powerpc: Fix broken cpu_idle_wait() implementation
[linux/fpc-iii.git] / net / core / sock.c
blob02f8dfe320b771ee96ba3bb5bae52b2974608bd8
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
83 * To Fix:
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
92 #include <linux/capability.h>
93 #include <linux/errno.h>
94 #include <linux/types.h>
95 #include <linux/socket.h>
96 #include <linux/in.h>
97 #include <linux/kernel.h>
98 #include <linux/module.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/sched.h>
102 #include <linux/timer.h>
103 #include <linux/string.h>
104 #include <linux/sockios.h>
105 #include <linux/net.h>
106 #include <linux/mm.h>
107 #include <linux/slab.h>
108 #include <linux/interrupt.h>
109 #include <linux/poll.h>
110 #include <linux/tcp.h>
111 #include <linux/init.h>
112 #include <linux/highmem.h>
113 #include <linux/user_namespace.h>
114 #include <linux/jump_label.h>
115 #include <linux/memcontrol.h>
117 #include <asm/uaccess.h>
118 #include <asm/system.h>
120 #include <linux/netdevice.h>
121 #include <net/protocol.h>
122 #include <linux/skbuff.h>
123 #include <net/net_namespace.h>
124 #include <net/request_sock.h>
125 #include <net/sock.h>
126 #include <linux/net_tstamp.h>
127 #include <net/xfrm.h>
128 #include <linux/ipsec.h>
129 #include <net/cls_cgroup.h>
130 #include <net/netprio_cgroup.h>
132 #include <linux/filter.h>
134 #include <trace/events/sock.h>
136 #ifdef CONFIG_INET
137 #include <net/tcp.h>
138 #endif
140 static DEFINE_MUTEX(proto_list_mutex);
141 static LIST_HEAD(proto_list);
143 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
144 int mem_cgroup_sockets_init(struct cgroup *cgrp, struct cgroup_subsys *ss)
146 struct proto *proto;
147 int ret = 0;
149 mutex_lock(&proto_list_mutex);
150 list_for_each_entry(proto, &proto_list, node) {
151 if (proto->init_cgroup) {
152 ret = proto->init_cgroup(cgrp, ss);
153 if (ret)
154 goto out;
158 mutex_unlock(&proto_list_mutex);
159 return ret;
160 out:
161 list_for_each_entry_continue_reverse(proto, &proto_list, node)
162 if (proto->destroy_cgroup)
163 proto->destroy_cgroup(cgrp, ss);
164 mutex_unlock(&proto_list_mutex);
165 return ret;
168 void mem_cgroup_sockets_destroy(struct cgroup *cgrp, struct cgroup_subsys *ss)
170 struct proto *proto;
172 mutex_lock(&proto_list_mutex);
173 list_for_each_entry_reverse(proto, &proto_list, node)
174 if (proto->destroy_cgroup)
175 proto->destroy_cgroup(cgrp, ss);
176 mutex_unlock(&proto_list_mutex);
178 #endif
181 * Each address family might have different locking rules, so we have
182 * one slock key per address family:
184 static struct lock_class_key af_family_keys[AF_MAX];
185 static struct lock_class_key af_family_slock_keys[AF_MAX];
187 struct jump_label_key memcg_socket_limit_enabled;
188 EXPORT_SYMBOL(memcg_socket_limit_enabled);
191 * Make lock validator output more readable. (we pre-construct these
192 * strings build-time, so that runtime initialization of socket
193 * locks is fast):
195 static const char *const af_family_key_strings[AF_MAX+1] = {
196 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
197 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
198 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
199 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
200 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
201 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
202 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
203 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
204 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
205 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
206 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
207 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
208 "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" ,
209 "sk_lock-AF_NFC" , "sk_lock-AF_MAX"
211 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
212 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
213 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
214 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
215 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
216 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
217 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
218 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
219 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
220 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
221 "slock-27" , "slock-28" , "slock-AF_CAN" ,
222 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
223 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
224 "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" ,
225 "slock-AF_NFC" , "slock-AF_MAX"
227 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
228 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
229 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
230 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
231 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
232 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
233 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
234 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
235 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
236 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
237 "clock-27" , "clock-28" , "clock-AF_CAN" ,
238 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
239 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
240 "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" ,
241 "clock-AF_NFC" , "clock-AF_MAX"
245 * sk_callback_lock locking rules are per-address-family,
246 * so split the lock classes by using a per-AF key:
248 static struct lock_class_key af_callback_keys[AF_MAX];
250 /* Take into consideration the size of the struct sk_buff overhead in the
251 * determination of these values, since that is non-constant across
252 * platforms. This makes socket queueing behavior and performance
253 * not depend upon such differences.
255 #define _SK_MEM_PACKETS 256
256 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
257 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
258 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
260 /* Run time adjustable parameters. */
261 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
262 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
263 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
264 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
266 /* Maximal space eaten by iovec or ancillary data plus some space */
267 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
268 EXPORT_SYMBOL(sysctl_optmem_max);
270 #if defined(CONFIG_CGROUPS)
271 #if !defined(CONFIG_NET_CLS_CGROUP)
272 int net_cls_subsys_id = -1;
273 EXPORT_SYMBOL_GPL(net_cls_subsys_id);
274 #endif
275 #if !defined(CONFIG_NETPRIO_CGROUP)
276 int net_prio_subsys_id = -1;
277 EXPORT_SYMBOL_GPL(net_prio_subsys_id);
278 #endif
279 #endif
281 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
283 struct timeval tv;
285 if (optlen < sizeof(tv))
286 return -EINVAL;
287 if (copy_from_user(&tv, optval, sizeof(tv)))
288 return -EFAULT;
289 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
290 return -EDOM;
292 if (tv.tv_sec < 0) {
293 static int warned __read_mostly;
295 *timeo_p = 0;
296 if (warned < 10 && net_ratelimit()) {
297 warned++;
298 printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
299 "tries to set negative timeout\n",
300 current->comm, task_pid_nr(current));
302 return 0;
304 *timeo_p = MAX_SCHEDULE_TIMEOUT;
305 if (tv.tv_sec == 0 && tv.tv_usec == 0)
306 return 0;
307 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
308 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
309 return 0;
312 static void sock_warn_obsolete_bsdism(const char *name)
314 static int warned;
315 static char warncomm[TASK_COMM_LEN];
316 if (strcmp(warncomm, current->comm) && warned < 5) {
317 strcpy(warncomm, current->comm);
318 printk(KERN_WARNING "process `%s' is using obsolete "
319 "%s SO_BSDCOMPAT\n", warncomm, name);
320 warned++;
324 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
326 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
328 if (sk->sk_flags & flags) {
329 sk->sk_flags &= ~flags;
330 if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
331 net_disable_timestamp();
336 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
338 int err;
339 int skb_len;
340 unsigned long flags;
341 struct sk_buff_head *list = &sk->sk_receive_queue;
343 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
344 atomic_inc(&sk->sk_drops);
345 trace_sock_rcvqueue_full(sk, skb);
346 return -ENOMEM;
349 err = sk_filter(sk, skb);
350 if (err)
351 return err;
353 if (!sk_rmem_schedule(sk, skb->truesize)) {
354 atomic_inc(&sk->sk_drops);
355 return -ENOBUFS;
358 skb->dev = NULL;
359 skb_set_owner_r(skb, sk);
361 /* Cache the SKB length before we tack it onto the receive
362 * queue. Once it is added it no longer belongs to us and
363 * may be freed by other threads of control pulling packets
364 * from the queue.
366 skb_len = skb->len;
368 /* we escape from rcu protected region, make sure we dont leak
369 * a norefcounted dst
371 skb_dst_force(skb);
373 spin_lock_irqsave(&list->lock, flags);
374 skb->dropcount = atomic_read(&sk->sk_drops);
375 __skb_queue_tail(list, skb);
376 spin_unlock_irqrestore(&list->lock, flags);
378 if (!sock_flag(sk, SOCK_DEAD))
379 sk->sk_data_ready(sk, skb_len);
380 return 0;
382 EXPORT_SYMBOL(sock_queue_rcv_skb);
384 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
386 int rc = NET_RX_SUCCESS;
388 if (sk_filter(sk, skb))
389 goto discard_and_relse;
391 skb->dev = NULL;
393 if (sk_rcvqueues_full(sk, skb)) {
394 atomic_inc(&sk->sk_drops);
395 goto discard_and_relse;
397 if (nested)
398 bh_lock_sock_nested(sk);
399 else
400 bh_lock_sock(sk);
401 if (!sock_owned_by_user(sk)) {
403 * trylock + unlock semantics:
405 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
407 rc = sk_backlog_rcv(sk, skb);
409 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
410 } else if (sk_add_backlog(sk, skb)) {
411 bh_unlock_sock(sk);
412 atomic_inc(&sk->sk_drops);
413 goto discard_and_relse;
416 bh_unlock_sock(sk);
417 out:
418 sock_put(sk);
419 return rc;
420 discard_and_relse:
421 kfree_skb(skb);
422 goto out;
424 EXPORT_SYMBOL(sk_receive_skb);
426 void sk_reset_txq(struct sock *sk)
428 sk_tx_queue_clear(sk);
430 EXPORT_SYMBOL(sk_reset_txq);
432 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
434 struct dst_entry *dst = __sk_dst_get(sk);
436 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
437 sk_tx_queue_clear(sk);
438 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
439 dst_release(dst);
440 return NULL;
443 return dst;
445 EXPORT_SYMBOL(__sk_dst_check);
447 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
449 struct dst_entry *dst = sk_dst_get(sk);
451 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
452 sk_dst_reset(sk);
453 dst_release(dst);
454 return NULL;
457 return dst;
459 EXPORT_SYMBOL(sk_dst_check);
461 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
463 int ret = -ENOPROTOOPT;
464 #ifdef CONFIG_NETDEVICES
465 struct net *net = sock_net(sk);
466 char devname[IFNAMSIZ];
467 int index;
469 /* Sorry... */
470 ret = -EPERM;
471 if (!capable(CAP_NET_RAW))
472 goto out;
474 ret = -EINVAL;
475 if (optlen < 0)
476 goto out;
478 /* Bind this socket to a particular device like "eth0",
479 * as specified in the passed interface name. If the
480 * name is "" or the option length is zero the socket
481 * is not bound.
483 if (optlen > IFNAMSIZ - 1)
484 optlen = IFNAMSIZ - 1;
485 memset(devname, 0, sizeof(devname));
487 ret = -EFAULT;
488 if (copy_from_user(devname, optval, optlen))
489 goto out;
491 index = 0;
492 if (devname[0] != '\0') {
493 struct net_device *dev;
495 rcu_read_lock();
496 dev = dev_get_by_name_rcu(net, devname);
497 if (dev)
498 index = dev->ifindex;
499 rcu_read_unlock();
500 ret = -ENODEV;
501 if (!dev)
502 goto out;
505 lock_sock(sk);
506 sk->sk_bound_dev_if = index;
507 sk_dst_reset(sk);
508 release_sock(sk);
510 ret = 0;
512 out:
513 #endif
515 return ret;
518 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
520 if (valbool)
521 sock_set_flag(sk, bit);
522 else
523 sock_reset_flag(sk, bit);
527 * This is meant for all protocols to use and covers goings on
528 * at the socket level. Everything here is generic.
531 int sock_setsockopt(struct socket *sock, int level, int optname,
532 char __user *optval, unsigned int optlen)
534 struct sock *sk = sock->sk;
535 int val;
536 int valbool;
537 struct linger ling;
538 int ret = 0;
541 * Options without arguments
544 if (optname == SO_BINDTODEVICE)
545 return sock_bindtodevice(sk, optval, optlen);
547 if (optlen < sizeof(int))
548 return -EINVAL;
550 if (get_user(val, (int __user *)optval))
551 return -EFAULT;
553 valbool = val ? 1 : 0;
555 lock_sock(sk);
557 switch (optname) {
558 case SO_DEBUG:
559 if (val && !capable(CAP_NET_ADMIN))
560 ret = -EACCES;
561 else
562 sock_valbool_flag(sk, SOCK_DBG, valbool);
563 break;
564 case SO_REUSEADDR:
565 sk->sk_reuse = valbool;
566 break;
567 case SO_TYPE:
568 case SO_PROTOCOL:
569 case SO_DOMAIN:
570 case SO_ERROR:
571 ret = -ENOPROTOOPT;
572 break;
573 case SO_DONTROUTE:
574 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
575 break;
576 case SO_BROADCAST:
577 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
578 break;
579 case SO_SNDBUF:
580 /* Don't error on this BSD doesn't and if you think
581 about it this is right. Otherwise apps have to
582 play 'guess the biggest size' games. RCVBUF/SNDBUF
583 are treated in BSD as hints */
585 if (val > sysctl_wmem_max)
586 val = sysctl_wmem_max;
587 set_sndbuf:
588 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
589 if ((val * 2) < SOCK_MIN_SNDBUF)
590 sk->sk_sndbuf = SOCK_MIN_SNDBUF;
591 else
592 sk->sk_sndbuf = val * 2;
595 * Wake up sending tasks if we
596 * upped the value.
598 sk->sk_write_space(sk);
599 break;
601 case SO_SNDBUFFORCE:
602 if (!capable(CAP_NET_ADMIN)) {
603 ret = -EPERM;
604 break;
606 goto set_sndbuf;
608 case SO_RCVBUF:
609 /* Don't error on this BSD doesn't and if you think
610 about it this is right. Otherwise apps have to
611 play 'guess the biggest size' games. RCVBUF/SNDBUF
612 are treated in BSD as hints */
614 if (val > sysctl_rmem_max)
615 val = sysctl_rmem_max;
616 set_rcvbuf:
617 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
619 * We double it on the way in to account for
620 * "struct sk_buff" etc. overhead. Applications
621 * assume that the SO_RCVBUF setting they make will
622 * allow that much actual data to be received on that
623 * socket.
625 * Applications are unaware that "struct sk_buff" and
626 * other overheads allocate from the receive buffer
627 * during socket buffer allocation.
629 * And after considering the possible alternatives,
630 * returning the value we actually used in getsockopt
631 * is the most desirable behavior.
633 if ((val * 2) < SOCK_MIN_RCVBUF)
634 sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
635 else
636 sk->sk_rcvbuf = val * 2;
637 break;
639 case SO_RCVBUFFORCE:
640 if (!capable(CAP_NET_ADMIN)) {
641 ret = -EPERM;
642 break;
644 goto set_rcvbuf;
646 case SO_KEEPALIVE:
647 #ifdef CONFIG_INET
648 if (sk->sk_protocol == IPPROTO_TCP)
649 tcp_set_keepalive(sk, valbool);
650 #endif
651 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
652 break;
654 case SO_OOBINLINE:
655 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
656 break;
658 case SO_NO_CHECK:
659 sk->sk_no_check = valbool;
660 break;
662 case SO_PRIORITY:
663 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
664 sk->sk_priority = val;
665 else
666 ret = -EPERM;
667 break;
669 case SO_LINGER:
670 if (optlen < sizeof(ling)) {
671 ret = -EINVAL; /* 1003.1g */
672 break;
674 if (copy_from_user(&ling, optval, sizeof(ling))) {
675 ret = -EFAULT;
676 break;
678 if (!ling.l_onoff)
679 sock_reset_flag(sk, SOCK_LINGER);
680 else {
681 #if (BITS_PER_LONG == 32)
682 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
683 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
684 else
685 #endif
686 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
687 sock_set_flag(sk, SOCK_LINGER);
689 break;
691 case SO_BSDCOMPAT:
692 sock_warn_obsolete_bsdism("setsockopt");
693 break;
695 case SO_PASSCRED:
696 if (valbool)
697 set_bit(SOCK_PASSCRED, &sock->flags);
698 else
699 clear_bit(SOCK_PASSCRED, &sock->flags);
700 break;
702 case SO_TIMESTAMP:
703 case SO_TIMESTAMPNS:
704 if (valbool) {
705 if (optname == SO_TIMESTAMP)
706 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
707 else
708 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
709 sock_set_flag(sk, SOCK_RCVTSTAMP);
710 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
711 } else {
712 sock_reset_flag(sk, SOCK_RCVTSTAMP);
713 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
715 break;
717 case SO_TIMESTAMPING:
718 if (val & ~SOF_TIMESTAMPING_MASK) {
719 ret = -EINVAL;
720 break;
722 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
723 val & SOF_TIMESTAMPING_TX_HARDWARE);
724 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
725 val & SOF_TIMESTAMPING_TX_SOFTWARE);
726 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
727 val & SOF_TIMESTAMPING_RX_HARDWARE);
728 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
729 sock_enable_timestamp(sk,
730 SOCK_TIMESTAMPING_RX_SOFTWARE);
731 else
732 sock_disable_timestamp(sk,
733 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
734 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
735 val & SOF_TIMESTAMPING_SOFTWARE);
736 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
737 val & SOF_TIMESTAMPING_SYS_HARDWARE);
738 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
739 val & SOF_TIMESTAMPING_RAW_HARDWARE);
740 break;
742 case SO_RCVLOWAT:
743 if (val < 0)
744 val = INT_MAX;
745 sk->sk_rcvlowat = val ? : 1;
746 break;
748 case SO_RCVTIMEO:
749 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
750 break;
752 case SO_SNDTIMEO:
753 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
754 break;
756 case SO_ATTACH_FILTER:
757 ret = -EINVAL;
758 if (optlen == sizeof(struct sock_fprog)) {
759 struct sock_fprog fprog;
761 ret = -EFAULT;
762 if (copy_from_user(&fprog, optval, sizeof(fprog)))
763 break;
765 ret = sk_attach_filter(&fprog, sk);
767 break;
769 case SO_DETACH_FILTER:
770 ret = sk_detach_filter(sk);
771 break;
773 case SO_PASSSEC:
774 if (valbool)
775 set_bit(SOCK_PASSSEC, &sock->flags);
776 else
777 clear_bit(SOCK_PASSSEC, &sock->flags);
778 break;
779 case SO_MARK:
780 if (!capable(CAP_NET_ADMIN))
781 ret = -EPERM;
782 else
783 sk->sk_mark = val;
784 break;
786 /* We implement the SO_SNDLOWAT etc to
787 not be settable (1003.1g 5.3) */
788 case SO_RXQ_OVFL:
789 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
790 break;
792 case SO_WIFI_STATUS:
793 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
794 break;
796 default:
797 ret = -ENOPROTOOPT;
798 break;
800 release_sock(sk);
801 return ret;
803 EXPORT_SYMBOL(sock_setsockopt);
806 void cred_to_ucred(struct pid *pid, const struct cred *cred,
807 struct ucred *ucred)
809 ucred->pid = pid_vnr(pid);
810 ucred->uid = ucred->gid = -1;
811 if (cred) {
812 struct user_namespace *current_ns = current_user_ns();
814 ucred->uid = user_ns_map_uid(current_ns, cred, cred->euid);
815 ucred->gid = user_ns_map_gid(current_ns, cred, cred->egid);
818 EXPORT_SYMBOL_GPL(cred_to_ucred);
820 int sock_getsockopt(struct socket *sock, int level, int optname,
821 char __user *optval, int __user *optlen)
823 struct sock *sk = sock->sk;
825 union {
826 int val;
827 struct linger ling;
828 struct timeval tm;
829 } v;
831 int lv = sizeof(int);
832 int len;
834 if (get_user(len, optlen))
835 return -EFAULT;
836 if (len < 0)
837 return -EINVAL;
839 memset(&v, 0, sizeof(v));
841 switch (optname) {
842 case SO_DEBUG:
843 v.val = sock_flag(sk, SOCK_DBG);
844 break;
846 case SO_DONTROUTE:
847 v.val = sock_flag(sk, SOCK_LOCALROUTE);
848 break;
850 case SO_BROADCAST:
851 v.val = !!sock_flag(sk, SOCK_BROADCAST);
852 break;
854 case SO_SNDBUF:
855 v.val = sk->sk_sndbuf;
856 break;
858 case SO_RCVBUF:
859 v.val = sk->sk_rcvbuf;
860 break;
862 case SO_REUSEADDR:
863 v.val = sk->sk_reuse;
864 break;
866 case SO_KEEPALIVE:
867 v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
868 break;
870 case SO_TYPE:
871 v.val = sk->sk_type;
872 break;
874 case SO_PROTOCOL:
875 v.val = sk->sk_protocol;
876 break;
878 case SO_DOMAIN:
879 v.val = sk->sk_family;
880 break;
882 case SO_ERROR:
883 v.val = -sock_error(sk);
884 if (v.val == 0)
885 v.val = xchg(&sk->sk_err_soft, 0);
886 break;
888 case SO_OOBINLINE:
889 v.val = !!sock_flag(sk, SOCK_URGINLINE);
890 break;
892 case SO_NO_CHECK:
893 v.val = sk->sk_no_check;
894 break;
896 case SO_PRIORITY:
897 v.val = sk->sk_priority;
898 break;
900 case SO_LINGER:
901 lv = sizeof(v.ling);
902 v.ling.l_onoff = !!sock_flag(sk, SOCK_LINGER);
903 v.ling.l_linger = sk->sk_lingertime / HZ;
904 break;
906 case SO_BSDCOMPAT:
907 sock_warn_obsolete_bsdism("getsockopt");
908 break;
910 case SO_TIMESTAMP:
911 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
912 !sock_flag(sk, SOCK_RCVTSTAMPNS);
913 break;
915 case SO_TIMESTAMPNS:
916 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
917 break;
919 case SO_TIMESTAMPING:
920 v.val = 0;
921 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
922 v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
923 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
924 v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
925 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
926 v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
927 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
928 v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
929 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
930 v.val |= SOF_TIMESTAMPING_SOFTWARE;
931 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
932 v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
933 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
934 v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
935 break;
937 case SO_RCVTIMEO:
938 lv = sizeof(struct timeval);
939 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
940 v.tm.tv_sec = 0;
941 v.tm.tv_usec = 0;
942 } else {
943 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
944 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
946 break;
948 case SO_SNDTIMEO:
949 lv = sizeof(struct timeval);
950 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
951 v.tm.tv_sec = 0;
952 v.tm.tv_usec = 0;
953 } else {
954 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
955 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
957 break;
959 case SO_RCVLOWAT:
960 v.val = sk->sk_rcvlowat;
961 break;
963 case SO_SNDLOWAT:
964 v.val = 1;
965 break;
967 case SO_PASSCRED:
968 v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
969 break;
971 case SO_PEERCRED:
973 struct ucred peercred;
974 if (len > sizeof(peercred))
975 len = sizeof(peercred);
976 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
977 if (copy_to_user(optval, &peercred, len))
978 return -EFAULT;
979 goto lenout;
982 case SO_PEERNAME:
984 char address[128];
986 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
987 return -ENOTCONN;
988 if (lv < len)
989 return -EINVAL;
990 if (copy_to_user(optval, address, len))
991 return -EFAULT;
992 goto lenout;
995 /* Dubious BSD thing... Probably nobody even uses it, but
996 * the UNIX standard wants it for whatever reason... -DaveM
998 case SO_ACCEPTCONN:
999 v.val = sk->sk_state == TCP_LISTEN;
1000 break;
1002 case SO_PASSSEC:
1003 v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
1004 break;
1006 case SO_PEERSEC:
1007 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1009 case SO_MARK:
1010 v.val = sk->sk_mark;
1011 break;
1013 case SO_RXQ_OVFL:
1014 v.val = !!sock_flag(sk, SOCK_RXQ_OVFL);
1015 break;
1017 case SO_WIFI_STATUS:
1018 v.val = !!sock_flag(sk, SOCK_WIFI_STATUS);
1019 break;
1021 default:
1022 return -ENOPROTOOPT;
1025 if (len > lv)
1026 len = lv;
1027 if (copy_to_user(optval, &v, len))
1028 return -EFAULT;
1029 lenout:
1030 if (put_user(len, optlen))
1031 return -EFAULT;
1032 return 0;
1036 * Initialize an sk_lock.
1038 * (We also register the sk_lock with the lock validator.)
1040 static inline void sock_lock_init(struct sock *sk)
1042 sock_lock_init_class_and_name(sk,
1043 af_family_slock_key_strings[sk->sk_family],
1044 af_family_slock_keys + sk->sk_family,
1045 af_family_key_strings[sk->sk_family],
1046 af_family_keys + sk->sk_family);
1050 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1051 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1052 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1054 static void sock_copy(struct sock *nsk, const struct sock *osk)
1056 #ifdef CONFIG_SECURITY_NETWORK
1057 void *sptr = nsk->sk_security;
1058 #endif
1059 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1061 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1062 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1064 #ifdef CONFIG_SECURITY_NETWORK
1065 nsk->sk_security = sptr;
1066 security_sk_clone(osk, nsk);
1067 #endif
1071 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
1072 * un-modified. Special care is taken when initializing object to zero.
1074 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1076 if (offsetof(struct sock, sk_node.next) != 0)
1077 memset(sk, 0, offsetof(struct sock, sk_node.next));
1078 memset(&sk->sk_node.pprev, 0,
1079 size - offsetof(struct sock, sk_node.pprev));
1082 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1084 unsigned long nulls1, nulls2;
1086 nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1087 nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1088 if (nulls1 > nulls2)
1089 swap(nulls1, nulls2);
1091 if (nulls1 != 0)
1092 memset((char *)sk, 0, nulls1);
1093 memset((char *)sk + nulls1 + sizeof(void *), 0,
1094 nulls2 - nulls1 - sizeof(void *));
1095 memset((char *)sk + nulls2 + sizeof(void *), 0,
1096 size - nulls2 - sizeof(void *));
1098 EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1100 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1101 int family)
1103 struct sock *sk;
1104 struct kmem_cache *slab;
1106 slab = prot->slab;
1107 if (slab != NULL) {
1108 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1109 if (!sk)
1110 return sk;
1111 if (priority & __GFP_ZERO) {
1112 if (prot->clear_sk)
1113 prot->clear_sk(sk, prot->obj_size);
1114 else
1115 sk_prot_clear_nulls(sk, prot->obj_size);
1117 } else
1118 sk = kmalloc(prot->obj_size, priority);
1120 if (sk != NULL) {
1121 kmemcheck_annotate_bitfield(sk, flags);
1123 if (security_sk_alloc(sk, family, priority))
1124 goto out_free;
1126 if (!try_module_get(prot->owner))
1127 goto out_free_sec;
1128 sk_tx_queue_clear(sk);
1131 return sk;
1133 out_free_sec:
1134 security_sk_free(sk);
1135 out_free:
1136 if (slab != NULL)
1137 kmem_cache_free(slab, sk);
1138 else
1139 kfree(sk);
1140 return NULL;
1143 static void sk_prot_free(struct proto *prot, struct sock *sk)
1145 struct kmem_cache *slab;
1146 struct module *owner;
1148 owner = prot->owner;
1149 slab = prot->slab;
1151 security_sk_free(sk);
1152 if (slab != NULL)
1153 kmem_cache_free(slab, sk);
1154 else
1155 kfree(sk);
1156 module_put(owner);
1159 #ifdef CONFIG_CGROUPS
1160 void sock_update_classid(struct sock *sk)
1162 u32 classid;
1164 rcu_read_lock(); /* doing current task, which cannot vanish. */
1165 classid = task_cls_classid(current);
1166 rcu_read_unlock();
1167 if (classid && classid != sk->sk_classid)
1168 sk->sk_classid = classid;
1170 EXPORT_SYMBOL(sock_update_classid);
1172 void sock_update_netprioidx(struct sock *sk)
1174 if (in_interrupt())
1175 return;
1177 sk->sk_cgrp_prioidx = task_netprioidx(current);
1179 EXPORT_SYMBOL_GPL(sock_update_netprioidx);
1180 #endif
1183 * sk_alloc - All socket objects are allocated here
1184 * @net: the applicable net namespace
1185 * @family: protocol family
1186 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1187 * @prot: struct proto associated with this new sock instance
1189 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1190 struct proto *prot)
1192 struct sock *sk;
1194 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1195 if (sk) {
1196 sk->sk_family = family;
1198 * See comment in struct sock definition to understand
1199 * why we need sk_prot_creator -acme
1201 sk->sk_prot = sk->sk_prot_creator = prot;
1202 sock_lock_init(sk);
1203 sock_net_set(sk, get_net(net));
1204 atomic_set(&sk->sk_wmem_alloc, 1);
1206 sock_update_classid(sk);
1207 sock_update_netprioidx(sk);
1210 return sk;
1212 EXPORT_SYMBOL(sk_alloc);
1214 static void __sk_free(struct sock *sk)
1216 struct sk_filter *filter;
1218 if (sk->sk_destruct)
1219 sk->sk_destruct(sk);
1221 filter = rcu_dereference_check(sk->sk_filter,
1222 atomic_read(&sk->sk_wmem_alloc) == 0);
1223 if (filter) {
1224 sk_filter_uncharge(sk, filter);
1225 RCU_INIT_POINTER(sk->sk_filter, NULL);
1228 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1230 if (atomic_read(&sk->sk_omem_alloc))
1231 printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
1232 __func__, atomic_read(&sk->sk_omem_alloc));
1234 if (sk->sk_peer_cred)
1235 put_cred(sk->sk_peer_cred);
1236 put_pid(sk->sk_peer_pid);
1237 put_net(sock_net(sk));
1238 sk_prot_free(sk->sk_prot_creator, sk);
1241 void sk_free(struct sock *sk)
1244 * We subtract one from sk_wmem_alloc and can know if
1245 * some packets are still in some tx queue.
1246 * If not null, sock_wfree() will call __sk_free(sk) later
1248 if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1249 __sk_free(sk);
1251 EXPORT_SYMBOL(sk_free);
1254 * Last sock_put should drop reference to sk->sk_net. It has already
1255 * been dropped in sk_change_net. Taking reference to stopping namespace
1256 * is not an option.
1257 * Take reference to a socket to remove it from hash _alive_ and after that
1258 * destroy it in the context of init_net.
1260 void sk_release_kernel(struct sock *sk)
1262 if (sk == NULL || sk->sk_socket == NULL)
1263 return;
1265 sock_hold(sk);
1266 sock_release(sk->sk_socket);
1267 release_net(sock_net(sk));
1268 sock_net_set(sk, get_net(&init_net));
1269 sock_put(sk);
1271 EXPORT_SYMBOL(sk_release_kernel);
1273 static void sk_update_clone(const struct sock *sk, struct sock *newsk)
1275 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1276 sock_update_memcg(newsk);
1280 * sk_clone_lock - clone a socket, and lock its clone
1281 * @sk: the socket to clone
1282 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1284 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1286 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1288 struct sock *newsk;
1290 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1291 if (newsk != NULL) {
1292 struct sk_filter *filter;
1294 sock_copy(newsk, sk);
1296 /* SANITY */
1297 get_net(sock_net(newsk));
1298 sk_node_init(&newsk->sk_node);
1299 sock_lock_init(newsk);
1300 bh_lock_sock(newsk);
1301 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1302 newsk->sk_backlog.len = 0;
1304 atomic_set(&newsk->sk_rmem_alloc, 0);
1306 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1308 atomic_set(&newsk->sk_wmem_alloc, 1);
1309 atomic_set(&newsk->sk_omem_alloc, 0);
1310 skb_queue_head_init(&newsk->sk_receive_queue);
1311 skb_queue_head_init(&newsk->sk_write_queue);
1312 #ifdef CONFIG_NET_DMA
1313 skb_queue_head_init(&newsk->sk_async_wait_queue);
1314 #endif
1316 spin_lock_init(&newsk->sk_dst_lock);
1317 rwlock_init(&newsk->sk_callback_lock);
1318 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1319 af_callback_keys + newsk->sk_family,
1320 af_family_clock_key_strings[newsk->sk_family]);
1322 newsk->sk_dst_cache = NULL;
1323 newsk->sk_wmem_queued = 0;
1324 newsk->sk_forward_alloc = 0;
1325 newsk->sk_send_head = NULL;
1326 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1328 sock_reset_flag(newsk, SOCK_DONE);
1329 skb_queue_head_init(&newsk->sk_error_queue);
1331 filter = rcu_dereference_protected(newsk->sk_filter, 1);
1332 if (filter != NULL)
1333 sk_filter_charge(newsk, filter);
1335 if (unlikely(xfrm_sk_clone_policy(newsk))) {
1336 /* It is still raw copy of parent, so invalidate
1337 * destructor and make plain sk_free() */
1338 newsk->sk_destruct = NULL;
1339 bh_unlock_sock(newsk);
1340 sk_free(newsk);
1341 newsk = NULL;
1342 goto out;
1345 newsk->sk_err = 0;
1346 newsk->sk_priority = 0;
1348 * Before updating sk_refcnt, we must commit prior changes to memory
1349 * (Documentation/RCU/rculist_nulls.txt for details)
1351 smp_wmb();
1352 atomic_set(&newsk->sk_refcnt, 2);
1355 * Increment the counter in the same struct proto as the master
1356 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1357 * is the same as sk->sk_prot->socks, as this field was copied
1358 * with memcpy).
1360 * This _changes_ the previous behaviour, where
1361 * tcp_create_openreq_child always was incrementing the
1362 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1363 * to be taken into account in all callers. -acme
1365 sk_refcnt_debug_inc(newsk);
1366 sk_set_socket(newsk, NULL);
1367 newsk->sk_wq = NULL;
1369 sk_update_clone(sk, newsk);
1371 if (newsk->sk_prot->sockets_allocated)
1372 sk_sockets_allocated_inc(newsk);
1374 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1375 net_enable_timestamp();
1377 out:
1378 return newsk;
1380 EXPORT_SYMBOL_GPL(sk_clone_lock);
1382 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1384 __sk_dst_set(sk, dst);
1385 sk->sk_route_caps = dst->dev->features;
1386 if (sk->sk_route_caps & NETIF_F_GSO)
1387 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1388 sk->sk_route_caps &= ~sk->sk_route_nocaps;
1389 if (sk_can_gso(sk)) {
1390 if (dst->header_len) {
1391 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1392 } else {
1393 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1394 sk->sk_gso_max_size = dst->dev->gso_max_size;
1398 EXPORT_SYMBOL_GPL(sk_setup_caps);
1400 void __init sk_init(void)
1402 if (totalram_pages <= 4096) {
1403 sysctl_wmem_max = 32767;
1404 sysctl_rmem_max = 32767;
1405 sysctl_wmem_default = 32767;
1406 sysctl_rmem_default = 32767;
1407 } else if (totalram_pages >= 131072) {
1408 sysctl_wmem_max = 131071;
1409 sysctl_rmem_max = 131071;
1414 * Simple resource managers for sockets.
1419 * Write buffer destructor automatically called from kfree_skb.
1421 void sock_wfree(struct sk_buff *skb)
1423 struct sock *sk = skb->sk;
1424 unsigned int len = skb->truesize;
1426 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1428 * Keep a reference on sk_wmem_alloc, this will be released
1429 * after sk_write_space() call
1431 atomic_sub(len - 1, &sk->sk_wmem_alloc);
1432 sk->sk_write_space(sk);
1433 len = 1;
1436 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1437 * could not do because of in-flight packets
1439 if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1440 __sk_free(sk);
1442 EXPORT_SYMBOL(sock_wfree);
1445 * Read buffer destructor automatically called from kfree_skb.
1447 void sock_rfree(struct sk_buff *skb)
1449 struct sock *sk = skb->sk;
1450 unsigned int len = skb->truesize;
1452 atomic_sub(len, &sk->sk_rmem_alloc);
1453 sk_mem_uncharge(sk, len);
1455 EXPORT_SYMBOL(sock_rfree);
1458 int sock_i_uid(struct sock *sk)
1460 int uid;
1462 read_lock_bh(&sk->sk_callback_lock);
1463 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1464 read_unlock_bh(&sk->sk_callback_lock);
1465 return uid;
1467 EXPORT_SYMBOL(sock_i_uid);
1469 unsigned long sock_i_ino(struct sock *sk)
1471 unsigned long ino;
1473 read_lock_bh(&sk->sk_callback_lock);
1474 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1475 read_unlock_bh(&sk->sk_callback_lock);
1476 return ino;
1478 EXPORT_SYMBOL(sock_i_ino);
1481 * Allocate a skb from the socket's send buffer.
1483 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1484 gfp_t priority)
1486 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1487 struct sk_buff *skb = alloc_skb(size, priority);
1488 if (skb) {
1489 skb_set_owner_w(skb, sk);
1490 return skb;
1493 return NULL;
1495 EXPORT_SYMBOL(sock_wmalloc);
1498 * Allocate a skb from the socket's receive buffer.
1500 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1501 gfp_t priority)
1503 if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1504 struct sk_buff *skb = alloc_skb(size, priority);
1505 if (skb) {
1506 skb_set_owner_r(skb, sk);
1507 return skb;
1510 return NULL;
1514 * Allocate a memory block from the socket's option memory buffer.
1516 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1518 if ((unsigned)size <= sysctl_optmem_max &&
1519 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1520 void *mem;
1521 /* First do the add, to avoid the race if kmalloc
1522 * might sleep.
1524 atomic_add(size, &sk->sk_omem_alloc);
1525 mem = kmalloc(size, priority);
1526 if (mem)
1527 return mem;
1528 atomic_sub(size, &sk->sk_omem_alloc);
1530 return NULL;
1532 EXPORT_SYMBOL(sock_kmalloc);
1535 * Free an option memory block.
1537 void sock_kfree_s(struct sock *sk, void *mem, int size)
1539 kfree(mem);
1540 atomic_sub(size, &sk->sk_omem_alloc);
1542 EXPORT_SYMBOL(sock_kfree_s);
1544 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1545 I think, these locks should be removed for datagram sockets.
1547 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1549 DEFINE_WAIT(wait);
1551 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1552 for (;;) {
1553 if (!timeo)
1554 break;
1555 if (signal_pending(current))
1556 break;
1557 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1558 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1559 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1560 break;
1561 if (sk->sk_shutdown & SEND_SHUTDOWN)
1562 break;
1563 if (sk->sk_err)
1564 break;
1565 timeo = schedule_timeout(timeo);
1567 finish_wait(sk_sleep(sk), &wait);
1568 return timeo;
1573 * Generic send/receive buffer handlers
1576 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1577 unsigned long data_len, int noblock,
1578 int *errcode)
1580 struct sk_buff *skb;
1581 gfp_t gfp_mask;
1582 long timeo;
1583 int err;
1585 gfp_mask = sk->sk_allocation;
1586 if (gfp_mask & __GFP_WAIT)
1587 gfp_mask |= __GFP_REPEAT;
1589 timeo = sock_sndtimeo(sk, noblock);
1590 while (1) {
1591 err = sock_error(sk);
1592 if (err != 0)
1593 goto failure;
1595 err = -EPIPE;
1596 if (sk->sk_shutdown & SEND_SHUTDOWN)
1597 goto failure;
1599 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1600 skb = alloc_skb(header_len, gfp_mask);
1601 if (skb) {
1602 int npages;
1603 int i;
1605 /* No pages, we're done... */
1606 if (!data_len)
1607 break;
1609 npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1610 skb->truesize += data_len;
1611 skb_shinfo(skb)->nr_frags = npages;
1612 for (i = 0; i < npages; i++) {
1613 struct page *page;
1615 page = alloc_pages(sk->sk_allocation, 0);
1616 if (!page) {
1617 err = -ENOBUFS;
1618 skb_shinfo(skb)->nr_frags = i;
1619 kfree_skb(skb);
1620 goto failure;
1623 __skb_fill_page_desc(skb, i,
1624 page, 0,
1625 (data_len >= PAGE_SIZE ?
1626 PAGE_SIZE :
1627 data_len));
1628 data_len -= PAGE_SIZE;
1631 /* Full success... */
1632 break;
1634 err = -ENOBUFS;
1635 goto failure;
1637 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1638 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1639 err = -EAGAIN;
1640 if (!timeo)
1641 goto failure;
1642 if (signal_pending(current))
1643 goto interrupted;
1644 timeo = sock_wait_for_wmem(sk, timeo);
1647 skb_set_owner_w(skb, sk);
1648 return skb;
1650 interrupted:
1651 err = sock_intr_errno(timeo);
1652 failure:
1653 *errcode = err;
1654 return NULL;
1656 EXPORT_SYMBOL(sock_alloc_send_pskb);
1658 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1659 int noblock, int *errcode)
1661 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1663 EXPORT_SYMBOL(sock_alloc_send_skb);
1665 static void __lock_sock(struct sock *sk)
1666 __releases(&sk->sk_lock.slock)
1667 __acquires(&sk->sk_lock.slock)
1669 DEFINE_WAIT(wait);
1671 for (;;) {
1672 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1673 TASK_UNINTERRUPTIBLE);
1674 spin_unlock_bh(&sk->sk_lock.slock);
1675 schedule();
1676 spin_lock_bh(&sk->sk_lock.slock);
1677 if (!sock_owned_by_user(sk))
1678 break;
1680 finish_wait(&sk->sk_lock.wq, &wait);
1683 static void __release_sock(struct sock *sk)
1684 __releases(&sk->sk_lock.slock)
1685 __acquires(&sk->sk_lock.slock)
1687 struct sk_buff *skb = sk->sk_backlog.head;
1689 do {
1690 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1691 bh_unlock_sock(sk);
1693 do {
1694 struct sk_buff *next = skb->next;
1696 WARN_ON_ONCE(skb_dst_is_noref(skb));
1697 skb->next = NULL;
1698 sk_backlog_rcv(sk, skb);
1701 * We are in process context here with softirqs
1702 * disabled, use cond_resched_softirq() to preempt.
1703 * This is safe to do because we've taken the backlog
1704 * queue private:
1706 cond_resched_softirq();
1708 skb = next;
1709 } while (skb != NULL);
1711 bh_lock_sock(sk);
1712 } while ((skb = sk->sk_backlog.head) != NULL);
1715 * Doing the zeroing here guarantee we can not loop forever
1716 * while a wild producer attempts to flood us.
1718 sk->sk_backlog.len = 0;
1722 * sk_wait_data - wait for data to arrive at sk_receive_queue
1723 * @sk: sock to wait on
1724 * @timeo: for how long
1726 * Now socket state including sk->sk_err is changed only under lock,
1727 * hence we may omit checks after joining wait queue.
1728 * We check receive queue before schedule() only as optimization;
1729 * it is very likely that release_sock() added new data.
1731 int sk_wait_data(struct sock *sk, long *timeo)
1733 int rc;
1734 DEFINE_WAIT(wait);
1736 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1737 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1738 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1739 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1740 finish_wait(sk_sleep(sk), &wait);
1741 return rc;
1743 EXPORT_SYMBOL(sk_wait_data);
1746 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1747 * @sk: socket
1748 * @size: memory size to allocate
1749 * @kind: allocation type
1751 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1752 * rmem allocation. This function assumes that protocols which have
1753 * memory_pressure use sk_wmem_queued as write buffer accounting.
1755 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1757 struct proto *prot = sk->sk_prot;
1758 int amt = sk_mem_pages(size);
1759 long allocated;
1760 int parent_status = UNDER_LIMIT;
1762 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1764 allocated = sk_memory_allocated_add(sk, amt, &parent_status);
1766 /* Under limit. */
1767 if (parent_status == UNDER_LIMIT &&
1768 allocated <= sk_prot_mem_limits(sk, 0)) {
1769 sk_leave_memory_pressure(sk);
1770 return 1;
1773 /* Under pressure. (we or our parents) */
1774 if ((parent_status > SOFT_LIMIT) ||
1775 allocated > sk_prot_mem_limits(sk, 1))
1776 sk_enter_memory_pressure(sk);
1778 /* Over hard limit (we or our parents) */
1779 if ((parent_status == OVER_LIMIT) ||
1780 (allocated > sk_prot_mem_limits(sk, 2)))
1781 goto suppress_allocation;
1783 /* guarantee minimum buffer size under pressure */
1784 if (kind == SK_MEM_RECV) {
1785 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1786 return 1;
1788 } else { /* SK_MEM_SEND */
1789 if (sk->sk_type == SOCK_STREAM) {
1790 if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1791 return 1;
1792 } else if (atomic_read(&sk->sk_wmem_alloc) <
1793 prot->sysctl_wmem[0])
1794 return 1;
1797 if (sk_has_memory_pressure(sk)) {
1798 int alloc;
1800 if (!sk_under_memory_pressure(sk))
1801 return 1;
1802 alloc = sk_sockets_allocated_read_positive(sk);
1803 if (sk_prot_mem_limits(sk, 2) > alloc *
1804 sk_mem_pages(sk->sk_wmem_queued +
1805 atomic_read(&sk->sk_rmem_alloc) +
1806 sk->sk_forward_alloc))
1807 return 1;
1810 suppress_allocation:
1812 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1813 sk_stream_moderate_sndbuf(sk);
1815 /* Fail only if socket is _under_ its sndbuf.
1816 * In this case we cannot block, so that we have to fail.
1818 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1819 return 1;
1822 trace_sock_exceed_buf_limit(sk, prot, allocated);
1824 /* Alas. Undo changes. */
1825 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1827 sk_memory_allocated_sub(sk, amt);
1829 return 0;
1831 EXPORT_SYMBOL(__sk_mem_schedule);
1834 * __sk_reclaim - reclaim memory_allocated
1835 * @sk: socket
1837 void __sk_mem_reclaim(struct sock *sk)
1839 sk_memory_allocated_sub(sk,
1840 sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT);
1841 sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1843 if (sk_under_memory_pressure(sk) &&
1844 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
1845 sk_leave_memory_pressure(sk);
1847 EXPORT_SYMBOL(__sk_mem_reclaim);
1851 * Set of default routines for initialising struct proto_ops when
1852 * the protocol does not support a particular function. In certain
1853 * cases where it makes no sense for a protocol to have a "do nothing"
1854 * function, some default processing is provided.
1857 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1859 return -EOPNOTSUPP;
1861 EXPORT_SYMBOL(sock_no_bind);
1863 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1864 int len, int flags)
1866 return -EOPNOTSUPP;
1868 EXPORT_SYMBOL(sock_no_connect);
1870 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1872 return -EOPNOTSUPP;
1874 EXPORT_SYMBOL(sock_no_socketpair);
1876 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1878 return -EOPNOTSUPP;
1880 EXPORT_SYMBOL(sock_no_accept);
1882 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1883 int *len, int peer)
1885 return -EOPNOTSUPP;
1887 EXPORT_SYMBOL(sock_no_getname);
1889 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
1891 return 0;
1893 EXPORT_SYMBOL(sock_no_poll);
1895 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1897 return -EOPNOTSUPP;
1899 EXPORT_SYMBOL(sock_no_ioctl);
1901 int sock_no_listen(struct socket *sock, int backlog)
1903 return -EOPNOTSUPP;
1905 EXPORT_SYMBOL(sock_no_listen);
1907 int sock_no_shutdown(struct socket *sock, int how)
1909 return -EOPNOTSUPP;
1911 EXPORT_SYMBOL(sock_no_shutdown);
1913 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1914 char __user *optval, unsigned int optlen)
1916 return -EOPNOTSUPP;
1918 EXPORT_SYMBOL(sock_no_setsockopt);
1920 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1921 char __user *optval, int __user *optlen)
1923 return -EOPNOTSUPP;
1925 EXPORT_SYMBOL(sock_no_getsockopt);
1927 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1928 size_t len)
1930 return -EOPNOTSUPP;
1932 EXPORT_SYMBOL(sock_no_sendmsg);
1934 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1935 size_t len, int flags)
1937 return -EOPNOTSUPP;
1939 EXPORT_SYMBOL(sock_no_recvmsg);
1941 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1943 /* Mirror missing mmap method error code */
1944 return -ENODEV;
1946 EXPORT_SYMBOL(sock_no_mmap);
1948 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1950 ssize_t res;
1951 struct msghdr msg = {.msg_flags = flags};
1952 struct kvec iov;
1953 char *kaddr = kmap(page);
1954 iov.iov_base = kaddr + offset;
1955 iov.iov_len = size;
1956 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1957 kunmap(page);
1958 return res;
1960 EXPORT_SYMBOL(sock_no_sendpage);
1963 * Default Socket Callbacks
1966 static void sock_def_wakeup(struct sock *sk)
1968 struct socket_wq *wq;
1970 rcu_read_lock();
1971 wq = rcu_dereference(sk->sk_wq);
1972 if (wq_has_sleeper(wq))
1973 wake_up_interruptible_all(&wq->wait);
1974 rcu_read_unlock();
1977 static void sock_def_error_report(struct sock *sk)
1979 struct socket_wq *wq;
1981 rcu_read_lock();
1982 wq = rcu_dereference(sk->sk_wq);
1983 if (wq_has_sleeper(wq))
1984 wake_up_interruptible_poll(&wq->wait, POLLERR);
1985 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
1986 rcu_read_unlock();
1989 static void sock_def_readable(struct sock *sk, int len)
1991 struct socket_wq *wq;
1993 rcu_read_lock();
1994 wq = rcu_dereference(sk->sk_wq);
1995 if (wq_has_sleeper(wq))
1996 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
1997 POLLRDNORM | POLLRDBAND);
1998 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
1999 rcu_read_unlock();
2002 static void sock_def_write_space(struct sock *sk)
2004 struct socket_wq *wq;
2006 rcu_read_lock();
2008 /* Do not wake up a writer until he can make "significant"
2009 * progress. --DaveM
2011 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2012 wq = rcu_dereference(sk->sk_wq);
2013 if (wq_has_sleeper(wq))
2014 wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2015 POLLWRNORM | POLLWRBAND);
2017 /* Should agree with poll, otherwise some programs break */
2018 if (sock_writeable(sk))
2019 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2022 rcu_read_unlock();
2025 static void sock_def_destruct(struct sock *sk)
2027 kfree(sk->sk_protinfo);
2030 void sk_send_sigurg(struct sock *sk)
2032 if (sk->sk_socket && sk->sk_socket->file)
2033 if (send_sigurg(&sk->sk_socket->file->f_owner))
2034 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2036 EXPORT_SYMBOL(sk_send_sigurg);
2038 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2039 unsigned long expires)
2041 if (!mod_timer(timer, expires))
2042 sock_hold(sk);
2044 EXPORT_SYMBOL(sk_reset_timer);
2046 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2048 if (timer_pending(timer) && del_timer(timer))
2049 __sock_put(sk);
2051 EXPORT_SYMBOL(sk_stop_timer);
2053 void sock_init_data(struct socket *sock, struct sock *sk)
2055 skb_queue_head_init(&sk->sk_receive_queue);
2056 skb_queue_head_init(&sk->sk_write_queue);
2057 skb_queue_head_init(&sk->sk_error_queue);
2058 #ifdef CONFIG_NET_DMA
2059 skb_queue_head_init(&sk->sk_async_wait_queue);
2060 #endif
2062 sk->sk_send_head = NULL;
2064 init_timer(&sk->sk_timer);
2066 sk->sk_allocation = GFP_KERNEL;
2067 sk->sk_rcvbuf = sysctl_rmem_default;
2068 sk->sk_sndbuf = sysctl_wmem_default;
2069 sk->sk_state = TCP_CLOSE;
2070 sk_set_socket(sk, sock);
2072 sock_set_flag(sk, SOCK_ZAPPED);
2074 if (sock) {
2075 sk->sk_type = sock->type;
2076 sk->sk_wq = sock->wq;
2077 sock->sk = sk;
2078 } else
2079 sk->sk_wq = NULL;
2081 spin_lock_init(&sk->sk_dst_lock);
2082 rwlock_init(&sk->sk_callback_lock);
2083 lockdep_set_class_and_name(&sk->sk_callback_lock,
2084 af_callback_keys + sk->sk_family,
2085 af_family_clock_key_strings[sk->sk_family]);
2087 sk->sk_state_change = sock_def_wakeup;
2088 sk->sk_data_ready = sock_def_readable;
2089 sk->sk_write_space = sock_def_write_space;
2090 sk->sk_error_report = sock_def_error_report;
2091 sk->sk_destruct = sock_def_destruct;
2093 sk->sk_sndmsg_page = NULL;
2094 sk->sk_sndmsg_off = 0;
2096 sk->sk_peer_pid = NULL;
2097 sk->sk_peer_cred = NULL;
2098 sk->sk_write_pending = 0;
2099 sk->sk_rcvlowat = 1;
2100 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
2101 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
2103 sk->sk_stamp = ktime_set(-1L, 0);
2106 * Before updating sk_refcnt, we must commit prior changes to memory
2107 * (Documentation/RCU/rculist_nulls.txt for details)
2109 smp_wmb();
2110 atomic_set(&sk->sk_refcnt, 1);
2111 atomic_set(&sk->sk_drops, 0);
2113 EXPORT_SYMBOL(sock_init_data);
2115 void lock_sock_nested(struct sock *sk, int subclass)
2117 might_sleep();
2118 spin_lock_bh(&sk->sk_lock.slock);
2119 if (sk->sk_lock.owned)
2120 __lock_sock(sk);
2121 sk->sk_lock.owned = 1;
2122 spin_unlock(&sk->sk_lock.slock);
2124 * The sk_lock has mutex_lock() semantics here:
2126 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2127 local_bh_enable();
2129 EXPORT_SYMBOL(lock_sock_nested);
2131 void release_sock(struct sock *sk)
2134 * The sk_lock has mutex_unlock() semantics:
2136 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2138 spin_lock_bh(&sk->sk_lock.slock);
2139 if (sk->sk_backlog.tail)
2140 __release_sock(sk);
2141 sk->sk_lock.owned = 0;
2142 if (waitqueue_active(&sk->sk_lock.wq))
2143 wake_up(&sk->sk_lock.wq);
2144 spin_unlock_bh(&sk->sk_lock.slock);
2146 EXPORT_SYMBOL(release_sock);
2149 * lock_sock_fast - fast version of lock_sock
2150 * @sk: socket
2152 * This version should be used for very small section, where process wont block
2153 * return false if fast path is taken
2154 * sk_lock.slock locked, owned = 0, BH disabled
2155 * return true if slow path is taken
2156 * sk_lock.slock unlocked, owned = 1, BH enabled
2158 bool lock_sock_fast(struct sock *sk)
2160 might_sleep();
2161 spin_lock_bh(&sk->sk_lock.slock);
2163 if (!sk->sk_lock.owned)
2165 * Note : We must disable BH
2167 return false;
2169 __lock_sock(sk);
2170 sk->sk_lock.owned = 1;
2171 spin_unlock(&sk->sk_lock.slock);
2173 * The sk_lock has mutex_lock() semantics here:
2175 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2176 local_bh_enable();
2177 return true;
2179 EXPORT_SYMBOL(lock_sock_fast);
2181 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2183 struct timeval tv;
2184 if (!sock_flag(sk, SOCK_TIMESTAMP))
2185 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2186 tv = ktime_to_timeval(sk->sk_stamp);
2187 if (tv.tv_sec == -1)
2188 return -ENOENT;
2189 if (tv.tv_sec == 0) {
2190 sk->sk_stamp = ktime_get_real();
2191 tv = ktime_to_timeval(sk->sk_stamp);
2193 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2195 EXPORT_SYMBOL(sock_get_timestamp);
2197 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2199 struct timespec ts;
2200 if (!sock_flag(sk, SOCK_TIMESTAMP))
2201 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2202 ts = ktime_to_timespec(sk->sk_stamp);
2203 if (ts.tv_sec == -1)
2204 return -ENOENT;
2205 if (ts.tv_sec == 0) {
2206 sk->sk_stamp = ktime_get_real();
2207 ts = ktime_to_timespec(sk->sk_stamp);
2209 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2211 EXPORT_SYMBOL(sock_get_timestampns);
2213 void sock_enable_timestamp(struct sock *sk, int flag)
2215 if (!sock_flag(sk, flag)) {
2216 unsigned long previous_flags = sk->sk_flags;
2218 sock_set_flag(sk, flag);
2220 * we just set one of the two flags which require net
2221 * time stamping, but time stamping might have been on
2222 * already because of the other one
2224 if (!(previous_flags & SK_FLAGS_TIMESTAMP))
2225 net_enable_timestamp();
2230 * Get a socket option on an socket.
2232 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2233 * asynchronous errors should be reported by getsockopt. We assume
2234 * this means if you specify SO_ERROR (otherwise whats the point of it).
2236 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2237 char __user *optval, int __user *optlen)
2239 struct sock *sk = sock->sk;
2241 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2243 EXPORT_SYMBOL(sock_common_getsockopt);
2245 #ifdef CONFIG_COMPAT
2246 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2247 char __user *optval, int __user *optlen)
2249 struct sock *sk = sock->sk;
2251 if (sk->sk_prot->compat_getsockopt != NULL)
2252 return sk->sk_prot->compat_getsockopt(sk, level, optname,
2253 optval, optlen);
2254 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2256 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2257 #endif
2259 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2260 struct msghdr *msg, size_t size, int flags)
2262 struct sock *sk = sock->sk;
2263 int addr_len = 0;
2264 int err;
2266 err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2267 flags & ~MSG_DONTWAIT, &addr_len);
2268 if (err >= 0)
2269 msg->msg_namelen = addr_len;
2270 return err;
2272 EXPORT_SYMBOL(sock_common_recvmsg);
2275 * Set socket options on an inet socket.
2277 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2278 char __user *optval, unsigned int optlen)
2280 struct sock *sk = sock->sk;
2282 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2284 EXPORT_SYMBOL(sock_common_setsockopt);
2286 #ifdef CONFIG_COMPAT
2287 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2288 char __user *optval, unsigned int optlen)
2290 struct sock *sk = sock->sk;
2292 if (sk->sk_prot->compat_setsockopt != NULL)
2293 return sk->sk_prot->compat_setsockopt(sk, level, optname,
2294 optval, optlen);
2295 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2297 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2298 #endif
2300 void sk_common_release(struct sock *sk)
2302 if (sk->sk_prot->destroy)
2303 sk->sk_prot->destroy(sk);
2306 * Observation: when sock_common_release is called, processes have
2307 * no access to socket. But net still has.
2308 * Step one, detach it from networking:
2310 * A. Remove from hash tables.
2313 sk->sk_prot->unhash(sk);
2316 * In this point socket cannot receive new packets, but it is possible
2317 * that some packets are in flight because some CPU runs receiver and
2318 * did hash table lookup before we unhashed socket. They will achieve
2319 * receive queue and will be purged by socket destructor.
2321 * Also we still have packets pending on receive queue and probably,
2322 * our own packets waiting in device queues. sock_destroy will drain
2323 * receive queue, but transmitted packets will delay socket destruction
2324 * until the last reference will be released.
2327 sock_orphan(sk);
2329 xfrm_sk_free_policy(sk);
2331 sk_refcnt_debug_release(sk);
2332 sock_put(sk);
2334 EXPORT_SYMBOL(sk_common_release);
2336 #ifdef CONFIG_PROC_FS
2337 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
2338 struct prot_inuse {
2339 int val[PROTO_INUSE_NR];
2342 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2344 #ifdef CONFIG_NET_NS
2345 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2347 __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2349 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2351 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2353 int cpu, idx = prot->inuse_idx;
2354 int res = 0;
2356 for_each_possible_cpu(cpu)
2357 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2359 return res >= 0 ? res : 0;
2361 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2363 static int __net_init sock_inuse_init_net(struct net *net)
2365 net->core.inuse = alloc_percpu(struct prot_inuse);
2366 return net->core.inuse ? 0 : -ENOMEM;
2369 static void __net_exit sock_inuse_exit_net(struct net *net)
2371 free_percpu(net->core.inuse);
2374 static struct pernet_operations net_inuse_ops = {
2375 .init = sock_inuse_init_net,
2376 .exit = sock_inuse_exit_net,
2379 static __init int net_inuse_init(void)
2381 if (register_pernet_subsys(&net_inuse_ops))
2382 panic("Cannot initialize net inuse counters");
2384 return 0;
2387 core_initcall(net_inuse_init);
2388 #else
2389 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2391 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2393 __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2395 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2397 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2399 int cpu, idx = prot->inuse_idx;
2400 int res = 0;
2402 for_each_possible_cpu(cpu)
2403 res += per_cpu(prot_inuse, cpu).val[idx];
2405 return res >= 0 ? res : 0;
2407 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2408 #endif
2410 static void assign_proto_idx(struct proto *prot)
2412 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2414 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2415 printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
2416 return;
2419 set_bit(prot->inuse_idx, proto_inuse_idx);
2422 static void release_proto_idx(struct proto *prot)
2424 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2425 clear_bit(prot->inuse_idx, proto_inuse_idx);
2427 #else
2428 static inline void assign_proto_idx(struct proto *prot)
2432 static inline void release_proto_idx(struct proto *prot)
2435 #endif
2437 int proto_register(struct proto *prot, int alloc_slab)
2439 if (alloc_slab) {
2440 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2441 SLAB_HWCACHE_ALIGN | prot->slab_flags,
2442 NULL);
2444 if (prot->slab == NULL) {
2445 printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
2446 prot->name);
2447 goto out;
2450 if (prot->rsk_prot != NULL) {
2451 prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2452 if (prot->rsk_prot->slab_name == NULL)
2453 goto out_free_sock_slab;
2455 prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2456 prot->rsk_prot->obj_size, 0,
2457 SLAB_HWCACHE_ALIGN, NULL);
2459 if (prot->rsk_prot->slab == NULL) {
2460 printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
2461 prot->name);
2462 goto out_free_request_sock_slab_name;
2466 if (prot->twsk_prot != NULL) {
2467 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2469 if (prot->twsk_prot->twsk_slab_name == NULL)
2470 goto out_free_request_sock_slab;
2472 prot->twsk_prot->twsk_slab =
2473 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2474 prot->twsk_prot->twsk_obj_size,
2476 SLAB_HWCACHE_ALIGN |
2477 prot->slab_flags,
2478 NULL);
2479 if (prot->twsk_prot->twsk_slab == NULL)
2480 goto out_free_timewait_sock_slab_name;
2484 mutex_lock(&proto_list_mutex);
2485 list_add(&prot->node, &proto_list);
2486 assign_proto_idx(prot);
2487 mutex_unlock(&proto_list_mutex);
2488 return 0;
2490 out_free_timewait_sock_slab_name:
2491 kfree(prot->twsk_prot->twsk_slab_name);
2492 out_free_request_sock_slab:
2493 if (prot->rsk_prot && prot->rsk_prot->slab) {
2494 kmem_cache_destroy(prot->rsk_prot->slab);
2495 prot->rsk_prot->slab = NULL;
2497 out_free_request_sock_slab_name:
2498 if (prot->rsk_prot)
2499 kfree(prot->rsk_prot->slab_name);
2500 out_free_sock_slab:
2501 kmem_cache_destroy(prot->slab);
2502 prot->slab = NULL;
2503 out:
2504 return -ENOBUFS;
2506 EXPORT_SYMBOL(proto_register);
2508 void proto_unregister(struct proto *prot)
2510 mutex_lock(&proto_list_mutex);
2511 release_proto_idx(prot);
2512 list_del(&prot->node);
2513 mutex_unlock(&proto_list_mutex);
2515 if (prot->slab != NULL) {
2516 kmem_cache_destroy(prot->slab);
2517 prot->slab = NULL;
2520 if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2521 kmem_cache_destroy(prot->rsk_prot->slab);
2522 kfree(prot->rsk_prot->slab_name);
2523 prot->rsk_prot->slab = NULL;
2526 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2527 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2528 kfree(prot->twsk_prot->twsk_slab_name);
2529 prot->twsk_prot->twsk_slab = NULL;
2532 EXPORT_SYMBOL(proto_unregister);
2534 #ifdef CONFIG_PROC_FS
2535 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2536 __acquires(proto_list_mutex)
2538 mutex_lock(&proto_list_mutex);
2539 return seq_list_start_head(&proto_list, *pos);
2542 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2544 return seq_list_next(v, &proto_list, pos);
2547 static void proto_seq_stop(struct seq_file *seq, void *v)
2548 __releases(proto_list_mutex)
2550 mutex_unlock(&proto_list_mutex);
2553 static char proto_method_implemented(const void *method)
2555 return method == NULL ? 'n' : 'y';
2557 static long sock_prot_memory_allocated(struct proto *proto)
2559 return proto->memory_allocated != NULL ? proto_memory_allocated(proto): -1L;
2562 static char *sock_prot_memory_pressure(struct proto *proto)
2564 return proto->memory_pressure != NULL ?
2565 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
2568 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2571 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
2572 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2573 proto->name,
2574 proto->obj_size,
2575 sock_prot_inuse_get(seq_file_net(seq), proto),
2576 sock_prot_memory_allocated(proto),
2577 sock_prot_memory_pressure(proto),
2578 proto->max_header,
2579 proto->slab == NULL ? "no" : "yes",
2580 module_name(proto->owner),
2581 proto_method_implemented(proto->close),
2582 proto_method_implemented(proto->connect),
2583 proto_method_implemented(proto->disconnect),
2584 proto_method_implemented(proto->accept),
2585 proto_method_implemented(proto->ioctl),
2586 proto_method_implemented(proto->init),
2587 proto_method_implemented(proto->destroy),
2588 proto_method_implemented(proto->shutdown),
2589 proto_method_implemented(proto->setsockopt),
2590 proto_method_implemented(proto->getsockopt),
2591 proto_method_implemented(proto->sendmsg),
2592 proto_method_implemented(proto->recvmsg),
2593 proto_method_implemented(proto->sendpage),
2594 proto_method_implemented(proto->bind),
2595 proto_method_implemented(proto->backlog_rcv),
2596 proto_method_implemented(proto->hash),
2597 proto_method_implemented(proto->unhash),
2598 proto_method_implemented(proto->get_port),
2599 proto_method_implemented(proto->enter_memory_pressure));
2602 static int proto_seq_show(struct seq_file *seq, void *v)
2604 if (v == &proto_list)
2605 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2606 "protocol",
2607 "size",
2608 "sockets",
2609 "memory",
2610 "press",
2611 "maxhdr",
2612 "slab",
2613 "module",
2614 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2615 else
2616 proto_seq_printf(seq, list_entry(v, struct proto, node));
2617 return 0;
2620 static const struct seq_operations proto_seq_ops = {
2621 .start = proto_seq_start,
2622 .next = proto_seq_next,
2623 .stop = proto_seq_stop,
2624 .show = proto_seq_show,
2627 static int proto_seq_open(struct inode *inode, struct file *file)
2629 return seq_open_net(inode, file, &proto_seq_ops,
2630 sizeof(struct seq_net_private));
2633 static const struct file_operations proto_seq_fops = {
2634 .owner = THIS_MODULE,
2635 .open = proto_seq_open,
2636 .read = seq_read,
2637 .llseek = seq_lseek,
2638 .release = seq_release_net,
2641 static __net_init int proto_init_net(struct net *net)
2643 if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2644 return -ENOMEM;
2646 return 0;
2649 static __net_exit void proto_exit_net(struct net *net)
2651 proc_net_remove(net, "protocols");
2655 static __net_initdata struct pernet_operations proto_net_ops = {
2656 .init = proto_init_net,
2657 .exit = proto_exit_net,
2660 static int __init proto_init(void)
2662 return register_pernet_subsys(&proto_net_ops);
2665 subsys_initcall(proto_init);
2667 #endif /* PROC_FS */