2 * linux/kernel/time/timekeeping.c
4 * Kernel timekeeping code and accessor functions
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
17 #include <linux/nmi.h>
18 #include <linux/sched.h>
19 #include <linux/sched/loadavg.h>
20 #include <linux/syscore_ops.h>
21 #include <linux/clocksource.h>
22 #include <linux/jiffies.h>
23 #include <linux/time.h>
24 #include <linux/tick.h>
25 #include <linux/stop_machine.h>
26 #include <linux/pvclock_gtod.h>
27 #include <linux/compiler.h>
29 #include "tick-internal.h"
30 #include "ntp_internal.h"
31 #include "timekeeping_internal.h"
33 #define TK_CLEAR_NTP (1 << 0)
34 #define TK_MIRROR (1 << 1)
35 #define TK_CLOCK_WAS_SET (1 << 2)
38 * The most important data for readout fits into a single 64 byte
43 struct timekeeper timekeeper
;
44 } tk_core ____cacheline_aligned
;
46 static DEFINE_RAW_SPINLOCK(timekeeper_lock
);
47 static struct timekeeper shadow_timekeeper
;
50 * struct tk_fast - NMI safe timekeeper
51 * @seq: Sequence counter for protecting updates. The lowest bit
52 * is the index for the tk_read_base array
53 * @base: tk_read_base array. Access is indexed by the lowest bit of
56 * See @update_fast_timekeeper() below.
60 struct tk_read_base base
[2];
63 static struct tk_fast tk_fast_mono ____cacheline_aligned
;
64 static struct tk_fast tk_fast_raw ____cacheline_aligned
;
66 /* flag for if timekeeping is suspended */
67 int __read_mostly timekeeping_suspended
;
69 static inline void tk_normalize_xtime(struct timekeeper
*tk
)
71 while (tk
->tkr_mono
.xtime_nsec
>= ((u64
)NSEC_PER_SEC
<< tk
->tkr_mono
.shift
)) {
72 tk
->tkr_mono
.xtime_nsec
-= (u64
)NSEC_PER_SEC
<< tk
->tkr_mono
.shift
;
77 static inline struct timespec64
tk_xtime(struct timekeeper
*tk
)
81 ts
.tv_sec
= tk
->xtime_sec
;
82 ts
.tv_nsec
= (long)(tk
->tkr_mono
.xtime_nsec
>> tk
->tkr_mono
.shift
);
86 static void tk_set_xtime(struct timekeeper
*tk
, const struct timespec64
*ts
)
88 tk
->xtime_sec
= ts
->tv_sec
;
89 tk
->tkr_mono
.xtime_nsec
= (u64
)ts
->tv_nsec
<< tk
->tkr_mono
.shift
;
92 static void tk_xtime_add(struct timekeeper
*tk
, const struct timespec64
*ts
)
94 tk
->xtime_sec
+= ts
->tv_sec
;
95 tk
->tkr_mono
.xtime_nsec
+= (u64
)ts
->tv_nsec
<< tk
->tkr_mono
.shift
;
96 tk_normalize_xtime(tk
);
99 static void tk_set_wall_to_mono(struct timekeeper
*tk
, struct timespec64 wtm
)
101 struct timespec64 tmp
;
104 * Verify consistency of: offset_real = -wall_to_monotonic
105 * before modifying anything
107 set_normalized_timespec64(&tmp
, -tk
->wall_to_monotonic
.tv_sec
,
108 -tk
->wall_to_monotonic
.tv_nsec
);
109 WARN_ON_ONCE(tk
->offs_real
!= timespec64_to_ktime(tmp
));
110 tk
->wall_to_monotonic
= wtm
;
111 set_normalized_timespec64(&tmp
, -wtm
.tv_sec
, -wtm
.tv_nsec
);
112 tk
->offs_real
= timespec64_to_ktime(tmp
);
113 tk
->offs_tai
= ktime_add(tk
->offs_real
, ktime_set(tk
->tai_offset
, 0));
116 static inline void tk_update_sleep_time(struct timekeeper
*tk
, ktime_t delta
)
118 tk
->offs_boot
= ktime_add(tk
->offs_boot
, delta
);
121 #ifdef CONFIG_DEBUG_TIMEKEEPING
122 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
124 static void timekeeping_check_update(struct timekeeper
*tk
, u64 offset
)
127 u64 max_cycles
= tk
->tkr_mono
.clock
->max_cycles
;
128 const char *name
= tk
->tkr_mono
.clock
->name
;
130 if (offset
> max_cycles
) {
131 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
132 offset
, name
, max_cycles
);
133 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
135 if (offset
> (max_cycles
>> 1)) {
136 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
137 offset
, name
, max_cycles
>> 1);
138 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
142 if (tk
->underflow_seen
) {
143 if (jiffies
- tk
->last_warning
> WARNING_FREQ
) {
144 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name
);
145 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
146 printk_deferred(" Your kernel is probably still fine.\n");
147 tk
->last_warning
= jiffies
;
149 tk
->underflow_seen
= 0;
152 if (tk
->overflow_seen
) {
153 if (jiffies
- tk
->last_warning
> WARNING_FREQ
) {
154 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name
);
155 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
156 printk_deferred(" Your kernel is probably still fine.\n");
157 tk
->last_warning
= jiffies
;
159 tk
->overflow_seen
= 0;
163 static inline u64
timekeeping_get_delta(struct tk_read_base
*tkr
)
165 struct timekeeper
*tk
= &tk_core
.timekeeper
;
166 u64 now
, last
, mask
, max
, delta
;
170 * Since we're called holding a seqlock, the data may shift
171 * under us while we're doing the calculation. This can cause
172 * false positives, since we'd note a problem but throw the
173 * results away. So nest another seqlock here to atomically
174 * grab the points we are checking with.
177 seq
= read_seqcount_begin(&tk_core
.seq
);
178 now
= tkr
->read(tkr
->clock
);
179 last
= tkr
->cycle_last
;
181 max
= tkr
->clock
->max_cycles
;
182 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
184 delta
= clocksource_delta(now
, last
, mask
);
187 * Try to catch underflows by checking if we are seeing small
188 * mask-relative negative values.
190 if (unlikely((~delta
& mask
) < (mask
>> 3))) {
191 tk
->underflow_seen
= 1;
195 /* Cap delta value to the max_cycles values to avoid mult overflows */
196 if (unlikely(delta
> max
)) {
197 tk
->overflow_seen
= 1;
198 delta
= tkr
->clock
->max_cycles
;
204 static inline void timekeeping_check_update(struct timekeeper
*tk
, u64 offset
)
207 static inline u64
timekeeping_get_delta(struct tk_read_base
*tkr
)
209 u64 cycle_now
, delta
;
211 /* read clocksource */
212 cycle_now
= tkr
->read(tkr
->clock
);
214 /* calculate the delta since the last update_wall_time */
215 delta
= clocksource_delta(cycle_now
, tkr
->cycle_last
, tkr
->mask
);
222 * tk_setup_internals - Set up internals to use clocksource clock.
224 * @tk: The target timekeeper to setup.
225 * @clock: Pointer to clocksource.
227 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
228 * pair and interval request.
230 * Unless you're the timekeeping code, you should not be using this!
232 static void tk_setup_internals(struct timekeeper
*tk
, struct clocksource
*clock
)
235 u64 tmp
, ntpinterval
;
236 struct clocksource
*old_clock
;
238 ++tk
->cs_was_changed_seq
;
239 old_clock
= tk
->tkr_mono
.clock
;
240 tk
->tkr_mono
.clock
= clock
;
241 tk
->tkr_mono
.read
= clock
->read
;
242 tk
->tkr_mono
.mask
= clock
->mask
;
243 tk
->tkr_mono
.cycle_last
= tk
->tkr_mono
.read(clock
);
245 tk
->tkr_raw
.clock
= clock
;
246 tk
->tkr_raw
.read
= clock
->read
;
247 tk
->tkr_raw
.mask
= clock
->mask
;
248 tk
->tkr_raw
.cycle_last
= tk
->tkr_mono
.cycle_last
;
250 /* Do the ns -> cycle conversion first, using original mult */
251 tmp
= NTP_INTERVAL_LENGTH
;
252 tmp
<<= clock
->shift
;
254 tmp
+= clock
->mult
/2;
255 do_div(tmp
, clock
->mult
);
259 interval
= (u64
) tmp
;
260 tk
->cycle_interval
= interval
;
262 /* Go back from cycles -> shifted ns */
263 tk
->xtime_interval
= interval
* clock
->mult
;
264 tk
->xtime_remainder
= ntpinterval
- tk
->xtime_interval
;
265 tk
->raw_interval
= (interval
* clock
->mult
) >> clock
->shift
;
267 /* if changing clocks, convert xtime_nsec shift units */
269 int shift_change
= clock
->shift
- old_clock
->shift
;
270 if (shift_change
< 0)
271 tk
->tkr_mono
.xtime_nsec
>>= -shift_change
;
273 tk
->tkr_mono
.xtime_nsec
<<= shift_change
;
275 tk
->tkr_raw
.xtime_nsec
= 0;
277 tk
->tkr_mono
.shift
= clock
->shift
;
278 tk
->tkr_raw
.shift
= clock
->shift
;
281 tk
->ntp_error_shift
= NTP_SCALE_SHIFT
- clock
->shift
;
282 tk
->ntp_tick
= ntpinterval
<< tk
->ntp_error_shift
;
285 * The timekeeper keeps its own mult values for the currently
286 * active clocksource. These value will be adjusted via NTP
287 * to counteract clock drifting.
289 tk
->tkr_mono
.mult
= clock
->mult
;
290 tk
->tkr_raw
.mult
= clock
->mult
;
291 tk
->ntp_err_mult
= 0;
294 /* Timekeeper helper functions. */
296 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
297 static u32
default_arch_gettimeoffset(void) { return 0; }
298 u32 (*arch_gettimeoffset
)(void) = default_arch_gettimeoffset
;
300 static inline u32
arch_gettimeoffset(void) { return 0; }
303 static inline u64
timekeeping_delta_to_ns(struct tk_read_base
*tkr
, u64 delta
)
307 nsec
= delta
* tkr
->mult
+ tkr
->xtime_nsec
;
310 /* If arch requires, add in get_arch_timeoffset() */
311 return nsec
+ arch_gettimeoffset();
314 static inline u64
timekeeping_get_ns(struct tk_read_base
*tkr
)
318 delta
= timekeeping_get_delta(tkr
);
319 return timekeeping_delta_to_ns(tkr
, delta
);
322 static inline u64
timekeeping_cycles_to_ns(struct tk_read_base
*tkr
, u64 cycles
)
326 /* calculate the delta since the last update_wall_time */
327 delta
= clocksource_delta(cycles
, tkr
->cycle_last
, tkr
->mask
);
328 return timekeeping_delta_to_ns(tkr
, delta
);
332 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
333 * @tkr: Timekeeping readout base from which we take the update
335 * We want to use this from any context including NMI and tracing /
336 * instrumenting the timekeeping code itself.
338 * Employ the latch technique; see @raw_write_seqcount_latch.
340 * So if a NMI hits the update of base[0] then it will use base[1]
341 * which is still consistent. In the worst case this can result is a
342 * slightly wrong timestamp (a few nanoseconds). See
343 * @ktime_get_mono_fast_ns.
345 static void update_fast_timekeeper(struct tk_read_base
*tkr
, struct tk_fast
*tkf
)
347 struct tk_read_base
*base
= tkf
->base
;
349 /* Force readers off to base[1] */
350 raw_write_seqcount_latch(&tkf
->seq
);
353 memcpy(base
, tkr
, sizeof(*base
));
355 /* Force readers back to base[0] */
356 raw_write_seqcount_latch(&tkf
->seq
);
359 memcpy(base
+ 1, base
, sizeof(*base
));
363 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
365 * This timestamp is not guaranteed to be monotonic across an update.
366 * The timestamp is calculated by:
368 * now = base_mono + clock_delta * slope
370 * So if the update lowers the slope, readers who are forced to the
371 * not yet updated second array are still using the old steeper slope.
380 * |12345678---> reader order
386 * So reader 6 will observe time going backwards versus reader 5.
388 * While other CPUs are likely to be able observe that, the only way
389 * for a CPU local observation is when an NMI hits in the middle of
390 * the update. Timestamps taken from that NMI context might be ahead
391 * of the following timestamps. Callers need to be aware of that and
394 static __always_inline u64
__ktime_get_fast_ns(struct tk_fast
*tkf
)
396 struct tk_read_base
*tkr
;
401 seq
= raw_read_seqcount_latch(&tkf
->seq
);
402 tkr
= tkf
->base
+ (seq
& 0x01);
403 now
= ktime_to_ns(tkr
->base
);
405 now
+= timekeeping_delta_to_ns(tkr
,
407 tkr
->read(tkr
->clock
),
410 } while (read_seqcount_retry(&tkf
->seq
, seq
));
415 u64
ktime_get_mono_fast_ns(void)
417 return __ktime_get_fast_ns(&tk_fast_mono
);
419 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns
);
421 u64
ktime_get_raw_fast_ns(void)
423 return __ktime_get_fast_ns(&tk_fast_raw
);
425 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns
);
428 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
430 * To keep it NMI safe since we're accessing from tracing, we're not using a
431 * separate timekeeper with updates to monotonic clock and boot offset
432 * protected with seqlocks. This has the following minor side effects:
434 * (1) Its possible that a timestamp be taken after the boot offset is updated
435 * but before the timekeeper is updated. If this happens, the new boot offset
436 * is added to the old timekeeping making the clock appear to update slightly
439 * timekeeping_inject_sleeptime64()
440 * __timekeeping_inject_sleeptime(tk, delta);
442 * timekeeping_update(tk, TK_CLEAR_NTP...);
444 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
445 * partially updated. Since the tk->offs_boot update is a rare event, this
446 * should be a rare occurrence which postprocessing should be able to handle.
448 u64 notrace
ktime_get_boot_fast_ns(void)
450 struct timekeeper
*tk
= &tk_core
.timekeeper
;
452 return (ktime_get_mono_fast_ns() + ktime_to_ns(tk
->offs_boot
));
454 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns
);
456 /* Suspend-time cycles value for halted fast timekeeper. */
457 static u64 cycles_at_suspend
;
459 static u64
dummy_clock_read(struct clocksource
*cs
)
461 return cycles_at_suspend
;
465 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
466 * @tk: Timekeeper to snapshot.
468 * It generally is unsafe to access the clocksource after timekeeping has been
469 * suspended, so take a snapshot of the readout base of @tk and use it as the
470 * fast timekeeper's readout base while suspended. It will return the same
471 * number of cycles every time until timekeeping is resumed at which time the
472 * proper readout base for the fast timekeeper will be restored automatically.
474 static void halt_fast_timekeeper(struct timekeeper
*tk
)
476 static struct tk_read_base tkr_dummy
;
477 struct tk_read_base
*tkr
= &tk
->tkr_mono
;
479 memcpy(&tkr_dummy
, tkr
, sizeof(tkr_dummy
));
480 cycles_at_suspend
= tkr
->read(tkr
->clock
);
481 tkr_dummy
.read
= dummy_clock_read
;
482 update_fast_timekeeper(&tkr_dummy
, &tk_fast_mono
);
485 memcpy(&tkr_dummy
, tkr
, sizeof(tkr_dummy
));
486 tkr_dummy
.read
= dummy_clock_read
;
487 update_fast_timekeeper(&tkr_dummy
, &tk_fast_raw
);
490 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
492 static inline void update_vsyscall(struct timekeeper
*tk
)
494 struct timespec xt
, wm
;
496 xt
= timespec64_to_timespec(tk_xtime(tk
));
497 wm
= timespec64_to_timespec(tk
->wall_to_monotonic
);
498 update_vsyscall_old(&xt
, &wm
, tk
->tkr_mono
.clock
, tk
->tkr_mono
.mult
,
499 tk
->tkr_mono
.cycle_last
);
502 static inline void old_vsyscall_fixup(struct timekeeper
*tk
)
507 * Store only full nanoseconds into xtime_nsec after rounding
508 * it up and add the remainder to the error difference.
509 * XXX - This is necessary to avoid small 1ns inconsistnecies caused
510 * by truncating the remainder in vsyscalls. However, it causes
511 * additional work to be done in timekeeping_adjust(). Once
512 * the vsyscall implementations are converted to use xtime_nsec
513 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
514 * users are removed, this can be killed.
516 remainder
= tk
->tkr_mono
.xtime_nsec
& ((1ULL << tk
->tkr_mono
.shift
) - 1);
517 if (remainder
!= 0) {
518 tk
->tkr_mono
.xtime_nsec
-= remainder
;
519 tk
->tkr_mono
.xtime_nsec
+= 1ULL << tk
->tkr_mono
.shift
;
520 tk
->ntp_error
+= remainder
<< tk
->ntp_error_shift
;
521 tk
->ntp_error
-= (1ULL << tk
->tkr_mono
.shift
) << tk
->ntp_error_shift
;
525 #define old_vsyscall_fixup(tk)
528 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain
);
530 static void update_pvclock_gtod(struct timekeeper
*tk
, bool was_set
)
532 raw_notifier_call_chain(&pvclock_gtod_chain
, was_set
, tk
);
536 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
538 int pvclock_gtod_register_notifier(struct notifier_block
*nb
)
540 struct timekeeper
*tk
= &tk_core
.timekeeper
;
544 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
545 ret
= raw_notifier_chain_register(&pvclock_gtod_chain
, nb
);
546 update_pvclock_gtod(tk
, true);
547 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
551 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier
);
554 * pvclock_gtod_unregister_notifier - unregister a pvclock
555 * timedata update listener
557 int pvclock_gtod_unregister_notifier(struct notifier_block
*nb
)
562 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
563 ret
= raw_notifier_chain_unregister(&pvclock_gtod_chain
, nb
);
564 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
568 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier
);
571 * tk_update_leap_state - helper to update the next_leap_ktime
573 static inline void tk_update_leap_state(struct timekeeper
*tk
)
575 tk
->next_leap_ktime
= ntp_get_next_leap();
576 if (tk
->next_leap_ktime
!= KTIME_MAX
)
577 /* Convert to monotonic time */
578 tk
->next_leap_ktime
= ktime_sub(tk
->next_leap_ktime
, tk
->offs_real
);
582 * Update the ktime_t based scalar nsec members of the timekeeper
584 static inline void tk_update_ktime_data(struct timekeeper
*tk
)
590 * The xtime based monotonic readout is:
591 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
592 * The ktime based monotonic readout is:
593 * nsec = base_mono + now();
594 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
596 seconds
= (u64
)(tk
->xtime_sec
+ tk
->wall_to_monotonic
.tv_sec
);
597 nsec
= (u32
) tk
->wall_to_monotonic
.tv_nsec
;
598 tk
->tkr_mono
.base
= ns_to_ktime(seconds
* NSEC_PER_SEC
+ nsec
);
600 /* Update the monotonic raw base */
601 tk
->tkr_raw
.base
= timespec64_to_ktime(tk
->raw_time
);
604 * The sum of the nanoseconds portions of xtime and
605 * wall_to_monotonic can be greater/equal one second. Take
606 * this into account before updating tk->ktime_sec.
608 nsec
+= (u32
)(tk
->tkr_mono
.xtime_nsec
>> tk
->tkr_mono
.shift
);
609 if (nsec
>= NSEC_PER_SEC
)
611 tk
->ktime_sec
= seconds
;
614 /* must hold timekeeper_lock */
615 static void timekeeping_update(struct timekeeper
*tk
, unsigned int action
)
617 if (action
& TK_CLEAR_NTP
) {
622 tk_update_leap_state(tk
);
623 tk_update_ktime_data(tk
);
626 update_pvclock_gtod(tk
, action
& TK_CLOCK_WAS_SET
);
628 update_fast_timekeeper(&tk
->tkr_mono
, &tk_fast_mono
);
629 update_fast_timekeeper(&tk
->tkr_raw
, &tk_fast_raw
);
631 if (action
& TK_CLOCK_WAS_SET
)
632 tk
->clock_was_set_seq
++;
634 * The mirroring of the data to the shadow-timekeeper needs
635 * to happen last here to ensure we don't over-write the
636 * timekeeper structure on the next update with stale data
638 if (action
& TK_MIRROR
)
639 memcpy(&shadow_timekeeper
, &tk_core
.timekeeper
,
640 sizeof(tk_core
.timekeeper
));
644 * timekeeping_forward_now - update clock to the current time
646 * Forward the current clock to update its state since the last call to
647 * update_wall_time(). This is useful before significant clock changes,
648 * as it avoids having to deal with this time offset explicitly.
650 static void timekeeping_forward_now(struct timekeeper
*tk
)
652 struct clocksource
*clock
= tk
->tkr_mono
.clock
;
653 u64 cycle_now
, delta
;
656 cycle_now
= tk
->tkr_mono
.read(clock
);
657 delta
= clocksource_delta(cycle_now
, tk
->tkr_mono
.cycle_last
, tk
->tkr_mono
.mask
);
658 tk
->tkr_mono
.cycle_last
= cycle_now
;
659 tk
->tkr_raw
.cycle_last
= cycle_now
;
661 tk
->tkr_mono
.xtime_nsec
+= delta
* tk
->tkr_mono
.mult
;
663 /* If arch requires, add in get_arch_timeoffset() */
664 tk
->tkr_mono
.xtime_nsec
+= (u64
)arch_gettimeoffset() << tk
->tkr_mono
.shift
;
666 tk_normalize_xtime(tk
);
668 nsec
= clocksource_cyc2ns(delta
, tk
->tkr_raw
.mult
, tk
->tkr_raw
.shift
);
669 timespec64_add_ns(&tk
->raw_time
, nsec
);
673 * __getnstimeofday64 - Returns the time of day in a timespec64.
674 * @ts: pointer to the timespec to be set
676 * Updates the time of day in the timespec.
677 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
679 int __getnstimeofday64(struct timespec64
*ts
)
681 struct timekeeper
*tk
= &tk_core
.timekeeper
;
686 seq
= read_seqcount_begin(&tk_core
.seq
);
688 ts
->tv_sec
= tk
->xtime_sec
;
689 nsecs
= timekeeping_get_ns(&tk
->tkr_mono
);
691 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
694 timespec64_add_ns(ts
, nsecs
);
697 * Do not bail out early, in case there were callers still using
698 * the value, even in the face of the WARN_ON.
700 if (unlikely(timekeeping_suspended
))
704 EXPORT_SYMBOL(__getnstimeofday64
);
707 * getnstimeofday64 - Returns the time of day in a timespec64.
708 * @ts: pointer to the timespec64 to be set
710 * Returns the time of day in a timespec64 (WARN if suspended).
712 void getnstimeofday64(struct timespec64
*ts
)
714 WARN_ON(__getnstimeofday64(ts
));
716 EXPORT_SYMBOL(getnstimeofday64
);
718 ktime_t
ktime_get(void)
720 struct timekeeper
*tk
= &tk_core
.timekeeper
;
725 WARN_ON(timekeeping_suspended
);
728 seq
= read_seqcount_begin(&tk_core
.seq
);
729 base
= tk
->tkr_mono
.base
;
730 nsecs
= timekeeping_get_ns(&tk
->tkr_mono
);
732 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
734 return ktime_add_ns(base
, nsecs
);
736 EXPORT_SYMBOL_GPL(ktime_get
);
738 u32
ktime_get_resolution_ns(void)
740 struct timekeeper
*tk
= &tk_core
.timekeeper
;
744 WARN_ON(timekeeping_suspended
);
747 seq
= read_seqcount_begin(&tk_core
.seq
);
748 nsecs
= tk
->tkr_mono
.mult
>> tk
->tkr_mono
.shift
;
749 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
753 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns
);
755 static ktime_t
*offsets
[TK_OFFS_MAX
] = {
756 [TK_OFFS_REAL
] = &tk_core
.timekeeper
.offs_real
,
757 [TK_OFFS_BOOT
] = &tk_core
.timekeeper
.offs_boot
,
758 [TK_OFFS_TAI
] = &tk_core
.timekeeper
.offs_tai
,
761 ktime_t
ktime_get_with_offset(enum tk_offsets offs
)
763 struct timekeeper
*tk
= &tk_core
.timekeeper
;
765 ktime_t base
, *offset
= offsets
[offs
];
768 WARN_ON(timekeeping_suspended
);
771 seq
= read_seqcount_begin(&tk_core
.seq
);
772 base
= ktime_add(tk
->tkr_mono
.base
, *offset
);
773 nsecs
= timekeeping_get_ns(&tk
->tkr_mono
);
775 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
777 return ktime_add_ns(base
, nsecs
);
780 EXPORT_SYMBOL_GPL(ktime_get_with_offset
);
783 * ktime_mono_to_any() - convert mononotic time to any other time
784 * @tmono: time to convert.
785 * @offs: which offset to use
787 ktime_t
ktime_mono_to_any(ktime_t tmono
, enum tk_offsets offs
)
789 ktime_t
*offset
= offsets
[offs
];
794 seq
= read_seqcount_begin(&tk_core
.seq
);
795 tconv
= ktime_add(tmono
, *offset
);
796 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
800 EXPORT_SYMBOL_GPL(ktime_mono_to_any
);
803 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
805 ktime_t
ktime_get_raw(void)
807 struct timekeeper
*tk
= &tk_core
.timekeeper
;
813 seq
= read_seqcount_begin(&tk_core
.seq
);
814 base
= tk
->tkr_raw
.base
;
815 nsecs
= timekeeping_get_ns(&tk
->tkr_raw
);
817 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
819 return ktime_add_ns(base
, nsecs
);
821 EXPORT_SYMBOL_GPL(ktime_get_raw
);
824 * ktime_get_ts64 - get the monotonic clock in timespec64 format
825 * @ts: pointer to timespec variable
827 * The function calculates the monotonic clock from the realtime
828 * clock and the wall_to_monotonic offset and stores the result
829 * in normalized timespec64 format in the variable pointed to by @ts.
831 void ktime_get_ts64(struct timespec64
*ts
)
833 struct timekeeper
*tk
= &tk_core
.timekeeper
;
834 struct timespec64 tomono
;
838 WARN_ON(timekeeping_suspended
);
841 seq
= read_seqcount_begin(&tk_core
.seq
);
842 ts
->tv_sec
= tk
->xtime_sec
;
843 nsec
= timekeeping_get_ns(&tk
->tkr_mono
);
844 tomono
= tk
->wall_to_monotonic
;
846 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
848 ts
->tv_sec
+= tomono
.tv_sec
;
850 timespec64_add_ns(ts
, nsec
+ tomono
.tv_nsec
);
852 EXPORT_SYMBOL_GPL(ktime_get_ts64
);
855 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
857 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
858 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
859 * works on both 32 and 64 bit systems. On 32 bit systems the readout
860 * covers ~136 years of uptime which should be enough to prevent
861 * premature wrap arounds.
863 time64_t
ktime_get_seconds(void)
865 struct timekeeper
*tk
= &tk_core
.timekeeper
;
867 WARN_ON(timekeeping_suspended
);
868 return tk
->ktime_sec
;
870 EXPORT_SYMBOL_GPL(ktime_get_seconds
);
873 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
875 * Returns the wall clock seconds since 1970. This replaces the
876 * get_seconds() interface which is not y2038 safe on 32bit systems.
878 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
879 * 32bit systems the access must be protected with the sequence
880 * counter to provide "atomic" access to the 64bit tk->xtime_sec
883 time64_t
ktime_get_real_seconds(void)
885 struct timekeeper
*tk
= &tk_core
.timekeeper
;
889 if (IS_ENABLED(CONFIG_64BIT
))
890 return tk
->xtime_sec
;
893 seq
= read_seqcount_begin(&tk_core
.seq
);
894 seconds
= tk
->xtime_sec
;
896 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
900 EXPORT_SYMBOL_GPL(ktime_get_real_seconds
);
903 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
904 * but without the sequence counter protect. This internal function
905 * is called just when timekeeping lock is already held.
907 time64_t
__ktime_get_real_seconds(void)
909 struct timekeeper
*tk
= &tk_core
.timekeeper
;
911 return tk
->xtime_sec
;
915 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
916 * @systime_snapshot: pointer to struct receiving the system time snapshot
918 void ktime_get_snapshot(struct system_time_snapshot
*systime_snapshot
)
920 struct timekeeper
*tk
= &tk_core
.timekeeper
;
928 WARN_ON_ONCE(timekeeping_suspended
);
931 seq
= read_seqcount_begin(&tk_core
.seq
);
933 now
= tk
->tkr_mono
.read(tk
->tkr_mono
.clock
);
934 systime_snapshot
->cs_was_changed_seq
= tk
->cs_was_changed_seq
;
935 systime_snapshot
->clock_was_set_seq
= tk
->clock_was_set_seq
;
936 base_real
= ktime_add(tk
->tkr_mono
.base
,
937 tk_core
.timekeeper
.offs_real
);
938 base_raw
= tk
->tkr_raw
.base
;
939 nsec_real
= timekeeping_cycles_to_ns(&tk
->tkr_mono
, now
);
940 nsec_raw
= timekeeping_cycles_to_ns(&tk
->tkr_raw
, now
);
941 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
943 systime_snapshot
->cycles
= now
;
944 systime_snapshot
->real
= ktime_add_ns(base_real
, nsec_real
);
945 systime_snapshot
->raw
= ktime_add_ns(base_raw
, nsec_raw
);
947 EXPORT_SYMBOL_GPL(ktime_get_snapshot
);
949 /* Scale base by mult/div checking for overflow */
950 static int scale64_check_overflow(u64 mult
, u64 div
, u64
*base
)
954 tmp
= div64_u64_rem(*base
, div
, &rem
);
956 if (((int)sizeof(u64
)*8 - fls64(mult
) < fls64(tmp
)) ||
957 ((int)sizeof(u64
)*8 - fls64(mult
) < fls64(rem
)))
968 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
969 * @history: Snapshot representing start of history
970 * @partial_history_cycles: Cycle offset into history (fractional part)
971 * @total_history_cycles: Total history length in cycles
972 * @discontinuity: True indicates clock was set on history period
973 * @ts: Cross timestamp that should be adjusted using
974 * partial/total ratio
976 * Helper function used by get_device_system_crosststamp() to correct the
977 * crosstimestamp corresponding to the start of the current interval to the
978 * system counter value (timestamp point) provided by the driver. The
979 * total_history_* quantities are the total history starting at the provided
980 * reference point and ending at the start of the current interval. The cycle
981 * count between the driver timestamp point and the start of the current
982 * interval is partial_history_cycles.
984 static int adjust_historical_crosststamp(struct system_time_snapshot
*history
,
985 u64 partial_history_cycles
,
986 u64 total_history_cycles
,
988 struct system_device_crosststamp
*ts
)
990 struct timekeeper
*tk
= &tk_core
.timekeeper
;
991 u64 corr_raw
, corr_real
;
995 if (total_history_cycles
== 0 || partial_history_cycles
== 0)
998 /* Interpolate shortest distance from beginning or end of history */
999 interp_forward
= partial_history_cycles
> total_history_cycles
/2 ?
1001 partial_history_cycles
= interp_forward
?
1002 total_history_cycles
- partial_history_cycles
:
1003 partial_history_cycles
;
1006 * Scale the monotonic raw time delta by:
1007 * partial_history_cycles / total_history_cycles
1009 corr_raw
= (u64
)ktime_to_ns(
1010 ktime_sub(ts
->sys_monoraw
, history
->raw
));
1011 ret
= scale64_check_overflow(partial_history_cycles
,
1012 total_history_cycles
, &corr_raw
);
1017 * If there is a discontinuity in the history, scale monotonic raw
1019 * mult(real)/mult(raw) yielding the realtime correction
1020 * Otherwise, calculate the realtime correction similar to monotonic
1023 if (discontinuity
) {
1024 corr_real
= mul_u64_u32_div
1025 (corr_raw
, tk
->tkr_mono
.mult
, tk
->tkr_raw
.mult
);
1027 corr_real
= (u64
)ktime_to_ns(
1028 ktime_sub(ts
->sys_realtime
, history
->real
));
1029 ret
= scale64_check_overflow(partial_history_cycles
,
1030 total_history_cycles
, &corr_real
);
1035 /* Fixup monotonic raw and real time time values */
1036 if (interp_forward
) {
1037 ts
->sys_monoraw
= ktime_add_ns(history
->raw
, corr_raw
);
1038 ts
->sys_realtime
= ktime_add_ns(history
->real
, corr_real
);
1040 ts
->sys_monoraw
= ktime_sub_ns(ts
->sys_monoraw
, corr_raw
);
1041 ts
->sys_realtime
= ktime_sub_ns(ts
->sys_realtime
, corr_real
);
1048 * cycle_between - true if test occurs chronologically between before and after
1050 static bool cycle_between(u64 before
, u64 test
, u64 after
)
1052 if (test
> before
&& test
< after
)
1054 if (test
< before
&& before
> after
)
1060 * get_device_system_crosststamp - Synchronously capture system/device timestamp
1061 * @get_time_fn: Callback to get simultaneous device time and
1062 * system counter from the device driver
1063 * @ctx: Context passed to get_time_fn()
1064 * @history_begin: Historical reference point used to interpolate system
1065 * time when counter provided by the driver is before the current interval
1066 * @xtstamp: Receives simultaneously captured system and device time
1068 * Reads a timestamp from a device and correlates it to system time
1070 int get_device_system_crosststamp(int (*get_time_fn
)
1071 (ktime_t
*device_time
,
1072 struct system_counterval_t
*sys_counterval
,
1075 struct system_time_snapshot
*history_begin
,
1076 struct system_device_crosststamp
*xtstamp
)
1078 struct system_counterval_t system_counterval
;
1079 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1080 u64 cycles
, now
, interval_start
;
1081 unsigned int clock_was_set_seq
= 0;
1082 ktime_t base_real
, base_raw
;
1083 u64 nsec_real
, nsec_raw
;
1084 u8 cs_was_changed_seq
;
1090 seq
= read_seqcount_begin(&tk_core
.seq
);
1092 * Try to synchronously capture device time and a system
1093 * counter value calling back into the device driver
1095 ret
= get_time_fn(&xtstamp
->device
, &system_counterval
, ctx
);
1100 * Verify that the clocksource associated with the captured
1101 * system counter value is the same as the currently installed
1102 * timekeeper clocksource
1104 if (tk
->tkr_mono
.clock
!= system_counterval
.cs
)
1106 cycles
= system_counterval
.cycles
;
1109 * Check whether the system counter value provided by the
1110 * device driver is on the current timekeeping interval.
1112 now
= tk
->tkr_mono
.read(tk
->tkr_mono
.clock
);
1113 interval_start
= tk
->tkr_mono
.cycle_last
;
1114 if (!cycle_between(interval_start
, cycles
, now
)) {
1115 clock_was_set_seq
= tk
->clock_was_set_seq
;
1116 cs_was_changed_seq
= tk
->cs_was_changed_seq
;
1117 cycles
= interval_start
;
1123 base_real
= ktime_add(tk
->tkr_mono
.base
,
1124 tk_core
.timekeeper
.offs_real
);
1125 base_raw
= tk
->tkr_raw
.base
;
1127 nsec_real
= timekeeping_cycles_to_ns(&tk
->tkr_mono
,
1128 system_counterval
.cycles
);
1129 nsec_raw
= timekeeping_cycles_to_ns(&tk
->tkr_raw
,
1130 system_counterval
.cycles
);
1131 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
1133 xtstamp
->sys_realtime
= ktime_add_ns(base_real
, nsec_real
);
1134 xtstamp
->sys_monoraw
= ktime_add_ns(base_raw
, nsec_raw
);
1137 * Interpolate if necessary, adjusting back from the start of the
1141 u64 partial_history_cycles
, total_history_cycles
;
1145 * Check that the counter value occurs after the provided
1146 * history reference and that the history doesn't cross a
1147 * clocksource change
1149 if (!history_begin
||
1150 !cycle_between(history_begin
->cycles
,
1151 system_counterval
.cycles
, cycles
) ||
1152 history_begin
->cs_was_changed_seq
!= cs_was_changed_seq
)
1154 partial_history_cycles
= cycles
- system_counterval
.cycles
;
1155 total_history_cycles
= cycles
- history_begin
->cycles
;
1157 history_begin
->clock_was_set_seq
!= clock_was_set_seq
;
1159 ret
= adjust_historical_crosststamp(history_begin
,
1160 partial_history_cycles
,
1161 total_history_cycles
,
1162 discontinuity
, xtstamp
);
1169 EXPORT_SYMBOL_GPL(get_device_system_crosststamp
);
1172 * do_gettimeofday - Returns the time of day in a timeval
1173 * @tv: pointer to the timeval to be set
1175 * NOTE: Users should be converted to using getnstimeofday()
1177 void do_gettimeofday(struct timeval
*tv
)
1179 struct timespec64 now
;
1181 getnstimeofday64(&now
);
1182 tv
->tv_sec
= now
.tv_sec
;
1183 tv
->tv_usec
= now
.tv_nsec
/1000;
1185 EXPORT_SYMBOL(do_gettimeofday
);
1188 * do_settimeofday64 - Sets the time of day.
1189 * @ts: pointer to the timespec64 variable containing the new time
1191 * Sets the time of day to the new time and update NTP and notify hrtimers
1193 int do_settimeofday64(const struct timespec64
*ts
)
1195 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1196 struct timespec64 ts_delta
, xt
;
1197 unsigned long flags
;
1200 if (!timespec64_valid_strict(ts
))
1203 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
1204 write_seqcount_begin(&tk_core
.seq
);
1206 timekeeping_forward_now(tk
);
1209 ts_delta
.tv_sec
= ts
->tv_sec
- xt
.tv_sec
;
1210 ts_delta
.tv_nsec
= ts
->tv_nsec
- xt
.tv_nsec
;
1212 if (timespec64_compare(&tk
->wall_to_monotonic
, &ts_delta
) > 0) {
1217 tk_set_wall_to_mono(tk
, timespec64_sub(tk
->wall_to_monotonic
, ts_delta
));
1219 tk_set_xtime(tk
, ts
);
1221 timekeeping_update(tk
, TK_CLEAR_NTP
| TK_MIRROR
| TK_CLOCK_WAS_SET
);
1223 write_seqcount_end(&tk_core
.seq
);
1224 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
1226 /* signal hrtimers about time change */
1231 EXPORT_SYMBOL(do_settimeofday64
);
1234 * timekeeping_inject_offset - Adds or subtracts from the current time.
1235 * @tv: pointer to the timespec variable containing the offset
1237 * Adds or subtracts an offset value from the current time.
1239 int timekeeping_inject_offset(struct timespec
*ts
)
1241 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1242 unsigned long flags
;
1243 struct timespec64 ts64
, tmp
;
1246 if (!timespec_inject_offset_valid(ts
))
1249 ts64
= timespec_to_timespec64(*ts
);
1251 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
1252 write_seqcount_begin(&tk_core
.seq
);
1254 timekeeping_forward_now(tk
);
1256 /* Make sure the proposed value is valid */
1257 tmp
= timespec64_add(tk_xtime(tk
), ts64
);
1258 if (timespec64_compare(&tk
->wall_to_monotonic
, &ts64
) > 0 ||
1259 !timespec64_valid_strict(&tmp
)) {
1264 tk_xtime_add(tk
, &ts64
);
1265 tk_set_wall_to_mono(tk
, timespec64_sub(tk
->wall_to_monotonic
, ts64
));
1267 error
: /* even if we error out, we forwarded the time, so call update */
1268 timekeeping_update(tk
, TK_CLEAR_NTP
| TK_MIRROR
| TK_CLOCK_WAS_SET
);
1270 write_seqcount_end(&tk_core
.seq
);
1271 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
1273 /* signal hrtimers about time change */
1278 EXPORT_SYMBOL(timekeeping_inject_offset
);
1281 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1284 static void __timekeeping_set_tai_offset(struct timekeeper
*tk
, s32 tai_offset
)
1286 tk
->tai_offset
= tai_offset
;
1287 tk
->offs_tai
= ktime_add(tk
->offs_real
, ktime_set(tai_offset
, 0));
1291 * change_clocksource - Swaps clocksources if a new one is available
1293 * Accumulates current time interval and initializes new clocksource
1295 static int change_clocksource(void *data
)
1297 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1298 struct clocksource
*new, *old
;
1299 unsigned long flags
;
1301 new = (struct clocksource
*) data
;
1303 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
1304 write_seqcount_begin(&tk_core
.seq
);
1306 timekeeping_forward_now(tk
);
1308 * If the cs is in module, get a module reference. Succeeds
1309 * for built-in code (owner == NULL) as well.
1311 if (try_module_get(new->owner
)) {
1312 if (!new->enable
|| new->enable(new) == 0) {
1313 old
= tk
->tkr_mono
.clock
;
1314 tk_setup_internals(tk
, new);
1317 module_put(old
->owner
);
1319 module_put(new->owner
);
1322 timekeeping_update(tk
, TK_CLEAR_NTP
| TK_MIRROR
| TK_CLOCK_WAS_SET
);
1324 write_seqcount_end(&tk_core
.seq
);
1325 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
1331 * timekeeping_notify - Install a new clock source
1332 * @clock: pointer to the clock source
1334 * This function is called from clocksource.c after a new, better clock
1335 * source has been registered. The caller holds the clocksource_mutex.
1337 int timekeeping_notify(struct clocksource
*clock
)
1339 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1341 if (tk
->tkr_mono
.clock
== clock
)
1343 stop_machine(change_clocksource
, clock
, NULL
);
1344 tick_clock_notify();
1345 return tk
->tkr_mono
.clock
== clock
? 0 : -1;
1349 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1350 * @ts: pointer to the timespec64 to be set
1352 * Returns the raw monotonic time (completely un-modified by ntp)
1354 void getrawmonotonic64(struct timespec64
*ts
)
1356 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1357 struct timespec64 ts64
;
1362 seq
= read_seqcount_begin(&tk_core
.seq
);
1363 nsecs
= timekeeping_get_ns(&tk
->tkr_raw
);
1364 ts64
= tk
->raw_time
;
1366 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
1368 timespec64_add_ns(&ts64
, nsecs
);
1371 EXPORT_SYMBOL(getrawmonotonic64
);
1375 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1377 int timekeeping_valid_for_hres(void)
1379 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1384 seq
= read_seqcount_begin(&tk_core
.seq
);
1386 ret
= tk
->tkr_mono
.clock
->flags
& CLOCK_SOURCE_VALID_FOR_HRES
;
1388 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
1394 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1396 u64
timekeeping_max_deferment(void)
1398 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1403 seq
= read_seqcount_begin(&tk_core
.seq
);
1405 ret
= tk
->tkr_mono
.clock
->max_idle_ns
;
1407 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
1413 * read_persistent_clock - Return time from the persistent clock.
1415 * Weak dummy function for arches that do not yet support it.
1416 * Reads the time from the battery backed persistent clock.
1417 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1419 * XXX - Do be sure to remove it once all arches implement it.
1421 void __weak
read_persistent_clock(struct timespec
*ts
)
1427 void __weak
read_persistent_clock64(struct timespec64
*ts64
)
1431 read_persistent_clock(&ts
);
1432 *ts64
= timespec_to_timespec64(ts
);
1436 * read_boot_clock64 - Return time of the system start.
1438 * Weak dummy function for arches that do not yet support it.
1439 * Function to read the exact time the system has been started.
1440 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1442 * XXX - Do be sure to remove it once all arches implement it.
1444 void __weak
read_boot_clock64(struct timespec64
*ts
)
1450 /* Flag for if timekeeping_resume() has injected sleeptime */
1451 static bool sleeptime_injected
;
1453 /* Flag for if there is a persistent clock on this platform */
1454 static bool persistent_clock_exists
;
1457 * timekeeping_init - Initializes the clocksource and common timekeeping values
1459 void __init
timekeeping_init(void)
1461 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1462 struct clocksource
*clock
;
1463 unsigned long flags
;
1464 struct timespec64 now
, boot
, tmp
;
1466 read_persistent_clock64(&now
);
1467 if (!timespec64_valid_strict(&now
)) {
1468 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1469 " Check your CMOS/BIOS settings.\n");
1472 } else if (now
.tv_sec
|| now
.tv_nsec
)
1473 persistent_clock_exists
= true;
1475 read_boot_clock64(&boot
);
1476 if (!timespec64_valid_strict(&boot
)) {
1477 pr_warn("WARNING: Boot clock returned invalid value!\n"
1478 " Check your CMOS/BIOS settings.\n");
1483 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
1484 write_seqcount_begin(&tk_core
.seq
);
1487 clock
= clocksource_default_clock();
1489 clock
->enable(clock
);
1490 tk_setup_internals(tk
, clock
);
1492 tk_set_xtime(tk
, &now
);
1493 tk
->raw_time
.tv_sec
= 0;
1494 tk
->raw_time
.tv_nsec
= 0;
1495 if (boot
.tv_sec
== 0 && boot
.tv_nsec
== 0)
1496 boot
= tk_xtime(tk
);
1498 set_normalized_timespec64(&tmp
, -boot
.tv_sec
, -boot
.tv_nsec
);
1499 tk_set_wall_to_mono(tk
, tmp
);
1501 timekeeping_update(tk
, TK_MIRROR
| TK_CLOCK_WAS_SET
);
1503 write_seqcount_end(&tk_core
.seq
);
1504 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
1507 /* time in seconds when suspend began for persistent clock */
1508 static struct timespec64 timekeeping_suspend_time
;
1511 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1512 * @delta: pointer to a timespec delta value
1514 * Takes a timespec offset measuring a suspend interval and properly
1515 * adds the sleep offset to the timekeeping variables.
1517 static void __timekeeping_inject_sleeptime(struct timekeeper
*tk
,
1518 struct timespec64
*delta
)
1520 if (!timespec64_valid_strict(delta
)) {
1521 printk_deferred(KERN_WARNING
1522 "__timekeeping_inject_sleeptime: Invalid "
1523 "sleep delta value!\n");
1526 tk_xtime_add(tk
, delta
);
1527 tk_set_wall_to_mono(tk
, timespec64_sub(tk
->wall_to_monotonic
, *delta
));
1528 tk_update_sleep_time(tk
, timespec64_to_ktime(*delta
));
1529 tk_debug_account_sleep_time(delta
);
1532 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1534 * We have three kinds of time sources to use for sleep time
1535 * injection, the preference order is:
1536 * 1) non-stop clocksource
1537 * 2) persistent clock (ie: RTC accessible when irqs are off)
1540 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1541 * If system has neither 1) nor 2), 3) will be used finally.
1544 * If timekeeping has injected sleeptime via either 1) or 2),
1545 * 3) becomes needless, so in this case we don't need to call
1546 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1549 bool timekeeping_rtc_skipresume(void)
1551 return sleeptime_injected
;
1555 * 1) can be determined whether to use or not only when doing
1556 * timekeeping_resume() which is invoked after rtc_suspend(),
1557 * so we can't skip rtc_suspend() surely if system has 1).
1559 * But if system has 2), 2) will definitely be used, so in this
1560 * case we don't need to call rtc_suspend(), and this is what
1561 * timekeeping_rtc_skipsuspend() means.
1563 bool timekeeping_rtc_skipsuspend(void)
1565 return persistent_clock_exists
;
1569 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1570 * @delta: pointer to a timespec64 delta value
1572 * This hook is for architectures that cannot support read_persistent_clock64
1573 * because their RTC/persistent clock is only accessible when irqs are enabled.
1574 * and also don't have an effective nonstop clocksource.
1576 * This function should only be called by rtc_resume(), and allows
1577 * a suspend offset to be injected into the timekeeping values.
1579 void timekeeping_inject_sleeptime64(struct timespec64
*delta
)
1581 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1582 unsigned long flags
;
1584 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
1585 write_seqcount_begin(&tk_core
.seq
);
1587 timekeeping_forward_now(tk
);
1589 __timekeeping_inject_sleeptime(tk
, delta
);
1591 timekeeping_update(tk
, TK_CLEAR_NTP
| TK_MIRROR
| TK_CLOCK_WAS_SET
);
1593 write_seqcount_end(&tk_core
.seq
);
1594 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
1596 /* signal hrtimers about time change */
1602 * timekeeping_resume - Resumes the generic timekeeping subsystem.
1604 void timekeeping_resume(void)
1606 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1607 struct clocksource
*clock
= tk
->tkr_mono
.clock
;
1608 unsigned long flags
;
1609 struct timespec64 ts_new
, ts_delta
;
1612 sleeptime_injected
= false;
1613 read_persistent_clock64(&ts_new
);
1615 clockevents_resume();
1616 clocksource_resume();
1618 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
1619 write_seqcount_begin(&tk_core
.seq
);
1622 * After system resumes, we need to calculate the suspended time and
1623 * compensate it for the OS time. There are 3 sources that could be
1624 * used: Nonstop clocksource during suspend, persistent clock and rtc
1627 * One specific platform may have 1 or 2 or all of them, and the
1628 * preference will be:
1629 * suspend-nonstop clocksource -> persistent clock -> rtc
1630 * The less preferred source will only be tried if there is no better
1631 * usable source. The rtc part is handled separately in rtc core code.
1633 cycle_now
= tk
->tkr_mono
.read(clock
);
1634 if ((clock
->flags
& CLOCK_SOURCE_SUSPEND_NONSTOP
) &&
1635 cycle_now
> tk
->tkr_mono
.cycle_last
) {
1636 u64 nsec
, cyc_delta
;
1638 cyc_delta
= clocksource_delta(cycle_now
, tk
->tkr_mono
.cycle_last
,
1640 nsec
= mul_u64_u32_shr(cyc_delta
, clock
->mult
, clock
->shift
);
1641 ts_delta
= ns_to_timespec64(nsec
);
1642 sleeptime_injected
= true;
1643 } else if (timespec64_compare(&ts_new
, &timekeeping_suspend_time
) > 0) {
1644 ts_delta
= timespec64_sub(ts_new
, timekeeping_suspend_time
);
1645 sleeptime_injected
= true;
1648 if (sleeptime_injected
)
1649 __timekeeping_inject_sleeptime(tk
, &ts_delta
);
1651 /* Re-base the last cycle value */
1652 tk
->tkr_mono
.cycle_last
= cycle_now
;
1653 tk
->tkr_raw
.cycle_last
= cycle_now
;
1656 timekeeping_suspended
= 0;
1657 timekeeping_update(tk
, TK_MIRROR
| TK_CLOCK_WAS_SET
);
1658 write_seqcount_end(&tk_core
.seq
);
1659 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
1661 touch_softlockup_watchdog();
1667 int timekeeping_suspend(void)
1669 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1670 unsigned long flags
;
1671 struct timespec64 delta
, delta_delta
;
1672 static struct timespec64 old_delta
;
1674 read_persistent_clock64(&timekeeping_suspend_time
);
1677 * On some systems the persistent_clock can not be detected at
1678 * timekeeping_init by its return value, so if we see a valid
1679 * value returned, update the persistent_clock_exists flag.
1681 if (timekeeping_suspend_time
.tv_sec
|| timekeeping_suspend_time
.tv_nsec
)
1682 persistent_clock_exists
= true;
1684 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
1685 write_seqcount_begin(&tk_core
.seq
);
1686 timekeeping_forward_now(tk
);
1687 timekeeping_suspended
= 1;
1689 if (persistent_clock_exists
) {
1691 * To avoid drift caused by repeated suspend/resumes,
1692 * which each can add ~1 second drift error,
1693 * try to compensate so the difference in system time
1694 * and persistent_clock time stays close to constant.
1696 delta
= timespec64_sub(tk_xtime(tk
), timekeeping_suspend_time
);
1697 delta_delta
= timespec64_sub(delta
, old_delta
);
1698 if (abs(delta_delta
.tv_sec
) >= 2) {
1700 * if delta_delta is too large, assume time correction
1701 * has occurred and set old_delta to the current delta.
1705 /* Otherwise try to adjust old_system to compensate */
1706 timekeeping_suspend_time
=
1707 timespec64_add(timekeeping_suspend_time
, delta_delta
);
1711 timekeeping_update(tk
, TK_MIRROR
);
1712 halt_fast_timekeeper(tk
);
1713 write_seqcount_end(&tk_core
.seq
);
1714 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
1717 clocksource_suspend();
1718 clockevents_suspend();
1723 /* sysfs resume/suspend bits for timekeeping */
1724 static struct syscore_ops timekeeping_syscore_ops
= {
1725 .resume
= timekeeping_resume
,
1726 .suspend
= timekeeping_suspend
,
1729 static int __init
timekeeping_init_ops(void)
1731 register_syscore_ops(&timekeeping_syscore_ops
);
1734 device_initcall(timekeeping_init_ops
);
1737 * Apply a multiplier adjustment to the timekeeper
1739 static __always_inline
void timekeeping_apply_adjustment(struct timekeeper
*tk
,
1744 s64 interval
= tk
->cycle_interval
;
1748 mult_adj
= -mult_adj
;
1749 interval
= -interval
;
1752 mult_adj
<<= adj_scale
;
1753 interval
<<= adj_scale
;
1754 offset
<<= adj_scale
;
1757 * So the following can be confusing.
1759 * To keep things simple, lets assume mult_adj == 1 for now.
1761 * When mult_adj != 1, remember that the interval and offset values
1762 * have been appropriately scaled so the math is the same.
1764 * The basic idea here is that we're increasing the multiplier
1765 * by one, this causes the xtime_interval to be incremented by
1766 * one cycle_interval. This is because:
1767 * xtime_interval = cycle_interval * mult
1768 * So if mult is being incremented by one:
1769 * xtime_interval = cycle_interval * (mult + 1)
1771 * xtime_interval = (cycle_interval * mult) + cycle_interval
1772 * Which can be shortened to:
1773 * xtime_interval += cycle_interval
1775 * So offset stores the non-accumulated cycles. Thus the current
1776 * time (in shifted nanoseconds) is:
1777 * now = (offset * adj) + xtime_nsec
1778 * Now, even though we're adjusting the clock frequency, we have
1779 * to keep time consistent. In other words, we can't jump back
1780 * in time, and we also want to avoid jumping forward in time.
1782 * So given the same offset value, we need the time to be the same
1783 * both before and after the freq adjustment.
1784 * now = (offset * adj_1) + xtime_nsec_1
1785 * now = (offset * adj_2) + xtime_nsec_2
1787 * (offset * adj_1) + xtime_nsec_1 =
1788 * (offset * adj_2) + xtime_nsec_2
1792 * (offset * adj_1) + xtime_nsec_1 =
1793 * (offset * (adj_1+1)) + xtime_nsec_2
1794 * (offset * adj_1) + xtime_nsec_1 =
1795 * (offset * adj_1) + offset + xtime_nsec_2
1796 * Canceling the sides:
1797 * xtime_nsec_1 = offset + xtime_nsec_2
1799 * xtime_nsec_2 = xtime_nsec_1 - offset
1800 * Which simplfies to:
1801 * xtime_nsec -= offset
1803 * XXX - TODO: Doc ntp_error calculation.
1805 if ((mult_adj
> 0) && (tk
->tkr_mono
.mult
+ mult_adj
< mult_adj
)) {
1806 /* NTP adjustment caused clocksource mult overflow */
1811 tk
->tkr_mono
.mult
+= mult_adj
;
1812 tk
->xtime_interval
+= interval
;
1813 tk
->tkr_mono
.xtime_nsec
-= offset
;
1814 tk
->ntp_error
-= (interval
- offset
) << tk
->ntp_error_shift
;
1818 * Calculate the multiplier adjustment needed to match the frequency
1821 static __always_inline
void timekeeping_freqadjust(struct timekeeper
*tk
,
1824 s64 interval
= tk
->cycle_interval
;
1825 s64 xinterval
= tk
->xtime_interval
;
1826 u32 base
= tk
->tkr_mono
.clock
->mult
;
1827 u32 max
= tk
->tkr_mono
.clock
->maxadj
;
1828 u32 cur_adj
= tk
->tkr_mono
.mult
;
1833 /* Remove any current error adj from freq calculation */
1834 if (tk
->ntp_err_mult
)
1835 xinterval
-= tk
->cycle_interval
;
1837 tk
->ntp_tick
= ntp_tick_length();
1839 /* Calculate current error per tick */
1840 tick_error
= ntp_tick_length() >> tk
->ntp_error_shift
;
1841 tick_error
-= (xinterval
+ tk
->xtime_remainder
);
1843 /* Don't worry about correcting it if its small */
1844 if (likely((tick_error
>= 0) && (tick_error
<= interval
)))
1847 /* preserve the direction of correction */
1848 negative
= (tick_error
< 0);
1850 /* If any adjustment would pass the max, just return */
1851 if (negative
&& (cur_adj
- 1) <= (base
- max
))
1853 if (!negative
&& (cur_adj
+ 1) >= (base
+ max
))
1856 * Sort out the magnitude of the correction, but
1857 * avoid making so large a correction that we go
1858 * over the max adjustment.
1861 tick_error
= abs(tick_error
);
1862 while (tick_error
> interval
) {
1863 u32 adj
= 1 << (adj_scale
+ 1);
1865 /* Check if adjustment gets us within 1 unit from the max */
1866 if (negative
&& (cur_adj
- adj
) <= (base
- max
))
1868 if (!negative
&& (cur_adj
+ adj
) >= (base
+ max
))
1875 /* scale the corrections */
1876 timekeeping_apply_adjustment(tk
, offset
, negative
, adj_scale
);
1880 * Adjust the timekeeper's multiplier to the correct frequency
1881 * and also to reduce the accumulated error value.
1883 static void timekeeping_adjust(struct timekeeper
*tk
, s64 offset
)
1885 /* Correct for the current frequency error */
1886 timekeeping_freqadjust(tk
, offset
);
1888 /* Next make a small adjustment to fix any cumulative error */
1889 if (!tk
->ntp_err_mult
&& (tk
->ntp_error
> 0)) {
1890 tk
->ntp_err_mult
= 1;
1891 timekeeping_apply_adjustment(tk
, offset
, 0, 0);
1892 } else if (tk
->ntp_err_mult
&& (tk
->ntp_error
<= 0)) {
1893 /* Undo any existing error adjustment */
1894 timekeeping_apply_adjustment(tk
, offset
, 1, 0);
1895 tk
->ntp_err_mult
= 0;
1898 if (unlikely(tk
->tkr_mono
.clock
->maxadj
&&
1899 (abs(tk
->tkr_mono
.mult
- tk
->tkr_mono
.clock
->mult
)
1900 > tk
->tkr_mono
.clock
->maxadj
))) {
1901 printk_once(KERN_WARNING
1902 "Adjusting %s more than 11%% (%ld vs %ld)\n",
1903 tk
->tkr_mono
.clock
->name
, (long)tk
->tkr_mono
.mult
,
1904 (long)tk
->tkr_mono
.clock
->mult
+ tk
->tkr_mono
.clock
->maxadj
);
1908 * It may be possible that when we entered this function, xtime_nsec
1909 * was very small. Further, if we're slightly speeding the clocksource
1910 * in the code above, its possible the required corrective factor to
1911 * xtime_nsec could cause it to underflow.
1913 * Now, since we already accumulated the second, cannot simply roll
1914 * the accumulated second back, since the NTP subsystem has been
1915 * notified via second_overflow. So instead we push xtime_nsec forward
1916 * by the amount we underflowed, and add that amount into the error.
1918 * We'll correct this error next time through this function, when
1919 * xtime_nsec is not as small.
1921 if (unlikely((s64
)tk
->tkr_mono
.xtime_nsec
< 0)) {
1922 s64 neg
= -(s64
)tk
->tkr_mono
.xtime_nsec
;
1923 tk
->tkr_mono
.xtime_nsec
= 0;
1924 tk
->ntp_error
+= neg
<< tk
->ntp_error_shift
;
1929 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1931 * Helper function that accumulates the nsecs greater than a second
1932 * from the xtime_nsec field to the xtime_secs field.
1933 * It also calls into the NTP code to handle leapsecond processing.
1936 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper
*tk
)
1938 u64 nsecps
= (u64
)NSEC_PER_SEC
<< tk
->tkr_mono
.shift
;
1939 unsigned int clock_set
= 0;
1941 while (tk
->tkr_mono
.xtime_nsec
>= nsecps
) {
1944 tk
->tkr_mono
.xtime_nsec
-= nsecps
;
1947 /* Figure out if its a leap sec and apply if needed */
1948 leap
= second_overflow(tk
->xtime_sec
);
1949 if (unlikely(leap
)) {
1950 struct timespec64 ts
;
1952 tk
->xtime_sec
+= leap
;
1956 tk_set_wall_to_mono(tk
,
1957 timespec64_sub(tk
->wall_to_monotonic
, ts
));
1959 __timekeeping_set_tai_offset(tk
, tk
->tai_offset
- leap
);
1961 clock_set
= TK_CLOCK_WAS_SET
;
1968 * logarithmic_accumulation - shifted accumulation of cycles
1970 * This functions accumulates a shifted interval of cycles into
1971 * into a shifted interval nanoseconds. Allows for O(log) accumulation
1974 * Returns the unconsumed cycles.
1976 static u64
logarithmic_accumulation(struct timekeeper
*tk
, u64 offset
,
1977 u32 shift
, unsigned int *clock_set
)
1979 u64 interval
= tk
->cycle_interval
<< shift
;
1982 /* If the offset is smaller than a shifted interval, do nothing */
1983 if (offset
< interval
)
1986 /* Accumulate one shifted interval */
1988 tk
->tkr_mono
.cycle_last
+= interval
;
1989 tk
->tkr_raw
.cycle_last
+= interval
;
1991 tk
->tkr_mono
.xtime_nsec
+= tk
->xtime_interval
<< shift
;
1992 *clock_set
|= accumulate_nsecs_to_secs(tk
);
1994 /* Accumulate raw time */
1995 raw_nsecs
= (u64
)tk
->raw_interval
<< shift
;
1996 raw_nsecs
+= tk
->raw_time
.tv_nsec
;
1997 if (raw_nsecs
>= NSEC_PER_SEC
) {
1998 u64 raw_secs
= raw_nsecs
;
1999 raw_nsecs
= do_div(raw_secs
, NSEC_PER_SEC
);
2000 tk
->raw_time
.tv_sec
+= raw_secs
;
2002 tk
->raw_time
.tv_nsec
= raw_nsecs
;
2004 /* Accumulate error between NTP and clock interval */
2005 tk
->ntp_error
+= tk
->ntp_tick
<< shift
;
2006 tk
->ntp_error
-= (tk
->xtime_interval
+ tk
->xtime_remainder
) <<
2007 (tk
->ntp_error_shift
+ shift
);
2013 * update_wall_time - Uses the current clocksource to increment the wall time
2016 void update_wall_time(void)
2018 struct timekeeper
*real_tk
= &tk_core
.timekeeper
;
2019 struct timekeeper
*tk
= &shadow_timekeeper
;
2021 int shift
= 0, maxshift
;
2022 unsigned int clock_set
= 0;
2023 unsigned long flags
;
2025 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
2027 /* Make sure we're fully resumed: */
2028 if (unlikely(timekeeping_suspended
))
2031 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2032 offset
= real_tk
->cycle_interval
;
2034 offset
= clocksource_delta(tk
->tkr_mono
.read(tk
->tkr_mono
.clock
),
2035 tk
->tkr_mono
.cycle_last
, tk
->tkr_mono
.mask
);
2038 /* Check if there's really nothing to do */
2039 if (offset
< real_tk
->cycle_interval
)
2042 /* Do some additional sanity checking */
2043 timekeeping_check_update(real_tk
, offset
);
2046 * With NO_HZ we may have to accumulate many cycle_intervals
2047 * (think "ticks") worth of time at once. To do this efficiently,
2048 * we calculate the largest doubling multiple of cycle_intervals
2049 * that is smaller than the offset. We then accumulate that
2050 * chunk in one go, and then try to consume the next smaller
2053 shift
= ilog2(offset
) - ilog2(tk
->cycle_interval
);
2054 shift
= max(0, shift
);
2055 /* Bound shift to one less than what overflows tick_length */
2056 maxshift
= (64 - (ilog2(ntp_tick_length())+1)) - 1;
2057 shift
= min(shift
, maxshift
);
2058 while (offset
>= tk
->cycle_interval
) {
2059 offset
= logarithmic_accumulation(tk
, offset
, shift
,
2061 if (offset
< tk
->cycle_interval
<<shift
)
2065 /* correct the clock when NTP error is too big */
2066 timekeeping_adjust(tk
, offset
);
2069 * XXX This can be killed once everyone converts
2070 * to the new update_vsyscall.
2072 old_vsyscall_fixup(tk
);
2075 * Finally, make sure that after the rounding
2076 * xtime_nsec isn't larger than NSEC_PER_SEC
2078 clock_set
|= accumulate_nsecs_to_secs(tk
);
2080 write_seqcount_begin(&tk_core
.seq
);
2082 * Update the real timekeeper.
2084 * We could avoid this memcpy by switching pointers, but that
2085 * requires changes to all other timekeeper usage sites as
2086 * well, i.e. move the timekeeper pointer getter into the
2087 * spinlocked/seqcount protected sections. And we trade this
2088 * memcpy under the tk_core.seq against one before we start
2091 timekeeping_update(tk
, clock_set
);
2092 memcpy(real_tk
, tk
, sizeof(*tk
));
2093 /* The memcpy must come last. Do not put anything here! */
2094 write_seqcount_end(&tk_core
.seq
);
2096 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
2098 /* Have to call _delayed version, since in irq context*/
2099 clock_was_set_delayed();
2103 * getboottime64 - Return the real time of system boot.
2104 * @ts: pointer to the timespec64 to be set
2106 * Returns the wall-time of boot in a timespec64.
2108 * This is based on the wall_to_monotonic offset and the total suspend
2109 * time. Calls to settimeofday will affect the value returned (which
2110 * basically means that however wrong your real time clock is at boot time,
2111 * you get the right time here).
2113 void getboottime64(struct timespec64
*ts
)
2115 struct timekeeper
*tk
= &tk_core
.timekeeper
;
2116 ktime_t t
= ktime_sub(tk
->offs_real
, tk
->offs_boot
);
2118 *ts
= ktime_to_timespec64(t
);
2120 EXPORT_SYMBOL_GPL(getboottime64
);
2122 unsigned long get_seconds(void)
2124 struct timekeeper
*tk
= &tk_core
.timekeeper
;
2126 return tk
->xtime_sec
;
2128 EXPORT_SYMBOL(get_seconds
);
2130 struct timespec
__current_kernel_time(void)
2132 struct timekeeper
*tk
= &tk_core
.timekeeper
;
2134 return timespec64_to_timespec(tk_xtime(tk
));
2137 struct timespec64
current_kernel_time64(void)
2139 struct timekeeper
*tk
= &tk_core
.timekeeper
;
2140 struct timespec64 now
;
2144 seq
= read_seqcount_begin(&tk_core
.seq
);
2147 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
2151 EXPORT_SYMBOL(current_kernel_time64
);
2153 struct timespec64
get_monotonic_coarse64(void)
2155 struct timekeeper
*tk
= &tk_core
.timekeeper
;
2156 struct timespec64 now
, mono
;
2160 seq
= read_seqcount_begin(&tk_core
.seq
);
2163 mono
= tk
->wall_to_monotonic
;
2164 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
2166 set_normalized_timespec64(&now
, now
.tv_sec
+ mono
.tv_sec
,
2167 now
.tv_nsec
+ mono
.tv_nsec
);
2171 EXPORT_SYMBOL(get_monotonic_coarse64
);
2174 * Must hold jiffies_lock
2176 void do_timer(unsigned long ticks
)
2178 jiffies_64
+= ticks
;
2179 calc_global_load(ticks
);
2183 * ktime_get_update_offsets_now - hrtimer helper
2184 * @cwsseq: pointer to check and store the clock was set sequence number
2185 * @offs_real: pointer to storage for monotonic -> realtime offset
2186 * @offs_boot: pointer to storage for monotonic -> boottime offset
2187 * @offs_tai: pointer to storage for monotonic -> clock tai offset
2189 * Returns current monotonic time and updates the offsets if the
2190 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2193 * Called from hrtimer_interrupt() or retrigger_next_event()
2195 ktime_t
ktime_get_update_offsets_now(unsigned int *cwsseq
, ktime_t
*offs_real
,
2196 ktime_t
*offs_boot
, ktime_t
*offs_tai
)
2198 struct timekeeper
*tk
= &tk_core
.timekeeper
;
2204 seq
= read_seqcount_begin(&tk_core
.seq
);
2206 base
= tk
->tkr_mono
.base
;
2207 nsecs
= timekeeping_get_ns(&tk
->tkr_mono
);
2208 base
= ktime_add_ns(base
, nsecs
);
2210 if (*cwsseq
!= tk
->clock_was_set_seq
) {
2211 *cwsseq
= tk
->clock_was_set_seq
;
2212 *offs_real
= tk
->offs_real
;
2213 *offs_boot
= tk
->offs_boot
;
2214 *offs_tai
= tk
->offs_tai
;
2217 /* Handle leapsecond insertion adjustments */
2218 if (unlikely(base
>= tk
->next_leap_ktime
))
2219 *offs_real
= ktime_sub(tk
->offs_real
, ktime_set(1, 0));
2221 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
2227 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2229 int do_adjtimex(struct timex
*txc
)
2231 struct timekeeper
*tk
= &tk_core
.timekeeper
;
2232 unsigned long flags
;
2233 struct timespec64 ts
;
2237 /* Validate the data before disabling interrupts */
2238 ret
= ntp_validate_timex(txc
);
2242 if (txc
->modes
& ADJ_SETOFFSET
) {
2243 struct timespec delta
;
2244 delta
.tv_sec
= txc
->time
.tv_sec
;
2245 delta
.tv_nsec
= txc
->time
.tv_usec
;
2246 if (!(txc
->modes
& ADJ_NANO
))
2247 delta
.tv_nsec
*= 1000;
2248 ret
= timekeeping_inject_offset(&delta
);
2253 getnstimeofday64(&ts
);
2255 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
2256 write_seqcount_begin(&tk_core
.seq
);
2258 orig_tai
= tai
= tk
->tai_offset
;
2259 ret
= __do_adjtimex(txc
, &ts
, &tai
);
2261 if (tai
!= orig_tai
) {
2262 __timekeeping_set_tai_offset(tk
, tai
);
2263 timekeeping_update(tk
, TK_MIRROR
| TK_CLOCK_WAS_SET
);
2265 tk_update_leap_state(tk
);
2267 write_seqcount_end(&tk_core
.seq
);
2268 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
2270 if (tai
!= orig_tai
)
2273 ntp_notify_cmos_timer();
2278 #ifdef CONFIG_NTP_PPS
2280 * hardpps() - Accessor function to NTP __hardpps function
2282 void hardpps(const struct timespec64
*phase_ts
, const struct timespec64
*raw_ts
)
2284 unsigned long flags
;
2286 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
2287 write_seqcount_begin(&tk_core
.seq
);
2289 __hardpps(phase_ts
, raw_ts
);
2291 write_seqcount_end(&tk_core
.seq
);
2292 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
2294 EXPORT_SYMBOL(hardpps
);
2298 * xtime_update() - advances the timekeeping infrastructure
2299 * @ticks: number of ticks, that have elapsed since the last call.
2301 * Must be called with interrupts disabled.
2303 void xtime_update(unsigned long ticks
)
2305 write_seqlock(&jiffies_lock
);
2307 write_sequnlock(&jiffies_lock
);