2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40 #include <linux/iomap.h>
42 #include "ext4_jbd2.h"
47 #include <trace/events/ext4.h>
49 #define MPAGE_DA_EXTENT_TAIL 0x01
51 static __u32
ext4_inode_csum(struct inode
*inode
, struct ext4_inode
*raw
,
52 struct ext4_inode_info
*ei
)
54 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
57 int offset
= offsetof(struct ext4_inode
, i_checksum_lo
);
58 unsigned int csum_size
= sizeof(dummy_csum
);
60 csum
= ext4_chksum(sbi
, ei
->i_csum_seed
, (__u8
*)raw
, offset
);
61 csum
= ext4_chksum(sbi
, csum
, (__u8
*)&dummy_csum
, csum_size
);
63 csum
= ext4_chksum(sbi
, csum
, (__u8
*)raw
+ offset
,
64 EXT4_GOOD_OLD_INODE_SIZE
- offset
);
66 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
67 offset
= offsetof(struct ext4_inode
, i_checksum_hi
);
68 csum
= ext4_chksum(sbi
, csum
, (__u8
*)raw
+
69 EXT4_GOOD_OLD_INODE_SIZE
,
70 offset
- EXT4_GOOD_OLD_INODE_SIZE
);
71 if (EXT4_FITS_IN_INODE(raw
, ei
, i_checksum_hi
)) {
72 csum
= ext4_chksum(sbi
, csum
, (__u8
*)&dummy_csum
,
76 csum
= ext4_chksum(sbi
, csum
, (__u8
*)raw
+ offset
,
77 EXT4_INODE_SIZE(inode
->i_sb
) - offset
);
83 static int ext4_inode_csum_verify(struct inode
*inode
, struct ext4_inode
*raw
,
84 struct ext4_inode_info
*ei
)
86 __u32 provided
, calculated
;
88 if (EXT4_SB(inode
->i_sb
)->s_es
->s_creator_os
!=
89 cpu_to_le32(EXT4_OS_LINUX
) ||
90 !ext4_has_metadata_csum(inode
->i_sb
))
93 provided
= le16_to_cpu(raw
->i_checksum_lo
);
94 calculated
= ext4_inode_csum(inode
, raw
, ei
);
95 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
&&
96 EXT4_FITS_IN_INODE(raw
, ei
, i_checksum_hi
))
97 provided
|= ((__u32
)le16_to_cpu(raw
->i_checksum_hi
)) << 16;
101 return provided
== calculated
;
104 static void ext4_inode_csum_set(struct inode
*inode
, struct ext4_inode
*raw
,
105 struct ext4_inode_info
*ei
)
109 if (EXT4_SB(inode
->i_sb
)->s_es
->s_creator_os
!=
110 cpu_to_le32(EXT4_OS_LINUX
) ||
111 !ext4_has_metadata_csum(inode
->i_sb
))
114 csum
= ext4_inode_csum(inode
, raw
, ei
);
115 raw
->i_checksum_lo
= cpu_to_le16(csum
& 0xFFFF);
116 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
&&
117 EXT4_FITS_IN_INODE(raw
, ei
, i_checksum_hi
))
118 raw
->i_checksum_hi
= cpu_to_le16(csum
>> 16);
121 static inline int ext4_begin_ordered_truncate(struct inode
*inode
,
124 trace_ext4_begin_ordered_truncate(inode
, new_size
);
126 * If jinode is zero, then we never opened the file for
127 * writing, so there's no need to call
128 * jbd2_journal_begin_ordered_truncate() since there's no
129 * outstanding writes we need to flush.
131 if (!EXT4_I(inode
)->jinode
)
133 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode
),
134 EXT4_I(inode
)->jinode
,
138 static void ext4_invalidatepage(struct page
*page
, unsigned int offset
,
139 unsigned int length
);
140 static int __ext4_journalled_writepage(struct page
*page
, unsigned int len
);
141 static int ext4_bh_delay_or_unwritten(handle_t
*handle
, struct buffer_head
*bh
);
142 static int ext4_meta_trans_blocks(struct inode
*inode
, int lblocks
,
146 * Test whether an inode is a fast symlink.
148 int ext4_inode_is_fast_symlink(struct inode
*inode
)
150 int ea_blocks
= EXT4_I(inode
)->i_file_acl
?
151 EXT4_CLUSTER_SIZE(inode
->i_sb
) >> 9 : 0;
153 if (ext4_has_inline_data(inode
))
156 return (S_ISLNK(inode
->i_mode
) && inode
->i_blocks
- ea_blocks
== 0);
160 * Restart the transaction associated with *handle. This does a commit,
161 * so before we call here everything must be consistently dirtied against
164 int ext4_truncate_restart_trans(handle_t
*handle
, struct inode
*inode
,
170 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
171 * moment, get_block can be called only for blocks inside i_size since
172 * page cache has been already dropped and writes are blocked by
173 * i_mutex. So we can safely drop the i_data_sem here.
175 BUG_ON(EXT4_JOURNAL(inode
) == NULL
);
176 jbd_debug(2, "restarting handle %p\n", handle
);
177 up_write(&EXT4_I(inode
)->i_data_sem
);
178 ret
= ext4_journal_restart(handle
, nblocks
);
179 down_write(&EXT4_I(inode
)->i_data_sem
);
180 ext4_discard_preallocations(inode
);
186 * Called at the last iput() if i_nlink is zero.
188 void ext4_evict_inode(struct inode
*inode
)
193 trace_ext4_evict_inode(inode
);
195 if (inode
->i_nlink
) {
197 * When journalling data dirty buffers are tracked only in the
198 * journal. So although mm thinks everything is clean and
199 * ready for reaping the inode might still have some pages to
200 * write in the running transaction or waiting to be
201 * checkpointed. Thus calling jbd2_journal_invalidatepage()
202 * (via truncate_inode_pages()) to discard these buffers can
203 * cause data loss. Also even if we did not discard these
204 * buffers, we would have no way to find them after the inode
205 * is reaped and thus user could see stale data if he tries to
206 * read them before the transaction is checkpointed. So be
207 * careful and force everything to disk here... We use
208 * ei->i_datasync_tid to store the newest transaction
209 * containing inode's data.
211 * Note that directories do not have this problem because they
212 * don't use page cache.
214 if (inode
->i_ino
!= EXT4_JOURNAL_INO
&&
215 ext4_should_journal_data(inode
) &&
216 (S_ISLNK(inode
->i_mode
) || S_ISREG(inode
->i_mode
))) {
217 journal_t
*journal
= EXT4_SB(inode
->i_sb
)->s_journal
;
218 tid_t commit_tid
= EXT4_I(inode
)->i_datasync_tid
;
220 jbd2_complete_transaction(journal
, commit_tid
);
221 filemap_write_and_wait(&inode
->i_data
);
223 truncate_inode_pages_final(&inode
->i_data
);
228 if (is_bad_inode(inode
))
230 dquot_initialize(inode
);
232 if (ext4_should_order_data(inode
))
233 ext4_begin_ordered_truncate(inode
, 0);
234 truncate_inode_pages_final(&inode
->i_data
);
237 * Protect us against freezing - iput() caller didn't have to have any
238 * protection against it
240 sb_start_intwrite(inode
->i_sb
);
241 handle
= ext4_journal_start(inode
, EXT4_HT_TRUNCATE
,
242 ext4_blocks_for_truncate(inode
)+3);
243 if (IS_ERR(handle
)) {
244 ext4_std_error(inode
->i_sb
, PTR_ERR(handle
));
246 * If we're going to skip the normal cleanup, we still need to
247 * make sure that the in-core orphan linked list is properly
250 ext4_orphan_del(NULL
, inode
);
251 sb_end_intwrite(inode
->i_sb
);
256 ext4_handle_sync(handle
);
258 err
= ext4_mark_inode_dirty(handle
, inode
);
260 ext4_warning(inode
->i_sb
,
261 "couldn't mark inode dirty (err %d)", err
);
264 if (inode
->i_blocks
) {
265 err
= ext4_truncate(inode
);
267 ext4_error(inode
->i_sb
,
268 "couldn't truncate inode %lu (err %d)",
275 * ext4_ext_truncate() doesn't reserve any slop when it
276 * restarts journal transactions; therefore there may not be
277 * enough credits left in the handle to remove the inode from
278 * the orphan list and set the dtime field.
280 if (!ext4_handle_has_enough_credits(handle
, 3)) {
281 err
= ext4_journal_extend(handle
, 3);
283 err
= ext4_journal_restart(handle
, 3);
285 ext4_warning(inode
->i_sb
,
286 "couldn't extend journal (err %d)", err
);
288 ext4_journal_stop(handle
);
289 ext4_orphan_del(NULL
, inode
);
290 sb_end_intwrite(inode
->i_sb
);
296 * Kill off the orphan record which ext4_truncate created.
297 * AKPM: I think this can be inside the above `if'.
298 * Note that ext4_orphan_del() has to be able to cope with the
299 * deletion of a non-existent orphan - this is because we don't
300 * know if ext4_truncate() actually created an orphan record.
301 * (Well, we could do this if we need to, but heck - it works)
303 ext4_orphan_del(handle
, inode
);
304 EXT4_I(inode
)->i_dtime
= get_seconds();
307 * One subtle ordering requirement: if anything has gone wrong
308 * (transaction abort, IO errors, whatever), then we can still
309 * do these next steps (the fs will already have been marked as
310 * having errors), but we can't free the inode if the mark_dirty
313 if (ext4_mark_inode_dirty(handle
, inode
))
314 /* If that failed, just do the required in-core inode clear. */
315 ext4_clear_inode(inode
);
317 ext4_free_inode(handle
, inode
);
318 ext4_journal_stop(handle
);
319 sb_end_intwrite(inode
->i_sb
);
322 ext4_clear_inode(inode
); /* We must guarantee clearing of inode... */
326 qsize_t
*ext4_get_reserved_space(struct inode
*inode
)
328 return &EXT4_I(inode
)->i_reserved_quota
;
333 * Called with i_data_sem down, which is important since we can call
334 * ext4_discard_preallocations() from here.
336 void ext4_da_update_reserve_space(struct inode
*inode
,
337 int used
, int quota_claim
)
339 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
340 struct ext4_inode_info
*ei
= EXT4_I(inode
);
342 spin_lock(&ei
->i_block_reservation_lock
);
343 trace_ext4_da_update_reserve_space(inode
, used
, quota_claim
);
344 if (unlikely(used
> ei
->i_reserved_data_blocks
)) {
345 ext4_warning(inode
->i_sb
, "%s: ino %lu, used %d "
346 "with only %d reserved data blocks",
347 __func__
, inode
->i_ino
, used
,
348 ei
->i_reserved_data_blocks
);
350 used
= ei
->i_reserved_data_blocks
;
353 /* Update per-inode reservations */
354 ei
->i_reserved_data_blocks
-= used
;
355 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
, used
);
357 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
359 /* Update quota subsystem for data blocks */
361 dquot_claim_block(inode
, EXT4_C2B(sbi
, used
));
364 * We did fallocate with an offset that is already delayed
365 * allocated. So on delayed allocated writeback we should
366 * not re-claim the quota for fallocated blocks.
368 dquot_release_reservation_block(inode
, EXT4_C2B(sbi
, used
));
372 * If we have done all the pending block allocations and if
373 * there aren't any writers on the inode, we can discard the
374 * inode's preallocations.
376 if ((ei
->i_reserved_data_blocks
== 0) &&
377 (atomic_read(&inode
->i_writecount
) == 0))
378 ext4_discard_preallocations(inode
);
381 static int __check_block_validity(struct inode
*inode
, const char *func
,
383 struct ext4_map_blocks
*map
)
385 if (!ext4_data_block_valid(EXT4_SB(inode
->i_sb
), map
->m_pblk
,
387 ext4_error_inode(inode
, func
, line
, map
->m_pblk
,
388 "lblock %lu mapped to illegal pblock "
389 "(length %d)", (unsigned long) map
->m_lblk
,
391 return -EFSCORRUPTED
;
396 int ext4_issue_zeroout(struct inode
*inode
, ext4_lblk_t lblk
, ext4_fsblk_t pblk
,
401 if (ext4_encrypted_inode(inode
))
402 return fscrypt_zeroout_range(inode
, lblk
, pblk
, len
);
404 ret
= sb_issue_zeroout(inode
->i_sb
, pblk
, len
, GFP_NOFS
);
411 #define check_block_validity(inode, map) \
412 __check_block_validity((inode), __func__, __LINE__, (map))
414 #ifdef ES_AGGRESSIVE_TEST
415 static void ext4_map_blocks_es_recheck(handle_t
*handle
,
417 struct ext4_map_blocks
*es_map
,
418 struct ext4_map_blocks
*map
,
425 * There is a race window that the result is not the same.
426 * e.g. xfstests #223 when dioread_nolock enables. The reason
427 * is that we lookup a block mapping in extent status tree with
428 * out taking i_data_sem. So at the time the unwritten extent
429 * could be converted.
431 down_read(&EXT4_I(inode
)->i_data_sem
);
432 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
433 retval
= ext4_ext_map_blocks(handle
, inode
, map
, flags
&
434 EXT4_GET_BLOCKS_KEEP_SIZE
);
436 retval
= ext4_ind_map_blocks(handle
, inode
, map
, flags
&
437 EXT4_GET_BLOCKS_KEEP_SIZE
);
439 up_read((&EXT4_I(inode
)->i_data_sem
));
442 * We don't check m_len because extent will be collpased in status
443 * tree. So the m_len might not equal.
445 if (es_map
->m_lblk
!= map
->m_lblk
||
446 es_map
->m_flags
!= map
->m_flags
||
447 es_map
->m_pblk
!= map
->m_pblk
) {
448 printk("ES cache assertion failed for inode: %lu "
449 "es_cached ex [%d/%d/%llu/%x] != "
450 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
451 inode
->i_ino
, es_map
->m_lblk
, es_map
->m_len
,
452 es_map
->m_pblk
, es_map
->m_flags
, map
->m_lblk
,
453 map
->m_len
, map
->m_pblk
, map
->m_flags
,
457 #endif /* ES_AGGRESSIVE_TEST */
460 * The ext4_map_blocks() function tries to look up the requested blocks,
461 * and returns if the blocks are already mapped.
463 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
464 * and store the allocated blocks in the result buffer head and mark it
467 * If file type is extents based, it will call ext4_ext_map_blocks(),
468 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
471 * On success, it returns the number of blocks being mapped or allocated. if
472 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
473 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
475 * It returns 0 if plain look up failed (blocks have not been allocated), in
476 * that case, @map is returned as unmapped but we still do fill map->m_len to
477 * indicate the length of a hole starting at map->m_lblk.
479 * It returns the error in case of allocation failure.
481 int ext4_map_blocks(handle_t
*handle
, struct inode
*inode
,
482 struct ext4_map_blocks
*map
, int flags
)
484 struct extent_status es
;
487 #ifdef ES_AGGRESSIVE_TEST
488 struct ext4_map_blocks orig_map
;
490 memcpy(&orig_map
, map
, sizeof(*map
));
494 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
495 "logical block %lu\n", inode
->i_ino
, flags
, map
->m_len
,
496 (unsigned long) map
->m_lblk
);
499 * ext4_map_blocks returns an int, and m_len is an unsigned int
501 if (unlikely(map
->m_len
> INT_MAX
))
502 map
->m_len
= INT_MAX
;
504 /* We can handle the block number less than EXT_MAX_BLOCKS */
505 if (unlikely(map
->m_lblk
>= EXT_MAX_BLOCKS
))
506 return -EFSCORRUPTED
;
508 /* Lookup extent status tree firstly */
509 if (ext4_es_lookup_extent(inode
, map
->m_lblk
, &es
)) {
510 if (ext4_es_is_written(&es
) || ext4_es_is_unwritten(&es
)) {
511 map
->m_pblk
= ext4_es_pblock(&es
) +
512 map
->m_lblk
- es
.es_lblk
;
513 map
->m_flags
|= ext4_es_is_written(&es
) ?
514 EXT4_MAP_MAPPED
: EXT4_MAP_UNWRITTEN
;
515 retval
= es
.es_len
- (map
->m_lblk
- es
.es_lblk
);
516 if (retval
> map
->m_len
)
519 } else if (ext4_es_is_delayed(&es
) || ext4_es_is_hole(&es
)) {
521 retval
= es
.es_len
- (map
->m_lblk
- es
.es_lblk
);
522 if (retval
> map
->m_len
)
529 #ifdef ES_AGGRESSIVE_TEST
530 ext4_map_blocks_es_recheck(handle
, inode
, map
,
537 * Try to see if we can get the block without requesting a new
540 down_read(&EXT4_I(inode
)->i_data_sem
);
541 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
542 retval
= ext4_ext_map_blocks(handle
, inode
, map
, flags
&
543 EXT4_GET_BLOCKS_KEEP_SIZE
);
545 retval
= ext4_ind_map_blocks(handle
, inode
, map
, flags
&
546 EXT4_GET_BLOCKS_KEEP_SIZE
);
551 if (unlikely(retval
!= map
->m_len
)) {
552 ext4_warning(inode
->i_sb
,
553 "ES len assertion failed for inode "
554 "%lu: retval %d != map->m_len %d",
555 inode
->i_ino
, retval
, map
->m_len
);
559 status
= map
->m_flags
& EXT4_MAP_UNWRITTEN
?
560 EXTENT_STATUS_UNWRITTEN
: EXTENT_STATUS_WRITTEN
;
561 if (!(flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
) &&
562 !(status
& EXTENT_STATUS_WRITTEN
) &&
563 ext4_find_delalloc_range(inode
, map
->m_lblk
,
564 map
->m_lblk
+ map
->m_len
- 1))
565 status
|= EXTENT_STATUS_DELAYED
;
566 ret
= ext4_es_insert_extent(inode
, map
->m_lblk
,
567 map
->m_len
, map
->m_pblk
, status
);
571 up_read((&EXT4_I(inode
)->i_data_sem
));
574 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
) {
575 ret
= check_block_validity(inode
, map
);
580 /* If it is only a block(s) look up */
581 if ((flags
& EXT4_GET_BLOCKS_CREATE
) == 0)
585 * Returns if the blocks have already allocated
587 * Note that if blocks have been preallocated
588 * ext4_ext_get_block() returns the create = 0
589 * with buffer head unmapped.
591 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
)
593 * If we need to convert extent to unwritten
594 * we continue and do the actual work in
595 * ext4_ext_map_blocks()
597 if (!(flags
& EXT4_GET_BLOCKS_CONVERT_UNWRITTEN
))
601 * Here we clear m_flags because after allocating an new extent,
602 * it will be set again.
604 map
->m_flags
&= ~EXT4_MAP_FLAGS
;
607 * New blocks allocate and/or writing to unwritten extent
608 * will possibly result in updating i_data, so we take
609 * the write lock of i_data_sem, and call get_block()
610 * with create == 1 flag.
612 down_write(&EXT4_I(inode
)->i_data_sem
);
615 * We need to check for EXT4 here because migrate
616 * could have changed the inode type in between
618 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
619 retval
= ext4_ext_map_blocks(handle
, inode
, map
, flags
);
621 retval
= ext4_ind_map_blocks(handle
, inode
, map
, flags
);
623 if (retval
> 0 && map
->m_flags
& EXT4_MAP_NEW
) {
625 * We allocated new blocks which will result in
626 * i_data's format changing. Force the migrate
627 * to fail by clearing migrate flags
629 ext4_clear_inode_state(inode
, EXT4_STATE_EXT_MIGRATE
);
633 * Update reserved blocks/metadata blocks after successful
634 * block allocation which had been deferred till now. We don't
635 * support fallocate for non extent files. So we can update
636 * reserve space here.
639 (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
))
640 ext4_da_update_reserve_space(inode
, retval
, 1);
646 if (unlikely(retval
!= map
->m_len
)) {
647 ext4_warning(inode
->i_sb
,
648 "ES len assertion failed for inode "
649 "%lu: retval %d != map->m_len %d",
650 inode
->i_ino
, retval
, map
->m_len
);
655 * We have to zeroout blocks before inserting them into extent
656 * status tree. Otherwise someone could look them up there and
657 * use them before they are really zeroed. We also have to
658 * unmap metadata before zeroing as otherwise writeback can
659 * overwrite zeros with stale data from block device.
661 if (flags
& EXT4_GET_BLOCKS_ZERO
&&
662 map
->m_flags
& EXT4_MAP_MAPPED
&&
663 map
->m_flags
& EXT4_MAP_NEW
) {
664 clean_bdev_aliases(inode
->i_sb
->s_bdev
, map
->m_pblk
,
666 ret
= ext4_issue_zeroout(inode
, map
->m_lblk
,
667 map
->m_pblk
, map
->m_len
);
675 * If the extent has been zeroed out, we don't need to update
676 * extent status tree.
678 if ((flags
& EXT4_GET_BLOCKS_PRE_IO
) &&
679 ext4_es_lookup_extent(inode
, map
->m_lblk
, &es
)) {
680 if (ext4_es_is_written(&es
))
683 status
= map
->m_flags
& EXT4_MAP_UNWRITTEN
?
684 EXTENT_STATUS_UNWRITTEN
: EXTENT_STATUS_WRITTEN
;
685 if (!(flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
) &&
686 !(status
& EXTENT_STATUS_WRITTEN
) &&
687 ext4_find_delalloc_range(inode
, map
->m_lblk
,
688 map
->m_lblk
+ map
->m_len
- 1))
689 status
|= EXTENT_STATUS_DELAYED
;
690 ret
= ext4_es_insert_extent(inode
, map
->m_lblk
, map
->m_len
,
691 map
->m_pblk
, status
);
699 up_write((&EXT4_I(inode
)->i_data_sem
));
700 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
) {
701 ret
= check_block_validity(inode
, map
);
706 * Inodes with freshly allocated blocks where contents will be
707 * visible after transaction commit must be on transaction's
710 if (map
->m_flags
& EXT4_MAP_NEW
&&
711 !(map
->m_flags
& EXT4_MAP_UNWRITTEN
) &&
712 !(flags
& EXT4_GET_BLOCKS_ZERO
) &&
713 !IS_NOQUOTA(inode
) &&
714 ext4_should_order_data(inode
)) {
715 if (flags
& EXT4_GET_BLOCKS_IO_SUBMIT
)
716 ret
= ext4_jbd2_inode_add_wait(handle
, inode
);
718 ret
= ext4_jbd2_inode_add_write(handle
, inode
);
727 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
728 * we have to be careful as someone else may be manipulating b_state as well.
730 static void ext4_update_bh_state(struct buffer_head
*bh
, unsigned long flags
)
732 unsigned long old_state
;
733 unsigned long new_state
;
735 flags
&= EXT4_MAP_FLAGS
;
737 /* Dummy buffer_head? Set non-atomically. */
739 bh
->b_state
= (bh
->b_state
& ~EXT4_MAP_FLAGS
) | flags
;
743 * Someone else may be modifying b_state. Be careful! This is ugly but
744 * once we get rid of using bh as a container for mapping information
745 * to pass to / from get_block functions, this can go away.
748 old_state
= READ_ONCE(bh
->b_state
);
749 new_state
= (old_state
& ~EXT4_MAP_FLAGS
) | flags
;
751 cmpxchg(&bh
->b_state
, old_state
, new_state
) != old_state
));
754 static int _ext4_get_block(struct inode
*inode
, sector_t iblock
,
755 struct buffer_head
*bh
, int flags
)
757 struct ext4_map_blocks map
;
760 if (ext4_has_inline_data(inode
))
764 map
.m_len
= bh
->b_size
>> inode
->i_blkbits
;
766 ret
= ext4_map_blocks(ext4_journal_current_handle(), inode
, &map
,
769 map_bh(bh
, inode
->i_sb
, map
.m_pblk
);
770 ext4_update_bh_state(bh
, map
.m_flags
);
771 bh
->b_size
= inode
->i_sb
->s_blocksize
* map
.m_len
;
773 } else if (ret
== 0) {
774 /* hole case, need to fill in bh->b_size */
775 bh
->b_size
= inode
->i_sb
->s_blocksize
* map
.m_len
;
780 int ext4_get_block(struct inode
*inode
, sector_t iblock
,
781 struct buffer_head
*bh
, int create
)
783 return _ext4_get_block(inode
, iblock
, bh
,
784 create
? EXT4_GET_BLOCKS_CREATE
: 0);
788 * Get block function used when preparing for buffered write if we require
789 * creating an unwritten extent if blocks haven't been allocated. The extent
790 * will be converted to written after the IO is complete.
792 int ext4_get_block_unwritten(struct inode
*inode
, sector_t iblock
,
793 struct buffer_head
*bh_result
, int create
)
795 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
796 inode
->i_ino
, create
);
797 return _ext4_get_block(inode
, iblock
, bh_result
,
798 EXT4_GET_BLOCKS_IO_CREATE_EXT
);
801 /* Maximum number of blocks we map for direct IO at once. */
802 #define DIO_MAX_BLOCKS 4096
805 * Get blocks function for the cases that need to start a transaction -
806 * generally difference cases of direct IO and DAX IO. It also handles retries
809 static int ext4_get_block_trans(struct inode
*inode
, sector_t iblock
,
810 struct buffer_head
*bh_result
, int flags
)
817 /* Trim mapping request to maximum we can map at once for DIO */
818 if (bh_result
->b_size
>> inode
->i_blkbits
> DIO_MAX_BLOCKS
)
819 bh_result
->b_size
= DIO_MAX_BLOCKS
<< inode
->i_blkbits
;
820 dio_credits
= ext4_chunk_trans_blocks(inode
,
821 bh_result
->b_size
>> inode
->i_blkbits
);
823 handle
= ext4_journal_start(inode
, EXT4_HT_MAP_BLOCKS
, dio_credits
);
825 return PTR_ERR(handle
);
827 ret
= _ext4_get_block(inode
, iblock
, bh_result
, flags
);
828 ext4_journal_stop(handle
);
830 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
835 /* Get block function for DIO reads and writes to inodes without extents */
836 int ext4_dio_get_block(struct inode
*inode
, sector_t iblock
,
837 struct buffer_head
*bh
, int create
)
839 /* We don't expect handle for direct IO */
840 WARN_ON_ONCE(ext4_journal_current_handle());
843 return _ext4_get_block(inode
, iblock
, bh
, 0);
844 return ext4_get_block_trans(inode
, iblock
, bh
, EXT4_GET_BLOCKS_CREATE
);
848 * Get block function for AIO DIO writes when we create unwritten extent if
849 * blocks are not allocated yet. The extent will be converted to written
850 * after IO is complete.
852 static int ext4_dio_get_block_unwritten_async(struct inode
*inode
,
853 sector_t iblock
, struct buffer_head
*bh_result
, int create
)
857 /* We don't expect handle for direct IO */
858 WARN_ON_ONCE(ext4_journal_current_handle());
860 ret
= ext4_get_block_trans(inode
, iblock
, bh_result
,
861 EXT4_GET_BLOCKS_IO_CREATE_EXT
);
864 * When doing DIO using unwritten extents, we need io_end to convert
865 * unwritten extents to written on IO completion. We allocate io_end
866 * once we spot unwritten extent and store it in b_private. Generic
867 * DIO code keeps b_private set and furthermore passes the value to
868 * our completion callback in 'private' argument.
870 if (!ret
&& buffer_unwritten(bh_result
)) {
871 if (!bh_result
->b_private
) {
872 ext4_io_end_t
*io_end
;
874 io_end
= ext4_init_io_end(inode
, GFP_KERNEL
);
877 bh_result
->b_private
= io_end
;
878 ext4_set_io_unwritten_flag(inode
, io_end
);
880 set_buffer_defer_completion(bh_result
);
887 * Get block function for non-AIO DIO writes when we create unwritten extent if
888 * blocks are not allocated yet. The extent will be converted to written
889 * after IO is complete from ext4_ext_direct_IO() function.
891 static int ext4_dio_get_block_unwritten_sync(struct inode
*inode
,
892 sector_t iblock
, struct buffer_head
*bh_result
, int create
)
896 /* We don't expect handle for direct IO */
897 WARN_ON_ONCE(ext4_journal_current_handle());
899 ret
= ext4_get_block_trans(inode
, iblock
, bh_result
,
900 EXT4_GET_BLOCKS_IO_CREATE_EXT
);
903 * Mark inode as having pending DIO writes to unwritten extents.
904 * ext4_ext_direct_IO() checks this flag and converts extents to
907 if (!ret
&& buffer_unwritten(bh_result
))
908 ext4_set_inode_state(inode
, EXT4_STATE_DIO_UNWRITTEN
);
913 static int ext4_dio_get_block_overwrite(struct inode
*inode
, sector_t iblock
,
914 struct buffer_head
*bh_result
, int create
)
918 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
919 inode
->i_ino
, create
);
920 /* We don't expect handle for direct IO */
921 WARN_ON_ONCE(ext4_journal_current_handle());
923 ret
= _ext4_get_block(inode
, iblock
, bh_result
, 0);
925 * Blocks should have been preallocated! ext4_file_write_iter() checks
928 WARN_ON_ONCE(!buffer_mapped(bh_result
) || buffer_unwritten(bh_result
));
935 * `handle' can be NULL if create is zero
937 struct buffer_head
*ext4_getblk(handle_t
*handle
, struct inode
*inode
,
938 ext4_lblk_t block
, int map_flags
)
940 struct ext4_map_blocks map
;
941 struct buffer_head
*bh
;
942 int create
= map_flags
& EXT4_GET_BLOCKS_CREATE
;
945 J_ASSERT(handle
!= NULL
|| create
== 0);
949 err
= ext4_map_blocks(handle
, inode
, &map
, map_flags
);
952 return create
? ERR_PTR(-ENOSPC
) : NULL
;
956 bh
= sb_getblk(inode
->i_sb
, map
.m_pblk
);
958 return ERR_PTR(-ENOMEM
);
959 if (map
.m_flags
& EXT4_MAP_NEW
) {
960 J_ASSERT(create
!= 0);
961 J_ASSERT(handle
!= NULL
);
964 * Now that we do not always journal data, we should
965 * keep in mind whether this should always journal the
966 * new buffer as metadata. For now, regular file
967 * writes use ext4_get_block instead, so it's not a
971 BUFFER_TRACE(bh
, "call get_create_access");
972 err
= ext4_journal_get_create_access(handle
, bh
);
977 if (!buffer_uptodate(bh
)) {
978 memset(bh
->b_data
, 0, inode
->i_sb
->s_blocksize
);
979 set_buffer_uptodate(bh
);
982 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
983 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
987 BUFFER_TRACE(bh
, "not a new buffer");
994 struct buffer_head
*ext4_bread(handle_t
*handle
, struct inode
*inode
,
995 ext4_lblk_t block
, int map_flags
)
997 struct buffer_head
*bh
;
999 bh
= ext4_getblk(handle
, inode
, block
, map_flags
);
1002 if (!bh
|| buffer_uptodate(bh
))
1004 ll_rw_block(REQ_OP_READ
, REQ_META
| REQ_PRIO
, 1, &bh
);
1006 if (buffer_uptodate(bh
))
1009 return ERR_PTR(-EIO
);
1012 int ext4_walk_page_buffers(handle_t
*handle
,
1013 struct buffer_head
*head
,
1017 int (*fn
)(handle_t
*handle
,
1018 struct buffer_head
*bh
))
1020 struct buffer_head
*bh
;
1021 unsigned block_start
, block_end
;
1022 unsigned blocksize
= head
->b_size
;
1024 struct buffer_head
*next
;
1026 for (bh
= head
, block_start
= 0;
1027 ret
== 0 && (bh
!= head
|| !block_start
);
1028 block_start
= block_end
, bh
= next
) {
1029 next
= bh
->b_this_page
;
1030 block_end
= block_start
+ blocksize
;
1031 if (block_end
<= from
|| block_start
>= to
) {
1032 if (partial
&& !buffer_uptodate(bh
))
1036 err
= (*fn
)(handle
, bh
);
1044 * To preserve ordering, it is essential that the hole instantiation and
1045 * the data write be encapsulated in a single transaction. We cannot
1046 * close off a transaction and start a new one between the ext4_get_block()
1047 * and the commit_write(). So doing the jbd2_journal_start at the start of
1048 * prepare_write() is the right place.
1050 * Also, this function can nest inside ext4_writepage(). In that case, we
1051 * *know* that ext4_writepage() has generated enough buffer credits to do the
1052 * whole page. So we won't block on the journal in that case, which is good,
1053 * because the caller may be PF_MEMALLOC.
1055 * By accident, ext4 can be reentered when a transaction is open via
1056 * quota file writes. If we were to commit the transaction while thus
1057 * reentered, there can be a deadlock - we would be holding a quota
1058 * lock, and the commit would never complete if another thread had a
1059 * transaction open and was blocking on the quota lock - a ranking
1062 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1063 * will _not_ run commit under these circumstances because handle->h_ref
1064 * is elevated. We'll still have enough credits for the tiny quotafile
1067 int do_journal_get_write_access(handle_t
*handle
,
1068 struct buffer_head
*bh
)
1070 int dirty
= buffer_dirty(bh
);
1073 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1076 * __block_write_begin() could have dirtied some buffers. Clean
1077 * the dirty bit as jbd2_journal_get_write_access() could complain
1078 * otherwise about fs integrity issues. Setting of the dirty bit
1079 * by __block_write_begin() isn't a real problem here as we clear
1080 * the bit before releasing a page lock and thus writeback cannot
1081 * ever write the buffer.
1084 clear_buffer_dirty(bh
);
1085 BUFFER_TRACE(bh
, "get write access");
1086 ret
= ext4_journal_get_write_access(handle
, bh
);
1088 ret
= ext4_handle_dirty_metadata(handle
, NULL
, bh
);
1092 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1093 static int ext4_block_write_begin(struct page
*page
, loff_t pos
, unsigned len
,
1094 get_block_t
*get_block
)
1096 unsigned from
= pos
& (PAGE_SIZE
- 1);
1097 unsigned to
= from
+ len
;
1098 struct inode
*inode
= page
->mapping
->host
;
1099 unsigned block_start
, block_end
;
1102 unsigned blocksize
= inode
->i_sb
->s_blocksize
;
1104 struct buffer_head
*bh
, *head
, *wait
[2], **wait_bh
= wait
;
1105 bool decrypt
= false;
1107 BUG_ON(!PageLocked(page
));
1108 BUG_ON(from
> PAGE_SIZE
);
1109 BUG_ON(to
> PAGE_SIZE
);
1112 if (!page_has_buffers(page
))
1113 create_empty_buffers(page
, blocksize
, 0);
1114 head
= page_buffers(page
);
1115 bbits
= ilog2(blocksize
);
1116 block
= (sector_t
)page
->index
<< (PAGE_SHIFT
- bbits
);
1118 for (bh
= head
, block_start
= 0; bh
!= head
|| !block_start
;
1119 block
++, block_start
= block_end
, bh
= bh
->b_this_page
) {
1120 block_end
= block_start
+ blocksize
;
1121 if (block_end
<= from
|| block_start
>= to
) {
1122 if (PageUptodate(page
)) {
1123 if (!buffer_uptodate(bh
))
1124 set_buffer_uptodate(bh
);
1129 clear_buffer_new(bh
);
1130 if (!buffer_mapped(bh
)) {
1131 WARN_ON(bh
->b_size
!= blocksize
);
1132 err
= get_block(inode
, block
, bh
, 1);
1135 if (buffer_new(bh
)) {
1136 clean_bdev_bh_alias(bh
);
1137 if (PageUptodate(page
)) {
1138 clear_buffer_new(bh
);
1139 set_buffer_uptodate(bh
);
1140 mark_buffer_dirty(bh
);
1143 if (block_end
> to
|| block_start
< from
)
1144 zero_user_segments(page
, to
, block_end
,
1149 if (PageUptodate(page
)) {
1150 if (!buffer_uptodate(bh
))
1151 set_buffer_uptodate(bh
);
1154 if (!buffer_uptodate(bh
) && !buffer_delay(bh
) &&
1155 !buffer_unwritten(bh
) &&
1156 (block_start
< from
|| block_end
> to
)) {
1157 ll_rw_block(REQ_OP_READ
, 0, 1, &bh
);
1159 decrypt
= ext4_encrypted_inode(inode
) &&
1160 S_ISREG(inode
->i_mode
);
1164 * If we issued read requests, let them complete.
1166 while (wait_bh
> wait
) {
1167 wait_on_buffer(*--wait_bh
);
1168 if (!buffer_uptodate(*wait_bh
))
1172 page_zero_new_buffers(page
, from
, to
);
1174 err
= fscrypt_decrypt_page(page
->mapping
->host
, page
,
1175 PAGE_SIZE
, 0, page
->index
);
1180 static int ext4_write_begin(struct file
*file
, struct address_space
*mapping
,
1181 loff_t pos
, unsigned len
, unsigned flags
,
1182 struct page
**pagep
, void **fsdata
)
1184 struct inode
*inode
= mapping
->host
;
1185 int ret
, needed_blocks
;
1192 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode
->i_sb
))))
1195 trace_ext4_write_begin(inode
, pos
, len
, flags
);
1197 * Reserve one block more for addition to orphan list in case
1198 * we allocate blocks but write fails for some reason
1200 needed_blocks
= ext4_writepage_trans_blocks(inode
) + 1;
1201 index
= pos
>> PAGE_SHIFT
;
1202 from
= pos
& (PAGE_SIZE
- 1);
1205 if (ext4_test_inode_state(inode
, EXT4_STATE_MAY_INLINE_DATA
)) {
1206 ret
= ext4_try_to_write_inline_data(mapping
, inode
, pos
, len
,
1215 * grab_cache_page_write_begin() can take a long time if the
1216 * system is thrashing due to memory pressure, or if the page
1217 * is being written back. So grab it first before we start
1218 * the transaction handle. This also allows us to allocate
1219 * the page (if needed) without using GFP_NOFS.
1222 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
1228 handle
= ext4_journal_start(inode
, EXT4_HT_WRITE_PAGE
, needed_blocks
);
1229 if (IS_ERR(handle
)) {
1231 return PTR_ERR(handle
);
1235 if (page
->mapping
!= mapping
) {
1236 /* The page got truncated from under us */
1239 ext4_journal_stop(handle
);
1242 /* In case writeback began while the page was unlocked */
1243 wait_for_stable_page(page
);
1245 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1246 if (ext4_should_dioread_nolock(inode
))
1247 ret
= ext4_block_write_begin(page
, pos
, len
,
1248 ext4_get_block_unwritten
);
1250 ret
= ext4_block_write_begin(page
, pos
, len
,
1253 if (ext4_should_dioread_nolock(inode
))
1254 ret
= __block_write_begin(page
, pos
, len
,
1255 ext4_get_block_unwritten
);
1257 ret
= __block_write_begin(page
, pos
, len
, ext4_get_block
);
1259 if (!ret
&& ext4_should_journal_data(inode
)) {
1260 ret
= ext4_walk_page_buffers(handle
, page_buffers(page
),
1262 do_journal_get_write_access
);
1268 * __block_write_begin may have instantiated a few blocks
1269 * outside i_size. Trim these off again. Don't need
1270 * i_size_read because we hold i_mutex.
1272 * Add inode to orphan list in case we crash before
1275 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1276 ext4_orphan_add(handle
, inode
);
1278 ext4_journal_stop(handle
);
1279 if (pos
+ len
> inode
->i_size
) {
1280 ext4_truncate_failed_write(inode
);
1282 * If truncate failed early the inode might
1283 * still be on the orphan list; we need to
1284 * make sure the inode is removed from the
1285 * orphan list in that case.
1288 ext4_orphan_del(NULL
, inode
);
1291 if (ret
== -ENOSPC
&&
1292 ext4_should_retry_alloc(inode
->i_sb
, &retries
))
1301 /* For write_end() in data=journal mode */
1302 static int write_end_fn(handle_t
*handle
, struct buffer_head
*bh
)
1305 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1307 set_buffer_uptodate(bh
);
1308 ret
= ext4_handle_dirty_metadata(handle
, NULL
, bh
);
1309 clear_buffer_meta(bh
);
1310 clear_buffer_prio(bh
);
1315 * We need to pick up the new inode size which generic_commit_write gave us
1316 * `file' can be NULL - eg, when called from page_symlink().
1318 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1319 * buffers are managed internally.
1321 static int ext4_write_end(struct file
*file
,
1322 struct address_space
*mapping
,
1323 loff_t pos
, unsigned len
, unsigned copied
,
1324 struct page
*page
, void *fsdata
)
1326 handle_t
*handle
= ext4_journal_current_handle();
1327 struct inode
*inode
= mapping
->host
;
1328 loff_t old_size
= inode
->i_size
;
1330 int i_size_changed
= 0;
1332 trace_ext4_write_end(inode
, pos
, len
, copied
);
1333 if (ext4_has_inline_data(inode
)) {
1334 ret
= ext4_write_inline_data_end(inode
, pos
, len
,
1343 copied
= block_write_end(file
, mapping
, pos
,
1344 len
, copied
, page
, fsdata
);
1346 * it's important to update i_size while still holding page lock:
1347 * page writeout could otherwise come in and zero beyond i_size.
1349 i_size_changed
= ext4_update_inode_size(inode
, pos
+ copied
);
1354 pagecache_isize_extended(inode
, old_size
, pos
);
1356 * Don't mark the inode dirty under page lock. First, it unnecessarily
1357 * makes the holding time of page lock longer. Second, it forces lock
1358 * ordering of page lock and transaction start for journaling
1362 ext4_mark_inode_dirty(handle
, inode
);
1364 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1365 /* if we have allocated more blocks and copied
1366 * less. We will have blocks allocated outside
1367 * inode->i_size. So truncate them
1369 ext4_orphan_add(handle
, inode
);
1371 ret2
= ext4_journal_stop(handle
);
1375 if (pos
+ len
> inode
->i_size
) {
1376 ext4_truncate_failed_write(inode
);
1378 * If truncate failed early the inode might still be
1379 * on the orphan list; we need to make sure the inode
1380 * is removed from the orphan list in that case.
1383 ext4_orphan_del(NULL
, inode
);
1386 return ret
? ret
: copied
;
1390 * This is a private version of page_zero_new_buffers() which doesn't
1391 * set the buffer to be dirty, since in data=journalled mode we need
1392 * to call ext4_handle_dirty_metadata() instead.
1394 static void ext4_journalled_zero_new_buffers(handle_t
*handle
,
1396 unsigned from
, unsigned to
)
1398 unsigned int block_start
= 0, block_end
;
1399 struct buffer_head
*head
, *bh
;
1401 bh
= head
= page_buffers(page
);
1403 block_end
= block_start
+ bh
->b_size
;
1404 if (buffer_new(bh
)) {
1405 if (block_end
> from
&& block_start
< to
) {
1406 if (!PageUptodate(page
)) {
1407 unsigned start
, size
;
1409 start
= max(from
, block_start
);
1410 size
= min(to
, block_end
) - start
;
1412 zero_user(page
, start
, size
);
1413 write_end_fn(handle
, bh
);
1415 clear_buffer_new(bh
);
1418 block_start
= block_end
;
1419 bh
= bh
->b_this_page
;
1420 } while (bh
!= head
);
1423 static int ext4_journalled_write_end(struct file
*file
,
1424 struct address_space
*mapping
,
1425 loff_t pos
, unsigned len
, unsigned copied
,
1426 struct page
*page
, void *fsdata
)
1428 handle_t
*handle
= ext4_journal_current_handle();
1429 struct inode
*inode
= mapping
->host
;
1430 loff_t old_size
= inode
->i_size
;
1434 int size_changed
= 0;
1436 trace_ext4_journalled_write_end(inode
, pos
, len
, copied
);
1437 from
= pos
& (PAGE_SIZE
- 1);
1440 BUG_ON(!ext4_handle_valid(handle
));
1442 if (ext4_has_inline_data(inode
)) {
1443 ret
= ext4_write_inline_data_end(inode
, pos
, len
,
1451 } else if (unlikely(copied
< len
) && !PageUptodate(page
)) {
1453 ext4_journalled_zero_new_buffers(handle
, page
, from
, to
);
1455 if (unlikely(copied
< len
))
1456 ext4_journalled_zero_new_buffers(handle
, page
,
1458 ret
= ext4_walk_page_buffers(handle
, page_buffers(page
), from
,
1459 from
+ copied
, &partial
,
1462 SetPageUptodate(page
);
1464 size_changed
= ext4_update_inode_size(inode
, pos
+ copied
);
1465 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
1466 EXT4_I(inode
)->i_datasync_tid
= handle
->h_transaction
->t_tid
;
1471 pagecache_isize_extended(inode
, old_size
, pos
);
1474 ret2
= ext4_mark_inode_dirty(handle
, inode
);
1479 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1480 /* if we have allocated more blocks and copied
1481 * less. We will have blocks allocated outside
1482 * inode->i_size. So truncate them
1484 ext4_orphan_add(handle
, inode
);
1487 ret2
= ext4_journal_stop(handle
);
1490 if (pos
+ len
> inode
->i_size
) {
1491 ext4_truncate_failed_write(inode
);
1493 * If truncate failed early the inode might still be
1494 * on the orphan list; we need to make sure the inode
1495 * is removed from the orphan list in that case.
1498 ext4_orphan_del(NULL
, inode
);
1501 return ret
? ret
: copied
;
1505 * Reserve space for a single cluster
1507 static int ext4_da_reserve_space(struct inode
*inode
)
1509 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1510 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1514 * We will charge metadata quota at writeout time; this saves
1515 * us from metadata over-estimation, though we may go over by
1516 * a small amount in the end. Here we just reserve for data.
1518 ret
= dquot_reserve_block(inode
, EXT4_C2B(sbi
, 1));
1522 spin_lock(&ei
->i_block_reservation_lock
);
1523 if (ext4_claim_free_clusters(sbi
, 1, 0)) {
1524 spin_unlock(&ei
->i_block_reservation_lock
);
1525 dquot_release_reservation_block(inode
, EXT4_C2B(sbi
, 1));
1528 ei
->i_reserved_data_blocks
++;
1529 trace_ext4_da_reserve_space(inode
);
1530 spin_unlock(&ei
->i_block_reservation_lock
);
1532 return 0; /* success */
1535 static void ext4_da_release_space(struct inode
*inode
, int to_free
)
1537 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1538 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1541 return; /* Nothing to release, exit */
1543 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
1545 trace_ext4_da_release_space(inode
, to_free
);
1546 if (unlikely(to_free
> ei
->i_reserved_data_blocks
)) {
1548 * if there aren't enough reserved blocks, then the
1549 * counter is messed up somewhere. Since this
1550 * function is called from invalidate page, it's
1551 * harmless to return without any action.
1553 ext4_warning(inode
->i_sb
, "ext4_da_release_space: "
1554 "ino %lu, to_free %d with only %d reserved "
1555 "data blocks", inode
->i_ino
, to_free
,
1556 ei
->i_reserved_data_blocks
);
1558 to_free
= ei
->i_reserved_data_blocks
;
1560 ei
->i_reserved_data_blocks
-= to_free
;
1562 /* update fs dirty data blocks counter */
1563 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
, to_free
);
1565 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1567 dquot_release_reservation_block(inode
, EXT4_C2B(sbi
, to_free
));
1570 static void ext4_da_page_release_reservation(struct page
*page
,
1571 unsigned int offset
,
1572 unsigned int length
)
1574 int to_release
= 0, contiguous_blks
= 0;
1575 struct buffer_head
*head
, *bh
;
1576 unsigned int curr_off
= 0;
1577 struct inode
*inode
= page
->mapping
->host
;
1578 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1579 unsigned int stop
= offset
+ length
;
1583 BUG_ON(stop
> PAGE_SIZE
|| stop
< length
);
1585 head
= page_buffers(page
);
1588 unsigned int next_off
= curr_off
+ bh
->b_size
;
1590 if (next_off
> stop
)
1593 if ((offset
<= curr_off
) && (buffer_delay(bh
))) {
1596 clear_buffer_delay(bh
);
1597 } else if (contiguous_blks
) {
1598 lblk
= page
->index
<<
1599 (PAGE_SHIFT
- inode
->i_blkbits
);
1600 lblk
+= (curr_off
>> inode
->i_blkbits
) -
1602 ext4_es_remove_extent(inode
, lblk
, contiguous_blks
);
1603 contiguous_blks
= 0;
1605 curr_off
= next_off
;
1606 } while ((bh
= bh
->b_this_page
) != head
);
1608 if (contiguous_blks
) {
1609 lblk
= page
->index
<< (PAGE_SHIFT
- inode
->i_blkbits
);
1610 lblk
+= (curr_off
>> inode
->i_blkbits
) - contiguous_blks
;
1611 ext4_es_remove_extent(inode
, lblk
, contiguous_blks
);
1614 /* If we have released all the blocks belonging to a cluster, then we
1615 * need to release the reserved space for that cluster. */
1616 num_clusters
= EXT4_NUM_B2C(sbi
, to_release
);
1617 while (num_clusters
> 0) {
1618 lblk
= (page
->index
<< (PAGE_SHIFT
- inode
->i_blkbits
)) +
1619 ((num_clusters
- 1) << sbi
->s_cluster_bits
);
1620 if (sbi
->s_cluster_ratio
== 1 ||
1621 !ext4_find_delalloc_cluster(inode
, lblk
))
1622 ext4_da_release_space(inode
, 1);
1629 * Delayed allocation stuff
1632 struct mpage_da_data
{
1633 struct inode
*inode
;
1634 struct writeback_control
*wbc
;
1636 pgoff_t first_page
; /* The first page to write */
1637 pgoff_t next_page
; /* Current page to examine */
1638 pgoff_t last_page
; /* Last page to examine */
1640 * Extent to map - this can be after first_page because that can be
1641 * fully mapped. We somewhat abuse m_flags to store whether the extent
1642 * is delalloc or unwritten.
1644 struct ext4_map_blocks map
;
1645 struct ext4_io_submit io_submit
; /* IO submission data */
1648 static void mpage_release_unused_pages(struct mpage_da_data
*mpd
,
1653 struct pagevec pvec
;
1654 struct inode
*inode
= mpd
->inode
;
1655 struct address_space
*mapping
= inode
->i_mapping
;
1657 /* This is necessary when next_page == 0. */
1658 if (mpd
->first_page
>= mpd
->next_page
)
1661 index
= mpd
->first_page
;
1662 end
= mpd
->next_page
- 1;
1664 ext4_lblk_t start
, last
;
1665 start
= index
<< (PAGE_SHIFT
- inode
->i_blkbits
);
1666 last
= end
<< (PAGE_SHIFT
- inode
->i_blkbits
);
1667 ext4_es_remove_extent(inode
, start
, last
- start
+ 1);
1670 pagevec_init(&pvec
, 0);
1671 while (index
<= end
) {
1672 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
1675 for (i
= 0; i
< nr_pages
; i
++) {
1676 struct page
*page
= pvec
.pages
[i
];
1677 if (page
->index
> end
)
1679 BUG_ON(!PageLocked(page
));
1680 BUG_ON(PageWriteback(page
));
1682 if (page_mapped(page
))
1683 clear_page_dirty_for_io(page
);
1684 block_invalidatepage(page
, 0, PAGE_SIZE
);
1685 ClearPageUptodate(page
);
1689 index
= pvec
.pages
[nr_pages
- 1]->index
+ 1;
1690 pagevec_release(&pvec
);
1694 static void ext4_print_free_blocks(struct inode
*inode
)
1696 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1697 struct super_block
*sb
= inode
->i_sb
;
1698 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1700 ext4_msg(sb
, KERN_CRIT
, "Total free blocks count %lld",
1701 EXT4_C2B(EXT4_SB(inode
->i_sb
),
1702 ext4_count_free_clusters(sb
)));
1703 ext4_msg(sb
, KERN_CRIT
, "Free/Dirty block details");
1704 ext4_msg(sb
, KERN_CRIT
, "free_blocks=%lld",
1705 (long long) EXT4_C2B(EXT4_SB(sb
),
1706 percpu_counter_sum(&sbi
->s_freeclusters_counter
)));
1707 ext4_msg(sb
, KERN_CRIT
, "dirty_blocks=%lld",
1708 (long long) EXT4_C2B(EXT4_SB(sb
),
1709 percpu_counter_sum(&sbi
->s_dirtyclusters_counter
)));
1710 ext4_msg(sb
, KERN_CRIT
, "Block reservation details");
1711 ext4_msg(sb
, KERN_CRIT
, "i_reserved_data_blocks=%u",
1712 ei
->i_reserved_data_blocks
);
1716 static int ext4_bh_delay_or_unwritten(handle_t
*handle
, struct buffer_head
*bh
)
1718 return (buffer_delay(bh
) || buffer_unwritten(bh
)) && buffer_dirty(bh
);
1722 * This function is grabs code from the very beginning of
1723 * ext4_map_blocks, but assumes that the caller is from delayed write
1724 * time. This function looks up the requested blocks and sets the
1725 * buffer delay bit under the protection of i_data_sem.
1727 static int ext4_da_map_blocks(struct inode
*inode
, sector_t iblock
,
1728 struct ext4_map_blocks
*map
,
1729 struct buffer_head
*bh
)
1731 struct extent_status es
;
1733 sector_t invalid_block
= ~((sector_t
) 0xffff);
1734 #ifdef ES_AGGRESSIVE_TEST
1735 struct ext4_map_blocks orig_map
;
1737 memcpy(&orig_map
, map
, sizeof(*map
));
1740 if (invalid_block
< ext4_blocks_count(EXT4_SB(inode
->i_sb
)->s_es
))
1744 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1745 "logical block %lu\n", inode
->i_ino
, map
->m_len
,
1746 (unsigned long) map
->m_lblk
);
1748 /* Lookup extent status tree firstly */
1749 if (ext4_es_lookup_extent(inode
, iblock
, &es
)) {
1750 if (ext4_es_is_hole(&es
)) {
1752 down_read(&EXT4_I(inode
)->i_data_sem
);
1757 * Delayed extent could be allocated by fallocate.
1758 * So we need to check it.
1760 if (ext4_es_is_delayed(&es
) && !ext4_es_is_unwritten(&es
)) {
1761 map_bh(bh
, inode
->i_sb
, invalid_block
);
1763 set_buffer_delay(bh
);
1767 map
->m_pblk
= ext4_es_pblock(&es
) + iblock
- es
.es_lblk
;
1768 retval
= es
.es_len
- (iblock
- es
.es_lblk
);
1769 if (retval
> map
->m_len
)
1770 retval
= map
->m_len
;
1771 map
->m_len
= retval
;
1772 if (ext4_es_is_written(&es
))
1773 map
->m_flags
|= EXT4_MAP_MAPPED
;
1774 else if (ext4_es_is_unwritten(&es
))
1775 map
->m_flags
|= EXT4_MAP_UNWRITTEN
;
1779 #ifdef ES_AGGRESSIVE_TEST
1780 ext4_map_blocks_es_recheck(NULL
, inode
, map
, &orig_map
, 0);
1786 * Try to see if we can get the block without requesting a new
1787 * file system block.
1789 down_read(&EXT4_I(inode
)->i_data_sem
);
1790 if (ext4_has_inline_data(inode
))
1792 else if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
1793 retval
= ext4_ext_map_blocks(NULL
, inode
, map
, 0);
1795 retval
= ext4_ind_map_blocks(NULL
, inode
, map
, 0);
1801 * XXX: __block_prepare_write() unmaps passed block,
1805 * If the block was allocated from previously allocated cluster,
1806 * then we don't need to reserve it again. However we still need
1807 * to reserve metadata for every block we're going to write.
1809 if (EXT4_SB(inode
->i_sb
)->s_cluster_ratio
== 1 ||
1810 !ext4_find_delalloc_cluster(inode
, map
->m_lblk
)) {
1811 ret
= ext4_da_reserve_space(inode
);
1813 /* not enough space to reserve */
1819 ret
= ext4_es_insert_extent(inode
, map
->m_lblk
, map
->m_len
,
1820 ~0, EXTENT_STATUS_DELAYED
);
1826 map_bh(bh
, inode
->i_sb
, invalid_block
);
1828 set_buffer_delay(bh
);
1829 } else if (retval
> 0) {
1831 unsigned int status
;
1833 if (unlikely(retval
!= map
->m_len
)) {
1834 ext4_warning(inode
->i_sb
,
1835 "ES len assertion failed for inode "
1836 "%lu: retval %d != map->m_len %d",
1837 inode
->i_ino
, retval
, map
->m_len
);
1841 status
= map
->m_flags
& EXT4_MAP_UNWRITTEN
?
1842 EXTENT_STATUS_UNWRITTEN
: EXTENT_STATUS_WRITTEN
;
1843 ret
= ext4_es_insert_extent(inode
, map
->m_lblk
, map
->m_len
,
1844 map
->m_pblk
, status
);
1850 up_read((&EXT4_I(inode
)->i_data_sem
));
1856 * This is a special get_block_t callback which is used by
1857 * ext4_da_write_begin(). It will either return mapped block or
1858 * reserve space for a single block.
1860 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1861 * We also have b_blocknr = -1 and b_bdev initialized properly
1863 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1864 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1865 * initialized properly.
1867 int ext4_da_get_block_prep(struct inode
*inode
, sector_t iblock
,
1868 struct buffer_head
*bh
, int create
)
1870 struct ext4_map_blocks map
;
1873 BUG_ON(create
== 0);
1874 BUG_ON(bh
->b_size
!= inode
->i_sb
->s_blocksize
);
1876 map
.m_lblk
= iblock
;
1880 * first, we need to know whether the block is allocated already
1881 * preallocated blocks are unmapped but should treated
1882 * the same as allocated blocks.
1884 ret
= ext4_da_map_blocks(inode
, iblock
, &map
, bh
);
1888 map_bh(bh
, inode
->i_sb
, map
.m_pblk
);
1889 ext4_update_bh_state(bh
, map
.m_flags
);
1891 if (buffer_unwritten(bh
)) {
1892 /* A delayed write to unwritten bh should be marked
1893 * new and mapped. Mapped ensures that we don't do
1894 * get_block multiple times when we write to the same
1895 * offset and new ensures that we do proper zero out
1896 * for partial write.
1899 set_buffer_mapped(bh
);
1904 static int bget_one(handle_t
*handle
, struct buffer_head
*bh
)
1910 static int bput_one(handle_t
*handle
, struct buffer_head
*bh
)
1916 static int __ext4_journalled_writepage(struct page
*page
,
1919 struct address_space
*mapping
= page
->mapping
;
1920 struct inode
*inode
= mapping
->host
;
1921 struct buffer_head
*page_bufs
= NULL
;
1922 handle_t
*handle
= NULL
;
1923 int ret
= 0, err
= 0;
1924 int inline_data
= ext4_has_inline_data(inode
);
1925 struct buffer_head
*inode_bh
= NULL
;
1927 ClearPageChecked(page
);
1930 BUG_ON(page
->index
!= 0);
1931 BUG_ON(len
> ext4_get_max_inline_size(inode
));
1932 inode_bh
= ext4_journalled_write_inline_data(inode
, len
, page
);
1933 if (inode_bh
== NULL
)
1936 page_bufs
= page_buffers(page
);
1941 ext4_walk_page_buffers(handle
, page_bufs
, 0, len
,
1945 * We need to release the page lock before we start the
1946 * journal, so grab a reference so the page won't disappear
1947 * out from under us.
1952 handle
= ext4_journal_start(inode
, EXT4_HT_WRITE_PAGE
,
1953 ext4_writepage_trans_blocks(inode
));
1954 if (IS_ERR(handle
)) {
1955 ret
= PTR_ERR(handle
);
1957 goto out_no_pagelock
;
1959 BUG_ON(!ext4_handle_valid(handle
));
1963 if (page
->mapping
!= mapping
) {
1964 /* The page got truncated from under us */
1965 ext4_journal_stop(handle
);
1971 BUFFER_TRACE(inode_bh
, "get write access");
1972 ret
= ext4_journal_get_write_access(handle
, inode_bh
);
1974 err
= ext4_handle_dirty_metadata(handle
, inode
, inode_bh
);
1977 ret
= ext4_walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
1978 do_journal_get_write_access
);
1980 err
= ext4_walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
1985 EXT4_I(inode
)->i_datasync_tid
= handle
->h_transaction
->t_tid
;
1986 err
= ext4_journal_stop(handle
);
1990 if (!ext4_has_inline_data(inode
))
1991 ext4_walk_page_buffers(NULL
, page_bufs
, 0, len
,
1993 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
2002 * Note that we don't need to start a transaction unless we're journaling data
2003 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2004 * need to file the inode to the transaction's list in ordered mode because if
2005 * we are writing back data added by write(), the inode is already there and if
2006 * we are writing back data modified via mmap(), no one guarantees in which
2007 * transaction the data will hit the disk. In case we are journaling data, we
2008 * cannot start transaction directly because transaction start ranks above page
2009 * lock so we have to do some magic.
2011 * This function can get called via...
2012 * - ext4_writepages after taking page lock (have journal handle)
2013 * - journal_submit_inode_data_buffers (no journal handle)
2014 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2015 * - grab_page_cache when doing write_begin (have journal handle)
2017 * We don't do any block allocation in this function. If we have page with
2018 * multiple blocks we need to write those buffer_heads that are mapped. This
2019 * is important for mmaped based write. So if we do with blocksize 1K
2020 * truncate(f, 1024);
2021 * a = mmap(f, 0, 4096);
2023 * truncate(f, 4096);
2024 * we have in the page first buffer_head mapped via page_mkwrite call back
2025 * but other buffer_heads would be unmapped but dirty (dirty done via the
2026 * do_wp_page). So writepage should write the first block. If we modify
2027 * the mmap area beyond 1024 we will again get a page_fault and the
2028 * page_mkwrite callback will do the block allocation and mark the
2029 * buffer_heads mapped.
2031 * We redirty the page if we have any buffer_heads that is either delay or
2032 * unwritten in the page.
2034 * We can get recursively called as show below.
2036 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2039 * But since we don't do any block allocation we should not deadlock.
2040 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2042 static int ext4_writepage(struct page
*page
,
2043 struct writeback_control
*wbc
)
2048 struct buffer_head
*page_bufs
= NULL
;
2049 struct inode
*inode
= page
->mapping
->host
;
2050 struct ext4_io_submit io_submit
;
2051 bool keep_towrite
= false;
2053 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode
->i_sb
)))) {
2054 ext4_invalidatepage(page
, 0, PAGE_SIZE
);
2059 trace_ext4_writepage(page
);
2060 size
= i_size_read(inode
);
2061 if (page
->index
== size
>> PAGE_SHIFT
)
2062 len
= size
& ~PAGE_MASK
;
2066 page_bufs
= page_buffers(page
);
2068 * We cannot do block allocation or other extent handling in this
2069 * function. If there are buffers needing that, we have to redirty
2070 * the page. But we may reach here when we do a journal commit via
2071 * journal_submit_inode_data_buffers() and in that case we must write
2072 * allocated buffers to achieve data=ordered mode guarantees.
2074 * Also, if there is only one buffer per page (the fs block
2075 * size == the page size), if one buffer needs block
2076 * allocation or needs to modify the extent tree to clear the
2077 * unwritten flag, we know that the page can't be written at
2078 * all, so we might as well refuse the write immediately.
2079 * Unfortunately if the block size != page size, we can't as
2080 * easily detect this case using ext4_walk_page_buffers(), but
2081 * for the extremely common case, this is an optimization that
2082 * skips a useless round trip through ext4_bio_write_page().
2084 if (ext4_walk_page_buffers(NULL
, page_bufs
, 0, len
, NULL
,
2085 ext4_bh_delay_or_unwritten
)) {
2086 redirty_page_for_writepage(wbc
, page
);
2087 if ((current
->flags
& PF_MEMALLOC
) ||
2088 (inode
->i_sb
->s_blocksize
== PAGE_SIZE
)) {
2090 * For memory cleaning there's no point in writing only
2091 * some buffers. So just bail out. Warn if we came here
2092 * from direct reclaim.
2094 WARN_ON_ONCE((current
->flags
& (PF_MEMALLOC
|PF_KSWAPD
))
2099 keep_towrite
= true;
2102 if (PageChecked(page
) && ext4_should_journal_data(inode
))
2104 * It's mmapped pagecache. Add buffers and journal it. There
2105 * doesn't seem much point in redirtying the page here.
2107 return __ext4_journalled_writepage(page
, len
);
2109 ext4_io_submit_init(&io_submit
, wbc
);
2110 io_submit
.io_end
= ext4_init_io_end(inode
, GFP_NOFS
);
2111 if (!io_submit
.io_end
) {
2112 redirty_page_for_writepage(wbc
, page
);
2116 ret
= ext4_bio_write_page(&io_submit
, page
, len
, wbc
, keep_towrite
);
2117 ext4_io_submit(&io_submit
);
2118 /* Drop io_end reference we got from init */
2119 ext4_put_io_end_defer(io_submit
.io_end
);
2123 static int mpage_submit_page(struct mpage_da_data
*mpd
, struct page
*page
)
2126 loff_t size
= i_size_read(mpd
->inode
);
2129 BUG_ON(page
->index
!= mpd
->first_page
);
2130 if (page
->index
== size
>> PAGE_SHIFT
)
2131 len
= size
& ~PAGE_MASK
;
2134 clear_page_dirty_for_io(page
);
2135 err
= ext4_bio_write_page(&mpd
->io_submit
, page
, len
, mpd
->wbc
, false);
2137 mpd
->wbc
->nr_to_write
--;
2143 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2146 * mballoc gives us at most this number of blocks...
2147 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2148 * The rest of mballoc seems to handle chunks up to full group size.
2150 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2153 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2155 * @mpd - extent of blocks
2156 * @lblk - logical number of the block in the file
2157 * @bh - buffer head we want to add to the extent
2159 * The function is used to collect contig. blocks in the same state. If the
2160 * buffer doesn't require mapping for writeback and we haven't started the
2161 * extent of buffers to map yet, the function returns 'true' immediately - the
2162 * caller can write the buffer right away. Otherwise the function returns true
2163 * if the block has been added to the extent, false if the block couldn't be
2166 static bool mpage_add_bh_to_extent(struct mpage_da_data
*mpd
, ext4_lblk_t lblk
,
2167 struct buffer_head
*bh
)
2169 struct ext4_map_blocks
*map
= &mpd
->map
;
2171 /* Buffer that doesn't need mapping for writeback? */
2172 if (!buffer_dirty(bh
) || !buffer_mapped(bh
) ||
2173 (!buffer_delay(bh
) && !buffer_unwritten(bh
))) {
2174 /* So far no extent to map => we write the buffer right away */
2175 if (map
->m_len
== 0)
2180 /* First block in the extent? */
2181 if (map
->m_len
== 0) {
2184 map
->m_flags
= bh
->b_state
& BH_FLAGS
;
2188 /* Don't go larger than mballoc is willing to allocate */
2189 if (map
->m_len
>= MAX_WRITEPAGES_EXTENT_LEN
)
2192 /* Can we merge the block to our big extent? */
2193 if (lblk
== map
->m_lblk
+ map
->m_len
&&
2194 (bh
->b_state
& BH_FLAGS
) == map
->m_flags
) {
2202 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2204 * @mpd - extent of blocks for mapping
2205 * @head - the first buffer in the page
2206 * @bh - buffer we should start processing from
2207 * @lblk - logical number of the block in the file corresponding to @bh
2209 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2210 * the page for IO if all buffers in this page were mapped and there's no
2211 * accumulated extent of buffers to map or add buffers in the page to the
2212 * extent of buffers to map. The function returns 1 if the caller can continue
2213 * by processing the next page, 0 if it should stop adding buffers to the
2214 * extent to map because we cannot extend it anymore. It can also return value
2215 * < 0 in case of error during IO submission.
2217 static int mpage_process_page_bufs(struct mpage_da_data
*mpd
,
2218 struct buffer_head
*head
,
2219 struct buffer_head
*bh
,
2222 struct inode
*inode
= mpd
->inode
;
2224 ext4_lblk_t blocks
= (i_size_read(inode
) + i_blocksize(inode
) - 1)
2225 >> inode
->i_blkbits
;
2228 BUG_ON(buffer_locked(bh
));
2230 if (lblk
>= blocks
|| !mpage_add_bh_to_extent(mpd
, lblk
, bh
)) {
2231 /* Found extent to map? */
2234 /* Everything mapped so far and we hit EOF */
2237 } while (lblk
++, (bh
= bh
->b_this_page
) != head
);
2238 /* So far everything mapped? Submit the page for IO. */
2239 if (mpd
->map
.m_len
== 0) {
2240 err
= mpage_submit_page(mpd
, head
->b_page
);
2244 return lblk
< blocks
;
2248 * mpage_map_buffers - update buffers corresponding to changed extent and
2249 * submit fully mapped pages for IO
2251 * @mpd - description of extent to map, on return next extent to map
2253 * Scan buffers corresponding to changed extent (we expect corresponding pages
2254 * to be already locked) and update buffer state according to new extent state.
2255 * We map delalloc buffers to their physical location, clear unwritten bits,
2256 * and mark buffers as uninit when we perform writes to unwritten extents
2257 * and do extent conversion after IO is finished. If the last page is not fully
2258 * mapped, we update @map to the next extent in the last page that needs
2259 * mapping. Otherwise we submit the page for IO.
2261 static int mpage_map_and_submit_buffers(struct mpage_da_data
*mpd
)
2263 struct pagevec pvec
;
2265 struct inode
*inode
= mpd
->inode
;
2266 struct buffer_head
*head
, *bh
;
2267 int bpp_bits
= PAGE_SHIFT
- inode
->i_blkbits
;
2273 start
= mpd
->map
.m_lblk
>> bpp_bits
;
2274 end
= (mpd
->map
.m_lblk
+ mpd
->map
.m_len
- 1) >> bpp_bits
;
2275 lblk
= start
<< bpp_bits
;
2276 pblock
= mpd
->map
.m_pblk
;
2278 pagevec_init(&pvec
, 0);
2279 while (start
<= end
) {
2280 nr_pages
= pagevec_lookup(&pvec
, inode
->i_mapping
, start
,
2284 for (i
= 0; i
< nr_pages
; i
++) {
2285 struct page
*page
= pvec
.pages
[i
];
2287 if (page
->index
> end
)
2289 /* Up to 'end' pages must be contiguous */
2290 BUG_ON(page
->index
!= start
);
2291 bh
= head
= page_buffers(page
);
2293 if (lblk
< mpd
->map
.m_lblk
)
2295 if (lblk
>= mpd
->map
.m_lblk
+ mpd
->map
.m_len
) {
2297 * Buffer after end of mapped extent.
2298 * Find next buffer in the page to map.
2301 mpd
->map
.m_flags
= 0;
2303 * FIXME: If dioread_nolock supports
2304 * blocksize < pagesize, we need to make
2305 * sure we add size mapped so far to
2306 * io_end->size as the following call
2307 * can submit the page for IO.
2309 err
= mpage_process_page_bufs(mpd
, head
,
2311 pagevec_release(&pvec
);
2316 if (buffer_delay(bh
)) {
2317 clear_buffer_delay(bh
);
2318 bh
->b_blocknr
= pblock
++;
2320 clear_buffer_unwritten(bh
);
2321 } while (lblk
++, (bh
= bh
->b_this_page
) != head
);
2324 * FIXME: This is going to break if dioread_nolock
2325 * supports blocksize < pagesize as we will try to
2326 * convert potentially unmapped parts of inode.
2328 mpd
->io_submit
.io_end
->size
+= PAGE_SIZE
;
2329 /* Page fully mapped - let IO run! */
2330 err
= mpage_submit_page(mpd
, page
);
2332 pagevec_release(&pvec
);
2337 pagevec_release(&pvec
);
2339 /* Extent fully mapped and matches with page boundary. We are done. */
2341 mpd
->map
.m_flags
= 0;
2345 static int mpage_map_one_extent(handle_t
*handle
, struct mpage_da_data
*mpd
)
2347 struct inode
*inode
= mpd
->inode
;
2348 struct ext4_map_blocks
*map
= &mpd
->map
;
2349 int get_blocks_flags
;
2350 int err
, dioread_nolock
;
2352 trace_ext4_da_write_pages_extent(inode
, map
);
2354 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2355 * to convert an unwritten extent to be initialized (in the case
2356 * where we have written into one or more preallocated blocks). It is
2357 * possible that we're going to need more metadata blocks than
2358 * previously reserved. However we must not fail because we're in
2359 * writeback and there is nothing we can do about it so it might result
2360 * in data loss. So use reserved blocks to allocate metadata if
2363 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2364 * the blocks in question are delalloc blocks. This indicates
2365 * that the blocks and quotas has already been checked when
2366 * the data was copied into the page cache.
2368 get_blocks_flags
= EXT4_GET_BLOCKS_CREATE
|
2369 EXT4_GET_BLOCKS_METADATA_NOFAIL
|
2370 EXT4_GET_BLOCKS_IO_SUBMIT
;
2371 dioread_nolock
= ext4_should_dioread_nolock(inode
);
2373 get_blocks_flags
|= EXT4_GET_BLOCKS_IO_CREATE_EXT
;
2374 if (map
->m_flags
& (1 << BH_Delay
))
2375 get_blocks_flags
|= EXT4_GET_BLOCKS_DELALLOC_RESERVE
;
2377 err
= ext4_map_blocks(handle
, inode
, map
, get_blocks_flags
);
2380 if (dioread_nolock
&& (map
->m_flags
& EXT4_MAP_UNWRITTEN
)) {
2381 if (!mpd
->io_submit
.io_end
->handle
&&
2382 ext4_handle_valid(handle
)) {
2383 mpd
->io_submit
.io_end
->handle
= handle
->h_rsv_handle
;
2384 handle
->h_rsv_handle
= NULL
;
2386 ext4_set_io_unwritten_flag(inode
, mpd
->io_submit
.io_end
);
2389 BUG_ON(map
->m_len
== 0);
2390 if (map
->m_flags
& EXT4_MAP_NEW
) {
2391 clean_bdev_aliases(inode
->i_sb
->s_bdev
, map
->m_pblk
,
2398 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2399 * mpd->len and submit pages underlying it for IO
2401 * @handle - handle for journal operations
2402 * @mpd - extent to map
2403 * @give_up_on_write - we set this to true iff there is a fatal error and there
2404 * is no hope of writing the data. The caller should discard
2405 * dirty pages to avoid infinite loops.
2407 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2408 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2409 * them to initialized or split the described range from larger unwritten
2410 * extent. Note that we need not map all the described range since allocation
2411 * can return less blocks or the range is covered by more unwritten extents. We
2412 * cannot map more because we are limited by reserved transaction credits. On
2413 * the other hand we always make sure that the last touched page is fully
2414 * mapped so that it can be written out (and thus forward progress is
2415 * guaranteed). After mapping we submit all mapped pages for IO.
2417 static int mpage_map_and_submit_extent(handle_t
*handle
,
2418 struct mpage_da_data
*mpd
,
2419 bool *give_up_on_write
)
2421 struct inode
*inode
= mpd
->inode
;
2422 struct ext4_map_blocks
*map
= &mpd
->map
;
2427 mpd
->io_submit
.io_end
->offset
=
2428 ((loff_t
)map
->m_lblk
) << inode
->i_blkbits
;
2430 err
= mpage_map_one_extent(handle
, mpd
);
2432 struct super_block
*sb
= inode
->i_sb
;
2434 if (ext4_forced_shutdown(EXT4_SB(sb
)) ||
2435 EXT4_SB(sb
)->s_mount_flags
& EXT4_MF_FS_ABORTED
)
2436 goto invalidate_dirty_pages
;
2438 * Let the uper layers retry transient errors.
2439 * In the case of ENOSPC, if ext4_count_free_blocks()
2440 * is non-zero, a commit should free up blocks.
2442 if ((err
== -ENOMEM
) ||
2443 (err
== -ENOSPC
&& ext4_count_free_clusters(sb
))) {
2445 goto update_disksize
;
2448 ext4_msg(sb
, KERN_CRIT
,
2449 "Delayed block allocation failed for "
2450 "inode %lu at logical offset %llu with"
2451 " max blocks %u with error %d",
2453 (unsigned long long)map
->m_lblk
,
2454 (unsigned)map
->m_len
, -err
);
2455 ext4_msg(sb
, KERN_CRIT
,
2456 "This should not happen!! Data will "
2459 ext4_print_free_blocks(inode
);
2460 invalidate_dirty_pages
:
2461 *give_up_on_write
= true;
2466 * Update buffer state, submit mapped pages, and get us new
2469 err
= mpage_map_and_submit_buffers(mpd
);
2471 goto update_disksize
;
2472 } while (map
->m_len
);
2476 * Update on-disk size after IO is submitted. Races with
2477 * truncate are avoided by checking i_size under i_data_sem.
2479 disksize
= ((loff_t
)mpd
->first_page
) << PAGE_SHIFT
;
2480 if (disksize
> EXT4_I(inode
)->i_disksize
) {
2484 down_write(&EXT4_I(inode
)->i_data_sem
);
2485 i_size
= i_size_read(inode
);
2486 if (disksize
> i_size
)
2488 if (disksize
> EXT4_I(inode
)->i_disksize
)
2489 EXT4_I(inode
)->i_disksize
= disksize
;
2490 up_write(&EXT4_I(inode
)->i_data_sem
);
2491 err2
= ext4_mark_inode_dirty(handle
, inode
);
2493 ext4_error(inode
->i_sb
,
2494 "Failed to mark inode %lu dirty",
2503 * Calculate the total number of credits to reserve for one writepages
2504 * iteration. This is called from ext4_writepages(). We map an extent of
2505 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2506 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2507 * bpp - 1 blocks in bpp different extents.
2509 static int ext4_da_writepages_trans_blocks(struct inode
*inode
)
2511 int bpp
= ext4_journal_blocks_per_page(inode
);
2513 return ext4_meta_trans_blocks(inode
,
2514 MAX_WRITEPAGES_EXTENT_LEN
+ bpp
- 1, bpp
);
2518 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2519 * and underlying extent to map
2521 * @mpd - where to look for pages
2523 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2524 * IO immediately. When we find a page which isn't mapped we start accumulating
2525 * extent of buffers underlying these pages that needs mapping (formed by
2526 * either delayed or unwritten buffers). We also lock the pages containing
2527 * these buffers. The extent found is returned in @mpd structure (starting at
2528 * mpd->lblk with length mpd->len blocks).
2530 * Note that this function can attach bios to one io_end structure which are
2531 * neither logically nor physically contiguous. Although it may seem as an
2532 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2533 * case as we need to track IO to all buffers underlying a page in one io_end.
2535 static int mpage_prepare_extent_to_map(struct mpage_da_data
*mpd
)
2537 struct address_space
*mapping
= mpd
->inode
->i_mapping
;
2538 struct pagevec pvec
;
2539 unsigned int nr_pages
;
2540 long left
= mpd
->wbc
->nr_to_write
;
2541 pgoff_t index
= mpd
->first_page
;
2542 pgoff_t end
= mpd
->last_page
;
2545 int blkbits
= mpd
->inode
->i_blkbits
;
2547 struct buffer_head
*head
;
2549 if (mpd
->wbc
->sync_mode
== WB_SYNC_ALL
|| mpd
->wbc
->tagged_writepages
)
2550 tag
= PAGECACHE_TAG_TOWRITE
;
2552 tag
= PAGECACHE_TAG_DIRTY
;
2554 pagevec_init(&pvec
, 0);
2556 mpd
->next_page
= index
;
2557 while (index
<= end
) {
2558 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
, tag
,
2559 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
2563 for (i
= 0; i
< nr_pages
; i
++) {
2564 struct page
*page
= pvec
.pages
[i
];
2567 * At this point, the page may be truncated or
2568 * invalidated (changing page->mapping to NULL), or
2569 * even swizzled back from swapper_space to tmpfs file
2570 * mapping. However, page->index will not change
2571 * because we have a reference on the page.
2573 if (page
->index
> end
)
2577 * Accumulated enough dirty pages? This doesn't apply
2578 * to WB_SYNC_ALL mode. For integrity sync we have to
2579 * keep going because someone may be concurrently
2580 * dirtying pages, and we might have synced a lot of
2581 * newly appeared dirty pages, but have not synced all
2582 * of the old dirty pages.
2584 if (mpd
->wbc
->sync_mode
== WB_SYNC_NONE
&& left
<= 0)
2587 /* If we can't merge this page, we are done. */
2588 if (mpd
->map
.m_len
> 0 && mpd
->next_page
!= page
->index
)
2593 * If the page is no longer dirty, or its mapping no
2594 * longer corresponds to inode we are writing (which
2595 * means it has been truncated or invalidated), or the
2596 * page is already under writeback and we are not doing
2597 * a data integrity writeback, skip the page
2599 if (!PageDirty(page
) ||
2600 (PageWriteback(page
) &&
2601 (mpd
->wbc
->sync_mode
== WB_SYNC_NONE
)) ||
2602 unlikely(page
->mapping
!= mapping
)) {
2607 wait_on_page_writeback(page
);
2608 BUG_ON(PageWriteback(page
));
2610 if (mpd
->map
.m_len
== 0)
2611 mpd
->first_page
= page
->index
;
2612 mpd
->next_page
= page
->index
+ 1;
2613 /* Add all dirty buffers to mpd */
2614 lblk
= ((ext4_lblk_t
)page
->index
) <<
2615 (PAGE_SHIFT
- blkbits
);
2616 head
= page_buffers(page
);
2617 err
= mpage_process_page_bufs(mpd
, head
, head
, lblk
);
2623 pagevec_release(&pvec
);
2628 pagevec_release(&pvec
);
2632 static int __writepage(struct page
*page
, struct writeback_control
*wbc
,
2635 struct address_space
*mapping
= data
;
2636 int ret
= ext4_writepage(page
, wbc
);
2637 mapping_set_error(mapping
, ret
);
2641 static int ext4_writepages(struct address_space
*mapping
,
2642 struct writeback_control
*wbc
)
2644 pgoff_t writeback_index
= 0;
2645 long nr_to_write
= wbc
->nr_to_write
;
2646 int range_whole
= 0;
2648 handle_t
*handle
= NULL
;
2649 struct mpage_da_data mpd
;
2650 struct inode
*inode
= mapping
->host
;
2651 int needed_blocks
, rsv_blocks
= 0, ret
= 0;
2652 struct ext4_sb_info
*sbi
= EXT4_SB(mapping
->host
->i_sb
);
2654 struct blk_plug plug
;
2655 bool give_up_on_write
= false;
2657 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode
->i_sb
))))
2660 percpu_down_read(&sbi
->s_journal_flag_rwsem
);
2661 trace_ext4_writepages(inode
, wbc
);
2663 if (dax_mapping(mapping
)) {
2664 ret
= dax_writeback_mapping_range(mapping
, inode
->i_sb
->s_bdev
,
2666 goto out_writepages
;
2670 * No pages to write? This is mainly a kludge to avoid starting
2671 * a transaction for special inodes like journal inode on last iput()
2672 * because that could violate lock ordering on umount
2674 if (!mapping
->nrpages
|| !mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
))
2675 goto out_writepages
;
2677 if (ext4_should_journal_data(inode
)) {
2678 struct blk_plug plug
;
2680 blk_start_plug(&plug
);
2681 ret
= write_cache_pages(mapping
, wbc
, __writepage
, mapping
);
2682 blk_finish_plug(&plug
);
2683 goto out_writepages
;
2687 * If the filesystem has aborted, it is read-only, so return
2688 * right away instead of dumping stack traces later on that
2689 * will obscure the real source of the problem. We test
2690 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2691 * the latter could be true if the filesystem is mounted
2692 * read-only, and in that case, ext4_writepages should
2693 * *never* be called, so if that ever happens, we would want
2696 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping
->host
->i_sb
)) ||
2697 sbi
->s_mount_flags
& EXT4_MF_FS_ABORTED
)) {
2699 goto out_writepages
;
2702 if (ext4_should_dioread_nolock(inode
)) {
2704 * We may need to convert up to one extent per block in
2705 * the page and we may dirty the inode.
2707 rsv_blocks
= 1 + (PAGE_SIZE
>> inode
->i_blkbits
);
2711 * If we have inline data and arrive here, it means that
2712 * we will soon create the block for the 1st page, so
2713 * we'd better clear the inline data here.
2715 if (ext4_has_inline_data(inode
)) {
2716 /* Just inode will be modified... */
2717 handle
= ext4_journal_start(inode
, EXT4_HT_INODE
, 1);
2718 if (IS_ERR(handle
)) {
2719 ret
= PTR_ERR(handle
);
2720 goto out_writepages
;
2722 BUG_ON(ext4_test_inode_state(inode
,
2723 EXT4_STATE_MAY_INLINE_DATA
));
2724 ext4_destroy_inline_data(handle
, inode
);
2725 ext4_journal_stop(handle
);
2728 if (wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
)
2731 if (wbc
->range_cyclic
) {
2732 writeback_index
= mapping
->writeback_index
;
2733 if (writeback_index
)
2735 mpd
.first_page
= writeback_index
;
2738 mpd
.first_page
= wbc
->range_start
>> PAGE_SHIFT
;
2739 mpd
.last_page
= wbc
->range_end
>> PAGE_SHIFT
;
2744 ext4_io_submit_init(&mpd
.io_submit
, wbc
);
2746 if (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
)
2747 tag_pages_for_writeback(mapping
, mpd
.first_page
, mpd
.last_page
);
2749 blk_start_plug(&plug
);
2750 while (!done
&& mpd
.first_page
<= mpd
.last_page
) {
2751 /* For each extent of pages we use new io_end */
2752 mpd
.io_submit
.io_end
= ext4_init_io_end(inode
, GFP_KERNEL
);
2753 if (!mpd
.io_submit
.io_end
) {
2759 * We have two constraints: We find one extent to map and we
2760 * must always write out whole page (makes a difference when
2761 * blocksize < pagesize) so that we don't block on IO when we
2762 * try to write out the rest of the page. Journalled mode is
2763 * not supported by delalloc.
2765 BUG_ON(ext4_should_journal_data(inode
));
2766 needed_blocks
= ext4_da_writepages_trans_blocks(inode
);
2768 /* start a new transaction */
2769 handle
= ext4_journal_start_with_reserve(inode
,
2770 EXT4_HT_WRITE_PAGE
, needed_blocks
, rsv_blocks
);
2771 if (IS_ERR(handle
)) {
2772 ret
= PTR_ERR(handle
);
2773 ext4_msg(inode
->i_sb
, KERN_CRIT
, "%s: jbd2_start: "
2774 "%ld pages, ino %lu; err %d", __func__
,
2775 wbc
->nr_to_write
, inode
->i_ino
, ret
);
2776 /* Release allocated io_end */
2777 ext4_put_io_end(mpd
.io_submit
.io_end
);
2781 trace_ext4_da_write_pages(inode
, mpd
.first_page
, mpd
.wbc
);
2782 ret
= mpage_prepare_extent_to_map(&mpd
);
2785 ret
= mpage_map_and_submit_extent(handle
, &mpd
,
2789 * We scanned the whole range (or exhausted
2790 * nr_to_write), submitted what was mapped and
2791 * didn't find anything needing mapping. We are
2798 * Caution: If the handle is synchronous,
2799 * ext4_journal_stop() can wait for transaction commit
2800 * to finish which may depend on writeback of pages to
2801 * complete or on page lock to be released. In that
2802 * case, we have to wait until after after we have
2803 * submitted all the IO, released page locks we hold,
2804 * and dropped io_end reference (for extent conversion
2805 * to be able to complete) before stopping the handle.
2807 if (!ext4_handle_valid(handle
) || handle
->h_sync
== 0) {
2808 ext4_journal_stop(handle
);
2811 /* Submit prepared bio */
2812 ext4_io_submit(&mpd
.io_submit
);
2813 /* Unlock pages we didn't use */
2814 mpage_release_unused_pages(&mpd
, give_up_on_write
);
2816 * Drop our io_end reference we got from init. We have
2817 * to be careful and use deferred io_end finishing if
2818 * we are still holding the transaction as we can
2819 * release the last reference to io_end which may end
2820 * up doing unwritten extent conversion.
2823 ext4_put_io_end_defer(mpd
.io_submit
.io_end
);
2824 ext4_journal_stop(handle
);
2826 ext4_put_io_end(mpd
.io_submit
.io_end
);
2828 if (ret
== -ENOSPC
&& sbi
->s_journal
) {
2830 * Commit the transaction which would
2831 * free blocks released in the transaction
2834 jbd2_journal_force_commit_nested(sbi
->s_journal
);
2838 /* Fatal error - ENOMEM, EIO... */
2842 blk_finish_plug(&plug
);
2843 if (!ret
&& !cycled
&& wbc
->nr_to_write
> 0) {
2845 mpd
.last_page
= writeback_index
- 1;
2851 if (wbc
->range_cyclic
|| (range_whole
&& wbc
->nr_to_write
> 0))
2853 * Set the writeback_index so that range_cyclic
2854 * mode will write it back later
2856 mapping
->writeback_index
= mpd
.first_page
;
2859 trace_ext4_writepages_result(inode
, wbc
, ret
,
2860 nr_to_write
- wbc
->nr_to_write
);
2861 percpu_up_read(&sbi
->s_journal_flag_rwsem
);
2865 static int ext4_nonda_switch(struct super_block
*sb
)
2867 s64 free_clusters
, dirty_clusters
;
2868 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2871 * switch to non delalloc mode if we are running low
2872 * on free block. The free block accounting via percpu
2873 * counters can get slightly wrong with percpu_counter_batch getting
2874 * accumulated on each CPU without updating global counters
2875 * Delalloc need an accurate free block accounting. So switch
2876 * to non delalloc when we are near to error range.
2879 percpu_counter_read_positive(&sbi
->s_freeclusters_counter
);
2881 percpu_counter_read_positive(&sbi
->s_dirtyclusters_counter
);
2883 * Start pushing delalloc when 1/2 of free blocks are dirty.
2885 if (dirty_clusters
&& (free_clusters
< 2 * dirty_clusters
))
2886 try_to_writeback_inodes_sb(sb
, WB_REASON_FS_FREE_SPACE
);
2888 if (2 * free_clusters
< 3 * dirty_clusters
||
2889 free_clusters
< (dirty_clusters
+ EXT4_FREECLUSTERS_WATERMARK
)) {
2891 * free block count is less than 150% of dirty blocks
2892 * or free blocks is less than watermark
2899 /* We always reserve for an inode update; the superblock could be there too */
2900 static int ext4_da_write_credits(struct inode
*inode
, loff_t pos
, unsigned len
)
2902 if (likely(ext4_has_feature_large_file(inode
->i_sb
)))
2905 if (pos
+ len
<= 0x7fffffffULL
)
2908 /* We might need to update the superblock to set LARGE_FILE */
2912 static int ext4_da_write_begin(struct file
*file
, struct address_space
*mapping
,
2913 loff_t pos
, unsigned len
, unsigned flags
,
2914 struct page
**pagep
, void **fsdata
)
2916 int ret
, retries
= 0;
2919 struct inode
*inode
= mapping
->host
;
2922 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode
->i_sb
))))
2925 index
= pos
>> PAGE_SHIFT
;
2927 if (ext4_nonda_switch(inode
->i_sb
) ||
2928 S_ISLNK(inode
->i_mode
)) {
2929 *fsdata
= (void *)FALL_BACK_TO_NONDELALLOC
;
2930 return ext4_write_begin(file
, mapping
, pos
,
2931 len
, flags
, pagep
, fsdata
);
2933 *fsdata
= (void *)0;
2934 trace_ext4_da_write_begin(inode
, pos
, len
, flags
);
2936 if (ext4_test_inode_state(inode
, EXT4_STATE_MAY_INLINE_DATA
)) {
2937 ret
= ext4_da_write_inline_data_begin(mapping
, inode
,
2947 * grab_cache_page_write_begin() can take a long time if the
2948 * system is thrashing due to memory pressure, or if the page
2949 * is being written back. So grab it first before we start
2950 * the transaction handle. This also allows us to allocate
2951 * the page (if needed) without using GFP_NOFS.
2954 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
2960 * With delayed allocation, we don't log the i_disksize update
2961 * if there is delayed block allocation. But we still need
2962 * to journalling the i_disksize update if writes to the end
2963 * of file which has an already mapped buffer.
2966 handle
= ext4_journal_start(inode
, EXT4_HT_WRITE_PAGE
,
2967 ext4_da_write_credits(inode
, pos
, len
));
2968 if (IS_ERR(handle
)) {
2970 return PTR_ERR(handle
);
2974 if (page
->mapping
!= mapping
) {
2975 /* The page got truncated from under us */
2978 ext4_journal_stop(handle
);
2981 /* In case writeback began while the page was unlocked */
2982 wait_for_stable_page(page
);
2984 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2985 ret
= ext4_block_write_begin(page
, pos
, len
,
2986 ext4_da_get_block_prep
);
2988 ret
= __block_write_begin(page
, pos
, len
, ext4_da_get_block_prep
);
2992 ext4_journal_stop(handle
);
2994 * block_write_begin may have instantiated a few blocks
2995 * outside i_size. Trim these off again. Don't need
2996 * i_size_read because we hold i_mutex.
2998 if (pos
+ len
> inode
->i_size
)
2999 ext4_truncate_failed_write(inode
);
3001 if (ret
== -ENOSPC
&&
3002 ext4_should_retry_alloc(inode
->i_sb
, &retries
))
3014 * Check if we should update i_disksize
3015 * when write to the end of file but not require block allocation
3017 static int ext4_da_should_update_i_disksize(struct page
*page
,
3018 unsigned long offset
)
3020 struct buffer_head
*bh
;
3021 struct inode
*inode
= page
->mapping
->host
;
3025 bh
= page_buffers(page
);
3026 idx
= offset
>> inode
->i_blkbits
;
3028 for (i
= 0; i
< idx
; i
++)
3029 bh
= bh
->b_this_page
;
3031 if (!buffer_mapped(bh
) || (buffer_delay(bh
)) || buffer_unwritten(bh
))
3036 static int ext4_da_write_end(struct file
*file
,
3037 struct address_space
*mapping
,
3038 loff_t pos
, unsigned len
, unsigned copied
,
3039 struct page
*page
, void *fsdata
)
3041 struct inode
*inode
= mapping
->host
;
3043 handle_t
*handle
= ext4_journal_current_handle();
3045 unsigned long start
, end
;
3046 int write_mode
= (int)(unsigned long)fsdata
;
3048 if (write_mode
== FALL_BACK_TO_NONDELALLOC
)
3049 return ext4_write_end(file
, mapping
, pos
,
3050 len
, copied
, page
, fsdata
);
3052 trace_ext4_da_write_end(inode
, pos
, len
, copied
);
3053 start
= pos
& (PAGE_SIZE
- 1);
3054 end
= start
+ copied
- 1;
3057 * generic_write_end() will run mark_inode_dirty() if i_size
3058 * changes. So let's piggyback the i_disksize mark_inode_dirty
3061 new_i_size
= pos
+ copied
;
3062 if (copied
&& new_i_size
> EXT4_I(inode
)->i_disksize
) {
3063 if (ext4_has_inline_data(inode
) ||
3064 ext4_da_should_update_i_disksize(page
, end
)) {
3065 ext4_update_i_disksize(inode
, new_i_size
);
3066 /* We need to mark inode dirty even if
3067 * new_i_size is less that inode->i_size
3068 * bu greater than i_disksize.(hint delalloc)
3070 ext4_mark_inode_dirty(handle
, inode
);
3074 if (write_mode
!= CONVERT_INLINE_DATA
&&
3075 ext4_test_inode_state(inode
, EXT4_STATE_MAY_INLINE_DATA
) &&
3076 ext4_has_inline_data(inode
))
3077 ret2
= ext4_da_write_inline_data_end(inode
, pos
, len
, copied
,
3080 ret2
= generic_write_end(file
, mapping
, pos
, len
, copied
,
3086 ret2
= ext4_journal_stop(handle
);
3090 return ret
? ret
: copied
;
3093 static void ext4_da_invalidatepage(struct page
*page
, unsigned int offset
,
3094 unsigned int length
)
3097 * Drop reserved blocks
3099 BUG_ON(!PageLocked(page
));
3100 if (!page_has_buffers(page
))
3103 ext4_da_page_release_reservation(page
, offset
, length
);
3106 ext4_invalidatepage(page
, offset
, length
);
3112 * Force all delayed allocation blocks to be allocated for a given inode.
3114 int ext4_alloc_da_blocks(struct inode
*inode
)
3116 trace_ext4_alloc_da_blocks(inode
);
3118 if (!EXT4_I(inode
)->i_reserved_data_blocks
)
3122 * We do something simple for now. The filemap_flush() will
3123 * also start triggering a write of the data blocks, which is
3124 * not strictly speaking necessary (and for users of
3125 * laptop_mode, not even desirable). However, to do otherwise
3126 * would require replicating code paths in:
3128 * ext4_writepages() ->
3129 * write_cache_pages() ---> (via passed in callback function)
3130 * __mpage_da_writepage() -->
3131 * mpage_add_bh_to_extent()
3132 * mpage_da_map_blocks()
3134 * The problem is that write_cache_pages(), located in
3135 * mm/page-writeback.c, marks pages clean in preparation for
3136 * doing I/O, which is not desirable if we're not planning on
3139 * We could call write_cache_pages(), and then redirty all of
3140 * the pages by calling redirty_page_for_writepage() but that
3141 * would be ugly in the extreme. So instead we would need to
3142 * replicate parts of the code in the above functions,
3143 * simplifying them because we wouldn't actually intend to
3144 * write out the pages, but rather only collect contiguous
3145 * logical block extents, call the multi-block allocator, and
3146 * then update the buffer heads with the block allocations.
3148 * For now, though, we'll cheat by calling filemap_flush(),
3149 * which will map the blocks, and start the I/O, but not
3150 * actually wait for the I/O to complete.
3152 return filemap_flush(inode
->i_mapping
);
3156 * bmap() is special. It gets used by applications such as lilo and by
3157 * the swapper to find the on-disk block of a specific piece of data.
3159 * Naturally, this is dangerous if the block concerned is still in the
3160 * journal. If somebody makes a swapfile on an ext4 data-journaling
3161 * filesystem and enables swap, then they may get a nasty shock when the
3162 * data getting swapped to that swapfile suddenly gets overwritten by
3163 * the original zero's written out previously to the journal and
3164 * awaiting writeback in the kernel's buffer cache.
3166 * So, if we see any bmap calls here on a modified, data-journaled file,
3167 * take extra steps to flush any blocks which might be in the cache.
3169 static sector_t
ext4_bmap(struct address_space
*mapping
, sector_t block
)
3171 struct inode
*inode
= mapping
->host
;
3176 * We can get here for an inline file via the FIBMAP ioctl
3178 if (ext4_has_inline_data(inode
))
3181 if (mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
) &&
3182 test_opt(inode
->i_sb
, DELALLOC
)) {
3184 * With delalloc we want to sync the file
3185 * so that we can make sure we allocate
3188 filemap_write_and_wait(mapping
);
3191 if (EXT4_JOURNAL(inode
) &&
3192 ext4_test_inode_state(inode
, EXT4_STATE_JDATA
)) {
3194 * This is a REALLY heavyweight approach, but the use of
3195 * bmap on dirty files is expected to be extremely rare:
3196 * only if we run lilo or swapon on a freshly made file
3197 * do we expect this to happen.
3199 * (bmap requires CAP_SYS_RAWIO so this does not
3200 * represent an unprivileged user DOS attack --- we'd be
3201 * in trouble if mortal users could trigger this path at
3204 * NB. EXT4_STATE_JDATA is not set on files other than
3205 * regular files. If somebody wants to bmap a directory
3206 * or symlink and gets confused because the buffer
3207 * hasn't yet been flushed to disk, they deserve
3208 * everything they get.
3211 ext4_clear_inode_state(inode
, EXT4_STATE_JDATA
);
3212 journal
= EXT4_JOURNAL(inode
);
3213 jbd2_journal_lock_updates(journal
);
3214 err
= jbd2_journal_flush(journal
);
3215 jbd2_journal_unlock_updates(journal
);
3221 return generic_block_bmap(mapping
, block
, ext4_get_block
);
3224 static int ext4_readpage(struct file
*file
, struct page
*page
)
3227 struct inode
*inode
= page
->mapping
->host
;
3229 trace_ext4_readpage(page
);
3231 if (ext4_has_inline_data(inode
))
3232 ret
= ext4_readpage_inline(inode
, page
);
3235 return ext4_mpage_readpages(page
->mapping
, NULL
, page
, 1);
3241 ext4_readpages(struct file
*file
, struct address_space
*mapping
,
3242 struct list_head
*pages
, unsigned nr_pages
)
3244 struct inode
*inode
= mapping
->host
;
3246 /* If the file has inline data, no need to do readpages. */
3247 if (ext4_has_inline_data(inode
))
3250 return ext4_mpage_readpages(mapping
, pages
, NULL
, nr_pages
);
3253 static void ext4_invalidatepage(struct page
*page
, unsigned int offset
,
3254 unsigned int length
)
3256 trace_ext4_invalidatepage(page
, offset
, length
);
3258 /* No journalling happens on data buffers when this function is used */
3259 WARN_ON(page_has_buffers(page
) && buffer_jbd(page_buffers(page
)));
3261 block_invalidatepage(page
, offset
, length
);
3264 static int __ext4_journalled_invalidatepage(struct page
*page
,
3265 unsigned int offset
,
3266 unsigned int length
)
3268 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
3270 trace_ext4_journalled_invalidatepage(page
, offset
, length
);
3273 * If it's a full truncate we just forget about the pending dirtying
3275 if (offset
== 0 && length
== PAGE_SIZE
)
3276 ClearPageChecked(page
);
3278 return jbd2_journal_invalidatepage(journal
, page
, offset
, length
);
3281 /* Wrapper for aops... */
3282 static void ext4_journalled_invalidatepage(struct page
*page
,
3283 unsigned int offset
,
3284 unsigned int length
)
3286 WARN_ON(__ext4_journalled_invalidatepage(page
, offset
, length
) < 0);
3289 static int ext4_releasepage(struct page
*page
, gfp_t wait
)
3291 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
3293 trace_ext4_releasepage(page
);
3295 /* Page has dirty journalled data -> cannot release */
3296 if (PageChecked(page
))
3299 return jbd2_journal_try_to_free_buffers(journal
, page
, wait
);
3301 return try_to_free_buffers(page
);
3304 #ifdef CONFIG_FS_DAX
3305 static int ext4_iomap_begin(struct inode
*inode
, loff_t offset
, loff_t length
,
3306 unsigned flags
, struct iomap
*iomap
)
3308 unsigned int blkbits
= inode
->i_blkbits
;
3309 unsigned long first_block
= offset
>> blkbits
;
3310 unsigned long last_block
= (offset
+ length
- 1) >> blkbits
;
3311 struct ext4_map_blocks map
;
3314 if (WARN_ON_ONCE(ext4_has_inline_data(inode
)))
3317 map
.m_lblk
= first_block
;
3318 map
.m_len
= last_block
- first_block
+ 1;
3320 if (!(flags
& IOMAP_WRITE
)) {
3321 ret
= ext4_map_blocks(NULL
, inode
, &map
, 0);
3327 /* Trim mapping request to maximum we can map at once for DIO */
3328 if (map
.m_len
> DIO_MAX_BLOCKS
)
3329 map
.m_len
= DIO_MAX_BLOCKS
;
3330 dio_credits
= ext4_chunk_trans_blocks(inode
, map
.m_len
);
3333 * Either we allocate blocks and then we don't get unwritten
3334 * extent so we have reserved enough credits, or the blocks
3335 * are already allocated and unwritten and in that case
3336 * extent conversion fits in the credits as well.
3338 handle
= ext4_journal_start(inode
, EXT4_HT_MAP_BLOCKS
,
3341 return PTR_ERR(handle
);
3343 ret
= ext4_map_blocks(handle
, inode
, &map
,
3344 EXT4_GET_BLOCKS_CREATE_ZERO
);
3346 ext4_journal_stop(handle
);
3347 if (ret
== -ENOSPC
&&
3348 ext4_should_retry_alloc(inode
->i_sb
, &retries
))
3354 * If we added blocks beyond i_size, we need to make sure they
3355 * will get truncated if we crash before updating i_size in
3356 * ext4_iomap_end(). For faults we don't need to do that (and
3357 * even cannot because for orphan list operations inode_lock is
3358 * required) - if we happen to instantiate block beyond i_size,
3359 * it is because we race with truncate which has already added
3360 * the inode to the orphan list.
3362 if (!(flags
& IOMAP_FAULT
) && first_block
+ map
.m_len
>
3363 (i_size_read(inode
) + (1 << blkbits
) - 1) >> blkbits
) {
3366 err
= ext4_orphan_add(handle
, inode
);
3368 ext4_journal_stop(handle
);
3372 ext4_journal_stop(handle
);
3376 iomap
->bdev
= inode
->i_sb
->s_bdev
;
3377 iomap
->offset
= first_block
<< blkbits
;
3380 iomap
->type
= IOMAP_HOLE
;
3381 iomap
->blkno
= IOMAP_NULL_BLOCK
;
3382 iomap
->length
= (u64
)map
.m_len
<< blkbits
;
3384 if (map
.m_flags
& EXT4_MAP_MAPPED
) {
3385 iomap
->type
= IOMAP_MAPPED
;
3386 } else if (map
.m_flags
& EXT4_MAP_UNWRITTEN
) {
3387 iomap
->type
= IOMAP_UNWRITTEN
;
3392 iomap
->blkno
= (sector_t
)map
.m_pblk
<< (blkbits
- 9);
3393 iomap
->length
= (u64
)map
.m_len
<< blkbits
;
3396 if (map
.m_flags
& EXT4_MAP_NEW
)
3397 iomap
->flags
|= IOMAP_F_NEW
;
3401 static int ext4_iomap_end(struct inode
*inode
, loff_t offset
, loff_t length
,
3402 ssize_t written
, unsigned flags
, struct iomap
*iomap
)
3406 int blkbits
= inode
->i_blkbits
;
3407 bool truncate
= false;
3409 if (!(flags
& IOMAP_WRITE
) || (flags
& IOMAP_FAULT
))
3412 handle
= ext4_journal_start(inode
, EXT4_HT_INODE
, 2);
3413 if (IS_ERR(handle
)) {
3414 ret
= PTR_ERR(handle
);
3417 if (ext4_update_inode_size(inode
, offset
+ written
))
3418 ext4_mark_inode_dirty(handle
, inode
);
3420 * We may need to truncate allocated but not written blocks beyond EOF.
3422 if (iomap
->offset
+ iomap
->length
>
3423 ALIGN(inode
->i_size
, 1 << blkbits
)) {
3424 ext4_lblk_t written_blk
, end_blk
;
3426 written_blk
= (offset
+ written
) >> blkbits
;
3427 end_blk
= (offset
+ length
) >> blkbits
;
3428 if (written_blk
< end_blk
&& ext4_can_truncate(inode
))
3432 * Remove inode from orphan list if we were extending a inode and
3433 * everything went fine.
3435 if (!truncate
&& inode
->i_nlink
&&
3436 !list_empty(&EXT4_I(inode
)->i_orphan
))
3437 ext4_orphan_del(handle
, inode
);
3438 ext4_journal_stop(handle
);
3440 ext4_truncate_failed_write(inode
);
3443 * If truncate failed early the inode might still be on the
3444 * orphan list; we need to make sure the inode is removed from
3445 * the orphan list in that case.
3448 ext4_orphan_del(NULL
, inode
);
3453 const struct iomap_ops ext4_iomap_ops
= {
3454 .iomap_begin
= ext4_iomap_begin
,
3455 .iomap_end
= ext4_iomap_end
,
3460 static int ext4_end_io_dio(struct kiocb
*iocb
, loff_t offset
,
3461 ssize_t size
, void *private)
3463 ext4_io_end_t
*io_end
= private;
3465 /* if not async direct IO just return */
3469 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3470 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3471 io_end
, io_end
->inode
->i_ino
, iocb
, offset
, size
);
3474 * Error during AIO DIO. We cannot convert unwritten extents as the
3475 * data was not written. Just clear the unwritten flag and drop io_end.
3478 ext4_clear_io_unwritten_flag(io_end
);
3481 io_end
->offset
= offset
;
3482 io_end
->size
= size
;
3483 ext4_put_io_end(io_end
);
3489 * Handling of direct IO writes.
3491 * For ext4 extent files, ext4 will do direct-io write even to holes,
3492 * preallocated extents, and those write extend the file, no need to
3493 * fall back to buffered IO.
3495 * For holes, we fallocate those blocks, mark them as unwritten
3496 * If those blocks were preallocated, we mark sure they are split, but
3497 * still keep the range to write as unwritten.
3499 * The unwritten extents will be converted to written when DIO is completed.
3500 * For async direct IO, since the IO may still pending when return, we
3501 * set up an end_io call back function, which will do the conversion
3502 * when async direct IO completed.
3504 * If the O_DIRECT write will extend the file then add this inode to the
3505 * orphan list. So recovery will truncate it back to the original size
3506 * if the machine crashes during the write.
3509 static ssize_t
ext4_direct_IO_write(struct kiocb
*iocb
, struct iov_iter
*iter
)
3511 struct file
*file
= iocb
->ki_filp
;
3512 struct inode
*inode
= file
->f_mapping
->host
;
3513 struct ext4_inode_info
*ei
= EXT4_I(inode
);
3515 loff_t offset
= iocb
->ki_pos
;
3516 size_t count
= iov_iter_count(iter
);
3518 get_block_t
*get_block_func
= NULL
;
3520 loff_t final_size
= offset
+ count
;
3524 if (final_size
> inode
->i_size
) {
3525 /* Credits for sb + inode write */
3526 handle
= ext4_journal_start(inode
, EXT4_HT_INODE
, 2);
3527 if (IS_ERR(handle
)) {
3528 ret
= PTR_ERR(handle
);
3531 ret
= ext4_orphan_add(handle
, inode
);
3533 ext4_journal_stop(handle
);
3537 ei
->i_disksize
= inode
->i_size
;
3538 ext4_journal_stop(handle
);
3541 BUG_ON(iocb
->private == NULL
);
3544 * Make all waiters for direct IO properly wait also for extent
3545 * conversion. This also disallows race between truncate() and
3546 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3548 inode_dio_begin(inode
);
3550 /* If we do a overwrite dio, i_mutex locking can be released */
3551 overwrite
= *((int *)iocb
->private);
3554 inode_unlock(inode
);
3557 * For extent mapped files we could direct write to holes and fallocate.
3559 * Allocated blocks to fill the hole are marked as unwritten to prevent
3560 * parallel buffered read to expose the stale data before DIO complete
3563 * As to previously fallocated extents, ext4 get_block will just simply
3564 * mark the buffer mapped but still keep the extents unwritten.
3566 * For non AIO case, we will convert those unwritten extents to written
3567 * after return back from blockdev_direct_IO. That way we save us from
3568 * allocating io_end structure and also the overhead of offloading
3569 * the extent convertion to a workqueue.
3571 * For async DIO, the conversion needs to be deferred when the
3572 * IO is completed. The ext4 end_io callback function will be
3573 * called to take care of the conversion work. Here for async
3574 * case, we allocate an io_end structure to hook to the iocb.
3576 iocb
->private = NULL
;
3578 get_block_func
= ext4_dio_get_block_overwrite
;
3579 else if (!ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
) ||
3580 round_down(offset
, i_blocksize(inode
)) >= inode
->i_size
) {
3581 get_block_func
= ext4_dio_get_block
;
3582 dio_flags
= DIO_LOCKING
| DIO_SKIP_HOLES
;
3583 } else if (is_sync_kiocb(iocb
)) {
3584 get_block_func
= ext4_dio_get_block_unwritten_sync
;
3585 dio_flags
= DIO_LOCKING
;
3587 get_block_func
= ext4_dio_get_block_unwritten_async
;
3588 dio_flags
= DIO_LOCKING
;
3590 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3591 BUG_ON(ext4_encrypted_inode(inode
) && S_ISREG(inode
->i_mode
));
3593 ret
= __blockdev_direct_IO(iocb
, inode
, inode
->i_sb
->s_bdev
, iter
,
3594 get_block_func
, ext4_end_io_dio
, NULL
,
3597 if (ret
> 0 && !overwrite
&& ext4_test_inode_state(inode
,
3598 EXT4_STATE_DIO_UNWRITTEN
)) {
3601 * for non AIO case, since the IO is already
3602 * completed, we could do the conversion right here
3604 err
= ext4_convert_unwritten_extents(NULL
, inode
,
3608 ext4_clear_inode_state(inode
, EXT4_STATE_DIO_UNWRITTEN
);
3611 inode_dio_end(inode
);
3612 /* take i_mutex locking again if we do a ovewrite dio */
3616 if (ret
< 0 && final_size
> inode
->i_size
)
3617 ext4_truncate_failed_write(inode
);
3619 /* Handle extending of i_size after direct IO write */
3623 /* Credits for sb + inode write */
3624 handle
= ext4_journal_start(inode
, EXT4_HT_INODE
, 2);
3625 if (IS_ERR(handle
)) {
3626 /* This is really bad luck. We've written the data
3627 * but cannot extend i_size. Bail out and pretend
3628 * the write failed... */
3629 ret
= PTR_ERR(handle
);
3631 ext4_orphan_del(NULL
, inode
);
3636 ext4_orphan_del(handle
, inode
);
3638 loff_t end
= offset
+ ret
;
3639 if (end
> inode
->i_size
) {
3640 ei
->i_disksize
= end
;
3641 i_size_write(inode
, end
);
3643 * We're going to return a positive `ret'
3644 * here due to non-zero-length I/O, so there's
3645 * no way of reporting error returns from
3646 * ext4_mark_inode_dirty() to userspace. So
3649 ext4_mark_inode_dirty(handle
, inode
);
3652 err
= ext4_journal_stop(handle
);
3660 static ssize_t
ext4_direct_IO_read(struct kiocb
*iocb
, struct iov_iter
*iter
)
3662 struct address_space
*mapping
= iocb
->ki_filp
->f_mapping
;
3663 struct inode
*inode
= mapping
->host
;
3664 size_t count
= iov_iter_count(iter
);
3668 * Shared inode_lock is enough for us - it protects against concurrent
3669 * writes & truncates and since we take care of writing back page cache,
3670 * we are protected against page writeback as well.
3672 inode_lock_shared(inode
);
3673 ret
= filemap_write_and_wait_range(mapping
, iocb
->ki_pos
,
3674 iocb
->ki_pos
+ count
);
3677 ret
= __blockdev_direct_IO(iocb
, inode
, inode
->i_sb
->s_bdev
,
3678 iter
, ext4_dio_get_block
, NULL
, NULL
, 0);
3680 inode_unlock_shared(inode
);
3684 static ssize_t
ext4_direct_IO(struct kiocb
*iocb
, struct iov_iter
*iter
)
3686 struct file
*file
= iocb
->ki_filp
;
3687 struct inode
*inode
= file
->f_mapping
->host
;
3688 size_t count
= iov_iter_count(iter
);
3689 loff_t offset
= iocb
->ki_pos
;
3692 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3693 if (ext4_encrypted_inode(inode
) && S_ISREG(inode
->i_mode
))
3698 * If we are doing data journalling we don't support O_DIRECT
3700 if (ext4_should_journal_data(inode
))
3703 /* Let buffer I/O handle the inline data case. */
3704 if (ext4_has_inline_data(inode
))
3707 /* DAX uses iomap path now */
3708 if (WARN_ON_ONCE(IS_DAX(inode
)))
3711 trace_ext4_direct_IO_enter(inode
, offset
, count
, iov_iter_rw(iter
));
3712 if (iov_iter_rw(iter
) == READ
)
3713 ret
= ext4_direct_IO_read(iocb
, iter
);
3715 ret
= ext4_direct_IO_write(iocb
, iter
);
3716 trace_ext4_direct_IO_exit(inode
, offset
, count
, iov_iter_rw(iter
), ret
);
3721 * Pages can be marked dirty completely asynchronously from ext4's journalling
3722 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3723 * much here because ->set_page_dirty is called under VFS locks. The page is
3724 * not necessarily locked.
3726 * We cannot just dirty the page and leave attached buffers clean, because the
3727 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3728 * or jbddirty because all the journalling code will explode.
3730 * So what we do is to mark the page "pending dirty" and next time writepage
3731 * is called, propagate that into the buffers appropriately.
3733 static int ext4_journalled_set_page_dirty(struct page
*page
)
3735 SetPageChecked(page
);
3736 return __set_page_dirty_nobuffers(page
);
3739 static int ext4_set_page_dirty(struct page
*page
)
3741 WARN_ON_ONCE(!PageLocked(page
) && !PageDirty(page
));
3742 WARN_ON_ONCE(!page_has_buffers(page
));
3743 return __set_page_dirty_buffers(page
);
3746 static const struct address_space_operations ext4_aops
= {
3747 .readpage
= ext4_readpage
,
3748 .readpages
= ext4_readpages
,
3749 .writepage
= ext4_writepage
,
3750 .writepages
= ext4_writepages
,
3751 .write_begin
= ext4_write_begin
,
3752 .write_end
= ext4_write_end
,
3753 .set_page_dirty
= ext4_set_page_dirty
,
3755 .invalidatepage
= ext4_invalidatepage
,
3756 .releasepage
= ext4_releasepage
,
3757 .direct_IO
= ext4_direct_IO
,
3758 .migratepage
= buffer_migrate_page
,
3759 .is_partially_uptodate
= block_is_partially_uptodate
,
3760 .error_remove_page
= generic_error_remove_page
,
3763 static const struct address_space_operations ext4_journalled_aops
= {
3764 .readpage
= ext4_readpage
,
3765 .readpages
= ext4_readpages
,
3766 .writepage
= ext4_writepage
,
3767 .writepages
= ext4_writepages
,
3768 .write_begin
= ext4_write_begin
,
3769 .write_end
= ext4_journalled_write_end
,
3770 .set_page_dirty
= ext4_journalled_set_page_dirty
,
3772 .invalidatepage
= ext4_journalled_invalidatepage
,
3773 .releasepage
= ext4_releasepage
,
3774 .direct_IO
= ext4_direct_IO
,
3775 .is_partially_uptodate
= block_is_partially_uptodate
,
3776 .error_remove_page
= generic_error_remove_page
,
3779 static const struct address_space_operations ext4_da_aops
= {
3780 .readpage
= ext4_readpage
,
3781 .readpages
= ext4_readpages
,
3782 .writepage
= ext4_writepage
,
3783 .writepages
= ext4_writepages
,
3784 .write_begin
= ext4_da_write_begin
,
3785 .write_end
= ext4_da_write_end
,
3786 .set_page_dirty
= ext4_set_page_dirty
,
3788 .invalidatepage
= ext4_da_invalidatepage
,
3789 .releasepage
= ext4_releasepage
,
3790 .direct_IO
= ext4_direct_IO
,
3791 .migratepage
= buffer_migrate_page
,
3792 .is_partially_uptodate
= block_is_partially_uptodate
,
3793 .error_remove_page
= generic_error_remove_page
,
3796 void ext4_set_aops(struct inode
*inode
)
3798 switch (ext4_inode_journal_mode(inode
)) {
3799 case EXT4_INODE_ORDERED_DATA_MODE
:
3800 case EXT4_INODE_WRITEBACK_DATA_MODE
:
3802 case EXT4_INODE_JOURNAL_DATA_MODE
:
3803 inode
->i_mapping
->a_ops
= &ext4_journalled_aops
;
3808 if (test_opt(inode
->i_sb
, DELALLOC
))
3809 inode
->i_mapping
->a_ops
= &ext4_da_aops
;
3811 inode
->i_mapping
->a_ops
= &ext4_aops
;
3814 static int __ext4_block_zero_page_range(handle_t
*handle
,
3815 struct address_space
*mapping
, loff_t from
, loff_t length
)
3817 ext4_fsblk_t index
= from
>> PAGE_SHIFT
;
3818 unsigned offset
= from
& (PAGE_SIZE
-1);
3819 unsigned blocksize
, pos
;
3821 struct inode
*inode
= mapping
->host
;
3822 struct buffer_head
*bh
;
3826 page
= find_or_create_page(mapping
, from
>> PAGE_SHIFT
,
3827 mapping_gfp_constraint(mapping
, ~__GFP_FS
));
3831 blocksize
= inode
->i_sb
->s_blocksize
;
3833 iblock
= index
<< (PAGE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
3835 if (!page_has_buffers(page
))
3836 create_empty_buffers(page
, blocksize
, 0);
3838 /* Find the buffer that contains "offset" */
3839 bh
= page_buffers(page
);
3841 while (offset
>= pos
) {
3842 bh
= bh
->b_this_page
;
3846 if (buffer_freed(bh
)) {
3847 BUFFER_TRACE(bh
, "freed: skip");
3850 if (!buffer_mapped(bh
)) {
3851 BUFFER_TRACE(bh
, "unmapped");
3852 ext4_get_block(inode
, iblock
, bh
, 0);
3853 /* unmapped? It's a hole - nothing to do */
3854 if (!buffer_mapped(bh
)) {
3855 BUFFER_TRACE(bh
, "still unmapped");
3860 /* Ok, it's mapped. Make sure it's up-to-date */
3861 if (PageUptodate(page
))
3862 set_buffer_uptodate(bh
);
3864 if (!buffer_uptodate(bh
)) {
3866 ll_rw_block(REQ_OP_READ
, 0, 1, &bh
);
3868 /* Uhhuh. Read error. Complain and punt. */
3869 if (!buffer_uptodate(bh
))
3871 if (S_ISREG(inode
->i_mode
) &&
3872 ext4_encrypted_inode(inode
)) {
3873 /* We expect the key to be set. */
3874 BUG_ON(!fscrypt_has_encryption_key(inode
));
3875 BUG_ON(blocksize
!= PAGE_SIZE
);
3876 WARN_ON_ONCE(fscrypt_decrypt_page(page
->mapping
->host
,
3877 page
, PAGE_SIZE
, 0, page
->index
));
3880 if (ext4_should_journal_data(inode
)) {
3881 BUFFER_TRACE(bh
, "get write access");
3882 err
= ext4_journal_get_write_access(handle
, bh
);
3886 zero_user(page
, offset
, length
);
3887 BUFFER_TRACE(bh
, "zeroed end of block");
3889 if (ext4_should_journal_data(inode
)) {
3890 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
3893 mark_buffer_dirty(bh
);
3894 if (ext4_should_order_data(inode
))
3895 err
= ext4_jbd2_inode_add_write(handle
, inode
);
3905 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3906 * starting from file offset 'from'. The range to be zero'd must
3907 * be contained with in one block. If the specified range exceeds
3908 * the end of the block it will be shortened to end of the block
3909 * that cooresponds to 'from'
3911 static int ext4_block_zero_page_range(handle_t
*handle
,
3912 struct address_space
*mapping
, loff_t from
, loff_t length
)
3914 struct inode
*inode
= mapping
->host
;
3915 unsigned offset
= from
& (PAGE_SIZE
-1);
3916 unsigned blocksize
= inode
->i_sb
->s_blocksize
;
3917 unsigned max
= blocksize
- (offset
& (blocksize
- 1));
3920 * correct length if it does not fall between
3921 * 'from' and the end of the block
3923 if (length
> max
|| length
< 0)
3926 if (IS_DAX(inode
)) {
3927 return iomap_zero_range(inode
, from
, length
, NULL
,
3930 return __ext4_block_zero_page_range(handle
, mapping
, from
, length
);
3934 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3935 * up to the end of the block which corresponds to `from'.
3936 * This required during truncate. We need to physically zero the tail end
3937 * of that block so it doesn't yield old data if the file is later grown.
3939 static int ext4_block_truncate_page(handle_t
*handle
,
3940 struct address_space
*mapping
, loff_t from
)
3942 unsigned offset
= from
& (PAGE_SIZE
-1);
3945 struct inode
*inode
= mapping
->host
;
3947 /* If we are processing an encrypted inode during orphan list handling */
3948 if (ext4_encrypted_inode(inode
) && !fscrypt_has_encryption_key(inode
))
3951 blocksize
= inode
->i_sb
->s_blocksize
;
3952 length
= blocksize
- (offset
& (blocksize
- 1));
3954 return ext4_block_zero_page_range(handle
, mapping
, from
, length
);
3957 int ext4_zero_partial_blocks(handle_t
*handle
, struct inode
*inode
,
3958 loff_t lstart
, loff_t length
)
3960 struct super_block
*sb
= inode
->i_sb
;
3961 struct address_space
*mapping
= inode
->i_mapping
;
3962 unsigned partial_start
, partial_end
;
3963 ext4_fsblk_t start
, end
;
3964 loff_t byte_end
= (lstart
+ length
- 1);
3967 partial_start
= lstart
& (sb
->s_blocksize
- 1);
3968 partial_end
= byte_end
& (sb
->s_blocksize
- 1);
3970 start
= lstart
>> sb
->s_blocksize_bits
;
3971 end
= byte_end
>> sb
->s_blocksize_bits
;
3973 /* Handle partial zero within the single block */
3975 (partial_start
|| (partial_end
!= sb
->s_blocksize
- 1))) {
3976 err
= ext4_block_zero_page_range(handle
, mapping
,
3980 /* Handle partial zero out on the start of the range */
3981 if (partial_start
) {
3982 err
= ext4_block_zero_page_range(handle
, mapping
,
3983 lstart
, sb
->s_blocksize
);
3987 /* Handle partial zero out on the end of the range */
3988 if (partial_end
!= sb
->s_blocksize
- 1)
3989 err
= ext4_block_zero_page_range(handle
, mapping
,
3990 byte_end
- partial_end
,
3995 int ext4_can_truncate(struct inode
*inode
)
3997 if (S_ISREG(inode
->i_mode
))
3999 if (S_ISDIR(inode
->i_mode
))
4001 if (S_ISLNK(inode
->i_mode
))
4002 return !ext4_inode_is_fast_symlink(inode
);
4007 * We have to make sure i_disksize gets properly updated before we truncate
4008 * page cache due to hole punching or zero range. Otherwise i_disksize update
4009 * can get lost as it may have been postponed to submission of writeback but
4010 * that will never happen after we truncate page cache.
4012 int ext4_update_disksize_before_punch(struct inode
*inode
, loff_t offset
,
4016 loff_t size
= i_size_read(inode
);
4018 WARN_ON(!inode_is_locked(inode
));
4019 if (offset
> size
|| offset
+ len
< size
)
4022 if (EXT4_I(inode
)->i_disksize
>= size
)
4025 handle
= ext4_journal_start(inode
, EXT4_HT_MISC
, 1);
4027 return PTR_ERR(handle
);
4028 ext4_update_i_disksize(inode
, size
);
4029 ext4_mark_inode_dirty(handle
, inode
);
4030 ext4_journal_stop(handle
);
4036 * ext4_punch_hole: punches a hole in a file by releasing the blocks
4037 * associated with the given offset and length
4039 * @inode: File inode
4040 * @offset: The offset where the hole will begin
4041 * @len: The length of the hole
4043 * Returns: 0 on success or negative on failure
4046 int ext4_punch_hole(struct inode
*inode
, loff_t offset
, loff_t length
)
4048 struct super_block
*sb
= inode
->i_sb
;
4049 ext4_lblk_t first_block
, stop_block
;
4050 struct address_space
*mapping
= inode
->i_mapping
;
4051 loff_t first_block_offset
, last_block_offset
;
4053 unsigned int credits
;
4056 if (!S_ISREG(inode
->i_mode
))
4059 trace_ext4_punch_hole(inode
, offset
, length
, 0);
4062 * Write out all dirty pages to avoid race conditions
4063 * Then release them.
4065 if (mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
)) {
4066 ret
= filemap_write_and_wait_range(mapping
, offset
,
4067 offset
+ length
- 1);
4074 /* No need to punch hole beyond i_size */
4075 if (offset
>= inode
->i_size
)
4079 * If the hole extends beyond i_size, set the hole
4080 * to end after the page that contains i_size
4082 if (offset
+ length
> inode
->i_size
) {
4083 length
= inode
->i_size
+
4084 PAGE_SIZE
- (inode
->i_size
& (PAGE_SIZE
- 1)) -
4088 if (offset
& (sb
->s_blocksize
- 1) ||
4089 (offset
+ length
) & (sb
->s_blocksize
- 1)) {
4091 * Attach jinode to inode for jbd2 if we do any zeroing of
4094 ret
= ext4_inode_attach_jinode(inode
);
4100 /* Wait all existing dio workers, newcomers will block on i_mutex */
4101 ext4_inode_block_unlocked_dio(inode
);
4102 inode_dio_wait(inode
);
4105 * Prevent page faults from reinstantiating pages we have released from
4108 down_write(&EXT4_I(inode
)->i_mmap_sem
);
4109 first_block_offset
= round_up(offset
, sb
->s_blocksize
);
4110 last_block_offset
= round_down((offset
+ length
), sb
->s_blocksize
) - 1;
4112 /* Now release the pages and zero block aligned part of pages*/
4113 if (last_block_offset
> first_block_offset
) {
4114 ret
= ext4_update_disksize_before_punch(inode
, offset
, length
);
4117 truncate_pagecache_range(inode
, first_block_offset
,
4121 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
4122 credits
= ext4_writepage_trans_blocks(inode
);
4124 credits
= ext4_blocks_for_truncate(inode
);
4125 handle
= ext4_journal_start(inode
, EXT4_HT_TRUNCATE
, credits
);
4126 if (IS_ERR(handle
)) {
4127 ret
= PTR_ERR(handle
);
4128 ext4_std_error(sb
, ret
);
4132 ret
= ext4_zero_partial_blocks(handle
, inode
, offset
,
4137 first_block
= (offset
+ sb
->s_blocksize
- 1) >>
4138 EXT4_BLOCK_SIZE_BITS(sb
);
4139 stop_block
= (offset
+ length
) >> EXT4_BLOCK_SIZE_BITS(sb
);
4141 /* If there are no blocks to remove, return now */
4142 if (first_block
>= stop_block
)
4145 down_write(&EXT4_I(inode
)->i_data_sem
);
4146 ext4_discard_preallocations(inode
);
4148 ret
= ext4_es_remove_extent(inode
, first_block
,
4149 stop_block
- first_block
);
4151 up_write(&EXT4_I(inode
)->i_data_sem
);
4155 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
4156 ret
= ext4_ext_remove_space(inode
, first_block
,
4159 ret
= ext4_ind_remove_space(handle
, inode
, first_block
,
4162 up_write(&EXT4_I(inode
)->i_data_sem
);
4164 ext4_handle_sync(handle
);
4166 inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
4167 ext4_mark_inode_dirty(handle
, inode
);
4169 ext4_journal_stop(handle
);
4171 up_write(&EXT4_I(inode
)->i_mmap_sem
);
4172 ext4_inode_resume_unlocked_dio(inode
);
4174 inode_unlock(inode
);
4178 int ext4_inode_attach_jinode(struct inode
*inode
)
4180 struct ext4_inode_info
*ei
= EXT4_I(inode
);
4181 struct jbd2_inode
*jinode
;
4183 if (ei
->jinode
|| !EXT4_SB(inode
->i_sb
)->s_journal
)
4186 jinode
= jbd2_alloc_inode(GFP_KERNEL
);
4187 spin_lock(&inode
->i_lock
);
4190 spin_unlock(&inode
->i_lock
);
4193 ei
->jinode
= jinode
;
4194 jbd2_journal_init_jbd_inode(ei
->jinode
, inode
);
4197 spin_unlock(&inode
->i_lock
);
4198 if (unlikely(jinode
!= NULL
))
4199 jbd2_free_inode(jinode
);
4206 * We block out ext4_get_block() block instantiations across the entire
4207 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4208 * simultaneously on behalf of the same inode.
4210 * As we work through the truncate and commit bits of it to the journal there
4211 * is one core, guiding principle: the file's tree must always be consistent on
4212 * disk. We must be able to restart the truncate after a crash.
4214 * The file's tree may be transiently inconsistent in memory (although it
4215 * probably isn't), but whenever we close off and commit a journal transaction,
4216 * the contents of (the filesystem + the journal) must be consistent and
4217 * restartable. It's pretty simple, really: bottom up, right to left (although
4218 * left-to-right works OK too).
4220 * Note that at recovery time, journal replay occurs *before* the restart of
4221 * truncate against the orphan inode list.
4223 * The committed inode has the new, desired i_size (which is the same as
4224 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4225 * that this inode's truncate did not complete and it will again call
4226 * ext4_truncate() to have another go. So there will be instantiated blocks
4227 * to the right of the truncation point in a crashed ext4 filesystem. But
4228 * that's fine - as long as they are linked from the inode, the post-crash
4229 * ext4_truncate() run will find them and release them.
4231 int ext4_truncate(struct inode
*inode
)
4233 struct ext4_inode_info
*ei
= EXT4_I(inode
);
4234 unsigned int credits
;
4237 struct address_space
*mapping
= inode
->i_mapping
;
4240 * There is a possibility that we're either freeing the inode
4241 * or it's a completely new inode. In those cases we might not
4242 * have i_mutex locked because it's not necessary.
4244 if (!(inode
->i_state
& (I_NEW
|I_FREEING
)))
4245 WARN_ON(!inode_is_locked(inode
));
4246 trace_ext4_truncate_enter(inode
);
4248 if (!ext4_can_truncate(inode
))
4251 ext4_clear_inode_flag(inode
, EXT4_INODE_EOFBLOCKS
);
4253 if (inode
->i_size
== 0 && !test_opt(inode
->i_sb
, NO_AUTO_DA_ALLOC
))
4254 ext4_set_inode_state(inode
, EXT4_STATE_DA_ALLOC_CLOSE
);
4256 if (ext4_has_inline_data(inode
)) {
4259 err
= ext4_inline_data_truncate(inode
, &has_inline
);
4266 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4267 if (inode
->i_size
& (inode
->i_sb
->s_blocksize
- 1)) {
4268 if (ext4_inode_attach_jinode(inode
) < 0)
4272 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
4273 credits
= ext4_writepage_trans_blocks(inode
);
4275 credits
= ext4_blocks_for_truncate(inode
);
4277 handle
= ext4_journal_start(inode
, EXT4_HT_TRUNCATE
, credits
);
4279 return PTR_ERR(handle
);
4281 if (inode
->i_size
& (inode
->i_sb
->s_blocksize
- 1))
4282 ext4_block_truncate_page(handle
, mapping
, inode
->i_size
);
4285 * We add the inode to the orphan list, so that if this
4286 * truncate spans multiple transactions, and we crash, we will
4287 * resume the truncate when the filesystem recovers. It also
4288 * marks the inode dirty, to catch the new size.
4290 * Implication: the file must always be in a sane, consistent
4291 * truncatable state while each transaction commits.
4293 err
= ext4_orphan_add(handle
, inode
);
4297 down_write(&EXT4_I(inode
)->i_data_sem
);
4299 ext4_discard_preallocations(inode
);
4301 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
4302 err
= ext4_ext_truncate(handle
, inode
);
4304 ext4_ind_truncate(handle
, inode
);
4306 up_write(&ei
->i_data_sem
);
4311 ext4_handle_sync(handle
);
4315 * If this was a simple ftruncate() and the file will remain alive,
4316 * then we need to clear up the orphan record which we created above.
4317 * However, if this was a real unlink then we were called by
4318 * ext4_evict_inode(), and we allow that function to clean up the
4319 * orphan info for us.
4322 ext4_orphan_del(handle
, inode
);
4324 inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
4325 ext4_mark_inode_dirty(handle
, inode
);
4326 ext4_journal_stop(handle
);
4328 trace_ext4_truncate_exit(inode
);
4333 * ext4_get_inode_loc returns with an extra refcount against the inode's
4334 * underlying buffer_head on success. If 'in_mem' is true, we have all
4335 * data in memory that is needed to recreate the on-disk version of this
4338 static int __ext4_get_inode_loc(struct inode
*inode
,
4339 struct ext4_iloc
*iloc
, int in_mem
)
4341 struct ext4_group_desc
*gdp
;
4342 struct buffer_head
*bh
;
4343 struct super_block
*sb
= inode
->i_sb
;
4345 int inodes_per_block
, inode_offset
;
4348 if (!ext4_valid_inum(sb
, inode
->i_ino
))
4349 return -EFSCORRUPTED
;
4351 iloc
->block_group
= (inode
->i_ino
- 1) / EXT4_INODES_PER_GROUP(sb
);
4352 gdp
= ext4_get_group_desc(sb
, iloc
->block_group
, NULL
);
4357 * Figure out the offset within the block group inode table
4359 inodes_per_block
= EXT4_SB(sb
)->s_inodes_per_block
;
4360 inode_offset
= ((inode
->i_ino
- 1) %
4361 EXT4_INODES_PER_GROUP(sb
));
4362 block
= ext4_inode_table(sb
, gdp
) + (inode_offset
/ inodes_per_block
);
4363 iloc
->offset
= (inode_offset
% inodes_per_block
) * EXT4_INODE_SIZE(sb
);
4365 bh
= sb_getblk(sb
, block
);
4368 if (!buffer_uptodate(bh
)) {
4372 * If the buffer has the write error flag, we have failed
4373 * to write out another inode in the same block. In this
4374 * case, we don't have to read the block because we may
4375 * read the old inode data successfully.
4377 if (buffer_write_io_error(bh
) && !buffer_uptodate(bh
))
4378 set_buffer_uptodate(bh
);
4380 if (buffer_uptodate(bh
)) {
4381 /* someone brought it uptodate while we waited */
4387 * If we have all information of the inode in memory and this
4388 * is the only valid inode in the block, we need not read the
4392 struct buffer_head
*bitmap_bh
;
4395 start
= inode_offset
& ~(inodes_per_block
- 1);
4397 /* Is the inode bitmap in cache? */
4398 bitmap_bh
= sb_getblk(sb
, ext4_inode_bitmap(sb
, gdp
));
4399 if (unlikely(!bitmap_bh
))
4403 * If the inode bitmap isn't in cache then the
4404 * optimisation may end up performing two reads instead
4405 * of one, so skip it.
4407 if (!buffer_uptodate(bitmap_bh
)) {
4411 for (i
= start
; i
< start
+ inodes_per_block
; i
++) {
4412 if (i
== inode_offset
)
4414 if (ext4_test_bit(i
, bitmap_bh
->b_data
))
4418 if (i
== start
+ inodes_per_block
) {
4419 /* all other inodes are free, so skip I/O */
4420 memset(bh
->b_data
, 0, bh
->b_size
);
4421 set_buffer_uptodate(bh
);
4429 * If we need to do any I/O, try to pre-readahead extra
4430 * blocks from the inode table.
4432 if (EXT4_SB(sb
)->s_inode_readahead_blks
) {
4433 ext4_fsblk_t b
, end
, table
;
4435 __u32 ra_blks
= EXT4_SB(sb
)->s_inode_readahead_blks
;
4437 table
= ext4_inode_table(sb
, gdp
);
4438 /* s_inode_readahead_blks is always a power of 2 */
4439 b
= block
& ~((ext4_fsblk_t
) ra_blks
- 1);
4443 num
= EXT4_INODES_PER_GROUP(sb
);
4444 if (ext4_has_group_desc_csum(sb
))
4445 num
-= ext4_itable_unused_count(sb
, gdp
);
4446 table
+= num
/ inodes_per_block
;
4450 sb_breadahead(sb
, b
++);
4454 * There are other valid inodes in the buffer, this inode
4455 * has in-inode xattrs, or we don't have this inode in memory.
4456 * Read the block from disk.
4458 trace_ext4_load_inode(inode
);
4460 bh
->b_end_io
= end_buffer_read_sync
;
4461 submit_bh(REQ_OP_READ
, REQ_META
| REQ_PRIO
, bh
);
4463 if (!buffer_uptodate(bh
)) {
4464 EXT4_ERROR_INODE_BLOCK(inode
, block
,
4465 "unable to read itable block");
4475 int ext4_get_inode_loc(struct inode
*inode
, struct ext4_iloc
*iloc
)
4477 /* We have all inode data except xattrs in memory here. */
4478 return __ext4_get_inode_loc(inode
, iloc
,
4479 !ext4_test_inode_state(inode
, EXT4_STATE_XATTR
));
4482 void ext4_set_inode_flags(struct inode
*inode
)
4484 unsigned int flags
= EXT4_I(inode
)->i_flags
;
4485 unsigned int new_fl
= 0;
4487 if (flags
& EXT4_SYNC_FL
)
4489 if (flags
& EXT4_APPEND_FL
)
4491 if (flags
& EXT4_IMMUTABLE_FL
)
4492 new_fl
|= S_IMMUTABLE
;
4493 if (flags
& EXT4_NOATIME_FL
)
4494 new_fl
|= S_NOATIME
;
4495 if (flags
& EXT4_DIRSYNC_FL
)
4496 new_fl
|= S_DIRSYNC
;
4497 if (test_opt(inode
->i_sb
, DAX
) && S_ISREG(inode
->i_mode
) &&
4498 !ext4_should_journal_data(inode
) && !ext4_has_inline_data(inode
) &&
4499 !ext4_encrypted_inode(inode
))
4501 inode_set_flags(inode
, new_fl
,
4502 S_SYNC
|S_APPEND
|S_IMMUTABLE
|S_NOATIME
|S_DIRSYNC
|S_DAX
);
4505 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4506 void ext4_get_inode_flags(struct ext4_inode_info
*ei
)
4508 unsigned int vfs_fl
;
4509 unsigned long old_fl
, new_fl
;
4512 vfs_fl
= ei
->vfs_inode
.i_flags
;
4513 old_fl
= ei
->i_flags
;
4514 new_fl
= old_fl
& ~(EXT4_SYNC_FL
|EXT4_APPEND_FL
|
4515 EXT4_IMMUTABLE_FL
|EXT4_NOATIME_FL
|
4517 if (vfs_fl
& S_SYNC
)
4518 new_fl
|= EXT4_SYNC_FL
;
4519 if (vfs_fl
& S_APPEND
)
4520 new_fl
|= EXT4_APPEND_FL
;
4521 if (vfs_fl
& S_IMMUTABLE
)
4522 new_fl
|= EXT4_IMMUTABLE_FL
;
4523 if (vfs_fl
& S_NOATIME
)
4524 new_fl
|= EXT4_NOATIME_FL
;
4525 if (vfs_fl
& S_DIRSYNC
)
4526 new_fl
|= EXT4_DIRSYNC_FL
;
4527 } while (cmpxchg(&ei
->i_flags
, old_fl
, new_fl
) != old_fl
);
4530 static blkcnt_t
ext4_inode_blocks(struct ext4_inode
*raw_inode
,
4531 struct ext4_inode_info
*ei
)
4534 struct inode
*inode
= &(ei
->vfs_inode
);
4535 struct super_block
*sb
= inode
->i_sb
;
4537 if (ext4_has_feature_huge_file(sb
)) {
4538 /* we are using combined 48 bit field */
4539 i_blocks
= ((u64
)le16_to_cpu(raw_inode
->i_blocks_high
)) << 32 |
4540 le32_to_cpu(raw_inode
->i_blocks_lo
);
4541 if (ext4_test_inode_flag(inode
, EXT4_INODE_HUGE_FILE
)) {
4542 /* i_blocks represent file system block size */
4543 return i_blocks
<< (inode
->i_blkbits
- 9);
4548 return le32_to_cpu(raw_inode
->i_blocks_lo
);
4552 static inline void ext4_iget_extra_inode(struct inode
*inode
,
4553 struct ext4_inode
*raw_inode
,
4554 struct ext4_inode_info
*ei
)
4556 __le32
*magic
= (void *)raw_inode
+
4557 EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
;
4558 if (EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
+ sizeof(__le32
) <=
4559 EXT4_INODE_SIZE(inode
->i_sb
) &&
4560 *magic
== cpu_to_le32(EXT4_XATTR_MAGIC
)) {
4561 ext4_set_inode_state(inode
, EXT4_STATE_XATTR
);
4562 ext4_find_inline_data_nolock(inode
);
4564 EXT4_I(inode
)->i_inline_off
= 0;
4567 int ext4_get_projid(struct inode
*inode
, kprojid_t
*projid
)
4569 if (!ext4_has_feature_project(inode
->i_sb
))
4571 *projid
= EXT4_I(inode
)->i_projid
;
4575 struct inode
*ext4_iget(struct super_block
*sb
, unsigned long ino
)
4577 struct ext4_iloc iloc
;
4578 struct ext4_inode
*raw_inode
;
4579 struct ext4_inode_info
*ei
;
4580 struct inode
*inode
;
4581 journal_t
*journal
= EXT4_SB(sb
)->s_journal
;
4589 inode
= iget_locked(sb
, ino
);
4591 return ERR_PTR(-ENOMEM
);
4592 if (!(inode
->i_state
& I_NEW
))
4598 ret
= __ext4_get_inode_loc(inode
, &iloc
, 0);
4601 raw_inode
= ext4_raw_inode(&iloc
);
4603 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
4604 ei
->i_extra_isize
= le16_to_cpu(raw_inode
->i_extra_isize
);
4605 if (EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
>
4606 EXT4_INODE_SIZE(inode
->i_sb
) ||
4607 (ei
->i_extra_isize
& 3)) {
4608 EXT4_ERROR_INODE(inode
,
4609 "bad extra_isize %u (inode size %u)",
4611 EXT4_INODE_SIZE(inode
->i_sb
));
4612 ret
= -EFSCORRUPTED
;
4616 ei
->i_extra_isize
= 0;
4618 /* Precompute checksum seed for inode metadata */
4619 if (ext4_has_metadata_csum(sb
)) {
4620 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
4622 __le32 inum
= cpu_to_le32(inode
->i_ino
);
4623 __le32 gen
= raw_inode
->i_generation
;
4624 csum
= ext4_chksum(sbi
, sbi
->s_csum_seed
, (__u8
*)&inum
,
4626 ei
->i_csum_seed
= ext4_chksum(sbi
, csum
, (__u8
*)&gen
,
4630 if (!ext4_inode_csum_verify(inode
, raw_inode
, ei
)) {
4631 EXT4_ERROR_INODE(inode
, "checksum invalid");
4636 inode
->i_mode
= le16_to_cpu(raw_inode
->i_mode
);
4637 i_uid
= (uid_t
)le16_to_cpu(raw_inode
->i_uid_low
);
4638 i_gid
= (gid_t
)le16_to_cpu(raw_inode
->i_gid_low
);
4639 if (ext4_has_feature_project(sb
) &&
4640 EXT4_INODE_SIZE(sb
) > EXT4_GOOD_OLD_INODE_SIZE
&&
4641 EXT4_FITS_IN_INODE(raw_inode
, ei
, i_projid
))
4642 i_projid
= (projid_t
)le32_to_cpu(raw_inode
->i_projid
);
4644 i_projid
= EXT4_DEF_PROJID
;
4646 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
4647 i_uid
|= le16_to_cpu(raw_inode
->i_uid_high
) << 16;
4648 i_gid
|= le16_to_cpu(raw_inode
->i_gid_high
) << 16;
4650 i_uid_write(inode
, i_uid
);
4651 i_gid_write(inode
, i_gid
);
4652 ei
->i_projid
= make_kprojid(&init_user_ns
, i_projid
);
4653 set_nlink(inode
, le16_to_cpu(raw_inode
->i_links_count
));
4655 ext4_clear_state_flags(ei
); /* Only relevant on 32-bit archs */
4656 ei
->i_inline_off
= 0;
4657 ei
->i_dir_start_lookup
= 0;
4658 ei
->i_dtime
= le32_to_cpu(raw_inode
->i_dtime
);
4659 /* We now have enough fields to check if the inode was active or not.
4660 * This is needed because nfsd might try to access dead inodes
4661 * the test is that same one that e2fsck uses
4662 * NeilBrown 1999oct15
4664 if (inode
->i_nlink
== 0) {
4665 if ((inode
->i_mode
== 0 ||
4666 !(EXT4_SB(inode
->i_sb
)->s_mount_state
& EXT4_ORPHAN_FS
)) &&
4667 ino
!= EXT4_BOOT_LOADER_INO
) {
4668 /* this inode is deleted */
4672 /* The only unlinked inodes we let through here have
4673 * valid i_mode and are being read by the orphan
4674 * recovery code: that's fine, we're about to complete
4675 * the process of deleting those.
4676 * OR it is the EXT4_BOOT_LOADER_INO which is
4677 * not initialized on a new filesystem. */
4679 ei
->i_flags
= le32_to_cpu(raw_inode
->i_flags
);
4680 inode
->i_blocks
= ext4_inode_blocks(raw_inode
, ei
);
4681 ei
->i_file_acl
= le32_to_cpu(raw_inode
->i_file_acl_lo
);
4682 if (ext4_has_feature_64bit(sb
))
4684 ((__u64
)le16_to_cpu(raw_inode
->i_file_acl_high
)) << 32;
4685 inode
->i_size
= ext4_isize(raw_inode
);
4686 if ((size
= i_size_read(inode
)) < 0) {
4687 EXT4_ERROR_INODE(inode
, "bad i_size value: %lld", size
);
4688 ret
= -EFSCORRUPTED
;
4691 ei
->i_disksize
= inode
->i_size
;
4693 ei
->i_reserved_quota
= 0;
4695 inode
->i_generation
= le32_to_cpu(raw_inode
->i_generation
);
4696 ei
->i_block_group
= iloc
.block_group
;
4697 ei
->i_last_alloc_group
= ~0;
4699 * NOTE! The in-memory inode i_data array is in little-endian order
4700 * even on big-endian machines: we do NOT byteswap the block numbers!
4702 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
4703 ei
->i_data
[block
] = raw_inode
->i_block
[block
];
4704 INIT_LIST_HEAD(&ei
->i_orphan
);
4707 * Set transaction id's of transactions that have to be committed
4708 * to finish f[data]sync. We set them to currently running transaction
4709 * as we cannot be sure that the inode or some of its metadata isn't
4710 * part of the transaction - the inode could have been reclaimed and
4711 * now it is reread from disk.
4714 transaction_t
*transaction
;
4717 read_lock(&journal
->j_state_lock
);
4718 if (journal
->j_running_transaction
)
4719 transaction
= journal
->j_running_transaction
;
4721 transaction
= journal
->j_committing_transaction
;
4723 tid
= transaction
->t_tid
;
4725 tid
= journal
->j_commit_sequence
;
4726 read_unlock(&journal
->j_state_lock
);
4727 ei
->i_sync_tid
= tid
;
4728 ei
->i_datasync_tid
= tid
;
4731 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
4732 if (ei
->i_extra_isize
== 0) {
4733 /* The extra space is currently unused. Use it. */
4734 BUILD_BUG_ON(sizeof(struct ext4_inode
) & 3);
4735 ei
->i_extra_isize
= sizeof(struct ext4_inode
) -
4736 EXT4_GOOD_OLD_INODE_SIZE
;
4738 ext4_iget_extra_inode(inode
, raw_inode
, ei
);
4742 EXT4_INODE_GET_XTIME(i_ctime
, inode
, raw_inode
);
4743 EXT4_INODE_GET_XTIME(i_mtime
, inode
, raw_inode
);
4744 EXT4_INODE_GET_XTIME(i_atime
, inode
, raw_inode
);
4745 EXT4_EINODE_GET_XTIME(i_crtime
, ei
, raw_inode
);
4747 if (likely(!test_opt2(inode
->i_sb
, HURD_COMPAT
))) {
4748 inode
->i_version
= le32_to_cpu(raw_inode
->i_disk_version
);
4749 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
4750 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
4752 (__u64
)(le32_to_cpu(raw_inode
->i_version_hi
)) << 32;
4757 if (ei
->i_file_acl
&&
4758 !ext4_data_block_valid(EXT4_SB(sb
), ei
->i_file_acl
, 1)) {
4759 EXT4_ERROR_INODE(inode
, "bad extended attribute block %llu",
4761 ret
= -EFSCORRUPTED
;
4763 } else if (!ext4_has_inline_data(inode
)) {
4764 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
4765 if ((S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
4766 (S_ISLNK(inode
->i_mode
) &&
4767 !ext4_inode_is_fast_symlink(inode
))))
4768 /* Validate extent which is part of inode */
4769 ret
= ext4_ext_check_inode(inode
);
4770 } else if (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
4771 (S_ISLNK(inode
->i_mode
) &&
4772 !ext4_inode_is_fast_symlink(inode
))) {
4773 /* Validate block references which are part of inode */
4774 ret
= ext4_ind_check_inode(inode
);
4780 if (S_ISREG(inode
->i_mode
)) {
4781 inode
->i_op
= &ext4_file_inode_operations
;
4782 inode
->i_fop
= &ext4_file_operations
;
4783 ext4_set_aops(inode
);
4784 } else if (S_ISDIR(inode
->i_mode
)) {
4785 inode
->i_op
= &ext4_dir_inode_operations
;
4786 inode
->i_fop
= &ext4_dir_operations
;
4787 } else if (S_ISLNK(inode
->i_mode
)) {
4788 if (ext4_encrypted_inode(inode
)) {
4789 inode
->i_op
= &ext4_encrypted_symlink_inode_operations
;
4790 ext4_set_aops(inode
);
4791 } else if (ext4_inode_is_fast_symlink(inode
)) {
4792 inode
->i_link
= (char *)ei
->i_data
;
4793 inode
->i_op
= &ext4_fast_symlink_inode_operations
;
4794 nd_terminate_link(ei
->i_data
, inode
->i_size
,
4795 sizeof(ei
->i_data
) - 1);
4797 inode
->i_op
= &ext4_symlink_inode_operations
;
4798 ext4_set_aops(inode
);
4800 inode_nohighmem(inode
);
4801 } else if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
) ||
4802 S_ISFIFO(inode
->i_mode
) || S_ISSOCK(inode
->i_mode
)) {
4803 inode
->i_op
= &ext4_special_inode_operations
;
4804 if (raw_inode
->i_block
[0])
4805 init_special_inode(inode
, inode
->i_mode
,
4806 old_decode_dev(le32_to_cpu(raw_inode
->i_block
[0])));
4808 init_special_inode(inode
, inode
->i_mode
,
4809 new_decode_dev(le32_to_cpu(raw_inode
->i_block
[1])));
4810 } else if (ino
== EXT4_BOOT_LOADER_INO
) {
4811 make_bad_inode(inode
);
4813 ret
= -EFSCORRUPTED
;
4814 EXT4_ERROR_INODE(inode
, "bogus i_mode (%o)", inode
->i_mode
);
4818 ext4_set_inode_flags(inode
);
4819 unlock_new_inode(inode
);
4825 return ERR_PTR(ret
);
4828 struct inode
*ext4_iget_normal(struct super_block
*sb
, unsigned long ino
)
4830 if (ino
< EXT4_FIRST_INO(sb
) && ino
!= EXT4_ROOT_INO
)
4831 return ERR_PTR(-EFSCORRUPTED
);
4832 return ext4_iget(sb
, ino
);
4835 static int ext4_inode_blocks_set(handle_t
*handle
,
4836 struct ext4_inode
*raw_inode
,
4837 struct ext4_inode_info
*ei
)
4839 struct inode
*inode
= &(ei
->vfs_inode
);
4840 u64 i_blocks
= inode
->i_blocks
;
4841 struct super_block
*sb
= inode
->i_sb
;
4843 if (i_blocks
<= ~0U) {
4845 * i_blocks can be represented in a 32 bit variable
4846 * as multiple of 512 bytes
4848 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
4849 raw_inode
->i_blocks_high
= 0;
4850 ext4_clear_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
4853 if (!ext4_has_feature_huge_file(sb
))
4856 if (i_blocks
<= 0xffffffffffffULL
) {
4858 * i_blocks can be represented in a 48 bit variable
4859 * as multiple of 512 bytes
4861 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
4862 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
4863 ext4_clear_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
4865 ext4_set_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
4866 /* i_block is stored in file system block size */
4867 i_blocks
= i_blocks
>> (inode
->i_blkbits
- 9);
4868 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
4869 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
4874 struct other_inode
{
4875 unsigned long orig_ino
;
4876 struct ext4_inode
*raw_inode
;
4879 static int other_inode_match(struct inode
* inode
, unsigned long ino
,
4882 struct other_inode
*oi
= (struct other_inode
*) data
;
4884 if ((inode
->i_ino
!= ino
) ||
4885 (inode
->i_state
& (I_FREEING
| I_WILL_FREE
| I_NEW
|
4886 I_DIRTY_SYNC
| I_DIRTY_DATASYNC
)) ||
4887 ((inode
->i_state
& I_DIRTY_TIME
) == 0))
4889 spin_lock(&inode
->i_lock
);
4890 if (((inode
->i_state
& (I_FREEING
| I_WILL_FREE
| I_NEW
|
4891 I_DIRTY_SYNC
| I_DIRTY_DATASYNC
)) == 0) &&
4892 (inode
->i_state
& I_DIRTY_TIME
)) {
4893 struct ext4_inode_info
*ei
= EXT4_I(inode
);
4895 inode
->i_state
&= ~(I_DIRTY_TIME
| I_DIRTY_TIME_EXPIRED
);
4896 spin_unlock(&inode
->i_lock
);
4898 spin_lock(&ei
->i_raw_lock
);
4899 EXT4_INODE_SET_XTIME(i_ctime
, inode
, oi
->raw_inode
);
4900 EXT4_INODE_SET_XTIME(i_mtime
, inode
, oi
->raw_inode
);
4901 EXT4_INODE_SET_XTIME(i_atime
, inode
, oi
->raw_inode
);
4902 ext4_inode_csum_set(inode
, oi
->raw_inode
, ei
);
4903 spin_unlock(&ei
->i_raw_lock
);
4904 trace_ext4_other_inode_update_time(inode
, oi
->orig_ino
);
4907 spin_unlock(&inode
->i_lock
);
4912 * Opportunistically update the other time fields for other inodes in
4913 * the same inode table block.
4915 static void ext4_update_other_inodes_time(struct super_block
*sb
,
4916 unsigned long orig_ino
, char *buf
)
4918 struct other_inode oi
;
4920 int i
, inodes_per_block
= EXT4_SB(sb
)->s_inodes_per_block
;
4921 int inode_size
= EXT4_INODE_SIZE(sb
);
4923 oi
.orig_ino
= orig_ino
;
4925 * Calculate the first inode in the inode table block. Inode
4926 * numbers are one-based. That is, the first inode in a block
4927 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4929 ino
= ((orig_ino
- 1) & ~(inodes_per_block
- 1)) + 1;
4930 for (i
= 0; i
< inodes_per_block
; i
++, ino
++, buf
+= inode_size
) {
4931 if (ino
== orig_ino
)
4933 oi
.raw_inode
= (struct ext4_inode
*) buf
;
4934 (void) find_inode_nowait(sb
, ino
, other_inode_match
, &oi
);
4939 * Post the struct inode info into an on-disk inode location in the
4940 * buffer-cache. This gobbles the caller's reference to the
4941 * buffer_head in the inode location struct.
4943 * The caller must have write access to iloc->bh.
4945 static int ext4_do_update_inode(handle_t
*handle
,
4946 struct inode
*inode
,
4947 struct ext4_iloc
*iloc
)
4949 struct ext4_inode
*raw_inode
= ext4_raw_inode(iloc
);
4950 struct ext4_inode_info
*ei
= EXT4_I(inode
);
4951 struct buffer_head
*bh
= iloc
->bh
;
4952 struct super_block
*sb
= inode
->i_sb
;
4953 int err
= 0, rc
, block
;
4954 int need_datasync
= 0, set_large_file
= 0;
4959 spin_lock(&ei
->i_raw_lock
);
4961 /* For fields not tracked in the in-memory inode,
4962 * initialise them to zero for new inodes. */
4963 if (ext4_test_inode_state(inode
, EXT4_STATE_NEW
))
4964 memset(raw_inode
, 0, EXT4_SB(inode
->i_sb
)->s_inode_size
);
4966 ext4_get_inode_flags(ei
);
4967 raw_inode
->i_mode
= cpu_to_le16(inode
->i_mode
);
4968 i_uid
= i_uid_read(inode
);
4969 i_gid
= i_gid_read(inode
);
4970 i_projid
= from_kprojid(&init_user_ns
, ei
->i_projid
);
4971 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
4972 raw_inode
->i_uid_low
= cpu_to_le16(low_16_bits(i_uid
));
4973 raw_inode
->i_gid_low
= cpu_to_le16(low_16_bits(i_gid
));
4975 * Fix up interoperability with old kernels. Otherwise, old inodes get
4976 * re-used with the upper 16 bits of the uid/gid intact
4978 if (ei
->i_dtime
&& list_empty(&ei
->i_orphan
)) {
4979 raw_inode
->i_uid_high
= 0;
4980 raw_inode
->i_gid_high
= 0;
4982 raw_inode
->i_uid_high
=
4983 cpu_to_le16(high_16_bits(i_uid
));
4984 raw_inode
->i_gid_high
=
4985 cpu_to_le16(high_16_bits(i_gid
));
4988 raw_inode
->i_uid_low
= cpu_to_le16(fs_high2lowuid(i_uid
));
4989 raw_inode
->i_gid_low
= cpu_to_le16(fs_high2lowgid(i_gid
));
4990 raw_inode
->i_uid_high
= 0;
4991 raw_inode
->i_gid_high
= 0;
4993 raw_inode
->i_links_count
= cpu_to_le16(inode
->i_nlink
);
4995 EXT4_INODE_SET_XTIME(i_ctime
, inode
, raw_inode
);
4996 EXT4_INODE_SET_XTIME(i_mtime
, inode
, raw_inode
);
4997 EXT4_INODE_SET_XTIME(i_atime
, inode
, raw_inode
);
4998 EXT4_EINODE_SET_XTIME(i_crtime
, ei
, raw_inode
);
5000 err
= ext4_inode_blocks_set(handle
, raw_inode
, ei
);
5002 spin_unlock(&ei
->i_raw_lock
);
5005 raw_inode
->i_dtime
= cpu_to_le32(ei
->i_dtime
);
5006 raw_inode
->i_flags
= cpu_to_le32(ei
->i_flags
& 0xFFFFFFFF);
5007 if (likely(!test_opt2(inode
->i_sb
, HURD_COMPAT
)))
5008 raw_inode
->i_file_acl_high
=
5009 cpu_to_le16(ei
->i_file_acl
>> 32);
5010 raw_inode
->i_file_acl_lo
= cpu_to_le32(ei
->i_file_acl
);
5011 if (ei
->i_disksize
!= ext4_isize(raw_inode
)) {
5012 ext4_isize_set(raw_inode
, ei
->i_disksize
);
5015 if (ei
->i_disksize
> 0x7fffffffULL
) {
5016 if (!ext4_has_feature_large_file(sb
) ||
5017 EXT4_SB(sb
)->s_es
->s_rev_level
==
5018 cpu_to_le32(EXT4_GOOD_OLD_REV
))
5021 raw_inode
->i_generation
= cpu_to_le32(inode
->i_generation
);
5022 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
5023 if (old_valid_dev(inode
->i_rdev
)) {
5024 raw_inode
->i_block
[0] =
5025 cpu_to_le32(old_encode_dev(inode
->i_rdev
));
5026 raw_inode
->i_block
[1] = 0;
5028 raw_inode
->i_block
[0] = 0;
5029 raw_inode
->i_block
[1] =
5030 cpu_to_le32(new_encode_dev(inode
->i_rdev
));
5031 raw_inode
->i_block
[2] = 0;
5033 } else if (!ext4_has_inline_data(inode
)) {
5034 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
5035 raw_inode
->i_block
[block
] = ei
->i_data
[block
];
5038 if (likely(!test_opt2(inode
->i_sb
, HURD_COMPAT
))) {
5039 raw_inode
->i_disk_version
= cpu_to_le32(inode
->i_version
);
5040 if (ei
->i_extra_isize
) {
5041 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
5042 raw_inode
->i_version_hi
=
5043 cpu_to_le32(inode
->i_version
>> 32);
5044 raw_inode
->i_extra_isize
=
5045 cpu_to_le16(ei
->i_extra_isize
);
5049 BUG_ON(!ext4_has_feature_project(inode
->i_sb
) &&
5050 i_projid
!= EXT4_DEF_PROJID
);
5052 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
&&
5053 EXT4_FITS_IN_INODE(raw_inode
, ei
, i_projid
))
5054 raw_inode
->i_projid
= cpu_to_le32(i_projid
);
5056 ext4_inode_csum_set(inode
, raw_inode
, ei
);
5057 spin_unlock(&ei
->i_raw_lock
);
5058 if (inode
->i_sb
->s_flags
& MS_LAZYTIME
)
5059 ext4_update_other_inodes_time(inode
->i_sb
, inode
->i_ino
,
5062 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
5063 rc
= ext4_handle_dirty_metadata(handle
, NULL
, bh
);
5066 ext4_clear_inode_state(inode
, EXT4_STATE_NEW
);
5067 if (set_large_file
) {
5068 BUFFER_TRACE(EXT4_SB(sb
)->s_sbh
, "get write access");
5069 err
= ext4_journal_get_write_access(handle
, EXT4_SB(sb
)->s_sbh
);
5072 ext4_update_dynamic_rev(sb
);
5073 ext4_set_feature_large_file(sb
);
5074 ext4_handle_sync(handle
);
5075 err
= ext4_handle_dirty_super(handle
, sb
);
5077 ext4_update_inode_fsync_trans(handle
, inode
, need_datasync
);
5080 ext4_std_error(inode
->i_sb
, err
);
5085 * ext4_write_inode()
5087 * We are called from a few places:
5089 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5090 * Here, there will be no transaction running. We wait for any running
5091 * transaction to commit.
5093 * - Within flush work (sys_sync(), kupdate and such).
5094 * We wait on commit, if told to.
5096 * - Within iput_final() -> write_inode_now()
5097 * We wait on commit, if told to.
5099 * In all cases it is actually safe for us to return without doing anything,
5100 * because the inode has been copied into a raw inode buffer in
5101 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5104 * Note that we are absolutely dependent upon all inode dirtiers doing the
5105 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5106 * which we are interested.
5108 * It would be a bug for them to not do this. The code:
5110 * mark_inode_dirty(inode)
5112 * inode->i_size = expr;
5114 * is in error because write_inode() could occur while `stuff()' is running,
5115 * and the new i_size will be lost. Plus the inode will no longer be on the
5116 * superblock's dirty inode list.
5118 int ext4_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
5122 if (WARN_ON_ONCE(current
->flags
& PF_MEMALLOC
))
5125 if (EXT4_SB(inode
->i_sb
)->s_journal
) {
5126 if (ext4_journal_current_handle()) {
5127 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5133 * No need to force transaction in WB_SYNC_NONE mode. Also
5134 * ext4_sync_fs() will force the commit after everything is
5137 if (wbc
->sync_mode
!= WB_SYNC_ALL
|| wbc
->for_sync
)
5140 err
= ext4_force_commit(inode
->i_sb
);
5142 struct ext4_iloc iloc
;
5144 err
= __ext4_get_inode_loc(inode
, &iloc
, 0);
5148 * sync(2) will flush the whole buffer cache. No need to do
5149 * it here separately for each inode.
5151 if (wbc
->sync_mode
== WB_SYNC_ALL
&& !wbc
->for_sync
)
5152 sync_dirty_buffer(iloc
.bh
);
5153 if (buffer_req(iloc
.bh
) && !buffer_uptodate(iloc
.bh
)) {
5154 EXT4_ERROR_INODE_BLOCK(inode
, iloc
.bh
->b_blocknr
,
5155 "IO error syncing inode");
5164 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5165 * buffers that are attached to a page stradding i_size and are undergoing
5166 * commit. In that case we have to wait for commit to finish and try again.
5168 static void ext4_wait_for_tail_page_commit(struct inode
*inode
)
5172 journal_t
*journal
= EXT4_SB(inode
->i_sb
)->s_journal
;
5173 tid_t commit_tid
= 0;
5176 offset
= inode
->i_size
& (PAGE_SIZE
- 1);
5178 * All buffers in the last page remain valid? Then there's nothing to
5179 * do. We do the check mainly to optimize the common PAGE_SIZE ==
5182 if (offset
> PAGE_SIZE
- i_blocksize(inode
))
5185 page
= find_lock_page(inode
->i_mapping
,
5186 inode
->i_size
>> PAGE_SHIFT
);
5189 ret
= __ext4_journalled_invalidatepage(page
, offset
,
5190 PAGE_SIZE
- offset
);
5196 read_lock(&journal
->j_state_lock
);
5197 if (journal
->j_committing_transaction
)
5198 commit_tid
= journal
->j_committing_transaction
->t_tid
;
5199 read_unlock(&journal
->j_state_lock
);
5201 jbd2_log_wait_commit(journal
, commit_tid
);
5208 * Called from notify_change.
5210 * We want to trap VFS attempts to truncate the file as soon as
5211 * possible. In particular, we want to make sure that when the VFS
5212 * shrinks i_size, we put the inode on the orphan list and modify
5213 * i_disksize immediately, so that during the subsequent flushing of
5214 * dirty pages and freeing of disk blocks, we can guarantee that any
5215 * commit will leave the blocks being flushed in an unused state on
5216 * disk. (On recovery, the inode will get truncated and the blocks will
5217 * be freed, so we have a strong guarantee that no future commit will
5218 * leave these blocks visible to the user.)
5220 * Another thing we have to assure is that if we are in ordered mode
5221 * and inode is still attached to the committing transaction, we must
5222 * we start writeout of all the dirty pages which are being truncated.
5223 * This way we are sure that all the data written in the previous
5224 * transaction are already on disk (truncate waits for pages under
5227 * Called with inode->i_mutex down.
5229 int ext4_setattr(struct dentry
*dentry
, struct iattr
*attr
)
5231 struct inode
*inode
= d_inode(dentry
);
5234 const unsigned int ia_valid
= attr
->ia_valid
;
5236 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode
->i_sb
))))
5239 error
= setattr_prepare(dentry
, attr
);
5243 if (is_quota_modification(inode
, attr
)) {
5244 error
= dquot_initialize(inode
);
5248 if ((ia_valid
& ATTR_UID
&& !uid_eq(attr
->ia_uid
, inode
->i_uid
)) ||
5249 (ia_valid
& ATTR_GID
&& !gid_eq(attr
->ia_gid
, inode
->i_gid
))) {
5252 /* (user+group)*(old+new) structure, inode write (sb,
5253 * inode block, ? - but truncate inode update has it) */
5254 handle
= ext4_journal_start(inode
, EXT4_HT_QUOTA
,
5255 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode
->i_sb
) +
5256 EXT4_MAXQUOTAS_DEL_BLOCKS(inode
->i_sb
)) + 3);
5257 if (IS_ERR(handle
)) {
5258 error
= PTR_ERR(handle
);
5261 error
= dquot_transfer(inode
, attr
);
5263 ext4_journal_stop(handle
);
5266 /* Update corresponding info in inode so that everything is in
5267 * one transaction */
5268 if (attr
->ia_valid
& ATTR_UID
)
5269 inode
->i_uid
= attr
->ia_uid
;
5270 if (attr
->ia_valid
& ATTR_GID
)
5271 inode
->i_gid
= attr
->ia_gid
;
5272 error
= ext4_mark_inode_dirty(handle
, inode
);
5273 ext4_journal_stop(handle
);
5276 if (attr
->ia_valid
& ATTR_SIZE
) {
5278 loff_t oldsize
= inode
->i_size
;
5279 int shrink
= (attr
->ia_size
<= inode
->i_size
);
5281 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))) {
5282 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
5284 if (attr
->ia_size
> sbi
->s_bitmap_maxbytes
)
5287 if (!S_ISREG(inode
->i_mode
))
5290 if (IS_I_VERSION(inode
) && attr
->ia_size
!= inode
->i_size
)
5291 inode_inc_iversion(inode
);
5293 if (ext4_should_order_data(inode
) &&
5294 (attr
->ia_size
< inode
->i_size
)) {
5295 error
= ext4_begin_ordered_truncate(inode
,
5300 if (attr
->ia_size
!= inode
->i_size
) {
5301 handle
= ext4_journal_start(inode
, EXT4_HT_INODE
, 3);
5302 if (IS_ERR(handle
)) {
5303 error
= PTR_ERR(handle
);
5306 if (ext4_handle_valid(handle
) && shrink
) {
5307 error
= ext4_orphan_add(handle
, inode
);
5311 * Update c/mtime on truncate up, ext4_truncate() will
5312 * update c/mtime in shrink case below
5315 inode
->i_mtime
= current_time(inode
);
5316 inode
->i_ctime
= inode
->i_mtime
;
5318 down_write(&EXT4_I(inode
)->i_data_sem
);
5319 EXT4_I(inode
)->i_disksize
= attr
->ia_size
;
5320 rc
= ext4_mark_inode_dirty(handle
, inode
);
5324 * We have to update i_size under i_data_sem together
5325 * with i_disksize to avoid races with writeback code
5326 * running ext4_wb_update_i_disksize().
5329 i_size_write(inode
, attr
->ia_size
);
5330 up_write(&EXT4_I(inode
)->i_data_sem
);
5331 ext4_journal_stop(handle
);
5334 ext4_orphan_del(NULL
, inode
);
5339 pagecache_isize_extended(inode
, oldsize
, inode
->i_size
);
5342 * Blocks are going to be removed from the inode. Wait
5343 * for dio in flight. Temporarily disable
5344 * dioread_nolock to prevent livelock.
5347 if (!ext4_should_journal_data(inode
)) {
5348 ext4_inode_block_unlocked_dio(inode
);
5349 inode_dio_wait(inode
);
5350 ext4_inode_resume_unlocked_dio(inode
);
5352 ext4_wait_for_tail_page_commit(inode
);
5354 down_write(&EXT4_I(inode
)->i_mmap_sem
);
5356 * Truncate pagecache after we've waited for commit
5357 * in data=journal mode to make pages freeable.
5359 truncate_pagecache(inode
, inode
->i_size
);
5361 rc
= ext4_truncate(inode
);
5365 up_write(&EXT4_I(inode
)->i_mmap_sem
);
5369 setattr_copy(inode
, attr
);
5370 mark_inode_dirty(inode
);
5374 * If the call to ext4_truncate failed to get a transaction handle at
5375 * all, we need to clean up the in-core orphan list manually.
5377 if (orphan
&& inode
->i_nlink
)
5378 ext4_orphan_del(NULL
, inode
);
5380 if (!error
&& (ia_valid
& ATTR_MODE
))
5381 rc
= posix_acl_chmod(inode
, inode
->i_mode
);
5384 ext4_std_error(inode
->i_sb
, error
);
5390 int ext4_getattr(const struct path
*path
, struct kstat
*stat
,
5391 u32 request_mask
, unsigned int query_flags
)
5393 struct inode
*inode
;
5394 unsigned long long delalloc_blocks
;
5396 inode
= d_inode(path
->dentry
);
5397 generic_fillattr(inode
, stat
);
5400 * If there is inline data in the inode, the inode will normally not
5401 * have data blocks allocated (it may have an external xattr block).
5402 * Report at least one sector for such files, so tools like tar, rsync,
5403 * others doen't incorrectly think the file is completely sparse.
5405 if (unlikely(ext4_has_inline_data(inode
)))
5406 stat
->blocks
+= (stat
->size
+ 511) >> 9;
5409 * We can't update i_blocks if the block allocation is delayed
5410 * otherwise in the case of system crash before the real block
5411 * allocation is done, we will have i_blocks inconsistent with
5412 * on-disk file blocks.
5413 * We always keep i_blocks updated together with real
5414 * allocation. But to not confuse with user, stat
5415 * will return the blocks that include the delayed allocation
5416 * blocks for this file.
5418 delalloc_blocks
= EXT4_C2B(EXT4_SB(inode
->i_sb
),
5419 EXT4_I(inode
)->i_reserved_data_blocks
);
5420 stat
->blocks
+= delalloc_blocks
<< (inode
->i_sb
->s_blocksize_bits
- 9);
5424 static int ext4_index_trans_blocks(struct inode
*inode
, int lblocks
,
5427 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)))
5428 return ext4_ind_trans_blocks(inode
, lblocks
);
5429 return ext4_ext_index_trans_blocks(inode
, pextents
);
5433 * Account for index blocks, block groups bitmaps and block group
5434 * descriptor blocks if modify datablocks and index blocks
5435 * worse case, the indexs blocks spread over different block groups
5437 * If datablocks are discontiguous, they are possible to spread over
5438 * different block groups too. If they are contiguous, with flexbg,
5439 * they could still across block group boundary.
5441 * Also account for superblock, inode, quota and xattr blocks
5443 static int ext4_meta_trans_blocks(struct inode
*inode
, int lblocks
,
5446 ext4_group_t groups
, ngroups
= ext4_get_groups_count(inode
->i_sb
);
5452 * How many index blocks need to touch to map @lblocks logical blocks
5453 * to @pextents physical extents?
5455 idxblocks
= ext4_index_trans_blocks(inode
, lblocks
, pextents
);
5460 * Now let's see how many group bitmaps and group descriptors need
5463 groups
= idxblocks
+ pextents
;
5465 if (groups
> ngroups
)
5467 if (groups
> EXT4_SB(inode
->i_sb
)->s_gdb_count
)
5468 gdpblocks
= EXT4_SB(inode
->i_sb
)->s_gdb_count
;
5470 /* bitmaps and block group descriptor blocks */
5471 ret
+= groups
+ gdpblocks
;
5473 /* Blocks for super block, inode, quota and xattr blocks */
5474 ret
+= EXT4_META_TRANS_BLOCKS(inode
->i_sb
);
5480 * Calculate the total number of credits to reserve to fit
5481 * the modification of a single pages into a single transaction,
5482 * which may include multiple chunks of block allocations.
5484 * This could be called via ext4_write_begin()
5486 * We need to consider the worse case, when
5487 * one new block per extent.
5489 int ext4_writepage_trans_blocks(struct inode
*inode
)
5491 int bpp
= ext4_journal_blocks_per_page(inode
);
5494 ret
= ext4_meta_trans_blocks(inode
, bpp
, bpp
);
5496 /* Account for data blocks for journalled mode */
5497 if (ext4_should_journal_data(inode
))
5503 * Calculate the journal credits for a chunk of data modification.
5505 * This is called from DIO, fallocate or whoever calling
5506 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5508 * journal buffers for data blocks are not included here, as DIO
5509 * and fallocate do no need to journal data buffers.
5511 int ext4_chunk_trans_blocks(struct inode
*inode
, int nrblocks
)
5513 return ext4_meta_trans_blocks(inode
, nrblocks
, 1);
5517 * The caller must have previously called ext4_reserve_inode_write().
5518 * Give this, we know that the caller already has write access to iloc->bh.
5520 int ext4_mark_iloc_dirty(handle_t
*handle
,
5521 struct inode
*inode
, struct ext4_iloc
*iloc
)
5525 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode
->i_sb
))))
5528 if (IS_I_VERSION(inode
))
5529 inode_inc_iversion(inode
);
5531 /* the do_update_inode consumes one bh->b_count */
5534 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5535 err
= ext4_do_update_inode(handle
, inode
, iloc
);
5541 * On success, We end up with an outstanding reference count against
5542 * iloc->bh. This _must_ be cleaned up later.
5546 ext4_reserve_inode_write(handle_t
*handle
, struct inode
*inode
,
5547 struct ext4_iloc
*iloc
)
5551 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode
->i_sb
))))
5554 err
= ext4_get_inode_loc(inode
, iloc
);
5556 BUFFER_TRACE(iloc
->bh
, "get_write_access");
5557 err
= ext4_journal_get_write_access(handle
, iloc
->bh
);
5563 ext4_std_error(inode
->i_sb
, err
);
5568 * Expand an inode by new_extra_isize bytes.
5569 * Returns 0 on success or negative error number on failure.
5571 static int ext4_expand_extra_isize(struct inode
*inode
,
5572 unsigned int new_extra_isize
,
5573 struct ext4_iloc iloc
,
5576 struct ext4_inode
*raw_inode
;
5577 struct ext4_xattr_ibody_header
*header
;
5579 if (EXT4_I(inode
)->i_extra_isize
>= new_extra_isize
)
5582 raw_inode
= ext4_raw_inode(&iloc
);
5584 header
= IHDR(inode
, raw_inode
);
5586 /* No extended attributes present */
5587 if (!ext4_test_inode_state(inode
, EXT4_STATE_XATTR
) ||
5588 header
->h_magic
!= cpu_to_le32(EXT4_XATTR_MAGIC
)) {
5589 memset((void *)raw_inode
+ EXT4_GOOD_OLD_INODE_SIZE
, 0,
5591 EXT4_I(inode
)->i_extra_isize
= new_extra_isize
;
5595 /* try to expand with EAs present */
5596 return ext4_expand_extra_isize_ea(inode
, new_extra_isize
,
5601 * What we do here is to mark the in-core inode as clean with respect to inode
5602 * dirtiness (it may still be data-dirty).
5603 * This means that the in-core inode may be reaped by prune_icache
5604 * without having to perform any I/O. This is a very good thing,
5605 * because *any* task may call prune_icache - even ones which
5606 * have a transaction open against a different journal.
5608 * Is this cheating? Not really. Sure, we haven't written the
5609 * inode out, but prune_icache isn't a user-visible syncing function.
5610 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5611 * we start and wait on commits.
5613 int ext4_mark_inode_dirty(handle_t
*handle
, struct inode
*inode
)
5615 struct ext4_iloc iloc
;
5616 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
5617 static unsigned int mnt_count
;
5621 trace_ext4_mark_inode_dirty(inode
, _RET_IP_
);
5622 err
= ext4_reserve_inode_write(handle
, inode
, &iloc
);
5625 if (EXT4_I(inode
)->i_extra_isize
< sbi
->s_want_extra_isize
&&
5626 !ext4_test_inode_state(inode
, EXT4_STATE_NO_EXPAND
)) {
5628 * In nojournal mode, we can immediately attempt to expand
5629 * the inode. When journaled, we first need to obtain extra
5630 * buffer credits since we may write into the EA block
5631 * with this same handle. If journal_extend fails, then it will
5632 * only result in a minor loss of functionality for that inode.
5633 * If this is felt to be critical, then e2fsck should be run to
5634 * force a large enough s_min_extra_isize.
5636 if (!ext4_handle_valid(handle
) ||
5637 jbd2_journal_extend(handle
,
5638 EXT4_DATA_TRANS_BLOCKS(inode
->i_sb
)) == 0) {
5639 ret
= ext4_expand_extra_isize(inode
,
5640 sbi
->s_want_extra_isize
,
5644 le16_to_cpu(sbi
->s_es
->s_mnt_count
)) {
5645 ext4_warning(inode
->i_sb
,
5646 "Unable to expand inode %lu. Delete"
5647 " some EAs or run e2fsck.",
5650 le16_to_cpu(sbi
->s_es
->s_mnt_count
);
5655 return ext4_mark_iloc_dirty(handle
, inode
, &iloc
);
5659 * ext4_dirty_inode() is called from __mark_inode_dirty()
5661 * We're really interested in the case where a file is being extended.
5662 * i_size has been changed by generic_commit_write() and we thus need
5663 * to include the updated inode in the current transaction.
5665 * Also, dquot_alloc_block() will always dirty the inode when blocks
5666 * are allocated to the file.
5668 * If the inode is marked synchronous, we don't honour that here - doing
5669 * so would cause a commit on atime updates, which we don't bother doing.
5670 * We handle synchronous inodes at the highest possible level.
5672 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5673 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5674 * to copy into the on-disk inode structure are the timestamp files.
5676 void ext4_dirty_inode(struct inode
*inode
, int flags
)
5680 if (flags
== I_DIRTY_TIME
)
5682 handle
= ext4_journal_start(inode
, EXT4_HT_INODE
, 2);
5686 ext4_mark_inode_dirty(handle
, inode
);
5688 ext4_journal_stop(handle
);
5695 * Bind an inode's backing buffer_head into this transaction, to prevent
5696 * it from being flushed to disk early. Unlike
5697 * ext4_reserve_inode_write, this leaves behind no bh reference and
5698 * returns no iloc structure, so the caller needs to repeat the iloc
5699 * lookup to mark the inode dirty later.
5701 static int ext4_pin_inode(handle_t
*handle
, struct inode
*inode
)
5703 struct ext4_iloc iloc
;
5707 err
= ext4_get_inode_loc(inode
, &iloc
);
5709 BUFFER_TRACE(iloc
.bh
, "get_write_access");
5710 err
= jbd2_journal_get_write_access(handle
, iloc
.bh
);
5712 err
= ext4_handle_dirty_metadata(handle
,
5718 ext4_std_error(inode
->i_sb
, err
);
5723 int ext4_change_inode_journal_flag(struct inode
*inode
, int val
)
5728 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
5731 * We have to be very careful here: changing a data block's
5732 * journaling status dynamically is dangerous. If we write a
5733 * data block to the journal, change the status and then delete
5734 * that block, we risk forgetting to revoke the old log record
5735 * from the journal and so a subsequent replay can corrupt data.
5736 * So, first we make sure that the journal is empty and that
5737 * nobody is changing anything.
5740 journal
= EXT4_JOURNAL(inode
);
5743 if (is_journal_aborted(journal
))
5746 /* Wait for all existing dio workers */
5747 ext4_inode_block_unlocked_dio(inode
);
5748 inode_dio_wait(inode
);
5751 * Before flushing the journal and switching inode's aops, we have
5752 * to flush all dirty data the inode has. There can be outstanding
5753 * delayed allocations, there can be unwritten extents created by
5754 * fallocate or buffered writes in dioread_nolock mode covered by
5755 * dirty data which can be converted only after flushing the dirty
5756 * data (and journalled aops don't know how to handle these cases).
5759 down_write(&EXT4_I(inode
)->i_mmap_sem
);
5760 err
= filemap_write_and_wait(inode
->i_mapping
);
5762 up_write(&EXT4_I(inode
)->i_mmap_sem
);
5763 ext4_inode_resume_unlocked_dio(inode
);
5768 percpu_down_write(&sbi
->s_journal_flag_rwsem
);
5769 jbd2_journal_lock_updates(journal
);
5772 * OK, there are no updates running now, and all cached data is
5773 * synced to disk. We are now in a completely consistent state
5774 * which doesn't have anything in the journal, and we know that
5775 * no filesystem updates are running, so it is safe to modify
5776 * the inode's in-core data-journaling state flag now.
5780 ext4_set_inode_flag(inode
, EXT4_INODE_JOURNAL_DATA
);
5782 err
= jbd2_journal_flush(journal
);
5784 jbd2_journal_unlock_updates(journal
);
5785 percpu_up_write(&sbi
->s_journal_flag_rwsem
);
5786 ext4_inode_resume_unlocked_dio(inode
);
5789 ext4_clear_inode_flag(inode
, EXT4_INODE_JOURNAL_DATA
);
5791 ext4_set_aops(inode
);
5793 * Update inode->i_flags after EXT4_INODE_JOURNAL_DATA was updated.
5794 * E.g. S_DAX may get cleared / set.
5796 ext4_set_inode_flags(inode
);
5798 jbd2_journal_unlock_updates(journal
);
5799 percpu_up_write(&sbi
->s_journal_flag_rwsem
);
5802 up_write(&EXT4_I(inode
)->i_mmap_sem
);
5803 ext4_inode_resume_unlocked_dio(inode
);
5805 /* Finally we can mark the inode as dirty. */
5807 handle
= ext4_journal_start(inode
, EXT4_HT_INODE
, 1);
5809 return PTR_ERR(handle
);
5811 err
= ext4_mark_inode_dirty(handle
, inode
);
5812 ext4_handle_sync(handle
);
5813 ext4_journal_stop(handle
);
5814 ext4_std_error(inode
->i_sb
, err
);
5819 static int ext4_bh_unmapped(handle_t
*handle
, struct buffer_head
*bh
)
5821 return !buffer_mapped(bh
);
5824 int ext4_page_mkwrite(struct vm_fault
*vmf
)
5826 struct vm_area_struct
*vma
= vmf
->vma
;
5827 struct page
*page
= vmf
->page
;
5831 struct file
*file
= vma
->vm_file
;
5832 struct inode
*inode
= file_inode(file
);
5833 struct address_space
*mapping
= inode
->i_mapping
;
5835 get_block_t
*get_block
;
5838 sb_start_pagefault(inode
->i_sb
);
5839 file_update_time(vma
->vm_file
);
5841 down_read(&EXT4_I(inode
)->i_mmap_sem
);
5842 /* Delalloc case is easy... */
5843 if (test_opt(inode
->i_sb
, DELALLOC
) &&
5844 !ext4_should_journal_data(inode
) &&
5845 !ext4_nonda_switch(inode
->i_sb
)) {
5847 ret
= block_page_mkwrite(vma
, vmf
,
5848 ext4_da_get_block_prep
);
5849 } while (ret
== -ENOSPC
&&
5850 ext4_should_retry_alloc(inode
->i_sb
, &retries
));
5855 size
= i_size_read(inode
);
5856 /* Page got truncated from under us? */
5857 if (page
->mapping
!= mapping
|| page_offset(page
) > size
) {
5859 ret
= VM_FAULT_NOPAGE
;
5863 if (page
->index
== size
>> PAGE_SHIFT
)
5864 len
= size
& ~PAGE_MASK
;
5868 * Return if we have all the buffers mapped. This avoids the need to do
5869 * journal_start/journal_stop which can block and take a long time
5871 if (page_has_buffers(page
)) {
5872 if (!ext4_walk_page_buffers(NULL
, page_buffers(page
),
5874 ext4_bh_unmapped
)) {
5875 /* Wait so that we don't change page under IO */
5876 wait_for_stable_page(page
);
5877 ret
= VM_FAULT_LOCKED
;
5882 /* OK, we need to fill the hole... */
5883 if (ext4_should_dioread_nolock(inode
))
5884 get_block
= ext4_get_block_unwritten
;
5886 get_block
= ext4_get_block
;
5888 handle
= ext4_journal_start(inode
, EXT4_HT_WRITE_PAGE
,
5889 ext4_writepage_trans_blocks(inode
));
5890 if (IS_ERR(handle
)) {
5891 ret
= VM_FAULT_SIGBUS
;
5894 ret
= block_page_mkwrite(vma
, vmf
, get_block
);
5895 if (!ret
&& ext4_should_journal_data(inode
)) {
5896 if (ext4_walk_page_buffers(handle
, page_buffers(page
), 0,
5897 PAGE_SIZE
, NULL
, do_journal_get_write_access
)) {
5899 ret
= VM_FAULT_SIGBUS
;
5900 ext4_journal_stop(handle
);
5903 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
5905 ext4_journal_stop(handle
);
5906 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
5909 ret
= block_page_mkwrite_return(ret
);
5911 up_read(&EXT4_I(inode
)->i_mmap_sem
);
5912 sb_end_pagefault(inode
->i_sb
);
5916 int ext4_filemap_fault(struct vm_fault
*vmf
)
5918 struct inode
*inode
= file_inode(vmf
->vma
->vm_file
);
5921 down_read(&EXT4_I(inode
)->i_mmap_sem
);
5922 err
= filemap_fault(vmf
);
5923 up_read(&EXT4_I(inode
)->i_mmap_sem
);
5929 * Find the first extent at or after @lblk in an inode that is not a hole.
5930 * Search for @map_len blocks at most. The extent is returned in @result.
5932 * The function returns 1 if we found an extent. The function returns 0 in
5933 * case there is no extent at or after @lblk and in that case also sets
5934 * @result->es_len to 0. In case of error, the error code is returned.
5936 int ext4_get_next_extent(struct inode
*inode
, ext4_lblk_t lblk
,
5937 unsigned int map_len
, struct extent_status
*result
)
5939 struct ext4_map_blocks map
;
5940 struct extent_status es
= {};
5944 map
.m_len
= map_len
;
5947 * For non-extent based files this loop may iterate several times since
5948 * we do not determine full hole size.
5950 while (map
.m_len
> 0) {
5951 ret
= ext4_map_blocks(NULL
, inode
, &map
, 0);
5954 /* There's extent covering m_lblk? Just return it. */
5958 ext4_es_store_pblock(result
, map
.m_pblk
);
5959 result
->es_lblk
= map
.m_lblk
;
5960 result
->es_len
= map
.m_len
;
5961 if (map
.m_flags
& EXT4_MAP_UNWRITTEN
)
5962 status
= EXTENT_STATUS_UNWRITTEN
;
5964 status
= EXTENT_STATUS_WRITTEN
;
5965 ext4_es_store_status(result
, status
);
5968 ext4_es_find_delayed_extent_range(inode
, map
.m_lblk
,
5969 map
.m_lblk
+ map
.m_len
- 1,
5971 /* Is delalloc data before next block in extent tree? */
5972 if (es
.es_len
&& es
.es_lblk
< map
.m_lblk
+ map
.m_len
) {
5973 ext4_lblk_t offset
= 0;
5975 if (es
.es_lblk
< lblk
)
5976 offset
= lblk
- es
.es_lblk
;
5977 result
->es_lblk
= es
.es_lblk
+ offset
;
5978 ext4_es_store_pblock(result
,
5979 ext4_es_pblock(&es
) + offset
);
5980 result
->es_len
= es
.es_len
- offset
;
5981 ext4_es_store_status(result
, ext4_es_status(&es
));
5985 /* There's a hole at m_lblk, advance us after it */
5986 map
.m_lblk
+= map
.m_len
;
5987 map_len
-= map
.m_len
;
5988 map
.m_len
= map_len
;