2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/iocontext.h>
24 #include <linux/capability.h>
25 #include <linux/ratelimit.h>
26 #include <linux/kthread.h>
27 #include <linux/raid/pq.h>
28 #include <linux/semaphore.h>
29 #include <linux/uuid.h>
30 #include <asm/div64.h>
32 #include "extent_map.h"
34 #include "transaction.h"
35 #include "print-tree.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
42 #include "dev-replace.h"
45 const struct btrfs_raid_attr btrfs_raid_array
[BTRFS_NR_RAID_TYPES
] = {
46 [BTRFS_RAID_RAID10
] = {
49 .devs_max
= 0, /* 0 == as many as possible */
51 .tolerated_failures
= 1,
55 [BTRFS_RAID_RAID1
] = {
60 .tolerated_failures
= 1,
69 .tolerated_failures
= 0,
73 [BTRFS_RAID_RAID0
] = {
78 .tolerated_failures
= 0,
82 [BTRFS_RAID_SINGLE
] = {
87 .tolerated_failures
= 0,
91 [BTRFS_RAID_RAID5
] = {
96 .tolerated_failures
= 1,
100 [BTRFS_RAID_RAID6
] = {
105 .tolerated_failures
= 2,
111 const u64 btrfs_raid_group
[BTRFS_NR_RAID_TYPES
] = {
112 [BTRFS_RAID_RAID10
] = BTRFS_BLOCK_GROUP_RAID10
,
113 [BTRFS_RAID_RAID1
] = BTRFS_BLOCK_GROUP_RAID1
,
114 [BTRFS_RAID_DUP
] = BTRFS_BLOCK_GROUP_DUP
,
115 [BTRFS_RAID_RAID0
] = BTRFS_BLOCK_GROUP_RAID0
,
116 [BTRFS_RAID_SINGLE
] = 0,
117 [BTRFS_RAID_RAID5
] = BTRFS_BLOCK_GROUP_RAID5
,
118 [BTRFS_RAID_RAID6
] = BTRFS_BLOCK_GROUP_RAID6
,
122 * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123 * condition is not met. Zero means there's no corresponding
124 * BTRFS_ERROR_DEV_*_NOT_MET value.
126 const int btrfs_raid_mindev_error
[BTRFS_NR_RAID_TYPES
] = {
127 [BTRFS_RAID_RAID10
] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET
,
128 [BTRFS_RAID_RAID1
] = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET
,
129 [BTRFS_RAID_DUP
] = 0,
130 [BTRFS_RAID_RAID0
] = 0,
131 [BTRFS_RAID_SINGLE
] = 0,
132 [BTRFS_RAID_RAID5
] = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET
,
133 [BTRFS_RAID_RAID6
] = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET
,
136 static int init_first_rw_device(struct btrfs_trans_handle
*trans
,
137 struct btrfs_fs_info
*fs_info
);
138 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info
*fs_info
);
139 static void __btrfs_reset_dev_stats(struct btrfs_device
*dev
);
140 static void btrfs_dev_stat_print_on_error(struct btrfs_device
*dev
);
141 static void btrfs_dev_stat_print_on_load(struct btrfs_device
*device
);
143 DEFINE_MUTEX(uuid_mutex
);
144 static LIST_HEAD(fs_uuids
);
145 struct list_head
*btrfs_get_fs_uuids(void)
150 static struct btrfs_fs_devices
*__alloc_fs_devices(void)
152 struct btrfs_fs_devices
*fs_devs
;
154 fs_devs
= kzalloc(sizeof(*fs_devs
), GFP_KERNEL
);
156 return ERR_PTR(-ENOMEM
);
158 mutex_init(&fs_devs
->device_list_mutex
);
160 INIT_LIST_HEAD(&fs_devs
->devices
);
161 INIT_LIST_HEAD(&fs_devs
->resized_devices
);
162 INIT_LIST_HEAD(&fs_devs
->alloc_list
);
163 INIT_LIST_HEAD(&fs_devs
->list
);
169 * alloc_fs_devices - allocate struct btrfs_fs_devices
170 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
173 * Return: a pointer to a new &struct btrfs_fs_devices on success;
174 * ERR_PTR() on error. Returned struct is not linked onto any lists and
175 * can be destroyed with kfree() right away.
177 static struct btrfs_fs_devices
*alloc_fs_devices(const u8
*fsid
)
179 struct btrfs_fs_devices
*fs_devs
;
181 fs_devs
= __alloc_fs_devices();
186 memcpy(fs_devs
->fsid
, fsid
, BTRFS_FSID_SIZE
);
188 generate_random_uuid(fs_devs
->fsid
);
193 static void free_fs_devices(struct btrfs_fs_devices
*fs_devices
)
195 struct btrfs_device
*device
;
196 WARN_ON(fs_devices
->opened
);
197 while (!list_empty(&fs_devices
->devices
)) {
198 device
= list_entry(fs_devices
->devices
.next
,
199 struct btrfs_device
, dev_list
);
200 list_del(&device
->dev_list
);
201 rcu_string_free(device
->name
);
207 static void btrfs_kobject_uevent(struct block_device
*bdev
,
208 enum kobject_action action
)
212 ret
= kobject_uevent(&disk_to_dev(bdev
->bd_disk
)->kobj
, action
);
214 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
216 kobject_name(&disk_to_dev(bdev
->bd_disk
)->kobj
),
217 &disk_to_dev(bdev
->bd_disk
)->kobj
);
220 void btrfs_cleanup_fs_uuids(void)
222 struct btrfs_fs_devices
*fs_devices
;
224 while (!list_empty(&fs_uuids
)) {
225 fs_devices
= list_entry(fs_uuids
.next
,
226 struct btrfs_fs_devices
, list
);
227 list_del(&fs_devices
->list
);
228 free_fs_devices(fs_devices
);
232 static struct btrfs_device
*__alloc_device(void)
234 struct btrfs_device
*dev
;
236 dev
= kzalloc(sizeof(*dev
), GFP_KERNEL
);
238 return ERR_PTR(-ENOMEM
);
240 INIT_LIST_HEAD(&dev
->dev_list
);
241 INIT_LIST_HEAD(&dev
->dev_alloc_list
);
242 INIT_LIST_HEAD(&dev
->resized_list
);
244 spin_lock_init(&dev
->io_lock
);
246 spin_lock_init(&dev
->reada_lock
);
247 atomic_set(&dev
->reada_in_flight
, 0);
248 atomic_set(&dev
->dev_stats_ccnt
, 0);
249 btrfs_device_data_ordered_init(dev
);
250 INIT_RADIX_TREE(&dev
->reada_zones
, GFP_NOFS
& ~__GFP_DIRECT_RECLAIM
);
251 INIT_RADIX_TREE(&dev
->reada_extents
, GFP_NOFS
& ~__GFP_DIRECT_RECLAIM
);
256 static noinline
struct btrfs_device
*__find_device(struct list_head
*head
,
259 struct btrfs_device
*dev
;
261 list_for_each_entry(dev
, head
, dev_list
) {
262 if (dev
->devid
== devid
&&
263 (!uuid
|| !memcmp(dev
->uuid
, uuid
, BTRFS_UUID_SIZE
))) {
270 static noinline
struct btrfs_fs_devices
*find_fsid(u8
*fsid
)
272 struct btrfs_fs_devices
*fs_devices
;
274 list_for_each_entry(fs_devices
, &fs_uuids
, list
) {
275 if (memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
) == 0)
282 btrfs_get_bdev_and_sb(const char *device_path
, fmode_t flags
, void *holder
,
283 int flush
, struct block_device
**bdev
,
284 struct buffer_head
**bh
)
288 *bdev
= blkdev_get_by_path(device_path
, flags
, holder
);
291 ret
= PTR_ERR(*bdev
);
296 filemap_write_and_wait((*bdev
)->bd_inode
->i_mapping
);
297 ret
= set_blocksize(*bdev
, 4096);
299 blkdev_put(*bdev
, flags
);
302 invalidate_bdev(*bdev
);
303 *bh
= btrfs_read_dev_super(*bdev
);
306 blkdev_put(*bdev
, flags
);
318 static void requeue_list(struct btrfs_pending_bios
*pending_bios
,
319 struct bio
*head
, struct bio
*tail
)
322 struct bio
*old_head
;
324 old_head
= pending_bios
->head
;
325 pending_bios
->head
= head
;
326 if (pending_bios
->tail
)
327 tail
->bi_next
= old_head
;
329 pending_bios
->tail
= tail
;
333 * we try to collect pending bios for a device so we don't get a large
334 * number of procs sending bios down to the same device. This greatly
335 * improves the schedulers ability to collect and merge the bios.
337 * But, it also turns into a long list of bios to process and that is sure
338 * to eventually make the worker thread block. The solution here is to
339 * make some progress and then put this work struct back at the end of
340 * the list if the block device is congested. This way, multiple devices
341 * can make progress from a single worker thread.
343 static noinline
void run_scheduled_bios(struct btrfs_device
*device
)
345 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
347 struct backing_dev_info
*bdi
;
348 struct btrfs_pending_bios
*pending_bios
;
352 unsigned long num_run
;
353 unsigned long batch_run
= 0;
355 unsigned long last_waited
= 0;
357 int sync_pending
= 0;
358 struct blk_plug plug
;
361 * this function runs all the bios we've collected for
362 * a particular device. We don't want to wander off to
363 * another device without first sending all of these down.
364 * So, setup a plug here and finish it off before we return
366 blk_start_plug(&plug
);
368 bdi
= device
->bdev
->bd_bdi
;
369 limit
= btrfs_async_submit_limit(fs_info
);
370 limit
= limit
* 2 / 3;
373 spin_lock(&device
->io_lock
);
378 /* take all the bios off the list at once and process them
379 * later on (without the lock held). But, remember the
380 * tail and other pointers so the bios can be properly reinserted
381 * into the list if we hit congestion
383 if (!force_reg
&& device
->pending_sync_bios
.head
) {
384 pending_bios
= &device
->pending_sync_bios
;
387 pending_bios
= &device
->pending_bios
;
391 pending
= pending_bios
->head
;
392 tail
= pending_bios
->tail
;
393 WARN_ON(pending
&& !tail
);
396 * if pending was null this time around, no bios need processing
397 * at all and we can stop. Otherwise it'll loop back up again
398 * and do an additional check so no bios are missed.
400 * device->running_pending is used to synchronize with the
403 if (device
->pending_sync_bios
.head
== NULL
&&
404 device
->pending_bios
.head
== NULL
) {
406 device
->running_pending
= 0;
409 device
->running_pending
= 1;
412 pending_bios
->head
= NULL
;
413 pending_bios
->tail
= NULL
;
415 spin_unlock(&device
->io_lock
);
420 /* we want to work on both lists, but do more bios on the
421 * sync list than the regular list
424 pending_bios
!= &device
->pending_sync_bios
&&
425 device
->pending_sync_bios
.head
) ||
426 (num_run
> 64 && pending_bios
== &device
->pending_sync_bios
&&
427 device
->pending_bios
.head
)) {
428 spin_lock(&device
->io_lock
);
429 requeue_list(pending_bios
, pending
, tail
);
434 pending
= pending
->bi_next
;
438 * atomic_dec_return implies a barrier for waitqueue_active
440 if (atomic_dec_return(&fs_info
->nr_async_bios
) < limit
&&
441 waitqueue_active(&fs_info
->async_submit_wait
))
442 wake_up(&fs_info
->async_submit_wait
);
444 BUG_ON(atomic_read(&cur
->__bi_cnt
) == 0);
447 * if we're doing the sync list, record that our
448 * plug has some sync requests on it
450 * If we're doing the regular list and there are
451 * sync requests sitting around, unplug before
454 if (pending_bios
== &device
->pending_sync_bios
) {
456 } else if (sync_pending
) {
457 blk_finish_plug(&plug
);
458 blk_start_plug(&plug
);
462 btrfsic_submit_bio(cur
);
469 * we made progress, there is more work to do and the bdi
470 * is now congested. Back off and let other work structs
473 if (pending
&& bdi_write_congested(bdi
) && batch_run
> 8 &&
474 fs_info
->fs_devices
->open_devices
> 1) {
475 struct io_context
*ioc
;
477 ioc
= current
->io_context
;
480 * the main goal here is that we don't want to
481 * block if we're going to be able to submit
482 * more requests without blocking.
484 * This code does two great things, it pokes into
485 * the elevator code from a filesystem _and_
486 * it makes assumptions about how batching works.
488 if (ioc
&& ioc
->nr_batch_requests
> 0 &&
489 time_before(jiffies
, ioc
->last_waited
+ HZ
/50UL) &&
491 ioc
->last_waited
== last_waited
)) {
493 * we want to go through our batch of
494 * requests and stop. So, we copy out
495 * the ioc->last_waited time and test
496 * against it before looping
498 last_waited
= ioc
->last_waited
;
502 spin_lock(&device
->io_lock
);
503 requeue_list(pending_bios
, pending
, tail
);
504 device
->running_pending
= 1;
506 spin_unlock(&device
->io_lock
);
507 btrfs_queue_work(fs_info
->submit_workers
,
511 /* unplug every 64 requests just for good measure */
512 if (batch_run
% 64 == 0) {
513 blk_finish_plug(&plug
);
514 blk_start_plug(&plug
);
523 spin_lock(&device
->io_lock
);
524 if (device
->pending_bios
.head
|| device
->pending_sync_bios
.head
)
526 spin_unlock(&device
->io_lock
);
529 blk_finish_plug(&plug
);
532 static void pending_bios_fn(struct btrfs_work
*work
)
534 struct btrfs_device
*device
;
536 device
= container_of(work
, struct btrfs_device
, work
);
537 run_scheduled_bios(device
);
541 void btrfs_free_stale_device(struct btrfs_device
*cur_dev
)
543 struct btrfs_fs_devices
*fs_devs
;
544 struct btrfs_device
*dev
;
549 list_for_each_entry(fs_devs
, &fs_uuids
, list
) {
554 if (fs_devs
->seeding
)
557 list_for_each_entry(dev
, &fs_devs
->devices
, dev_list
) {
565 * Todo: This won't be enough. What if the same device
566 * comes back (with new uuid and) with its mapper path?
567 * But for now, this does help as mostly an admin will
568 * either use mapper or non mapper path throughout.
571 del
= strcmp(rcu_str_deref(dev
->name
),
572 rcu_str_deref(cur_dev
->name
));
579 /* delete the stale device */
580 if (fs_devs
->num_devices
== 1) {
581 btrfs_sysfs_remove_fsid(fs_devs
);
582 list_del(&fs_devs
->list
);
583 free_fs_devices(fs_devs
);
585 fs_devs
->num_devices
--;
586 list_del(&dev
->dev_list
);
587 rcu_string_free(dev
->name
);
596 * Add new device to list of registered devices
599 * 1 - first time device is seen
600 * 0 - device already known
603 static noinline
int device_list_add(const char *path
,
604 struct btrfs_super_block
*disk_super
,
605 u64 devid
, struct btrfs_fs_devices
**fs_devices_ret
)
607 struct btrfs_device
*device
;
608 struct btrfs_fs_devices
*fs_devices
;
609 struct rcu_string
*name
;
611 u64 found_transid
= btrfs_super_generation(disk_super
);
613 fs_devices
= find_fsid(disk_super
->fsid
);
615 fs_devices
= alloc_fs_devices(disk_super
->fsid
);
616 if (IS_ERR(fs_devices
))
617 return PTR_ERR(fs_devices
);
619 list_add(&fs_devices
->list
, &fs_uuids
);
623 device
= __find_device(&fs_devices
->devices
, devid
,
624 disk_super
->dev_item
.uuid
);
628 if (fs_devices
->opened
)
631 device
= btrfs_alloc_device(NULL
, &devid
,
632 disk_super
->dev_item
.uuid
);
633 if (IS_ERR(device
)) {
634 /* we can safely leave the fs_devices entry around */
635 return PTR_ERR(device
);
638 name
= rcu_string_strdup(path
, GFP_NOFS
);
643 rcu_assign_pointer(device
->name
, name
);
645 mutex_lock(&fs_devices
->device_list_mutex
);
646 list_add_rcu(&device
->dev_list
, &fs_devices
->devices
);
647 fs_devices
->num_devices
++;
648 mutex_unlock(&fs_devices
->device_list_mutex
);
651 device
->fs_devices
= fs_devices
;
652 } else if (!device
->name
|| strcmp(device
->name
->str
, path
)) {
654 * When FS is already mounted.
655 * 1. If you are here and if the device->name is NULL that
656 * means this device was missing at time of FS mount.
657 * 2. If you are here and if the device->name is different
658 * from 'path' that means either
659 * a. The same device disappeared and reappeared with
661 * b. The missing-disk-which-was-replaced, has
664 * We must allow 1 and 2a above. But 2b would be a spurious
667 * Further in case of 1 and 2a above, the disk at 'path'
668 * would have missed some transaction when it was away and
669 * in case of 2a the stale bdev has to be updated as well.
670 * 2b must not be allowed at all time.
674 * For now, we do allow update to btrfs_fs_device through the
675 * btrfs dev scan cli after FS has been mounted. We're still
676 * tracking a problem where systems fail mount by subvolume id
677 * when we reject replacement on a mounted FS.
679 if (!fs_devices
->opened
&& found_transid
< device
->generation
) {
681 * That is if the FS is _not_ mounted and if you
682 * are here, that means there is more than one
683 * disk with same uuid and devid.We keep the one
684 * with larger generation number or the last-in if
685 * generation are equal.
690 name
= rcu_string_strdup(path
, GFP_NOFS
);
693 rcu_string_free(device
->name
);
694 rcu_assign_pointer(device
->name
, name
);
695 if (device
->missing
) {
696 fs_devices
->missing_devices
--;
702 * Unmount does not free the btrfs_device struct but would zero
703 * generation along with most of the other members. So just update
704 * it back. We need it to pick the disk with largest generation
707 if (!fs_devices
->opened
)
708 device
->generation
= found_transid
;
711 * if there is new btrfs on an already registered device,
712 * then remove the stale device entry.
715 btrfs_free_stale_device(device
);
717 *fs_devices_ret
= fs_devices
;
722 static struct btrfs_fs_devices
*clone_fs_devices(struct btrfs_fs_devices
*orig
)
724 struct btrfs_fs_devices
*fs_devices
;
725 struct btrfs_device
*device
;
726 struct btrfs_device
*orig_dev
;
728 fs_devices
= alloc_fs_devices(orig
->fsid
);
729 if (IS_ERR(fs_devices
))
732 mutex_lock(&orig
->device_list_mutex
);
733 fs_devices
->total_devices
= orig
->total_devices
;
735 /* We have held the volume lock, it is safe to get the devices. */
736 list_for_each_entry(orig_dev
, &orig
->devices
, dev_list
) {
737 struct rcu_string
*name
;
739 device
= btrfs_alloc_device(NULL
, &orig_dev
->devid
,
745 * This is ok to do without rcu read locked because we hold the
746 * uuid mutex so nothing we touch in here is going to disappear.
748 if (orig_dev
->name
) {
749 name
= rcu_string_strdup(orig_dev
->name
->str
,
755 rcu_assign_pointer(device
->name
, name
);
758 list_add(&device
->dev_list
, &fs_devices
->devices
);
759 device
->fs_devices
= fs_devices
;
760 fs_devices
->num_devices
++;
762 mutex_unlock(&orig
->device_list_mutex
);
765 mutex_unlock(&orig
->device_list_mutex
);
766 free_fs_devices(fs_devices
);
767 return ERR_PTR(-ENOMEM
);
770 void btrfs_close_extra_devices(struct btrfs_fs_devices
*fs_devices
, int step
)
772 struct btrfs_device
*device
, *next
;
773 struct btrfs_device
*latest_dev
= NULL
;
775 mutex_lock(&uuid_mutex
);
777 /* This is the initialized path, it is safe to release the devices. */
778 list_for_each_entry_safe(device
, next
, &fs_devices
->devices
, dev_list
) {
779 if (device
->in_fs_metadata
) {
780 if (!device
->is_tgtdev_for_dev_replace
&&
782 device
->generation
> latest_dev
->generation
)) {
788 if (device
->devid
== BTRFS_DEV_REPLACE_DEVID
) {
790 * In the first step, keep the device which has
791 * the correct fsid and the devid that is used
792 * for the dev_replace procedure.
793 * In the second step, the dev_replace state is
794 * read from the device tree and it is known
795 * whether the procedure is really active or
796 * not, which means whether this device is
797 * used or whether it should be removed.
799 if (step
== 0 || device
->is_tgtdev_for_dev_replace
) {
804 blkdev_put(device
->bdev
, device
->mode
);
806 fs_devices
->open_devices
--;
808 if (device
->writeable
) {
809 list_del_init(&device
->dev_alloc_list
);
810 device
->writeable
= 0;
811 if (!device
->is_tgtdev_for_dev_replace
)
812 fs_devices
->rw_devices
--;
814 list_del_init(&device
->dev_list
);
815 fs_devices
->num_devices
--;
816 rcu_string_free(device
->name
);
820 if (fs_devices
->seed
) {
821 fs_devices
= fs_devices
->seed
;
825 fs_devices
->latest_bdev
= latest_dev
->bdev
;
827 mutex_unlock(&uuid_mutex
);
830 static void __free_device(struct work_struct
*work
)
832 struct btrfs_device
*device
;
834 device
= container_of(work
, struct btrfs_device
, rcu_work
);
835 rcu_string_free(device
->name
);
839 static void free_device(struct rcu_head
*head
)
841 struct btrfs_device
*device
;
843 device
= container_of(head
, struct btrfs_device
, rcu
);
845 INIT_WORK(&device
->rcu_work
, __free_device
);
846 schedule_work(&device
->rcu_work
);
849 static void btrfs_close_bdev(struct btrfs_device
*device
)
851 if (device
->bdev
&& device
->writeable
) {
852 sync_blockdev(device
->bdev
);
853 invalidate_bdev(device
->bdev
);
857 blkdev_put(device
->bdev
, device
->mode
);
860 static void btrfs_prepare_close_one_device(struct btrfs_device
*device
)
862 struct btrfs_fs_devices
*fs_devices
= device
->fs_devices
;
863 struct btrfs_device
*new_device
;
864 struct rcu_string
*name
;
867 fs_devices
->open_devices
--;
869 if (device
->writeable
&&
870 device
->devid
!= BTRFS_DEV_REPLACE_DEVID
) {
871 list_del_init(&device
->dev_alloc_list
);
872 fs_devices
->rw_devices
--;
876 fs_devices
->missing_devices
--;
878 new_device
= btrfs_alloc_device(NULL
, &device
->devid
,
880 BUG_ON(IS_ERR(new_device
)); /* -ENOMEM */
882 /* Safe because we are under uuid_mutex */
884 name
= rcu_string_strdup(device
->name
->str
, GFP_NOFS
);
885 BUG_ON(!name
); /* -ENOMEM */
886 rcu_assign_pointer(new_device
->name
, name
);
889 list_replace_rcu(&device
->dev_list
, &new_device
->dev_list
);
890 new_device
->fs_devices
= device
->fs_devices
;
893 static int __btrfs_close_devices(struct btrfs_fs_devices
*fs_devices
)
895 struct btrfs_device
*device
, *tmp
;
896 struct list_head pending_put
;
898 INIT_LIST_HEAD(&pending_put
);
900 if (--fs_devices
->opened
> 0)
903 mutex_lock(&fs_devices
->device_list_mutex
);
904 list_for_each_entry_safe(device
, tmp
, &fs_devices
->devices
, dev_list
) {
905 btrfs_prepare_close_one_device(device
);
906 list_add(&device
->dev_list
, &pending_put
);
908 mutex_unlock(&fs_devices
->device_list_mutex
);
911 * btrfs_show_devname() is using the device_list_mutex,
912 * sometimes call to blkdev_put() leads vfs calling
913 * into this func. So do put outside of device_list_mutex,
916 while (!list_empty(&pending_put
)) {
917 device
= list_first_entry(&pending_put
,
918 struct btrfs_device
, dev_list
);
919 list_del(&device
->dev_list
);
920 btrfs_close_bdev(device
);
921 call_rcu(&device
->rcu
, free_device
);
924 WARN_ON(fs_devices
->open_devices
);
925 WARN_ON(fs_devices
->rw_devices
);
926 fs_devices
->opened
= 0;
927 fs_devices
->seeding
= 0;
932 int btrfs_close_devices(struct btrfs_fs_devices
*fs_devices
)
934 struct btrfs_fs_devices
*seed_devices
= NULL
;
937 mutex_lock(&uuid_mutex
);
938 ret
= __btrfs_close_devices(fs_devices
);
939 if (!fs_devices
->opened
) {
940 seed_devices
= fs_devices
->seed
;
941 fs_devices
->seed
= NULL
;
943 mutex_unlock(&uuid_mutex
);
945 while (seed_devices
) {
946 fs_devices
= seed_devices
;
947 seed_devices
= fs_devices
->seed
;
948 __btrfs_close_devices(fs_devices
);
949 free_fs_devices(fs_devices
);
952 * Wait for rcu kworkers under __btrfs_close_devices
953 * to finish all blkdev_puts so device is really
954 * free when umount is done.
960 static int __btrfs_open_devices(struct btrfs_fs_devices
*fs_devices
,
961 fmode_t flags
, void *holder
)
963 struct request_queue
*q
;
964 struct block_device
*bdev
;
965 struct list_head
*head
= &fs_devices
->devices
;
966 struct btrfs_device
*device
;
967 struct btrfs_device
*latest_dev
= NULL
;
968 struct buffer_head
*bh
;
969 struct btrfs_super_block
*disk_super
;
976 list_for_each_entry(device
, head
, dev_list
) {
982 /* Just open everything we can; ignore failures here */
983 if (btrfs_get_bdev_and_sb(device
->name
->str
, flags
, holder
, 1,
987 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
988 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
989 if (devid
!= device
->devid
)
992 if (memcmp(device
->uuid
, disk_super
->dev_item
.uuid
,
996 device
->generation
= btrfs_super_generation(disk_super
);
998 device
->generation
> latest_dev
->generation
)
1001 if (btrfs_super_flags(disk_super
) & BTRFS_SUPER_FLAG_SEEDING
) {
1002 device
->writeable
= 0;
1004 device
->writeable
= !bdev_read_only(bdev
);
1008 q
= bdev_get_queue(bdev
);
1009 if (blk_queue_discard(q
))
1010 device
->can_discard
= 1;
1012 device
->bdev
= bdev
;
1013 device
->in_fs_metadata
= 0;
1014 device
->mode
= flags
;
1016 if (!blk_queue_nonrot(bdev_get_queue(bdev
)))
1017 fs_devices
->rotating
= 1;
1019 fs_devices
->open_devices
++;
1020 if (device
->writeable
&&
1021 device
->devid
!= BTRFS_DEV_REPLACE_DEVID
) {
1022 fs_devices
->rw_devices
++;
1023 list_add(&device
->dev_alloc_list
,
1024 &fs_devices
->alloc_list
);
1031 blkdev_put(bdev
, flags
);
1034 if (fs_devices
->open_devices
== 0) {
1038 fs_devices
->seeding
= seeding
;
1039 fs_devices
->opened
= 1;
1040 fs_devices
->latest_bdev
= latest_dev
->bdev
;
1041 fs_devices
->total_rw_bytes
= 0;
1046 int btrfs_open_devices(struct btrfs_fs_devices
*fs_devices
,
1047 fmode_t flags
, void *holder
)
1051 mutex_lock(&uuid_mutex
);
1052 if (fs_devices
->opened
) {
1053 fs_devices
->opened
++;
1056 ret
= __btrfs_open_devices(fs_devices
, flags
, holder
);
1058 mutex_unlock(&uuid_mutex
);
1062 void btrfs_release_disk_super(struct page
*page
)
1068 int btrfs_read_disk_super(struct block_device
*bdev
, u64 bytenr
,
1069 struct page
**page
, struct btrfs_super_block
**disk_super
)
1074 /* make sure our super fits in the device */
1075 if (bytenr
+ PAGE_SIZE
>= i_size_read(bdev
->bd_inode
))
1078 /* make sure our super fits in the page */
1079 if (sizeof(**disk_super
) > PAGE_SIZE
)
1082 /* make sure our super doesn't straddle pages on disk */
1083 index
= bytenr
>> PAGE_SHIFT
;
1084 if ((bytenr
+ sizeof(**disk_super
) - 1) >> PAGE_SHIFT
!= index
)
1087 /* pull in the page with our super */
1088 *page
= read_cache_page_gfp(bdev
->bd_inode
->i_mapping
,
1091 if (IS_ERR_OR_NULL(*page
))
1096 /* align our pointer to the offset of the super block */
1097 *disk_super
= p
+ (bytenr
& ~PAGE_MASK
);
1099 if (btrfs_super_bytenr(*disk_super
) != bytenr
||
1100 btrfs_super_magic(*disk_super
) != BTRFS_MAGIC
) {
1101 btrfs_release_disk_super(*page
);
1105 if ((*disk_super
)->label
[0] &&
1106 (*disk_super
)->label
[BTRFS_LABEL_SIZE
- 1])
1107 (*disk_super
)->label
[BTRFS_LABEL_SIZE
- 1] = '\0';
1113 * Look for a btrfs signature on a device. This may be called out of the mount path
1114 * and we are not allowed to call set_blocksize during the scan. The superblock
1115 * is read via pagecache
1117 int btrfs_scan_one_device(const char *path
, fmode_t flags
, void *holder
,
1118 struct btrfs_fs_devices
**fs_devices_ret
)
1120 struct btrfs_super_block
*disk_super
;
1121 struct block_device
*bdev
;
1130 * we would like to check all the supers, but that would make
1131 * a btrfs mount succeed after a mkfs from a different FS.
1132 * So, we need to add a special mount option to scan for
1133 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1135 bytenr
= btrfs_sb_offset(0);
1136 flags
|= FMODE_EXCL
;
1137 mutex_lock(&uuid_mutex
);
1139 bdev
= blkdev_get_by_path(path
, flags
, holder
);
1141 ret
= PTR_ERR(bdev
);
1145 if (btrfs_read_disk_super(bdev
, bytenr
, &page
, &disk_super
))
1146 goto error_bdev_put
;
1148 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
1149 transid
= btrfs_super_generation(disk_super
);
1150 total_devices
= btrfs_super_num_devices(disk_super
);
1152 ret
= device_list_add(path
, disk_super
, devid
, fs_devices_ret
);
1154 if (disk_super
->label
[0]) {
1155 pr_info("BTRFS: device label %s ", disk_super
->label
);
1157 pr_info("BTRFS: device fsid %pU ", disk_super
->fsid
);
1160 pr_cont("devid %llu transid %llu %s\n", devid
, transid
, path
);
1163 if (!ret
&& fs_devices_ret
)
1164 (*fs_devices_ret
)->total_devices
= total_devices
;
1166 btrfs_release_disk_super(page
);
1169 blkdev_put(bdev
, flags
);
1171 mutex_unlock(&uuid_mutex
);
1175 /* helper to account the used device space in the range */
1176 int btrfs_account_dev_extents_size(struct btrfs_device
*device
, u64 start
,
1177 u64 end
, u64
*length
)
1179 struct btrfs_key key
;
1180 struct btrfs_root
*root
= device
->fs_info
->dev_root
;
1181 struct btrfs_dev_extent
*dev_extent
;
1182 struct btrfs_path
*path
;
1186 struct extent_buffer
*l
;
1190 if (start
>= device
->total_bytes
|| device
->is_tgtdev_for_dev_replace
)
1193 path
= btrfs_alloc_path();
1196 path
->reada
= READA_FORWARD
;
1198 key
.objectid
= device
->devid
;
1200 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1202 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1206 ret
= btrfs_previous_item(root
, path
, key
.objectid
, key
.type
);
1213 slot
= path
->slots
[0];
1214 if (slot
>= btrfs_header_nritems(l
)) {
1215 ret
= btrfs_next_leaf(root
, path
);
1223 btrfs_item_key_to_cpu(l
, &key
, slot
);
1225 if (key
.objectid
< device
->devid
)
1228 if (key
.objectid
> device
->devid
)
1231 if (key
.type
!= BTRFS_DEV_EXTENT_KEY
)
1234 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
1235 extent_end
= key
.offset
+ btrfs_dev_extent_length(l
,
1237 if (key
.offset
<= start
&& extent_end
> end
) {
1238 *length
= end
- start
+ 1;
1240 } else if (key
.offset
<= start
&& extent_end
> start
)
1241 *length
+= extent_end
- start
;
1242 else if (key
.offset
> start
&& extent_end
<= end
)
1243 *length
+= extent_end
- key
.offset
;
1244 else if (key
.offset
> start
&& key
.offset
<= end
) {
1245 *length
+= end
- key
.offset
+ 1;
1247 } else if (key
.offset
> end
)
1255 btrfs_free_path(path
);
1259 static int contains_pending_extent(struct btrfs_transaction
*transaction
,
1260 struct btrfs_device
*device
,
1261 u64
*start
, u64 len
)
1263 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
1264 struct extent_map
*em
;
1265 struct list_head
*search_list
= &fs_info
->pinned_chunks
;
1267 u64 physical_start
= *start
;
1270 search_list
= &transaction
->pending_chunks
;
1272 list_for_each_entry(em
, search_list
, list
) {
1273 struct map_lookup
*map
;
1276 map
= em
->map_lookup
;
1277 for (i
= 0; i
< map
->num_stripes
; i
++) {
1280 if (map
->stripes
[i
].dev
!= device
)
1282 if (map
->stripes
[i
].physical
>= physical_start
+ len
||
1283 map
->stripes
[i
].physical
+ em
->orig_block_len
<=
1287 * Make sure that while processing the pinned list we do
1288 * not override our *start with a lower value, because
1289 * we can have pinned chunks that fall within this
1290 * device hole and that have lower physical addresses
1291 * than the pending chunks we processed before. If we
1292 * do not take this special care we can end up getting
1293 * 2 pending chunks that start at the same physical
1294 * device offsets because the end offset of a pinned
1295 * chunk can be equal to the start offset of some
1298 end
= map
->stripes
[i
].physical
+ em
->orig_block_len
;
1305 if (search_list
!= &fs_info
->pinned_chunks
) {
1306 search_list
= &fs_info
->pinned_chunks
;
1315 * find_free_dev_extent_start - find free space in the specified device
1316 * @device: the device which we search the free space in
1317 * @num_bytes: the size of the free space that we need
1318 * @search_start: the position from which to begin the search
1319 * @start: store the start of the free space.
1320 * @len: the size of the free space. that we find, or the size
1321 * of the max free space if we don't find suitable free space
1323 * this uses a pretty simple search, the expectation is that it is
1324 * called very infrequently and that a given device has a small number
1327 * @start is used to store the start of the free space if we find. But if we
1328 * don't find suitable free space, it will be used to store the start position
1329 * of the max free space.
1331 * @len is used to store the size of the free space that we find.
1332 * But if we don't find suitable free space, it is used to store the size of
1333 * the max free space.
1335 int find_free_dev_extent_start(struct btrfs_transaction
*transaction
,
1336 struct btrfs_device
*device
, u64 num_bytes
,
1337 u64 search_start
, u64
*start
, u64
*len
)
1339 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
1340 struct btrfs_root
*root
= fs_info
->dev_root
;
1341 struct btrfs_key key
;
1342 struct btrfs_dev_extent
*dev_extent
;
1343 struct btrfs_path
*path
;
1348 u64 search_end
= device
->total_bytes
;
1351 struct extent_buffer
*l
;
1352 u64 min_search_start
;
1355 * We don't want to overwrite the superblock on the drive nor any area
1356 * used by the boot loader (grub for example), so we make sure to start
1357 * at an offset of at least 1MB.
1359 min_search_start
= max(fs_info
->alloc_start
, 1024ull * 1024);
1360 search_start
= max(search_start
, min_search_start
);
1362 path
= btrfs_alloc_path();
1366 max_hole_start
= search_start
;
1370 if (search_start
>= search_end
|| device
->is_tgtdev_for_dev_replace
) {
1375 path
->reada
= READA_FORWARD
;
1376 path
->search_commit_root
= 1;
1377 path
->skip_locking
= 1;
1379 key
.objectid
= device
->devid
;
1380 key
.offset
= search_start
;
1381 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1383 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1387 ret
= btrfs_previous_item(root
, path
, key
.objectid
, key
.type
);
1394 slot
= path
->slots
[0];
1395 if (slot
>= btrfs_header_nritems(l
)) {
1396 ret
= btrfs_next_leaf(root
, path
);
1404 btrfs_item_key_to_cpu(l
, &key
, slot
);
1406 if (key
.objectid
< device
->devid
)
1409 if (key
.objectid
> device
->devid
)
1412 if (key
.type
!= BTRFS_DEV_EXTENT_KEY
)
1415 if (key
.offset
> search_start
) {
1416 hole_size
= key
.offset
- search_start
;
1419 * Have to check before we set max_hole_start, otherwise
1420 * we could end up sending back this offset anyway.
1422 if (contains_pending_extent(transaction
, device
,
1425 if (key
.offset
>= search_start
) {
1426 hole_size
= key
.offset
- search_start
;
1433 if (hole_size
> max_hole_size
) {
1434 max_hole_start
= search_start
;
1435 max_hole_size
= hole_size
;
1439 * If this free space is greater than which we need,
1440 * it must be the max free space that we have found
1441 * until now, so max_hole_start must point to the start
1442 * of this free space and the length of this free space
1443 * is stored in max_hole_size. Thus, we return
1444 * max_hole_start and max_hole_size and go back to the
1447 if (hole_size
>= num_bytes
) {
1453 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
1454 extent_end
= key
.offset
+ btrfs_dev_extent_length(l
,
1456 if (extent_end
> search_start
)
1457 search_start
= extent_end
;
1464 * At this point, search_start should be the end of
1465 * allocated dev extents, and when shrinking the device,
1466 * search_end may be smaller than search_start.
1468 if (search_end
> search_start
) {
1469 hole_size
= search_end
- search_start
;
1471 if (contains_pending_extent(transaction
, device
, &search_start
,
1473 btrfs_release_path(path
);
1477 if (hole_size
> max_hole_size
) {
1478 max_hole_start
= search_start
;
1479 max_hole_size
= hole_size
;
1484 if (max_hole_size
< num_bytes
)
1490 btrfs_free_path(path
);
1491 *start
= max_hole_start
;
1493 *len
= max_hole_size
;
1497 int find_free_dev_extent(struct btrfs_trans_handle
*trans
,
1498 struct btrfs_device
*device
, u64 num_bytes
,
1499 u64
*start
, u64
*len
)
1501 /* FIXME use last free of some kind */
1502 return find_free_dev_extent_start(trans
->transaction
, device
,
1503 num_bytes
, 0, start
, len
);
1506 static int btrfs_free_dev_extent(struct btrfs_trans_handle
*trans
,
1507 struct btrfs_device
*device
,
1508 u64 start
, u64
*dev_extent_len
)
1510 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
1511 struct btrfs_root
*root
= fs_info
->dev_root
;
1513 struct btrfs_path
*path
;
1514 struct btrfs_key key
;
1515 struct btrfs_key found_key
;
1516 struct extent_buffer
*leaf
= NULL
;
1517 struct btrfs_dev_extent
*extent
= NULL
;
1519 path
= btrfs_alloc_path();
1523 key
.objectid
= device
->devid
;
1525 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1527 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1529 ret
= btrfs_previous_item(root
, path
, key
.objectid
,
1530 BTRFS_DEV_EXTENT_KEY
);
1533 leaf
= path
->nodes
[0];
1534 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1535 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1536 struct btrfs_dev_extent
);
1537 BUG_ON(found_key
.offset
> start
|| found_key
.offset
+
1538 btrfs_dev_extent_length(leaf
, extent
) < start
);
1540 btrfs_release_path(path
);
1542 } else if (ret
== 0) {
1543 leaf
= path
->nodes
[0];
1544 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1545 struct btrfs_dev_extent
);
1547 btrfs_handle_fs_error(fs_info
, ret
, "Slot search failed");
1551 *dev_extent_len
= btrfs_dev_extent_length(leaf
, extent
);
1553 ret
= btrfs_del_item(trans
, root
, path
);
1555 btrfs_handle_fs_error(fs_info
, ret
,
1556 "Failed to remove dev extent item");
1558 set_bit(BTRFS_TRANS_HAVE_FREE_BGS
, &trans
->transaction
->flags
);
1561 btrfs_free_path(path
);
1565 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle
*trans
,
1566 struct btrfs_device
*device
,
1567 u64 chunk_tree
, u64 chunk_objectid
,
1568 u64 chunk_offset
, u64 start
, u64 num_bytes
)
1571 struct btrfs_path
*path
;
1572 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
1573 struct btrfs_root
*root
= fs_info
->dev_root
;
1574 struct btrfs_dev_extent
*extent
;
1575 struct extent_buffer
*leaf
;
1576 struct btrfs_key key
;
1578 WARN_ON(!device
->in_fs_metadata
);
1579 WARN_ON(device
->is_tgtdev_for_dev_replace
);
1580 path
= btrfs_alloc_path();
1584 key
.objectid
= device
->devid
;
1586 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1587 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1592 leaf
= path
->nodes
[0];
1593 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1594 struct btrfs_dev_extent
);
1595 btrfs_set_dev_extent_chunk_tree(leaf
, extent
, chunk_tree
);
1596 btrfs_set_dev_extent_chunk_objectid(leaf
, extent
, chunk_objectid
);
1597 btrfs_set_dev_extent_chunk_offset(leaf
, extent
, chunk_offset
);
1599 write_extent_buffer_chunk_tree_uuid(leaf
, fs_info
->chunk_tree_uuid
);
1601 btrfs_set_dev_extent_length(leaf
, extent
, num_bytes
);
1602 btrfs_mark_buffer_dirty(leaf
);
1604 btrfs_free_path(path
);
1608 static u64
find_next_chunk(struct btrfs_fs_info
*fs_info
)
1610 struct extent_map_tree
*em_tree
;
1611 struct extent_map
*em
;
1615 em_tree
= &fs_info
->mapping_tree
.map_tree
;
1616 read_lock(&em_tree
->lock
);
1617 n
= rb_last(&em_tree
->map
);
1619 em
= rb_entry(n
, struct extent_map
, rb_node
);
1620 ret
= em
->start
+ em
->len
;
1622 read_unlock(&em_tree
->lock
);
1627 static noinline
int find_next_devid(struct btrfs_fs_info
*fs_info
,
1631 struct btrfs_key key
;
1632 struct btrfs_key found_key
;
1633 struct btrfs_path
*path
;
1635 path
= btrfs_alloc_path();
1639 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1640 key
.type
= BTRFS_DEV_ITEM_KEY
;
1641 key
.offset
= (u64
)-1;
1643 ret
= btrfs_search_slot(NULL
, fs_info
->chunk_root
, &key
, path
, 0, 0);
1647 BUG_ON(ret
== 0); /* Corruption */
1649 ret
= btrfs_previous_item(fs_info
->chunk_root
, path
,
1650 BTRFS_DEV_ITEMS_OBJECTID
,
1651 BTRFS_DEV_ITEM_KEY
);
1655 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
1657 *devid_ret
= found_key
.offset
+ 1;
1661 btrfs_free_path(path
);
1666 * the device information is stored in the chunk root
1667 * the btrfs_device struct should be fully filled in
1669 static int btrfs_add_device(struct btrfs_trans_handle
*trans
,
1670 struct btrfs_fs_info
*fs_info
,
1671 struct btrfs_device
*device
)
1673 struct btrfs_root
*root
= fs_info
->chunk_root
;
1675 struct btrfs_path
*path
;
1676 struct btrfs_dev_item
*dev_item
;
1677 struct extent_buffer
*leaf
;
1678 struct btrfs_key key
;
1681 path
= btrfs_alloc_path();
1685 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1686 key
.type
= BTRFS_DEV_ITEM_KEY
;
1687 key
.offset
= device
->devid
;
1689 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1694 leaf
= path
->nodes
[0];
1695 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_dev_item
);
1697 btrfs_set_device_id(leaf
, dev_item
, device
->devid
);
1698 btrfs_set_device_generation(leaf
, dev_item
, 0);
1699 btrfs_set_device_type(leaf
, dev_item
, device
->type
);
1700 btrfs_set_device_io_align(leaf
, dev_item
, device
->io_align
);
1701 btrfs_set_device_io_width(leaf
, dev_item
, device
->io_width
);
1702 btrfs_set_device_sector_size(leaf
, dev_item
, device
->sector_size
);
1703 btrfs_set_device_total_bytes(leaf
, dev_item
,
1704 btrfs_device_get_disk_total_bytes(device
));
1705 btrfs_set_device_bytes_used(leaf
, dev_item
,
1706 btrfs_device_get_bytes_used(device
));
1707 btrfs_set_device_group(leaf
, dev_item
, 0);
1708 btrfs_set_device_seek_speed(leaf
, dev_item
, 0);
1709 btrfs_set_device_bandwidth(leaf
, dev_item
, 0);
1710 btrfs_set_device_start_offset(leaf
, dev_item
, 0);
1712 ptr
= btrfs_device_uuid(dev_item
);
1713 write_extent_buffer(leaf
, device
->uuid
, ptr
, BTRFS_UUID_SIZE
);
1714 ptr
= btrfs_device_fsid(dev_item
);
1715 write_extent_buffer(leaf
, fs_info
->fsid
, ptr
, BTRFS_UUID_SIZE
);
1716 btrfs_mark_buffer_dirty(leaf
);
1720 btrfs_free_path(path
);
1725 * Function to update ctime/mtime for a given device path.
1726 * Mainly used for ctime/mtime based probe like libblkid.
1728 static void update_dev_time(const char *path_name
)
1732 filp
= filp_open(path_name
, O_RDWR
, 0);
1735 file_update_time(filp
);
1736 filp_close(filp
, NULL
);
1739 static int btrfs_rm_dev_item(struct btrfs_fs_info
*fs_info
,
1740 struct btrfs_device
*device
)
1742 struct btrfs_root
*root
= fs_info
->chunk_root
;
1744 struct btrfs_path
*path
;
1745 struct btrfs_key key
;
1746 struct btrfs_trans_handle
*trans
;
1748 path
= btrfs_alloc_path();
1752 trans
= btrfs_start_transaction(root
, 0);
1753 if (IS_ERR(trans
)) {
1754 btrfs_free_path(path
);
1755 return PTR_ERR(trans
);
1757 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1758 key
.type
= BTRFS_DEV_ITEM_KEY
;
1759 key
.offset
= device
->devid
;
1761 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1770 ret
= btrfs_del_item(trans
, root
, path
);
1774 btrfs_free_path(path
);
1775 btrfs_commit_transaction(trans
);
1780 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1781 * filesystem. It's up to the caller to adjust that number regarding eg. device
1784 static int btrfs_check_raid_min_devices(struct btrfs_fs_info
*fs_info
,
1792 seq
= read_seqbegin(&fs_info
->profiles_lock
);
1794 all_avail
= fs_info
->avail_data_alloc_bits
|
1795 fs_info
->avail_system_alloc_bits
|
1796 fs_info
->avail_metadata_alloc_bits
;
1797 } while (read_seqretry(&fs_info
->profiles_lock
, seq
));
1799 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++) {
1800 if (!(all_avail
& btrfs_raid_group
[i
]))
1803 if (num_devices
< btrfs_raid_array
[i
].devs_min
) {
1804 int ret
= btrfs_raid_mindev_error
[i
];
1814 struct btrfs_device
*btrfs_find_next_active_device(struct btrfs_fs_devices
*fs_devs
,
1815 struct btrfs_device
*device
)
1817 struct btrfs_device
*next_device
;
1819 list_for_each_entry(next_device
, &fs_devs
->devices
, dev_list
) {
1820 if (next_device
!= device
&&
1821 !next_device
->missing
&& next_device
->bdev
)
1829 * Helper function to check if the given device is part of s_bdev / latest_bdev
1830 * and replace it with the provided or the next active device, in the context
1831 * where this function called, there should be always be another device (or
1832 * this_dev) which is active.
1834 void btrfs_assign_next_active_device(struct btrfs_fs_info
*fs_info
,
1835 struct btrfs_device
*device
, struct btrfs_device
*this_dev
)
1837 struct btrfs_device
*next_device
;
1840 next_device
= this_dev
;
1842 next_device
= btrfs_find_next_active_device(fs_info
->fs_devices
,
1844 ASSERT(next_device
);
1846 if (fs_info
->sb
->s_bdev
&&
1847 (fs_info
->sb
->s_bdev
== device
->bdev
))
1848 fs_info
->sb
->s_bdev
= next_device
->bdev
;
1850 if (fs_info
->fs_devices
->latest_bdev
== device
->bdev
)
1851 fs_info
->fs_devices
->latest_bdev
= next_device
->bdev
;
1854 int btrfs_rm_device(struct btrfs_fs_info
*fs_info
, const char *device_path
,
1857 struct btrfs_device
*device
;
1858 struct btrfs_fs_devices
*cur_devices
;
1861 bool clear_super
= false;
1863 mutex_lock(&uuid_mutex
);
1865 num_devices
= fs_info
->fs_devices
->num_devices
;
1866 btrfs_dev_replace_lock(&fs_info
->dev_replace
, 0);
1867 if (btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
)) {
1868 WARN_ON(num_devices
< 1);
1871 btrfs_dev_replace_unlock(&fs_info
->dev_replace
, 0);
1873 ret
= btrfs_check_raid_min_devices(fs_info
, num_devices
- 1);
1877 ret
= btrfs_find_device_by_devspec(fs_info
, devid
, device_path
,
1882 if (device
->is_tgtdev_for_dev_replace
) {
1883 ret
= BTRFS_ERROR_DEV_TGT_REPLACE
;
1887 if (device
->writeable
&& fs_info
->fs_devices
->rw_devices
== 1) {
1888 ret
= BTRFS_ERROR_DEV_ONLY_WRITABLE
;
1892 if (device
->writeable
) {
1893 mutex_lock(&fs_info
->chunk_mutex
);
1894 list_del_init(&device
->dev_alloc_list
);
1895 device
->fs_devices
->rw_devices
--;
1896 mutex_unlock(&fs_info
->chunk_mutex
);
1900 mutex_unlock(&uuid_mutex
);
1901 ret
= btrfs_shrink_device(device
, 0);
1902 mutex_lock(&uuid_mutex
);
1907 * TODO: the superblock still includes this device in its num_devices
1908 * counter although write_all_supers() is not locked out. This
1909 * could give a filesystem state which requires a degraded mount.
1911 ret
= btrfs_rm_dev_item(fs_info
, device
);
1915 device
->in_fs_metadata
= 0;
1916 btrfs_scrub_cancel_dev(fs_info
, device
);
1919 * the device list mutex makes sure that we don't change
1920 * the device list while someone else is writing out all
1921 * the device supers. Whoever is writing all supers, should
1922 * lock the device list mutex before getting the number of
1923 * devices in the super block (super_copy). Conversely,
1924 * whoever updates the number of devices in the super block
1925 * (super_copy) should hold the device list mutex.
1928 cur_devices
= device
->fs_devices
;
1929 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
1930 list_del_rcu(&device
->dev_list
);
1932 device
->fs_devices
->num_devices
--;
1933 device
->fs_devices
->total_devices
--;
1935 if (device
->missing
)
1936 device
->fs_devices
->missing_devices
--;
1938 btrfs_assign_next_active_device(fs_info
, device
, NULL
);
1941 device
->fs_devices
->open_devices
--;
1942 /* remove sysfs entry */
1943 btrfs_sysfs_rm_device_link(fs_info
->fs_devices
, device
);
1946 num_devices
= btrfs_super_num_devices(fs_info
->super_copy
) - 1;
1947 btrfs_set_super_num_devices(fs_info
->super_copy
, num_devices
);
1948 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
1951 * at this point, the device is zero sized and detached from
1952 * the devices list. All that's left is to zero out the old
1953 * supers and free the device.
1955 if (device
->writeable
)
1956 btrfs_scratch_superblocks(device
->bdev
, device
->name
->str
);
1958 btrfs_close_bdev(device
);
1959 call_rcu(&device
->rcu
, free_device
);
1961 if (cur_devices
->open_devices
== 0) {
1962 struct btrfs_fs_devices
*fs_devices
;
1963 fs_devices
= fs_info
->fs_devices
;
1964 while (fs_devices
) {
1965 if (fs_devices
->seed
== cur_devices
) {
1966 fs_devices
->seed
= cur_devices
->seed
;
1969 fs_devices
= fs_devices
->seed
;
1971 cur_devices
->seed
= NULL
;
1972 __btrfs_close_devices(cur_devices
);
1973 free_fs_devices(cur_devices
);
1976 fs_info
->num_tolerated_disk_barrier_failures
=
1977 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info
);
1980 mutex_unlock(&uuid_mutex
);
1984 if (device
->writeable
) {
1985 mutex_lock(&fs_info
->chunk_mutex
);
1986 list_add(&device
->dev_alloc_list
,
1987 &fs_info
->fs_devices
->alloc_list
);
1988 device
->fs_devices
->rw_devices
++;
1989 mutex_unlock(&fs_info
->chunk_mutex
);
1994 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info
*fs_info
,
1995 struct btrfs_device
*srcdev
)
1997 struct btrfs_fs_devices
*fs_devices
;
1999 WARN_ON(!mutex_is_locked(&fs_info
->fs_devices
->device_list_mutex
));
2002 * in case of fs with no seed, srcdev->fs_devices will point
2003 * to fs_devices of fs_info. However when the dev being replaced is
2004 * a seed dev it will point to the seed's local fs_devices. In short
2005 * srcdev will have its correct fs_devices in both the cases.
2007 fs_devices
= srcdev
->fs_devices
;
2009 list_del_rcu(&srcdev
->dev_list
);
2010 list_del_rcu(&srcdev
->dev_alloc_list
);
2011 fs_devices
->num_devices
--;
2012 if (srcdev
->missing
)
2013 fs_devices
->missing_devices
--;
2015 if (srcdev
->writeable
)
2016 fs_devices
->rw_devices
--;
2019 fs_devices
->open_devices
--;
2022 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info
*fs_info
,
2023 struct btrfs_device
*srcdev
)
2025 struct btrfs_fs_devices
*fs_devices
= srcdev
->fs_devices
;
2027 if (srcdev
->writeable
) {
2028 /* zero out the old super if it is writable */
2029 btrfs_scratch_superblocks(srcdev
->bdev
, srcdev
->name
->str
);
2032 btrfs_close_bdev(srcdev
);
2034 call_rcu(&srcdev
->rcu
, free_device
);
2037 * unless fs_devices is seed fs, num_devices shouldn't go
2040 BUG_ON(!fs_devices
->num_devices
&& !fs_devices
->seeding
);
2042 /* if this is no devs we rather delete the fs_devices */
2043 if (!fs_devices
->num_devices
) {
2044 struct btrfs_fs_devices
*tmp_fs_devices
;
2046 tmp_fs_devices
= fs_info
->fs_devices
;
2047 while (tmp_fs_devices
) {
2048 if (tmp_fs_devices
->seed
== fs_devices
) {
2049 tmp_fs_devices
->seed
= fs_devices
->seed
;
2052 tmp_fs_devices
= tmp_fs_devices
->seed
;
2054 fs_devices
->seed
= NULL
;
2055 __btrfs_close_devices(fs_devices
);
2056 free_fs_devices(fs_devices
);
2060 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info
*fs_info
,
2061 struct btrfs_device
*tgtdev
)
2063 mutex_lock(&uuid_mutex
);
2065 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
2067 btrfs_sysfs_rm_device_link(fs_info
->fs_devices
, tgtdev
);
2070 fs_info
->fs_devices
->open_devices
--;
2072 fs_info
->fs_devices
->num_devices
--;
2074 btrfs_assign_next_active_device(fs_info
, tgtdev
, NULL
);
2076 list_del_rcu(&tgtdev
->dev_list
);
2078 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2079 mutex_unlock(&uuid_mutex
);
2082 * The update_dev_time() with in btrfs_scratch_superblocks()
2083 * may lead to a call to btrfs_show_devname() which will try
2084 * to hold device_list_mutex. And here this device
2085 * is already out of device list, so we don't have to hold
2086 * the device_list_mutex lock.
2088 btrfs_scratch_superblocks(tgtdev
->bdev
, tgtdev
->name
->str
);
2090 btrfs_close_bdev(tgtdev
);
2091 call_rcu(&tgtdev
->rcu
, free_device
);
2094 static int btrfs_find_device_by_path(struct btrfs_fs_info
*fs_info
,
2095 const char *device_path
,
2096 struct btrfs_device
**device
)
2099 struct btrfs_super_block
*disk_super
;
2102 struct block_device
*bdev
;
2103 struct buffer_head
*bh
;
2106 ret
= btrfs_get_bdev_and_sb(device_path
, FMODE_READ
,
2107 fs_info
->bdev_holder
, 0, &bdev
, &bh
);
2110 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
2111 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
2112 dev_uuid
= disk_super
->dev_item
.uuid
;
2113 *device
= btrfs_find_device(fs_info
, devid
, dev_uuid
, disk_super
->fsid
);
2117 blkdev_put(bdev
, FMODE_READ
);
2121 int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info
*fs_info
,
2122 const char *device_path
,
2123 struct btrfs_device
**device
)
2126 if (strcmp(device_path
, "missing") == 0) {
2127 struct list_head
*devices
;
2128 struct btrfs_device
*tmp
;
2130 devices
= &fs_info
->fs_devices
->devices
;
2132 * It is safe to read the devices since the volume_mutex
2133 * is held by the caller.
2135 list_for_each_entry(tmp
, devices
, dev_list
) {
2136 if (tmp
->in_fs_metadata
&& !tmp
->bdev
) {
2143 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND
;
2147 return btrfs_find_device_by_path(fs_info
, device_path
, device
);
2152 * Lookup a device given by device id, or the path if the id is 0.
2154 int btrfs_find_device_by_devspec(struct btrfs_fs_info
*fs_info
, u64 devid
,
2155 const char *devpath
,
2156 struct btrfs_device
**device
)
2162 *device
= btrfs_find_device(fs_info
, devid
, NULL
, NULL
);
2166 if (!devpath
|| !devpath
[0])
2169 ret
= btrfs_find_device_missing_or_by_path(fs_info
, devpath
,
2176 * does all the dirty work required for changing file system's UUID.
2178 static int btrfs_prepare_sprout(struct btrfs_fs_info
*fs_info
)
2180 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
2181 struct btrfs_fs_devices
*old_devices
;
2182 struct btrfs_fs_devices
*seed_devices
;
2183 struct btrfs_super_block
*disk_super
= fs_info
->super_copy
;
2184 struct btrfs_device
*device
;
2187 BUG_ON(!mutex_is_locked(&uuid_mutex
));
2188 if (!fs_devices
->seeding
)
2191 seed_devices
= __alloc_fs_devices();
2192 if (IS_ERR(seed_devices
))
2193 return PTR_ERR(seed_devices
);
2195 old_devices
= clone_fs_devices(fs_devices
);
2196 if (IS_ERR(old_devices
)) {
2197 kfree(seed_devices
);
2198 return PTR_ERR(old_devices
);
2201 list_add(&old_devices
->list
, &fs_uuids
);
2203 memcpy(seed_devices
, fs_devices
, sizeof(*seed_devices
));
2204 seed_devices
->opened
= 1;
2205 INIT_LIST_HEAD(&seed_devices
->devices
);
2206 INIT_LIST_HEAD(&seed_devices
->alloc_list
);
2207 mutex_init(&seed_devices
->device_list_mutex
);
2209 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
2210 list_splice_init_rcu(&fs_devices
->devices
, &seed_devices
->devices
,
2212 list_for_each_entry(device
, &seed_devices
->devices
, dev_list
)
2213 device
->fs_devices
= seed_devices
;
2215 mutex_lock(&fs_info
->chunk_mutex
);
2216 list_splice_init(&fs_devices
->alloc_list
, &seed_devices
->alloc_list
);
2217 mutex_unlock(&fs_info
->chunk_mutex
);
2219 fs_devices
->seeding
= 0;
2220 fs_devices
->num_devices
= 0;
2221 fs_devices
->open_devices
= 0;
2222 fs_devices
->missing_devices
= 0;
2223 fs_devices
->rotating
= 0;
2224 fs_devices
->seed
= seed_devices
;
2226 generate_random_uuid(fs_devices
->fsid
);
2227 memcpy(fs_info
->fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
2228 memcpy(disk_super
->fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
2229 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2231 super_flags
= btrfs_super_flags(disk_super
) &
2232 ~BTRFS_SUPER_FLAG_SEEDING
;
2233 btrfs_set_super_flags(disk_super
, super_flags
);
2239 * Store the expected generation for seed devices in device items.
2241 static int btrfs_finish_sprout(struct btrfs_trans_handle
*trans
,
2242 struct btrfs_fs_info
*fs_info
)
2244 struct btrfs_root
*root
= fs_info
->chunk_root
;
2245 struct btrfs_path
*path
;
2246 struct extent_buffer
*leaf
;
2247 struct btrfs_dev_item
*dev_item
;
2248 struct btrfs_device
*device
;
2249 struct btrfs_key key
;
2250 u8 fs_uuid
[BTRFS_UUID_SIZE
];
2251 u8 dev_uuid
[BTRFS_UUID_SIZE
];
2255 path
= btrfs_alloc_path();
2259 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
2261 key
.type
= BTRFS_DEV_ITEM_KEY
;
2264 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2268 leaf
= path
->nodes
[0];
2270 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
2271 ret
= btrfs_next_leaf(root
, path
);
2276 leaf
= path
->nodes
[0];
2277 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2278 btrfs_release_path(path
);
2282 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2283 if (key
.objectid
!= BTRFS_DEV_ITEMS_OBJECTID
||
2284 key
.type
!= BTRFS_DEV_ITEM_KEY
)
2287 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2288 struct btrfs_dev_item
);
2289 devid
= btrfs_device_id(leaf
, dev_item
);
2290 read_extent_buffer(leaf
, dev_uuid
, btrfs_device_uuid(dev_item
),
2292 read_extent_buffer(leaf
, fs_uuid
, btrfs_device_fsid(dev_item
),
2294 device
= btrfs_find_device(fs_info
, devid
, dev_uuid
, fs_uuid
);
2295 BUG_ON(!device
); /* Logic error */
2297 if (device
->fs_devices
->seeding
) {
2298 btrfs_set_device_generation(leaf
, dev_item
,
2299 device
->generation
);
2300 btrfs_mark_buffer_dirty(leaf
);
2308 btrfs_free_path(path
);
2312 int btrfs_init_new_device(struct btrfs_fs_info
*fs_info
, const char *device_path
)
2314 struct btrfs_root
*root
= fs_info
->dev_root
;
2315 struct request_queue
*q
;
2316 struct btrfs_trans_handle
*trans
;
2317 struct btrfs_device
*device
;
2318 struct block_device
*bdev
;
2319 struct list_head
*devices
;
2320 struct super_block
*sb
= fs_info
->sb
;
2321 struct rcu_string
*name
;
2323 int seeding_dev
= 0;
2326 if ((sb
->s_flags
& MS_RDONLY
) && !fs_info
->fs_devices
->seeding
)
2329 bdev
= blkdev_get_by_path(device_path
, FMODE_WRITE
| FMODE_EXCL
,
2330 fs_info
->bdev_holder
);
2332 return PTR_ERR(bdev
);
2334 if (fs_info
->fs_devices
->seeding
) {
2336 down_write(&sb
->s_umount
);
2337 mutex_lock(&uuid_mutex
);
2340 filemap_write_and_wait(bdev
->bd_inode
->i_mapping
);
2342 devices
= &fs_info
->fs_devices
->devices
;
2344 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
2345 list_for_each_entry(device
, devices
, dev_list
) {
2346 if (device
->bdev
== bdev
) {
2349 &fs_info
->fs_devices
->device_list_mutex
);
2353 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2355 device
= btrfs_alloc_device(fs_info
, NULL
, NULL
);
2356 if (IS_ERR(device
)) {
2357 /* we can safely leave the fs_devices entry around */
2358 ret
= PTR_ERR(device
);
2362 name
= rcu_string_strdup(device_path
, GFP_KERNEL
);
2368 rcu_assign_pointer(device
->name
, name
);
2370 trans
= btrfs_start_transaction(root
, 0);
2371 if (IS_ERR(trans
)) {
2372 rcu_string_free(device
->name
);
2374 ret
= PTR_ERR(trans
);
2378 q
= bdev_get_queue(bdev
);
2379 if (blk_queue_discard(q
))
2380 device
->can_discard
= 1;
2381 device
->writeable
= 1;
2382 device
->generation
= trans
->transid
;
2383 device
->io_width
= fs_info
->sectorsize
;
2384 device
->io_align
= fs_info
->sectorsize
;
2385 device
->sector_size
= fs_info
->sectorsize
;
2386 device
->total_bytes
= i_size_read(bdev
->bd_inode
);
2387 device
->disk_total_bytes
= device
->total_bytes
;
2388 device
->commit_total_bytes
= device
->total_bytes
;
2389 device
->fs_info
= fs_info
;
2390 device
->bdev
= bdev
;
2391 device
->in_fs_metadata
= 1;
2392 device
->is_tgtdev_for_dev_replace
= 0;
2393 device
->mode
= FMODE_EXCL
;
2394 device
->dev_stats_valid
= 1;
2395 set_blocksize(device
->bdev
, 4096);
2398 sb
->s_flags
&= ~MS_RDONLY
;
2399 ret
= btrfs_prepare_sprout(fs_info
);
2400 BUG_ON(ret
); /* -ENOMEM */
2403 device
->fs_devices
= fs_info
->fs_devices
;
2405 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
2406 mutex_lock(&fs_info
->chunk_mutex
);
2407 list_add_rcu(&device
->dev_list
, &fs_info
->fs_devices
->devices
);
2408 list_add(&device
->dev_alloc_list
,
2409 &fs_info
->fs_devices
->alloc_list
);
2410 fs_info
->fs_devices
->num_devices
++;
2411 fs_info
->fs_devices
->open_devices
++;
2412 fs_info
->fs_devices
->rw_devices
++;
2413 fs_info
->fs_devices
->total_devices
++;
2414 fs_info
->fs_devices
->total_rw_bytes
+= device
->total_bytes
;
2416 spin_lock(&fs_info
->free_chunk_lock
);
2417 fs_info
->free_chunk_space
+= device
->total_bytes
;
2418 spin_unlock(&fs_info
->free_chunk_lock
);
2420 if (!blk_queue_nonrot(bdev_get_queue(bdev
)))
2421 fs_info
->fs_devices
->rotating
= 1;
2423 tmp
= btrfs_super_total_bytes(fs_info
->super_copy
);
2424 btrfs_set_super_total_bytes(fs_info
->super_copy
,
2425 tmp
+ device
->total_bytes
);
2427 tmp
= btrfs_super_num_devices(fs_info
->super_copy
);
2428 btrfs_set_super_num_devices(fs_info
->super_copy
, tmp
+ 1);
2430 /* add sysfs device entry */
2431 btrfs_sysfs_add_device_link(fs_info
->fs_devices
, device
);
2434 * we've got more storage, clear any full flags on the space
2437 btrfs_clear_space_info_full(fs_info
);
2439 mutex_unlock(&fs_info
->chunk_mutex
);
2440 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2443 mutex_lock(&fs_info
->chunk_mutex
);
2444 ret
= init_first_rw_device(trans
, fs_info
);
2445 mutex_unlock(&fs_info
->chunk_mutex
);
2447 btrfs_abort_transaction(trans
, ret
);
2452 ret
= btrfs_add_device(trans
, fs_info
, device
);
2454 btrfs_abort_transaction(trans
, ret
);
2459 char fsid_buf
[BTRFS_UUID_UNPARSED_SIZE
];
2461 ret
= btrfs_finish_sprout(trans
, fs_info
);
2463 btrfs_abort_transaction(trans
, ret
);
2467 /* Sprouting would change fsid of the mounted root,
2468 * so rename the fsid on the sysfs
2470 snprintf(fsid_buf
, BTRFS_UUID_UNPARSED_SIZE
, "%pU",
2472 if (kobject_rename(&fs_info
->fs_devices
->fsid_kobj
, fsid_buf
))
2474 "sysfs: failed to create fsid for sprout");
2477 fs_info
->num_tolerated_disk_barrier_failures
=
2478 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info
);
2479 ret
= btrfs_commit_transaction(trans
);
2482 mutex_unlock(&uuid_mutex
);
2483 up_write(&sb
->s_umount
);
2485 if (ret
) /* transaction commit */
2488 ret
= btrfs_relocate_sys_chunks(fs_info
);
2490 btrfs_handle_fs_error(fs_info
, ret
,
2491 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2492 trans
= btrfs_attach_transaction(root
);
2493 if (IS_ERR(trans
)) {
2494 if (PTR_ERR(trans
) == -ENOENT
)
2496 return PTR_ERR(trans
);
2498 ret
= btrfs_commit_transaction(trans
);
2501 /* Update ctime/mtime for libblkid */
2502 update_dev_time(device_path
);
2506 btrfs_end_transaction(trans
);
2507 rcu_string_free(device
->name
);
2508 btrfs_sysfs_rm_device_link(fs_info
->fs_devices
, device
);
2511 blkdev_put(bdev
, FMODE_EXCL
);
2513 mutex_unlock(&uuid_mutex
);
2514 up_write(&sb
->s_umount
);
2519 int btrfs_init_dev_replace_tgtdev(struct btrfs_fs_info
*fs_info
,
2520 const char *device_path
,
2521 struct btrfs_device
*srcdev
,
2522 struct btrfs_device
**device_out
)
2524 struct request_queue
*q
;
2525 struct btrfs_device
*device
;
2526 struct block_device
*bdev
;
2527 struct list_head
*devices
;
2528 struct rcu_string
*name
;
2529 u64 devid
= BTRFS_DEV_REPLACE_DEVID
;
2533 if (fs_info
->fs_devices
->seeding
) {
2534 btrfs_err(fs_info
, "the filesystem is a seed filesystem!");
2538 bdev
= blkdev_get_by_path(device_path
, FMODE_WRITE
| FMODE_EXCL
,
2539 fs_info
->bdev_holder
);
2541 btrfs_err(fs_info
, "target device %s is invalid!", device_path
);
2542 return PTR_ERR(bdev
);
2545 filemap_write_and_wait(bdev
->bd_inode
->i_mapping
);
2547 devices
= &fs_info
->fs_devices
->devices
;
2548 list_for_each_entry(device
, devices
, dev_list
) {
2549 if (device
->bdev
== bdev
) {
2551 "target device is in the filesystem!");
2558 if (i_size_read(bdev
->bd_inode
) <
2559 btrfs_device_get_total_bytes(srcdev
)) {
2561 "target device is smaller than source device!");
2567 device
= btrfs_alloc_device(NULL
, &devid
, NULL
);
2568 if (IS_ERR(device
)) {
2569 ret
= PTR_ERR(device
);
2573 name
= rcu_string_strdup(device_path
, GFP_NOFS
);
2579 rcu_assign_pointer(device
->name
, name
);
2581 q
= bdev_get_queue(bdev
);
2582 if (blk_queue_discard(q
))
2583 device
->can_discard
= 1;
2584 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
2585 device
->writeable
= 1;
2586 device
->generation
= 0;
2587 device
->io_width
= fs_info
->sectorsize
;
2588 device
->io_align
= fs_info
->sectorsize
;
2589 device
->sector_size
= fs_info
->sectorsize
;
2590 device
->total_bytes
= btrfs_device_get_total_bytes(srcdev
);
2591 device
->disk_total_bytes
= btrfs_device_get_disk_total_bytes(srcdev
);
2592 device
->bytes_used
= btrfs_device_get_bytes_used(srcdev
);
2593 ASSERT(list_empty(&srcdev
->resized_list
));
2594 device
->commit_total_bytes
= srcdev
->commit_total_bytes
;
2595 device
->commit_bytes_used
= device
->bytes_used
;
2596 device
->fs_info
= fs_info
;
2597 device
->bdev
= bdev
;
2598 device
->in_fs_metadata
= 1;
2599 device
->is_tgtdev_for_dev_replace
= 1;
2600 device
->mode
= FMODE_EXCL
;
2601 device
->dev_stats_valid
= 1;
2602 set_blocksize(device
->bdev
, 4096);
2603 device
->fs_devices
= fs_info
->fs_devices
;
2604 list_add(&device
->dev_list
, &fs_info
->fs_devices
->devices
);
2605 fs_info
->fs_devices
->num_devices
++;
2606 fs_info
->fs_devices
->open_devices
++;
2607 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2609 *device_out
= device
;
2613 blkdev_put(bdev
, FMODE_EXCL
);
2617 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info
*fs_info
,
2618 struct btrfs_device
*tgtdev
)
2620 u32 sectorsize
= fs_info
->sectorsize
;
2622 WARN_ON(fs_info
->fs_devices
->rw_devices
== 0);
2623 tgtdev
->io_width
= sectorsize
;
2624 tgtdev
->io_align
= sectorsize
;
2625 tgtdev
->sector_size
= sectorsize
;
2626 tgtdev
->fs_info
= fs_info
;
2627 tgtdev
->in_fs_metadata
= 1;
2630 static noinline
int btrfs_update_device(struct btrfs_trans_handle
*trans
,
2631 struct btrfs_device
*device
)
2634 struct btrfs_path
*path
;
2635 struct btrfs_root
*root
= device
->fs_info
->chunk_root
;
2636 struct btrfs_dev_item
*dev_item
;
2637 struct extent_buffer
*leaf
;
2638 struct btrfs_key key
;
2640 path
= btrfs_alloc_path();
2644 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
2645 key
.type
= BTRFS_DEV_ITEM_KEY
;
2646 key
.offset
= device
->devid
;
2648 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2657 leaf
= path
->nodes
[0];
2658 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_dev_item
);
2660 btrfs_set_device_id(leaf
, dev_item
, device
->devid
);
2661 btrfs_set_device_type(leaf
, dev_item
, device
->type
);
2662 btrfs_set_device_io_align(leaf
, dev_item
, device
->io_align
);
2663 btrfs_set_device_io_width(leaf
, dev_item
, device
->io_width
);
2664 btrfs_set_device_sector_size(leaf
, dev_item
, device
->sector_size
);
2665 btrfs_set_device_total_bytes(leaf
, dev_item
,
2666 btrfs_device_get_disk_total_bytes(device
));
2667 btrfs_set_device_bytes_used(leaf
, dev_item
,
2668 btrfs_device_get_bytes_used(device
));
2669 btrfs_mark_buffer_dirty(leaf
);
2672 btrfs_free_path(path
);
2676 int btrfs_grow_device(struct btrfs_trans_handle
*trans
,
2677 struct btrfs_device
*device
, u64 new_size
)
2679 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
2680 struct btrfs_super_block
*super_copy
= fs_info
->super_copy
;
2681 struct btrfs_fs_devices
*fs_devices
;
2685 if (!device
->writeable
)
2688 mutex_lock(&fs_info
->chunk_mutex
);
2689 old_total
= btrfs_super_total_bytes(super_copy
);
2690 diff
= new_size
- device
->total_bytes
;
2692 if (new_size
<= device
->total_bytes
||
2693 device
->is_tgtdev_for_dev_replace
) {
2694 mutex_unlock(&fs_info
->chunk_mutex
);
2698 fs_devices
= fs_info
->fs_devices
;
2700 btrfs_set_super_total_bytes(super_copy
, old_total
+ diff
);
2701 device
->fs_devices
->total_rw_bytes
+= diff
;
2703 btrfs_device_set_total_bytes(device
, new_size
);
2704 btrfs_device_set_disk_total_bytes(device
, new_size
);
2705 btrfs_clear_space_info_full(device
->fs_info
);
2706 if (list_empty(&device
->resized_list
))
2707 list_add_tail(&device
->resized_list
,
2708 &fs_devices
->resized_devices
);
2709 mutex_unlock(&fs_info
->chunk_mutex
);
2711 return btrfs_update_device(trans
, device
);
2714 static int btrfs_free_chunk(struct btrfs_trans_handle
*trans
,
2715 struct btrfs_fs_info
*fs_info
, u64 chunk_objectid
,
2718 struct btrfs_root
*root
= fs_info
->chunk_root
;
2720 struct btrfs_path
*path
;
2721 struct btrfs_key key
;
2723 path
= btrfs_alloc_path();
2727 key
.objectid
= chunk_objectid
;
2728 key
.offset
= chunk_offset
;
2729 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
2731 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
2734 else if (ret
> 0) { /* Logic error or corruption */
2735 btrfs_handle_fs_error(fs_info
, -ENOENT
,
2736 "Failed lookup while freeing chunk.");
2741 ret
= btrfs_del_item(trans
, root
, path
);
2743 btrfs_handle_fs_error(fs_info
, ret
,
2744 "Failed to delete chunk item.");
2746 btrfs_free_path(path
);
2750 static int btrfs_del_sys_chunk(struct btrfs_fs_info
*fs_info
,
2751 u64 chunk_objectid
, u64 chunk_offset
)
2753 struct btrfs_super_block
*super_copy
= fs_info
->super_copy
;
2754 struct btrfs_disk_key
*disk_key
;
2755 struct btrfs_chunk
*chunk
;
2762 struct btrfs_key key
;
2764 mutex_lock(&fs_info
->chunk_mutex
);
2765 array_size
= btrfs_super_sys_array_size(super_copy
);
2767 ptr
= super_copy
->sys_chunk_array
;
2770 while (cur
< array_size
) {
2771 disk_key
= (struct btrfs_disk_key
*)ptr
;
2772 btrfs_disk_key_to_cpu(&key
, disk_key
);
2774 len
= sizeof(*disk_key
);
2776 if (key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
2777 chunk
= (struct btrfs_chunk
*)(ptr
+ len
);
2778 num_stripes
= btrfs_stack_chunk_num_stripes(chunk
);
2779 len
+= btrfs_chunk_item_size(num_stripes
);
2784 if (key
.objectid
== chunk_objectid
&&
2785 key
.offset
== chunk_offset
) {
2786 memmove(ptr
, ptr
+ len
, array_size
- (cur
+ len
));
2788 btrfs_set_super_sys_array_size(super_copy
, array_size
);
2794 mutex_unlock(&fs_info
->chunk_mutex
);
2798 int btrfs_remove_chunk(struct btrfs_trans_handle
*trans
,
2799 struct btrfs_fs_info
*fs_info
, u64 chunk_offset
)
2801 struct extent_map_tree
*em_tree
;
2802 struct extent_map
*em
;
2803 struct map_lookup
*map
;
2804 u64 dev_extent_len
= 0;
2805 u64 chunk_objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
2807 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
2809 em_tree
= &fs_info
->mapping_tree
.map_tree
;
2811 read_lock(&em_tree
->lock
);
2812 em
= lookup_extent_mapping(em_tree
, chunk_offset
, 1);
2813 read_unlock(&em_tree
->lock
);
2815 if (!em
|| em
->start
> chunk_offset
||
2816 em
->start
+ em
->len
< chunk_offset
) {
2818 * This is a logic error, but we don't want to just rely on the
2819 * user having built with ASSERT enabled, so if ASSERT doesn't
2820 * do anything we still error out.
2824 free_extent_map(em
);
2827 map
= em
->map_lookup
;
2828 mutex_lock(&fs_info
->chunk_mutex
);
2829 check_system_chunk(trans
, fs_info
, map
->type
);
2830 mutex_unlock(&fs_info
->chunk_mutex
);
2833 * Take the device list mutex to prevent races with the final phase of
2834 * a device replace operation that replaces the device object associated
2835 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2837 mutex_lock(&fs_devices
->device_list_mutex
);
2838 for (i
= 0; i
< map
->num_stripes
; i
++) {
2839 struct btrfs_device
*device
= map
->stripes
[i
].dev
;
2840 ret
= btrfs_free_dev_extent(trans
, device
,
2841 map
->stripes
[i
].physical
,
2844 mutex_unlock(&fs_devices
->device_list_mutex
);
2845 btrfs_abort_transaction(trans
, ret
);
2849 if (device
->bytes_used
> 0) {
2850 mutex_lock(&fs_info
->chunk_mutex
);
2851 btrfs_device_set_bytes_used(device
,
2852 device
->bytes_used
- dev_extent_len
);
2853 spin_lock(&fs_info
->free_chunk_lock
);
2854 fs_info
->free_chunk_space
+= dev_extent_len
;
2855 spin_unlock(&fs_info
->free_chunk_lock
);
2856 btrfs_clear_space_info_full(fs_info
);
2857 mutex_unlock(&fs_info
->chunk_mutex
);
2860 if (map
->stripes
[i
].dev
) {
2861 ret
= btrfs_update_device(trans
, map
->stripes
[i
].dev
);
2863 mutex_unlock(&fs_devices
->device_list_mutex
);
2864 btrfs_abort_transaction(trans
, ret
);
2869 mutex_unlock(&fs_devices
->device_list_mutex
);
2871 ret
= btrfs_free_chunk(trans
, fs_info
, chunk_objectid
, chunk_offset
);
2873 btrfs_abort_transaction(trans
, ret
);
2877 trace_btrfs_chunk_free(fs_info
, map
, chunk_offset
, em
->len
);
2879 if (map
->type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
2880 ret
= btrfs_del_sys_chunk(fs_info
, chunk_objectid
,
2883 btrfs_abort_transaction(trans
, ret
);
2888 ret
= btrfs_remove_block_group(trans
, fs_info
, chunk_offset
, em
);
2890 btrfs_abort_transaction(trans
, ret
);
2896 free_extent_map(em
);
2900 static int btrfs_relocate_chunk(struct btrfs_fs_info
*fs_info
, u64 chunk_offset
)
2902 struct btrfs_root
*root
= fs_info
->chunk_root
;
2903 struct btrfs_trans_handle
*trans
;
2907 * Prevent races with automatic removal of unused block groups.
2908 * After we relocate and before we remove the chunk with offset
2909 * chunk_offset, automatic removal of the block group can kick in,
2910 * resulting in a failure when calling btrfs_remove_chunk() below.
2912 * Make sure to acquire this mutex before doing a tree search (dev
2913 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2914 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2915 * we release the path used to search the chunk/dev tree and before
2916 * the current task acquires this mutex and calls us.
2918 ASSERT(mutex_is_locked(&fs_info
->delete_unused_bgs_mutex
));
2920 ret
= btrfs_can_relocate(fs_info
, chunk_offset
);
2924 /* step one, relocate all the extents inside this chunk */
2925 btrfs_scrub_pause(fs_info
);
2926 ret
= btrfs_relocate_block_group(fs_info
, chunk_offset
);
2927 btrfs_scrub_continue(fs_info
);
2931 trans
= btrfs_start_trans_remove_block_group(root
->fs_info
,
2933 if (IS_ERR(trans
)) {
2934 ret
= PTR_ERR(trans
);
2935 btrfs_handle_fs_error(root
->fs_info
, ret
, NULL
);
2940 * step two, delete the device extents and the
2941 * chunk tree entries
2943 ret
= btrfs_remove_chunk(trans
, fs_info
, chunk_offset
);
2944 btrfs_end_transaction(trans
);
2948 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info
*fs_info
)
2950 struct btrfs_root
*chunk_root
= fs_info
->chunk_root
;
2951 struct btrfs_path
*path
;
2952 struct extent_buffer
*leaf
;
2953 struct btrfs_chunk
*chunk
;
2954 struct btrfs_key key
;
2955 struct btrfs_key found_key
;
2957 bool retried
= false;
2961 path
= btrfs_alloc_path();
2966 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
2967 key
.offset
= (u64
)-1;
2968 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
2971 mutex_lock(&fs_info
->delete_unused_bgs_mutex
);
2972 ret
= btrfs_search_slot(NULL
, chunk_root
, &key
, path
, 0, 0);
2974 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
2977 BUG_ON(ret
== 0); /* Corruption */
2979 ret
= btrfs_previous_item(chunk_root
, path
, key
.objectid
,
2982 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
2988 leaf
= path
->nodes
[0];
2989 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
2991 chunk
= btrfs_item_ptr(leaf
, path
->slots
[0],
2992 struct btrfs_chunk
);
2993 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
2994 btrfs_release_path(path
);
2996 if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
2997 ret
= btrfs_relocate_chunk(fs_info
, found_key
.offset
);
3003 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3005 if (found_key
.offset
== 0)
3007 key
.offset
= found_key
.offset
- 1;
3010 if (failed
&& !retried
) {
3014 } else if (WARN_ON(failed
&& retried
)) {
3018 btrfs_free_path(path
);
3022 static int insert_balance_item(struct btrfs_fs_info
*fs_info
,
3023 struct btrfs_balance_control
*bctl
)
3025 struct btrfs_root
*root
= fs_info
->tree_root
;
3026 struct btrfs_trans_handle
*trans
;
3027 struct btrfs_balance_item
*item
;
3028 struct btrfs_disk_balance_args disk_bargs
;
3029 struct btrfs_path
*path
;
3030 struct extent_buffer
*leaf
;
3031 struct btrfs_key key
;
3034 path
= btrfs_alloc_path();
3038 trans
= btrfs_start_transaction(root
, 0);
3039 if (IS_ERR(trans
)) {
3040 btrfs_free_path(path
);
3041 return PTR_ERR(trans
);
3044 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
3045 key
.type
= BTRFS_TEMPORARY_ITEM_KEY
;
3048 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
3053 leaf
= path
->nodes
[0];
3054 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_balance_item
);
3056 memzero_extent_buffer(leaf
, (unsigned long)item
, sizeof(*item
));
3058 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->data
);
3059 btrfs_set_balance_data(leaf
, item
, &disk_bargs
);
3060 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->meta
);
3061 btrfs_set_balance_meta(leaf
, item
, &disk_bargs
);
3062 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->sys
);
3063 btrfs_set_balance_sys(leaf
, item
, &disk_bargs
);
3065 btrfs_set_balance_flags(leaf
, item
, bctl
->flags
);
3067 btrfs_mark_buffer_dirty(leaf
);
3069 btrfs_free_path(path
);
3070 err
= btrfs_commit_transaction(trans
);
3076 static int del_balance_item(struct btrfs_fs_info
*fs_info
)
3078 struct btrfs_root
*root
= fs_info
->tree_root
;
3079 struct btrfs_trans_handle
*trans
;
3080 struct btrfs_path
*path
;
3081 struct btrfs_key key
;
3084 path
= btrfs_alloc_path();
3088 trans
= btrfs_start_transaction(root
, 0);
3089 if (IS_ERR(trans
)) {
3090 btrfs_free_path(path
);
3091 return PTR_ERR(trans
);
3094 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
3095 key
.type
= BTRFS_TEMPORARY_ITEM_KEY
;
3098 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
3106 ret
= btrfs_del_item(trans
, root
, path
);
3108 btrfs_free_path(path
);
3109 err
= btrfs_commit_transaction(trans
);
3116 * This is a heuristic used to reduce the number of chunks balanced on
3117 * resume after balance was interrupted.
3119 static void update_balance_args(struct btrfs_balance_control
*bctl
)
3122 * Turn on soft mode for chunk types that were being converted.
3124 if (bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
3125 bctl
->data
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
3126 if (bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
3127 bctl
->sys
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
3128 if (bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
3129 bctl
->meta
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
3132 * Turn on usage filter if is not already used. The idea is
3133 * that chunks that we have already balanced should be
3134 * reasonably full. Don't do it for chunks that are being
3135 * converted - that will keep us from relocating unconverted
3136 * (albeit full) chunks.
3138 if (!(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3139 !(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3140 !(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
3141 bctl
->data
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
3142 bctl
->data
.usage
= 90;
3144 if (!(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3145 !(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3146 !(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
3147 bctl
->sys
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
3148 bctl
->sys
.usage
= 90;
3150 if (!(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3151 !(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3152 !(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
3153 bctl
->meta
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
3154 bctl
->meta
.usage
= 90;
3159 * Should be called with both balance and volume mutexes held to
3160 * serialize other volume operations (add_dev/rm_dev/resize) with
3161 * restriper. Same goes for unset_balance_control.
3163 static void set_balance_control(struct btrfs_balance_control
*bctl
)
3165 struct btrfs_fs_info
*fs_info
= bctl
->fs_info
;
3167 BUG_ON(fs_info
->balance_ctl
);
3169 spin_lock(&fs_info
->balance_lock
);
3170 fs_info
->balance_ctl
= bctl
;
3171 spin_unlock(&fs_info
->balance_lock
);
3174 static void unset_balance_control(struct btrfs_fs_info
*fs_info
)
3176 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3178 BUG_ON(!fs_info
->balance_ctl
);
3180 spin_lock(&fs_info
->balance_lock
);
3181 fs_info
->balance_ctl
= NULL
;
3182 spin_unlock(&fs_info
->balance_lock
);
3188 * Balance filters. Return 1 if chunk should be filtered out
3189 * (should not be balanced).
3191 static int chunk_profiles_filter(u64 chunk_type
,
3192 struct btrfs_balance_args
*bargs
)
3194 chunk_type
= chunk_to_extended(chunk_type
) &
3195 BTRFS_EXTENDED_PROFILE_MASK
;
3197 if (bargs
->profiles
& chunk_type
)
3203 static int chunk_usage_range_filter(struct btrfs_fs_info
*fs_info
, u64 chunk_offset
,
3204 struct btrfs_balance_args
*bargs
)
3206 struct btrfs_block_group_cache
*cache
;
3208 u64 user_thresh_min
;
3209 u64 user_thresh_max
;
3212 cache
= btrfs_lookup_block_group(fs_info
, chunk_offset
);
3213 chunk_used
= btrfs_block_group_used(&cache
->item
);
3215 if (bargs
->usage_min
== 0)
3216 user_thresh_min
= 0;
3218 user_thresh_min
= div_factor_fine(cache
->key
.offset
,
3221 if (bargs
->usage_max
== 0)
3222 user_thresh_max
= 1;
3223 else if (bargs
->usage_max
> 100)
3224 user_thresh_max
= cache
->key
.offset
;
3226 user_thresh_max
= div_factor_fine(cache
->key
.offset
,
3229 if (user_thresh_min
<= chunk_used
&& chunk_used
< user_thresh_max
)
3232 btrfs_put_block_group(cache
);
3236 static int chunk_usage_filter(struct btrfs_fs_info
*fs_info
,
3237 u64 chunk_offset
, struct btrfs_balance_args
*bargs
)
3239 struct btrfs_block_group_cache
*cache
;
3240 u64 chunk_used
, user_thresh
;
3243 cache
= btrfs_lookup_block_group(fs_info
, chunk_offset
);
3244 chunk_used
= btrfs_block_group_used(&cache
->item
);
3246 if (bargs
->usage_min
== 0)
3248 else if (bargs
->usage
> 100)
3249 user_thresh
= cache
->key
.offset
;
3251 user_thresh
= div_factor_fine(cache
->key
.offset
,
3254 if (chunk_used
< user_thresh
)
3257 btrfs_put_block_group(cache
);
3261 static int chunk_devid_filter(struct extent_buffer
*leaf
,
3262 struct btrfs_chunk
*chunk
,
3263 struct btrfs_balance_args
*bargs
)
3265 struct btrfs_stripe
*stripe
;
3266 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
3269 for (i
= 0; i
< num_stripes
; i
++) {
3270 stripe
= btrfs_stripe_nr(chunk
, i
);
3271 if (btrfs_stripe_devid(leaf
, stripe
) == bargs
->devid
)
3278 /* [pstart, pend) */
3279 static int chunk_drange_filter(struct extent_buffer
*leaf
,
3280 struct btrfs_chunk
*chunk
,
3282 struct btrfs_balance_args
*bargs
)
3284 struct btrfs_stripe
*stripe
;
3285 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
3291 if (!(bargs
->flags
& BTRFS_BALANCE_ARGS_DEVID
))
3294 if (btrfs_chunk_type(leaf
, chunk
) & (BTRFS_BLOCK_GROUP_DUP
|
3295 BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID10
)) {
3296 factor
= num_stripes
/ 2;
3297 } else if (btrfs_chunk_type(leaf
, chunk
) & BTRFS_BLOCK_GROUP_RAID5
) {
3298 factor
= num_stripes
- 1;
3299 } else if (btrfs_chunk_type(leaf
, chunk
) & BTRFS_BLOCK_GROUP_RAID6
) {
3300 factor
= num_stripes
- 2;
3302 factor
= num_stripes
;
3305 for (i
= 0; i
< num_stripes
; i
++) {
3306 stripe
= btrfs_stripe_nr(chunk
, i
);
3307 if (btrfs_stripe_devid(leaf
, stripe
) != bargs
->devid
)
3310 stripe_offset
= btrfs_stripe_offset(leaf
, stripe
);
3311 stripe_length
= btrfs_chunk_length(leaf
, chunk
);
3312 stripe_length
= div_u64(stripe_length
, factor
);
3314 if (stripe_offset
< bargs
->pend
&&
3315 stripe_offset
+ stripe_length
> bargs
->pstart
)
3322 /* [vstart, vend) */
3323 static int chunk_vrange_filter(struct extent_buffer
*leaf
,
3324 struct btrfs_chunk
*chunk
,
3326 struct btrfs_balance_args
*bargs
)
3328 if (chunk_offset
< bargs
->vend
&&
3329 chunk_offset
+ btrfs_chunk_length(leaf
, chunk
) > bargs
->vstart
)
3330 /* at least part of the chunk is inside this vrange */
3336 static int chunk_stripes_range_filter(struct extent_buffer
*leaf
,
3337 struct btrfs_chunk
*chunk
,
3338 struct btrfs_balance_args
*bargs
)
3340 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
3342 if (bargs
->stripes_min
<= num_stripes
3343 && num_stripes
<= bargs
->stripes_max
)
3349 static int chunk_soft_convert_filter(u64 chunk_type
,
3350 struct btrfs_balance_args
*bargs
)
3352 if (!(bargs
->flags
& BTRFS_BALANCE_ARGS_CONVERT
))
3355 chunk_type
= chunk_to_extended(chunk_type
) &
3356 BTRFS_EXTENDED_PROFILE_MASK
;
3358 if (bargs
->target
== chunk_type
)
3364 static int should_balance_chunk(struct btrfs_fs_info
*fs_info
,
3365 struct extent_buffer
*leaf
,
3366 struct btrfs_chunk
*chunk
, u64 chunk_offset
)
3368 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3369 struct btrfs_balance_args
*bargs
= NULL
;
3370 u64 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
3373 if (!((chunk_type
& BTRFS_BLOCK_GROUP_TYPE_MASK
) &
3374 (bctl
->flags
& BTRFS_BALANCE_TYPE_MASK
))) {
3378 if (chunk_type
& BTRFS_BLOCK_GROUP_DATA
)
3379 bargs
= &bctl
->data
;
3380 else if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
)
3382 else if (chunk_type
& BTRFS_BLOCK_GROUP_METADATA
)
3383 bargs
= &bctl
->meta
;
3385 /* profiles filter */
3386 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_PROFILES
) &&
3387 chunk_profiles_filter(chunk_type
, bargs
)) {
3392 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3393 chunk_usage_filter(fs_info
, chunk_offset
, bargs
)) {
3395 } else if ((bargs
->flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3396 chunk_usage_range_filter(fs_info
, chunk_offset
, bargs
)) {
3401 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_DEVID
) &&
3402 chunk_devid_filter(leaf
, chunk
, bargs
)) {
3406 /* drange filter, makes sense only with devid filter */
3407 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_DRANGE
) &&
3408 chunk_drange_filter(leaf
, chunk
, chunk_offset
, bargs
)) {
3413 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_VRANGE
) &&
3414 chunk_vrange_filter(leaf
, chunk
, chunk_offset
, bargs
)) {
3418 /* stripes filter */
3419 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_STRIPES_RANGE
) &&
3420 chunk_stripes_range_filter(leaf
, chunk
, bargs
)) {
3424 /* soft profile changing mode */
3425 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_SOFT
) &&
3426 chunk_soft_convert_filter(chunk_type
, bargs
)) {
3431 * limited by count, must be the last filter
3433 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_LIMIT
)) {
3434 if (bargs
->limit
== 0)
3438 } else if ((bargs
->flags
& BTRFS_BALANCE_ARGS_LIMIT_RANGE
)) {
3440 * Same logic as the 'limit' filter; the minimum cannot be
3441 * determined here because we do not have the global information
3442 * about the count of all chunks that satisfy the filters.
3444 if (bargs
->limit_max
== 0)
3453 static int __btrfs_balance(struct btrfs_fs_info
*fs_info
)
3455 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3456 struct btrfs_root
*chunk_root
= fs_info
->chunk_root
;
3457 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
3458 struct list_head
*devices
;
3459 struct btrfs_device
*device
;
3463 struct btrfs_chunk
*chunk
;
3464 struct btrfs_path
*path
= NULL
;
3465 struct btrfs_key key
;
3466 struct btrfs_key found_key
;
3467 struct btrfs_trans_handle
*trans
;
3468 struct extent_buffer
*leaf
;
3471 int enospc_errors
= 0;
3472 bool counting
= true;
3473 /* The single value limit and min/max limits use the same bytes in the */
3474 u64 limit_data
= bctl
->data
.limit
;
3475 u64 limit_meta
= bctl
->meta
.limit
;
3476 u64 limit_sys
= bctl
->sys
.limit
;
3480 int chunk_reserved
= 0;
3483 /* step one make some room on all the devices */
3484 devices
= &fs_info
->fs_devices
->devices
;
3485 list_for_each_entry(device
, devices
, dev_list
) {
3486 old_size
= btrfs_device_get_total_bytes(device
);
3487 size_to_free
= div_factor(old_size
, 1);
3488 size_to_free
= min_t(u64
, size_to_free
, SZ_1M
);
3489 if (!device
->writeable
||
3490 btrfs_device_get_total_bytes(device
) -
3491 btrfs_device_get_bytes_used(device
) > size_to_free
||
3492 device
->is_tgtdev_for_dev_replace
)
3495 ret
= btrfs_shrink_device(device
, old_size
- size_to_free
);
3499 /* btrfs_shrink_device never returns ret > 0 */
3504 trans
= btrfs_start_transaction(dev_root
, 0);
3505 if (IS_ERR(trans
)) {
3506 ret
= PTR_ERR(trans
);
3507 btrfs_info_in_rcu(fs_info
,
3508 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3509 rcu_str_deref(device
->name
), ret
,
3510 old_size
, old_size
- size_to_free
);
3514 ret
= btrfs_grow_device(trans
, device
, old_size
);
3516 btrfs_end_transaction(trans
);
3517 /* btrfs_grow_device never returns ret > 0 */
3519 btrfs_info_in_rcu(fs_info
,
3520 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3521 rcu_str_deref(device
->name
), ret
,
3522 old_size
, old_size
- size_to_free
);
3526 btrfs_end_transaction(trans
);
3529 /* step two, relocate all the chunks */
3530 path
= btrfs_alloc_path();
3536 /* zero out stat counters */
3537 spin_lock(&fs_info
->balance_lock
);
3538 memset(&bctl
->stat
, 0, sizeof(bctl
->stat
));
3539 spin_unlock(&fs_info
->balance_lock
);
3543 * The single value limit and min/max limits use the same bytes
3546 bctl
->data
.limit
= limit_data
;
3547 bctl
->meta
.limit
= limit_meta
;
3548 bctl
->sys
.limit
= limit_sys
;
3550 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
3551 key
.offset
= (u64
)-1;
3552 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
3555 if ((!counting
&& atomic_read(&fs_info
->balance_pause_req
)) ||
3556 atomic_read(&fs_info
->balance_cancel_req
)) {
3561 mutex_lock(&fs_info
->delete_unused_bgs_mutex
);
3562 ret
= btrfs_search_slot(NULL
, chunk_root
, &key
, path
, 0, 0);
3564 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3569 * this shouldn't happen, it means the last relocate
3573 BUG(); /* FIXME break ? */
3575 ret
= btrfs_previous_item(chunk_root
, path
, 0,
3576 BTRFS_CHUNK_ITEM_KEY
);
3578 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3583 leaf
= path
->nodes
[0];
3584 slot
= path
->slots
[0];
3585 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
3587 if (found_key
.objectid
!= key
.objectid
) {
3588 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3592 chunk
= btrfs_item_ptr(leaf
, slot
, struct btrfs_chunk
);
3593 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
3596 spin_lock(&fs_info
->balance_lock
);
3597 bctl
->stat
.considered
++;
3598 spin_unlock(&fs_info
->balance_lock
);
3601 ret
= should_balance_chunk(fs_info
, leaf
, chunk
,
3604 btrfs_release_path(path
);
3606 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3611 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3612 spin_lock(&fs_info
->balance_lock
);
3613 bctl
->stat
.expected
++;
3614 spin_unlock(&fs_info
->balance_lock
);
3616 if (chunk_type
& BTRFS_BLOCK_GROUP_DATA
)
3618 else if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
)
3620 else if (chunk_type
& BTRFS_BLOCK_GROUP_METADATA
)
3627 * Apply limit_min filter, no need to check if the LIMITS
3628 * filter is used, limit_min is 0 by default
3630 if (((chunk_type
& BTRFS_BLOCK_GROUP_DATA
) &&
3631 count_data
< bctl
->data
.limit_min
)
3632 || ((chunk_type
& BTRFS_BLOCK_GROUP_METADATA
) &&
3633 count_meta
< bctl
->meta
.limit_min
)
3634 || ((chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
) &&
3635 count_sys
< bctl
->sys
.limit_min
)) {
3636 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3640 ASSERT(fs_info
->data_sinfo
);
3641 spin_lock(&fs_info
->data_sinfo
->lock
);
3642 bytes_used
= fs_info
->data_sinfo
->bytes_used
;
3643 spin_unlock(&fs_info
->data_sinfo
->lock
);
3645 if ((chunk_type
& BTRFS_BLOCK_GROUP_DATA
) &&
3646 !chunk_reserved
&& !bytes_used
) {
3647 trans
= btrfs_start_transaction(chunk_root
, 0);
3648 if (IS_ERR(trans
)) {
3649 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3650 ret
= PTR_ERR(trans
);
3654 ret
= btrfs_force_chunk_alloc(trans
, fs_info
,
3655 BTRFS_BLOCK_GROUP_DATA
);
3656 btrfs_end_transaction(trans
);
3658 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3664 ret
= btrfs_relocate_chunk(fs_info
, found_key
.offset
);
3665 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3666 if (ret
&& ret
!= -ENOSPC
)
3668 if (ret
== -ENOSPC
) {
3671 spin_lock(&fs_info
->balance_lock
);
3672 bctl
->stat
.completed
++;
3673 spin_unlock(&fs_info
->balance_lock
);
3676 if (found_key
.offset
== 0)
3678 key
.offset
= found_key
.offset
- 1;
3682 btrfs_release_path(path
);
3687 btrfs_free_path(path
);
3688 if (enospc_errors
) {
3689 btrfs_info(fs_info
, "%d enospc errors during balance",
3699 * alloc_profile_is_valid - see if a given profile is valid and reduced
3700 * @flags: profile to validate
3701 * @extended: if true @flags is treated as an extended profile
3703 static int alloc_profile_is_valid(u64 flags
, int extended
)
3705 u64 mask
= (extended
? BTRFS_EXTENDED_PROFILE_MASK
:
3706 BTRFS_BLOCK_GROUP_PROFILE_MASK
);
3708 flags
&= ~BTRFS_BLOCK_GROUP_TYPE_MASK
;
3710 /* 1) check that all other bits are zeroed */
3714 /* 2) see if profile is reduced */
3716 return !extended
; /* "0" is valid for usual profiles */
3718 /* true if exactly one bit set */
3719 return (flags
& (flags
- 1)) == 0;
3722 static inline int balance_need_close(struct btrfs_fs_info
*fs_info
)
3724 /* cancel requested || normal exit path */
3725 return atomic_read(&fs_info
->balance_cancel_req
) ||
3726 (atomic_read(&fs_info
->balance_pause_req
) == 0 &&
3727 atomic_read(&fs_info
->balance_cancel_req
) == 0);
3730 static void __cancel_balance(struct btrfs_fs_info
*fs_info
)
3734 unset_balance_control(fs_info
);
3735 ret
= del_balance_item(fs_info
);
3737 btrfs_handle_fs_error(fs_info
, ret
, NULL
);
3739 atomic_set(&fs_info
->mutually_exclusive_operation_running
, 0);
3742 /* Non-zero return value signifies invalidity */
3743 static inline int validate_convert_profile(struct btrfs_balance_args
*bctl_arg
,
3746 return ((bctl_arg
->flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3747 (!alloc_profile_is_valid(bctl_arg
->target
, 1) ||
3748 (bctl_arg
->target
& ~allowed
)));
3752 * Should be called with both balance and volume mutexes held
3754 int btrfs_balance(struct btrfs_balance_control
*bctl
,
3755 struct btrfs_ioctl_balance_args
*bargs
)
3757 struct btrfs_fs_info
*fs_info
= bctl
->fs_info
;
3764 if (btrfs_fs_closing(fs_info
) ||
3765 atomic_read(&fs_info
->balance_pause_req
) ||
3766 atomic_read(&fs_info
->balance_cancel_req
)) {
3771 allowed
= btrfs_super_incompat_flags(fs_info
->super_copy
);
3772 if (allowed
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
)
3776 * In case of mixed groups both data and meta should be picked,
3777 * and identical options should be given for both of them.
3779 allowed
= BTRFS_BALANCE_DATA
| BTRFS_BALANCE_METADATA
;
3780 if (mixed
&& (bctl
->flags
& allowed
)) {
3781 if (!(bctl
->flags
& BTRFS_BALANCE_DATA
) ||
3782 !(bctl
->flags
& BTRFS_BALANCE_METADATA
) ||
3783 memcmp(&bctl
->data
, &bctl
->meta
, sizeof(bctl
->data
))) {
3785 "with mixed groups data and metadata balance options must be the same");
3791 num_devices
= fs_info
->fs_devices
->num_devices
;
3792 btrfs_dev_replace_lock(&fs_info
->dev_replace
, 0);
3793 if (btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
)) {
3794 BUG_ON(num_devices
< 1);
3797 btrfs_dev_replace_unlock(&fs_info
->dev_replace
, 0);
3798 allowed
= BTRFS_AVAIL_ALLOC_BIT_SINGLE
| BTRFS_BLOCK_GROUP_DUP
;
3799 if (num_devices
> 1)
3800 allowed
|= (BTRFS_BLOCK_GROUP_RAID0
| BTRFS_BLOCK_GROUP_RAID1
);
3801 if (num_devices
> 2)
3802 allowed
|= BTRFS_BLOCK_GROUP_RAID5
;
3803 if (num_devices
> 3)
3804 allowed
|= (BTRFS_BLOCK_GROUP_RAID10
|
3805 BTRFS_BLOCK_GROUP_RAID6
);
3806 if (validate_convert_profile(&bctl
->data
, allowed
)) {
3808 "unable to start balance with target data profile %llu",
3813 if (validate_convert_profile(&bctl
->meta
, allowed
)) {
3815 "unable to start balance with target metadata profile %llu",
3820 if (validate_convert_profile(&bctl
->sys
, allowed
)) {
3822 "unable to start balance with target system profile %llu",
3828 /* allow to reduce meta or sys integrity only if force set */
3829 allowed
= BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
|
3830 BTRFS_BLOCK_GROUP_RAID10
|
3831 BTRFS_BLOCK_GROUP_RAID5
|
3832 BTRFS_BLOCK_GROUP_RAID6
;
3834 seq
= read_seqbegin(&fs_info
->profiles_lock
);
3836 if (((bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3837 (fs_info
->avail_system_alloc_bits
& allowed
) &&
3838 !(bctl
->sys
.target
& allowed
)) ||
3839 ((bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3840 (fs_info
->avail_metadata_alloc_bits
& allowed
) &&
3841 !(bctl
->meta
.target
& allowed
))) {
3842 if (bctl
->flags
& BTRFS_BALANCE_FORCE
) {
3844 "force reducing metadata integrity");
3847 "balance will reduce metadata integrity, use force if you want this");
3852 } while (read_seqretry(&fs_info
->profiles_lock
, seq
));
3854 if (btrfs_get_num_tolerated_disk_barrier_failures(bctl
->meta
.target
) <
3855 btrfs_get_num_tolerated_disk_barrier_failures(bctl
->data
.target
)) {
3857 "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3858 bctl
->meta
.target
, bctl
->data
.target
);
3861 if (bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
3862 fs_info
->num_tolerated_disk_barrier_failures
= min(
3863 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info
),
3864 btrfs_get_num_tolerated_disk_barrier_failures(
3868 ret
= insert_balance_item(fs_info
, bctl
);
3869 if (ret
&& ret
!= -EEXIST
)
3872 if (!(bctl
->flags
& BTRFS_BALANCE_RESUME
)) {
3873 BUG_ON(ret
== -EEXIST
);
3874 set_balance_control(bctl
);
3876 BUG_ON(ret
!= -EEXIST
);
3877 spin_lock(&fs_info
->balance_lock
);
3878 update_balance_args(bctl
);
3879 spin_unlock(&fs_info
->balance_lock
);
3882 atomic_inc(&fs_info
->balance_running
);
3883 mutex_unlock(&fs_info
->balance_mutex
);
3885 ret
= __btrfs_balance(fs_info
);
3887 mutex_lock(&fs_info
->balance_mutex
);
3888 atomic_dec(&fs_info
->balance_running
);
3890 if (bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
3891 fs_info
->num_tolerated_disk_barrier_failures
=
3892 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info
);
3896 memset(bargs
, 0, sizeof(*bargs
));
3897 update_ioctl_balance_args(fs_info
, 0, bargs
);
3900 if ((ret
&& ret
!= -ECANCELED
&& ret
!= -ENOSPC
) ||
3901 balance_need_close(fs_info
)) {
3902 __cancel_balance(fs_info
);
3905 wake_up(&fs_info
->balance_wait_q
);
3909 if (bctl
->flags
& BTRFS_BALANCE_RESUME
)
3910 __cancel_balance(fs_info
);
3913 atomic_set(&fs_info
->mutually_exclusive_operation_running
, 0);
3918 static int balance_kthread(void *data
)
3920 struct btrfs_fs_info
*fs_info
= data
;
3923 mutex_lock(&fs_info
->volume_mutex
);
3924 mutex_lock(&fs_info
->balance_mutex
);
3926 if (fs_info
->balance_ctl
) {
3927 btrfs_info(fs_info
, "continuing balance");
3928 ret
= btrfs_balance(fs_info
->balance_ctl
, NULL
);
3931 mutex_unlock(&fs_info
->balance_mutex
);
3932 mutex_unlock(&fs_info
->volume_mutex
);
3937 int btrfs_resume_balance_async(struct btrfs_fs_info
*fs_info
)
3939 struct task_struct
*tsk
;
3941 spin_lock(&fs_info
->balance_lock
);
3942 if (!fs_info
->balance_ctl
) {
3943 spin_unlock(&fs_info
->balance_lock
);
3946 spin_unlock(&fs_info
->balance_lock
);
3948 if (btrfs_test_opt(fs_info
, SKIP_BALANCE
)) {
3949 btrfs_info(fs_info
, "force skipping balance");
3953 tsk
= kthread_run(balance_kthread
, fs_info
, "btrfs-balance");
3954 return PTR_ERR_OR_ZERO(tsk
);
3957 int btrfs_recover_balance(struct btrfs_fs_info
*fs_info
)
3959 struct btrfs_balance_control
*bctl
;
3960 struct btrfs_balance_item
*item
;
3961 struct btrfs_disk_balance_args disk_bargs
;
3962 struct btrfs_path
*path
;
3963 struct extent_buffer
*leaf
;
3964 struct btrfs_key key
;
3967 path
= btrfs_alloc_path();
3971 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
3972 key
.type
= BTRFS_TEMPORARY_ITEM_KEY
;
3975 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
3978 if (ret
> 0) { /* ret = -ENOENT; */
3983 bctl
= kzalloc(sizeof(*bctl
), GFP_NOFS
);
3989 leaf
= path
->nodes
[0];
3990 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_balance_item
);
3992 bctl
->fs_info
= fs_info
;
3993 bctl
->flags
= btrfs_balance_flags(leaf
, item
);
3994 bctl
->flags
|= BTRFS_BALANCE_RESUME
;
3996 btrfs_balance_data(leaf
, item
, &disk_bargs
);
3997 btrfs_disk_balance_args_to_cpu(&bctl
->data
, &disk_bargs
);
3998 btrfs_balance_meta(leaf
, item
, &disk_bargs
);
3999 btrfs_disk_balance_args_to_cpu(&bctl
->meta
, &disk_bargs
);
4000 btrfs_balance_sys(leaf
, item
, &disk_bargs
);
4001 btrfs_disk_balance_args_to_cpu(&bctl
->sys
, &disk_bargs
);
4003 WARN_ON(atomic_xchg(&fs_info
->mutually_exclusive_operation_running
, 1));
4005 mutex_lock(&fs_info
->volume_mutex
);
4006 mutex_lock(&fs_info
->balance_mutex
);
4008 set_balance_control(bctl
);
4010 mutex_unlock(&fs_info
->balance_mutex
);
4011 mutex_unlock(&fs_info
->volume_mutex
);
4013 btrfs_free_path(path
);
4017 int btrfs_pause_balance(struct btrfs_fs_info
*fs_info
)
4021 mutex_lock(&fs_info
->balance_mutex
);
4022 if (!fs_info
->balance_ctl
) {
4023 mutex_unlock(&fs_info
->balance_mutex
);
4027 if (atomic_read(&fs_info
->balance_running
)) {
4028 atomic_inc(&fs_info
->balance_pause_req
);
4029 mutex_unlock(&fs_info
->balance_mutex
);
4031 wait_event(fs_info
->balance_wait_q
,
4032 atomic_read(&fs_info
->balance_running
) == 0);
4034 mutex_lock(&fs_info
->balance_mutex
);
4035 /* we are good with balance_ctl ripped off from under us */
4036 BUG_ON(atomic_read(&fs_info
->balance_running
));
4037 atomic_dec(&fs_info
->balance_pause_req
);
4042 mutex_unlock(&fs_info
->balance_mutex
);
4046 int btrfs_cancel_balance(struct btrfs_fs_info
*fs_info
)
4048 if (fs_info
->sb
->s_flags
& MS_RDONLY
)
4051 mutex_lock(&fs_info
->balance_mutex
);
4052 if (!fs_info
->balance_ctl
) {
4053 mutex_unlock(&fs_info
->balance_mutex
);
4057 atomic_inc(&fs_info
->balance_cancel_req
);
4059 * if we are running just wait and return, balance item is
4060 * deleted in btrfs_balance in this case
4062 if (atomic_read(&fs_info
->balance_running
)) {
4063 mutex_unlock(&fs_info
->balance_mutex
);
4064 wait_event(fs_info
->balance_wait_q
,
4065 atomic_read(&fs_info
->balance_running
) == 0);
4066 mutex_lock(&fs_info
->balance_mutex
);
4068 /* __cancel_balance needs volume_mutex */
4069 mutex_unlock(&fs_info
->balance_mutex
);
4070 mutex_lock(&fs_info
->volume_mutex
);
4071 mutex_lock(&fs_info
->balance_mutex
);
4073 if (fs_info
->balance_ctl
)
4074 __cancel_balance(fs_info
);
4076 mutex_unlock(&fs_info
->volume_mutex
);
4079 BUG_ON(fs_info
->balance_ctl
|| atomic_read(&fs_info
->balance_running
));
4080 atomic_dec(&fs_info
->balance_cancel_req
);
4081 mutex_unlock(&fs_info
->balance_mutex
);
4085 static int btrfs_uuid_scan_kthread(void *data
)
4087 struct btrfs_fs_info
*fs_info
= data
;
4088 struct btrfs_root
*root
= fs_info
->tree_root
;
4089 struct btrfs_key key
;
4090 struct btrfs_key max_key
;
4091 struct btrfs_path
*path
= NULL
;
4093 struct extent_buffer
*eb
;
4095 struct btrfs_root_item root_item
;
4097 struct btrfs_trans_handle
*trans
= NULL
;
4099 path
= btrfs_alloc_path();
4106 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4109 max_key
.objectid
= (u64
)-1;
4110 max_key
.type
= BTRFS_ROOT_ITEM_KEY
;
4111 max_key
.offset
= (u64
)-1;
4114 ret
= btrfs_search_forward(root
, &key
, path
, 0);
4121 if (key
.type
!= BTRFS_ROOT_ITEM_KEY
||
4122 (key
.objectid
< BTRFS_FIRST_FREE_OBJECTID
&&
4123 key
.objectid
!= BTRFS_FS_TREE_OBJECTID
) ||
4124 key
.objectid
> BTRFS_LAST_FREE_OBJECTID
)
4127 eb
= path
->nodes
[0];
4128 slot
= path
->slots
[0];
4129 item_size
= btrfs_item_size_nr(eb
, slot
);
4130 if (item_size
< sizeof(root_item
))
4133 read_extent_buffer(eb
, &root_item
,
4134 btrfs_item_ptr_offset(eb
, slot
),
4135 (int)sizeof(root_item
));
4136 if (btrfs_root_refs(&root_item
) == 0)
4139 if (!btrfs_is_empty_uuid(root_item
.uuid
) ||
4140 !btrfs_is_empty_uuid(root_item
.received_uuid
)) {
4144 btrfs_release_path(path
);
4146 * 1 - subvol uuid item
4147 * 1 - received_subvol uuid item
4149 trans
= btrfs_start_transaction(fs_info
->uuid_root
, 2);
4150 if (IS_ERR(trans
)) {
4151 ret
= PTR_ERR(trans
);
4159 if (!btrfs_is_empty_uuid(root_item
.uuid
)) {
4160 ret
= btrfs_uuid_tree_add(trans
, fs_info
,
4162 BTRFS_UUID_KEY_SUBVOL
,
4165 btrfs_warn(fs_info
, "uuid_tree_add failed %d",
4171 if (!btrfs_is_empty_uuid(root_item
.received_uuid
)) {
4172 ret
= btrfs_uuid_tree_add(trans
, fs_info
,
4173 root_item
.received_uuid
,
4174 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
4177 btrfs_warn(fs_info
, "uuid_tree_add failed %d",
4185 ret
= btrfs_end_transaction(trans
);
4191 btrfs_release_path(path
);
4192 if (key
.offset
< (u64
)-1) {
4194 } else if (key
.type
< BTRFS_ROOT_ITEM_KEY
) {
4196 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4197 } else if (key
.objectid
< (u64
)-1) {
4199 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4208 btrfs_free_path(path
);
4209 if (trans
&& !IS_ERR(trans
))
4210 btrfs_end_transaction(trans
);
4212 btrfs_warn(fs_info
, "btrfs_uuid_scan_kthread failed %d", ret
);
4214 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN
, &fs_info
->flags
);
4215 up(&fs_info
->uuid_tree_rescan_sem
);
4220 * Callback for btrfs_uuid_tree_iterate().
4222 * 0 check succeeded, the entry is not outdated.
4223 * < 0 if an error occurred.
4224 * > 0 if the check failed, which means the caller shall remove the entry.
4226 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info
*fs_info
,
4227 u8
*uuid
, u8 type
, u64 subid
)
4229 struct btrfs_key key
;
4231 struct btrfs_root
*subvol_root
;
4233 if (type
!= BTRFS_UUID_KEY_SUBVOL
&&
4234 type
!= BTRFS_UUID_KEY_RECEIVED_SUBVOL
)
4237 key
.objectid
= subid
;
4238 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4239 key
.offset
= (u64
)-1;
4240 subvol_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
4241 if (IS_ERR(subvol_root
)) {
4242 ret
= PTR_ERR(subvol_root
);
4249 case BTRFS_UUID_KEY_SUBVOL
:
4250 if (memcmp(uuid
, subvol_root
->root_item
.uuid
, BTRFS_UUID_SIZE
))
4253 case BTRFS_UUID_KEY_RECEIVED_SUBVOL
:
4254 if (memcmp(uuid
, subvol_root
->root_item
.received_uuid
,
4264 static int btrfs_uuid_rescan_kthread(void *data
)
4266 struct btrfs_fs_info
*fs_info
= (struct btrfs_fs_info
*)data
;
4270 * 1st step is to iterate through the existing UUID tree and
4271 * to delete all entries that contain outdated data.
4272 * 2nd step is to add all missing entries to the UUID tree.
4274 ret
= btrfs_uuid_tree_iterate(fs_info
, btrfs_check_uuid_tree_entry
);
4276 btrfs_warn(fs_info
, "iterating uuid_tree failed %d", ret
);
4277 up(&fs_info
->uuid_tree_rescan_sem
);
4280 return btrfs_uuid_scan_kthread(data
);
4283 int btrfs_create_uuid_tree(struct btrfs_fs_info
*fs_info
)
4285 struct btrfs_trans_handle
*trans
;
4286 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
4287 struct btrfs_root
*uuid_root
;
4288 struct task_struct
*task
;
4295 trans
= btrfs_start_transaction(tree_root
, 2);
4297 return PTR_ERR(trans
);
4299 uuid_root
= btrfs_create_tree(trans
, fs_info
,
4300 BTRFS_UUID_TREE_OBJECTID
);
4301 if (IS_ERR(uuid_root
)) {
4302 ret
= PTR_ERR(uuid_root
);
4303 btrfs_abort_transaction(trans
, ret
);
4304 btrfs_end_transaction(trans
);
4308 fs_info
->uuid_root
= uuid_root
;
4310 ret
= btrfs_commit_transaction(trans
);
4314 down(&fs_info
->uuid_tree_rescan_sem
);
4315 task
= kthread_run(btrfs_uuid_scan_kthread
, fs_info
, "btrfs-uuid");
4317 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4318 btrfs_warn(fs_info
, "failed to start uuid_scan task");
4319 up(&fs_info
->uuid_tree_rescan_sem
);
4320 return PTR_ERR(task
);
4326 int btrfs_check_uuid_tree(struct btrfs_fs_info
*fs_info
)
4328 struct task_struct
*task
;
4330 down(&fs_info
->uuid_tree_rescan_sem
);
4331 task
= kthread_run(btrfs_uuid_rescan_kthread
, fs_info
, "btrfs-uuid");
4333 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4334 btrfs_warn(fs_info
, "failed to start uuid_rescan task");
4335 up(&fs_info
->uuid_tree_rescan_sem
);
4336 return PTR_ERR(task
);
4343 * shrinking a device means finding all of the device extents past
4344 * the new size, and then following the back refs to the chunks.
4345 * The chunk relocation code actually frees the device extent
4347 int btrfs_shrink_device(struct btrfs_device
*device
, u64 new_size
)
4349 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
4350 struct btrfs_root
*root
= fs_info
->dev_root
;
4351 struct btrfs_trans_handle
*trans
;
4352 struct btrfs_dev_extent
*dev_extent
= NULL
;
4353 struct btrfs_path
*path
;
4359 bool retried
= false;
4360 bool checked_pending_chunks
= false;
4361 struct extent_buffer
*l
;
4362 struct btrfs_key key
;
4363 struct btrfs_super_block
*super_copy
= fs_info
->super_copy
;
4364 u64 old_total
= btrfs_super_total_bytes(super_copy
);
4365 u64 old_size
= btrfs_device_get_total_bytes(device
);
4366 u64 diff
= old_size
- new_size
;
4368 if (device
->is_tgtdev_for_dev_replace
)
4371 path
= btrfs_alloc_path();
4375 path
->reada
= READA_FORWARD
;
4377 mutex_lock(&fs_info
->chunk_mutex
);
4379 btrfs_device_set_total_bytes(device
, new_size
);
4380 if (device
->writeable
) {
4381 device
->fs_devices
->total_rw_bytes
-= diff
;
4382 spin_lock(&fs_info
->free_chunk_lock
);
4383 fs_info
->free_chunk_space
-= diff
;
4384 spin_unlock(&fs_info
->free_chunk_lock
);
4386 mutex_unlock(&fs_info
->chunk_mutex
);
4389 key
.objectid
= device
->devid
;
4390 key
.offset
= (u64
)-1;
4391 key
.type
= BTRFS_DEV_EXTENT_KEY
;
4394 mutex_lock(&fs_info
->delete_unused_bgs_mutex
);
4395 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4397 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4401 ret
= btrfs_previous_item(root
, path
, 0, key
.type
);
4403 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4408 btrfs_release_path(path
);
4413 slot
= path
->slots
[0];
4414 btrfs_item_key_to_cpu(l
, &key
, path
->slots
[0]);
4416 if (key
.objectid
!= device
->devid
) {
4417 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4418 btrfs_release_path(path
);
4422 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
4423 length
= btrfs_dev_extent_length(l
, dev_extent
);
4425 if (key
.offset
+ length
<= new_size
) {
4426 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4427 btrfs_release_path(path
);
4431 chunk_offset
= btrfs_dev_extent_chunk_offset(l
, dev_extent
);
4432 btrfs_release_path(path
);
4434 ret
= btrfs_relocate_chunk(fs_info
, chunk_offset
);
4435 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4436 if (ret
&& ret
!= -ENOSPC
)
4440 } while (key
.offset
-- > 0);
4442 if (failed
&& !retried
) {
4446 } else if (failed
&& retried
) {
4451 /* Shrinking succeeded, else we would be at "done". */
4452 trans
= btrfs_start_transaction(root
, 0);
4453 if (IS_ERR(trans
)) {
4454 ret
= PTR_ERR(trans
);
4458 mutex_lock(&fs_info
->chunk_mutex
);
4461 * We checked in the above loop all device extents that were already in
4462 * the device tree. However before we have updated the device's
4463 * total_bytes to the new size, we might have had chunk allocations that
4464 * have not complete yet (new block groups attached to transaction
4465 * handles), and therefore their device extents were not yet in the
4466 * device tree and we missed them in the loop above. So if we have any
4467 * pending chunk using a device extent that overlaps the device range
4468 * that we can not use anymore, commit the current transaction and
4469 * repeat the search on the device tree - this way we guarantee we will
4470 * not have chunks using device extents that end beyond 'new_size'.
4472 if (!checked_pending_chunks
) {
4473 u64 start
= new_size
;
4474 u64 len
= old_size
- new_size
;
4476 if (contains_pending_extent(trans
->transaction
, device
,
4478 mutex_unlock(&fs_info
->chunk_mutex
);
4479 checked_pending_chunks
= true;
4482 ret
= btrfs_commit_transaction(trans
);
4489 btrfs_device_set_disk_total_bytes(device
, new_size
);
4490 if (list_empty(&device
->resized_list
))
4491 list_add_tail(&device
->resized_list
,
4492 &fs_info
->fs_devices
->resized_devices
);
4494 WARN_ON(diff
> old_total
);
4495 btrfs_set_super_total_bytes(super_copy
, old_total
- diff
);
4496 mutex_unlock(&fs_info
->chunk_mutex
);
4498 /* Now btrfs_update_device() will change the on-disk size. */
4499 ret
= btrfs_update_device(trans
, device
);
4500 btrfs_end_transaction(trans
);
4502 btrfs_free_path(path
);
4504 mutex_lock(&fs_info
->chunk_mutex
);
4505 btrfs_device_set_total_bytes(device
, old_size
);
4506 if (device
->writeable
)
4507 device
->fs_devices
->total_rw_bytes
+= diff
;
4508 spin_lock(&fs_info
->free_chunk_lock
);
4509 fs_info
->free_chunk_space
+= diff
;
4510 spin_unlock(&fs_info
->free_chunk_lock
);
4511 mutex_unlock(&fs_info
->chunk_mutex
);
4516 static int btrfs_add_system_chunk(struct btrfs_fs_info
*fs_info
,
4517 struct btrfs_key
*key
,
4518 struct btrfs_chunk
*chunk
, int item_size
)
4520 struct btrfs_super_block
*super_copy
= fs_info
->super_copy
;
4521 struct btrfs_disk_key disk_key
;
4525 mutex_lock(&fs_info
->chunk_mutex
);
4526 array_size
= btrfs_super_sys_array_size(super_copy
);
4527 if (array_size
+ item_size
+ sizeof(disk_key
)
4528 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE
) {
4529 mutex_unlock(&fs_info
->chunk_mutex
);
4533 ptr
= super_copy
->sys_chunk_array
+ array_size
;
4534 btrfs_cpu_key_to_disk(&disk_key
, key
);
4535 memcpy(ptr
, &disk_key
, sizeof(disk_key
));
4536 ptr
+= sizeof(disk_key
);
4537 memcpy(ptr
, chunk
, item_size
);
4538 item_size
+= sizeof(disk_key
);
4539 btrfs_set_super_sys_array_size(super_copy
, array_size
+ item_size
);
4540 mutex_unlock(&fs_info
->chunk_mutex
);
4546 * sort the devices in descending order by max_avail, total_avail
4548 static int btrfs_cmp_device_info(const void *a
, const void *b
)
4550 const struct btrfs_device_info
*di_a
= a
;
4551 const struct btrfs_device_info
*di_b
= b
;
4553 if (di_a
->max_avail
> di_b
->max_avail
)
4555 if (di_a
->max_avail
< di_b
->max_avail
)
4557 if (di_a
->total_avail
> di_b
->total_avail
)
4559 if (di_a
->total_avail
< di_b
->total_avail
)
4564 static u32
find_raid56_stripe_len(u32 data_devices
, u32 dev_stripe_target
)
4566 /* TODO allow them to set a preferred stripe size */
4570 static void check_raid56_incompat_flag(struct btrfs_fs_info
*info
, u64 type
)
4572 if (!(type
& BTRFS_BLOCK_GROUP_RAID56_MASK
))
4575 btrfs_set_fs_incompat(info
, RAID56
);
4578 #define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r->fs_info) \
4579 - sizeof(struct btrfs_chunk)) \
4580 / sizeof(struct btrfs_stripe) + 1)
4582 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4583 - 2 * sizeof(struct btrfs_disk_key) \
4584 - 2 * sizeof(struct btrfs_chunk)) \
4585 / sizeof(struct btrfs_stripe) + 1)
4587 static int __btrfs_alloc_chunk(struct btrfs_trans_handle
*trans
,
4588 u64 start
, u64 type
)
4590 struct btrfs_fs_info
*info
= trans
->fs_info
;
4591 struct btrfs_fs_devices
*fs_devices
= info
->fs_devices
;
4592 struct list_head
*cur
;
4593 struct map_lookup
*map
= NULL
;
4594 struct extent_map_tree
*em_tree
;
4595 struct extent_map
*em
;
4596 struct btrfs_device_info
*devices_info
= NULL
;
4598 int num_stripes
; /* total number of stripes to allocate */
4599 int data_stripes
; /* number of stripes that count for
4601 int sub_stripes
; /* sub_stripes info for map */
4602 int dev_stripes
; /* stripes per dev */
4603 int devs_max
; /* max devs to use */
4604 int devs_min
; /* min devs needed */
4605 int devs_increment
; /* ndevs has to be a multiple of this */
4606 int ncopies
; /* how many copies to data has */
4608 u64 max_stripe_size
;
4612 u64 raid_stripe_len
= BTRFS_STRIPE_LEN
;
4618 BUG_ON(!alloc_profile_is_valid(type
, 0));
4620 if (list_empty(&fs_devices
->alloc_list
))
4623 index
= __get_raid_index(type
);
4625 sub_stripes
= btrfs_raid_array
[index
].sub_stripes
;
4626 dev_stripes
= btrfs_raid_array
[index
].dev_stripes
;
4627 devs_max
= btrfs_raid_array
[index
].devs_max
;
4628 devs_min
= btrfs_raid_array
[index
].devs_min
;
4629 devs_increment
= btrfs_raid_array
[index
].devs_increment
;
4630 ncopies
= btrfs_raid_array
[index
].ncopies
;
4632 if (type
& BTRFS_BLOCK_GROUP_DATA
) {
4633 max_stripe_size
= SZ_1G
;
4634 max_chunk_size
= 10 * max_stripe_size
;
4636 devs_max
= BTRFS_MAX_DEVS(info
->chunk_root
);
4637 } else if (type
& BTRFS_BLOCK_GROUP_METADATA
) {
4638 /* for larger filesystems, use larger metadata chunks */
4639 if (fs_devices
->total_rw_bytes
> 50ULL * SZ_1G
)
4640 max_stripe_size
= SZ_1G
;
4642 max_stripe_size
= SZ_256M
;
4643 max_chunk_size
= max_stripe_size
;
4645 devs_max
= BTRFS_MAX_DEVS(info
->chunk_root
);
4646 } else if (type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
4647 max_stripe_size
= SZ_32M
;
4648 max_chunk_size
= 2 * max_stripe_size
;
4650 devs_max
= BTRFS_MAX_DEVS_SYS_CHUNK
;
4652 btrfs_err(info
, "invalid chunk type 0x%llx requested",
4657 /* we don't want a chunk larger than 10% of writeable space */
4658 max_chunk_size
= min(div_factor(fs_devices
->total_rw_bytes
, 1),
4661 devices_info
= kcalloc(fs_devices
->rw_devices
, sizeof(*devices_info
),
4666 cur
= fs_devices
->alloc_list
.next
;
4669 * in the first pass through the devices list, we gather information
4670 * about the available holes on each device.
4673 while (cur
!= &fs_devices
->alloc_list
) {
4674 struct btrfs_device
*device
;
4678 device
= list_entry(cur
, struct btrfs_device
, dev_alloc_list
);
4682 if (!device
->writeable
) {
4684 "BTRFS: read-only device in alloc_list\n");
4688 if (!device
->in_fs_metadata
||
4689 device
->is_tgtdev_for_dev_replace
)
4692 if (device
->total_bytes
> device
->bytes_used
)
4693 total_avail
= device
->total_bytes
- device
->bytes_used
;
4697 /* If there is no space on this device, skip it. */
4698 if (total_avail
== 0)
4701 ret
= find_free_dev_extent(trans
, device
,
4702 max_stripe_size
* dev_stripes
,
4703 &dev_offset
, &max_avail
);
4704 if (ret
&& ret
!= -ENOSPC
)
4708 max_avail
= max_stripe_size
* dev_stripes
;
4710 if (max_avail
< BTRFS_STRIPE_LEN
* dev_stripes
)
4713 if (ndevs
== fs_devices
->rw_devices
) {
4714 WARN(1, "%s: found more than %llu devices\n",
4715 __func__
, fs_devices
->rw_devices
);
4718 devices_info
[ndevs
].dev_offset
= dev_offset
;
4719 devices_info
[ndevs
].max_avail
= max_avail
;
4720 devices_info
[ndevs
].total_avail
= total_avail
;
4721 devices_info
[ndevs
].dev
= device
;
4726 * now sort the devices by hole size / available space
4728 sort(devices_info
, ndevs
, sizeof(struct btrfs_device_info
),
4729 btrfs_cmp_device_info
, NULL
);
4731 /* round down to number of usable stripes */
4732 ndevs
-= ndevs
% devs_increment
;
4734 if (ndevs
< devs_increment
* sub_stripes
|| ndevs
< devs_min
) {
4739 if (devs_max
&& ndevs
> devs_max
)
4742 * the primary goal is to maximize the number of stripes, so use as many
4743 * devices as possible, even if the stripes are not maximum sized.
4745 stripe_size
= devices_info
[ndevs
-1].max_avail
;
4746 num_stripes
= ndevs
* dev_stripes
;
4749 * this will have to be fixed for RAID1 and RAID10 over
4752 data_stripes
= num_stripes
/ ncopies
;
4754 if (type
& BTRFS_BLOCK_GROUP_RAID5
) {
4755 raid_stripe_len
= find_raid56_stripe_len(ndevs
- 1,
4757 data_stripes
= num_stripes
- 1;
4759 if (type
& BTRFS_BLOCK_GROUP_RAID6
) {
4760 raid_stripe_len
= find_raid56_stripe_len(ndevs
- 2,
4762 data_stripes
= num_stripes
- 2;
4766 * Use the number of data stripes to figure out how big this chunk
4767 * is really going to be in terms of logical address space,
4768 * and compare that answer with the max chunk size
4770 if (stripe_size
* data_stripes
> max_chunk_size
) {
4771 u64 mask
= (1ULL << 24) - 1;
4773 stripe_size
= div_u64(max_chunk_size
, data_stripes
);
4775 /* bump the answer up to a 16MB boundary */
4776 stripe_size
= (stripe_size
+ mask
) & ~mask
;
4778 /* but don't go higher than the limits we found
4779 * while searching for free extents
4781 if (stripe_size
> devices_info
[ndevs
-1].max_avail
)
4782 stripe_size
= devices_info
[ndevs
-1].max_avail
;
4785 stripe_size
= div_u64(stripe_size
, dev_stripes
);
4787 /* align to BTRFS_STRIPE_LEN */
4788 stripe_size
= div_u64(stripe_size
, raid_stripe_len
);
4789 stripe_size
*= raid_stripe_len
;
4791 map
= kmalloc(map_lookup_size(num_stripes
), GFP_NOFS
);
4796 map
->num_stripes
= num_stripes
;
4798 for (i
= 0; i
< ndevs
; ++i
) {
4799 for (j
= 0; j
< dev_stripes
; ++j
) {
4800 int s
= i
* dev_stripes
+ j
;
4801 map
->stripes
[s
].dev
= devices_info
[i
].dev
;
4802 map
->stripes
[s
].physical
= devices_info
[i
].dev_offset
+
4806 map
->sector_size
= info
->sectorsize
;
4807 map
->stripe_len
= raid_stripe_len
;
4808 map
->io_align
= raid_stripe_len
;
4809 map
->io_width
= raid_stripe_len
;
4811 map
->sub_stripes
= sub_stripes
;
4813 num_bytes
= stripe_size
* data_stripes
;
4815 trace_btrfs_chunk_alloc(info
, map
, start
, num_bytes
);
4817 em
= alloc_extent_map();
4823 set_bit(EXTENT_FLAG_FS_MAPPING
, &em
->flags
);
4824 em
->map_lookup
= map
;
4826 em
->len
= num_bytes
;
4827 em
->block_start
= 0;
4828 em
->block_len
= em
->len
;
4829 em
->orig_block_len
= stripe_size
;
4831 em_tree
= &info
->mapping_tree
.map_tree
;
4832 write_lock(&em_tree
->lock
);
4833 ret
= add_extent_mapping(em_tree
, em
, 0);
4835 list_add_tail(&em
->list
, &trans
->transaction
->pending_chunks
);
4836 atomic_inc(&em
->refs
);
4838 write_unlock(&em_tree
->lock
);
4840 free_extent_map(em
);
4844 ret
= btrfs_make_block_group(trans
, info
, 0, type
,
4845 BTRFS_FIRST_CHUNK_TREE_OBJECTID
,
4848 goto error_del_extent
;
4850 for (i
= 0; i
< map
->num_stripes
; i
++) {
4851 num_bytes
= map
->stripes
[i
].dev
->bytes_used
+ stripe_size
;
4852 btrfs_device_set_bytes_used(map
->stripes
[i
].dev
, num_bytes
);
4855 spin_lock(&info
->free_chunk_lock
);
4856 info
->free_chunk_space
-= (stripe_size
* map
->num_stripes
);
4857 spin_unlock(&info
->free_chunk_lock
);
4859 free_extent_map(em
);
4860 check_raid56_incompat_flag(info
, type
);
4862 kfree(devices_info
);
4866 write_lock(&em_tree
->lock
);
4867 remove_extent_mapping(em_tree
, em
);
4868 write_unlock(&em_tree
->lock
);
4870 /* One for our allocation */
4871 free_extent_map(em
);
4872 /* One for the tree reference */
4873 free_extent_map(em
);
4874 /* One for the pending_chunks list reference */
4875 free_extent_map(em
);
4877 kfree(devices_info
);
4881 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle
*trans
,
4882 struct btrfs_fs_info
*fs_info
,
4883 u64 chunk_offset
, u64 chunk_size
)
4885 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
4886 struct btrfs_root
*chunk_root
= fs_info
->chunk_root
;
4887 struct btrfs_key key
;
4888 struct btrfs_device
*device
;
4889 struct btrfs_chunk
*chunk
;
4890 struct btrfs_stripe
*stripe
;
4891 struct extent_map_tree
*em_tree
;
4892 struct extent_map
*em
;
4893 struct map_lookup
*map
;
4900 em_tree
= &fs_info
->mapping_tree
.map_tree
;
4901 read_lock(&em_tree
->lock
);
4902 em
= lookup_extent_mapping(em_tree
, chunk_offset
, chunk_size
);
4903 read_unlock(&em_tree
->lock
);
4906 btrfs_crit(fs_info
, "unable to find logical %Lu len %Lu",
4907 chunk_offset
, chunk_size
);
4911 if (em
->start
!= chunk_offset
|| em
->len
!= chunk_size
) {
4913 "found a bad mapping, wanted %Lu-%Lu, found %Lu-%Lu",
4914 chunk_offset
, chunk_size
, em
->start
, em
->len
);
4915 free_extent_map(em
);
4919 map
= em
->map_lookup
;
4920 item_size
= btrfs_chunk_item_size(map
->num_stripes
);
4921 stripe_size
= em
->orig_block_len
;
4923 chunk
= kzalloc(item_size
, GFP_NOFS
);
4930 * Take the device list mutex to prevent races with the final phase of
4931 * a device replace operation that replaces the device object associated
4932 * with the map's stripes, because the device object's id can change
4933 * at any time during that final phase of the device replace operation
4934 * (dev-replace.c:btrfs_dev_replace_finishing()).
4936 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
4937 for (i
= 0; i
< map
->num_stripes
; i
++) {
4938 device
= map
->stripes
[i
].dev
;
4939 dev_offset
= map
->stripes
[i
].physical
;
4941 ret
= btrfs_update_device(trans
, device
);
4944 ret
= btrfs_alloc_dev_extent(trans
, device
,
4945 chunk_root
->root_key
.objectid
,
4946 BTRFS_FIRST_CHUNK_TREE_OBJECTID
,
4947 chunk_offset
, dev_offset
,
4953 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
4957 stripe
= &chunk
->stripe
;
4958 for (i
= 0; i
< map
->num_stripes
; i
++) {
4959 device
= map
->stripes
[i
].dev
;
4960 dev_offset
= map
->stripes
[i
].physical
;
4962 btrfs_set_stack_stripe_devid(stripe
, device
->devid
);
4963 btrfs_set_stack_stripe_offset(stripe
, dev_offset
);
4964 memcpy(stripe
->dev_uuid
, device
->uuid
, BTRFS_UUID_SIZE
);
4967 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
4969 btrfs_set_stack_chunk_length(chunk
, chunk_size
);
4970 btrfs_set_stack_chunk_owner(chunk
, extent_root
->root_key
.objectid
);
4971 btrfs_set_stack_chunk_stripe_len(chunk
, map
->stripe_len
);
4972 btrfs_set_stack_chunk_type(chunk
, map
->type
);
4973 btrfs_set_stack_chunk_num_stripes(chunk
, map
->num_stripes
);
4974 btrfs_set_stack_chunk_io_align(chunk
, map
->stripe_len
);
4975 btrfs_set_stack_chunk_io_width(chunk
, map
->stripe_len
);
4976 btrfs_set_stack_chunk_sector_size(chunk
, fs_info
->sectorsize
);
4977 btrfs_set_stack_chunk_sub_stripes(chunk
, map
->sub_stripes
);
4979 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
4980 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
4981 key
.offset
= chunk_offset
;
4983 ret
= btrfs_insert_item(trans
, chunk_root
, &key
, chunk
, item_size
);
4984 if (ret
== 0 && map
->type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
4986 * TODO: Cleanup of inserted chunk root in case of
4989 ret
= btrfs_add_system_chunk(fs_info
, &key
, chunk
, item_size
);
4994 free_extent_map(em
);
4999 * Chunk allocation falls into two parts. The first part does works
5000 * that make the new allocated chunk useable, but not do any operation
5001 * that modifies the chunk tree. The second part does the works that
5002 * require modifying the chunk tree. This division is important for the
5003 * bootstrap process of adding storage to a seed btrfs.
5005 int btrfs_alloc_chunk(struct btrfs_trans_handle
*trans
,
5006 struct btrfs_fs_info
*fs_info
, u64 type
)
5010 ASSERT(mutex_is_locked(&fs_info
->chunk_mutex
));
5011 chunk_offset
= find_next_chunk(fs_info
);
5012 return __btrfs_alloc_chunk(trans
, chunk_offset
, type
);
5015 static noinline
int init_first_rw_device(struct btrfs_trans_handle
*trans
,
5016 struct btrfs_fs_info
*fs_info
)
5018 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
5020 u64 sys_chunk_offset
;
5024 chunk_offset
= find_next_chunk(fs_info
);
5025 alloc_profile
= btrfs_get_alloc_profile(extent_root
, 0);
5026 ret
= __btrfs_alloc_chunk(trans
, chunk_offset
, alloc_profile
);
5030 sys_chunk_offset
= find_next_chunk(fs_info
);
5031 alloc_profile
= btrfs_get_alloc_profile(fs_info
->chunk_root
, 0);
5032 ret
= __btrfs_alloc_chunk(trans
, sys_chunk_offset
, alloc_profile
);
5036 static inline int btrfs_chunk_max_errors(struct map_lookup
*map
)
5040 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID1
|
5041 BTRFS_BLOCK_GROUP_RAID10
|
5042 BTRFS_BLOCK_GROUP_RAID5
|
5043 BTRFS_BLOCK_GROUP_DUP
)) {
5045 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
) {
5054 int btrfs_chunk_readonly(struct btrfs_fs_info
*fs_info
, u64 chunk_offset
)
5056 struct extent_map
*em
;
5057 struct map_lookup
*map
;
5058 struct btrfs_mapping_tree
*map_tree
= &fs_info
->mapping_tree
;
5063 read_lock(&map_tree
->map_tree
.lock
);
5064 em
= lookup_extent_mapping(&map_tree
->map_tree
, chunk_offset
, 1);
5065 read_unlock(&map_tree
->map_tree
.lock
);
5069 map
= em
->map_lookup
;
5070 for (i
= 0; i
< map
->num_stripes
; i
++) {
5071 if (map
->stripes
[i
].dev
->missing
) {
5076 if (!map
->stripes
[i
].dev
->writeable
) {
5083 * If the number of missing devices is larger than max errors,
5084 * we can not write the data into that chunk successfully, so
5087 if (miss_ndevs
> btrfs_chunk_max_errors(map
))
5090 free_extent_map(em
);
5094 void btrfs_mapping_init(struct btrfs_mapping_tree
*tree
)
5096 extent_map_tree_init(&tree
->map_tree
);
5099 void btrfs_mapping_tree_free(struct btrfs_mapping_tree
*tree
)
5101 struct extent_map
*em
;
5104 write_lock(&tree
->map_tree
.lock
);
5105 em
= lookup_extent_mapping(&tree
->map_tree
, 0, (u64
)-1);
5107 remove_extent_mapping(&tree
->map_tree
, em
);
5108 write_unlock(&tree
->map_tree
.lock
);
5112 free_extent_map(em
);
5113 /* once for the tree */
5114 free_extent_map(em
);
5118 int btrfs_num_copies(struct btrfs_fs_info
*fs_info
, u64 logical
, u64 len
)
5120 struct btrfs_mapping_tree
*map_tree
= &fs_info
->mapping_tree
;
5121 struct extent_map
*em
;
5122 struct map_lookup
*map
;
5123 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
5126 read_lock(&em_tree
->lock
);
5127 em
= lookup_extent_mapping(em_tree
, logical
, len
);
5128 read_unlock(&em_tree
->lock
);
5131 * We could return errors for these cases, but that could get ugly and
5132 * we'd probably do the same thing which is just not do anything else
5133 * and exit, so return 1 so the callers don't try to use other copies.
5136 btrfs_crit(fs_info
, "No mapping for %Lu-%Lu", logical
,
5141 if (em
->start
> logical
|| em
->start
+ em
->len
< logical
) {
5142 btrfs_crit(fs_info
, "Invalid mapping for %Lu-%Lu, got %Lu-%Lu",
5143 logical
, logical
+len
, em
->start
,
5144 em
->start
+ em
->len
);
5145 free_extent_map(em
);
5149 map
= em
->map_lookup
;
5150 if (map
->type
& (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
))
5151 ret
= map
->num_stripes
;
5152 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
5153 ret
= map
->sub_stripes
;
5154 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID5
)
5156 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
)
5160 free_extent_map(em
);
5162 btrfs_dev_replace_lock(&fs_info
->dev_replace
, 0);
5163 if (btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
))
5165 btrfs_dev_replace_unlock(&fs_info
->dev_replace
, 0);
5170 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info
*fs_info
,
5171 struct btrfs_mapping_tree
*map_tree
,
5174 struct extent_map
*em
;
5175 struct map_lookup
*map
;
5176 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
5177 unsigned long len
= fs_info
->sectorsize
;
5179 read_lock(&em_tree
->lock
);
5180 em
= lookup_extent_mapping(em_tree
, logical
, len
);
5181 read_unlock(&em_tree
->lock
);
5184 BUG_ON(em
->start
> logical
|| em
->start
+ em
->len
< logical
);
5185 map
= em
->map_lookup
;
5186 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
)
5187 len
= map
->stripe_len
* nr_data_stripes(map
);
5188 free_extent_map(em
);
5192 int btrfs_is_parity_mirror(struct btrfs_mapping_tree
*map_tree
,
5193 u64 logical
, u64 len
, int mirror_num
)
5195 struct extent_map
*em
;
5196 struct map_lookup
*map
;
5197 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
5200 read_lock(&em_tree
->lock
);
5201 em
= lookup_extent_mapping(em_tree
, logical
, len
);
5202 read_unlock(&em_tree
->lock
);
5205 BUG_ON(em
->start
> logical
|| em
->start
+ em
->len
< logical
);
5206 map
= em
->map_lookup
;
5207 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
)
5209 free_extent_map(em
);
5213 static int find_live_mirror(struct btrfs_fs_info
*fs_info
,
5214 struct map_lookup
*map
, int first
, int num
,
5215 int optimal
, int dev_replace_is_ongoing
)
5219 struct btrfs_device
*srcdev
;
5221 if (dev_replace_is_ongoing
&&
5222 fs_info
->dev_replace
.cont_reading_from_srcdev_mode
==
5223 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID
)
5224 srcdev
= fs_info
->dev_replace
.srcdev
;
5229 * try to avoid the drive that is the source drive for a
5230 * dev-replace procedure, only choose it if no other non-missing
5231 * mirror is available
5233 for (tolerance
= 0; tolerance
< 2; tolerance
++) {
5234 if (map
->stripes
[optimal
].dev
->bdev
&&
5235 (tolerance
|| map
->stripes
[optimal
].dev
!= srcdev
))
5237 for (i
= first
; i
< first
+ num
; i
++) {
5238 if (map
->stripes
[i
].dev
->bdev
&&
5239 (tolerance
|| map
->stripes
[i
].dev
!= srcdev
))
5244 /* we couldn't find one that doesn't fail. Just return something
5245 * and the io error handling code will clean up eventually
5250 static inline int parity_smaller(u64 a
, u64 b
)
5255 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5256 static void sort_parity_stripes(struct btrfs_bio
*bbio
, int num_stripes
)
5258 struct btrfs_bio_stripe s
;
5265 for (i
= 0; i
< num_stripes
- 1; i
++) {
5266 if (parity_smaller(bbio
->raid_map
[i
],
5267 bbio
->raid_map
[i
+1])) {
5268 s
= bbio
->stripes
[i
];
5269 l
= bbio
->raid_map
[i
];
5270 bbio
->stripes
[i
] = bbio
->stripes
[i
+1];
5271 bbio
->raid_map
[i
] = bbio
->raid_map
[i
+1];
5272 bbio
->stripes
[i
+1] = s
;
5273 bbio
->raid_map
[i
+1] = l
;
5281 static struct btrfs_bio
*alloc_btrfs_bio(int total_stripes
, int real_stripes
)
5283 struct btrfs_bio
*bbio
= kzalloc(
5284 /* the size of the btrfs_bio */
5285 sizeof(struct btrfs_bio
) +
5286 /* plus the variable array for the stripes */
5287 sizeof(struct btrfs_bio_stripe
) * (total_stripes
) +
5288 /* plus the variable array for the tgt dev */
5289 sizeof(int) * (real_stripes
) +
5291 * plus the raid_map, which includes both the tgt dev
5294 sizeof(u64
) * (total_stripes
),
5295 GFP_NOFS
|__GFP_NOFAIL
);
5297 atomic_set(&bbio
->error
, 0);
5298 atomic_set(&bbio
->refs
, 1);
5303 void btrfs_get_bbio(struct btrfs_bio
*bbio
)
5305 WARN_ON(!atomic_read(&bbio
->refs
));
5306 atomic_inc(&bbio
->refs
);
5309 void btrfs_put_bbio(struct btrfs_bio
*bbio
)
5313 if (atomic_dec_and_test(&bbio
->refs
))
5317 static int __btrfs_map_block(struct btrfs_fs_info
*fs_info
,
5318 enum btrfs_map_op op
,
5319 u64 logical
, u64
*length
,
5320 struct btrfs_bio
**bbio_ret
,
5321 int mirror_num
, int need_raid_map
)
5323 struct extent_map
*em
;
5324 struct map_lookup
*map
;
5325 struct btrfs_mapping_tree
*map_tree
= &fs_info
->mapping_tree
;
5326 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
5329 u64 stripe_end_offset
;
5339 int tgtdev_indexes
= 0;
5340 struct btrfs_bio
*bbio
= NULL
;
5341 struct btrfs_dev_replace
*dev_replace
= &fs_info
->dev_replace
;
5342 int dev_replace_is_ongoing
= 0;
5343 int num_alloc_stripes
;
5344 int patch_the_first_stripe_for_dev_replace
= 0;
5345 u64 physical_to_patch_in_first_stripe
= 0;
5346 u64 raid56_full_stripe_start
= (u64
)-1;
5348 read_lock(&em_tree
->lock
);
5349 em
= lookup_extent_mapping(em_tree
, logical
, *length
);
5350 read_unlock(&em_tree
->lock
);
5353 btrfs_crit(fs_info
, "unable to find logical %llu len %llu",
5358 if (em
->start
> logical
|| em
->start
+ em
->len
< logical
) {
5360 "found a bad mapping, wanted %Lu, found %Lu-%Lu",
5361 logical
, em
->start
, em
->start
+ em
->len
);
5362 free_extent_map(em
);
5366 map
= em
->map_lookup
;
5367 offset
= logical
- em
->start
;
5369 stripe_len
= map
->stripe_len
;
5372 * stripe_nr counts the total number of stripes we have to stride
5373 * to get to this block
5375 stripe_nr
= div64_u64(stripe_nr
, stripe_len
);
5377 stripe_offset
= stripe_nr
* stripe_len
;
5378 if (offset
< stripe_offset
) {
5380 "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5381 stripe_offset
, offset
, em
->start
, logical
,
5383 free_extent_map(em
);
5387 /* stripe_offset is the offset of this block in its stripe*/
5388 stripe_offset
= offset
- stripe_offset
;
5390 /* if we're here for raid56, we need to know the stripe aligned start */
5391 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5392 unsigned long full_stripe_len
= stripe_len
* nr_data_stripes(map
);
5393 raid56_full_stripe_start
= offset
;
5395 /* allow a write of a full stripe, but make sure we don't
5396 * allow straddling of stripes
5398 raid56_full_stripe_start
= div64_u64(raid56_full_stripe_start
,
5400 raid56_full_stripe_start
*= full_stripe_len
;
5403 if (op
== BTRFS_MAP_DISCARD
) {
5404 /* we don't discard raid56 yet */
5405 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5409 *length
= min_t(u64
, em
->len
- offset
, *length
);
5410 } else if (map
->type
& BTRFS_BLOCK_GROUP_PROFILE_MASK
) {
5412 /* For writes to RAID[56], allow a full stripeset across all disks.
5413 For other RAID types and for RAID[56] reads, just allow a single
5414 stripe (on a single disk). */
5415 if ((map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) &&
5416 (op
== BTRFS_MAP_WRITE
)) {
5417 max_len
= stripe_len
* nr_data_stripes(map
) -
5418 (offset
- raid56_full_stripe_start
);
5420 /* we limit the length of each bio to what fits in a stripe */
5421 max_len
= stripe_len
- stripe_offset
;
5423 *length
= min_t(u64
, em
->len
- offset
, max_len
);
5425 *length
= em
->len
- offset
;
5428 /* This is for when we're called from btrfs_merge_bio_hook() and all
5429 it cares about is the length */
5433 btrfs_dev_replace_lock(dev_replace
, 0);
5434 dev_replace_is_ongoing
= btrfs_dev_replace_is_ongoing(dev_replace
);
5435 if (!dev_replace_is_ongoing
)
5436 btrfs_dev_replace_unlock(dev_replace
, 0);
5438 btrfs_dev_replace_set_lock_blocking(dev_replace
);
5440 if (dev_replace_is_ongoing
&& mirror_num
== map
->num_stripes
+ 1 &&
5441 op
!= BTRFS_MAP_WRITE
&& op
!= BTRFS_MAP_DISCARD
&&
5442 op
!= BTRFS_MAP_GET_READ_MIRRORS
&& dev_replace
->tgtdev
!= NULL
) {
5444 * in dev-replace case, for repair case (that's the only
5445 * case where the mirror is selected explicitly when
5446 * calling btrfs_map_block), blocks left of the left cursor
5447 * can also be read from the target drive.
5448 * For REQ_GET_READ_MIRRORS, the target drive is added as
5449 * the last one to the array of stripes. For READ, it also
5450 * needs to be supported using the same mirror number.
5451 * If the requested block is not left of the left cursor,
5452 * EIO is returned. This can happen because btrfs_num_copies()
5453 * returns one more in the dev-replace case.
5455 u64 tmp_length
= *length
;
5456 struct btrfs_bio
*tmp_bbio
= NULL
;
5457 int tmp_num_stripes
;
5458 u64 srcdev_devid
= dev_replace
->srcdev
->devid
;
5459 int index_srcdev
= 0;
5461 u64 physical_of_found
= 0;
5463 ret
= __btrfs_map_block(fs_info
, BTRFS_MAP_GET_READ_MIRRORS
,
5464 logical
, &tmp_length
, &tmp_bbio
, 0, 0);
5466 WARN_ON(tmp_bbio
!= NULL
);
5470 tmp_num_stripes
= tmp_bbio
->num_stripes
;
5471 if (mirror_num
> tmp_num_stripes
) {
5473 * BTRFS_MAP_GET_READ_MIRRORS does not contain this
5474 * mirror, that means that the requested area
5475 * is not left of the left cursor
5478 btrfs_put_bbio(tmp_bbio
);
5483 * process the rest of the function using the mirror_num
5484 * of the source drive. Therefore look it up first.
5485 * At the end, patch the device pointer to the one of the
5488 for (i
= 0; i
< tmp_num_stripes
; i
++) {
5489 if (tmp_bbio
->stripes
[i
].dev
->devid
!= srcdev_devid
)
5493 * In case of DUP, in order to keep it simple, only add
5494 * the mirror with the lowest physical address
5497 physical_of_found
<= tmp_bbio
->stripes
[i
].physical
)
5502 physical_of_found
= tmp_bbio
->stripes
[i
].physical
;
5505 btrfs_put_bbio(tmp_bbio
);
5513 mirror_num
= index_srcdev
+ 1;
5514 patch_the_first_stripe_for_dev_replace
= 1;
5515 physical_to_patch_in_first_stripe
= physical_of_found
;
5516 } else if (mirror_num
> map
->num_stripes
) {
5522 stripe_nr_orig
= stripe_nr
;
5523 stripe_nr_end
= ALIGN(offset
+ *length
, map
->stripe_len
);
5524 stripe_nr_end
= div_u64(stripe_nr_end
, map
->stripe_len
);
5525 stripe_end_offset
= stripe_nr_end
* map
->stripe_len
-
5528 if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
5529 if (op
== BTRFS_MAP_DISCARD
)
5530 num_stripes
= min_t(u64
, map
->num_stripes
,
5531 stripe_nr_end
- stripe_nr_orig
);
5532 stripe_nr
= div_u64_rem(stripe_nr
, map
->num_stripes
,
5534 if (op
!= BTRFS_MAP_WRITE
&& op
!= BTRFS_MAP_DISCARD
&&
5535 op
!= BTRFS_MAP_GET_READ_MIRRORS
)
5537 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID1
) {
5538 if (op
== BTRFS_MAP_WRITE
|| op
== BTRFS_MAP_DISCARD
||
5539 op
== BTRFS_MAP_GET_READ_MIRRORS
)
5540 num_stripes
= map
->num_stripes
;
5541 else if (mirror_num
)
5542 stripe_index
= mirror_num
- 1;
5544 stripe_index
= find_live_mirror(fs_info
, map
, 0,
5546 current
->pid
% map
->num_stripes
,
5547 dev_replace_is_ongoing
);
5548 mirror_num
= stripe_index
+ 1;
5551 } else if (map
->type
& BTRFS_BLOCK_GROUP_DUP
) {
5552 if (op
== BTRFS_MAP_WRITE
|| op
== BTRFS_MAP_DISCARD
||
5553 op
== BTRFS_MAP_GET_READ_MIRRORS
) {
5554 num_stripes
= map
->num_stripes
;
5555 } else if (mirror_num
) {
5556 stripe_index
= mirror_num
- 1;
5561 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
5562 u32 factor
= map
->num_stripes
/ map
->sub_stripes
;
5564 stripe_nr
= div_u64_rem(stripe_nr
, factor
, &stripe_index
);
5565 stripe_index
*= map
->sub_stripes
;
5567 if (op
== BTRFS_MAP_WRITE
|| op
== BTRFS_MAP_GET_READ_MIRRORS
)
5568 num_stripes
= map
->sub_stripes
;
5569 else if (op
== BTRFS_MAP_DISCARD
)
5570 num_stripes
= min_t(u64
, map
->sub_stripes
*
5571 (stripe_nr_end
- stripe_nr_orig
),
5573 else if (mirror_num
)
5574 stripe_index
+= mirror_num
- 1;
5576 int old_stripe_index
= stripe_index
;
5577 stripe_index
= find_live_mirror(fs_info
, map
,
5579 map
->sub_stripes
, stripe_index
+
5580 current
->pid
% map
->sub_stripes
,
5581 dev_replace_is_ongoing
);
5582 mirror_num
= stripe_index
- old_stripe_index
+ 1;
5585 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5586 if (need_raid_map
&&
5587 (op
== BTRFS_MAP_WRITE
|| op
== BTRFS_MAP_GET_READ_MIRRORS
||
5589 /* push stripe_nr back to the start of the full stripe */
5590 stripe_nr
= div_u64(raid56_full_stripe_start
,
5591 stripe_len
* nr_data_stripes(map
));
5593 /* RAID[56] write or recovery. Return all stripes */
5594 num_stripes
= map
->num_stripes
;
5595 max_errors
= nr_parity_stripes(map
);
5597 *length
= map
->stripe_len
;
5602 * Mirror #0 or #1 means the original data block.
5603 * Mirror #2 is RAID5 parity block.
5604 * Mirror #3 is RAID6 Q block.
5606 stripe_nr
= div_u64_rem(stripe_nr
,
5607 nr_data_stripes(map
), &stripe_index
);
5609 stripe_index
= nr_data_stripes(map
) +
5612 /* We distribute the parity blocks across stripes */
5613 div_u64_rem(stripe_nr
+ stripe_index
, map
->num_stripes
,
5615 if ((op
!= BTRFS_MAP_WRITE
&& op
!= BTRFS_MAP_DISCARD
&&
5616 op
!= BTRFS_MAP_GET_READ_MIRRORS
) && mirror_num
<= 1)
5621 * after this, stripe_nr is the number of stripes on this
5622 * device we have to walk to find the data, and stripe_index is
5623 * the number of our device in the stripe array
5625 stripe_nr
= div_u64_rem(stripe_nr
, map
->num_stripes
,
5627 mirror_num
= stripe_index
+ 1;
5629 if (stripe_index
>= map
->num_stripes
) {
5631 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5632 stripe_index
, map
->num_stripes
);
5637 num_alloc_stripes
= num_stripes
;
5638 if (dev_replace_is_ongoing
) {
5639 if (op
== BTRFS_MAP_WRITE
|| op
== BTRFS_MAP_DISCARD
)
5640 num_alloc_stripes
<<= 1;
5641 if (op
== BTRFS_MAP_GET_READ_MIRRORS
)
5642 num_alloc_stripes
++;
5643 tgtdev_indexes
= num_stripes
;
5646 bbio
= alloc_btrfs_bio(num_alloc_stripes
, tgtdev_indexes
);
5651 if (dev_replace_is_ongoing
)
5652 bbio
->tgtdev_map
= (int *)(bbio
->stripes
+ num_alloc_stripes
);
5654 /* build raid_map */
5655 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
&&
5657 ((op
== BTRFS_MAP_WRITE
|| op
== BTRFS_MAP_GET_READ_MIRRORS
) ||
5662 bbio
->raid_map
= (u64
*)((void *)bbio
->stripes
+
5663 sizeof(struct btrfs_bio_stripe
) *
5665 sizeof(int) * tgtdev_indexes
);
5667 /* Work out the disk rotation on this stripe-set */
5668 div_u64_rem(stripe_nr
, num_stripes
, &rot
);
5670 /* Fill in the logical address of each stripe */
5671 tmp
= stripe_nr
* nr_data_stripes(map
);
5672 for (i
= 0; i
< nr_data_stripes(map
); i
++)
5673 bbio
->raid_map
[(i
+rot
) % num_stripes
] =
5674 em
->start
+ (tmp
+ i
) * map
->stripe_len
;
5676 bbio
->raid_map
[(i
+rot
) % map
->num_stripes
] = RAID5_P_STRIPE
;
5677 if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
)
5678 bbio
->raid_map
[(i
+rot
+1) % num_stripes
] =
5682 if (op
== BTRFS_MAP_DISCARD
) {
5684 u32 sub_stripes
= 0;
5685 u64 stripes_per_dev
= 0;
5686 u32 remaining_stripes
= 0;
5687 u32 last_stripe
= 0;
5690 (BTRFS_BLOCK_GROUP_RAID0
| BTRFS_BLOCK_GROUP_RAID10
)) {
5691 if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
)
5694 sub_stripes
= map
->sub_stripes
;
5696 factor
= map
->num_stripes
/ sub_stripes
;
5697 stripes_per_dev
= div_u64_rem(stripe_nr_end
-
5700 &remaining_stripes
);
5701 div_u64_rem(stripe_nr_end
- 1, factor
, &last_stripe
);
5702 last_stripe
*= sub_stripes
;
5705 for (i
= 0; i
< num_stripes
; i
++) {
5706 bbio
->stripes
[i
].physical
=
5707 map
->stripes
[stripe_index
].physical
+
5708 stripe_offset
+ stripe_nr
* map
->stripe_len
;
5709 bbio
->stripes
[i
].dev
= map
->stripes
[stripe_index
].dev
;
5711 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID0
|
5712 BTRFS_BLOCK_GROUP_RAID10
)) {
5713 bbio
->stripes
[i
].length
= stripes_per_dev
*
5716 if (i
/ sub_stripes
< remaining_stripes
)
5717 bbio
->stripes
[i
].length
+=
5721 * Special for the first stripe and
5724 * |-------|...|-------|
5728 if (i
< sub_stripes
)
5729 bbio
->stripes
[i
].length
-=
5732 if (stripe_index
>= last_stripe
&&
5733 stripe_index
<= (last_stripe
+
5735 bbio
->stripes
[i
].length
-=
5738 if (i
== sub_stripes
- 1)
5741 bbio
->stripes
[i
].length
= *length
;
5744 if (stripe_index
== map
->num_stripes
) {
5745 /* This could only happen for RAID0/10 */
5751 for (i
= 0; i
< num_stripes
; i
++) {
5752 bbio
->stripes
[i
].physical
=
5753 map
->stripes
[stripe_index
].physical
+
5755 stripe_nr
* map
->stripe_len
;
5756 bbio
->stripes
[i
].dev
=
5757 map
->stripes
[stripe_index
].dev
;
5762 if (op
== BTRFS_MAP_WRITE
|| op
== BTRFS_MAP_GET_READ_MIRRORS
)
5763 max_errors
= btrfs_chunk_max_errors(map
);
5766 sort_parity_stripes(bbio
, num_stripes
);
5769 if (dev_replace_is_ongoing
&&
5770 (op
== BTRFS_MAP_WRITE
|| op
== BTRFS_MAP_DISCARD
) &&
5771 dev_replace
->tgtdev
!= NULL
) {
5772 int index_where_to_add
;
5773 u64 srcdev_devid
= dev_replace
->srcdev
->devid
;
5776 * duplicate the write operations while the dev replace
5777 * procedure is running. Since the copying of the old disk
5778 * to the new disk takes place at run time while the
5779 * filesystem is mounted writable, the regular write
5780 * operations to the old disk have to be duplicated to go
5781 * to the new disk as well.
5782 * Note that device->missing is handled by the caller, and
5783 * that the write to the old disk is already set up in the
5786 index_where_to_add
= num_stripes
;
5787 for (i
= 0; i
< num_stripes
; i
++) {
5788 if (bbio
->stripes
[i
].dev
->devid
== srcdev_devid
) {
5789 /* write to new disk, too */
5790 struct btrfs_bio_stripe
*new =
5791 bbio
->stripes
+ index_where_to_add
;
5792 struct btrfs_bio_stripe
*old
=
5795 new->physical
= old
->physical
;
5796 new->length
= old
->length
;
5797 new->dev
= dev_replace
->tgtdev
;
5798 bbio
->tgtdev_map
[i
] = index_where_to_add
;
5799 index_where_to_add
++;
5804 num_stripes
= index_where_to_add
;
5805 } else if (dev_replace_is_ongoing
&&
5806 op
== BTRFS_MAP_GET_READ_MIRRORS
&&
5807 dev_replace
->tgtdev
!= NULL
) {
5808 u64 srcdev_devid
= dev_replace
->srcdev
->devid
;
5809 int index_srcdev
= 0;
5811 u64 physical_of_found
= 0;
5814 * During the dev-replace procedure, the target drive can
5815 * also be used to read data in case it is needed to repair
5816 * a corrupt block elsewhere. This is possible if the
5817 * requested area is left of the left cursor. In this area,
5818 * the target drive is a full copy of the source drive.
5820 for (i
= 0; i
< num_stripes
; i
++) {
5821 if (bbio
->stripes
[i
].dev
->devid
== srcdev_devid
) {
5823 * In case of DUP, in order to keep it
5824 * simple, only add the mirror with the
5825 * lowest physical address
5828 physical_of_found
<=
5829 bbio
->stripes
[i
].physical
)
5833 physical_of_found
= bbio
->stripes
[i
].physical
;
5837 struct btrfs_bio_stripe
*tgtdev_stripe
=
5838 bbio
->stripes
+ num_stripes
;
5840 tgtdev_stripe
->physical
= physical_of_found
;
5841 tgtdev_stripe
->length
=
5842 bbio
->stripes
[index_srcdev
].length
;
5843 tgtdev_stripe
->dev
= dev_replace
->tgtdev
;
5844 bbio
->tgtdev_map
[index_srcdev
] = num_stripes
;
5852 bbio
->map_type
= map
->type
;
5853 bbio
->num_stripes
= num_stripes
;
5854 bbio
->max_errors
= max_errors
;
5855 bbio
->mirror_num
= mirror_num
;
5856 bbio
->num_tgtdevs
= tgtdev_indexes
;
5859 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5860 * mirror_num == num_stripes + 1 && dev_replace target drive is
5861 * available as a mirror
5863 if (patch_the_first_stripe_for_dev_replace
&& num_stripes
> 0) {
5864 WARN_ON(num_stripes
> 1);
5865 bbio
->stripes
[0].dev
= dev_replace
->tgtdev
;
5866 bbio
->stripes
[0].physical
= physical_to_patch_in_first_stripe
;
5867 bbio
->mirror_num
= map
->num_stripes
+ 1;
5870 if (dev_replace_is_ongoing
) {
5871 btrfs_dev_replace_clear_lock_blocking(dev_replace
);
5872 btrfs_dev_replace_unlock(dev_replace
, 0);
5874 free_extent_map(em
);
5878 int btrfs_map_block(struct btrfs_fs_info
*fs_info
, enum btrfs_map_op op
,
5879 u64 logical
, u64
*length
,
5880 struct btrfs_bio
**bbio_ret
, int mirror_num
)
5882 return __btrfs_map_block(fs_info
, op
, logical
, length
, bbio_ret
,
5886 /* For Scrub/replace */
5887 int btrfs_map_sblock(struct btrfs_fs_info
*fs_info
, enum btrfs_map_op op
,
5888 u64 logical
, u64
*length
,
5889 struct btrfs_bio
**bbio_ret
, int mirror_num
,
5892 return __btrfs_map_block(fs_info
, op
, logical
, length
, bbio_ret
,
5893 mirror_num
, need_raid_map
);
5896 int btrfs_rmap_block(struct btrfs_fs_info
*fs_info
,
5897 u64 chunk_start
, u64 physical
, u64 devid
,
5898 u64
**logical
, int *naddrs
, int *stripe_len
)
5900 struct btrfs_mapping_tree
*map_tree
= &fs_info
->mapping_tree
;
5901 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
5902 struct extent_map
*em
;
5903 struct map_lookup
*map
;
5911 read_lock(&em_tree
->lock
);
5912 em
= lookup_extent_mapping(em_tree
, chunk_start
, 1);
5913 read_unlock(&em_tree
->lock
);
5916 btrfs_err(fs_info
, "couldn't find em for chunk %Lu",
5921 if (em
->start
!= chunk_start
) {
5922 btrfs_err(fs_info
, "bad chunk start, em=%Lu, wanted=%Lu",
5923 em
->start
, chunk_start
);
5924 free_extent_map(em
);
5927 map
= em
->map_lookup
;
5930 rmap_len
= map
->stripe_len
;
5932 if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
5933 length
= div_u64(length
, map
->num_stripes
/ map
->sub_stripes
);
5934 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
)
5935 length
= div_u64(length
, map
->num_stripes
);
5936 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5937 length
= div_u64(length
, nr_data_stripes(map
));
5938 rmap_len
= map
->stripe_len
* nr_data_stripes(map
);
5941 buf
= kcalloc(map
->num_stripes
, sizeof(u64
), GFP_NOFS
);
5942 BUG_ON(!buf
); /* -ENOMEM */
5944 for (i
= 0; i
< map
->num_stripes
; i
++) {
5945 if (devid
&& map
->stripes
[i
].dev
->devid
!= devid
)
5947 if (map
->stripes
[i
].physical
> physical
||
5948 map
->stripes
[i
].physical
+ length
<= physical
)
5951 stripe_nr
= physical
- map
->stripes
[i
].physical
;
5952 stripe_nr
= div_u64(stripe_nr
, map
->stripe_len
);
5954 if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
5955 stripe_nr
= stripe_nr
* map
->num_stripes
+ i
;
5956 stripe_nr
= div_u64(stripe_nr
, map
->sub_stripes
);
5957 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
5958 stripe_nr
= stripe_nr
* map
->num_stripes
+ i
;
5959 } /* else if RAID[56], multiply by nr_data_stripes().
5960 * Alternatively, just use rmap_len below instead of
5961 * map->stripe_len */
5963 bytenr
= chunk_start
+ stripe_nr
* rmap_len
;
5964 WARN_ON(nr
>= map
->num_stripes
);
5965 for (j
= 0; j
< nr
; j
++) {
5966 if (buf
[j
] == bytenr
)
5970 WARN_ON(nr
>= map
->num_stripes
);
5977 *stripe_len
= rmap_len
;
5979 free_extent_map(em
);
5983 static inline void btrfs_end_bbio(struct btrfs_bio
*bbio
, struct bio
*bio
)
5985 bio
->bi_private
= bbio
->private;
5986 bio
->bi_end_io
= bbio
->end_io
;
5989 btrfs_put_bbio(bbio
);
5992 static void btrfs_end_bio(struct bio
*bio
)
5994 struct btrfs_bio
*bbio
= bio
->bi_private
;
5995 int is_orig_bio
= 0;
5997 if (bio
->bi_error
) {
5998 atomic_inc(&bbio
->error
);
5999 if (bio
->bi_error
== -EIO
|| bio
->bi_error
== -EREMOTEIO
) {
6000 unsigned int stripe_index
=
6001 btrfs_io_bio(bio
)->stripe_index
;
6002 struct btrfs_device
*dev
;
6004 BUG_ON(stripe_index
>= bbio
->num_stripes
);
6005 dev
= bbio
->stripes
[stripe_index
].dev
;
6007 if (bio_op(bio
) == REQ_OP_WRITE
)
6008 btrfs_dev_stat_inc(dev
,
6009 BTRFS_DEV_STAT_WRITE_ERRS
);
6011 btrfs_dev_stat_inc(dev
,
6012 BTRFS_DEV_STAT_READ_ERRS
);
6013 if (bio
->bi_opf
& REQ_PREFLUSH
)
6014 btrfs_dev_stat_inc(dev
,
6015 BTRFS_DEV_STAT_FLUSH_ERRS
);
6016 btrfs_dev_stat_print_on_error(dev
);
6021 if (bio
== bbio
->orig_bio
)
6024 btrfs_bio_counter_dec(bbio
->fs_info
);
6026 if (atomic_dec_and_test(&bbio
->stripes_pending
)) {
6029 bio
= bbio
->orig_bio
;
6032 btrfs_io_bio(bio
)->mirror_num
= bbio
->mirror_num
;
6033 /* only send an error to the higher layers if it is
6034 * beyond the tolerance of the btrfs bio
6036 if (atomic_read(&bbio
->error
) > bbio
->max_errors
) {
6037 bio
->bi_error
= -EIO
;
6040 * this bio is actually up to date, we didn't
6041 * go over the max number of errors
6046 btrfs_end_bbio(bbio
, bio
);
6047 } else if (!is_orig_bio
) {
6053 * see run_scheduled_bios for a description of why bios are collected for
6056 * This will add one bio to the pending list for a device and make sure
6057 * the work struct is scheduled.
6059 static noinline
void btrfs_schedule_bio(struct btrfs_device
*device
,
6062 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
6063 int should_queue
= 1;
6064 struct btrfs_pending_bios
*pending_bios
;
6066 if (device
->missing
|| !device
->bdev
) {
6071 /* don't bother with additional async steps for reads, right now */
6072 if (bio_op(bio
) == REQ_OP_READ
) {
6074 btrfsic_submit_bio(bio
);
6080 * nr_async_bios allows us to reliably return congestion to the
6081 * higher layers. Otherwise, the async bio makes it appear we have
6082 * made progress against dirty pages when we've really just put it
6083 * on a queue for later
6085 atomic_inc(&fs_info
->nr_async_bios
);
6086 WARN_ON(bio
->bi_next
);
6087 bio
->bi_next
= NULL
;
6089 spin_lock(&device
->io_lock
);
6090 if (op_is_sync(bio
->bi_opf
))
6091 pending_bios
= &device
->pending_sync_bios
;
6093 pending_bios
= &device
->pending_bios
;
6095 if (pending_bios
->tail
)
6096 pending_bios
->tail
->bi_next
= bio
;
6098 pending_bios
->tail
= bio
;
6099 if (!pending_bios
->head
)
6100 pending_bios
->head
= bio
;
6101 if (device
->running_pending
)
6104 spin_unlock(&device
->io_lock
);
6107 btrfs_queue_work(fs_info
->submit_workers
, &device
->work
);
6110 static void submit_stripe_bio(struct btrfs_bio
*bbio
, struct bio
*bio
,
6111 u64 physical
, int dev_nr
, int async
)
6113 struct btrfs_device
*dev
= bbio
->stripes
[dev_nr
].dev
;
6114 struct btrfs_fs_info
*fs_info
= bbio
->fs_info
;
6116 bio
->bi_private
= bbio
;
6117 btrfs_io_bio(bio
)->stripe_index
= dev_nr
;
6118 bio
->bi_end_io
= btrfs_end_bio
;
6119 bio
->bi_iter
.bi_sector
= physical
>> 9;
6122 struct rcu_string
*name
;
6125 name
= rcu_dereference(dev
->name
);
6126 btrfs_debug(fs_info
,
6127 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6128 bio_op(bio
), bio
->bi_opf
,
6129 (u64
)bio
->bi_iter
.bi_sector
,
6130 (u_long
)dev
->bdev
->bd_dev
, name
->str
, dev
->devid
,
6131 bio
->bi_iter
.bi_size
);
6135 bio
->bi_bdev
= dev
->bdev
;
6137 btrfs_bio_counter_inc_noblocked(fs_info
);
6140 btrfs_schedule_bio(dev
, bio
);
6142 btrfsic_submit_bio(bio
);
6145 static void bbio_error(struct btrfs_bio
*bbio
, struct bio
*bio
, u64 logical
)
6147 atomic_inc(&bbio
->error
);
6148 if (atomic_dec_and_test(&bbio
->stripes_pending
)) {
6149 /* Should be the original bio. */
6150 WARN_ON(bio
!= bbio
->orig_bio
);
6152 btrfs_io_bio(bio
)->mirror_num
= bbio
->mirror_num
;
6153 bio
->bi_iter
.bi_sector
= logical
>> 9;
6154 bio
->bi_error
= -EIO
;
6155 btrfs_end_bbio(bbio
, bio
);
6159 int btrfs_map_bio(struct btrfs_fs_info
*fs_info
, struct bio
*bio
,
6160 int mirror_num
, int async_submit
)
6162 struct btrfs_device
*dev
;
6163 struct bio
*first_bio
= bio
;
6164 u64 logical
= (u64
)bio
->bi_iter
.bi_sector
<< 9;
6170 struct btrfs_bio
*bbio
= NULL
;
6172 length
= bio
->bi_iter
.bi_size
;
6173 map_length
= length
;
6175 btrfs_bio_counter_inc_blocked(fs_info
);
6176 ret
= __btrfs_map_block(fs_info
, bio_op(bio
), logical
,
6177 &map_length
, &bbio
, mirror_num
, 1);
6179 btrfs_bio_counter_dec(fs_info
);
6183 total_devs
= bbio
->num_stripes
;
6184 bbio
->orig_bio
= first_bio
;
6185 bbio
->private = first_bio
->bi_private
;
6186 bbio
->end_io
= first_bio
->bi_end_io
;
6187 bbio
->fs_info
= fs_info
;
6188 atomic_set(&bbio
->stripes_pending
, bbio
->num_stripes
);
6190 if ((bbio
->map_type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) &&
6191 ((bio_op(bio
) == REQ_OP_WRITE
) || (mirror_num
> 1))) {
6192 /* In this case, map_length has been set to the length of
6193 a single stripe; not the whole write */
6194 if (bio_op(bio
) == REQ_OP_WRITE
) {
6195 ret
= raid56_parity_write(fs_info
, bio
, bbio
,
6198 ret
= raid56_parity_recover(fs_info
, bio
, bbio
,
6199 map_length
, mirror_num
, 1);
6202 btrfs_bio_counter_dec(fs_info
);
6206 if (map_length
< length
) {
6208 "mapping failed logical %llu bio len %llu len %llu",
6209 logical
, length
, map_length
);
6213 for (dev_nr
= 0; dev_nr
< total_devs
; dev_nr
++) {
6214 dev
= bbio
->stripes
[dev_nr
].dev
;
6215 if (!dev
|| !dev
->bdev
||
6216 (bio_op(bio
) == REQ_OP_WRITE
&& !dev
->writeable
)) {
6217 bbio_error(bbio
, first_bio
, logical
);
6221 if (dev_nr
< total_devs
- 1) {
6222 bio
= btrfs_bio_clone(first_bio
, GFP_NOFS
);
6223 BUG_ON(!bio
); /* -ENOMEM */
6227 submit_stripe_bio(bbio
, bio
, bbio
->stripes
[dev_nr
].physical
,
6228 dev_nr
, async_submit
);
6230 btrfs_bio_counter_dec(fs_info
);
6234 struct btrfs_device
*btrfs_find_device(struct btrfs_fs_info
*fs_info
, u64 devid
,
6237 struct btrfs_device
*device
;
6238 struct btrfs_fs_devices
*cur_devices
;
6240 cur_devices
= fs_info
->fs_devices
;
6241 while (cur_devices
) {
6243 !memcmp(cur_devices
->fsid
, fsid
, BTRFS_UUID_SIZE
)) {
6244 device
= __find_device(&cur_devices
->devices
,
6249 cur_devices
= cur_devices
->seed
;
6254 static struct btrfs_device
*add_missing_dev(struct btrfs_fs_devices
*fs_devices
,
6255 u64 devid
, u8
*dev_uuid
)
6257 struct btrfs_device
*device
;
6259 device
= btrfs_alloc_device(NULL
, &devid
, dev_uuid
);
6263 list_add(&device
->dev_list
, &fs_devices
->devices
);
6264 device
->fs_devices
= fs_devices
;
6265 fs_devices
->num_devices
++;
6267 device
->missing
= 1;
6268 fs_devices
->missing_devices
++;
6274 * btrfs_alloc_device - allocate struct btrfs_device
6275 * @fs_info: used only for generating a new devid, can be NULL if
6276 * devid is provided (i.e. @devid != NULL).
6277 * @devid: a pointer to devid for this device. If NULL a new devid
6279 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6282 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6283 * on error. Returned struct is not linked onto any lists and can be
6284 * destroyed with kfree() right away.
6286 struct btrfs_device
*btrfs_alloc_device(struct btrfs_fs_info
*fs_info
,
6290 struct btrfs_device
*dev
;
6293 if (WARN_ON(!devid
&& !fs_info
))
6294 return ERR_PTR(-EINVAL
);
6296 dev
= __alloc_device();
6305 ret
= find_next_devid(fs_info
, &tmp
);
6308 return ERR_PTR(ret
);
6314 memcpy(dev
->uuid
, uuid
, BTRFS_UUID_SIZE
);
6316 generate_random_uuid(dev
->uuid
);
6318 btrfs_init_work(&dev
->work
, btrfs_submit_helper
,
6319 pending_bios_fn
, NULL
, NULL
);
6324 /* Return -EIO if any error, otherwise return 0. */
6325 static int btrfs_check_chunk_valid(struct btrfs_fs_info
*fs_info
,
6326 struct extent_buffer
*leaf
,
6327 struct btrfs_chunk
*chunk
, u64 logical
)
6335 length
= btrfs_chunk_length(leaf
, chunk
);
6336 stripe_len
= btrfs_chunk_stripe_len(leaf
, chunk
);
6337 num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
6338 sub_stripes
= btrfs_chunk_sub_stripes(leaf
, chunk
);
6339 type
= btrfs_chunk_type(leaf
, chunk
);
6342 btrfs_err(fs_info
, "invalid chunk num_stripes: %u",
6346 if (!IS_ALIGNED(logical
, fs_info
->sectorsize
)) {
6347 btrfs_err(fs_info
, "invalid chunk logical %llu", logical
);
6350 if (btrfs_chunk_sector_size(leaf
, chunk
) != fs_info
->sectorsize
) {
6351 btrfs_err(fs_info
, "invalid chunk sectorsize %u",
6352 btrfs_chunk_sector_size(leaf
, chunk
));
6355 if (!length
|| !IS_ALIGNED(length
, fs_info
->sectorsize
)) {
6356 btrfs_err(fs_info
, "invalid chunk length %llu", length
);
6359 if (!is_power_of_2(stripe_len
) || stripe_len
!= BTRFS_STRIPE_LEN
) {
6360 btrfs_err(fs_info
, "invalid chunk stripe length: %llu",
6364 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK
| BTRFS_BLOCK_GROUP_PROFILE_MASK
) &
6366 btrfs_err(fs_info
, "unrecognized chunk type: %llu",
6367 ~(BTRFS_BLOCK_GROUP_TYPE_MASK
|
6368 BTRFS_BLOCK_GROUP_PROFILE_MASK
) &
6369 btrfs_chunk_type(leaf
, chunk
));
6372 if ((type
& BTRFS_BLOCK_GROUP_RAID10
&& sub_stripes
!= 2) ||
6373 (type
& BTRFS_BLOCK_GROUP_RAID1
&& num_stripes
< 1) ||
6374 (type
& BTRFS_BLOCK_GROUP_RAID5
&& num_stripes
< 2) ||
6375 (type
& BTRFS_BLOCK_GROUP_RAID6
&& num_stripes
< 3) ||
6376 (type
& BTRFS_BLOCK_GROUP_DUP
&& num_stripes
> 2) ||
6377 ((type
& BTRFS_BLOCK_GROUP_PROFILE_MASK
) == 0 &&
6378 num_stripes
!= 1)) {
6380 "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6381 num_stripes
, sub_stripes
,
6382 type
& BTRFS_BLOCK_GROUP_PROFILE_MASK
);
6389 static int read_one_chunk(struct btrfs_fs_info
*fs_info
, struct btrfs_key
*key
,
6390 struct extent_buffer
*leaf
,
6391 struct btrfs_chunk
*chunk
)
6393 struct btrfs_mapping_tree
*map_tree
= &fs_info
->mapping_tree
;
6394 struct map_lookup
*map
;
6395 struct extent_map
*em
;
6400 u8 uuid
[BTRFS_UUID_SIZE
];
6405 logical
= key
->offset
;
6406 length
= btrfs_chunk_length(leaf
, chunk
);
6407 stripe_len
= btrfs_chunk_stripe_len(leaf
, chunk
);
6408 num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
6410 ret
= btrfs_check_chunk_valid(fs_info
, leaf
, chunk
, logical
);
6414 read_lock(&map_tree
->map_tree
.lock
);
6415 em
= lookup_extent_mapping(&map_tree
->map_tree
, logical
, 1);
6416 read_unlock(&map_tree
->map_tree
.lock
);
6418 /* already mapped? */
6419 if (em
&& em
->start
<= logical
&& em
->start
+ em
->len
> logical
) {
6420 free_extent_map(em
);
6423 free_extent_map(em
);
6426 em
= alloc_extent_map();
6429 map
= kmalloc(map_lookup_size(num_stripes
), GFP_NOFS
);
6431 free_extent_map(em
);
6435 set_bit(EXTENT_FLAG_FS_MAPPING
, &em
->flags
);
6436 em
->map_lookup
= map
;
6437 em
->start
= logical
;
6440 em
->block_start
= 0;
6441 em
->block_len
= em
->len
;
6443 map
->num_stripes
= num_stripes
;
6444 map
->io_width
= btrfs_chunk_io_width(leaf
, chunk
);
6445 map
->io_align
= btrfs_chunk_io_align(leaf
, chunk
);
6446 map
->sector_size
= btrfs_chunk_sector_size(leaf
, chunk
);
6447 map
->stripe_len
= btrfs_chunk_stripe_len(leaf
, chunk
);
6448 map
->type
= btrfs_chunk_type(leaf
, chunk
);
6449 map
->sub_stripes
= btrfs_chunk_sub_stripes(leaf
, chunk
);
6450 for (i
= 0; i
< num_stripes
; i
++) {
6451 map
->stripes
[i
].physical
=
6452 btrfs_stripe_offset_nr(leaf
, chunk
, i
);
6453 devid
= btrfs_stripe_devid_nr(leaf
, chunk
, i
);
6454 read_extent_buffer(leaf
, uuid
, (unsigned long)
6455 btrfs_stripe_dev_uuid_nr(chunk
, i
),
6457 map
->stripes
[i
].dev
= btrfs_find_device(fs_info
, devid
,
6459 if (!map
->stripes
[i
].dev
&&
6460 !btrfs_test_opt(fs_info
, DEGRADED
)) {
6461 free_extent_map(em
);
6464 if (!map
->stripes
[i
].dev
) {
6465 map
->stripes
[i
].dev
=
6466 add_missing_dev(fs_info
->fs_devices
, devid
,
6468 if (!map
->stripes
[i
].dev
) {
6469 free_extent_map(em
);
6472 btrfs_warn(fs_info
, "devid %llu uuid %pU is missing",
6475 map
->stripes
[i
].dev
->in_fs_metadata
= 1;
6478 write_lock(&map_tree
->map_tree
.lock
);
6479 ret
= add_extent_mapping(&map_tree
->map_tree
, em
, 0);
6480 write_unlock(&map_tree
->map_tree
.lock
);
6481 BUG_ON(ret
); /* Tree corruption */
6482 free_extent_map(em
);
6487 static void fill_device_from_item(struct extent_buffer
*leaf
,
6488 struct btrfs_dev_item
*dev_item
,
6489 struct btrfs_device
*device
)
6493 device
->devid
= btrfs_device_id(leaf
, dev_item
);
6494 device
->disk_total_bytes
= btrfs_device_total_bytes(leaf
, dev_item
);
6495 device
->total_bytes
= device
->disk_total_bytes
;
6496 device
->commit_total_bytes
= device
->disk_total_bytes
;
6497 device
->bytes_used
= btrfs_device_bytes_used(leaf
, dev_item
);
6498 device
->commit_bytes_used
= device
->bytes_used
;
6499 device
->type
= btrfs_device_type(leaf
, dev_item
);
6500 device
->io_align
= btrfs_device_io_align(leaf
, dev_item
);
6501 device
->io_width
= btrfs_device_io_width(leaf
, dev_item
);
6502 device
->sector_size
= btrfs_device_sector_size(leaf
, dev_item
);
6503 WARN_ON(device
->devid
== BTRFS_DEV_REPLACE_DEVID
);
6504 device
->is_tgtdev_for_dev_replace
= 0;
6506 ptr
= btrfs_device_uuid(dev_item
);
6507 read_extent_buffer(leaf
, device
->uuid
, ptr
, BTRFS_UUID_SIZE
);
6510 static struct btrfs_fs_devices
*open_seed_devices(struct btrfs_fs_info
*fs_info
,
6513 struct btrfs_fs_devices
*fs_devices
;
6516 BUG_ON(!mutex_is_locked(&uuid_mutex
));
6518 fs_devices
= fs_info
->fs_devices
->seed
;
6519 while (fs_devices
) {
6520 if (!memcmp(fs_devices
->fsid
, fsid
, BTRFS_UUID_SIZE
))
6523 fs_devices
= fs_devices
->seed
;
6526 fs_devices
= find_fsid(fsid
);
6528 if (!btrfs_test_opt(fs_info
, DEGRADED
))
6529 return ERR_PTR(-ENOENT
);
6531 fs_devices
= alloc_fs_devices(fsid
);
6532 if (IS_ERR(fs_devices
))
6535 fs_devices
->seeding
= 1;
6536 fs_devices
->opened
= 1;
6540 fs_devices
= clone_fs_devices(fs_devices
);
6541 if (IS_ERR(fs_devices
))
6544 ret
= __btrfs_open_devices(fs_devices
, FMODE_READ
,
6545 fs_info
->bdev_holder
);
6547 free_fs_devices(fs_devices
);
6548 fs_devices
= ERR_PTR(ret
);
6552 if (!fs_devices
->seeding
) {
6553 __btrfs_close_devices(fs_devices
);
6554 free_fs_devices(fs_devices
);
6555 fs_devices
= ERR_PTR(-EINVAL
);
6559 fs_devices
->seed
= fs_info
->fs_devices
->seed
;
6560 fs_info
->fs_devices
->seed
= fs_devices
;
6565 static int read_one_dev(struct btrfs_fs_info
*fs_info
,
6566 struct extent_buffer
*leaf
,
6567 struct btrfs_dev_item
*dev_item
)
6569 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
6570 struct btrfs_device
*device
;
6573 u8 fs_uuid
[BTRFS_UUID_SIZE
];
6574 u8 dev_uuid
[BTRFS_UUID_SIZE
];
6576 devid
= btrfs_device_id(leaf
, dev_item
);
6577 read_extent_buffer(leaf
, dev_uuid
, btrfs_device_uuid(dev_item
),
6579 read_extent_buffer(leaf
, fs_uuid
, btrfs_device_fsid(dev_item
),
6582 if (memcmp(fs_uuid
, fs_info
->fsid
, BTRFS_UUID_SIZE
)) {
6583 fs_devices
= open_seed_devices(fs_info
, fs_uuid
);
6584 if (IS_ERR(fs_devices
))
6585 return PTR_ERR(fs_devices
);
6588 device
= btrfs_find_device(fs_info
, devid
, dev_uuid
, fs_uuid
);
6590 if (!btrfs_test_opt(fs_info
, DEGRADED
))
6593 device
= add_missing_dev(fs_devices
, devid
, dev_uuid
);
6596 btrfs_warn(fs_info
, "devid %llu uuid %pU missing",
6599 if (!device
->bdev
&& !btrfs_test_opt(fs_info
, DEGRADED
))
6602 if(!device
->bdev
&& !device
->missing
) {
6604 * this happens when a device that was properly setup
6605 * in the device info lists suddenly goes bad.
6606 * device->bdev is NULL, and so we have to set
6607 * device->missing to one here
6609 device
->fs_devices
->missing_devices
++;
6610 device
->missing
= 1;
6613 /* Move the device to its own fs_devices */
6614 if (device
->fs_devices
!= fs_devices
) {
6615 ASSERT(device
->missing
);
6617 list_move(&device
->dev_list
, &fs_devices
->devices
);
6618 device
->fs_devices
->num_devices
--;
6619 fs_devices
->num_devices
++;
6621 device
->fs_devices
->missing_devices
--;
6622 fs_devices
->missing_devices
++;
6624 device
->fs_devices
= fs_devices
;
6628 if (device
->fs_devices
!= fs_info
->fs_devices
) {
6629 BUG_ON(device
->writeable
);
6630 if (device
->generation
!=
6631 btrfs_device_generation(leaf
, dev_item
))
6635 fill_device_from_item(leaf
, dev_item
, device
);
6636 device
->in_fs_metadata
= 1;
6637 if (device
->writeable
&& !device
->is_tgtdev_for_dev_replace
) {
6638 device
->fs_devices
->total_rw_bytes
+= device
->total_bytes
;
6639 spin_lock(&fs_info
->free_chunk_lock
);
6640 fs_info
->free_chunk_space
+= device
->total_bytes
-
6642 spin_unlock(&fs_info
->free_chunk_lock
);
6648 int btrfs_read_sys_array(struct btrfs_fs_info
*fs_info
)
6650 struct btrfs_root
*root
= fs_info
->tree_root
;
6651 struct btrfs_super_block
*super_copy
= fs_info
->super_copy
;
6652 struct extent_buffer
*sb
;
6653 struct btrfs_disk_key
*disk_key
;
6654 struct btrfs_chunk
*chunk
;
6656 unsigned long sb_array_offset
;
6663 struct btrfs_key key
;
6665 ASSERT(BTRFS_SUPER_INFO_SIZE
<= fs_info
->nodesize
);
6667 * This will create extent buffer of nodesize, superblock size is
6668 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6669 * overallocate but we can keep it as-is, only the first page is used.
6671 sb
= btrfs_find_create_tree_block(fs_info
, BTRFS_SUPER_INFO_OFFSET
);
6674 set_extent_buffer_uptodate(sb
);
6675 btrfs_set_buffer_lockdep_class(root
->root_key
.objectid
, sb
, 0);
6677 * The sb extent buffer is artificial and just used to read the system array.
6678 * set_extent_buffer_uptodate() call does not properly mark all it's
6679 * pages up-to-date when the page is larger: extent does not cover the
6680 * whole page and consequently check_page_uptodate does not find all
6681 * the page's extents up-to-date (the hole beyond sb),
6682 * write_extent_buffer then triggers a WARN_ON.
6684 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6685 * but sb spans only this function. Add an explicit SetPageUptodate call
6686 * to silence the warning eg. on PowerPC 64.
6688 if (PAGE_SIZE
> BTRFS_SUPER_INFO_SIZE
)
6689 SetPageUptodate(sb
->pages
[0]);
6691 write_extent_buffer(sb
, super_copy
, 0, BTRFS_SUPER_INFO_SIZE
);
6692 array_size
= btrfs_super_sys_array_size(super_copy
);
6694 array_ptr
= super_copy
->sys_chunk_array
;
6695 sb_array_offset
= offsetof(struct btrfs_super_block
, sys_chunk_array
);
6698 while (cur_offset
< array_size
) {
6699 disk_key
= (struct btrfs_disk_key
*)array_ptr
;
6700 len
= sizeof(*disk_key
);
6701 if (cur_offset
+ len
> array_size
)
6702 goto out_short_read
;
6704 btrfs_disk_key_to_cpu(&key
, disk_key
);
6707 sb_array_offset
+= len
;
6710 if (key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
6711 chunk
= (struct btrfs_chunk
*)sb_array_offset
;
6713 * At least one btrfs_chunk with one stripe must be
6714 * present, exact stripe count check comes afterwards
6716 len
= btrfs_chunk_item_size(1);
6717 if (cur_offset
+ len
> array_size
)
6718 goto out_short_read
;
6720 num_stripes
= btrfs_chunk_num_stripes(sb
, chunk
);
6723 "invalid number of stripes %u in sys_array at offset %u",
6724 num_stripes
, cur_offset
);
6729 type
= btrfs_chunk_type(sb
, chunk
);
6730 if ((type
& BTRFS_BLOCK_GROUP_SYSTEM
) == 0) {
6732 "invalid chunk type %llu in sys_array at offset %u",
6738 len
= btrfs_chunk_item_size(num_stripes
);
6739 if (cur_offset
+ len
> array_size
)
6740 goto out_short_read
;
6742 ret
= read_one_chunk(fs_info
, &key
, sb
, chunk
);
6747 "unexpected item type %u in sys_array at offset %u",
6748 (u32
)key
.type
, cur_offset
);
6753 sb_array_offset
+= len
;
6756 clear_extent_buffer_uptodate(sb
);
6757 free_extent_buffer_stale(sb
);
6761 btrfs_err(fs_info
, "sys_array too short to read %u bytes at offset %u",
6763 clear_extent_buffer_uptodate(sb
);
6764 free_extent_buffer_stale(sb
);
6768 int btrfs_read_chunk_tree(struct btrfs_fs_info
*fs_info
)
6770 struct btrfs_root
*root
= fs_info
->chunk_root
;
6771 struct btrfs_path
*path
;
6772 struct extent_buffer
*leaf
;
6773 struct btrfs_key key
;
6774 struct btrfs_key found_key
;
6779 path
= btrfs_alloc_path();
6783 mutex_lock(&uuid_mutex
);
6784 mutex_lock(&fs_info
->chunk_mutex
);
6787 * Read all device items, and then all the chunk items. All
6788 * device items are found before any chunk item (their object id
6789 * is smaller than the lowest possible object id for a chunk
6790 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6792 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
6795 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
6799 leaf
= path
->nodes
[0];
6800 slot
= path
->slots
[0];
6801 if (slot
>= btrfs_header_nritems(leaf
)) {
6802 ret
= btrfs_next_leaf(root
, path
);
6809 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
6810 if (found_key
.type
== BTRFS_DEV_ITEM_KEY
) {
6811 struct btrfs_dev_item
*dev_item
;
6812 dev_item
= btrfs_item_ptr(leaf
, slot
,
6813 struct btrfs_dev_item
);
6814 ret
= read_one_dev(fs_info
, leaf
, dev_item
);
6818 } else if (found_key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
6819 struct btrfs_chunk
*chunk
;
6820 chunk
= btrfs_item_ptr(leaf
, slot
, struct btrfs_chunk
);
6821 ret
= read_one_chunk(fs_info
, &found_key
, leaf
, chunk
);
6829 * After loading chunk tree, we've got all device information,
6830 * do another round of validation checks.
6832 if (total_dev
!= fs_info
->fs_devices
->total_devices
) {
6834 "super_num_devices %llu mismatch with num_devices %llu found here",
6835 btrfs_super_num_devices(fs_info
->super_copy
),
6840 if (btrfs_super_total_bytes(fs_info
->super_copy
) <
6841 fs_info
->fs_devices
->total_rw_bytes
) {
6843 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
6844 btrfs_super_total_bytes(fs_info
->super_copy
),
6845 fs_info
->fs_devices
->total_rw_bytes
);
6851 mutex_unlock(&fs_info
->chunk_mutex
);
6852 mutex_unlock(&uuid_mutex
);
6854 btrfs_free_path(path
);
6858 void btrfs_init_devices_late(struct btrfs_fs_info
*fs_info
)
6860 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
6861 struct btrfs_device
*device
;
6863 while (fs_devices
) {
6864 mutex_lock(&fs_devices
->device_list_mutex
);
6865 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
)
6866 device
->fs_info
= fs_info
;
6867 mutex_unlock(&fs_devices
->device_list_mutex
);
6869 fs_devices
= fs_devices
->seed
;
6873 static void __btrfs_reset_dev_stats(struct btrfs_device
*dev
)
6877 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
6878 btrfs_dev_stat_reset(dev
, i
);
6881 int btrfs_init_dev_stats(struct btrfs_fs_info
*fs_info
)
6883 struct btrfs_key key
;
6884 struct btrfs_key found_key
;
6885 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
6886 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
6887 struct extent_buffer
*eb
;
6890 struct btrfs_device
*device
;
6891 struct btrfs_path
*path
= NULL
;
6894 path
= btrfs_alloc_path();
6900 mutex_lock(&fs_devices
->device_list_mutex
);
6901 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
6903 struct btrfs_dev_stats_item
*ptr
;
6905 key
.objectid
= BTRFS_DEV_STATS_OBJECTID
;
6906 key
.type
= BTRFS_PERSISTENT_ITEM_KEY
;
6907 key
.offset
= device
->devid
;
6908 ret
= btrfs_search_slot(NULL
, dev_root
, &key
, path
, 0, 0);
6910 __btrfs_reset_dev_stats(device
);
6911 device
->dev_stats_valid
= 1;
6912 btrfs_release_path(path
);
6915 slot
= path
->slots
[0];
6916 eb
= path
->nodes
[0];
6917 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
6918 item_size
= btrfs_item_size_nr(eb
, slot
);
6920 ptr
= btrfs_item_ptr(eb
, slot
,
6921 struct btrfs_dev_stats_item
);
6923 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++) {
6924 if (item_size
>= (1 + i
) * sizeof(__le64
))
6925 btrfs_dev_stat_set(device
, i
,
6926 btrfs_dev_stats_value(eb
, ptr
, i
));
6928 btrfs_dev_stat_reset(device
, i
);
6931 device
->dev_stats_valid
= 1;
6932 btrfs_dev_stat_print_on_load(device
);
6933 btrfs_release_path(path
);
6935 mutex_unlock(&fs_devices
->device_list_mutex
);
6938 btrfs_free_path(path
);
6939 return ret
< 0 ? ret
: 0;
6942 static int update_dev_stat_item(struct btrfs_trans_handle
*trans
,
6943 struct btrfs_fs_info
*fs_info
,
6944 struct btrfs_device
*device
)
6946 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
6947 struct btrfs_path
*path
;
6948 struct btrfs_key key
;
6949 struct extent_buffer
*eb
;
6950 struct btrfs_dev_stats_item
*ptr
;
6954 key
.objectid
= BTRFS_DEV_STATS_OBJECTID
;
6955 key
.type
= BTRFS_PERSISTENT_ITEM_KEY
;
6956 key
.offset
= device
->devid
;
6958 path
= btrfs_alloc_path();
6961 ret
= btrfs_search_slot(trans
, dev_root
, &key
, path
, -1, 1);
6963 btrfs_warn_in_rcu(fs_info
,
6964 "error %d while searching for dev_stats item for device %s",
6965 ret
, rcu_str_deref(device
->name
));
6970 btrfs_item_size_nr(path
->nodes
[0], path
->slots
[0]) < sizeof(*ptr
)) {
6971 /* need to delete old one and insert a new one */
6972 ret
= btrfs_del_item(trans
, dev_root
, path
);
6974 btrfs_warn_in_rcu(fs_info
,
6975 "delete too small dev_stats item for device %s failed %d",
6976 rcu_str_deref(device
->name
), ret
);
6983 /* need to insert a new item */
6984 btrfs_release_path(path
);
6985 ret
= btrfs_insert_empty_item(trans
, dev_root
, path
,
6986 &key
, sizeof(*ptr
));
6988 btrfs_warn_in_rcu(fs_info
,
6989 "insert dev_stats item for device %s failed %d",
6990 rcu_str_deref(device
->name
), ret
);
6995 eb
= path
->nodes
[0];
6996 ptr
= btrfs_item_ptr(eb
, path
->slots
[0], struct btrfs_dev_stats_item
);
6997 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
6998 btrfs_set_dev_stats_value(eb
, ptr
, i
,
6999 btrfs_dev_stat_read(device
, i
));
7000 btrfs_mark_buffer_dirty(eb
);
7003 btrfs_free_path(path
);
7008 * called from commit_transaction. Writes all changed device stats to disk.
7010 int btrfs_run_dev_stats(struct btrfs_trans_handle
*trans
,
7011 struct btrfs_fs_info
*fs_info
)
7013 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7014 struct btrfs_device
*device
;
7018 mutex_lock(&fs_devices
->device_list_mutex
);
7019 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
7020 if (!device
->dev_stats_valid
|| !btrfs_dev_stats_dirty(device
))
7023 stats_cnt
= atomic_read(&device
->dev_stats_ccnt
);
7024 ret
= update_dev_stat_item(trans
, fs_info
, device
);
7026 atomic_sub(stats_cnt
, &device
->dev_stats_ccnt
);
7028 mutex_unlock(&fs_devices
->device_list_mutex
);
7033 void btrfs_dev_stat_inc_and_print(struct btrfs_device
*dev
, int index
)
7035 btrfs_dev_stat_inc(dev
, index
);
7036 btrfs_dev_stat_print_on_error(dev
);
7039 static void btrfs_dev_stat_print_on_error(struct btrfs_device
*dev
)
7041 if (!dev
->dev_stats_valid
)
7043 btrfs_err_rl_in_rcu(dev
->fs_info
,
7044 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7045 rcu_str_deref(dev
->name
),
7046 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_WRITE_ERRS
),
7047 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_READ_ERRS
),
7048 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_FLUSH_ERRS
),
7049 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_CORRUPTION_ERRS
),
7050 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_GENERATION_ERRS
));
7053 static void btrfs_dev_stat_print_on_load(struct btrfs_device
*dev
)
7057 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
7058 if (btrfs_dev_stat_read(dev
, i
) != 0)
7060 if (i
== BTRFS_DEV_STAT_VALUES_MAX
)
7061 return; /* all values == 0, suppress message */
7063 btrfs_info_in_rcu(dev
->fs_info
,
7064 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7065 rcu_str_deref(dev
->name
),
7066 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_WRITE_ERRS
),
7067 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_READ_ERRS
),
7068 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_FLUSH_ERRS
),
7069 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_CORRUPTION_ERRS
),
7070 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_GENERATION_ERRS
));
7073 int btrfs_get_dev_stats(struct btrfs_fs_info
*fs_info
,
7074 struct btrfs_ioctl_get_dev_stats
*stats
)
7076 struct btrfs_device
*dev
;
7077 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7080 mutex_lock(&fs_devices
->device_list_mutex
);
7081 dev
= btrfs_find_device(fs_info
, stats
->devid
, NULL
, NULL
);
7082 mutex_unlock(&fs_devices
->device_list_mutex
);
7085 btrfs_warn(fs_info
, "get dev_stats failed, device not found");
7087 } else if (!dev
->dev_stats_valid
) {
7088 btrfs_warn(fs_info
, "get dev_stats failed, not yet valid");
7090 } else if (stats
->flags
& BTRFS_DEV_STATS_RESET
) {
7091 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++) {
7092 if (stats
->nr_items
> i
)
7094 btrfs_dev_stat_read_and_reset(dev
, i
);
7096 btrfs_dev_stat_reset(dev
, i
);
7099 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
7100 if (stats
->nr_items
> i
)
7101 stats
->values
[i
] = btrfs_dev_stat_read(dev
, i
);
7103 if (stats
->nr_items
> BTRFS_DEV_STAT_VALUES_MAX
)
7104 stats
->nr_items
= BTRFS_DEV_STAT_VALUES_MAX
;
7108 void btrfs_scratch_superblocks(struct block_device
*bdev
, const char *device_path
)
7110 struct buffer_head
*bh
;
7111 struct btrfs_super_block
*disk_super
;
7117 for (copy_num
= 0; copy_num
< BTRFS_SUPER_MIRROR_MAX
;
7120 if (btrfs_read_dev_one_super(bdev
, copy_num
, &bh
))
7123 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
7125 memset(&disk_super
->magic
, 0, sizeof(disk_super
->magic
));
7126 set_buffer_dirty(bh
);
7127 sync_dirty_buffer(bh
);
7131 /* Notify udev that device has changed */
7132 btrfs_kobject_uevent(bdev
, KOBJ_CHANGE
);
7134 /* Update ctime/mtime for device path for libblkid */
7135 update_dev_time(device_path
);
7139 * Update the size of all devices, which is used for writing out the
7142 void btrfs_update_commit_device_size(struct btrfs_fs_info
*fs_info
)
7144 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7145 struct btrfs_device
*curr
, *next
;
7147 if (list_empty(&fs_devices
->resized_devices
))
7150 mutex_lock(&fs_devices
->device_list_mutex
);
7151 mutex_lock(&fs_info
->chunk_mutex
);
7152 list_for_each_entry_safe(curr
, next
, &fs_devices
->resized_devices
,
7154 list_del_init(&curr
->resized_list
);
7155 curr
->commit_total_bytes
= curr
->disk_total_bytes
;
7157 mutex_unlock(&fs_info
->chunk_mutex
);
7158 mutex_unlock(&fs_devices
->device_list_mutex
);
7161 /* Must be invoked during the transaction commit */
7162 void btrfs_update_commit_device_bytes_used(struct btrfs_fs_info
*fs_info
,
7163 struct btrfs_transaction
*transaction
)
7165 struct extent_map
*em
;
7166 struct map_lookup
*map
;
7167 struct btrfs_device
*dev
;
7170 if (list_empty(&transaction
->pending_chunks
))
7173 /* In order to kick the device replace finish process */
7174 mutex_lock(&fs_info
->chunk_mutex
);
7175 list_for_each_entry(em
, &transaction
->pending_chunks
, list
) {
7176 map
= em
->map_lookup
;
7178 for (i
= 0; i
< map
->num_stripes
; i
++) {
7179 dev
= map
->stripes
[i
].dev
;
7180 dev
->commit_bytes_used
= dev
->bytes_used
;
7183 mutex_unlock(&fs_info
->chunk_mutex
);
7186 void btrfs_set_fs_info_ptr(struct btrfs_fs_info
*fs_info
)
7188 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7189 while (fs_devices
) {
7190 fs_devices
->fs_info
= fs_info
;
7191 fs_devices
= fs_devices
->seed
;
7195 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info
*fs_info
)
7197 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7198 while (fs_devices
) {
7199 fs_devices
->fs_info
= NULL
;
7200 fs_devices
= fs_devices
->seed
;