powerpc: Don't try to fix up misaligned load-with-reservation instructions
[linux/fpc-iii.git] / kernel / time / hrtimer.c
blobec08f527d7ee9101399fd150ad788b8a40f2f859
1 /*
2 * linux/kernel/hrtimer.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * High-resolution kernel timers
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
20 * Started by: Thomas Gleixner and Ingo Molnar
22 * Credits:
23 * based on kernel/timer.c
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
31 * For licencing details see kernel-base/COPYING
34 #include <linux/cpu.h>
35 #include <linux/export.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched/signal.h>
47 #include <linux/sched/sysctl.h>
48 #include <linux/sched/rt.h>
49 #include <linux/sched/deadline.h>
50 #include <linux/sched/nohz.h>
51 #include <linux/sched/debug.h>
52 #include <linux/timer.h>
53 #include <linux/freezer.h>
55 #include <linux/uaccess.h>
57 #include <trace/events/timer.h>
59 #include "tick-internal.h"
62 * The timer bases:
64 * There are more clockids than hrtimer bases. Thus, we index
65 * into the timer bases by the hrtimer_base_type enum. When trying
66 * to reach a base using a clockid, hrtimer_clockid_to_base()
67 * is used to convert from clockid to the proper hrtimer_base_type.
69 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
71 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
72 .seq = SEQCNT_ZERO(hrtimer_bases.seq),
73 .clock_base =
76 .index = HRTIMER_BASE_MONOTONIC,
77 .clockid = CLOCK_MONOTONIC,
78 .get_time = &ktime_get,
81 .index = HRTIMER_BASE_REALTIME,
82 .clockid = CLOCK_REALTIME,
83 .get_time = &ktime_get_real,
86 .index = HRTIMER_BASE_BOOTTIME,
87 .clockid = CLOCK_BOOTTIME,
88 .get_time = &ktime_get_boottime,
91 .index = HRTIMER_BASE_TAI,
92 .clockid = CLOCK_TAI,
93 .get_time = &ktime_get_clocktai,
98 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
99 /* Make sure we catch unsupported clockids */
100 [0 ... MAX_CLOCKS - 1] = HRTIMER_MAX_CLOCK_BASES,
102 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
103 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
104 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
105 [CLOCK_TAI] = HRTIMER_BASE_TAI,
109 * Functions and macros which are different for UP/SMP systems are kept in a
110 * single place
112 #ifdef CONFIG_SMP
115 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
116 * such that hrtimer_callback_running() can unconditionally dereference
117 * timer->base->cpu_base
119 static struct hrtimer_cpu_base migration_cpu_base = {
120 .seq = SEQCNT_ZERO(migration_cpu_base),
121 .clock_base = { { .cpu_base = &migration_cpu_base, }, },
124 #define migration_base migration_cpu_base.clock_base[0]
127 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
128 * means that all timers which are tied to this base via timer->base are
129 * locked, and the base itself is locked too.
131 * So __run_timers/migrate_timers can safely modify all timers which could
132 * be found on the lists/queues.
134 * When the timer's base is locked, and the timer removed from list, it is
135 * possible to set timer->base = &migration_base and drop the lock: the timer
136 * remains locked.
138 static
139 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
140 unsigned long *flags)
142 struct hrtimer_clock_base *base;
144 for (;;) {
145 base = timer->base;
146 if (likely(base != &migration_base)) {
147 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
148 if (likely(base == timer->base))
149 return base;
150 /* The timer has migrated to another CPU: */
151 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
153 cpu_relax();
158 * With HIGHRES=y we do not migrate the timer when it is expiring
159 * before the next event on the target cpu because we cannot reprogram
160 * the target cpu hardware and we would cause it to fire late.
162 * Called with cpu_base->lock of target cpu held.
164 static int
165 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
167 #ifdef CONFIG_HIGH_RES_TIMERS
168 ktime_t expires;
170 if (!new_base->cpu_base->hres_active)
171 return 0;
173 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
174 return expires <= new_base->cpu_base->expires_next;
175 #else
176 return 0;
177 #endif
180 #ifdef CONFIG_NO_HZ_COMMON
181 static inline
182 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
183 int pinned)
185 if (pinned || !base->migration_enabled)
186 return base;
187 return &per_cpu(hrtimer_bases, get_nohz_timer_target());
189 #else
190 static inline
191 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
192 int pinned)
194 return base;
196 #endif
199 * We switch the timer base to a power-optimized selected CPU target,
200 * if:
201 * - NO_HZ_COMMON is enabled
202 * - timer migration is enabled
203 * - the timer callback is not running
204 * - the timer is not the first expiring timer on the new target
206 * If one of the above requirements is not fulfilled we move the timer
207 * to the current CPU or leave it on the previously assigned CPU if
208 * the timer callback is currently running.
210 static inline struct hrtimer_clock_base *
211 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
212 int pinned)
214 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
215 struct hrtimer_clock_base *new_base;
216 int basenum = base->index;
218 this_cpu_base = this_cpu_ptr(&hrtimer_bases);
219 new_cpu_base = get_target_base(this_cpu_base, pinned);
220 again:
221 new_base = &new_cpu_base->clock_base[basenum];
223 if (base != new_base) {
225 * We are trying to move timer to new_base.
226 * However we can't change timer's base while it is running,
227 * so we keep it on the same CPU. No hassle vs. reprogramming
228 * the event source in the high resolution case. The softirq
229 * code will take care of this when the timer function has
230 * completed. There is no conflict as we hold the lock until
231 * the timer is enqueued.
233 if (unlikely(hrtimer_callback_running(timer)))
234 return base;
236 /* See the comment in lock_hrtimer_base() */
237 timer->base = &migration_base;
238 raw_spin_unlock(&base->cpu_base->lock);
239 raw_spin_lock(&new_base->cpu_base->lock);
241 if (new_cpu_base != this_cpu_base &&
242 hrtimer_check_target(timer, new_base)) {
243 raw_spin_unlock(&new_base->cpu_base->lock);
244 raw_spin_lock(&base->cpu_base->lock);
245 new_cpu_base = this_cpu_base;
246 timer->base = base;
247 goto again;
249 timer->base = new_base;
250 } else {
251 if (new_cpu_base != this_cpu_base &&
252 hrtimer_check_target(timer, new_base)) {
253 new_cpu_base = this_cpu_base;
254 goto again;
257 return new_base;
260 #else /* CONFIG_SMP */
262 static inline struct hrtimer_clock_base *
263 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
265 struct hrtimer_clock_base *base = timer->base;
267 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
269 return base;
272 # define switch_hrtimer_base(t, b, p) (b)
274 #endif /* !CONFIG_SMP */
277 * Functions for the union type storage format of ktime_t which are
278 * too large for inlining:
280 #if BITS_PER_LONG < 64
282 * Divide a ktime value by a nanosecond value
284 s64 __ktime_divns(const ktime_t kt, s64 div)
286 int sft = 0;
287 s64 dclc;
288 u64 tmp;
290 dclc = ktime_to_ns(kt);
291 tmp = dclc < 0 ? -dclc : dclc;
293 /* Make sure the divisor is less than 2^32: */
294 while (div >> 32) {
295 sft++;
296 div >>= 1;
298 tmp >>= sft;
299 do_div(tmp, (unsigned long) div);
300 return dclc < 0 ? -tmp : tmp;
302 EXPORT_SYMBOL_GPL(__ktime_divns);
303 #endif /* BITS_PER_LONG >= 64 */
306 * Add two ktime values and do a safety check for overflow:
308 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
310 ktime_t res = ktime_add_unsafe(lhs, rhs);
313 * We use KTIME_SEC_MAX here, the maximum timeout which we can
314 * return to user space in a timespec:
316 if (res < 0 || res < lhs || res < rhs)
317 res = ktime_set(KTIME_SEC_MAX, 0);
319 return res;
322 EXPORT_SYMBOL_GPL(ktime_add_safe);
324 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
326 static struct debug_obj_descr hrtimer_debug_descr;
328 static void *hrtimer_debug_hint(void *addr)
330 return ((struct hrtimer *) addr)->function;
334 * fixup_init is called when:
335 * - an active object is initialized
337 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
339 struct hrtimer *timer = addr;
341 switch (state) {
342 case ODEBUG_STATE_ACTIVE:
343 hrtimer_cancel(timer);
344 debug_object_init(timer, &hrtimer_debug_descr);
345 return true;
346 default:
347 return false;
352 * fixup_activate is called when:
353 * - an active object is activated
354 * - an unknown non-static object is activated
356 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
358 switch (state) {
359 case ODEBUG_STATE_ACTIVE:
360 WARN_ON(1);
362 default:
363 return false;
368 * fixup_free is called when:
369 * - an active object is freed
371 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
373 struct hrtimer *timer = addr;
375 switch (state) {
376 case ODEBUG_STATE_ACTIVE:
377 hrtimer_cancel(timer);
378 debug_object_free(timer, &hrtimer_debug_descr);
379 return true;
380 default:
381 return false;
385 static struct debug_obj_descr hrtimer_debug_descr = {
386 .name = "hrtimer",
387 .debug_hint = hrtimer_debug_hint,
388 .fixup_init = hrtimer_fixup_init,
389 .fixup_activate = hrtimer_fixup_activate,
390 .fixup_free = hrtimer_fixup_free,
393 static inline void debug_hrtimer_init(struct hrtimer *timer)
395 debug_object_init(timer, &hrtimer_debug_descr);
398 static inline void debug_hrtimer_activate(struct hrtimer *timer)
400 debug_object_activate(timer, &hrtimer_debug_descr);
403 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
405 debug_object_deactivate(timer, &hrtimer_debug_descr);
408 static inline void debug_hrtimer_free(struct hrtimer *timer)
410 debug_object_free(timer, &hrtimer_debug_descr);
413 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
414 enum hrtimer_mode mode);
416 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
417 enum hrtimer_mode mode)
419 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
420 __hrtimer_init(timer, clock_id, mode);
422 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
424 void destroy_hrtimer_on_stack(struct hrtimer *timer)
426 debug_object_free(timer, &hrtimer_debug_descr);
428 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
430 #else
431 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
432 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
433 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
434 #endif
436 static inline void
437 debug_init(struct hrtimer *timer, clockid_t clockid,
438 enum hrtimer_mode mode)
440 debug_hrtimer_init(timer);
441 trace_hrtimer_init(timer, clockid, mode);
444 static inline void debug_activate(struct hrtimer *timer)
446 debug_hrtimer_activate(timer);
447 trace_hrtimer_start(timer);
450 static inline void debug_deactivate(struct hrtimer *timer)
452 debug_hrtimer_deactivate(timer);
453 trace_hrtimer_cancel(timer);
456 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
457 static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
458 struct hrtimer *timer)
460 #ifdef CONFIG_HIGH_RES_TIMERS
461 cpu_base->next_timer = timer;
462 #endif
465 static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
467 struct hrtimer_clock_base *base = cpu_base->clock_base;
468 unsigned int active = cpu_base->active_bases;
469 ktime_t expires, expires_next = KTIME_MAX;
471 hrtimer_update_next_timer(cpu_base, NULL);
472 for (; active; base++, active >>= 1) {
473 struct timerqueue_node *next;
474 struct hrtimer *timer;
476 if (!(active & 0x01))
477 continue;
479 next = timerqueue_getnext(&base->active);
480 timer = container_of(next, struct hrtimer, node);
481 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
482 if (expires < expires_next) {
483 expires_next = expires;
484 hrtimer_update_next_timer(cpu_base, timer);
488 * clock_was_set() might have changed base->offset of any of
489 * the clock bases so the result might be negative. Fix it up
490 * to prevent a false positive in clockevents_program_event().
492 if (expires_next < 0)
493 expires_next = 0;
494 return expires_next;
496 #endif
498 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
500 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
501 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
502 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
504 return ktime_get_update_offsets_now(&base->clock_was_set_seq,
505 offs_real, offs_boot, offs_tai);
508 /* High resolution timer related functions */
509 #ifdef CONFIG_HIGH_RES_TIMERS
512 * High resolution timer enabled ?
514 static bool hrtimer_hres_enabled __read_mostly = true;
515 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
516 EXPORT_SYMBOL_GPL(hrtimer_resolution);
519 * Enable / Disable high resolution mode
521 static int __init setup_hrtimer_hres(char *str)
523 return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
526 __setup("highres=", setup_hrtimer_hres);
529 * hrtimer_high_res_enabled - query, if the highres mode is enabled
531 static inline int hrtimer_is_hres_enabled(void)
533 return hrtimer_hres_enabled;
537 * Is the high resolution mode active ?
539 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
541 return cpu_base->hres_active;
544 static inline int hrtimer_hres_active(void)
546 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
550 * Reprogram the event source with checking both queues for the
551 * next event
552 * Called with interrupts disabled and base->lock held
554 static void
555 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
557 ktime_t expires_next;
559 if (!cpu_base->hres_active)
560 return;
562 expires_next = __hrtimer_get_next_event(cpu_base);
564 if (skip_equal && expires_next == cpu_base->expires_next)
565 return;
567 cpu_base->expires_next = expires_next;
570 * If a hang was detected in the last timer interrupt then we
571 * leave the hang delay active in the hardware. We want the
572 * system to make progress. That also prevents the following
573 * scenario:
574 * T1 expires 50ms from now
575 * T2 expires 5s from now
577 * T1 is removed, so this code is called and would reprogram
578 * the hardware to 5s from now. Any hrtimer_start after that
579 * will not reprogram the hardware due to hang_detected being
580 * set. So we'd effectivly block all timers until the T2 event
581 * fires.
583 if (cpu_base->hang_detected)
584 return;
586 tick_program_event(cpu_base->expires_next, 1);
590 * When a timer is enqueued and expires earlier than the already enqueued
591 * timers, we have to check, whether it expires earlier than the timer for
592 * which the clock event device was armed.
594 * Called with interrupts disabled and base->cpu_base.lock held
596 static void hrtimer_reprogram(struct hrtimer *timer,
597 struct hrtimer_clock_base *base)
599 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
600 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
602 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
605 * If the timer is not on the current cpu, we cannot reprogram
606 * the other cpus clock event device.
608 if (base->cpu_base != cpu_base)
609 return;
612 * If the hrtimer interrupt is running, then it will
613 * reevaluate the clock bases and reprogram the clock event
614 * device. The callbacks are always executed in hard interrupt
615 * context so we don't need an extra check for a running
616 * callback.
618 if (cpu_base->in_hrtirq)
619 return;
622 * CLOCK_REALTIME timer might be requested with an absolute
623 * expiry time which is less than base->offset. Set it to 0.
625 if (expires < 0)
626 expires = 0;
628 if (expires >= cpu_base->expires_next)
629 return;
631 /* Update the pointer to the next expiring timer */
632 cpu_base->next_timer = timer;
635 * If a hang was detected in the last timer interrupt then we
636 * do not schedule a timer which is earlier than the expiry
637 * which we enforced in the hang detection. We want the system
638 * to make progress.
640 if (cpu_base->hang_detected)
641 return;
644 * Program the timer hardware. We enforce the expiry for
645 * events which are already in the past.
647 cpu_base->expires_next = expires;
648 tick_program_event(expires, 1);
652 * Initialize the high resolution related parts of cpu_base
654 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
656 base->expires_next = KTIME_MAX;
657 base->hres_active = 0;
661 * Retrigger next event is called after clock was set
663 * Called with interrupts disabled via on_each_cpu()
665 static void retrigger_next_event(void *arg)
667 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
669 if (!base->hres_active)
670 return;
672 raw_spin_lock(&base->lock);
673 hrtimer_update_base(base);
674 hrtimer_force_reprogram(base, 0);
675 raw_spin_unlock(&base->lock);
679 * Switch to high resolution mode
681 static void hrtimer_switch_to_hres(void)
683 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
685 if (tick_init_highres()) {
686 printk(KERN_WARNING "Could not switch to high resolution "
687 "mode on CPU %d\n", base->cpu);
688 return;
690 base->hres_active = 1;
691 hrtimer_resolution = HIGH_RES_NSEC;
693 tick_setup_sched_timer();
694 /* "Retrigger" the interrupt to get things going */
695 retrigger_next_event(NULL);
698 static void clock_was_set_work(struct work_struct *work)
700 clock_was_set();
703 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
706 * Called from timekeeping and resume code to reprogram the hrtimer
707 * interrupt device on all cpus.
709 void clock_was_set_delayed(void)
711 schedule_work(&hrtimer_work);
714 #else
716 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
717 static inline int hrtimer_hres_active(void) { return 0; }
718 static inline int hrtimer_is_hres_enabled(void) { return 0; }
719 static inline void hrtimer_switch_to_hres(void) { }
720 static inline void
721 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
722 static inline int hrtimer_reprogram(struct hrtimer *timer,
723 struct hrtimer_clock_base *base)
725 return 0;
727 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
728 static inline void retrigger_next_event(void *arg) { }
730 #endif /* CONFIG_HIGH_RES_TIMERS */
733 * Clock realtime was set
735 * Change the offset of the realtime clock vs. the monotonic
736 * clock.
738 * We might have to reprogram the high resolution timer interrupt. On
739 * SMP we call the architecture specific code to retrigger _all_ high
740 * resolution timer interrupts. On UP we just disable interrupts and
741 * call the high resolution interrupt code.
743 void clock_was_set(void)
745 #ifdef CONFIG_HIGH_RES_TIMERS
746 /* Retrigger the CPU local events everywhere */
747 on_each_cpu(retrigger_next_event, NULL, 1);
748 #endif
749 timerfd_clock_was_set();
753 * During resume we might have to reprogram the high resolution timer
754 * interrupt on all online CPUs. However, all other CPUs will be
755 * stopped with IRQs interrupts disabled so the clock_was_set() call
756 * must be deferred.
758 void hrtimers_resume(void)
760 WARN_ONCE(!irqs_disabled(),
761 KERN_INFO "hrtimers_resume() called with IRQs enabled!");
763 /* Retrigger on the local CPU */
764 retrigger_next_event(NULL);
765 /* And schedule a retrigger for all others */
766 clock_was_set_delayed();
770 * Counterpart to lock_hrtimer_base above:
772 static inline
773 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
775 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
779 * hrtimer_forward - forward the timer expiry
780 * @timer: hrtimer to forward
781 * @now: forward past this time
782 * @interval: the interval to forward
784 * Forward the timer expiry so it will expire in the future.
785 * Returns the number of overruns.
787 * Can be safely called from the callback function of @timer. If
788 * called from other contexts @timer must neither be enqueued nor
789 * running the callback and the caller needs to take care of
790 * serialization.
792 * Note: This only updates the timer expiry value and does not requeue
793 * the timer.
795 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
797 u64 orun = 1;
798 ktime_t delta;
800 delta = ktime_sub(now, hrtimer_get_expires(timer));
802 if (delta < 0)
803 return 0;
805 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
806 return 0;
808 if (interval < hrtimer_resolution)
809 interval = hrtimer_resolution;
811 if (unlikely(delta >= interval)) {
812 s64 incr = ktime_to_ns(interval);
814 orun = ktime_divns(delta, incr);
815 hrtimer_add_expires_ns(timer, incr * orun);
816 if (hrtimer_get_expires_tv64(timer) > now)
817 return orun;
819 * This (and the ktime_add() below) is the
820 * correction for exact:
822 orun++;
824 hrtimer_add_expires(timer, interval);
826 return orun;
828 EXPORT_SYMBOL_GPL(hrtimer_forward);
831 * enqueue_hrtimer - internal function to (re)start a timer
833 * The timer is inserted in expiry order. Insertion into the
834 * red black tree is O(log(n)). Must hold the base lock.
836 * Returns 1 when the new timer is the leftmost timer in the tree.
838 static int enqueue_hrtimer(struct hrtimer *timer,
839 struct hrtimer_clock_base *base)
841 debug_activate(timer);
843 base->cpu_base->active_bases |= 1 << base->index;
845 timer->state = HRTIMER_STATE_ENQUEUED;
847 return timerqueue_add(&base->active, &timer->node);
851 * __remove_hrtimer - internal function to remove a timer
853 * Caller must hold the base lock.
855 * High resolution timer mode reprograms the clock event device when the
856 * timer is the one which expires next. The caller can disable this by setting
857 * reprogram to zero. This is useful, when the context does a reprogramming
858 * anyway (e.g. timer interrupt)
860 static void __remove_hrtimer(struct hrtimer *timer,
861 struct hrtimer_clock_base *base,
862 u8 newstate, int reprogram)
864 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
865 u8 state = timer->state;
867 timer->state = newstate;
868 if (!(state & HRTIMER_STATE_ENQUEUED))
869 return;
871 if (!timerqueue_del(&base->active, &timer->node))
872 cpu_base->active_bases &= ~(1 << base->index);
874 #ifdef CONFIG_HIGH_RES_TIMERS
876 * Note: If reprogram is false we do not update
877 * cpu_base->next_timer. This happens when we remove the first
878 * timer on a remote cpu. No harm as we never dereference
879 * cpu_base->next_timer. So the worst thing what can happen is
880 * an superflous call to hrtimer_force_reprogram() on the
881 * remote cpu later on if the same timer gets enqueued again.
883 if (reprogram && timer == cpu_base->next_timer)
884 hrtimer_force_reprogram(cpu_base, 1);
885 #endif
889 * remove hrtimer, called with base lock held
891 static inline int
892 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
894 if (hrtimer_is_queued(timer)) {
895 u8 state = timer->state;
896 int reprogram;
899 * Remove the timer and force reprogramming when high
900 * resolution mode is active and the timer is on the current
901 * CPU. If we remove a timer on another CPU, reprogramming is
902 * skipped. The interrupt event on this CPU is fired and
903 * reprogramming happens in the interrupt handler. This is a
904 * rare case and less expensive than a smp call.
906 debug_deactivate(timer);
907 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
909 if (!restart)
910 state = HRTIMER_STATE_INACTIVE;
912 __remove_hrtimer(timer, base, state, reprogram);
913 return 1;
915 return 0;
918 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
919 const enum hrtimer_mode mode)
921 #ifdef CONFIG_TIME_LOW_RES
923 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
924 * granular time values. For relative timers we add hrtimer_resolution
925 * (i.e. one jiffie) to prevent short timeouts.
927 timer->is_rel = mode & HRTIMER_MODE_REL;
928 if (timer->is_rel)
929 tim = ktime_add_safe(tim, hrtimer_resolution);
930 #endif
931 return tim;
935 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
936 * @timer: the timer to be added
937 * @tim: expiry time
938 * @delta_ns: "slack" range for the timer
939 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
940 * relative (HRTIMER_MODE_REL)
942 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
943 u64 delta_ns, const enum hrtimer_mode mode)
945 struct hrtimer_clock_base *base, *new_base;
946 unsigned long flags;
947 int leftmost;
949 base = lock_hrtimer_base(timer, &flags);
951 /* Remove an active timer from the queue: */
952 remove_hrtimer(timer, base, true);
954 if (mode & HRTIMER_MODE_REL)
955 tim = ktime_add_safe(tim, base->get_time());
957 tim = hrtimer_update_lowres(timer, tim, mode);
959 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
961 /* Switch the timer base, if necessary: */
962 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
964 leftmost = enqueue_hrtimer(timer, new_base);
965 if (!leftmost)
966 goto unlock;
968 if (!hrtimer_is_hres_active(timer)) {
970 * Kick to reschedule the next tick to handle the new timer
971 * on dynticks target.
973 if (new_base->cpu_base->nohz_active)
974 wake_up_nohz_cpu(new_base->cpu_base->cpu);
975 } else {
976 hrtimer_reprogram(timer, new_base);
978 unlock:
979 unlock_hrtimer_base(timer, &flags);
981 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
984 * hrtimer_try_to_cancel - try to deactivate a timer
985 * @timer: hrtimer to stop
987 * Returns:
988 * 0 when the timer was not active
989 * 1 when the timer was active
990 * -1 when the timer is currently excuting the callback function and
991 * cannot be stopped
993 int hrtimer_try_to_cancel(struct hrtimer *timer)
995 struct hrtimer_clock_base *base;
996 unsigned long flags;
997 int ret = -1;
1000 * Check lockless first. If the timer is not active (neither
1001 * enqueued nor running the callback, nothing to do here. The
1002 * base lock does not serialize against a concurrent enqueue,
1003 * so we can avoid taking it.
1005 if (!hrtimer_active(timer))
1006 return 0;
1008 base = lock_hrtimer_base(timer, &flags);
1010 if (!hrtimer_callback_running(timer))
1011 ret = remove_hrtimer(timer, base, false);
1013 unlock_hrtimer_base(timer, &flags);
1015 return ret;
1018 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1021 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1022 * @timer: the timer to be cancelled
1024 * Returns:
1025 * 0 when the timer was not active
1026 * 1 when the timer was active
1028 int hrtimer_cancel(struct hrtimer *timer)
1030 for (;;) {
1031 int ret = hrtimer_try_to_cancel(timer);
1033 if (ret >= 0)
1034 return ret;
1035 cpu_relax();
1038 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1041 * hrtimer_get_remaining - get remaining time for the timer
1042 * @timer: the timer to read
1043 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y
1045 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1047 unsigned long flags;
1048 ktime_t rem;
1050 lock_hrtimer_base(timer, &flags);
1051 if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1052 rem = hrtimer_expires_remaining_adjusted(timer);
1053 else
1054 rem = hrtimer_expires_remaining(timer);
1055 unlock_hrtimer_base(timer, &flags);
1057 return rem;
1059 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1061 #ifdef CONFIG_NO_HZ_COMMON
1063 * hrtimer_get_next_event - get the time until next expiry event
1065 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1067 u64 hrtimer_get_next_event(void)
1069 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1070 u64 expires = KTIME_MAX;
1071 unsigned long flags;
1073 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1075 if (!__hrtimer_hres_active(cpu_base))
1076 expires = __hrtimer_get_next_event(cpu_base);
1078 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1080 return expires;
1082 #endif
1084 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1086 if (likely(clock_id < MAX_CLOCKS)) {
1087 int base = hrtimer_clock_to_base_table[clock_id];
1089 if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1090 return base;
1092 WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1093 return HRTIMER_BASE_MONOTONIC;
1096 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1097 enum hrtimer_mode mode)
1099 struct hrtimer_cpu_base *cpu_base;
1100 int base;
1102 memset(timer, 0, sizeof(struct hrtimer));
1104 cpu_base = raw_cpu_ptr(&hrtimer_bases);
1106 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1107 clock_id = CLOCK_MONOTONIC;
1109 base = hrtimer_clockid_to_base(clock_id);
1110 timer->base = &cpu_base->clock_base[base];
1111 timerqueue_init(&timer->node);
1115 * hrtimer_init - initialize a timer to the given clock
1116 * @timer: the timer to be initialized
1117 * @clock_id: the clock to be used
1118 * @mode: timer mode abs/rel
1120 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1121 enum hrtimer_mode mode)
1123 debug_init(timer, clock_id, mode);
1124 __hrtimer_init(timer, clock_id, mode);
1126 EXPORT_SYMBOL_GPL(hrtimer_init);
1129 * A timer is active, when it is enqueued into the rbtree or the
1130 * callback function is running or it's in the state of being migrated
1131 * to another cpu.
1133 * It is important for this function to not return a false negative.
1135 bool hrtimer_active(const struct hrtimer *timer)
1137 struct hrtimer_cpu_base *cpu_base;
1138 unsigned int seq;
1140 do {
1141 cpu_base = READ_ONCE(timer->base->cpu_base);
1142 seq = raw_read_seqcount_begin(&cpu_base->seq);
1144 if (timer->state != HRTIMER_STATE_INACTIVE ||
1145 cpu_base->running == timer)
1146 return true;
1148 } while (read_seqcount_retry(&cpu_base->seq, seq) ||
1149 cpu_base != READ_ONCE(timer->base->cpu_base));
1151 return false;
1153 EXPORT_SYMBOL_GPL(hrtimer_active);
1156 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1157 * distinct sections:
1159 * - queued: the timer is queued
1160 * - callback: the timer is being ran
1161 * - post: the timer is inactive or (re)queued
1163 * On the read side we ensure we observe timer->state and cpu_base->running
1164 * from the same section, if anything changed while we looked at it, we retry.
1165 * This includes timer->base changing because sequence numbers alone are
1166 * insufficient for that.
1168 * The sequence numbers are required because otherwise we could still observe
1169 * a false negative if the read side got smeared over multiple consequtive
1170 * __run_hrtimer() invocations.
1173 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1174 struct hrtimer_clock_base *base,
1175 struct hrtimer *timer, ktime_t *now)
1177 enum hrtimer_restart (*fn)(struct hrtimer *);
1178 int restart;
1180 lockdep_assert_held(&cpu_base->lock);
1182 debug_deactivate(timer);
1183 cpu_base->running = timer;
1186 * Separate the ->running assignment from the ->state assignment.
1188 * As with a regular write barrier, this ensures the read side in
1189 * hrtimer_active() cannot observe cpu_base->running == NULL &&
1190 * timer->state == INACTIVE.
1192 raw_write_seqcount_barrier(&cpu_base->seq);
1194 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1195 fn = timer->function;
1198 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1199 * timer is restarted with a period then it becomes an absolute
1200 * timer. If its not restarted it does not matter.
1202 if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1203 timer->is_rel = false;
1206 * Because we run timers from hardirq context, there is no chance
1207 * they get migrated to another cpu, therefore its safe to unlock
1208 * the timer base.
1210 raw_spin_unlock(&cpu_base->lock);
1211 trace_hrtimer_expire_entry(timer, now);
1212 restart = fn(timer);
1213 trace_hrtimer_expire_exit(timer);
1214 raw_spin_lock(&cpu_base->lock);
1217 * Note: We clear the running state after enqueue_hrtimer and
1218 * we do not reprogram the event hardware. Happens either in
1219 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1221 * Note: Because we dropped the cpu_base->lock above,
1222 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1223 * for us already.
1225 if (restart != HRTIMER_NORESTART &&
1226 !(timer->state & HRTIMER_STATE_ENQUEUED))
1227 enqueue_hrtimer(timer, base);
1230 * Separate the ->running assignment from the ->state assignment.
1232 * As with a regular write barrier, this ensures the read side in
1233 * hrtimer_active() cannot observe cpu_base->running == NULL &&
1234 * timer->state == INACTIVE.
1236 raw_write_seqcount_barrier(&cpu_base->seq);
1238 WARN_ON_ONCE(cpu_base->running != timer);
1239 cpu_base->running = NULL;
1242 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
1244 struct hrtimer_clock_base *base = cpu_base->clock_base;
1245 unsigned int active = cpu_base->active_bases;
1247 for (; active; base++, active >>= 1) {
1248 struct timerqueue_node *node;
1249 ktime_t basenow;
1251 if (!(active & 0x01))
1252 continue;
1254 basenow = ktime_add(now, base->offset);
1256 while ((node = timerqueue_getnext(&base->active))) {
1257 struct hrtimer *timer;
1259 timer = container_of(node, struct hrtimer, node);
1262 * The immediate goal for using the softexpires is
1263 * minimizing wakeups, not running timers at the
1264 * earliest interrupt after their soft expiration.
1265 * This allows us to avoid using a Priority Search
1266 * Tree, which can answer a stabbing querry for
1267 * overlapping intervals and instead use the simple
1268 * BST we already have.
1269 * We don't add extra wakeups by delaying timers that
1270 * are right-of a not yet expired timer, because that
1271 * timer will have to trigger a wakeup anyway.
1273 if (basenow < hrtimer_get_softexpires_tv64(timer))
1274 break;
1276 __run_hrtimer(cpu_base, base, timer, &basenow);
1281 #ifdef CONFIG_HIGH_RES_TIMERS
1284 * High resolution timer interrupt
1285 * Called with interrupts disabled
1287 void hrtimer_interrupt(struct clock_event_device *dev)
1289 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1290 ktime_t expires_next, now, entry_time, delta;
1291 int retries = 0;
1293 BUG_ON(!cpu_base->hres_active);
1294 cpu_base->nr_events++;
1295 dev->next_event = KTIME_MAX;
1297 raw_spin_lock(&cpu_base->lock);
1298 entry_time = now = hrtimer_update_base(cpu_base);
1299 retry:
1300 cpu_base->in_hrtirq = 1;
1302 * We set expires_next to KTIME_MAX here with cpu_base->lock
1303 * held to prevent that a timer is enqueued in our queue via
1304 * the migration code. This does not affect enqueueing of
1305 * timers which run their callback and need to be requeued on
1306 * this CPU.
1308 cpu_base->expires_next = KTIME_MAX;
1310 __hrtimer_run_queues(cpu_base, now);
1312 /* Reevaluate the clock bases for the next expiry */
1313 expires_next = __hrtimer_get_next_event(cpu_base);
1315 * Store the new expiry value so the migration code can verify
1316 * against it.
1318 cpu_base->expires_next = expires_next;
1319 cpu_base->in_hrtirq = 0;
1320 raw_spin_unlock(&cpu_base->lock);
1322 /* Reprogramming necessary ? */
1323 if (!tick_program_event(expires_next, 0)) {
1324 cpu_base->hang_detected = 0;
1325 return;
1329 * The next timer was already expired due to:
1330 * - tracing
1331 * - long lasting callbacks
1332 * - being scheduled away when running in a VM
1334 * We need to prevent that we loop forever in the hrtimer
1335 * interrupt routine. We give it 3 attempts to avoid
1336 * overreacting on some spurious event.
1338 * Acquire base lock for updating the offsets and retrieving
1339 * the current time.
1341 raw_spin_lock(&cpu_base->lock);
1342 now = hrtimer_update_base(cpu_base);
1343 cpu_base->nr_retries++;
1344 if (++retries < 3)
1345 goto retry;
1347 * Give the system a chance to do something else than looping
1348 * here. We stored the entry time, so we know exactly how long
1349 * we spent here. We schedule the next event this amount of
1350 * time away.
1352 cpu_base->nr_hangs++;
1353 cpu_base->hang_detected = 1;
1354 raw_spin_unlock(&cpu_base->lock);
1355 delta = ktime_sub(now, entry_time);
1356 if ((unsigned int)delta > cpu_base->max_hang_time)
1357 cpu_base->max_hang_time = (unsigned int) delta;
1359 * Limit it to a sensible value as we enforce a longer
1360 * delay. Give the CPU at least 100ms to catch up.
1362 if (delta > 100 * NSEC_PER_MSEC)
1363 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1364 else
1365 expires_next = ktime_add(now, delta);
1366 tick_program_event(expires_next, 1);
1367 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1368 ktime_to_ns(delta));
1372 * local version of hrtimer_peek_ahead_timers() called with interrupts
1373 * disabled.
1375 static inline void __hrtimer_peek_ahead_timers(void)
1377 struct tick_device *td;
1379 if (!hrtimer_hres_active())
1380 return;
1382 td = this_cpu_ptr(&tick_cpu_device);
1383 if (td && td->evtdev)
1384 hrtimer_interrupt(td->evtdev);
1387 #else /* CONFIG_HIGH_RES_TIMERS */
1389 static inline void __hrtimer_peek_ahead_timers(void) { }
1391 #endif /* !CONFIG_HIGH_RES_TIMERS */
1394 * Called from run_local_timers in hardirq context every jiffy
1396 void hrtimer_run_queues(void)
1398 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1399 ktime_t now;
1401 if (__hrtimer_hres_active(cpu_base))
1402 return;
1405 * This _is_ ugly: We have to check periodically, whether we
1406 * can switch to highres and / or nohz mode. The clocksource
1407 * switch happens with xtime_lock held. Notification from
1408 * there only sets the check bit in the tick_oneshot code,
1409 * otherwise we might deadlock vs. xtime_lock.
1411 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1412 hrtimer_switch_to_hres();
1413 return;
1416 raw_spin_lock(&cpu_base->lock);
1417 now = hrtimer_update_base(cpu_base);
1418 __hrtimer_run_queues(cpu_base, now);
1419 raw_spin_unlock(&cpu_base->lock);
1423 * Sleep related functions:
1425 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1427 struct hrtimer_sleeper *t =
1428 container_of(timer, struct hrtimer_sleeper, timer);
1429 struct task_struct *task = t->task;
1431 t->task = NULL;
1432 if (task)
1433 wake_up_process(task);
1435 return HRTIMER_NORESTART;
1438 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1440 sl->timer.function = hrtimer_wakeup;
1441 sl->task = task;
1443 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1445 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1447 hrtimer_init_sleeper(t, current);
1449 do {
1450 set_current_state(TASK_INTERRUPTIBLE);
1451 hrtimer_start_expires(&t->timer, mode);
1453 if (likely(t->task))
1454 freezable_schedule();
1456 hrtimer_cancel(&t->timer);
1457 mode = HRTIMER_MODE_ABS;
1459 } while (t->task && !signal_pending(current));
1461 __set_current_state(TASK_RUNNING);
1463 return t->task == NULL;
1466 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1468 struct timespec rmt;
1469 ktime_t rem;
1471 rem = hrtimer_expires_remaining(timer);
1472 if (rem <= 0)
1473 return 0;
1474 rmt = ktime_to_timespec(rem);
1476 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1477 return -EFAULT;
1479 return 1;
1482 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1484 struct hrtimer_sleeper t;
1485 struct timespec __user *rmtp;
1486 int ret = 0;
1488 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1489 HRTIMER_MODE_ABS);
1490 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1492 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1493 goto out;
1495 rmtp = restart->nanosleep.rmtp;
1496 if (rmtp) {
1497 ret = update_rmtp(&t.timer, rmtp);
1498 if (ret <= 0)
1499 goto out;
1502 /* The other values in restart are already filled in */
1503 ret = -ERESTART_RESTARTBLOCK;
1504 out:
1505 destroy_hrtimer_on_stack(&t.timer);
1506 return ret;
1509 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1510 const enum hrtimer_mode mode, const clockid_t clockid)
1512 struct restart_block *restart;
1513 struct hrtimer_sleeper t;
1514 int ret = 0;
1515 u64 slack;
1517 slack = current->timer_slack_ns;
1518 if (dl_task(current) || rt_task(current))
1519 slack = 0;
1521 hrtimer_init_on_stack(&t.timer, clockid, mode);
1522 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1523 if (do_nanosleep(&t, mode))
1524 goto out;
1526 /* Absolute timers do not update the rmtp value and restart: */
1527 if (mode == HRTIMER_MODE_ABS) {
1528 ret = -ERESTARTNOHAND;
1529 goto out;
1532 if (rmtp) {
1533 ret = update_rmtp(&t.timer, rmtp);
1534 if (ret <= 0)
1535 goto out;
1538 restart = &current->restart_block;
1539 restart->fn = hrtimer_nanosleep_restart;
1540 restart->nanosleep.clockid = t.timer.base->clockid;
1541 restart->nanosleep.rmtp = rmtp;
1542 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1544 ret = -ERESTART_RESTARTBLOCK;
1545 out:
1546 destroy_hrtimer_on_stack(&t.timer);
1547 return ret;
1550 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1551 struct timespec __user *, rmtp)
1553 struct timespec tu;
1555 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1556 return -EFAULT;
1558 if (!timespec_valid(&tu))
1559 return -EINVAL;
1561 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1565 * Functions related to boot-time initialization:
1567 int hrtimers_prepare_cpu(unsigned int cpu)
1569 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1570 int i;
1572 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1573 cpu_base->clock_base[i].cpu_base = cpu_base;
1574 timerqueue_init_head(&cpu_base->clock_base[i].active);
1577 cpu_base->cpu = cpu;
1578 hrtimer_init_hres(cpu_base);
1579 return 0;
1582 #ifdef CONFIG_HOTPLUG_CPU
1584 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1585 struct hrtimer_clock_base *new_base)
1587 struct hrtimer *timer;
1588 struct timerqueue_node *node;
1590 while ((node = timerqueue_getnext(&old_base->active))) {
1591 timer = container_of(node, struct hrtimer, node);
1592 BUG_ON(hrtimer_callback_running(timer));
1593 debug_deactivate(timer);
1596 * Mark it as ENQUEUED not INACTIVE otherwise the
1597 * timer could be seen as !active and just vanish away
1598 * under us on another CPU
1600 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
1601 timer->base = new_base;
1603 * Enqueue the timers on the new cpu. This does not
1604 * reprogram the event device in case the timer
1605 * expires before the earliest on this CPU, but we run
1606 * hrtimer_interrupt after we migrated everything to
1607 * sort out already expired timers and reprogram the
1608 * event device.
1610 enqueue_hrtimer(timer, new_base);
1614 int hrtimers_dead_cpu(unsigned int scpu)
1616 struct hrtimer_cpu_base *old_base, *new_base;
1617 int i;
1619 BUG_ON(cpu_online(scpu));
1620 tick_cancel_sched_timer(scpu);
1622 local_irq_disable();
1623 old_base = &per_cpu(hrtimer_bases, scpu);
1624 new_base = this_cpu_ptr(&hrtimer_bases);
1626 * The caller is globally serialized and nobody else
1627 * takes two locks at once, deadlock is not possible.
1629 raw_spin_lock(&new_base->lock);
1630 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1632 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1633 migrate_hrtimer_list(&old_base->clock_base[i],
1634 &new_base->clock_base[i]);
1637 raw_spin_unlock(&old_base->lock);
1638 raw_spin_unlock(&new_base->lock);
1640 /* Check, if we got expired work to do */
1641 __hrtimer_peek_ahead_timers();
1642 local_irq_enable();
1643 return 0;
1646 #endif /* CONFIG_HOTPLUG_CPU */
1648 void __init hrtimers_init(void)
1650 hrtimers_prepare_cpu(smp_processor_id());
1654 * schedule_hrtimeout_range_clock - sleep until timeout
1655 * @expires: timeout value (ktime_t)
1656 * @delta: slack in expires timeout (ktime_t)
1657 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1658 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1660 int __sched
1661 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
1662 const enum hrtimer_mode mode, int clock)
1664 struct hrtimer_sleeper t;
1667 * Optimize when a zero timeout value is given. It does not
1668 * matter whether this is an absolute or a relative time.
1670 if (expires && *expires == 0) {
1671 __set_current_state(TASK_RUNNING);
1672 return 0;
1676 * A NULL parameter means "infinite"
1678 if (!expires) {
1679 schedule();
1680 return -EINTR;
1683 hrtimer_init_on_stack(&t.timer, clock, mode);
1684 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1686 hrtimer_init_sleeper(&t, current);
1688 hrtimer_start_expires(&t.timer, mode);
1690 if (likely(t.task))
1691 schedule();
1693 hrtimer_cancel(&t.timer);
1694 destroy_hrtimer_on_stack(&t.timer);
1696 __set_current_state(TASK_RUNNING);
1698 return !t.task ? 0 : -EINTR;
1702 * schedule_hrtimeout_range - sleep until timeout
1703 * @expires: timeout value (ktime_t)
1704 * @delta: slack in expires timeout (ktime_t)
1705 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1707 * Make the current task sleep until the given expiry time has
1708 * elapsed. The routine will return immediately unless
1709 * the current task state has been set (see set_current_state()).
1711 * The @delta argument gives the kernel the freedom to schedule the
1712 * actual wakeup to a time that is both power and performance friendly.
1713 * The kernel give the normal best effort behavior for "@expires+@delta",
1714 * but may decide to fire the timer earlier, but no earlier than @expires.
1716 * You can set the task state as follows -
1718 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1719 * pass before the routine returns unless the current task is explicitly
1720 * woken up, (e.g. by wake_up_process()).
1722 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1723 * delivered to the current task or the current task is explicitly woken
1724 * up.
1726 * The current task state is guaranteed to be TASK_RUNNING when this
1727 * routine returns.
1729 * Returns 0 when the timer has expired. If the task was woken before the
1730 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
1731 * by an explicit wakeup, it returns -EINTR.
1733 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
1734 const enum hrtimer_mode mode)
1736 return schedule_hrtimeout_range_clock(expires, delta, mode,
1737 CLOCK_MONOTONIC);
1739 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1742 * schedule_hrtimeout - sleep until timeout
1743 * @expires: timeout value (ktime_t)
1744 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1746 * Make the current task sleep until the given expiry time has
1747 * elapsed. The routine will return immediately unless
1748 * the current task state has been set (see set_current_state()).
1750 * You can set the task state as follows -
1752 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1753 * pass before the routine returns unless the current task is explicitly
1754 * woken up, (e.g. by wake_up_process()).
1756 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1757 * delivered to the current task or the current task is explicitly woken
1758 * up.
1760 * The current task state is guaranteed to be TASK_RUNNING when this
1761 * routine returns.
1763 * Returns 0 when the timer has expired. If the task was woken before the
1764 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
1765 * by an explicit wakeup, it returns -EINTR.
1767 int __sched schedule_hrtimeout(ktime_t *expires,
1768 const enum hrtimer_mode mode)
1770 return schedule_hrtimeout_range(expires, 0, mode);
1772 EXPORT_SYMBOL_GPL(schedule_hrtimeout);