4 * Kernel internal timers
6 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
22 #include <linux/kernel_stat.h>
23 #include <linux/export.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
28 #include <linux/swap.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/notifier.h>
31 #include <linux/thread_info.h>
32 #include <linux/time.h>
33 #include <linux/jiffies.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cpu.h>
36 #include <linux/syscalls.h>
37 #include <linux/delay.h>
38 #include <linux/tick.h>
39 #include <linux/kallsyms.h>
40 #include <linux/irq_work.h>
41 #include <linux/sched/signal.h>
42 #include <linux/sched/sysctl.h>
43 #include <linux/sched/nohz.h>
44 #include <linux/sched/debug.h>
45 #include <linux/slab.h>
46 #include <linux/compat.h>
48 #include <linux/uaccess.h>
49 #include <asm/unistd.h>
50 #include <asm/div64.h>
51 #include <asm/timex.h>
54 #include "tick-internal.h"
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/timer.h>
59 __visible u64 jiffies_64 __cacheline_aligned_in_smp
= INITIAL_JIFFIES
;
61 EXPORT_SYMBOL(jiffies_64
);
64 * The timer wheel has LVL_DEPTH array levels. Each level provides an array of
65 * LVL_SIZE buckets. Each level is driven by its own clock and therefor each
66 * level has a different granularity.
68 * The level granularity is: LVL_CLK_DIV ^ lvl
69 * The level clock frequency is: HZ / (LVL_CLK_DIV ^ level)
71 * The array level of a newly armed timer depends on the relative expiry
72 * time. The farther the expiry time is away the higher the array level and
73 * therefor the granularity becomes.
75 * Contrary to the original timer wheel implementation, which aims for 'exact'
76 * expiry of the timers, this implementation removes the need for recascading
77 * the timers into the lower array levels. The previous 'classic' timer wheel
78 * implementation of the kernel already violated the 'exact' expiry by adding
79 * slack to the expiry time to provide batched expiration. The granularity
80 * levels provide implicit batching.
82 * This is an optimization of the original timer wheel implementation for the
83 * majority of the timer wheel use cases: timeouts. The vast majority of
84 * timeout timers (networking, disk I/O ...) are canceled before expiry. If
85 * the timeout expires it indicates that normal operation is disturbed, so it
86 * does not matter much whether the timeout comes with a slight delay.
88 * The only exception to this are networking timers with a small expiry
89 * time. They rely on the granularity. Those fit into the first wheel level,
90 * which has HZ granularity.
92 * We don't have cascading anymore. timers with a expiry time above the
93 * capacity of the last wheel level are force expired at the maximum timeout
94 * value of the last wheel level. From data sampling we know that the maximum
95 * value observed is 5 days (network connection tracking), so this should not
98 * The currently chosen array constants values are a good compromise between
99 * array size and granularity.
101 * This results in the following granularity and range levels:
104 * Level Offset Granularity Range
105 * 0 0 1 ms 0 ms - 63 ms
106 * 1 64 8 ms 64 ms - 511 ms
107 * 2 128 64 ms 512 ms - 4095 ms (512ms - ~4s)
108 * 3 192 512 ms 4096 ms - 32767 ms (~4s - ~32s)
109 * 4 256 4096 ms (~4s) 32768 ms - 262143 ms (~32s - ~4m)
110 * 5 320 32768 ms (~32s) 262144 ms - 2097151 ms (~4m - ~34m)
111 * 6 384 262144 ms (~4m) 2097152 ms - 16777215 ms (~34m - ~4h)
112 * 7 448 2097152 ms (~34m) 16777216 ms - 134217727 ms (~4h - ~1d)
113 * 8 512 16777216 ms (~4h) 134217728 ms - 1073741822 ms (~1d - ~12d)
116 * Level Offset Granularity Range
117 * 0 0 3 ms 0 ms - 210 ms
118 * 1 64 26 ms 213 ms - 1703 ms (213ms - ~1s)
119 * 2 128 213 ms 1706 ms - 13650 ms (~1s - ~13s)
120 * 3 192 1706 ms (~1s) 13653 ms - 109223 ms (~13s - ~1m)
121 * 4 256 13653 ms (~13s) 109226 ms - 873810 ms (~1m - ~14m)
122 * 5 320 109226 ms (~1m) 873813 ms - 6990503 ms (~14m - ~1h)
123 * 6 384 873813 ms (~14m) 6990506 ms - 55924050 ms (~1h - ~15h)
124 * 7 448 6990506 ms (~1h) 55924053 ms - 447392423 ms (~15h - ~5d)
125 * 8 512 55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d)
128 * Level Offset Granularity Range
129 * 0 0 4 ms 0 ms - 255 ms
130 * 1 64 32 ms 256 ms - 2047 ms (256ms - ~2s)
131 * 2 128 256 ms 2048 ms - 16383 ms (~2s - ~16s)
132 * 3 192 2048 ms (~2s) 16384 ms - 131071 ms (~16s - ~2m)
133 * 4 256 16384 ms (~16s) 131072 ms - 1048575 ms (~2m - ~17m)
134 * 5 320 131072 ms (~2m) 1048576 ms - 8388607 ms (~17m - ~2h)
135 * 6 384 1048576 ms (~17m) 8388608 ms - 67108863 ms (~2h - ~18h)
136 * 7 448 8388608 ms (~2h) 67108864 ms - 536870911 ms (~18h - ~6d)
137 * 8 512 67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d)
140 * Level Offset Granularity Range
141 * 0 0 10 ms 0 ms - 630 ms
142 * 1 64 80 ms 640 ms - 5110 ms (640ms - ~5s)
143 * 2 128 640 ms 5120 ms - 40950 ms (~5s - ~40s)
144 * 3 192 5120 ms (~5s) 40960 ms - 327670 ms (~40s - ~5m)
145 * 4 256 40960 ms (~40s) 327680 ms - 2621430 ms (~5m - ~43m)
146 * 5 320 327680 ms (~5m) 2621440 ms - 20971510 ms (~43m - ~5h)
147 * 6 384 2621440 ms (~43m) 20971520 ms - 167772150 ms (~5h - ~1d)
148 * 7 448 20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d)
151 /* Clock divisor for the next level */
152 #define LVL_CLK_SHIFT 3
153 #define LVL_CLK_DIV (1UL << LVL_CLK_SHIFT)
154 #define LVL_CLK_MASK (LVL_CLK_DIV - 1)
155 #define LVL_SHIFT(n) ((n) * LVL_CLK_SHIFT)
156 #define LVL_GRAN(n) (1UL << LVL_SHIFT(n))
159 * The time start value for each level to select the bucket at enqueue
162 #define LVL_START(n) ((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT))
164 /* Size of each clock level */
166 #define LVL_SIZE (1UL << LVL_BITS)
167 #define LVL_MASK (LVL_SIZE - 1)
168 #define LVL_OFFS(n) ((n) * LVL_SIZE)
177 /* The cutoff (max. capacity of the wheel) */
178 #define WHEEL_TIMEOUT_CUTOFF (LVL_START(LVL_DEPTH))
179 #define WHEEL_TIMEOUT_MAX (WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1))
182 * The resulting wheel size. If NOHZ is configured we allocate two
183 * wheels so we have a separate storage for the deferrable timers.
185 #define WHEEL_SIZE (LVL_SIZE * LVL_DEPTH)
187 #ifdef CONFIG_NO_HZ_COMMON
199 struct timer_list
*running_timer
;
201 unsigned long next_expiry
;
203 bool migration_enabled
;
206 DECLARE_BITMAP(pending_map
, WHEEL_SIZE
);
207 struct hlist_head vectors
[WHEEL_SIZE
];
208 } ____cacheline_aligned
;
210 static DEFINE_PER_CPU(struct timer_base
, timer_bases
[NR_BASES
]);
212 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
213 unsigned int sysctl_timer_migration
= 1;
215 void timers_update_migration(bool update_nohz
)
217 bool on
= sysctl_timer_migration
&& tick_nohz_active
;
220 /* Avoid the loop, if nothing to update */
221 if (this_cpu_read(timer_bases
[BASE_STD
].migration_enabled
) == on
)
224 for_each_possible_cpu(cpu
) {
225 per_cpu(timer_bases
[BASE_STD
].migration_enabled
, cpu
) = on
;
226 per_cpu(timer_bases
[BASE_DEF
].migration_enabled
, cpu
) = on
;
227 per_cpu(hrtimer_bases
.migration_enabled
, cpu
) = on
;
230 per_cpu(timer_bases
[BASE_STD
].nohz_active
, cpu
) = true;
231 per_cpu(timer_bases
[BASE_DEF
].nohz_active
, cpu
) = true;
232 per_cpu(hrtimer_bases
.nohz_active
, cpu
) = true;
236 int timer_migration_handler(struct ctl_table
*table
, int write
,
237 void __user
*buffer
, size_t *lenp
,
240 static DEFINE_MUTEX(mutex
);
244 ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
246 timers_update_migration(false);
247 mutex_unlock(&mutex
);
252 static unsigned long round_jiffies_common(unsigned long j
, int cpu
,
256 unsigned long original
= j
;
259 * We don't want all cpus firing their timers at once hitting the
260 * same lock or cachelines, so we skew each extra cpu with an extra
261 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
263 * The skew is done by adding 3*cpunr, then round, then subtract this
264 * extra offset again.
271 * If the target jiffie is just after a whole second (which can happen
272 * due to delays of the timer irq, long irq off times etc etc) then
273 * we should round down to the whole second, not up. Use 1/4th second
274 * as cutoff for this rounding as an extreme upper bound for this.
275 * But never round down if @force_up is set.
277 if (rem
< HZ
/4 && !force_up
) /* round down */
282 /* now that we have rounded, subtract the extra skew again */
286 * Make sure j is still in the future. Otherwise return the
289 return time_is_after_jiffies(j
) ? j
: original
;
293 * __round_jiffies - function to round jiffies to a full second
294 * @j: the time in (absolute) jiffies that should be rounded
295 * @cpu: the processor number on which the timeout will happen
297 * __round_jiffies() rounds an absolute time in the future (in jiffies)
298 * up or down to (approximately) full seconds. This is useful for timers
299 * for which the exact time they fire does not matter too much, as long as
300 * they fire approximately every X seconds.
302 * By rounding these timers to whole seconds, all such timers will fire
303 * at the same time, rather than at various times spread out. The goal
304 * of this is to have the CPU wake up less, which saves power.
306 * The exact rounding is skewed for each processor to avoid all
307 * processors firing at the exact same time, which could lead
308 * to lock contention or spurious cache line bouncing.
310 * The return value is the rounded version of the @j parameter.
312 unsigned long __round_jiffies(unsigned long j
, int cpu
)
314 return round_jiffies_common(j
, cpu
, false);
316 EXPORT_SYMBOL_GPL(__round_jiffies
);
319 * __round_jiffies_relative - function to round jiffies to a full second
320 * @j: the time in (relative) jiffies that should be rounded
321 * @cpu: the processor number on which the timeout will happen
323 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
324 * up or down to (approximately) full seconds. This is useful for timers
325 * for which the exact time they fire does not matter too much, as long as
326 * they fire approximately every X seconds.
328 * By rounding these timers to whole seconds, all such timers will fire
329 * at the same time, rather than at various times spread out. The goal
330 * of this is to have the CPU wake up less, which saves power.
332 * The exact rounding is skewed for each processor to avoid all
333 * processors firing at the exact same time, which could lead
334 * to lock contention or spurious cache line bouncing.
336 * The return value is the rounded version of the @j parameter.
338 unsigned long __round_jiffies_relative(unsigned long j
, int cpu
)
340 unsigned long j0
= jiffies
;
342 /* Use j0 because jiffies might change while we run */
343 return round_jiffies_common(j
+ j0
, cpu
, false) - j0
;
345 EXPORT_SYMBOL_GPL(__round_jiffies_relative
);
348 * round_jiffies - function to round jiffies to a full second
349 * @j: the time in (absolute) jiffies that should be rounded
351 * round_jiffies() rounds an absolute time in the future (in jiffies)
352 * up or down to (approximately) full seconds. This is useful for timers
353 * for which the exact time they fire does not matter too much, as long as
354 * they fire approximately every X seconds.
356 * By rounding these timers to whole seconds, all such timers will fire
357 * at the same time, rather than at various times spread out. The goal
358 * of this is to have the CPU wake up less, which saves power.
360 * The return value is the rounded version of the @j parameter.
362 unsigned long round_jiffies(unsigned long j
)
364 return round_jiffies_common(j
, raw_smp_processor_id(), false);
366 EXPORT_SYMBOL_GPL(round_jiffies
);
369 * round_jiffies_relative - function to round jiffies to a full second
370 * @j: the time in (relative) jiffies that should be rounded
372 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
373 * up or down to (approximately) full seconds. This is useful for timers
374 * for which the exact time they fire does not matter too much, as long as
375 * they fire approximately every X seconds.
377 * By rounding these timers to whole seconds, all such timers will fire
378 * at the same time, rather than at various times spread out. The goal
379 * of this is to have the CPU wake up less, which saves power.
381 * The return value is the rounded version of the @j parameter.
383 unsigned long round_jiffies_relative(unsigned long j
)
385 return __round_jiffies_relative(j
, raw_smp_processor_id());
387 EXPORT_SYMBOL_GPL(round_jiffies_relative
);
390 * __round_jiffies_up - function to round jiffies up to a full second
391 * @j: the time in (absolute) jiffies that should be rounded
392 * @cpu: the processor number on which the timeout will happen
394 * This is the same as __round_jiffies() except that it will never
395 * round down. This is useful for timeouts for which the exact time
396 * of firing does not matter too much, as long as they don't fire too
399 unsigned long __round_jiffies_up(unsigned long j
, int cpu
)
401 return round_jiffies_common(j
, cpu
, true);
403 EXPORT_SYMBOL_GPL(__round_jiffies_up
);
406 * __round_jiffies_up_relative - function to round jiffies up to a full second
407 * @j: the time in (relative) jiffies that should be rounded
408 * @cpu: the processor number on which the timeout will happen
410 * This is the same as __round_jiffies_relative() except that it will never
411 * round down. This is useful for timeouts for which the exact time
412 * of firing does not matter too much, as long as they don't fire too
415 unsigned long __round_jiffies_up_relative(unsigned long j
, int cpu
)
417 unsigned long j0
= jiffies
;
419 /* Use j0 because jiffies might change while we run */
420 return round_jiffies_common(j
+ j0
, cpu
, true) - j0
;
422 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative
);
425 * round_jiffies_up - function to round jiffies up to a full second
426 * @j: the time in (absolute) jiffies that should be rounded
428 * This is the same as round_jiffies() except that it will never
429 * round down. This is useful for timeouts for which the exact time
430 * of firing does not matter too much, as long as they don't fire too
433 unsigned long round_jiffies_up(unsigned long j
)
435 return round_jiffies_common(j
, raw_smp_processor_id(), true);
437 EXPORT_SYMBOL_GPL(round_jiffies_up
);
440 * round_jiffies_up_relative - function to round jiffies up to a full second
441 * @j: the time in (relative) jiffies that should be rounded
443 * This is the same as round_jiffies_relative() except that it will never
444 * round down. This is useful for timeouts for which the exact time
445 * of firing does not matter too much, as long as they don't fire too
448 unsigned long round_jiffies_up_relative(unsigned long j
)
450 return __round_jiffies_up_relative(j
, raw_smp_processor_id());
452 EXPORT_SYMBOL_GPL(round_jiffies_up_relative
);
455 static inline unsigned int timer_get_idx(struct timer_list
*timer
)
457 return (timer
->flags
& TIMER_ARRAYMASK
) >> TIMER_ARRAYSHIFT
;
460 static inline void timer_set_idx(struct timer_list
*timer
, unsigned int idx
)
462 timer
->flags
= (timer
->flags
& ~TIMER_ARRAYMASK
) |
463 idx
<< TIMER_ARRAYSHIFT
;
467 * Helper function to calculate the array index for a given expiry
470 static inline unsigned calc_index(unsigned expires
, unsigned lvl
)
472 expires
= (expires
+ LVL_GRAN(lvl
)) >> LVL_SHIFT(lvl
);
473 return LVL_OFFS(lvl
) + (expires
& LVL_MASK
);
476 static int calc_wheel_index(unsigned long expires
, unsigned long clk
)
478 unsigned long delta
= expires
- clk
;
481 if (delta
< LVL_START(1)) {
482 idx
= calc_index(expires
, 0);
483 } else if (delta
< LVL_START(2)) {
484 idx
= calc_index(expires
, 1);
485 } else if (delta
< LVL_START(3)) {
486 idx
= calc_index(expires
, 2);
487 } else if (delta
< LVL_START(4)) {
488 idx
= calc_index(expires
, 3);
489 } else if (delta
< LVL_START(5)) {
490 idx
= calc_index(expires
, 4);
491 } else if (delta
< LVL_START(6)) {
492 idx
= calc_index(expires
, 5);
493 } else if (delta
< LVL_START(7)) {
494 idx
= calc_index(expires
, 6);
495 } else if (LVL_DEPTH
> 8 && delta
< LVL_START(8)) {
496 idx
= calc_index(expires
, 7);
497 } else if ((long) delta
< 0) {
498 idx
= clk
& LVL_MASK
;
501 * Force expire obscene large timeouts to expire at the
502 * capacity limit of the wheel.
504 if (expires
>= WHEEL_TIMEOUT_CUTOFF
)
505 expires
= WHEEL_TIMEOUT_MAX
;
507 idx
= calc_index(expires
, LVL_DEPTH
- 1);
513 * Enqueue the timer into the hash bucket, mark it pending in
514 * the bitmap and store the index in the timer flags.
516 static void enqueue_timer(struct timer_base
*base
, struct timer_list
*timer
,
519 hlist_add_head(&timer
->entry
, base
->vectors
+ idx
);
520 __set_bit(idx
, base
->pending_map
);
521 timer_set_idx(timer
, idx
);
525 __internal_add_timer(struct timer_base
*base
, struct timer_list
*timer
)
529 idx
= calc_wheel_index(timer
->expires
, base
->clk
);
530 enqueue_timer(base
, timer
, idx
);
534 trigger_dyntick_cpu(struct timer_base
*base
, struct timer_list
*timer
)
536 if (!IS_ENABLED(CONFIG_NO_HZ_COMMON
) || !base
->nohz_active
)
540 * TODO: This wants some optimizing similar to the code below, but we
541 * will do that when we switch from push to pull for deferrable timers.
543 if (timer
->flags
& TIMER_DEFERRABLE
) {
544 if (tick_nohz_full_cpu(base
->cpu
))
545 wake_up_nohz_cpu(base
->cpu
);
550 * We might have to IPI the remote CPU if the base is idle and the
551 * timer is not deferrable. If the other CPU is on the way to idle
552 * then it can't set base->is_idle as we hold the base lock:
557 /* Check whether this is the new first expiring timer: */
558 if (time_after_eq(timer
->expires
, base
->next_expiry
))
562 * Set the next expiry time and kick the CPU so it can reevaluate the
565 base
->next_expiry
= timer
->expires
;
566 wake_up_nohz_cpu(base
->cpu
);
570 internal_add_timer(struct timer_base
*base
, struct timer_list
*timer
)
572 __internal_add_timer(base
, timer
);
573 trigger_dyntick_cpu(base
, timer
);
576 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
578 static struct debug_obj_descr timer_debug_descr
;
580 static void *timer_debug_hint(void *addr
)
582 return ((struct timer_list
*) addr
)->function
;
585 static bool timer_is_static_object(void *addr
)
587 struct timer_list
*timer
= addr
;
589 return (timer
->entry
.pprev
== NULL
&&
590 timer
->entry
.next
== TIMER_ENTRY_STATIC
);
594 * fixup_init is called when:
595 * - an active object is initialized
597 static bool timer_fixup_init(void *addr
, enum debug_obj_state state
)
599 struct timer_list
*timer
= addr
;
602 case ODEBUG_STATE_ACTIVE
:
603 del_timer_sync(timer
);
604 debug_object_init(timer
, &timer_debug_descr
);
611 /* Stub timer callback for improperly used timers. */
612 static void stub_timer(unsigned long data
)
618 * fixup_activate is called when:
619 * - an active object is activated
620 * - an unknown non-static object is activated
622 static bool timer_fixup_activate(void *addr
, enum debug_obj_state state
)
624 struct timer_list
*timer
= addr
;
627 case ODEBUG_STATE_NOTAVAILABLE
:
628 setup_timer(timer
, stub_timer
, 0);
631 case ODEBUG_STATE_ACTIVE
:
640 * fixup_free is called when:
641 * - an active object is freed
643 static bool timer_fixup_free(void *addr
, enum debug_obj_state state
)
645 struct timer_list
*timer
= addr
;
648 case ODEBUG_STATE_ACTIVE
:
649 del_timer_sync(timer
);
650 debug_object_free(timer
, &timer_debug_descr
);
658 * fixup_assert_init is called when:
659 * - an untracked/uninit-ed object is found
661 static bool timer_fixup_assert_init(void *addr
, enum debug_obj_state state
)
663 struct timer_list
*timer
= addr
;
666 case ODEBUG_STATE_NOTAVAILABLE
:
667 setup_timer(timer
, stub_timer
, 0);
674 static struct debug_obj_descr timer_debug_descr
= {
675 .name
= "timer_list",
676 .debug_hint
= timer_debug_hint
,
677 .is_static_object
= timer_is_static_object
,
678 .fixup_init
= timer_fixup_init
,
679 .fixup_activate
= timer_fixup_activate
,
680 .fixup_free
= timer_fixup_free
,
681 .fixup_assert_init
= timer_fixup_assert_init
,
684 static inline void debug_timer_init(struct timer_list
*timer
)
686 debug_object_init(timer
, &timer_debug_descr
);
689 static inline void debug_timer_activate(struct timer_list
*timer
)
691 debug_object_activate(timer
, &timer_debug_descr
);
694 static inline void debug_timer_deactivate(struct timer_list
*timer
)
696 debug_object_deactivate(timer
, &timer_debug_descr
);
699 static inline void debug_timer_free(struct timer_list
*timer
)
701 debug_object_free(timer
, &timer_debug_descr
);
704 static inline void debug_timer_assert_init(struct timer_list
*timer
)
706 debug_object_assert_init(timer
, &timer_debug_descr
);
709 static void do_init_timer(struct timer_list
*timer
, unsigned int flags
,
710 const char *name
, struct lock_class_key
*key
);
712 void init_timer_on_stack_key(struct timer_list
*timer
, unsigned int flags
,
713 const char *name
, struct lock_class_key
*key
)
715 debug_object_init_on_stack(timer
, &timer_debug_descr
);
716 do_init_timer(timer
, flags
, name
, key
);
718 EXPORT_SYMBOL_GPL(init_timer_on_stack_key
);
720 void destroy_timer_on_stack(struct timer_list
*timer
)
722 debug_object_free(timer
, &timer_debug_descr
);
724 EXPORT_SYMBOL_GPL(destroy_timer_on_stack
);
727 static inline void debug_timer_init(struct timer_list
*timer
) { }
728 static inline void debug_timer_activate(struct timer_list
*timer
) { }
729 static inline void debug_timer_deactivate(struct timer_list
*timer
) { }
730 static inline void debug_timer_assert_init(struct timer_list
*timer
) { }
733 static inline void debug_init(struct timer_list
*timer
)
735 debug_timer_init(timer
);
736 trace_timer_init(timer
);
740 debug_activate(struct timer_list
*timer
, unsigned long expires
)
742 debug_timer_activate(timer
);
743 trace_timer_start(timer
, expires
, timer
->flags
);
746 static inline void debug_deactivate(struct timer_list
*timer
)
748 debug_timer_deactivate(timer
);
749 trace_timer_cancel(timer
);
752 static inline void debug_assert_init(struct timer_list
*timer
)
754 debug_timer_assert_init(timer
);
757 static void do_init_timer(struct timer_list
*timer
, unsigned int flags
,
758 const char *name
, struct lock_class_key
*key
)
760 timer
->entry
.pprev
= NULL
;
761 timer
->flags
= flags
| raw_smp_processor_id();
762 lockdep_init_map(&timer
->lockdep_map
, name
, key
, 0);
766 * init_timer_key - initialize a timer
767 * @timer: the timer to be initialized
768 * @flags: timer flags
769 * @name: name of the timer
770 * @key: lockdep class key of the fake lock used for tracking timer
771 * sync lock dependencies
773 * init_timer_key() must be done to a timer prior calling *any* of the
774 * other timer functions.
776 void init_timer_key(struct timer_list
*timer
, unsigned int flags
,
777 const char *name
, struct lock_class_key
*key
)
780 do_init_timer(timer
, flags
, name
, key
);
782 EXPORT_SYMBOL(init_timer_key
);
784 static inline void detach_timer(struct timer_list
*timer
, bool clear_pending
)
786 struct hlist_node
*entry
= &timer
->entry
;
788 debug_deactivate(timer
);
793 entry
->next
= LIST_POISON2
;
796 static int detach_if_pending(struct timer_list
*timer
, struct timer_base
*base
,
799 unsigned idx
= timer_get_idx(timer
);
801 if (!timer_pending(timer
))
804 if (hlist_is_singular_node(&timer
->entry
, base
->vectors
+ idx
))
805 __clear_bit(idx
, base
->pending_map
);
807 detach_timer(timer
, clear_pending
);
811 static inline struct timer_base
*get_timer_cpu_base(u32 tflags
, u32 cpu
)
813 struct timer_base
*base
= per_cpu_ptr(&timer_bases
[BASE_STD
], cpu
);
816 * If the timer is deferrable and nohz is active then we need to use
817 * the deferrable base.
819 if (IS_ENABLED(CONFIG_NO_HZ_COMMON
) && base
->nohz_active
&&
820 (tflags
& TIMER_DEFERRABLE
))
821 base
= per_cpu_ptr(&timer_bases
[BASE_DEF
], cpu
);
825 static inline struct timer_base
*get_timer_this_cpu_base(u32 tflags
)
827 struct timer_base
*base
= this_cpu_ptr(&timer_bases
[BASE_STD
]);
830 * If the timer is deferrable and nohz is active then we need to use
831 * the deferrable base.
833 if (IS_ENABLED(CONFIG_NO_HZ_COMMON
) && base
->nohz_active
&&
834 (tflags
& TIMER_DEFERRABLE
))
835 base
= this_cpu_ptr(&timer_bases
[BASE_DEF
]);
839 static inline struct timer_base
*get_timer_base(u32 tflags
)
841 return get_timer_cpu_base(tflags
, tflags
& TIMER_CPUMASK
);
844 #ifdef CONFIG_NO_HZ_COMMON
845 static inline struct timer_base
*
846 get_target_base(struct timer_base
*base
, unsigned tflags
)
849 if ((tflags
& TIMER_PINNED
) || !base
->migration_enabled
)
850 return get_timer_this_cpu_base(tflags
);
851 return get_timer_cpu_base(tflags
, get_nohz_timer_target());
853 return get_timer_this_cpu_base(tflags
);
857 static inline void forward_timer_base(struct timer_base
*base
)
859 unsigned long jnow
= READ_ONCE(jiffies
);
862 * We only forward the base when it's idle and we have a delta between
863 * base clock and jiffies.
865 if (!base
->is_idle
|| (long) (jnow
- base
->clk
) < 2)
869 * If the next expiry value is > jiffies, then we fast forward to
870 * jiffies otherwise we forward to the next expiry value.
872 if (time_after(base
->next_expiry
, jnow
))
875 base
->clk
= base
->next_expiry
;
878 static inline struct timer_base
*
879 get_target_base(struct timer_base
*base
, unsigned tflags
)
881 return get_timer_this_cpu_base(tflags
);
884 static inline void forward_timer_base(struct timer_base
*base
) { }
889 * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means
890 * that all timers which are tied to this base are locked, and the base itself
893 * So __run_timers/migrate_timers can safely modify all timers which could
894 * be found in the base->vectors array.
896 * When a timer is migrating then the TIMER_MIGRATING flag is set and we need
897 * to wait until the migration is done.
899 static struct timer_base
*lock_timer_base(struct timer_list
*timer
,
900 unsigned long *flags
)
901 __acquires(timer
->base
->lock
)
904 struct timer_base
*base
;
908 * We need to use READ_ONCE() here, otherwise the compiler
909 * might re-read @tf between the check for TIMER_MIGRATING
912 tf
= READ_ONCE(timer
->flags
);
914 if (!(tf
& TIMER_MIGRATING
)) {
915 base
= get_timer_base(tf
);
916 spin_lock_irqsave(&base
->lock
, *flags
);
917 if (timer
->flags
== tf
)
919 spin_unlock_irqrestore(&base
->lock
, *flags
);
926 __mod_timer(struct timer_list
*timer
, unsigned long expires
, bool pending_only
)
928 struct timer_base
*base
, *new_base
;
929 unsigned int idx
= UINT_MAX
;
930 unsigned long clk
= 0, flags
;
933 BUG_ON(!timer
->function
);
936 * This is a common optimization triggered by the networking code - if
937 * the timer is re-modified to have the same timeout or ends up in the
938 * same array bucket then just return:
940 if (timer_pending(timer
)) {
941 if (timer
->expires
== expires
)
945 * We lock timer base and calculate the bucket index right
946 * here. If the timer ends up in the same bucket, then we
947 * just update the expiry time and avoid the whole
948 * dequeue/enqueue dance.
950 base
= lock_timer_base(timer
, &flags
);
953 idx
= calc_wheel_index(expires
, clk
);
956 * Retrieve and compare the array index of the pending
957 * timer. If it matches set the expiry to the new value so a
958 * subsequent call will exit in the expires check above.
960 if (idx
== timer_get_idx(timer
)) {
961 timer
->expires
= expires
;
966 base
= lock_timer_base(timer
, &flags
);
969 ret
= detach_if_pending(timer
, base
, false);
970 if (!ret
&& pending_only
)
973 debug_activate(timer
, expires
);
975 new_base
= get_target_base(base
, timer
->flags
);
977 if (base
!= new_base
) {
979 * We are trying to schedule the timer on the new base.
980 * However we can't change timer's base while it is running,
981 * otherwise del_timer_sync() can't detect that the timer's
982 * handler yet has not finished. This also guarantees that the
983 * timer is serialized wrt itself.
985 if (likely(base
->running_timer
!= timer
)) {
986 /* See the comment in lock_timer_base() */
987 timer
->flags
|= TIMER_MIGRATING
;
989 spin_unlock(&base
->lock
);
991 spin_lock(&base
->lock
);
992 WRITE_ONCE(timer
->flags
,
993 (timer
->flags
& ~TIMER_BASEMASK
) | base
->cpu
);
997 /* Try to forward a stale timer base clock */
998 forward_timer_base(base
);
1000 timer
->expires
= expires
;
1002 * If 'idx' was calculated above and the base time did not advance
1003 * between calculating 'idx' and possibly switching the base, only
1004 * enqueue_timer() and trigger_dyntick_cpu() is required. Otherwise
1005 * we need to (re)calculate the wheel index via
1006 * internal_add_timer().
1008 if (idx
!= UINT_MAX
&& clk
== base
->clk
) {
1009 enqueue_timer(base
, timer
, idx
);
1010 trigger_dyntick_cpu(base
, timer
);
1012 internal_add_timer(base
, timer
);
1016 spin_unlock_irqrestore(&base
->lock
, flags
);
1022 * mod_timer_pending - modify a pending timer's timeout
1023 * @timer: the pending timer to be modified
1024 * @expires: new timeout in jiffies
1026 * mod_timer_pending() is the same for pending timers as mod_timer(),
1027 * but will not re-activate and modify already deleted timers.
1029 * It is useful for unserialized use of timers.
1031 int mod_timer_pending(struct timer_list
*timer
, unsigned long expires
)
1033 return __mod_timer(timer
, expires
, true);
1035 EXPORT_SYMBOL(mod_timer_pending
);
1038 * mod_timer - modify a timer's timeout
1039 * @timer: the timer to be modified
1040 * @expires: new timeout in jiffies
1042 * mod_timer() is a more efficient way to update the expire field of an
1043 * active timer (if the timer is inactive it will be activated)
1045 * mod_timer(timer, expires) is equivalent to:
1047 * del_timer(timer); timer->expires = expires; add_timer(timer);
1049 * Note that if there are multiple unserialized concurrent users of the
1050 * same timer, then mod_timer() is the only safe way to modify the timeout,
1051 * since add_timer() cannot modify an already running timer.
1053 * The function returns whether it has modified a pending timer or not.
1054 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
1055 * active timer returns 1.)
1057 int mod_timer(struct timer_list
*timer
, unsigned long expires
)
1059 return __mod_timer(timer
, expires
, false);
1061 EXPORT_SYMBOL(mod_timer
);
1064 * add_timer - start a timer
1065 * @timer: the timer to be added
1067 * The kernel will do a ->function(->data) callback from the
1068 * timer interrupt at the ->expires point in the future. The
1069 * current time is 'jiffies'.
1071 * The timer's ->expires, ->function (and if the handler uses it, ->data)
1072 * fields must be set prior calling this function.
1074 * Timers with an ->expires field in the past will be executed in the next
1077 void add_timer(struct timer_list
*timer
)
1079 BUG_ON(timer_pending(timer
));
1080 mod_timer(timer
, timer
->expires
);
1082 EXPORT_SYMBOL(add_timer
);
1085 * add_timer_on - start a timer on a particular CPU
1086 * @timer: the timer to be added
1087 * @cpu: the CPU to start it on
1089 * This is not very scalable on SMP. Double adds are not possible.
1091 void add_timer_on(struct timer_list
*timer
, int cpu
)
1093 struct timer_base
*new_base
, *base
;
1094 unsigned long flags
;
1096 BUG_ON(timer_pending(timer
) || !timer
->function
);
1098 new_base
= get_timer_cpu_base(timer
->flags
, cpu
);
1101 * If @timer was on a different CPU, it should be migrated with the
1102 * old base locked to prevent other operations proceeding with the
1103 * wrong base locked. See lock_timer_base().
1105 base
= lock_timer_base(timer
, &flags
);
1106 if (base
!= new_base
) {
1107 timer
->flags
|= TIMER_MIGRATING
;
1109 spin_unlock(&base
->lock
);
1111 spin_lock(&base
->lock
);
1112 WRITE_ONCE(timer
->flags
,
1113 (timer
->flags
& ~TIMER_BASEMASK
) | cpu
);
1116 debug_activate(timer
, timer
->expires
);
1117 internal_add_timer(base
, timer
);
1118 spin_unlock_irqrestore(&base
->lock
, flags
);
1120 EXPORT_SYMBOL_GPL(add_timer_on
);
1123 * del_timer - deactive a timer.
1124 * @timer: the timer to be deactivated
1126 * del_timer() deactivates a timer - this works on both active and inactive
1129 * The function returns whether it has deactivated a pending timer or not.
1130 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
1131 * active timer returns 1.)
1133 int del_timer(struct timer_list
*timer
)
1135 struct timer_base
*base
;
1136 unsigned long flags
;
1139 debug_assert_init(timer
);
1141 if (timer_pending(timer
)) {
1142 base
= lock_timer_base(timer
, &flags
);
1143 ret
= detach_if_pending(timer
, base
, true);
1144 spin_unlock_irqrestore(&base
->lock
, flags
);
1149 EXPORT_SYMBOL(del_timer
);
1152 * try_to_del_timer_sync - Try to deactivate a timer
1153 * @timer: timer do del
1155 * This function tries to deactivate a timer. Upon successful (ret >= 0)
1156 * exit the timer is not queued and the handler is not running on any CPU.
1158 int try_to_del_timer_sync(struct timer_list
*timer
)
1160 struct timer_base
*base
;
1161 unsigned long flags
;
1164 debug_assert_init(timer
);
1166 base
= lock_timer_base(timer
, &flags
);
1168 if (base
->running_timer
!= timer
)
1169 ret
= detach_if_pending(timer
, base
, true);
1171 spin_unlock_irqrestore(&base
->lock
, flags
);
1175 EXPORT_SYMBOL(try_to_del_timer_sync
);
1179 * del_timer_sync - deactivate a timer and wait for the handler to finish.
1180 * @timer: the timer to be deactivated
1182 * This function only differs from del_timer() on SMP: besides deactivating
1183 * the timer it also makes sure the handler has finished executing on other
1186 * Synchronization rules: Callers must prevent restarting of the timer,
1187 * otherwise this function is meaningless. It must not be called from
1188 * interrupt contexts unless the timer is an irqsafe one. The caller must
1189 * not hold locks which would prevent completion of the timer's
1190 * handler. The timer's handler must not call add_timer_on(). Upon exit the
1191 * timer is not queued and the handler is not running on any CPU.
1193 * Note: For !irqsafe timers, you must not hold locks that are held in
1194 * interrupt context while calling this function. Even if the lock has
1195 * nothing to do with the timer in question. Here's why:
1201 * base->running_timer = mytimer;
1202 * spin_lock_irq(somelock);
1204 * spin_lock(somelock);
1205 * del_timer_sync(mytimer);
1206 * while (base->running_timer == mytimer);
1208 * Now del_timer_sync() will never return and never release somelock.
1209 * The interrupt on the other CPU is waiting to grab somelock but
1210 * it has interrupted the softirq that CPU0 is waiting to finish.
1212 * The function returns whether it has deactivated a pending timer or not.
1214 int del_timer_sync(struct timer_list
*timer
)
1216 #ifdef CONFIG_LOCKDEP
1217 unsigned long flags
;
1220 * If lockdep gives a backtrace here, please reference
1221 * the synchronization rules above.
1223 local_irq_save(flags
);
1224 lock_map_acquire(&timer
->lockdep_map
);
1225 lock_map_release(&timer
->lockdep_map
);
1226 local_irq_restore(flags
);
1229 * don't use it in hardirq context, because it
1230 * could lead to deadlock.
1232 WARN_ON(in_irq() && !(timer
->flags
& TIMER_IRQSAFE
));
1234 int ret
= try_to_del_timer_sync(timer
);
1240 EXPORT_SYMBOL(del_timer_sync
);
1243 static void call_timer_fn(struct timer_list
*timer
, void (*fn
)(unsigned long),
1246 int count
= preempt_count();
1248 #ifdef CONFIG_LOCKDEP
1250 * It is permissible to free the timer from inside the
1251 * function that is called from it, this we need to take into
1252 * account for lockdep too. To avoid bogus "held lock freed"
1253 * warnings as well as problems when looking into
1254 * timer->lockdep_map, make a copy and use that here.
1256 struct lockdep_map lockdep_map
;
1258 lockdep_copy_map(&lockdep_map
, &timer
->lockdep_map
);
1261 * Couple the lock chain with the lock chain at
1262 * del_timer_sync() by acquiring the lock_map around the fn()
1263 * call here and in del_timer_sync().
1265 lock_map_acquire(&lockdep_map
);
1267 trace_timer_expire_entry(timer
);
1269 trace_timer_expire_exit(timer
);
1271 lock_map_release(&lockdep_map
);
1273 if (count
!= preempt_count()) {
1274 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1275 fn
, count
, preempt_count());
1277 * Restore the preempt count. That gives us a decent
1278 * chance to survive and extract information. If the
1279 * callback kept a lock held, bad luck, but not worse
1280 * than the BUG() we had.
1282 preempt_count_set(count
);
1286 static void expire_timers(struct timer_base
*base
, struct hlist_head
*head
)
1288 while (!hlist_empty(head
)) {
1289 struct timer_list
*timer
;
1290 void (*fn
)(unsigned long);
1293 timer
= hlist_entry(head
->first
, struct timer_list
, entry
);
1295 base
->running_timer
= timer
;
1296 detach_timer(timer
, true);
1298 fn
= timer
->function
;
1301 if (timer
->flags
& TIMER_IRQSAFE
) {
1302 spin_unlock(&base
->lock
);
1303 call_timer_fn(timer
, fn
, data
);
1304 spin_lock(&base
->lock
);
1306 spin_unlock_irq(&base
->lock
);
1307 call_timer_fn(timer
, fn
, data
);
1308 spin_lock_irq(&base
->lock
);
1313 static int __collect_expired_timers(struct timer_base
*base
,
1314 struct hlist_head
*heads
)
1316 unsigned long clk
= base
->clk
;
1317 struct hlist_head
*vec
;
1321 for (i
= 0; i
< LVL_DEPTH
; i
++) {
1322 idx
= (clk
& LVL_MASK
) + i
* LVL_SIZE
;
1324 if (__test_and_clear_bit(idx
, base
->pending_map
)) {
1325 vec
= base
->vectors
+ idx
;
1326 hlist_move_list(vec
, heads
++);
1329 /* Is it time to look at the next level? */
1330 if (clk
& LVL_CLK_MASK
)
1332 /* Shift clock for the next level granularity */
1333 clk
>>= LVL_CLK_SHIFT
;
1338 #ifdef CONFIG_NO_HZ_COMMON
1340 * Find the next pending bucket of a level. Search from level start (@offset)
1341 * + @clk upwards and if nothing there, search from start of the level
1342 * (@offset) up to @offset + clk.
1344 static int next_pending_bucket(struct timer_base
*base
, unsigned offset
,
1347 unsigned pos
, start
= offset
+ clk
;
1348 unsigned end
= offset
+ LVL_SIZE
;
1350 pos
= find_next_bit(base
->pending_map
, end
, start
);
1354 pos
= find_next_bit(base
->pending_map
, start
, offset
);
1355 return pos
< start
? pos
+ LVL_SIZE
- start
: -1;
1359 * Search the first expiring timer in the various clock levels. Caller must
1362 static unsigned long __next_timer_interrupt(struct timer_base
*base
)
1364 unsigned long clk
, next
, adj
;
1365 unsigned lvl
, offset
= 0;
1367 next
= base
->clk
+ NEXT_TIMER_MAX_DELTA
;
1369 for (lvl
= 0; lvl
< LVL_DEPTH
; lvl
++, offset
+= LVL_SIZE
) {
1370 int pos
= next_pending_bucket(base
, offset
, clk
& LVL_MASK
);
1373 unsigned long tmp
= clk
+ (unsigned long) pos
;
1375 tmp
<<= LVL_SHIFT(lvl
);
1376 if (time_before(tmp
, next
))
1380 * Clock for the next level. If the current level clock lower
1381 * bits are zero, we look at the next level as is. If not we
1382 * need to advance it by one because that's going to be the
1383 * next expiring bucket in that level. base->clk is the next
1384 * expiring jiffie. So in case of:
1386 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1389 * we have to look at all levels @index 0. With
1391 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1394 * LVL0 has the next expiring bucket @index 2. The upper
1395 * levels have the next expiring bucket @index 1.
1397 * In case that the propagation wraps the next level the same
1400 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1403 * So after looking at LVL0 we get:
1405 * LVL5 LVL4 LVL3 LVL2 LVL1
1408 * So no propagation from LVL1 to LVL2 because that happened
1409 * with the add already, but then we need to propagate further
1410 * from LVL2 to LVL3.
1412 * So the simple check whether the lower bits of the current
1413 * level are 0 or not is sufficient for all cases.
1415 adj
= clk
& LVL_CLK_MASK
? 1 : 0;
1416 clk
>>= LVL_CLK_SHIFT
;
1423 * Check, if the next hrtimer event is before the next timer wheel
1426 static u64
cmp_next_hrtimer_event(u64 basem
, u64 expires
)
1428 u64 nextevt
= hrtimer_get_next_event();
1431 * If high resolution timers are enabled
1432 * hrtimer_get_next_event() returns KTIME_MAX.
1434 if (expires
<= nextevt
)
1438 * If the next timer is already expired, return the tick base
1439 * time so the tick is fired immediately.
1441 if (nextevt
<= basem
)
1445 * Round up to the next jiffie. High resolution timers are
1446 * off, so the hrtimers are expired in the tick and we need to
1447 * make sure that this tick really expires the timer to avoid
1448 * a ping pong of the nohz stop code.
1450 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
1452 return DIV_ROUND_UP_ULL(nextevt
, TICK_NSEC
) * TICK_NSEC
;
1456 * get_next_timer_interrupt - return the time (clock mono) of the next timer
1457 * @basej: base time jiffies
1458 * @basem: base time clock monotonic
1460 * Returns the tick aligned clock monotonic time of the next pending
1461 * timer or KTIME_MAX if no timer is pending.
1463 u64
get_next_timer_interrupt(unsigned long basej
, u64 basem
)
1465 struct timer_base
*base
= this_cpu_ptr(&timer_bases
[BASE_STD
]);
1466 u64 expires
= KTIME_MAX
;
1467 unsigned long nextevt
;
1471 * Pretend that there is no timer pending if the cpu is offline.
1472 * Possible pending timers will be migrated later to an active cpu.
1474 if (cpu_is_offline(smp_processor_id()))
1477 spin_lock(&base
->lock
);
1478 nextevt
= __next_timer_interrupt(base
);
1479 is_max_delta
= (nextevt
== base
->clk
+ NEXT_TIMER_MAX_DELTA
);
1480 base
->next_expiry
= nextevt
;
1482 * We have a fresh next event. Check whether we can forward the
1483 * base. We can only do that when @basej is past base->clk
1484 * otherwise we might rewind base->clk.
1486 if (time_after(basej
, base
->clk
)) {
1487 if (time_after(nextevt
, basej
))
1489 else if (time_after(nextevt
, base
->clk
))
1490 base
->clk
= nextevt
;
1493 if (time_before_eq(nextevt
, basej
)) {
1495 base
->is_idle
= false;
1498 expires
= basem
+ (nextevt
- basej
) * TICK_NSEC
;
1500 * If we expect to sleep more than a tick, mark the base idle:
1502 if ((expires
- basem
) > TICK_NSEC
)
1503 base
->is_idle
= true;
1505 spin_unlock(&base
->lock
);
1507 return cmp_next_hrtimer_event(basem
, expires
);
1511 * timer_clear_idle - Clear the idle state of the timer base
1513 * Called with interrupts disabled
1515 void timer_clear_idle(void)
1517 struct timer_base
*base
= this_cpu_ptr(&timer_bases
[BASE_STD
]);
1520 * We do this unlocked. The worst outcome is a remote enqueue sending
1521 * a pointless IPI, but taking the lock would just make the window for
1522 * sending the IPI a few instructions smaller for the cost of taking
1523 * the lock in the exit from idle path.
1525 base
->is_idle
= false;
1528 static int collect_expired_timers(struct timer_base
*base
,
1529 struct hlist_head
*heads
)
1532 * NOHZ optimization. After a long idle sleep we need to forward the
1533 * base to current jiffies. Avoid a loop by searching the bitfield for
1534 * the next expiring timer.
1536 if ((long)(jiffies
- base
->clk
) > 2) {
1537 unsigned long next
= __next_timer_interrupt(base
);
1540 * If the next timer is ahead of time forward to current
1541 * jiffies, otherwise forward to the next expiry time:
1543 if (time_after(next
, jiffies
)) {
1544 /* The call site will increment clock! */
1545 base
->clk
= jiffies
- 1;
1550 return __collect_expired_timers(base
, heads
);
1553 static inline int collect_expired_timers(struct timer_base
*base
,
1554 struct hlist_head
*heads
)
1556 return __collect_expired_timers(base
, heads
);
1561 * Called from the timer interrupt handler to charge one tick to the current
1562 * process. user_tick is 1 if the tick is user time, 0 for system.
1564 void update_process_times(int user_tick
)
1566 struct task_struct
*p
= current
;
1568 /* Note: this timer irq context must be accounted for as well. */
1569 account_process_tick(p
, user_tick
);
1571 rcu_check_callbacks(user_tick
);
1572 #ifdef CONFIG_IRQ_WORK
1577 if (IS_ENABLED(CONFIG_POSIX_TIMERS
))
1578 run_posix_cpu_timers(p
);
1582 * __run_timers - run all expired timers (if any) on this CPU.
1583 * @base: the timer vector to be processed.
1585 static inline void __run_timers(struct timer_base
*base
)
1587 struct hlist_head heads
[LVL_DEPTH
];
1590 if (!time_after_eq(jiffies
, base
->clk
))
1593 spin_lock_irq(&base
->lock
);
1595 while (time_after_eq(jiffies
, base
->clk
)) {
1597 levels
= collect_expired_timers(base
, heads
);
1601 expire_timers(base
, heads
+ levels
);
1603 base
->running_timer
= NULL
;
1604 spin_unlock_irq(&base
->lock
);
1608 * This function runs timers and the timer-tq in bottom half context.
1610 static __latent_entropy
void run_timer_softirq(struct softirq_action
*h
)
1612 struct timer_base
*base
= this_cpu_ptr(&timer_bases
[BASE_STD
]);
1615 if (IS_ENABLED(CONFIG_NO_HZ_COMMON
) && base
->nohz_active
)
1616 __run_timers(this_cpu_ptr(&timer_bases
[BASE_DEF
]));
1620 * Called by the local, per-CPU timer interrupt on SMP.
1622 void run_local_timers(void)
1624 struct timer_base
*base
= this_cpu_ptr(&timer_bases
[BASE_STD
]);
1626 hrtimer_run_queues();
1627 /* Raise the softirq only if required. */
1628 if (time_before(jiffies
, base
->clk
)) {
1629 if (!IS_ENABLED(CONFIG_NO_HZ_COMMON
) || !base
->nohz_active
)
1631 /* CPU is awake, so check the deferrable base. */
1633 if (time_before(jiffies
, base
->clk
))
1636 raise_softirq(TIMER_SOFTIRQ
);
1639 static void process_timeout(unsigned long __data
)
1641 wake_up_process((struct task_struct
*)__data
);
1645 * schedule_timeout - sleep until timeout
1646 * @timeout: timeout value in jiffies
1648 * Make the current task sleep until @timeout jiffies have
1649 * elapsed. The routine will return immediately unless
1650 * the current task state has been set (see set_current_state()).
1652 * You can set the task state as follows -
1654 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1655 * pass before the routine returns unless the current task is explicitly
1656 * woken up, (e.g. by wake_up_process())".
1658 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1659 * delivered to the current task or the current task is explicitly woken
1662 * The current task state is guaranteed to be TASK_RUNNING when this
1665 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1666 * the CPU away without a bound on the timeout. In this case the return
1667 * value will be %MAX_SCHEDULE_TIMEOUT.
1669 * Returns 0 when the timer has expired otherwise the remaining time in
1670 * jiffies will be returned. In all cases the return value is guaranteed
1671 * to be non-negative.
1673 signed long __sched
schedule_timeout(signed long timeout
)
1675 struct timer_list timer
;
1676 unsigned long expire
;
1680 case MAX_SCHEDULE_TIMEOUT
:
1682 * These two special cases are useful to be comfortable
1683 * in the caller. Nothing more. We could take
1684 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1685 * but I' d like to return a valid offset (>=0) to allow
1686 * the caller to do everything it want with the retval.
1692 * Another bit of PARANOID. Note that the retval will be
1693 * 0 since no piece of kernel is supposed to do a check
1694 * for a negative retval of schedule_timeout() (since it
1695 * should never happens anyway). You just have the printk()
1696 * that will tell you if something is gone wrong and where.
1699 printk(KERN_ERR
"schedule_timeout: wrong timeout "
1700 "value %lx\n", timeout
);
1702 current
->state
= TASK_RUNNING
;
1707 expire
= timeout
+ jiffies
;
1709 setup_timer_on_stack(&timer
, process_timeout
, (unsigned long)current
);
1710 __mod_timer(&timer
, expire
, false);
1712 del_singleshot_timer_sync(&timer
);
1714 /* Remove the timer from the object tracker */
1715 destroy_timer_on_stack(&timer
);
1717 timeout
= expire
- jiffies
;
1720 return timeout
< 0 ? 0 : timeout
;
1722 EXPORT_SYMBOL(schedule_timeout
);
1725 * We can use __set_current_state() here because schedule_timeout() calls
1726 * schedule() unconditionally.
1728 signed long __sched
schedule_timeout_interruptible(signed long timeout
)
1730 __set_current_state(TASK_INTERRUPTIBLE
);
1731 return schedule_timeout(timeout
);
1733 EXPORT_SYMBOL(schedule_timeout_interruptible
);
1735 signed long __sched
schedule_timeout_killable(signed long timeout
)
1737 __set_current_state(TASK_KILLABLE
);
1738 return schedule_timeout(timeout
);
1740 EXPORT_SYMBOL(schedule_timeout_killable
);
1742 signed long __sched
schedule_timeout_uninterruptible(signed long timeout
)
1744 __set_current_state(TASK_UNINTERRUPTIBLE
);
1745 return schedule_timeout(timeout
);
1747 EXPORT_SYMBOL(schedule_timeout_uninterruptible
);
1750 * Like schedule_timeout_uninterruptible(), except this task will not contribute
1753 signed long __sched
schedule_timeout_idle(signed long timeout
)
1755 __set_current_state(TASK_IDLE
);
1756 return schedule_timeout(timeout
);
1758 EXPORT_SYMBOL(schedule_timeout_idle
);
1760 #ifdef CONFIG_HOTPLUG_CPU
1761 static void migrate_timer_list(struct timer_base
*new_base
, struct hlist_head
*head
)
1763 struct timer_list
*timer
;
1764 int cpu
= new_base
->cpu
;
1766 while (!hlist_empty(head
)) {
1767 timer
= hlist_entry(head
->first
, struct timer_list
, entry
);
1768 detach_timer(timer
, false);
1769 timer
->flags
= (timer
->flags
& ~TIMER_BASEMASK
) | cpu
;
1770 internal_add_timer(new_base
, timer
);
1774 int timers_dead_cpu(unsigned int cpu
)
1776 struct timer_base
*old_base
;
1777 struct timer_base
*new_base
;
1780 BUG_ON(cpu_online(cpu
));
1782 for (b
= 0; b
< NR_BASES
; b
++) {
1783 old_base
= per_cpu_ptr(&timer_bases
[b
], cpu
);
1784 new_base
= get_cpu_ptr(&timer_bases
[b
]);
1786 * The caller is globally serialized and nobody else
1787 * takes two locks at once, deadlock is not possible.
1789 spin_lock_irq(&new_base
->lock
);
1790 spin_lock_nested(&old_base
->lock
, SINGLE_DEPTH_NESTING
);
1792 BUG_ON(old_base
->running_timer
);
1794 for (i
= 0; i
< WHEEL_SIZE
; i
++)
1795 migrate_timer_list(new_base
, old_base
->vectors
+ i
);
1797 spin_unlock(&old_base
->lock
);
1798 spin_unlock_irq(&new_base
->lock
);
1799 put_cpu_ptr(&timer_bases
);
1804 #endif /* CONFIG_HOTPLUG_CPU */
1806 static void __init
init_timer_cpu(int cpu
)
1808 struct timer_base
*base
;
1811 for (i
= 0; i
< NR_BASES
; i
++) {
1812 base
= per_cpu_ptr(&timer_bases
[i
], cpu
);
1814 spin_lock_init(&base
->lock
);
1815 base
->clk
= jiffies
;
1819 static void __init
init_timer_cpus(void)
1823 for_each_possible_cpu(cpu
)
1824 init_timer_cpu(cpu
);
1827 void __init
init_timers(void)
1830 open_softirq(TIMER_SOFTIRQ
, run_timer_softirq
);
1834 * msleep - sleep safely even with waitqueue interruptions
1835 * @msecs: Time in milliseconds to sleep for
1837 void msleep(unsigned int msecs
)
1839 unsigned long timeout
= msecs_to_jiffies(msecs
) + 1;
1842 timeout
= schedule_timeout_uninterruptible(timeout
);
1845 EXPORT_SYMBOL(msleep
);
1848 * msleep_interruptible - sleep waiting for signals
1849 * @msecs: Time in milliseconds to sleep for
1851 unsigned long msleep_interruptible(unsigned int msecs
)
1853 unsigned long timeout
= msecs_to_jiffies(msecs
) + 1;
1855 while (timeout
&& !signal_pending(current
))
1856 timeout
= schedule_timeout_interruptible(timeout
);
1857 return jiffies_to_msecs(timeout
);
1860 EXPORT_SYMBOL(msleep_interruptible
);
1863 * usleep_range - Sleep for an approximate time
1864 * @min: Minimum time in usecs to sleep
1865 * @max: Maximum time in usecs to sleep
1867 * In non-atomic context where the exact wakeup time is flexible, use
1868 * usleep_range() instead of udelay(). The sleep improves responsiveness
1869 * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces
1870 * power usage by allowing hrtimers to take advantage of an already-
1871 * scheduled interrupt instead of scheduling a new one just for this sleep.
1873 void __sched
usleep_range(unsigned long min
, unsigned long max
)
1875 ktime_t exp
= ktime_add_us(ktime_get(), min
);
1876 u64 delta
= (u64
)(max
- min
) * NSEC_PER_USEC
;
1879 __set_current_state(TASK_UNINTERRUPTIBLE
);
1880 /* Do not return before the requested sleep time has elapsed */
1881 if (!schedule_hrtimeout_range(&exp
, delta
, HRTIMER_MODE_ABS
))
1885 EXPORT_SYMBOL(usleep_range
);