spin_lock(&info
->unused_bgs_lock
);
10287 /* Should always be true but just in case. */
10288 if (list_empty(&cache
->bg_list
)) {
10289 btrfs_get_block_group(cache
);
10290 list_add_tail(&cache
->bg_list
,
10291 &info
->unused_bgs
);
10293 spin_unlock(&info
->unused_bgs_lock
);
10297 list_for_each_entry_rcu(space_info
, &root
->fs_info
->space_info
, list
) {
10298 if (!(get_alloc_profile(root
, space_info
->flags
) &
10299 (BTRFS_BLOCK_GROUP_RAID10
|
10300 BTRFS_BLOCK_GROUP_RAID1
|
10301 BTRFS_BLOCK_GROUP_RAID5
|
10302 BTRFS_BLOCK_GROUP_RAID6
|
10303 BTRFS_BLOCK_GROUP_DUP
)))
10306 * avoid allocating from un-mirrored block group if there are
10307 * mirrored block groups.
10309 list_for_each_entry(cache
,
10310 &space_info
->block_groups
[BTRFS_RAID_RAID0
],
10312 inc_block_group_ro(cache
, 1);
10313 list_for_each_entry(cache
,
10314 &space_info
->block_groups
[BTRFS_RAID_SINGLE
],
10316 inc_block_group_ro(cache
, 1);
10319 init_global_block_rsv(info
);
10322 btrfs_free_path(path
);
10326 void btrfs_create_pending_block_groups(struct btrfs_trans_handle
*trans
,
10327 struct btrfs_root
*root
)
10329 struct btrfs_block_group_cache
*block_group
, *tmp
;
10330 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
10331 struct btrfs_block_group_item item
;
10332 struct btrfs_key key
;
10334 bool can_flush_pending_bgs
= trans
->can_flush_pending_bgs
;
10336 trans
->can_flush_pending_bgs
= false;
10337 list_for_each_entry_safe(block_group
, tmp
, &trans
->new_bgs
, bg_list
) {
10341 spin_lock(&block_group
->lock
);
10342 memcpy(&item
, &block_group
->item
, sizeof(item
));
10343 memcpy(&key
, &block_group
->key
, sizeof(key
));
10344 spin_unlock(&block_group
->lock
);
10346 ret
= btrfs_insert_item(trans
, extent_root
, &key
, &item
,
10349 btrfs_abort_transaction(trans
, ret
);
10350 ret
= btrfs_finish_chunk_alloc(trans
, extent_root
,
10351 key
.objectid
, key
.offset
);
10353 btrfs_abort_transaction(trans
, ret
);
10354 add_block_group_free_space(trans
, root
->fs_info
, block_group
);
10355 /* already aborted the transaction if it failed. */
10357 list_del_init(&block_group
->bg_list
);
10359 trans
->can_flush_pending_bgs
= can_flush_pending_bgs
;
10362 int btrfs_make_block_group(struct btrfs_trans_handle
*trans
,
10363 struct btrfs_root
*root
, u64 bytes_used
,
10364 u64 type
, u64 chunk_objectid
, u64 chunk_offset
,
10368 struct btrfs_root
*extent_root
;
10369 struct btrfs_block_group_cache
*cache
;
10370 extent_root
= root
->fs_info
->extent_root
;
10372 btrfs_set_log_full_commit(root
->fs_info
, trans
);
10374 cache
= btrfs_create_block_group_cache(root
, chunk_offset
, size
);
10378 btrfs_set_block_group_used(&cache
->item
, bytes_used
);
10379 btrfs_set_block_group_chunk_objectid(&cache
->item
, chunk_objectid
);
10380 btrfs_set_block_group_flags(&cache
->item
, type
);
10382 cache
->flags
= type
;
10383 cache
->last_byte_to_unpin
= (u64
)-1;
10384 cache
->cached
= BTRFS_CACHE_FINISHED
;
10385 cache
->needs_free_space
= 1;
10386 ret
= exclude_super_stripes(root
, cache
);
10389 * We may have excluded something, so call this just in
10392 free_excluded_extents(root
, cache
);
10393 btrfs_put_block_group(cache
);
10397 add_new_free_space(cache
, root
->fs_info
, chunk_offset
,
10398 chunk_offset
+ size
);
10400 free_excluded_extents(root
, cache
);
10402 #ifdef CONFIG_BTRFS_DEBUG
10403 if (btrfs_should_fragment_free_space(root
, cache
)) {
10404 u64 new_bytes_used
= size
- bytes_used
;
10406 bytes_used
+= new_bytes_used
>> 1;
10407 fragment_free_space(root
, cache
);
10411 * Call to ensure the corresponding space_info object is created and
10412 * assigned to our block group, but don't update its counters just yet.
10413 * We want our bg to be added to the rbtree with its ->space_info set.
10415 ret
= update_space_info(root
->fs_info
, cache
->flags
, 0, 0, 0,
10416 &cache
->space_info
);
10418 btrfs_remove_free_space_cache(cache
);
10419 btrfs_put_block_group(cache
);
10423 ret
= btrfs_add_block_group_cache(root
->fs_info
, cache
);
10425 btrfs_remove_free_space_cache(cache
);
10426 btrfs_put_block_group(cache
);
10431 * Now that our block group has its ->space_info set and is inserted in
10432 * the rbtree, update the space info's counters.
10434 trace_btrfs_add_block_group(root
->fs_info
, cache
, 1);
10435 ret
= update_space_info(root
->fs_info
, cache
->flags
, size
, bytes_used
,
10436 cache
->bytes_super
, &cache
->space_info
);
10438 btrfs_remove_free_space_cache(cache
);
10439 spin_lock(&root
->fs_info
->block_group_cache_lock
);
10440 rb_erase(&cache
->cache_node
,
10441 &root
->fs_info
->block_group_cache_tree
);
10442 RB_CLEAR_NODE(&cache
->cache_node
);
10443 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
10444 btrfs_put_block_group(cache
);
10447 update_global_block_rsv(root
->fs_info
);
10449 __link_block_group(cache
->space_info
, cache
);
10451 list_add_tail(&cache
->bg_list
, &trans
->new_bgs
);
10453 set_avail_alloc_bits(extent_root
->fs_info
, type
);
10457 static void clear_avail_alloc_bits(struct btrfs_fs_info
*fs_info
, u64 flags
)
10459 u64 extra_flags
= chunk_to_extended(flags
) &
10460 BTRFS_EXTENDED_PROFILE_MASK
;
10462 write_seqlock(&fs_info
->profiles_lock
);
10463 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
10464 fs_info
->avail_data_alloc_bits
&= ~extra_flags
;
10465 if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
10466 fs_info
->avail_metadata_alloc_bits
&= ~extra_flags
;
10467 if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
10468 fs_info
->avail_system_alloc_bits
&= ~extra_flags
;
10469 write_sequnlock(&fs_info
->profiles_lock
);
10472 int btrfs_remove_block_group(struct btrfs_trans_handle
*trans
,
10473 struct btrfs_root
*root
, u64 group_start
,
10474 struct extent_map
*em
)
10476 struct btrfs_path
*path
;
10477 struct btrfs_block_group_cache
*block_group
;
10478 struct btrfs_free_cluster
*cluster
;
10479 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
10480 struct btrfs_key key
;
10481 struct inode
*inode
;
10482 struct kobject
*kobj
= NULL
;
10486 struct btrfs_caching_control
*caching_ctl
= NULL
;
10489 root
= root
->fs_info
->extent_root
;
10491 block_group
= btrfs_lookup_block_group(root
->fs_info
, group_start
);
10492 BUG_ON(!block_group
);
10493 BUG_ON(!block_group
->ro
);
10496 * Free the reserved super bytes from this block group before
10499 free_excluded_extents(root
, block_group
);
10501 memcpy(&key
, &block_group
->key
, sizeof(key
));
10502 index
= get_block_group_index(block_group
);
10503 if (block_group
->flags
& (BTRFS_BLOCK_GROUP_DUP
|
10504 BTRFS_BLOCK_GROUP_RAID1
|
10505 BTRFS_BLOCK_GROUP_RAID10
))
10510 /* make sure this block group isn't part of an allocation cluster */
10511 cluster
= &root
->fs_info
->data_alloc_cluster
;
10512 spin_lock(&cluster
->refill_lock
);
10513 btrfs_return_cluster_to_free_space(block_group
, cluster
);
10514 spin_unlock(&cluster
->refill_lock
);
10517 * make sure this block group isn't part of a metadata
10518 * allocation cluster
10520 cluster
= &root
->fs_info
->meta_alloc_cluster
;
10521 spin_lock(&cluster
->refill_lock
);
10522 btrfs_return_cluster_to_free_space(block_group
, cluster
);
10523 spin_unlock(&cluster
->refill_lock
);
10525 path
= btrfs_alloc_path();
10532 * get the inode first so any iput calls done for the io_list
10533 * aren't the final iput (no unlinks allowed now)
10535 inode
= lookup_free_space_inode(tree_root
, block_group
, path
);
10537 mutex_lock(&trans
->transaction
->cache_write_mutex
);
10539 * make sure our free spache cache IO is done before remove the
10542 spin_lock(&trans
->transaction
->dirty_bgs_lock
);
10543 if (!list_empty(&block_group
->io_list
)) {
10544 list_del_init(&block_group
->io_list
);
10546 WARN_ON(!IS_ERR(inode
) && inode
!= block_group
->io_ctl
.inode
);
10548 spin_unlock(&trans
->transaction
->dirty_bgs_lock
);
10549 btrfs_wait_cache_io(root
, trans
, block_group
,
10550 &block_group
->io_ctl
, path
,
10551 block_group
->key
.objectid
);
10552 btrfs_put_block_group(block_group
);
10553 spin_lock(&trans
->transaction
->dirty_bgs_lock
);
10556 if (!list_empty(&block_group
->dirty_list
)) {
10557 list_del_init(&block_group
->dirty_list
);
10558 btrfs_put_block_group(block_group
);
10560 spin_unlock(&trans
->transaction
->dirty_bgs_lock
);
10561 mutex_unlock(&trans
->transaction
->cache_write_mutex
);
10563 if (!IS_ERR(inode
)) {
10564 ret
= btrfs_orphan_add(trans
, inode
);
10566 btrfs_add_delayed_iput(inode
);
10569 clear_nlink(inode
);
10570 /* One for the block groups ref */
10571 spin_lock(&block_group
->lock
);
10572 if (block_group
->iref
) {
10573 block_group
->iref
= 0;
10574 block_group
->inode
= NULL
;
10575 spin_unlock(&block_group
->lock
);
10578 spin_unlock(&block_group
->lock
);
10580 /* One for our lookup ref */
10581 btrfs_add_delayed_iput(inode
);
10584 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
10585 key
.offset
= block_group
->key
.objectid
;
10588 ret
= btrfs_search_slot(trans
, tree_root
, &key
, path
, -1, 1);
10592 btrfs_release_path(path
);
10594 ret
= btrfs_del_item(trans
, tree_root
, path
);
10597 btrfs_release_path(path
);
10600 spin_lock(&root
->fs_info
->block_group_cache_lock
);
10601 rb_erase(&block_group
->cache_node
,
10602 &root
->fs_info
->block_group_cache_tree
);
10603 RB_CLEAR_NODE(&block_group
->cache_node
);
10605 if (root
->fs_info
->first_logical_byte
== block_group
->key
.objectid
)
10606 root
->fs_info
->first_logical_byte
= (u64
)-1;
10607 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
10609 down_write(&block_group
->space_info
->groups_sem
);
10611 * we must use list_del_init so people can check to see if they
10612 * are still on the list after taking the semaphore
10614 list_del_init(&block_group
->list
);
10615 if (list_empty(&block_group
->space_info
->block_groups
[index
])) {
10616 kobj
= block_group
->space_info
->block_group_kobjs
[index
];
10617 block_group
->space_info
->block_group_kobjs
[index
] = NULL
;
10618 clear_avail_alloc_bits(root
->fs_info
, block_group
->flags
);
10620 up_write(&block_group
->space_info
->groups_sem
);
10626 if (block_group
->has_caching_ctl
)
10627 caching_ctl
= get_caching_control(block_group
);
10628 if (block_group
->cached
== BTRFS_CACHE_STARTED
)
10629 wait_block_group_cache_done(block_group
);
10630 if (block_group
->has_caching_ctl
) {
10631 down_write(&root
->fs_info
->commit_root_sem
);
10632 if (!caching_ctl
) {
10633 struct btrfs_caching_control
*ctl
;
10635 list_for_each_entry(ctl
,
10636 &root
->fs_info
->caching_block_groups
, list
)
10637 if (ctl
->block_group
== block_group
) {
10639 atomic_inc(&caching_ctl
->count
);
10644 list_del_init(&caching_ctl
->list
);
10645 up_write(&root
->fs_info
->commit_root_sem
);
10647 /* Once for the caching bgs list and once for us. */
10648 put_caching_control(caching_ctl
);
10649 put_caching_control(caching_ctl
);
10653 spin_lock(&trans
->transaction
->dirty_bgs_lock
);
10654 if (!list_empty(&block_group
->dirty_list
)) {
10657 if (!list_empty(&block_group
->io_list
)) {
10660 spin_unlock(&trans
->transaction
->dirty_bgs_lock
);
10661 btrfs_remove_free_space_cache(block_group
);
10663 spin_lock(&block_group
->space_info
->lock
);
10664 list_del_init(&block_group
->ro_list
);
10666 if (btrfs_test_opt(root
->fs_info
, ENOSPC_DEBUG
)) {
10667 WARN_ON(block_group
->space_info
->total_bytes
10668 < block_group
->key
.offset
);
10669 WARN_ON(block_group
->space_info
->bytes_readonly
10670 < block_group
->key
.offset
);
10671 WARN_ON(block_group
->space_info
->disk_total
10672 < block_group
->key
.offset
* factor
);
10674 block_group
->space_info
->total_bytes
-= block_group
->key
.offset
;
10675 block_group
->space_info
->bytes_readonly
-= block_group
->key
.offset
;
10676 block_group
->space_info
->disk_total
-= block_group
->key
.offset
* factor
;
10678 spin_unlock(&block_group
->space_info
->lock
);
10680 memcpy(&key
, &block_group
->key
, sizeof(key
));
10683 if (!list_empty(&em
->list
)) {
10684 /* We're in the transaction->pending_chunks list. */
10685 free_extent_map(em
);
10687 spin_lock(&block_group
->lock
);
10688 block_group
->removed
= 1;
10690 * At this point trimming can't start on this block group, because we
10691 * removed the block group from the tree fs_info->block_group_cache_tree
10692 * so no one can't find it anymore and even if someone already got this
10693 * block group before we removed it from the rbtree, they have already
10694 * incremented block_group->trimming - if they didn't, they won't find
10695 * any free space entries because we already removed them all when we
10696 * called btrfs_remove_free_space_cache().
10698 * And we must not remove the extent map from the fs_info->mapping_tree
10699 * to prevent the same logical address range and physical device space
10700 * ranges from being reused for a new block group. This is because our
10701 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10702 * completely transactionless, so while it is trimming a range the
10703 * currently running transaction might finish and a new one start,
10704 * allowing for new block groups to be created that can reuse the same
10705 * physical device locations unless we take this special care.
10707 * There may also be an implicit trim operation if the file system
10708 * is mounted with -odiscard. The same protections must remain
10709 * in place until the extents have been discarded completely when
10710 * the transaction commit has completed.
10712 remove_em
= (atomic_read(&block_group
->trimming
) == 0);
10714 * Make sure a trimmer task always sees the em in the pinned_chunks list
10715 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10716 * before checking block_group->removed).
10720 * Our em might be in trans->transaction->pending_chunks which
10721 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10722 * and so is the fs_info->pinned_chunks list.
10724 * So at this point we must be holding the chunk_mutex to avoid
10725 * any races with chunk allocation (more specifically at
10726 * volumes.c:contains_pending_extent()), to ensure it always
10727 * sees the em, either in the pending_chunks list or in the
10728 * pinned_chunks list.
10730 list_move_tail(&em
->list
, &root
->fs_info
->pinned_chunks
);
10732 spin_unlock(&block_group
->lock
);
10735 struct extent_map_tree
*em_tree
;
10737 em_tree
= &root
->fs_info
->mapping_tree
.map_tree
;
10738 write_lock(&em_tree
->lock
);
10740 * The em might be in the pending_chunks list, so make sure the
10741 * chunk mutex is locked, since remove_extent_mapping() will
10742 * delete us from that list.
10744 remove_extent_mapping(em_tree
, em
);
10745 write_unlock(&em_tree
->lock
);
10746 /* once for the tree */
10747 free_extent_map(em
);
10750 unlock_chunks(root
);
10752 ret
= remove_block_group_free_space(trans
, root
->fs_info
, block_group
);
10756 btrfs_put_block_group(block_group
);
10757 btrfs_put_block_group(block_group
);
10759 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
10765 ret
= btrfs_del_item(trans
, root
, path
);
10767 btrfs_free_path(path
);
10771 struct btrfs_trans_handle
*
10772 btrfs_start_trans_remove_block_group(struct btrfs_fs_info
*fs_info
,
10773 const u64 chunk_offset
)
10775 struct extent_map_tree
*em_tree
= &fs_info
->mapping_tree
.map_tree
;
10776 struct extent_map
*em
;
10777 struct map_lookup
*map
;
10778 unsigned int num_items
;
10780 read_lock(&em_tree
->lock
);
10781 em
= lookup_extent_mapping(em_tree
, chunk_offset
, 1);
10782 read_unlock(&em_tree
->lock
);
10783 ASSERT(em
&& em
->start
== chunk_offset
);
10786 * We need to reserve 3 + N units from the metadata space info in order
10787 * to remove a block group (done at btrfs_remove_chunk() and at
10788 * btrfs_remove_block_group()), which are used for:
10790 * 1 unit for adding the free space inode's orphan (located in the tree
10792 * 1 unit for deleting the block group item (located in the extent
10794 * 1 unit for deleting the free space item (located in tree of tree
10796 * N units for deleting N device extent items corresponding to each
10797 * stripe (located in the device tree).
10799 * In order to remove a block group we also need to reserve units in the
10800 * system space info in order to update the chunk tree (update one or
10801 * more device items and remove one chunk item), but this is done at
10802 * btrfs_remove_chunk() through a call to check_system_chunk().
10804 map
= em
->map_lookup
;
10805 num_items
= 3 + map
->num_stripes
;
10806 free_extent_map(em
);
10808 return btrfs_start_transaction_fallback_global_rsv(fs_info
->extent_root
,
10813 * Process the unused_bgs list and remove any that don't have any allocated
10814 * space inside of them.
10816 void btrfs_delete_unused_bgs(struct btrfs_fs_info
*fs_info
)
10818 struct btrfs_block_group_cache
*block_group
;
10819 struct btrfs_space_info
*space_info
;
10820 struct btrfs_root
*root
= fs_info
->extent_root
;
10821 struct btrfs_trans_handle
*trans
;
10824 if (!test_bit(BTRFS_FS_OPEN
, &fs_info
->flags
))
10827 spin_lock(&fs_info
->unused_bgs_lock
);
10828 while (!list_empty(&fs_info
->unused_bgs
)) {
10832 block_group
= list_first_entry(&fs_info
->unused_bgs
,
10833 struct btrfs_block_group_cache
,
10835 list_del_init(&block_group
->bg_list
);
10837 space_info
= block_group
->space_info
;
10839 if (ret
|| btrfs_mixed_space_info(space_info
)) {
10840 btrfs_put_block_group(block_group
);
10843 spin_unlock(&fs_info
->unused_bgs_lock
);
10845 mutex_lock(&fs_info
->delete_unused_bgs_mutex
);
10847 /* Don't want to race with allocators so take the groups_sem */
10848 down_write(&space_info
->groups_sem
);
10849 spin_lock(&block_group
->lock
);
10850 if (block_group
->reserved
||
10851 btrfs_block_group_used(&block_group
->item
) ||
10852 (block_group
->ro
&& !block_group
->removed
) ||
10853 list_is_singular(&block_group
->list
)) {
10855 * We want to bail if we made new allocations or have
10856 * outstanding allocations in this block group. We do
10857 * the ro check in case balance is currently acting on
10858 * this block group.
10860 spin_unlock(&block_group
->lock
);
10861 up_write(&space_info
->groups_sem
);
10864 spin_unlock(&block_group
->lock
);
10866 /* We don't want to force the issue, only flip if it's ok. */
10867 ret
= inc_block_group_ro(block_group
, 0);
10868 up_write(&space_info
->groups_sem
);
10875 * Want to do this before we do anything else so we can recover
10876 * properly if we fail to join the transaction.
10878 trans
= btrfs_start_trans_remove_block_group(fs_info
,
10879 block_group
->key
.objectid
);
10880 if (IS_ERR(trans
)) {
10881 btrfs_dec_block_group_ro(root
, block_group
);
10882 ret
= PTR_ERR(trans
);
10887 * We could have pending pinned extents for this block group,
10888 * just delete them, we don't care about them anymore.
10890 start
= block_group
->key
.objectid
;
10891 end
= start
+ block_group
->key
.offset
- 1;
10893 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10894 * btrfs_finish_extent_commit(). If we are at transaction N,
10895 * another task might be running finish_extent_commit() for the
10896 * previous transaction N - 1, and have seen a range belonging
10897 * to the block group in freed_extents[] before we were able to
10898 * clear the whole block group range from freed_extents[]. This
10899 * means that task can lookup for the block group after we
10900 * unpinned it from freed_extents[] and removed it, leading to
10901 * a BUG_ON() at btrfs_unpin_extent_range().
10903 mutex_lock(&fs_info
->unused_bg_unpin_mutex
);
10904 ret
= clear_extent_bits(&fs_info
->freed_extents
[0], start
, end
,
10907 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
10908 btrfs_dec_block_group_ro(root
, block_group
);
10911 ret
= clear_extent_bits(&fs_info
->freed_extents
[1], start
, end
,
10914 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
10915 btrfs_dec_block_group_ro(root
, block_group
);
10918 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
10920 /* Reset pinned so btrfs_put_block_group doesn't complain */
10921 spin_lock(&space_info
->lock
);
10922 spin_lock(&block_group
->lock
);
10924 space_info
->bytes_pinned
-= block_group
->pinned
;
10925 space_info
->bytes_readonly
+= block_group
->pinned
;
10926 percpu_counter_add(&space_info
->total_bytes_pinned
,
10927 -block_group
->pinned
);
10928 block_group
->pinned
= 0;
10930 spin_unlock(&block_group
->lock
);
10931 spin_unlock(&space_info
->lock
);
10933 /* DISCARD can flip during remount */
10934 trimming
= btrfs_test_opt(root
->fs_info
, DISCARD
);
10936 /* Implicit trim during transaction commit. */
10938 btrfs_get_block_group_trimming(block_group
);
10941 * Btrfs_remove_chunk will abort the transaction if things go
10944 ret
= btrfs_remove_chunk(trans
, root
,
10945 block_group
->key
.objectid
);
10949 btrfs_put_block_group_trimming(block_group
);
10954 * If we're not mounted with -odiscard, we can just forget
10955 * about this block group. Otherwise we'll need to wait
10956 * until transaction commit to do the actual discard.
10959 spin_lock(&fs_info
->unused_bgs_lock
);
10961 * A concurrent scrub might have added us to the list
10962 * fs_info->unused_bgs, so use a list_move operation
10963 * to add the block group to the deleted_bgs list.
10965 list_move(&block_group
->bg_list
,
10966 &trans
->transaction
->deleted_bgs
);
10967 spin_unlock(&fs_info
->unused_bgs_lock
);
10968 btrfs_get_block_group(block_group
);
10971 btrfs_end_transaction(trans
, root
);
10973 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
10974 btrfs_put_block_group(block_group
);
10975 spin_lock(&fs_info
->unused_bgs_lock
);
10977 spin_unlock(&fs_info
->unused_bgs_lock
);
10980 int btrfs_init_space_info(struct btrfs_fs_info
*fs_info
)
10982 struct btrfs_space_info
*space_info
;
10983 struct btrfs_super_block
*disk_super
;
10989 disk_super
= fs_info
->super_copy
;
10990 if (!btrfs_super_root(disk_super
))
10993 features
= btrfs_super_incompat_flags(disk_super
);
10994 if (features
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
)
10997 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
10998 ret
= update_space_info(fs_info
, flags
, 0, 0, 0, &space_info
);
11003 flags
= BTRFS_BLOCK_GROUP_METADATA
| BTRFS_BLOCK_GROUP_DATA
;
11004 ret
= update_space_info(fs_info
, flags
, 0, 0, 0, &space_info
);
11006 flags
= BTRFS_BLOCK_GROUP_METADATA
;
11007 ret
= update_space_info(fs_info
, flags
, 0, 0, 0, &space_info
);
11011 flags
= BTRFS_BLOCK_GROUP_DATA
;
11012 ret
= update_space_info(fs_info
, flags
, 0, 0, 0, &space_info
);
11018 int btrfs_error_unpin_extent_range(struct btrfs_root
*root
, u64 start
, u64 end
)
11020 return unpin_extent_range(root
, start
, end
, false);
11024 * It used to be that old block groups would be left around forever.
11025 * Iterating over them would be enough to trim unused space. Since we
11026 * now automatically remove them, we also need to iterate over unallocated
11029 * We don't want a transaction for this since the discard may take a
11030 * substantial amount of time. We don't require that a transaction be
11031 * running, but we do need to take a running transaction into account
11032 * to ensure that we're not discarding chunks that were released in
11033 * the current transaction.
11035 * Holding the chunks lock will prevent other threads from allocating
11036 * or releasing chunks, but it won't prevent a running transaction
11037 * from committing and releasing the memory that the pending chunks
11038 * list head uses. For that, we need to take a reference to the
11041 static int btrfs_trim_free_extents(struct btrfs_device
*device
,
11042 u64 minlen
, u64
*trimmed
)
11044 u64 start
= 0, len
= 0;
11049 /* Not writeable = nothing to do. */
11050 if (!device
->writeable
)
11053 /* No free space = nothing to do. */
11054 if (device
->total_bytes
<= device
->bytes_used
)
11060 struct btrfs_fs_info
*fs_info
= device
->dev_root
->fs_info
;
11061 struct btrfs_transaction
*trans
;
11064 ret
= mutex_lock_interruptible(&fs_info
->chunk_mutex
);
11068 down_read(&fs_info
->commit_root_sem
);
11070 spin_lock(&fs_info
->trans_lock
);
11071 trans
= fs_info
->running_transaction
;
11073 atomic_inc(&trans
->use_count
);
11074 spin_unlock(&fs_info
->trans_lock
);
11076 ret
= find_free_dev_extent_start(trans
, device
, minlen
, start
,
11079 btrfs_put_transaction(trans
);
11082 up_read(&fs_info
->commit_root_sem
);
11083 mutex_unlock(&fs_info
->chunk_mutex
);
11084 if (ret
== -ENOSPC
)
11089 ret
= btrfs_issue_discard(device
->bdev
, start
, len
, &bytes
);
11090 up_read(&fs_info
->commit_root_sem
);
11091 mutex_unlock(&fs_info
->chunk_mutex
);
11099 if (fatal_signal_pending(current
)) {
11100 ret
= -ERESTARTSYS
;
11110 int btrfs_trim_fs(struct btrfs_root
*root
, struct fstrim_range
*range
)
11112 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
11113 struct btrfs_block_group_cache
*cache
= NULL
;
11114 struct btrfs_device
*device
;
11115 struct list_head
*devices
;
11120 u64 total_bytes
= btrfs_super_total_bytes(fs_info
->super_copy
);
11124 * try to trim all FS space, our block group may start from non-zero.
11126 if (range
->len
== total_bytes
)
11127 cache
= btrfs_lookup_first_block_group(fs_info
, range
->start
);
11129 cache
= btrfs_lookup_block_group(fs_info
, range
->start
);
11132 if (cache
->key
.objectid
>= (range
->start
+ range
->len
)) {
11133 btrfs_put_block_group(cache
);
11137 start
= max(range
->start
, cache
->key
.objectid
);
11138 end
= min(range
->start
+ range
->len
,
11139 cache
->key
.objectid
+ cache
->key
.offset
);
11141 if (end
- start
>= range
->minlen
) {
11142 if (!block_group_cache_done(cache
)) {
11143 ret
= cache_block_group(cache
, 0);
11145 btrfs_put_block_group(cache
);
11148 ret
= wait_block_group_cache_done(cache
);
11150 btrfs_put_block_group(cache
);
11154 ret
= btrfs_trim_block_group(cache
,
11160 trimmed
+= group_trimmed
;
11162 btrfs_put_block_group(cache
);
11167 cache
= next_block_group(fs_info
->tree_root
, cache
);
11170 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
11171 devices
= &root
->fs_info
->fs_devices
->alloc_list
;
11172 list_for_each_entry(device
, devices
, dev_alloc_list
) {
11173 ret
= btrfs_trim_free_extents(device
, range
->minlen
,
11178 trimmed
+= group_trimmed
;
11180 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
11182 range
->len
= trimmed
;
11187 * btrfs_{start,end}_write_no_snapshoting() are similar to
11188 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11189 * data into the page cache through nocow before the subvolume is snapshoted,
11190 * but flush the data into disk after the snapshot creation, or to prevent
11191 * operations while snapshoting is ongoing and that cause the snapshot to be
11192 * inconsistent (writes followed by expanding truncates for example).
11194 void btrfs_end_write_no_snapshoting(struct btrfs_root
*root
)
11196 percpu_counter_dec(&root
->subv_writers
->counter
);
11198 * Make sure counter is updated before we wake up waiters.
11201 if (waitqueue_active(&root
->subv_writers
->wait
))
11202 wake_up(&root
->subv_writers
->wait
);
11205 int btrfs_start_write_no_snapshoting(struct btrfs_root
*root
)
11207 if (atomic_read(&root
->will_be_snapshoted
))
11210 percpu_counter_inc(&root
->subv_writers
->counter
);
11212 * Make sure counter is updated before we check for snapshot creation.
11215 if (atomic_read(&root
->will_be_snapshoted
)) {
11216 btrfs_end_write_no_snapshoting(root
);
11222 static int wait_snapshoting_atomic_t(atomic_t
*a
)
11228 void btrfs_wait_for_snapshot_creation(struct btrfs_root
*root
)
11233 ret
= btrfs_start_write_no_snapshoting(root
);
11236 wait_on_atomic_t(&root
->will_be_snapshoted
,
11237 wait_snapshoting_atomic_t
,
11238 TASK_UNINTERRUPTIBLE
);