2 #include <linux/vmacache.h>
3 #include <linux/hugetlb.h>
4 #include <linux/huge_mm.h>
5 #include <linux/mount.h>
6 #include <linux/seq_file.h>
7 #include <linux/highmem.h>
8 #include <linux/ptrace.h>
9 #include <linux/slab.h>
10 #include <linux/pagemap.h>
11 #include <linux/mempolicy.h>
12 #include <linux/rmap.h>
13 #include <linux/swap.h>
14 #include <linux/sched/mm.h>
15 #include <linux/swapops.h>
16 #include <linux/mmu_notifier.h>
17 #include <linux/page_idle.h>
18 #include <linux/shmem_fs.h>
21 #include <linux/uaccess.h>
22 #include <asm/tlbflush.h>
25 void task_mem(struct seq_file
*m
, struct mm_struct
*mm
)
27 unsigned long text
, lib
, swap
, ptes
, pmds
, anon
, file
, shmem
;
28 unsigned long hiwater_vm
, total_vm
, hiwater_rss
, total_rss
;
30 anon
= get_mm_counter(mm
, MM_ANONPAGES
);
31 file
= get_mm_counter(mm
, MM_FILEPAGES
);
32 shmem
= get_mm_counter(mm
, MM_SHMEMPAGES
);
35 * Note: to minimize their overhead, mm maintains hiwater_vm and
36 * hiwater_rss only when about to *lower* total_vm or rss. Any
37 * collector of these hiwater stats must therefore get total_vm
38 * and rss too, which will usually be the higher. Barriers? not
39 * worth the effort, such snapshots can always be inconsistent.
41 hiwater_vm
= total_vm
= mm
->total_vm
;
42 if (hiwater_vm
< mm
->hiwater_vm
)
43 hiwater_vm
= mm
->hiwater_vm
;
44 hiwater_rss
= total_rss
= anon
+ file
+ shmem
;
45 if (hiwater_rss
< mm
->hiwater_rss
)
46 hiwater_rss
= mm
->hiwater_rss
;
48 text
= (PAGE_ALIGN(mm
->end_code
) - (mm
->start_code
& PAGE_MASK
)) >> 10;
49 lib
= (mm
->exec_vm
<< (PAGE_SHIFT
-10)) - text
;
50 swap
= get_mm_counter(mm
, MM_SWAPENTS
);
51 ptes
= PTRS_PER_PTE
* sizeof(pte_t
) * atomic_long_read(&mm
->nr_ptes
);
52 pmds
= PTRS_PER_PMD
* sizeof(pmd_t
) * mm_nr_pmds(mm
);
62 "RssShmem:\t%8lu kB\n"
70 hiwater_vm
<< (PAGE_SHIFT
-10),
71 total_vm
<< (PAGE_SHIFT
-10),
72 mm
->locked_vm
<< (PAGE_SHIFT
-10),
73 mm
->pinned_vm
<< (PAGE_SHIFT
-10),
74 hiwater_rss
<< (PAGE_SHIFT
-10),
75 total_rss
<< (PAGE_SHIFT
-10),
76 anon
<< (PAGE_SHIFT
-10),
77 file
<< (PAGE_SHIFT
-10),
78 shmem
<< (PAGE_SHIFT
-10),
79 mm
->data_vm
<< (PAGE_SHIFT
-10),
80 mm
->stack_vm
<< (PAGE_SHIFT
-10), text
, lib
,
83 swap
<< (PAGE_SHIFT
-10));
84 hugetlb_report_usage(m
, mm
);
87 unsigned long task_vsize(struct mm_struct
*mm
)
89 return PAGE_SIZE
* mm
->total_vm
;
92 unsigned long task_statm(struct mm_struct
*mm
,
93 unsigned long *shared
, unsigned long *text
,
94 unsigned long *data
, unsigned long *resident
)
96 *shared
= get_mm_counter(mm
, MM_FILEPAGES
) +
97 get_mm_counter(mm
, MM_SHMEMPAGES
);
98 *text
= (PAGE_ALIGN(mm
->end_code
) - (mm
->start_code
& PAGE_MASK
))
100 *data
= mm
->data_vm
+ mm
->stack_vm
;
101 *resident
= *shared
+ get_mm_counter(mm
, MM_ANONPAGES
);
107 * Save get_task_policy() for show_numa_map().
109 static void hold_task_mempolicy(struct proc_maps_private
*priv
)
111 struct task_struct
*task
= priv
->task
;
114 priv
->task_mempolicy
= get_task_policy(task
);
115 mpol_get(priv
->task_mempolicy
);
118 static void release_task_mempolicy(struct proc_maps_private
*priv
)
120 mpol_put(priv
->task_mempolicy
);
123 static void hold_task_mempolicy(struct proc_maps_private
*priv
)
126 static void release_task_mempolicy(struct proc_maps_private
*priv
)
131 static void vma_stop(struct proc_maps_private
*priv
)
133 struct mm_struct
*mm
= priv
->mm
;
135 release_task_mempolicy(priv
);
136 up_read(&mm
->mmap_sem
);
140 static struct vm_area_struct
*
141 m_next_vma(struct proc_maps_private
*priv
, struct vm_area_struct
*vma
)
143 if (vma
== priv
->tail_vma
)
145 return vma
->vm_next
?: priv
->tail_vma
;
148 static void m_cache_vma(struct seq_file
*m
, struct vm_area_struct
*vma
)
150 if (m
->count
< m
->size
) /* vma is copied successfully */
151 m
->version
= m_next_vma(m
->private, vma
) ? vma
->vm_end
: -1UL;
154 static void *m_start(struct seq_file
*m
, loff_t
*ppos
)
156 struct proc_maps_private
*priv
= m
->private;
157 unsigned long last_addr
= m
->version
;
158 struct mm_struct
*mm
;
159 struct vm_area_struct
*vma
;
160 unsigned int pos
= *ppos
;
162 /* See m_cache_vma(). Zero at the start or after lseek. */
163 if (last_addr
== -1UL)
166 priv
->task
= get_proc_task(priv
->inode
);
168 return ERR_PTR(-ESRCH
);
171 if (!mm
|| !mmget_not_zero(mm
))
174 down_read(&mm
->mmap_sem
);
175 hold_task_mempolicy(priv
);
176 priv
->tail_vma
= get_gate_vma(mm
);
179 vma
= find_vma(mm
, last_addr
- 1);
180 if (vma
&& vma
->vm_start
<= last_addr
)
181 vma
= m_next_vma(priv
, vma
);
187 if (pos
< mm
->map_count
) {
188 for (vma
= mm
->mmap
; pos
; pos
--) {
189 m
->version
= vma
->vm_start
;
195 /* we do not bother to update m->version in this case */
196 if (pos
== mm
->map_count
&& priv
->tail_vma
)
197 return priv
->tail_vma
;
203 static void *m_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
205 struct proc_maps_private
*priv
= m
->private;
206 struct vm_area_struct
*next
;
209 next
= m_next_vma(priv
, v
);
215 static void m_stop(struct seq_file
*m
, void *v
)
217 struct proc_maps_private
*priv
= m
->private;
219 if (!IS_ERR_OR_NULL(v
))
222 put_task_struct(priv
->task
);
227 static int proc_maps_open(struct inode
*inode
, struct file
*file
,
228 const struct seq_operations
*ops
, int psize
)
230 struct proc_maps_private
*priv
= __seq_open_private(file
, ops
, psize
);
236 priv
->mm
= proc_mem_open(inode
, PTRACE_MODE_READ
);
237 if (IS_ERR(priv
->mm
)) {
238 int err
= PTR_ERR(priv
->mm
);
240 seq_release_private(inode
, file
);
247 static int proc_map_release(struct inode
*inode
, struct file
*file
)
249 struct seq_file
*seq
= file
->private_data
;
250 struct proc_maps_private
*priv
= seq
->private;
255 return seq_release_private(inode
, file
);
258 static int do_maps_open(struct inode
*inode
, struct file
*file
,
259 const struct seq_operations
*ops
)
261 return proc_maps_open(inode
, file
, ops
,
262 sizeof(struct proc_maps_private
));
266 * Indicate if the VMA is a stack for the given task; for
267 * /proc/PID/maps that is the stack of the main task.
269 static int is_stack(struct proc_maps_private
*priv
,
270 struct vm_area_struct
*vma
)
273 * We make no effort to guess what a given thread considers to be
274 * its "stack". It's not even well-defined for programs written
277 return vma
->vm_start
<= vma
->vm_mm
->start_stack
&&
278 vma
->vm_end
>= vma
->vm_mm
->start_stack
;
282 show_map_vma(struct seq_file
*m
, struct vm_area_struct
*vma
, int is_pid
)
284 struct mm_struct
*mm
= vma
->vm_mm
;
285 struct file
*file
= vma
->vm_file
;
286 struct proc_maps_private
*priv
= m
->private;
287 vm_flags_t flags
= vma
->vm_flags
;
288 unsigned long ino
= 0;
289 unsigned long long pgoff
= 0;
290 unsigned long start
, end
;
292 const char *name
= NULL
;
295 struct inode
*inode
= file_inode(vma
->vm_file
);
296 dev
= inode
->i_sb
->s_dev
;
298 pgoff
= ((loff_t
)vma
->vm_pgoff
) << PAGE_SHIFT
;
301 /* We don't show the stack guard page in /proc/maps */
302 start
= vma
->vm_start
;
303 if (stack_guard_page_start(vma
, start
))
306 if (stack_guard_page_end(vma
, end
))
309 seq_setwidth(m
, 25 + sizeof(void *) * 6 - 1);
310 seq_printf(m
, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
313 flags
& VM_READ
? 'r' : '-',
314 flags
& VM_WRITE
? 'w' : '-',
315 flags
& VM_EXEC
? 'x' : '-',
316 flags
& VM_MAYSHARE
? 's' : 'p',
318 MAJOR(dev
), MINOR(dev
), ino
);
321 * Print the dentry name for named mappings, and a
322 * special [heap] marker for the heap:
326 seq_file_path(m
, file
, "\n");
330 if (vma
->vm_ops
&& vma
->vm_ops
->name
) {
331 name
= vma
->vm_ops
->name(vma
);
336 name
= arch_vma_name(vma
);
343 if (vma
->vm_start
<= mm
->brk
&&
344 vma
->vm_end
>= mm
->start_brk
) {
349 if (is_stack(priv
, vma
))
361 static int show_map(struct seq_file
*m
, void *v
, int is_pid
)
363 show_map_vma(m
, v
, is_pid
);
368 static int show_pid_map(struct seq_file
*m
, void *v
)
370 return show_map(m
, v
, 1);
373 static int show_tid_map(struct seq_file
*m
, void *v
)
375 return show_map(m
, v
, 0);
378 static const struct seq_operations proc_pid_maps_op
= {
385 static const struct seq_operations proc_tid_maps_op
= {
392 static int pid_maps_open(struct inode
*inode
, struct file
*file
)
394 return do_maps_open(inode
, file
, &proc_pid_maps_op
);
397 static int tid_maps_open(struct inode
*inode
, struct file
*file
)
399 return do_maps_open(inode
, file
, &proc_tid_maps_op
);
402 const struct file_operations proc_pid_maps_operations
= {
403 .open
= pid_maps_open
,
406 .release
= proc_map_release
,
409 const struct file_operations proc_tid_maps_operations
= {
410 .open
= tid_maps_open
,
413 .release
= proc_map_release
,
417 * Proportional Set Size(PSS): my share of RSS.
419 * PSS of a process is the count of pages it has in memory, where each
420 * page is divided by the number of processes sharing it. So if a
421 * process has 1000 pages all to itself, and 1000 shared with one other
422 * process, its PSS will be 1500.
424 * To keep (accumulated) division errors low, we adopt a 64bit
425 * fixed-point pss counter to minimize division errors. So (pss >>
426 * PSS_SHIFT) would be the real byte count.
428 * A shift of 12 before division means (assuming 4K page size):
429 * - 1M 3-user-pages add up to 8KB errors;
430 * - supports mapcount up to 2^24, or 16M;
431 * - supports PSS up to 2^52 bytes, or 4PB.
435 #ifdef CONFIG_PROC_PAGE_MONITOR
436 struct mem_size_stats
{
437 unsigned long resident
;
438 unsigned long shared_clean
;
439 unsigned long shared_dirty
;
440 unsigned long private_clean
;
441 unsigned long private_dirty
;
442 unsigned long referenced
;
443 unsigned long anonymous
;
444 unsigned long anonymous_thp
;
445 unsigned long shmem_thp
;
447 unsigned long shared_hugetlb
;
448 unsigned long private_hugetlb
;
451 bool check_shmem_swap
;
454 static void smaps_account(struct mem_size_stats
*mss
, struct page
*page
,
455 bool compound
, bool young
, bool dirty
)
457 int i
, nr
= compound
? 1 << compound_order(page
) : 1;
458 unsigned long size
= nr
* PAGE_SIZE
;
461 mss
->anonymous
+= size
;
463 mss
->resident
+= size
;
464 /* Accumulate the size in pages that have been accessed. */
465 if (young
|| page_is_young(page
) || PageReferenced(page
))
466 mss
->referenced
+= size
;
469 * page_count(page) == 1 guarantees the page is mapped exactly once.
470 * If any subpage of the compound page mapped with PTE it would elevate
473 if (page_count(page
) == 1) {
474 if (dirty
|| PageDirty(page
))
475 mss
->private_dirty
+= size
;
477 mss
->private_clean
+= size
;
478 mss
->pss
+= (u64
)size
<< PSS_SHIFT
;
482 for (i
= 0; i
< nr
; i
++, page
++) {
483 int mapcount
= page_mapcount(page
);
486 if (dirty
|| PageDirty(page
))
487 mss
->shared_dirty
+= PAGE_SIZE
;
489 mss
->shared_clean
+= PAGE_SIZE
;
490 mss
->pss
+= (PAGE_SIZE
<< PSS_SHIFT
) / mapcount
;
492 if (dirty
|| PageDirty(page
))
493 mss
->private_dirty
+= PAGE_SIZE
;
495 mss
->private_clean
+= PAGE_SIZE
;
496 mss
->pss
+= PAGE_SIZE
<< PSS_SHIFT
;
502 static int smaps_pte_hole(unsigned long addr
, unsigned long end
,
503 struct mm_walk
*walk
)
505 struct mem_size_stats
*mss
= walk
->private;
507 mss
->swap
+= shmem_partial_swap_usage(
508 walk
->vma
->vm_file
->f_mapping
, addr
, end
);
514 static void smaps_pte_entry(pte_t
*pte
, unsigned long addr
,
515 struct mm_walk
*walk
)
517 struct mem_size_stats
*mss
= walk
->private;
518 struct vm_area_struct
*vma
= walk
->vma
;
519 struct page
*page
= NULL
;
521 if (pte_present(*pte
)) {
522 page
= vm_normal_page(vma
, addr
, *pte
);
523 } else if (is_swap_pte(*pte
)) {
524 swp_entry_t swpent
= pte_to_swp_entry(*pte
);
526 if (!non_swap_entry(swpent
)) {
529 mss
->swap
+= PAGE_SIZE
;
530 mapcount
= swp_swapcount(swpent
);
532 u64 pss_delta
= (u64
)PAGE_SIZE
<< PSS_SHIFT
;
534 do_div(pss_delta
, mapcount
);
535 mss
->swap_pss
+= pss_delta
;
537 mss
->swap_pss
+= (u64
)PAGE_SIZE
<< PSS_SHIFT
;
539 } else if (is_migration_entry(swpent
))
540 page
= migration_entry_to_page(swpent
);
541 } else if (unlikely(IS_ENABLED(CONFIG_SHMEM
) && mss
->check_shmem_swap
542 && pte_none(*pte
))) {
543 page
= find_get_entry(vma
->vm_file
->f_mapping
,
544 linear_page_index(vma
, addr
));
548 if (radix_tree_exceptional_entry(page
))
549 mss
->swap
+= PAGE_SIZE
;
559 smaps_account(mss
, page
, false, pte_young(*pte
), pte_dirty(*pte
));
562 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
563 static void smaps_pmd_entry(pmd_t
*pmd
, unsigned long addr
,
564 struct mm_walk
*walk
)
566 struct mem_size_stats
*mss
= walk
->private;
567 struct vm_area_struct
*vma
= walk
->vma
;
570 /* FOLL_DUMP will return -EFAULT on huge zero page */
571 page
= follow_trans_huge_pmd(vma
, addr
, pmd
, FOLL_DUMP
);
572 if (IS_ERR_OR_NULL(page
))
575 mss
->anonymous_thp
+= HPAGE_PMD_SIZE
;
576 else if (PageSwapBacked(page
))
577 mss
->shmem_thp
+= HPAGE_PMD_SIZE
;
578 else if (is_zone_device_page(page
))
581 VM_BUG_ON_PAGE(1, page
);
582 smaps_account(mss
, page
, true, pmd_young(*pmd
), pmd_dirty(*pmd
));
585 static void smaps_pmd_entry(pmd_t
*pmd
, unsigned long addr
,
586 struct mm_walk
*walk
)
591 static int smaps_pte_range(pmd_t
*pmd
, unsigned long addr
, unsigned long end
,
592 struct mm_walk
*walk
)
594 struct vm_area_struct
*vma
= walk
->vma
;
598 ptl
= pmd_trans_huge_lock(pmd
, vma
);
600 smaps_pmd_entry(pmd
, addr
, walk
);
605 if (pmd_trans_unstable(pmd
))
608 * The mmap_sem held all the way back in m_start() is what
609 * keeps khugepaged out of here and from collapsing things
612 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
613 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
)
614 smaps_pte_entry(pte
, addr
, walk
);
615 pte_unmap_unlock(pte
- 1, ptl
);
620 static void show_smap_vma_flags(struct seq_file
*m
, struct vm_area_struct
*vma
)
623 * Don't forget to update Documentation/ on changes.
625 static const char mnemonics
[BITS_PER_LONG
][2] = {
627 * In case if we meet a flag we don't know about.
629 [0 ... (BITS_PER_LONG
-1)] = "??",
631 [ilog2(VM_READ
)] = "rd",
632 [ilog2(VM_WRITE
)] = "wr",
633 [ilog2(VM_EXEC
)] = "ex",
634 [ilog2(VM_SHARED
)] = "sh",
635 [ilog2(VM_MAYREAD
)] = "mr",
636 [ilog2(VM_MAYWRITE
)] = "mw",
637 [ilog2(VM_MAYEXEC
)] = "me",
638 [ilog2(VM_MAYSHARE
)] = "ms",
639 [ilog2(VM_GROWSDOWN
)] = "gd",
640 [ilog2(VM_PFNMAP
)] = "pf",
641 [ilog2(VM_DENYWRITE
)] = "dw",
642 #ifdef CONFIG_X86_INTEL_MPX
643 [ilog2(VM_MPX
)] = "mp",
645 [ilog2(VM_LOCKED
)] = "lo",
646 [ilog2(VM_IO
)] = "io",
647 [ilog2(VM_SEQ_READ
)] = "sr",
648 [ilog2(VM_RAND_READ
)] = "rr",
649 [ilog2(VM_DONTCOPY
)] = "dc",
650 [ilog2(VM_DONTEXPAND
)] = "de",
651 [ilog2(VM_ACCOUNT
)] = "ac",
652 [ilog2(VM_NORESERVE
)] = "nr",
653 [ilog2(VM_HUGETLB
)] = "ht",
654 [ilog2(VM_ARCH_1
)] = "ar",
655 [ilog2(VM_DONTDUMP
)] = "dd",
656 #ifdef CONFIG_MEM_SOFT_DIRTY
657 [ilog2(VM_SOFTDIRTY
)] = "sd",
659 [ilog2(VM_MIXEDMAP
)] = "mm",
660 [ilog2(VM_HUGEPAGE
)] = "hg",
661 [ilog2(VM_NOHUGEPAGE
)] = "nh",
662 [ilog2(VM_MERGEABLE
)] = "mg",
663 [ilog2(VM_UFFD_MISSING
)]= "um",
664 [ilog2(VM_UFFD_WP
)] = "uw",
665 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
666 /* These come out via ProtectionKey: */
667 [ilog2(VM_PKEY_BIT0
)] = "",
668 [ilog2(VM_PKEY_BIT1
)] = "",
669 [ilog2(VM_PKEY_BIT2
)] = "",
670 [ilog2(VM_PKEY_BIT3
)] = "",
675 seq_puts(m
, "VmFlags: ");
676 for (i
= 0; i
< BITS_PER_LONG
; i
++) {
677 if (!mnemonics
[i
][0])
679 if (vma
->vm_flags
& (1UL << i
)) {
680 seq_printf(m
, "%c%c ",
681 mnemonics
[i
][0], mnemonics
[i
][1]);
687 #ifdef CONFIG_HUGETLB_PAGE
688 static int smaps_hugetlb_range(pte_t
*pte
, unsigned long hmask
,
689 unsigned long addr
, unsigned long end
,
690 struct mm_walk
*walk
)
692 struct mem_size_stats
*mss
= walk
->private;
693 struct vm_area_struct
*vma
= walk
->vma
;
694 struct page
*page
= NULL
;
696 if (pte_present(*pte
)) {
697 page
= vm_normal_page(vma
, addr
, *pte
);
698 } else if (is_swap_pte(*pte
)) {
699 swp_entry_t swpent
= pte_to_swp_entry(*pte
);
701 if (is_migration_entry(swpent
))
702 page
= migration_entry_to_page(swpent
);
705 int mapcount
= page_mapcount(page
);
708 mss
->shared_hugetlb
+= huge_page_size(hstate_vma(vma
));
710 mss
->private_hugetlb
+= huge_page_size(hstate_vma(vma
));
714 #endif /* HUGETLB_PAGE */
716 void __weak
arch_show_smap(struct seq_file
*m
, struct vm_area_struct
*vma
)
720 static int show_smap(struct seq_file
*m
, void *v
, int is_pid
)
722 struct vm_area_struct
*vma
= v
;
723 struct mem_size_stats mss
;
724 struct mm_walk smaps_walk
= {
725 .pmd_entry
= smaps_pte_range
,
726 #ifdef CONFIG_HUGETLB_PAGE
727 .hugetlb_entry
= smaps_hugetlb_range
,
733 memset(&mss
, 0, sizeof mss
);
736 if (vma
->vm_file
&& shmem_mapping(vma
->vm_file
->f_mapping
)) {
738 * For shared or readonly shmem mappings we know that all
739 * swapped out pages belong to the shmem object, and we can
740 * obtain the swap value much more efficiently. For private
741 * writable mappings, we might have COW pages that are
742 * not affected by the parent swapped out pages of the shmem
743 * object, so we have to distinguish them during the page walk.
744 * Unless we know that the shmem object (or the part mapped by
745 * our VMA) has no swapped out pages at all.
747 unsigned long shmem_swapped
= shmem_swap_usage(vma
);
749 if (!shmem_swapped
|| (vma
->vm_flags
& VM_SHARED
) ||
750 !(vma
->vm_flags
& VM_WRITE
)) {
751 mss
.swap
= shmem_swapped
;
753 mss
.check_shmem_swap
= true;
754 smaps_walk
.pte_hole
= smaps_pte_hole
;
759 /* mmap_sem is held in m_start */
760 walk_page_vma(vma
, &smaps_walk
);
762 show_map_vma(m
, vma
, is_pid
);
768 "Shared_Clean: %8lu kB\n"
769 "Shared_Dirty: %8lu kB\n"
770 "Private_Clean: %8lu kB\n"
771 "Private_Dirty: %8lu kB\n"
772 "Referenced: %8lu kB\n"
773 "Anonymous: %8lu kB\n"
774 "AnonHugePages: %8lu kB\n"
775 "ShmemPmdMapped: %8lu kB\n"
776 "Shared_Hugetlb: %8lu kB\n"
777 "Private_Hugetlb: %7lu kB\n"
780 "KernelPageSize: %8lu kB\n"
781 "MMUPageSize: %8lu kB\n"
783 (vma
->vm_end
- vma
->vm_start
) >> 10,
785 (unsigned long)(mss
.pss
>> (10 + PSS_SHIFT
)),
786 mss
.shared_clean
>> 10,
787 mss
.shared_dirty
>> 10,
788 mss
.private_clean
>> 10,
789 mss
.private_dirty
>> 10,
790 mss
.referenced
>> 10,
792 mss
.anonymous_thp
>> 10,
794 mss
.shared_hugetlb
>> 10,
795 mss
.private_hugetlb
>> 10,
797 (unsigned long)(mss
.swap_pss
>> (10 + PSS_SHIFT
)),
798 vma_kernel_pagesize(vma
) >> 10,
799 vma_mmu_pagesize(vma
) >> 10,
800 (vma
->vm_flags
& VM_LOCKED
) ?
801 (unsigned long)(mss
.pss
>> (10 + PSS_SHIFT
)) : 0);
803 arch_show_smap(m
, vma
);
804 show_smap_vma_flags(m
, vma
);
809 static int show_pid_smap(struct seq_file
*m
, void *v
)
811 return show_smap(m
, v
, 1);
814 static int show_tid_smap(struct seq_file
*m
, void *v
)
816 return show_smap(m
, v
, 0);
819 static const struct seq_operations proc_pid_smaps_op
= {
823 .show
= show_pid_smap
826 static const struct seq_operations proc_tid_smaps_op
= {
830 .show
= show_tid_smap
833 static int pid_smaps_open(struct inode
*inode
, struct file
*file
)
835 return do_maps_open(inode
, file
, &proc_pid_smaps_op
);
838 static int tid_smaps_open(struct inode
*inode
, struct file
*file
)
840 return do_maps_open(inode
, file
, &proc_tid_smaps_op
);
843 const struct file_operations proc_pid_smaps_operations
= {
844 .open
= pid_smaps_open
,
847 .release
= proc_map_release
,
850 const struct file_operations proc_tid_smaps_operations
= {
851 .open
= tid_smaps_open
,
854 .release
= proc_map_release
,
857 enum clear_refs_types
{
861 CLEAR_REFS_SOFT_DIRTY
,
862 CLEAR_REFS_MM_HIWATER_RSS
,
866 struct clear_refs_private
{
867 enum clear_refs_types type
;
870 #ifdef CONFIG_MEM_SOFT_DIRTY
871 static inline void clear_soft_dirty(struct vm_area_struct
*vma
,
872 unsigned long addr
, pte_t
*pte
)
875 * The soft-dirty tracker uses #PF-s to catch writes
876 * to pages, so write-protect the pte as well. See the
877 * Documentation/vm/soft-dirty.txt for full description
878 * of how soft-dirty works.
882 if (pte_present(ptent
)) {
883 ptent
= ptep_modify_prot_start(vma
->vm_mm
, addr
, pte
);
884 ptent
= pte_wrprotect(ptent
);
885 ptent
= pte_clear_soft_dirty(ptent
);
886 ptep_modify_prot_commit(vma
->vm_mm
, addr
, pte
, ptent
);
887 } else if (is_swap_pte(ptent
)) {
888 ptent
= pte_swp_clear_soft_dirty(ptent
);
889 set_pte_at(vma
->vm_mm
, addr
, pte
, ptent
);
893 static inline void clear_soft_dirty(struct vm_area_struct
*vma
,
894 unsigned long addr
, pte_t
*pte
)
899 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
900 static inline void clear_soft_dirty_pmd(struct vm_area_struct
*vma
,
901 unsigned long addr
, pmd_t
*pmdp
)
903 pmd_t pmd
= pmdp_huge_get_and_clear(vma
->vm_mm
, addr
, pmdp
);
905 pmd
= pmd_wrprotect(pmd
);
906 pmd
= pmd_clear_soft_dirty(pmd
);
908 set_pmd_at(vma
->vm_mm
, addr
, pmdp
, pmd
);
911 static inline void clear_soft_dirty_pmd(struct vm_area_struct
*vma
,
912 unsigned long addr
, pmd_t
*pmdp
)
917 static int clear_refs_pte_range(pmd_t
*pmd
, unsigned long addr
,
918 unsigned long end
, struct mm_walk
*walk
)
920 struct clear_refs_private
*cp
= walk
->private;
921 struct vm_area_struct
*vma
= walk
->vma
;
926 ptl
= pmd_trans_huge_lock(pmd
, vma
);
928 if (cp
->type
== CLEAR_REFS_SOFT_DIRTY
) {
929 clear_soft_dirty_pmd(vma
, addr
, pmd
);
933 page
= pmd_page(*pmd
);
935 /* Clear accessed and referenced bits. */
936 pmdp_test_and_clear_young(vma
, addr
, pmd
);
937 test_and_clear_page_young(page
);
938 ClearPageReferenced(page
);
944 if (pmd_trans_unstable(pmd
))
947 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
948 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
) {
951 if (cp
->type
== CLEAR_REFS_SOFT_DIRTY
) {
952 clear_soft_dirty(vma
, addr
, pte
);
956 if (!pte_present(ptent
))
959 page
= vm_normal_page(vma
, addr
, ptent
);
963 /* Clear accessed and referenced bits. */
964 ptep_test_and_clear_young(vma
, addr
, pte
);
965 test_and_clear_page_young(page
);
966 ClearPageReferenced(page
);
968 pte_unmap_unlock(pte
- 1, ptl
);
973 static int clear_refs_test_walk(unsigned long start
, unsigned long end
,
974 struct mm_walk
*walk
)
976 struct clear_refs_private
*cp
= walk
->private;
977 struct vm_area_struct
*vma
= walk
->vma
;
979 if (vma
->vm_flags
& VM_PFNMAP
)
983 * Writing 1 to /proc/pid/clear_refs affects all pages.
984 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
985 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
986 * Writing 4 to /proc/pid/clear_refs affects all pages.
988 if (cp
->type
== CLEAR_REFS_ANON
&& vma
->vm_file
)
990 if (cp
->type
== CLEAR_REFS_MAPPED
&& !vma
->vm_file
)
995 static ssize_t
clear_refs_write(struct file
*file
, const char __user
*buf
,
996 size_t count
, loff_t
*ppos
)
998 struct task_struct
*task
;
999 char buffer
[PROC_NUMBUF
];
1000 struct mm_struct
*mm
;
1001 struct vm_area_struct
*vma
;
1002 enum clear_refs_types type
;
1006 memset(buffer
, 0, sizeof(buffer
));
1007 if (count
> sizeof(buffer
) - 1)
1008 count
= sizeof(buffer
) - 1;
1009 if (copy_from_user(buffer
, buf
, count
))
1011 rv
= kstrtoint(strstrip(buffer
), 10, &itype
);
1014 type
= (enum clear_refs_types
)itype
;
1015 if (type
< CLEAR_REFS_ALL
|| type
>= CLEAR_REFS_LAST
)
1018 task
= get_proc_task(file_inode(file
));
1021 mm
= get_task_mm(task
);
1023 struct clear_refs_private cp
= {
1026 struct mm_walk clear_refs_walk
= {
1027 .pmd_entry
= clear_refs_pte_range
,
1028 .test_walk
= clear_refs_test_walk
,
1033 if (type
== CLEAR_REFS_MM_HIWATER_RSS
) {
1034 if (down_write_killable(&mm
->mmap_sem
)) {
1040 * Writing 5 to /proc/pid/clear_refs resets the peak
1041 * resident set size to this mm's current rss value.
1043 reset_mm_hiwater_rss(mm
);
1044 up_write(&mm
->mmap_sem
);
1048 down_read(&mm
->mmap_sem
);
1049 if (type
== CLEAR_REFS_SOFT_DIRTY
) {
1050 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
1051 if (!(vma
->vm_flags
& VM_SOFTDIRTY
))
1053 up_read(&mm
->mmap_sem
);
1054 if (down_write_killable(&mm
->mmap_sem
)) {
1058 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
1059 vma
->vm_flags
&= ~VM_SOFTDIRTY
;
1060 vma_set_page_prot(vma
);
1062 downgrade_write(&mm
->mmap_sem
);
1065 mmu_notifier_invalidate_range_start(mm
, 0, -1);
1067 walk_page_range(0, mm
->highest_vm_end
, &clear_refs_walk
);
1068 if (type
== CLEAR_REFS_SOFT_DIRTY
)
1069 mmu_notifier_invalidate_range_end(mm
, 0, -1);
1071 up_read(&mm
->mmap_sem
);
1075 put_task_struct(task
);
1080 const struct file_operations proc_clear_refs_operations
= {
1081 .write
= clear_refs_write
,
1082 .llseek
= noop_llseek
,
1089 struct pagemapread
{
1090 int pos
, len
; /* units: PM_ENTRY_BYTES, not bytes */
1091 pagemap_entry_t
*buffer
;
1095 #define PAGEMAP_WALK_SIZE (PMD_SIZE)
1096 #define PAGEMAP_WALK_MASK (PMD_MASK)
1098 #define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
1099 #define PM_PFRAME_BITS 55
1100 #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1101 #define PM_SOFT_DIRTY BIT_ULL(55)
1102 #define PM_MMAP_EXCLUSIVE BIT_ULL(56)
1103 #define PM_FILE BIT_ULL(61)
1104 #define PM_SWAP BIT_ULL(62)
1105 #define PM_PRESENT BIT_ULL(63)
1107 #define PM_END_OF_BUFFER 1
1109 static inline pagemap_entry_t
make_pme(u64 frame
, u64 flags
)
1111 return (pagemap_entry_t
) { .pme
= (frame
& PM_PFRAME_MASK
) | flags
};
1114 static int add_to_pagemap(unsigned long addr
, pagemap_entry_t
*pme
,
1115 struct pagemapread
*pm
)
1117 pm
->buffer
[pm
->pos
++] = *pme
;
1118 if (pm
->pos
>= pm
->len
)
1119 return PM_END_OF_BUFFER
;
1123 static int pagemap_pte_hole(unsigned long start
, unsigned long end
,
1124 struct mm_walk
*walk
)
1126 struct pagemapread
*pm
= walk
->private;
1127 unsigned long addr
= start
;
1130 while (addr
< end
) {
1131 struct vm_area_struct
*vma
= find_vma(walk
->mm
, addr
);
1132 pagemap_entry_t pme
= make_pme(0, 0);
1133 /* End of address space hole, which we mark as non-present. */
1134 unsigned long hole_end
;
1137 hole_end
= min(end
, vma
->vm_start
);
1141 for (; addr
< hole_end
; addr
+= PAGE_SIZE
) {
1142 err
= add_to_pagemap(addr
, &pme
, pm
);
1150 /* Addresses in the VMA. */
1151 if (vma
->vm_flags
& VM_SOFTDIRTY
)
1152 pme
= make_pme(0, PM_SOFT_DIRTY
);
1153 for (; addr
< min(end
, vma
->vm_end
); addr
+= PAGE_SIZE
) {
1154 err
= add_to_pagemap(addr
, &pme
, pm
);
1163 static pagemap_entry_t
pte_to_pagemap_entry(struct pagemapread
*pm
,
1164 struct vm_area_struct
*vma
, unsigned long addr
, pte_t pte
)
1166 u64 frame
= 0, flags
= 0;
1167 struct page
*page
= NULL
;
1169 if (pte_present(pte
)) {
1171 frame
= pte_pfn(pte
);
1172 flags
|= PM_PRESENT
;
1173 page
= vm_normal_page(vma
, addr
, pte
);
1174 if (pte_soft_dirty(pte
))
1175 flags
|= PM_SOFT_DIRTY
;
1176 } else if (is_swap_pte(pte
)) {
1178 if (pte_swp_soft_dirty(pte
))
1179 flags
|= PM_SOFT_DIRTY
;
1180 entry
= pte_to_swp_entry(pte
);
1181 frame
= swp_type(entry
) |
1182 (swp_offset(entry
) << MAX_SWAPFILES_SHIFT
);
1184 if (is_migration_entry(entry
))
1185 page
= migration_entry_to_page(entry
);
1188 if (page
&& !PageAnon(page
))
1190 if (page
&& page_mapcount(page
) == 1)
1191 flags
|= PM_MMAP_EXCLUSIVE
;
1192 if (vma
->vm_flags
& VM_SOFTDIRTY
)
1193 flags
|= PM_SOFT_DIRTY
;
1195 return make_pme(frame
, flags
);
1198 static int pagemap_pmd_range(pmd_t
*pmdp
, unsigned long addr
, unsigned long end
,
1199 struct mm_walk
*walk
)
1201 struct vm_area_struct
*vma
= walk
->vma
;
1202 struct pagemapread
*pm
= walk
->private;
1204 pte_t
*pte
, *orig_pte
;
1207 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1208 ptl
= pmd_trans_huge_lock(pmdp
, vma
);
1210 u64 flags
= 0, frame
= 0;
1213 if ((vma
->vm_flags
& VM_SOFTDIRTY
) || pmd_soft_dirty(pmd
))
1214 flags
|= PM_SOFT_DIRTY
;
1217 * Currently pmd for thp is always present because thp
1218 * can not be swapped-out, migrated, or HWPOISONed
1219 * (split in such cases instead.)
1220 * This if-check is just to prepare for future implementation.
1222 if (pmd_present(pmd
)) {
1223 struct page
*page
= pmd_page(pmd
);
1225 if (page_mapcount(page
) == 1)
1226 flags
|= PM_MMAP_EXCLUSIVE
;
1228 flags
|= PM_PRESENT
;
1230 frame
= pmd_pfn(pmd
) +
1231 ((addr
& ~PMD_MASK
) >> PAGE_SHIFT
);
1234 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
1235 pagemap_entry_t pme
= make_pme(frame
, flags
);
1237 err
= add_to_pagemap(addr
, &pme
, pm
);
1240 if (pm
->show_pfn
&& (flags
& PM_PRESENT
))
1247 if (pmd_trans_unstable(pmdp
))
1249 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1252 * We can assume that @vma always points to a valid one and @end never
1253 * goes beyond vma->vm_end.
1255 orig_pte
= pte
= pte_offset_map_lock(walk
->mm
, pmdp
, addr
, &ptl
);
1256 for (; addr
< end
; pte
++, addr
+= PAGE_SIZE
) {
1257 pagemap_entry_t pme
;
1259 pme
= pte_to_pagemap_entry(pm
, vma
, addr
, *pte
);
1260 err
= add_to_pagemap(addr
, &pme
, pm
);
1264 pte_unmap_unlock(orig_pte
, ptl
);
1271 #ifdef CONFIG_HUGETLB_PAGE
1272 /* This function walks within one hugetlb entry in the single call */
1273 static int pagemap_hugetlb_range(pte_t
*ptep
, unsigned long hmask
,
1274 unsigned long addr
, unsigned long end
,
1275 struct mm_walk
*walk
)
1277 struct pagemapread
*pm
= walk
->private;
1278 struct vm_area_struct
*vma
= walk
->vma
;
1279 u64 flags
= 0, frame
= 0;
1283 if (vma
->vm_flags
& VM_SOFTDIRTY
)
1284 flags
|= PM_SOFT_DIRTY
;
1286 pte
= huge_ptep_get(ptep
);
1287 if (pte_present(pte
)) {
1288 struct page
*page
= pte_page(pte
);
1290 if (!PageAnon(page
))
1293 if (page_mapcount(page
) == 1)
1294 flags
|= PM_MMAP_EXCLUSIVE
;
1296 flags
|= PM_PRESENT
;
1298 frame
= pte_pfn(pte
) +
1299 ((addr
& ~hmask
) >> PAGE_SHIFT
);
1302 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
1303 pagemap_entry_t pme
= make_pme(frame
, flags
);
1305 err
= add_to_pagemap(addr
, &pme
, pm
);
1308 if (pm
->show_pfn
&& (flags
& PM_PRESENT
))
1316 #endif /* HUGETLB_PAGE */
1319 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1321 * For each page in the address space, this file contains one 64-bit entry
1322 * consisting of the following:
1324 * Bits 0-54 page frame number (PFN) if present
1325 * Bits 0-4 swap type if swapped
1326 * Bits 5-54 swap offset if swapped
1327 * Bit 55 pte is soft-dirty (see Documentation/vm/soft-dirty.txt)
1328 * Bit 56 page exclusively mapped
1330 * Bit 61 page is file-page or shared-anon
1331 * Bit 62 page swapped
1332 * Bit 63 page present
1334 * If the page is not present but in swap, then the PFN contains an
1335 * encoding of the swap file number and the page's offset into the
1336 * swap. Unmapped pages return a null PFN. This allows determining
1337 * precisely which pages are mapped (or in swap) and comparing mapped
1338 * pages between processes.
1340 * Efficient users of this interface will use /proc/pid/maps to
1341 * determine which areas of memory are actually mapped and llseek to
1342 * skip over unmapped regions.
1344 static ssize_t
pagemap_read(struct file
*file
, char __user
*buf
,
1345 size_t count
, loff_t
*ppos
)
1347 struct mm_struct
*mm
= file
->private_data
;
1348 struct pagemapread pm
;
1349 struct mm_walk pagemap_walk
= {};
1351 unsigned long svpfn
;
1352 unsigned long start_vaddr
;
1353 unsigned long end_vaddr
;
1354 int ret
= 0, copied
= 0;
1356 if (!mm
|| !mmget_not_zero(mm
))
1360 /* file position must be aligned */
1361 if ((*ppos
% PM_ENTRY_BYTES
) || (count
% PM_ENTRY_BYTES
))
1368 /* do not disclose physical addresses: attack vector */
1369 pm
.show_pfn
= file_ns_capable(file
, &init_user_ns
, CAP_SYS_ADMIN
);
1371 pm
.len
= (PAGEMAP_WALK_SIZE
>> PAGE_SHIFT
);
1372 pm
.buffer
= kmalloc(pm
.len
* PM_ENTRY_BYTES
, GFP_TEMPORARY
);
1377 pagemap_walk
.pmd_entry
= pagemap_pmd_range
;
1378 pagemap_walk
.pte_hole
= pagemap_pte_hole
;
1379 #ifdef CONFIG_HUGETLB_PAGE
1380 pagemap_walk
.hugetlb_entry
= pagemap_hugetlb_range
;
1382 pagemap_walk
.mm
= mm
;
1383 pagemap_walk
.private = &pm
;
1386 svpfn
= src
/ PM_ENTRY_BYTES
;
1387 start_vaddr
= svpfn
<< PAGE_SHIFT
;
1388 end_vaddr
= mm
->task_size
;
1390 /* watch out for wraparound */
1391 if (svpfn
> mm
->task_size
>> PAGE_SHIFT
)
1392 start_vaddr
= end_vaddr
;
1395 * The odds are that this will stop walking way
1396 * before end_vaddr, because the length of the
1397 * user buffer is tracked in "pm", and the walk
1398 * will stop when we hit the end of the buffer.
1401 while (count
&& (start_vaddr
< end_vaddr
)) {
1406 end
= (start_vaddr
+ PAGEMAP_WALK_SIZE
) & PAGEMAP_WALK_MASK
;
1408 if (end
< start_vaddr
|| end
> end_vaddr
)
1410 down_read(&mm
->mmap_sem
);
1411 ret
= walk_page_range(start_vaddr
, end
, &pagemap_walk
);
1412 up_read(&mm
->mmap_sem
);
1415 len
= min(count
, PM_ENTRY_BYTES
* pm
.pos
);
1416 if (copy_to_user(buf
, pm
.buffer
, len
)) {
1425 if (!ret
|| ret
== PM_END_OF_BUFFER
)
1436 static int pagemap_open(struct inode
*inode
, struct file
*file
)
1438 struct mm_struct
*mm
;
1440 mm
= proc_mem_open(inode
, PTRACE_MODE_READ
);
1443 file
->private_data
= mm
;
1447 static int pagemap_release(struct inode
*inode
, struct file
*file
)
1449 struct mm_struct
*mm
= file
->private_data
;
1456 const struct file_operations proc_pagemap_operations
= {
1457 .llseek
= mem_lseek
, /* borrow this */
1458 .read
= pagemap_read
,
1459 .open
= pagemap_open
,
1460 .release
= pagemap_release
,
1462 #endif /* CONFIG_PROC_PAGE_MONITOR */
1467 unsigned long pages
;
1469 unsigned long active
;
1470 unsigned long writeback
;
1471 unsigned long mapcount_max
;
1472 unsigned long dirty
;
1473 unsigned long swapcache
;
1474 unsigned long node
[MAX_NUMNODES
];
1477 struct numa_maps_private
{
1478 struct proc_maps_private proc_maps
;
1479 struct numa_maps md
;
1482 static void gather_stats(struct page
*page
, struct numa_maps
*md
, int pte_dirty
,
1483 unsigned long nr_pages
)
1485 int count
= page_mapcount(page
);
1487 md
->pages
+= nr_pages
;
1488 if (pte_dirty
|| PageDirty(page
))
1489 md
->dirty
+= nr_pages
;
1491 if (PageSwapCache(page
))
1492 md
->swapcache
+= nr_pages
;
1494 if (PageActive(page
) || PageUnevictable(page
))
1495 md
->active
+= nr_pages
;
1497 if (PageWriteback(page
))
1498 md
->writeback
+= nr_pages
;
1501 md
->anon
+= nr_pages
;
1503 if (count
> md
->mapcount_max
)
1504 md
->mapcount_max
= count
;
1506 md
->node
[page_to_nid(page
)] += nr_pages
;
1509 static struct page
*can_gather_numa_stats(pte_t pte
, struct vm_area_struct
*vma
,
1515 if (!pte_present(pte
))
1518 page
= vm_normal_page(vma
, addr
, pte
);
1522 if (PageReserved(page
))
1525 nid
= page_to_nid(page
);
1526 if (!node_isset(nid
, node_states
[N_MEMORY
]))
1532 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1533 static struct page
*can_gather_numa_stats_pmd(pmd_t pmd
,
1534 struct vm_area_struct
*vma
,
1540 if (!pmd_present(pmd
))
1543 page
= vm_normal_page_pmd(vma
, addr
, pmd
);
1547 if (PageReserved(page
))
1550 nid
= page_to_nid(page
);
1551 if (!node_isset(nid
, node_states
[N_MEMORY
]))
1558 static int gather_pte_stats(pmd_t
*pmd
, unsigned long addr
,
1559 unsigned long end
, struct mm_walk
*walk
)
1561 struct numa_maps
*md
= walk
->private;
1562 struct vm_area_struct
*vma
= walk
->vma
;
1567 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1568 ptl
= pmd_trans_huge_lock(pmd
, vma
);
1572 page
= can_gather_numa_stats_pmd(*pmd
, vma
, addr
);
1574 gather_stats(page
, md
, pmd_dirty(*pmd
),
1575 HPAGE_PMD_SIZE
/PAGE_SIZE
);
1580 if (pmd_trans_unstable(pmd
))
1583 orig_pte
= pte
= pte_offset_map_lock(walk
->mm
, pmd
, addr
, &ptl
);
1585 struct page
*page
= can_gather_numa_stats(*pte
, vma
, addr
);
1588 gather_stats(page
, md
, pte_dirty(*pte
), 1);
1590 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1591 pte_unmap_unlock(orig_pte
, ptl
);
1595 #ifdef CONFIG_HUGETLB_PAGE
1596 static int gather_hugetlb_stats(pte_t
*pte
, unsigned long hmask
,
1597 unsigned long addr
, unsigned long end
, struct mm_walk
*walk
)
1599 pte_t huge_pte
= huge_ptep_get(pte
);
1600 struct numa_maps
*md
;
1603 if (!pte_present(huge_pte
))
1606 page
= pte_page(huge_pte
);
1611 gather_stats(page
, md
, pte_dirty(huge_pte
), 1);
1616 static int gather_hugetlb_stats(pte_t
*pte
, unsigned long hmask
,
1617 unsigned long addr
, unsigned long end
, struct mm_walk
*walk
)
1624 * Display pages allocated per node and memory policy via /proc.
1626 static int show_numa_map(struct seq_file
*m
, void *v
, int is_pid
)
1628 struct numa_maps_private
*numa_priv
= m
->private;
1629 struct proc_maps_private
*proc_priv
= &numa_priv
->proc_maps
;
1630 struct vm_area_struct
*vma
= v
;
1631 struct numa_maps
*md
= &numa_priv
->md
;
1632 struct file
*file
= vma
->vm_file
;
1633 struct mm_struct
*mm
= vma
->vm_mm
;
1634 struct mm_walk walk
= {
1635 .hugetlb_entry
= gather_hugetlb_stats
,
1636 .pmd_entry
= gather_pte_stats
,
1640 struct mempolicy
*pol
;
1647 /* Ensure we start with an empty set of numa_maps statistics. */
1648 memset(md
, 0, sizeof(*md
));
1650 pol
= __get_vma_policy(vma
, vma
->vm_start
);
1652 mpol_to_str(buffer
, sizeof(buffer
), pol
);
1655 mpol_to_str(buffer
, sizeof(buffer
), proc_priv
->task_mempolicy
);
1658 seq_printf(m
, "%08lx %s", vma
->vm_start
, buffer
);
1661 seq_puts(m
, " file=");
1662 seq_file_path(m
, file
, "\n\t= ");
1663 } else if (vma
->vm_start
<= mm
->brk
&& vma
->vm_end
>= mm
->start_brk
) {
1664 seq_puts(m
, " heap");
1665 } else if (is_stack(proc_priv
, vma
)) {
1666 seq_puts(m
, " stack");
1669 if (is_vm_hugetlb_page(vma
))
1670 seq_puts(m
, " huge");
1672 /* mmap_sem is held by m_start */
1673 walk_page_vma(vma
, &walk
);
1679 seq_printf(m
, " anon=%lu", md
->anon
);
1682 seq_printf(m
, " dirty=%lu", md
->dirty
);
1684 if (md
->pages
!= md
->anon
&& md
->pages
!= md
->dirty
)
1685 seq_printf(m
, " mapped=%lu", md
->pages
);
1687 if (md
->mapcount_max
> 1)
1688 seq_printf(m
, " mapmax=%lu", md
->mapcount_max
);
1691 seq_printf(m
, " swapcache=%lu", md
->swapcache
);
1693 if (md
->active
< md
->pages
&& !is_vm_hugetlb_page(vma
))
1694 seq_printf(m
, " active=%lu", md
->active
);
1697 seq_printf(m
, " writeback=%lu", md
->writeback
);
1699 for_each_node_state(nid
, N_MEMORY
)
1701 seq_printf(m
, " N%d=%lu", nid
, md
->node
[nid
]);
1703 seq_printf(m
, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma
) >> 10);
1706 m_cache_vma(m
, vma
);
1710 static int show_pid_numa_map(struct seq_file
*m
, void *v
)
1712 return show_numa_map(m
, v
, 1);
1715 static int show_tid_numa_map(struct seq_file
*m
, void *v
)
1717 return show_numa_map(m
, v
, 0);
1720 static const struct seq_operations proc_pid_numa_maps_op
= {
1724 .show
= show_pid_numa_map
,
1727 static const struct seq_operations proc_tid_numa_maps_op
= {
1731 .show
= show_tid_numa_map
,
1734 static int numa_maps_open(struct inode
*inode
, struct file
*file
,
1735 const struct seq_operations
*ops
)
1737 return proc_maps_open(inode
, file
, ops
,
1738 sizeof(struct numa_maps_private
));
1741 static int pid_numa_maps_open(struct inode
*inode
, struct file
*file
)
1743 return numa_maps_open(inode
, file
, &proc_pid_numa_maps_op
);
1746 static int tid_numa_maps_open(struct inode
*inode
, struct file
*file
)
1748 return numa_maps_open(inode
, file
, &proc_tid_numa_maps_op
);
1751 const struct file_operations proc_pid_numa_maps_operations
= {
1752 .open
= pid_numa_maps_open
,
1754 .llseek
= seq_lseek
,
1755 .release
= proc_map_release
,
1758 const struct file_operations proc_tid_numa_maps_operations
= {
1759 .open
= tid_numa_maps_open
,
1761 .llseek
= seq_lseek
,
1762 .release
= proc_map_release
,
1764 #endif /* CONFIG_NUMA */