powerpc: Don't try to fix up misaligned load-with-reservation instructions
[linux/fpc-iii.git] / kernel / time / timekeeping.c
blob5b63a2102c2907bc42a870fe2545bafdb10cdf28
1 /*
2 * linux/kernel/time/timekeeping.c
4 * Kernel timekeeping code and accessor functions
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
9 */
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/nmi.h>
18 #include <linux/sched.h>
19 #include <linux/sched/loadavg.h>
20 #include <linux/syscore_ops.h>
21 #include <linux/clocksource.h>
22 #include <linux/jiffies.h>
23 #include <linux/time.h>
24 #include <linux/tick.h>
25 #include <linux/stop_machine.h>
26 #include <linux/pvclock_gtod.h>
27 #include <linux/compiler.h>
29 #include "tick-internal.h"
30 #include "ntp_internal.h"
31 #include "timekeeping_internal.h"
33 #define TK_CLEAR_NTP (1 << 0)
34 #define TK_MIRROR (1 << 1)
35 #define TK_CLOCK_WAS_SET (1 << 2)
38 * The most important data for readout fits into a single 64 byte
39 * cache line.
41 static struct {
42 seqcount_t seq;
43 struct timekeeper timekeeper;
44 } tk_core ____cacheline_aligned;
46 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
47 static struct timekeeper shadow_timekeeper;
49 /**
50 * struct tk_fast - NMI safe timekeeper
51 * @seq: Sequence counter for protecting updates. The lowest bit
52 * is the index for the tk_read_base array
53 * @base: tk_read_base array. Access is indexed by the lowest bit of
54 * @seq.
56 * See @update_fast_timekeeper() below.
58 struct tk_fast {
59 seqcount_t seq;
60 struct tk_read_base base[2];
63 static struct tk_fast tk_fast_mono ____cacheline_aligned;
64 static struct tk_fast tk_fast_raw ____cacheline_aligned;
66 /* flag for if timekeeping is suspended */
67 int __read_mostly timekeeping_suspended;
69 static inline void tk_normalize_xtime(struct timekeeper *tk)
71 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
72 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
73 tk->xtime_sec++;
77 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
79 struct timespec64 ts;
81 ts.tv_sec = tk->xtime_sec;
82 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
83 return ts;
86 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
88 tk->xtime_sec = ts->tv_sec;
89 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
92 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
94 tk->xtime_sec += ts->tv_sec;
95 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
96 tk_normalize_xtime(tk);
99 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
101 struct timespec64 tmp;
104 * Verify consistency of: offset_real = -wall_to_monotonic
105 * before modifying anything
107 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
108 -tk->wall_to_monotonic.tv_nsec);
109 WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
110 tk->wall_to_monotonic = wtm;
111 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
112 tk->offs_real = timespec64_to_ktime(tmp);
113 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
116 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
118 tk->offs_boot = ktime_add(tk->offs_boot, delta);
121 #ifdef CONFIG_DEBUG_TIMEKEEPING
122 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
124 static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
127 u64 max_cycles = tk->tkr_mono.clock->max_cycles;
128 const char *name = tk->tkr_mono.clock->name;
130 if (offset > max_cycles) {
131 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
132 offset, name, max_cycles);
133 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
134 } else {
135 if (offset > (max_cycles >> 1)) {
136 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
137 offset, name, max_cycles >> 1);
138 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
142 if (tk->underflow_seen) {
143 if (jiffies - tk->last_warning > WARNING_FREQ) {
144 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
145 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
146 printk_deferred(" Your kernel is probably still fine.\n");
147 tk->last_warning = jiffies;
149 tk->underflow_seen = 0;
152 if (tk->overflow_seen) {
153 if (jiffies - tk->last_warning > WARNING_FREQ) {
154 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
155 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
156 printk_deferred(" Your kernel is probably still fine.\n");
157 tk->last_warning = jiffies;
159 tk->overflow_seen = 0;
163 static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
165 struct timekeeper *tk = &tk_core.timekeeper;
166 u64 now, last, mask, max, delta;
167 unsigned int seq;
170 * Since we're called holding a seqlock, the data may shift
171 * under us while we're doing the calculation. This can cause
172 * false positives, since we'd note a problem but throw the
173 * results away. So nest another seqlock here to atomically
174 * grab the points we are checking with.
176 do {
177 seq = read_seqcount_begin(&tk_core.seq);
178 now = tkr->read(tkr->clock);
179 last = tkr->cycle_last;
180 mask = tkr->mask;
181 max = tkr->clock->max_cycles;
182 } while (read_seqcount_retry(&tk_core.seq, seq));
184 delta = clocksource_delta(now, last, mask);
187 * Try to catch underflows by checking if we are seeing small
188 * mask-relative negative values.
190 if (unlikely((~delta & mask) < (mask >> 3))) {
191 tk->underflow_seen = 1;
192 delta = 0;
195 /* Cap delta value to the max_cycles values to avoid mult overflows */
196 if (unlikely(delta > max)) {
197 tk->overflow_seen = 1;
198 delta = tkr->clock->max_cycles;
201 return delta;
203 #else
204 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
207 static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
209 u64 cycle_now, delta;
211 /* read clocksource */
212 cycle_now = tkr->read(tkr->clock);
214 /* calculate the delta since the last update_wall_time */
215 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
217 return delta;
219 #endif
222 * tk_setup_internals - Set up internals to use clocksource clock.
224 * @tk: The target timekeeper to setup.
225 * @clock: Pointer to clocksource.
227 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
228 * pair and interval request.
230 * Unless you're the timekeeping code, you should not be using this!
232 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
234 u64 interval;
235 u64 tmp, ntpinterval;
236 struct clocksource *old_clock;
238 ++tk->cs_was_changed_seq;
239 old_clock = tk->tkr_mono.clock;
240 tk->tkr_mono.clock = clock;
241 tk->tkr_mono.read = clock->read;
242 tk->tkr_mono.mask = clock->mask;
243 tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
245 tk->tkr_raw.clock = clock;
246 tk->tkr_raw.read = clock->read;
247 tk->tkr_raw.mask = clock->mask;
248 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
250 /* Do the ns -> cycle conversion first, using original mult */
251 tmp = NTP_INTERVAL_LENGTH;
252 tmp <<= clock->shift;
253 ntpinterval = tmp;
254 tmp += clock->mult/2;
255 do_div(tmp, clock->mult);
256 if (tmp == 0)
257 tmp = 1;
259 interval = (u64) tmp;
260 tk->cycle_interval = interval;
262 /* Go back from cycles -> shifted ns */
263 tk->xtime_interval = interval * clock->mult;
264 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
265 tk->raw_interval = (interval * clock->mult) >> clock->shift;
267 /* if changing clocks, convert xtime_nsec shift units */
268 if (old_clock) {
269 int shift_change = clock->shift - old_clock->shift;
270 if (shift_change < 0)
271 tk->tkr_mono.xtime_nsec >>= -shift_change;
272 else
273 tk->tkr_mono.xtime_nsec <<= shift_change;
275 tk->tkr_raw.xtime_nsec = 0;
277 tk->tkr_mono.shift = clock->shift;
278 tk->tkr_raw.shift = clock->shift;
280 tk->ntp_error = 0;
281 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
282 tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
285 * The timekeeper keeps its own mult values for the currently
286 * active clocksource. These value will be adjusted via NTP
287 * to counteract clock drifting.
289 tk->tkr_mono.mult = clock->mult;
290 tk->tkr_raw.mult = clock->mult;
291 tk->ntp_err_mult = 0;
294 /* Timekeeper helper functions. */
296 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
297 static u32 default_arch_gettimeoffset(void) { return 0; }
298 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
299 #else
300 static inline u32 arch_gettimeoffset(void) { return 0; }
301 #endif
303 static inline u64 timekeeping_delta_to_ns(struct tk_read_base *tkr, u64 delta)
305 u64 nsec;
307 nsec = delta * tkr->mult + tkr->xtime_nsec;
308 nsec >>= tkr->shift;
310 /* If arch requires, add in get_arch_timeoffset() */
311 return nsec + arch_gettimeoffset();
314 static inline u64 timekeeping_get_ns(struct tk_read_base *tkr)
316 u64 delta;
318 delta = timekeeping_get_delta(tkr);
319 return timekeeping_delta_to_ns(tkr, delta);
322 static inline u64 timekeeping_cycles_to_ns(struct tk_read_base *tkr, u64 cycles)
324 u64 delta;
326 /* calculate the delta since the last update_wall_time */
327 delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
328 return timekeeping_delta_to_ns(tkr, delta);
332 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
333 * @tkr: Timekeeping readout base from which we take the update
335 * We want to use this from any context including NMI and tracing /
336 * instrumenting the timekeeping code itself.
338 * Employ the latch technique; see @raw_write_seqcount_latch.
340 * So if a NMI hits the update of base[0] then it will use base[1]
341 * which is still consistent. In the worst case this can result is a
342 * slightly wrong timestamp (a few nanoseconds). See
343 * @ktime_get_mono_fast_ns.
345 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
347 struct tk_read_base *base = tkf->base;
349 /* Force readers off to base[1] */
350 raw_write_seqcount_latch(&tkf->seq);
352 /* Update base[0] */
353 memcpy(base, tkr, sizeof(*base));
355 /* Force readers back to base[0] */
356 raw_write_seqcount_latch(&tkf->seq);
358 /* Update base[1] */
359 memcpy(base + 1, base, sizeof(*base));
363 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
365 * This timestamp is not guaranteed to be monotonic across an update.
366 * The timestamp is calculated by:
368 * now = base_mono + clock_delta * slope
370 * So if the update lowers the slope, readers who are forced to the
371 * not yet updated second array are still using the old steeper slope.
373 * tmono
375 * | o n
376 * | o n
377 * | u
378 * | o
379 * |o
380 * |12345678---> reader order
382 * o = old slope
383 * u = update
384 * n = new slope
386 * So reader 6 will observe time going backwards versus reader 5.
388 * While other CPUs are likely to be able observe that, the only way
389 * for a CPU local observation is when an NMI hits in the middle of
390 * the update. Timestamps taken from that NMI context might be ahead
391 * of the following timestamps. Callers need to be aware of that and
392 * deal with it.
394 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
396 struct tk_read_base *tkr;
397 unsigned int seq;
398 u64 now;
400 do {
401 seq = raw_read_seqcount_latch(&tkf->seq);
402 tkr = tkf->base + (seq & 0x01);
403 now = ktime_to_ns(tkr->base);
405 now += timekeeping_delta_to_ns(tkr,
406 clocksource_delta(
407 tkr->read(tkr->clock),
408 tkr->cycle_last,
409 tkr->mask));
410 } while (read_seqcount_retry(&tkf->seq, seq));
412 return now;
415 u64 ktime_get_mono_fast_ns(void)
417 return __ktime_get_fast_ns(&tk_fast_mono);
419 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
421 u64 ktime_get_raw_fast_ns(void)
423 return __ktime_get_fast_ns(&tk_fast_raw);
425 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
428 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
430 * To keep it NMI safe since we're accessing from tracing, we're not using a
431 * separate timekeeper with updates to monotonic clock and boot offset
432 * protected with seqlocks. This has the following minor side effects:
434 * (1) Its possible that a timestamp be taken after the boot offset is updated
435 * but before the timekeeper is updated. If this happens, the new boot offset
436 * is added to the old timekeeping making the clock appear to update slightly
437 * earlier:
438 * CPU 0 CPU 1
439 * timekeeping_inject_sleeptime64()
440 * __timekeeping_inject_sleeptime(tk, delta);
441 * timestamp();
442 * timekeeping_update(tk, TK_CLEAR_NTP...);
444 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
445 * partially updated. Since the tk->offs_boot update is a rare event, this
446 * should be a rare occurrence which postprocessing should be able to handle.
448 u64 notrace ktime_get_boot_fast_ns(void)
450 struct timekeeper *tk = &tk_core.timekeeper;
452 return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
454 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
456 /* Suspend-time cycles value for halted fast timekeeper. */
457 static u64 cycles_at_suspend;
459 static u64 dummy_clock_read(struct clocksource *cs)
461 return cycles_at_suspend;
465 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
466 * @tk: Timekeeper to snapshot.
468 * It generally is unsafe to access the clocksource after timekeeping has been
469 * suspended, so take a snapshot of the readout base of @tk and use it as the
470 * fast timekeeper's readout base while suspended. It will return the same
471 * number of cycles every time until timekeeping is resumed at which time the
472 * proper readout base for the fast timekeeper will be restored automatically.
474 static void halt_fast_timekeeper(struct timekeeper *tk)
476 static struct tk_read_base tkr_dummy;
477 struct tk_read_base *tkr = &tk->tkr_mono;
479 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
480 cycles_at_suspend = tkr->read(tkr->clock);
481 tkr_dummy.read = dummy_clock_read;
482 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
484 tkr = &tk->tkr_raw;
485 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
486 tkr_dummy.read = dummy_clock_read;
487 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
490 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
492 static inline void update_vsyscall(struct timekeeper *tk)
494 struct timespec xt, wm;
496 xt = timespec64_to_timespec(tk_xtime(tk));
497 wm = timespec64_to_timespec(tk->wall_to_monotonic);
498 update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
499 tk->tkr_mono.cycle_last);
502 static inline void old_vsyscall_fixup(struct timekeeper *tk)
504 s64 remainder;
507 * Store only full nanoseconds into xtime_nsec after rounding
508 * it up and add the remainder to the error difference.
509 * XXX - This is necessary to avoid small 1ns inconsistnecies caused
510 * by truncating the remainder in vsyscalls. However, it causes
511 * additional work to be done in timekeeping_adjust(). Once
512 * the vsyscall implementations are converted to use xtime_nsec
513 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
514 * users are removed, this can be killed.
516 remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
517 if (remainder != 0) {
518 tk->tkr_mono.xtime_nsec -= remainder;
519 tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
520 tk->ntp_error += remainder << tk->ntp_error_shift;
521 tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
524 #else
525 #define old_vsyscall_fixup(tk)
526 #endif
528 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
530 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
532 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
536 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
538 int pvclock_gtod_register_notifier(struct notifier_block *nb)
540 struct timekeeper *tk = &tk_core.timekeeper;
541 unsigned long flags;
542 int ret;
544 raw_spin_lock_irqsave(&timekeeper_lock, flags);
545 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
546 update_pvclock_gtod(tk, true);
547 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
549 return ret;
551 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
554 * pvclock_gtod_unregister_notifier - unregister a pvclock
555 * timedata update listener
557 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
559 unsigned long flags;
560 int ret;
562 raw_spin_lock_irqsave(&timekeeper_lock, flags);
563 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
564 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
566 return ret;
568 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
571 * tk_update_leap_state - helper to update the next_leap_ktime
573 static inline void tk_update_leap_state(struct timekeeper *tk)
575 tk->next_leap_ktime = ntp_get_next_leap();
576 if (tk->next_leap_ktime != KTIME_MAX)
577 /* Convert to monotonic time */
578 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
582 * Update the ktime_t based scalar nsec members of the timekeeper
584 static inline void tk_update_ktime_data(struct timekeeper *tk)
586 u64 seconds;
587 u32 nsec;
590 * The xtime based monotonic readout is:
591 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
592 * The ktime based monotonic readout is:
593 * nsec = base_mono + now();
594 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
596 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
597 nsec = (u32) tk->wall_to_monotonic.tv_nsec;
598 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
600 /* Update the monotonic raw base */
601 tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
604 * The sum of the nanoseconds portions of xtime and
605 * wall_to_monotonic can be greater/equal one second. Take
606 * this into account before updating tk->ktime_sec.
608 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
609 if (nsec >= NSEC_PER_SEC)
610 seconds++;
611 tk->ktime_sec = seconds;
614 /* must hold timekeeper_lock */
615 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
617 if (action & TK_CLEAR_NTP) {
618 tk->ntp_error = 0;
619 ntp_clear();
622 tk_update_leap_state(tk);
623 tk_update_ktime_data(tk);
625 update_vsyscall(tk);
626 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
628 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
629 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw);
631 if (action & TK_CLOCK_WAS_SET)
632 tk->clock_was_set_seq++;
634 * The mirroring of the data to the shadow-timekeeper needs
635 * to happen last here to ensure we don't over-write the
636 * timekeeper structure on the next update with stale data
638 if (action & TK_MIRROR)
639 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
640 sizeof(tk_core.timekeeper));
644 * timekeeping_forward_now - update clock to the current time
646 * Forward the current clock to update its state since the last call to
647 * update_wall_time(). This is useful before significant clock changes,
648 * as it avoids having to deal with this time offset explicitly.
650 static void timekeeping_forward_now(struct timekeeper *tk)
652 struct clocksource *clock = tk->tkr_mono.clock;
653 u64 cycle_now, delta;
654 u64 nsec;
656 cycle_now = tk->tkr_mono.read(clock);
657 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
658 tk->tkr_mono.cycle_last = cycle_now;
659 tk->tkr_raw.cycle_last = cycle_now;
661 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
663 /* If arch requires, add in get_arch_timeoffset() */
664 tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
666 tk_normalize_xtime(tk);
668 nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
669 timespec64_add_ns(&tk->raw_time, nsec);
673 * __getnstimeofday64 - Returns the time of day in a timespec64.
674 * @ts: pointer to the timespec to be set
676 * Updates the time of day in the timespec.
677 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
679 int __getnstimeofday64(struct timespec64 *ts)
681 struct timekeeper *tk = &tk_core.timekeeper;
682 unsigned long seq;
683 u64 nsecs;
685 do {
686 seq = read_seqcount_begin(&tk_core.seq);
688 ts->tv_sec = tk->xtime_sec;
689 nsecs = timekeeping_get_ns(&tk->tkr_mono);
691 } while (read_seqcount_retry(&tk_core.seq, seq));
693 ts->tv_nsec = 0;
694 timespec64_add_ns(ts, nsecs);
697 * Do not bail out early, in case there were callers still using
698 * the value, even in the face of the WARN_ON.
700 if (unlikely(timekeeping_suspended))
701 return -EAGAIN;
702 return 0;
704 EXPORT_SYMBOL(__getnstimeofday64);
707 * getnstimeofday64 - Returns the time of day in a timespec64.
708 * @ts: pointer to the timespec64 to be set
710 * Returns the time of day in a timespec64 (WARN if suspended).
712 void getnstimeofday64(struct timespec64 *ts)
714 WARN_ON(__getnstimeofday64(ts));
716 EXPORT_SYMBOL(getnstimeofday64);
718 ktime_t ktime_get(void)
720 struct timekeeper *tk = &tk_core.timekeeper;
721 unsigned int seq;
722 ktime_t base;
723 u64 nsecs;
725 WARN_ON(timekeeping_suspended);
727 do {
728 seq = read_seqcount_begin(&tk_core.seq);
729 base = tk->tkr_mono.base;
730 nsecs = timekeeping_get_ns(&tk->tkr_mono);
732 } while (read_seqcount_retry(&tk_core.seq, seq));
734 return ktime_add_ns(base, nsecs);
736 EXPORT_SYMBOL_GPL(ktime_get);
738 u32 ktime_get_resolution_ns(void)
740 struct timekeeper *tk = &tk_core.timekeeper;
741 unsigned int seq;
742 u32 nsecs;
744 WARN_ON(timekeeping_suspended);
746 do {
747 seq = read_seqcount_begin(&tk_core.seq);
748 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
749 } while (read_seqcount_retry(&tk_core.seq, seq));
751 return nsecs;
753 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
755 static ktime_t *offsets[TK_OFFS_MAX] = {
756 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
757 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
758 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
761 ktime_t ktime_get_with_offset(enum tk_offsets offs)
763 struct timekeeper *tk = &tk_core.timekeeper;
764 unsigned int seq;
765 ktime_t base, *offset = offsets[offs];
766 u64 nsecs;
768 WARN_ON(timekeeping_suspended);
770 do {
771 seq = read_seqcount_begin(&tk_core.seq);
772 base = ktime_add(tk->tkr_mono.base, *offset);
773 nsecs = timekeeping_get_ns(&tk->tkr_mono);
775 } while (read_seqcount_retry(&tk_core.seq, seq));
777 return ktime_add_ns(base, nsecs);
780 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
783 * ktime_mono_to_any() - convert mononotic time to any other time
784 * @tmono: time to convert.
785 * @offs: which offset to use
787 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
789 ktime_t *offset = offsets[offs];
790 unsigned long seq;
791 ktime_t tconv;
793 do {
794 seq = read_seqcount_begin(&tk_core.seq);
795 tconv = ktime_add(tmono, *offset);
796 } while (read_seqcount_retry(&tk_core.seq, seq));
798 return tconv;
800 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
803 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
805 ktime_t ktime_get_raw(void)
807 struct timekeeper *tk = &tk_core.timekeeper;
808 unsigned int seq;
809 ktime_t base;
810 u64 nsecs;
812 do {
813 seq = read_seqcount_begin(&tk_core.seq);
814 base = tk->tkr_raw.base;
815 nsecs = timekeeping_get_ns(&tk->tkr_raw);
817 } while (read_seqcount_retry(&tk_core.seq, seq));
819 return ktime_add_ns(base, nsecs);
821 EXPORT_SYMBOL_GPL(ktime_get_raw);
824 * ktime_get_ts64 - get the monotonic clock in timespec64 format
825 * @ts: pointer to timespec variable
827 * The function calculates the monotonic clock from the realtime
828 * clock and the wall_to_monotonic offset and stores the result
829 * in normalized timespec64 format in the variable pointed to by @ts.
831 void ktime_get_ts64(struct timespec64 *ts)
833 struct timekeeper *tk = &tk_core.timekeeper;
834 struct timespec64 tomono;
835 unsigned int seq;
836 u64 nsec;
838 WARN_ON(timekeeping_suspended);
840 do {
841 seq = read_seqcount_begin(&tk_core.seq);
842 ts->tv_sec = tk->xtime_sec;
843 nsec = timekeeping_get_ns(&tk->tkr_mono);
844 tomono = tk->wall_to_monotonic;
846 } while (read_seqcount_retry(&tk_core.seq, seq));
848 ts->tv_sec += tomono.tv_sec;
849 ts->tv_nsec = 0;
850 timespec64_add_ns(ts, nsec + tomono.tv_nsec);
852 EXPORT_SYMBOL_GPL(ktime_get_ts64);
855 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
857 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
858 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
859 * works on both 32 and 64 bit systems. On 32 bit systems the readout
860 * covers ~136 years of uptime which should be enough to prevent
861 * premature wrap arounds.
863 time64_t ktime_get_seconds(void)
865 struct timekeeper *tk = &tk_core.timekeeper;
867 WARN_ON(timekeeping_suspended);
868 return tk->ktime_sec;
870 EXPORT_SYMBOL_GPL(ktime_get_seconds);
873 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
875 * Returns the wall clock seconds since 1970. This replaces the
876 * get_seconds() interface which is not y2038 safe on 32bit systems.
878 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
879 * 32bit systems the access must be protected with the sequence
880 * counter to provide "atomic" access to the 64bit tk->xtime_sec
881 * value.
883 time64_t ktime_get_real_seconds(void)
885 struct timekeeper *tk = &tk_core.timekeeper;
886 time64_t seconds;
887 unsigned int seq;
889 if (IS_ENABLED(CONFIG_64BIT))
890 return tk->xtime_sec;
892 do {
893 seq = read_seqcount_begin(&tk_core.seq);
894 seconds = tk->xtime_sec;
896 } while (read_seqcount_retry(&tk_core.seq, seq));
898 return seconds;
900 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
903 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
904 * but without the sequence counter protect. This internal function
905 * is called just when timekeeping lock is already held.
907 time64_t __ktime_get_real_seconds(void)
909 struct timekeeper *tk = &tk_core.timekeeper;
911 return tk->xtime_sec;
915 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
916 * @systime_snapshot: pointer to struct receiving the system time snapshot
918 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
920 struct timekeeper *tk = &tk_core.timekeeper;
921 unsigned long seq;
922 ktime_t base_raw;
923 ktime_t base_real;
924 u64 nsec_raw;
925 u64 nsec_real;
926 u64 now;
928 WARN_ON_ONCE(timekeeping_suspended);
930 do {
931 seq = read_seqcount_begin(&tk_core.seq);
933 now = tk->tkr_mono.read(tk->tkr_mono.clock);
934 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
935 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
936 base_real = ktime_add(tk->tkr_mono.base,
937 tk_core.timekeeper.offs_real);
938 base_raw = tk->tkr_raw.base;
939 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
940 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
941 } while (read_seqcount_retry(&tk_core.seq, seq));
943 systime_snapshot->cycles = now;
944 systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
945 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
947 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
949 /* Scale base by mult/div checking for overflow */
950 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
952 u64 tmp, rem;
954 tmp = div64_u64_rem(*base, div, &rem);
956 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
957 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
958 return -EOVERFLOW;
959 tmp *= mult;
960 rem *= mult;
962 do_div(rem, div);
963 *base = tmp + rem;
964 return 0;
968 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
969 * @history: Snapshot representing start of history
970 * @partial_history_cycles: Cycle offset into history (fractional part)
971 * @total_history_cycles: Total history length in cycles
972 * @discontinuity: True indicates clock was set on history period
973 * @ts: Cross timestamp that should be adjusted using
974 * partial/total ratio
976 * Helper function used by get_device_system_crosststamp() to correct the
977 * crosstimestamp corresponding to the start of the current interval to the
978 * system counter value (timestamp point) provided by the driver. The
979 * total_history_* quantities are the total history starting at the provided
980 * reference point and ending at the start of the current interval. The cycle
981 * count between the driver timestamp point and the start of the current
982 * interval is partial_history_cycles.
984 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
985 u64 partial_history_cycles,
986 u64 total_history_cycles,
987 bool discontinuity,
988 struct system_device_crosststamp *ts)
990 struct timekeeper *tk = &tk_core.timekeeper;
991 u64 corr_raw, corr_real;
992 bool interp_forward;
993 int ret;
995 if (total_history_cycles == 0 || partial_history_cycles == 0)
996 return 0;
998 /* Interpolate shortest distance from beginning or end of history */
999 interp_forward = partial_history_cycles > total_history_cycles/2 ?
1000 true : false;
1001 partial_history_cycles = interp_forward ?
1002 total_history_cycles - partial_history_cycles :
1003 partial_history_cycles;
1006 * Scale the monotonic raw time delta by:
1007 * partial_history_cycles / total_history_cycles
1009 corr_raw = (u64)ktime_to_ns(
1010 ktime_sub(ts->sys_monoraw, history->raw));
1011 ret = scale64_check_overflow(partial_history_cycles,
1012 total_history_cycles, &corr_raw);
1013 if (ret)
1014 return ret;
1017 * If there is a discontinuity in the history, scale monotonic raw
1018 * correction by:
1019 * mult(real)/mult(raw) yielding the realtime correction
1020 * Otherwise, calculate the realtime correction similar to monotonic
1021 * raw calculation
1023 if (discontinuity) {
1024 corr_real = mul_u64_u32_div
1025 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1026 } else {
1027 corr_real = (u64)ktime_to_ns(
1028 ktime_sub(ts->sys_realtime, history->real));
1029 ret = scale64_check_overflow(partial_history_cycles,
1030 total_history_cycles, &corr_real);
1031 if (ret)
1032 return ret;
1035 /* Fixup monotonic raw and real time time values */
1036 if (interp_forward) {
1037 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1038 ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1039 } else {
1040 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1041 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1044 return 0;
1048 * cycle_between - true if test occurs chronologically between before and after
1050 static bool cycle_between(u64 before, u64 test, u64 after)
1052 if (test > before && test < after)
1053 return true;
1054 if (test < before && before > after)
1055 return true;
1056 return false;
1060 * get_device_system_crosststamp - Synchronously capture system/device timestamp
1061 * @get_time_fn: Callback to get simultaneous device time and
1062 * system counter from the device driver
1063 * @ctx: Context passed to get_time_fn()
1064 * @history_begin: Historical reference point used to interpolate system
1065 * time when counter provided by the driver is before the current interval
1066 * @xtstamp: Receives simultaneously captured system and device time
1068 * Reads a timestamp from a device and correlates it to system time
1070 int get_device_system_crosststamp(int (*get_time_fn)
1071 (ktime_t *device_time,
1072 struct system_counterval_t *sys_counterval,
1073 void *ctx),
1074 void *ctx,
1075 struct system_time_snapshot *history_begin,
1076 struct system_device_crosststamp *xtstamp)
1078 struct system_counterval_t system_counterval;
1079 struct timekeeper *tk = &tk_core.timekeeper;
1080 u64 cycles, now, interval_start;
1081 unsigned int clock_was_set_seq = 0;
1082 ktime_t base_real, base_raw;
1083 u64 nsec_real, nsec_raw;
1084 u8 cs_was_changed_seq;
1085 unsigned long seq;
1086 bool do_interp;
1087 int ret;
1089 do {
1090 seq = read_seqcount_begin(&tk_core.seq);
1092 * Try to synchronously capture device time and a system
1093 * counter value calling back into the device driver
1095 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1096 if (ret)
1097 return ret;
1100 * Verify that the clocksource associated with the captured
1101 * system counter value is the same as the currently installed
1102 * timekeeper clocksource
1104 if (tk->tkr_mono.clock != system_counterval.cs)
1105 return -ENODEV;
1106 cycles = system_counterval.cycles;
1109 * Check whether the system counter value provided by the
1110 * device driver is on the current timekeeping interval.
1112 now = tk->tkr_mono.read(tk->tkr_mono.clock);
1113 interval_start = tk->tkr_mono.cycle_last;
1114 if (!cycle_between(interval_start, cycles, now)) {
1115 clock_was_set_seq = tk->clock_was_set_seq;
1116 cs_was_changed_seq = tk->cs_was_changed_seq;
1117 cycles = interval_start;
1118 do_interp = true;
1119 } else {
1120 do_interp = false;
1123 base_real = ktime_add(tk->tkr_mono.base,
1124 tk_core.timekeeper.offs_real);
1125 base_raw = tk->tkr_raw.base;
1127 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1128 system_counterval.cycles);
1129 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1130 system_counterval.cycles);
1131 } while (read_seqcount_retry(&tk_core.seq, seq));
1133 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1134 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1137 * Interpolate if necessary, adjusting back from the start of the
1138 * current interval
1140 if (do_interp) {
1141 u64 partial_history_cycles, total_history_cycles;
1142 bool discontinuity;
1145 * Check that the counter value occurs after the provided
1146 * history reference and that the history doesn't cross a
1147 * clocksource change
1149 if (!history_begin ||
1150 !cycle_between(history_begin->cycles,
1151 system_counterval.cycles, cycles) ||
1152 history_begin->cs_was_changed_seq != cs_was_changed_seq)
1153 return -EINVAL;
1154 partial_history_cycles = cycles - system_counterval.cycles;
1155 total_history_cycles = cycles - history_begin->cycles;
1156 discontinuity =
1157 history_begin->clock_was_set_seq != clock_was_set_seq;
1159 ret = adjust_historical_crosststamp(history_begin,
1160 partial_history_cycles,
1161 total_history_cycles,
1162 discontinuity, xtstamp);
1163 if (ret)
1164 return ret;
1167 return 0;
1169 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1172 * do_gettimeofday - Returns the time of day in a timeval
1173 * @tv: pointer to the timeval to be set
1175 * NOTE: Users should be converted to using getnstimeofday()
1177 void do_gettimeofday(struct timeval *tv)
1179 struct timespec64 now;
1181 getnstimeofday64(&now);
1182 tv->tv_sec = now.tv_sec;
1183 tv->tv_usec = now.tv_nsec/1000;
1185 EXPORT_SYMBOL(do_gettimeofday);
1188 * do_settimeofday64 - Sets the time of day.
1189 * @ts: pointer to the timespec64 variable containing the new time
1191 * Sets the time of day to the new time and update NTP and notify hrtimers
1193 int do_settimeofday64(const struct timespec64 *ts)
1195 struct timekeeper *tk = &tk_core.timekeeper;
1196 struct timespec64 ts_delta, xt;
1197 unsigned long flags;
1198 int ret = 0;
1200 if (!timespec64_valid_strict(ts))
1201 return -EINVAL;
1203 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1204 write_seqcount_begin(&tk_core.seq);
1206 timekeeping_forward_now(tk);
1208 xt = tk_xtime(tk);
1209 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1210 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1212 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1213 ret = -EINVAL;
1214 goto out;
1217 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1219 tk_set_xtime(tk, ts);
1220 out:
1221 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1223 write_seqcount_end(&tk_core.seq);
1224 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1226 /* signal hrtimers about time change */
1227 clock_was_set();
1229 return ret;
1231 EXPORT_SYMBOL(do_settimeofday64);
1234 * timekeeping_inject_offset - Adds or subtracts from the current time.
1235 * @tv: pointer to the timespec variable containing the offset
1237 * Adds or subtracts an offset value from the current time.
1239 int timekeeping_inject_offset(struct timespec *ts)
1241 struct timekeeper *tk = &tk_core.timekeeper;
1242 unsigned long flags;
1243 struct timespec64 ts64, tmp;
1244 int ret = 0;
1246 if (!timespec_inject_offset_valid(ts))
1247 return -EINVAL;
1249 ts64 = timespec_to_timespec64(*ts);
1251 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1252 write_seqcount_begin(&tk_core.seq);
1254 timekeeping_forward_now(tk);
1256 /* Make sure the proposed value is valid */
1257 tmp = timespec64_add(tk_xtime(tk), ts64);
1258 if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 ||
1259 !timespec64_valid_strict(&tmp)) {
1260 ret = -EINVAL;
1261 goto error;
1264 tk_xtime_add(tk, &ts64);
1265 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
1267 error: /* even if we error out, we forwarded the time, so call update */
1268 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1270 write_seqcount_end(&tk_core.seq);
1271 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1273 /* signal hrtimers about time change */
1274 clock_was_set();
1276 return ret;
1278 EXPORT_SYMBOL(timekeeping_inject_offset);
1281 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1284 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1286 tk->tai_offset = tai_offset;
1287 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1291 * change_clocksource - Swaps clocksources if a new one is available
1293 * Accumulates current time interval and initializes new clocksource
1295 static int change_clocksource(void *data)
1297 struct timekeeper *tk = &tk_core.timekeeper;
1298 struct clocksource *new, *old;
1299 unsigned long flags;
1301 new = (struct clocksource *) data;
1303 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1304 write_seqcount_begin(&tk_core.seq);
1306 timekeeping_forward_now(tk);
1308 * If the cs is in module, get a module reference. Succeeds
1309 * for built-in code (owner == NULL) as well.
1311 if (try_module_get(new->owner)) {
1312 if (!new->enable || new->enable(new) == 0) {
1313 old = tk->tkr_mono.clock;
1314 tk_setup_internals(tk, new);
1315 if (old->disable)
1316 old->disable(old);
1317 module_put(old->owner);
1318 } else {
1319 module_put(new->owner);
1322 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1324 write_seqcount_end(&tk_core.seq);
1325 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1327 return 0;
1331 * timekeeping_notify - Install a new clock source
1332 * @clock: pointer to the clock source
1334 * This function is called from clocksource.c after a new, better clock
1335 * source has been registered. The caller holds the clocksource_mutex.
1337 int timekeeping_notify(struct clocksource *clock)
1339 struct timekeeper *tk = &tk_core.timekeeper;
1341 if (tk->tkr_mono.clock == clock)
1342 return 0;
1343 stop_machine(change_clocksource, clock, NULL);
1344 tick_clock_notify();
1345 return tk->tkr_mono.clock == clock ? 0 : -1;
1349 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1350 * @ts: pointer to the timespec64 to be set
1352 * Returns the raw monotonic time (completely un-modified by ntp)
1354 void getrawmonotonic64(struct timespec64 *ts)
1356 struct timekeeper *tk = &tk_core.timekeeper;
1357 struct timespec64 ts64;
1358 unsigned long seq;
1359 u64 nsecs;
1361 do {
1362 seq = read_seqcount_begin(&tk_core.seq);
1363 nsecs = timekeeping_get_ns(&tk->tkr_raw);
1364 ts64 = tk->raw_time;
1366 } while (read_seqcount_retry(&tk_core.seq, seq));
1368 timespec64_add_ns(&ts64, nsecs);
1369 *ts = ts64;
1371 EXPORT_SYMBOL(getrawmonotonic64);
1375 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1377 int timekeeping_valid_for_hres(void)
1379 struct timekeeper *tk = &tk_core.timekeeper;
1380 unsigned long seq;
1381 int ret;
1383 do {
1384 seq = read_seqcount_begin(&tk_core.seq);
1386 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1388 } while (read_seqcount_retry(&tk_core.seq, seq));
1390 return ret;
1394 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1396 u64 timekeeping_max_deferment(void)
1398 struct timekeeper *tk = &tk_core.timekeeper;
1399 unsigned long seq;
1400 u64 ret;
1402 do {
1403 seq = read_seqcount_begin(&tk_core.seq);
1405 ret = tk->tkr_mono.clock->max_idle_ns;
1407 } while (read_seqcount_retry(&tk_core.seq, seq));
1409 return ret;
1413 * read_persistent_clock - Return time from the persistent clock.
1415 * Weak dummy function for arches that do not yet support it.
1416 * Reads the time from the battery backed persistent clock.
1417 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1419 * XXX - Do be sure to remove it once all arches implement it.
1421 void __weak read_persistent_clock(struct timespec *ts)
1423 ts->tv_sec = 0;
1424 ts->tv_nsec = 0;
1427 void __weak read_persistent_clock64(struct timespec64 *ts64)
1429 struct timespec ts;
1431 read_persistent_clock(&ts);
1432 *ts64 = timespec_to_timespec64(ts);
1436 * read_boot_clock64 - Return time of the system start.
1438 * Weak dummy function for arches that do not yet support it.
1439 * Function to read the exact time the system has been started.
1440 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1442 * XXX - Do be sure to remove it once all arches implement it.
1444 void __weak read_boot_clock64(struct timespec64 *ts)
1446 ts->tv_sec = 0;
1447 ts->tv_nsec = 0;
1450 /* Flag for if timekeeping_resume() has injected sleeptime */
1451 static bool sleeptime_injected;
1453 /* Flag for if there is a persistent clock on this platform */
1454 static bool persistent_clock_exists;
1457 * timekeeping_init - Initializes the clocksource and common timekeeping values
1459 void __init timekeeping_init(void)
1461 struct timekeeper *tk = &tk_core.timekeeper;
1462 struct clocksource *clock;
1463 unsigned long flags;
1464 struct timespec64 now, boot, tmp;
1466 read_persistent_clock64(&now);
1467 if (!timespec64_valid_strict(&now)) {
1468 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1469 " Check your CMOS/BIOS settings.\n");
1470 now.tv_sec = 0;
1471 now.tv_nsec = 0;
1472 } else if (now.tv_sec || now.tv_nsec)
1473 persistent_clock_exists = true;
1475 read_boot_clock64(&boot);
1476 if (!timespec64_valid_strict(&boot)) {
1477 pr_warn("WARNING: Boot clock returned invalid value!\n"
1478 " Check your CMOS/BIOS settings.\n");
1479 boot.tv_sec = 0;
1480 boot.tv_nsec = 0;
1483 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1484 write_seqcount_begin(&tk_core.seq);
1485 ntp_init();
1487 clock = clocksource_default_clock();
1488 if (clock->enable)
1489 clock->enable(clock);
1490 tk_setup_internals(tk, clock);
1492 tk_set_xtime(tk, &now);
1493 tk->raw_time.tv_sec = 0;
1494 tk->raw_time.tv_nsec = 0;
1495 if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1496 boot = tk_xtime(tk);
1498 set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1499 tk_set_wall_to_mono(tk, tmp);
1501 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1503 write_seqcount_end(&tk_core.seq);
1504 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1507 /* time in seconds when suspend began for persistent clock */
1508 static struct timespec64 timekeeping_suspend_time;
1511 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1512 * @delta: pointer to a timespec delta value
1514 * Takes a timespec offset measuring a suspend interval and properly
1515 * adds the sleep offset to the timekeeping variables.
1517 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1518 struct timespec64 *delta)
1520 if (!timespec64_valid_strict(delta)) {
1521 printk_deferred(KERN_WARNING
1522 "__timekeeping_inject_sleeptime: Invalid "
1523 "sleep delta value!\n");
1524 return;
1526 tk_xtime_add(tk, delta);
1527 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1528 tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1529 tk_debug_account_sleep_time(delta);
1532 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1534 * We have three kinds of time sources to use for sleep time
1535 * injection, the preference order is:
1536 * 1) non-stop clocksource
1537 * 2) persistent clock (ie: RTC accessible when irqs are off)
1538 * 3) RTC
1540 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1541 * If system has neither 1) nor 2), 3) will be used finally.
1544 * If timekeeping has injected sleeptime via either 1) or 2),
1545 * 3) becomes needless, so in this case we don't need to call
1546 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1547 * means.
1549 bool timekeeping_rtc_skipresume(void)
1551 return sleeptime_injected;
1555 * 1) can be determined whether to use or not only when doing
1556 * timekeeping_resume() which is invoked after rtc_suspend(),
1557 * so we can't skip rtc_suspend() surely if system has 1).
1559 * But if system has 2), 2) will definitely be used, so in this
1560 * case we don't need to call rtc_suspend(), and this is what
1561 * timekeeping_rtc_skipsuspend() means.
1563 bool timekeeping_rtc_skipsuspend(void)
1565 return persistent_clock_exists;
1569 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1570 * @delta: pointer to a timespec64 delta value
1572 * This hook is for architectures that cannot support read_persistent_clock64
1573 * because their RTC/persistent clock is only accessible when irqs are enabled.
1574 * and also don't have an effective nonstop clocksource.
1576 * This function should only be called by rtc_resume(), and allows
1577 * a suspend offset to be injected into the timekeeping values.
1579 void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1581 struct timekeeper *tk = &tk_core.timekeeper;
1582 unsigned long flags;
1584 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1585 write_seqcount_begin(&tk_core.seq);
1587 timekeeping_forward_now(tk);
1589 __timekeeping_inject_sleeptime(tk, delta);
1591 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1593 write_seqcount_end(&tk_core.seq);
1594 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1596 /* signal hrtimers about time change */
1597 clock_was_set();
1599 #endif
1602 * timekeeping_resume - Resumes the generic timekeeping subsystem.
1604 void timekeeping_resume(void)
1606 struct timekeeper *tk = &tk_core.timekeeper;
1607 struct clocksource *clock = tk->tkr_mono.clock;
1608 unsigned long flags;
1609 struct timespec64 ts_new, ts_delta;
1610 u64 cycle_now;
1612 sleeptime_injected = false;
1613 read_persistent_clock64(&ts_new);
1615 clockevents_resume();
1616 clocksource_resume();
1618 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1619 write_seqcount_begin(&tk_core.seq);
1622 * After system resumes, we need to calculate the suspended time and
1623 * compensate it for the OS time. There are 3 sources that could be
1624 * used: Nonstop clocksource during suspend, persistent clock and rtc
1625 * device.
1627 * One specific platform may have 1 or 2 or all of them, and the
1628 * preference will be:
1629 * suspend-nonstop clocksource -> persistent clock -> rtc
1630 * The less preferred source will only be tried if there is no better
1631 * usable source. The rtc part is handled separately in rtc core code.
1633 cycle_now = tk->tkr_mono.read(clock);
1634 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1635 cycle_now > tk->tkr_mono.cycle_last) {
1636 u64 nsec, cyc_delta;
1638 cyc_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1639 tk->tkr_mono.mask);
1640 nsec = mul_u64_u32_shr(cyc_delta, clock->mult, clock->shift);
1641 ts_delta = ns_to_timespec64(nsec);
1642 sleeptime_injected = true;
1643 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1644 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1645 sleeptime_injected = true;
1648 if (sleeptime_injected)
1649 __timekeeping_inject_sleeptime(tk, &ts_delta);
1651 /* Re-base the last cycle value */
1652 tk->tkr_mono.cycle_last = cycle_now;
1653 tk->tkr_raw.cycle_last = cycle_now;
1655 tk->ntp_error = 0;
1656 timekeeping_suspended = 0;
1657 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1658 write_seqcount_end(&tk_core.seq);
1659 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1661 touch_softlockup_watchdog();
1663 tick_resume();
1664 hrtimers_resume();
1667 int timekeeping_suspend(void)
1669 struct timekeeper *tk = &tk_core.timekeeper;
1670 unsigned long flags;
1671 struct timespec64 delta, delta_delta;
1672 static struct timespec64 old_delta;
1674 read_persistent_clock64(&timekeeping_suspend_time);
1677 * On some systems the persistent_clock can not be detected at
1678 * timekeeping_init by its return value, so if we see a valid
1679 * value returned, update the persistent_clock_exists flag.
1681 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1682 persistent_clock_exists = true;
1684 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1685 write_seqcount_begin(&tk_core.seq);
1686 timekeeping_forward_now(tk);
1687 timekeeping_suspended = 1;
1689 if (persistent_clock_exists) {
1691 * To avoid drift caused by repeated suspend/resumes,
1692 * which each can add ~1 second drift error,
1693 * try to compensate so the difference in system time
1694 * and persistent_clock time stays close to constant.
1696 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1697 delta_delta = timespec64_sub(delta, old_delta);
1698 if (abs(delta_delta.tv_sec) >= 2) {
1700 * if delta_delta is too large, assume time correction
1701 * has occurred and set old_delta to the current delta.
1703 old_delta = delta;
1704 } else {
1705 /* Otherwise try to adjust old_system to compensate */
1706 timekeeping_suspend_time =
1707 timespec64_add(timekeeping_suspend_time, delta_delta);
1711 timekeeping_update(tk, TK_MIRROR);
1712 halt_fast_timekeeper(tk);
1713 write_seqcount_end(&tk_core.seq);
1714 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1716 tick_suspend();
1717 clocksource_suspend();
1718 clockevents_suspend();
1720 return 0;
1723 /* sysfs resume/suspend bits for timekeeping */
1724 static struct syscore_ops timekeeping_syscore_ops = {
1725 .resume = timekeeping_resume,
1726 .suspend = timekeeping_suspend,
1729 static int __init timekeeping_init_ops(void)
1731 register_syscore_ops(&timekeeping_syscore_ops);
1732 return 0;
1734 device_initcall(timekeeping_init_ops);
1737 * Apply a multiplier adjustment to the timekeeper
1739 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1740 s64 offset,
1741 bool negative,
1742 int adj_scale)
1744 s64 interval = tk->cycle_interval;
1745 s32 mult_adj = 1;
1747 if (negative) {
1748 mult_adj = -mult_adj;
1749 interval = -interval;
1750 offset = -offset;
1752 mult_adj <<= adj_scale;
1753 interval <<= adj_scale;
1754 offset <<= adj_scale;
1757 * So the following can be confusing.
1759 * To keep things simple, lets assume mult_adj == 1 for now.
1761 * When mult_adj != 1, remember that the interval and offset values
1762 * have been appropriately scaled so the math is the same.
1764 * The basic idea here is that we're increasing the multiplier
1765 * by one, this causes the xtime_interval to be incremented by
1766 * one cycle_interval. This is because:
1767 * xtime_interval = cycle_interval * mult
1768 * So if mult is being incremented by one:
1769 * xtime_interval = cycle_interval * (mult + 1)
1770 * Its the same as:
1771 * xtime_interval = (cycle_interval * mult) + cycle_interval
1772 * Which can be shortened to:
1773 * xtime_interval += cycle_interval
1775 * So offset stores the non-accumulated cycles. Thus the current
1776 * time (in shifted nanoseconds) is:
1777 * now = (offset * adj) + xtime_nsec
1778 * Now, even though we're adjusting the clock frequency, we have
1779 * to keep time consistent. In other words, we can't jump back
1780 * in time, and we also want to avoid jumping forward in time.
1782 * So given the same offset value, we need the time to be the same
1783 * both before and after the freq adjustment.
1784 * now = (offset * adj_1) + xtime_nsec_1
1785 * now = (offset * adj_2) + xtime_nsec_2
1786 * So:
1787 * (offset * adj_1) + xtime_nsec_1 =
1788 * (offset * adj_2) + xtime_nsec_2
1789 * And we know:
1790 * adj_2 = adj_1 + 1
1791 * So:
1792 * (offset * adj_1) + xtime_nsec_1 =
1793 * (offset * (adj_1+1)) + xtime_nsec_2
1794 * (offset * adj_1) + xtime_nsec_1 =
1795 * (offset * adj_1) + offset + xtime_nsec_2
1796 * Canceling the sides:
1797 * xtime_nsec_1 = offset + xtime_nsec_2
1798 * Which gives us:
1799 * xtime_nsec_2 = xtime_nsec_1 - offset
1800 * Which simplfies to:
1801 * xtime_nsec -= offset
1803 * XXX - TODO: Doc ntp_error calculation.
1805 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1806 /* NTP adjustment caused clocksource mult overflow */
1807 WARN_ON_ONCE(1);
1808 return;
1811 tk->tkr_mono.mult += mult_adj;
1812 tk->xtime_interval += interval;
1813 tk->tkr_mono.xtime_nsec -= offset;
1814 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1818 * Calculate the multiplier adjustment needed to match the frequency
1819 * specified by NTP
1821 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1822 s64 offset)
1824 s64 interval = tk->cycle_interval;
1825 s64 xinterval = tk->xtime_interval;
1826 u32 base = tk->tkr_mono.clock->mult;
1827 u32 max = tk->tkr_mono.clock->maxadj;
1828 u32 cur_adj = tk->tkr_mono.mult;
1829 s64 tick_error;
1830 bool negative;
1831 u32 adj_scale;
1833 /* Remove any current error adj from freq calculation */
1834 if (tk->ntp_err_mult)
1835 xinterval -= tk->cycle_interval;
1837 tk->ntp_tick = ntp_tick_length();
1839 /* Calculate current error per tick */
1840 tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1841 tick_error -= (xinterval + tk->xtime_remainder);
1843 /* Don't worry about correcting it if its small */
1844 if (likely((tick_error >= 0) && (tick_error <= interval)))
1845 return;
1847 /* preserve the direction of correction */
1848 negative = (tick_error < 0);
1850 /* If any adjustment would pass the max, just return */
1851 if (negative && (cur_adj - 1) <= (base - max))
1852 return;
1853 if (!negative && (cur_adj + 1) >= (base + max))
1854 return;
1856 * Sort out the magnitude of the correction, but
1857 * avoid making so large a correction that we go
1858 * over the max adjustment.
1860 adj_scale = 0;
1861 tick_error = abs(tick_error);
1862 while (tick_error > interval) {
1863 u32 adj = 1 << (adj_scale + 1);
1865 /* Check if adjustment gets us within 1 unit from the max */
1866 if (negative && (cur_adj - adj) <= (base - max))
1867 break;
1868 if (!negative && (cur_adj + adj) >= (base + max))
1869 break;
1871 adj_scale++;
1872 tick_error >>= 1;
1875 /* scale the corrections */
1876 timekeeping_apply_adjustment(tk, offset, negative, adj_scale);
1880 * Adjust the timekeeper's multiplier to the correct frequency
1881 * and also to reduce the accumulated error value.
1883 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1885 /* Correct for the current frequency error */
1886 timekeeping_freqadjust(tk, offset);
1888 /* Next make a small adjustment to fix any cumulative error */
1889 if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1890 tk->ntp_err_mult = 1;
1891 timekeeping_apply_adjustment(tk, offset, 0, 0);
1892 } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1893 /* Undo any existing error adjustment */
1894 timekeeping_apply_adjustment(tk, offset, 1, 0);
1895 tk->ntp_err_mult = 0;
1898 if (unlikely(tk->tkr_mono.clock->maxadj &&
1899 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1900 > tk->tkr_mono.clock->maxadj))) {
1901 printk_once(KERN_WARNING
1902 "Adjusting %s more than 11%% (%ld vs %ld)\n",
1903 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1904 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1908 * It may be possible that when we entered this function, xtime_nsec
1909 * was very small. Further, if we're slightly speeding the clocksource
1910 * in the code above, its possible the required corrective factor to
1911 * xtime_nsec could cause it to underflow.
1913 * Now, since we already accumulated the second, cannot simply roll
1914 * the accumulated second back, since the NTP subsystem has been
1915 * notified via second_overflow. So instead we push xtime_nsec forward
1916 * by the amount we underflowed, and add that amount into the error.
1918 * We'll correct this error next time through this function, when
1919 * xtime_nsec is not as small.
1921 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1922 s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
1923 tk->tkr_mono.xtime_nsec = 0;
1924 tk->ntp_error += neg << tk->ntp_error_shift;
1929 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1931 * Helper function that accumulates the nsecs greater than a second
1932 * from the xtime_nsec field to the xtime_secs field.
1933 * It also calls into the NTP code to handle leapsecond processing.
1936 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1938 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1939 unsigned int clock_set = 0;
1941 while (tk->tkr_mono.xtime_nsec >= nsecps) {
1942 int leap;
1944 tk->tkr_mono.xtime_nsec -= nsecps;
1945 tk->xtime_sec++;
1947 /* Figure out if its a leap sec and apply if needed */
1948 leap = second_overflow(tk->xtime_sec);
1949 if (unlikely(leap)) {
1950 struct timespec64 ts;
1952 tk->xtime_sec += leap;
1954 ts.tv_sec = leap;
1955 ts.tv_nsec = 0;
1956 tk_set_wall_to_mono(tk,
1957 timespec64_sub(tk->wall_to_monotonic, ts));
1959 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1961 clock_set = TK_CLOCK_WAS_SET;
1964 return clock_set;
1968 * logarithmic_accumulation - shifted accumulation of cycles
1970 * This functions accumulates a shifted interval of cycles into
1971 * into a shifted interval nanoseconds. Allows for O(log) accumulation
1972 * loop.
1974 * Returns the unconsumed cycles.
1976 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
1977 u32 shift, unsigned int *clock_set)
1979 u64 interval = tk->cycle_interval << shift;
1980 u64 raw_nsecs;
1982 /* If the offset is smaller than a shifted interval, do nothing */
1983 if (offset < interval)
1984 return offset;
1986 /* Accumulate one shifted interval */
1987 offset -= interval;
1988 tk->tkr_mono.cycle_last += interval;
1989 tk->tkr_raw.cycle_last += interval;
1991 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
1992 *clock_set |= accumulate_nsecs_to_secs(tk);
1994 /* Accumulate raw time */
1995 raw_nsecs = (u64)tk->raw_interval << shift;
1996 raw_nsecs += tk->raw_time.tv_nsec;
1997 if (raw_nsecs >= NSEC_PER_SEC) {
1998 u64 raw_secs = raw_nsecs;
1999 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
2000 tk->raw_time.tv_sec += raw_secs;
2002 tk->raw_time.tv_nsec = raw_nsecs;
2004 /* Accumulate error between NTP and clock interval */
2005 tk->ntp_error += tk->ntp_tick << shift;
2006 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2007 (tk->ntp_error_shift + shift);
2009 return offset;
2013 * update_wall_time - Uses the current clocksource to increment the wall time
2016 void update_wall_time(void)
2018 struct timekeeper *real_tk = &tk_core.timekeeper;
2019 struct timekeeper *tk = &shadow_timekeeper;
2020 u64 offset;
2021 int shift = 0, maxshift;
2022 unsigned int clock_set = 0;
2023 unsigned long flags;
2025 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2027 /* Make sure we're fully resumed: */
2028 if (unlikely(timekeeping_suspended))
2029 goto out;
2031 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2032 offset = real_tk->cycle_interval;
2033 #else
2034 offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
2035 tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2036 #endif
2038 /* Check if there's really nothing to do */
2039 if (offset < real_tk->cycle_interval)
2040 goto out;
2042 /* Do some additional sanity checking */
2043 timekeeping_check_update(real_tk, offset);
2046 * With NO_HZ we may have to accumulate many cycle_intervals
2047 * (think "ticks") worth of time at once. To do this efficiently,
2048 * we calculate the largest doubling multiple of cycle_intervals
2049 * that is smaller than the offset. We then accumulate that
2050 * chunk in one go, and then try to consume the next smaller
2051 * doubled multiple.
2053 shift = ilog2(offset) - ilog2(tk->cycle_interval);
2054 shift = max(0, shift);
2055 /* Bound shift to one less than what overflows tick_length */
2056 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2057 shift = min(shift, maxshift);
2058 while (offset >= tk->cycle_interval) {
2059 offset = logarithmic_accumulation(tk, offset, shift,
2060 &clock_set);
2061 if (offset < tk->cycle_interval<<shift)
2062 shift--;
2065 /* correct the clock when NTP error is too big */
2066 timekeeping_adjust(tk, offset);
2069 * XXX This can be killed once everyone converts
2070 * to the new update_vsyscall.
2072 old_vsyscall_fixup(tk);
2075 * Finally, make sure that after the rounding
2076 * xtime_nsec isn't larger than NSEC_PER_SEC
2078 clock_set |= accumulate_nsecs_to_secs(tk);
2080 write_seqcount_begin(&tk_core.seq);
2082 * Update the real timekeeper.
2084 * We could avoid this memcpy by switching pointers, but that
2085 * requires changes to all other timekeeper usage sites as
2086 * well, i.e. move the timekeeper pointer getter into the
2087 * spinlocked/seqcount protected sections. And we trade this
2088 * memcpy under the tk_core.seq against one before we start
2089 * updating.
2091 timekeeping_update(tk, clock_set);
2092 memcpy(real_tk, tk, sizeof(*tk));
2093 /* The memcpy must come last. Do not put anything here! */
2094 write_seqcount_end(&tk_core.seq);
2095 out:
2096 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2097 if (clock_set)
2098 /* Have to call _delayed version, since in irq context*/
2099 clock_was_set_delayed();
2103 * getboottime64 - Return the real time of system boot.
2104 * @ts: pointer to the timespec64 to be set
2106 * Returns the wall-time of boot in a timespec64.
2108 * This is based on the wall_to_monotonic offset and the total suspend
2109 * time. Calls to settimeofday will affect the value returned (which
2110 * basically means that however wrong your real time clock is at boot time,
2111 * you get the right time here).
2113 void getboottime64(struct timespec64 *ts)
2115 struct timekeeper *tk = &tk_core.timekeeper;
2116 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2118 *ts = ktime_to_timespec64(t);
2120 EXPORT_SYMBOL_GPL(getboottime64);
2122 unsigned long get_seconds(void)
2124 struct timekeeper *tk = &tk_core.timekeeper;
2126 return tk->xtime_sec;
2128 EXPORT_SYMBOL(get_seconds);
2130 struct timespec __current_kernel_time(void)
2132 struct timekeeper *tk = &tk_core.timekeeper;
2134 return timespec64_to_timespec(tk_xtime(tk));
2137 struct timespec64 current_kernel_time64(void)
2139 struct timekeeper *tk = &tk_core.timekeeper;
2140 struct timespec64 now;
2141 unsigned long seq;
2143 do {
2144 seq = read_seqcount_begin(&tk_core.seq);
2146 now = tk_xtime(tk);
2147 } while (read_seqcount_retry(&tk_core.seq, seq));
2149 return now;
2151 EXPORT_SYMBOL(current_kernel_time64);
2153 struct timespec64 get_monotonic_coarse64(void)
2155 struct timekeeper *tk = &tk_core.timekeeper;
2156 struct timespec64 now, mono;
2157 unsigned long seq;
2159 do {
2160 seq = read_seqcount_begin(&tk_core.seq);
2162 now = tk_xtime(tk);
2163 mono = tk->wall_to_monotonic;
2164 } while (read_seqcount_retry(&tk_core.seq, seq));
2166 set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
2167 now.tv_nsec + mono.tv_nsec);
2169 return now;
2171 EXPORT_SYMBOL(get_monotonic_coarse64);
2174 * Must hold jiffies_lock
2176 void do_timer(unsigned long ticks)
2178 jiffies_64 += ticks;
2179 calc_global_load(ticks);
2183 * ktime_get_update_offsets_now - hrtimer helper
2184 * @cwsseq: pointer to check and store the clock was set sequence number
2185 * @offs_real: pointer to storage for monotonic -> realtime offset
2186 * @offs_boot: pointer to storage for monotonic -> boottime offset
2187 * @offs_tai: pointer to storage for monotonic -> clock tai offset
2189 * Returns current monotonic time and updates the offsets if the
2190 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2191 * different.
2193 * Called from hrtimer_interrupt() or retrigger_next_event()
2195 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2196 ktime_t *offs_boot, ktime_t *offs_tai)
2198 struct timekeeper *tk = &tk_core.timekeeper;
2199 unsigned int seq;
2200 ktime_t base;
2201 u64 nsecs;
2203 do {
2204 seq = read_seqcount_begin(&tk_core.seq);
2206 base = tk->tkr_mono.base;
2207 nsecs = timekeeping_get_ns(&tk->tkr_mono);
2208 base = ktime_add_ns(base, nsecs);
2210 if (*cwsseq != tk->clock_was_set_seq) {
2211 *cwsseq = tk->clock_was_set_seq;
2212 *offs_real = tk->offs_real;
2213 *offs_boot = tk->offs_boot;
2214 *offs_tai = tk->offs_tai;
2217 /* Handle leapsecond insertion adjustments */
2218 if (unlikely(base >= tk->next_leap_ktime))
2219 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2221 } while (read_seqcount_retry(&tk_core.seq, seq));
2223 return base;
2227 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2229 int do_adjtimex(struct timex *txc)
2231 struct timekeeper *tk = &tk_core.timekeeper;
2232 unsigned long flags;
2233 struct timespec64 ts;
2234 s32 orig_tai, tai;
2235 int ret;
2237 /* Validate the data before disabling interrupts */
2238 ret = ntp_validate_timex(txc);
2239 if (ret)
2240 return ret;
2242 if (txc->modes & ADJ_SETOFFSET) {
2243 struct timespec delta;
2244 delta.tv_sec = txc->time.tv_sec;
2245 delta.tv_nsec = txc->time.tv_usec;
2246 if (!(txc->modes & ADJ_NANO))
2247 delta.tv_nsec *= 1000;
2248 ret = timekeeping_inject_offset(&delta);
2249 if (ret)
2250 return ret;
2253 getnstimeofday64(&ts);
2255 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2256 write_seqcount_begin(&tk_core.seq);
2258 orig_tai = tai = tk->tai_offset;
2259 ret = __do_adjtimex(txc, &ts, &tai);
2261 if (tai != orig_tai) {
2262 __timekeeping_set_tai_offset(tk, tai);
2263 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2265 tk_update_leap_state(tk);
2267 write_seqcount_end(&tk_core.seq);
2268 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2270 if (tai != orig_tai)
2271 clock_was_set();
2273 ntp_notify_cmos_timer();
2275 return ret;
2278 #ifdef CONFIG_NTP_PPS
2280 * hardpps() - Accessor function to NTP __hardpps function
2282 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2284 unsigned long flags;
2286 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2287 write_seqcount_begin(&tk_core.seq);
2289 __hardpps(phase_ts, raw_ts);
2291 write_seqcount_end(&tk_core.seq);
2292 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2294 EXPORT_SYMBOL(hardpps);
2295 #endif
2298 * xtime_update() - advances the timekeeping infrastructure
2299 * @ticks: number of ticks, that have elapsed since the last call.
2301 * Must be called with interrupts disabled.
2303 void xtime_update(unsigned long ticks)
2305 write_seqlock(&jiffies_lock);
2306 do_timer(ticks);
2307 write_sequnlock(&jiffies_lock);
2308 update_wall_time();