2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
92 #include <linux/capability.h>
93 #include <linux/errno.h>
94 #include <linux/types.h>
95 #include <linux/socket.h>
97 #include <linux/kernel.h>
98 #include <linux/module.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/sched.h>
102 #include <linux/timer.h>
103 #include <linux/string.h>
104 #include <linux/sockios.h>
105 #include <linux/net.h>
106 #include <linux/mm.h>
107 #include <linux/slab.h>
108 #include <linux/interrupt.h>
109 #include <linux/poll.h>
110 #include <linux/tcp.h>
111 #include <linux/init.h>
112 #include <linux/highmem.h>
113 #include <linux/user_namespace.h>
114 #include <linux/jump_label.h>
115 #include <linux/memcontrol.h>
117 #include <asm/uaccess.h>
118 #include <asm/system.h>
120 #include <linux/netdevice.h>
121 #include <net/protocol.h>
122 #include <linux/skbuff.h>
123 #include <net/net_namespace.h>
124 #include <net/request_sock.h>
125 #include <net/sock.h>
126 #include <linux/net_tstamp.h>
127 #include <net/xfrm.h>
128 #include <linux/ipsec.h>
129 #include <net/cls_cgroup.h>
130 #include <net/netprio_cgroup.h>
132 #include <linux/filter.h>
134 #include <trace/events/sock.h>
140 static DEFINE_MUTEX(proto_list_mutex
);
141 static LIST_HEAD(proto_list
);
143 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
144 int mem_cgroup_sockets_init(struct cgroup
*cgrp
, struct cgroup_subsys
*ss
)
149 mutex_lock(&proto_list_mutex
);
150 list_for_each_entry(proto
, &proto_list
, node
) {
151 if (proto
->init_cgroup
) {
152 ret
= proto
->init_cgroup(cgrp
, ss
);
158 mutex_unlock(&proto_list_mutex
);
161 list_for_each_entry_continue_reverse(proto
, &proto_list
, node
)
162 if (proto
->destroy_cgroup
)
163 proto
->destroy_cgroup(cgrp
, ss
);
164 mutex_unlock(&proto_list_mutex
);
168 void mem_cgroup_sockets_destroy(struct cgroup
*cgrp
, struct cgroup_subsys
*ss
)
172 mutex_lock(&proto_list_mutex
);
173 list_for_each_entry_reverse(proto
, &proto_list
, node
)
174 if (proto
->destroy_cgroup
)
175 proto
->destroy_cgroup(cgrp
, ss
);
176 mutex_unlock(&proto_list_mutex
);
181 * Each address family might have different locking rules, so we have
182 * one slock key per address family:
184 static struct lock_class_key af_family_keys
[AF_MAX
];
185 static struct lock_class_key af_family_slock_keys
[AF_MAX
];
187 struct jump_label_key memcg_socket_limit_enabled
;
188 EXPORT_SYMBOL(memcg_socket_limit_enabled
);
191 * Make lock validator output more readable. (we pre-construct these
192 * strings build-time, so that runtime initialization of socket
195 static const char *const af_family_key_strings
[AF_MAX
+1] = {
196 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
197 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
198 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
199 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
200 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
201 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
202 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
203 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
204 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
205 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
206 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
207 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
208 "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" ,
209 "sk_lock-AF_NFC" , "sk_lock-AF_MAX"
211 static const char *const af_family_slock_key_strings
[AF_MAX
+1] = {
212 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
213 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
214 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
215 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
216 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
217 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
218 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
219 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
220 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
221 "slock-27" , "slock-28" , "slock-AF_CAN" ,
222 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
223 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
224 "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" ,
225 "slock-AF_NFC" , "slock-AF_MAX"
227 static const char *const af_family_clock_key_strings
[AF_MAX
+1] = {
228 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
229 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
230 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
231 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
232 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
233 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
234 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
235 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
236 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
237 "clock-27" , "clock-28" , "clock-AF_CAN" ,
238 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
239 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
240 "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" ,
241 "clock-AF_NFC" , "clock-AF_MAX"
245 * sk_callback_lock locking rules are per-address-family,
246 * so split the lock classes by using a per-AF key:
248 static struct lock_class_key af_callback_keys
[AF_MAX
];
250 /* Take into consideration the size of the struct sk_buff overhead in the
251 * determination of these values, since that is non-constant across
252 * platforms. This makes socket queueing behavior and performance
253 * not depend upon such differences.
255 #define _SK_MEM_PACKETS 256
256 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
257 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
258 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
260 /* Run time adjustable parameters. */
261 __u32 sysctl_wmem_max __read_mostly
= SK_WMEM_MAX
;
262 __u32 sysctl_rmem_max __read_mostly
= SK_RMEM_MAX
;
263 __u32 sysctl_wmem_default __read_mostly
= SK_WMEM_MAX
;
264 __u32 sysctl_rmem_default __read_mostly
= SK_RMEM_MAX
;
266 /* Maximal space eaten by iovec or ancillary data plus some space */
267 int sysctl_optmem_max __read_mostly
= sizeof(unsigned long)*(2*UIO_MAXIOV
+512);
268 EXPORT_SYMBOL(sysctl_optmem_max
);
270 #if defined(CONFIG_CGROUPS)
271 #if !defined(CONFIG_NET_CLS_CGROUP)
272 int net_cls_subsys_id
= -1;
273 EXPORT_SYMBOL_GPL(net_cls_subsys_id
);
275 #if !defined(CONFIG_NETPRIO_CGROUP)
276 int net_prio_subsys_id
= -1;
277 EXPORT_SYMBOL_GPL(net_prio_subsys_id
);
281 static int sock_set_timeout(long *timeo_p
, char __user
*optval
, int optlen
)
285 if (optlen
< sizeof(tv
))
287 if (copy_from_user(&tv
, optval
, sizeof(tv
)))
289 if (tv
.tv_usec
< 0 || tv
.tv_usec
>= USEC_PER_SEC
)
293 static int warned __read_mostly
;
296 if (warned
< 10 && net_ratelimit()) {
298 printk(KERN_INFO
"sock_set_timeout: `%s' (pid %d) "
299 "tries to set negative timeout\n",
300 current
->comm
, task_pid_nr(current
));
304 *timeo_p
= MAX_SCHEDULE_TIMEOUT
;
305 if (tv
.tv_sec
== 0 && tv
.tv_usec
== 0)
307 if (tv
.tv_sec
< (MAX_SCHEDULE_TIMEOUT
/HZ
- 1))
308 *timeo_p
= tv
.tv_sec
*HZ
+ (tv
.tv_usec
+(1000000/HZ
-1))/(1000000/HZ
);
312 static void sock_warn_obsolete_bsdism(const char *name
)
315 static char warncomm
[TASK_COMM_LEN
];
316 if (strcmp(warncomm
, current
->comm
) && warned
< 5) {
317 strcpy(warncomm
, current
->comm
);
318 printk(KERN_WARNING
"process `%s' is using obsolete "
319 "%s SO_BSDCOMPAT\n", warncomm
, name
);
324 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
326 static void sock_disable_timestamp(struct sock
*sk
, unsigned long flags
)
328 if (sk
->sk_flags
& flags
) {
329 sk
->sk_flags
&= ~flags
;
330 if (!(sk
->sk_flags
& SK_FLAGS_TIMESTAMP
))
331 net_disable_timestamp();
336 int sock_queue_rcv_skb(struct sock
*sk
, struct sk_buff
*skb
)
341 struct sk_buff_head
*list
= &sk
->sk_receive_queue
;
343 if (atomic_read(&sk
->sk_rmem_alloc
) >= sk
->sk_rcvbuf
) {
344 atomic_inc(&sk
->sk_drops
);
345 trace_sock_rcvqueue_full(sk
, skb
);
349 err
= sk_filter(sk
, skb
);
353 if (!sk_rmem_schedule(sk
, skb
->truesize
)) {
354 atomic_inc(&sk
->sk_drops
);
359 skb_set_owner_r(skb
, sk
);
361 /* Cache the SKB length before we tack it onto the receive
362 * queue. Once it is added it no longer belongs to us and
363 * may be freed by other threads of control pulling packets
368 /* we escape from rcu protected region, make sure we dont leak
373 spin_lock_irqsave(&list
->lock
, flags
);
374 skb
->dropcount
= atomic_read(&sk
->sk_drops
);
375 __skb_queue_tail(list
, skb
);
376 spin_unlock_irqrestore(&list
->lock
, flags
);
378 if (!sock_flag(sk
, SOCK_DEAD
))
379 sk
->sk_data_ready(sk
, skb_len
);
382 EXPORT_SYMBOL(sock_queue_rcv_skb
);
384 int sk_receive_skb(struct sock
*sk
, struct sk_buff
*skb
, const int nested
)
386 int rc
= NET_RX_SUCCESS
;
388 if (sk_filter(sk
, skb
))
389 goto discard_and_relse
;
393 if (sk_rcvqueues_full(sk
, skb
)) {
394 atomic_inc(&sk
->sk_drops
);
395 goto discard_and_relse
;
398 bh_lock_sock_nested(sk
);
401 if (!sock_owned_by_user(sk
)) {
403 * trylock + unlock semantics:
405 mutex_acquire(&sk
->sk_lock
.dep_map
, 0, 1, _RET_IP_
);
407 rc
= sk_backlog_rcv(sk
, skb
);
409 mutex_release(&sk
->sk_lock
.dep_map
, 1, _RET_IP_
);
410 } else if (sk_add_backlog(sk
, skb
)) {
412 atomic_inc(&sk
->sk_drops
);
413 goto discard_and_relse
;
424 EXPORT_SYMBOL(sk_receive_skb
);
426 void sk_reset_txq(struct sock
*sk
)
428 sk_tx_queue_clear(sk
);
430 EXPORT_SYMBOL(sk_reset_txq
);
432 struct dst_entry
*__sk_dst_check(struct sock
*sk
, u32 cookie
)
434 struct dst_entry
*dst
= __sk_dst_get(sk
);
436 if (dst
&& dst
->obsolete
&& dst
->ops
->check(dst
, cookie
) == NULL
) {
437 sk_tx_queue_clear(sk
);
438 RCU_INIT_POINTER(sk
->sk_dst_cache
, NULL
);
445 EXPORT_SYMBOL(__sk_dst_check
);
447 struct dst_entry
*sk_dst_check(struct sock
*sk
, u32 cookie
)
449 struct dst_entry
*dst
= sk_dst_get(sk
);
451 if (dst
&& dst
->obsolete
&& dst
->ops
->check(dst
, cookie
) == NULL
) {
459 EXPORT_SYMBOL(sk_dst_check
);
461 static int sock_bindtodevice(struct sock
*sk
, char __user
*optval
, int optlen
)
463 int ret
= -ENOPROTOOPT
;
464 #ifdef CONFIG_NETDEVICES
465 struct net
*net
= sock_net(sk
);
466 char devname
[IFNAMSIZ
];
471 if (!capable(CAP_NET_RAW
))
478 /* Bind this socket to a particular device like "eth0",
479 * as specified in the passed interface name. If the
480 * name is "" or the option length is zero the socket
483 if (optlen
> IFNAMSIZ
- 1)
484 optlen
= IFNAMSIZ
- 1;
485 memset(devname
, 0, sizeof(devname
));
488 if (copy_from_user(devname
, optval
, optlen
))
492 if (devname
[0] != '\0') {
493 struct net_device
*dev
;
496 dev
= dev_get_by_name_rcu(net
, devname
);
498 index
= dev
->ifindex
;
506 sk
->sk_bound_dev_if
= index
;
518 static inline void sock_valbool_flag(struct sock
*sk
, int bit
, int valbool
)
521 sock_set_flag(sk
, bit
);
523 sock_reset_flag(sk
, bit
);
527 * This is meant for all protocols to use and covers goings on
528 * at the socket level. Everything here is generic.
531 int sock_setsockopt(struct socket
*sock
, int level
, int optname
,
532 char __user
*optval
, unsigned int optlen
)
534 struct sock
*sk
= sock
->sk
;
541 * Options without arguments
544 if (optname
== SO_BINDTODEVICE
)
545 return sock_bindtodevice(sk
, optval
, optlen
);
547 if (optlen
< sizeof(int))
550 if (get_user(val
, (int __user
*)optval
))
553 valbool
= val
? 1 : 0;
559 if (val
&& !capable(CAP_NET_ADMIN
))
562 sock_valbool_flag(sk
, SOCK_DBG
, valbool
);
565 sk
->sk_reuse
= valbool
;
574 sock_valbool_flag(sk
, SOCK_LOCALROUTE
, valbool
);
577 sock_valbool_flag(sk
, SOCK_BROADCAST
, valbool
);
580 /* Don't error on this BSD doesn't and if you think
581 about it this is right. Otherwise apps have to
582 play 'guess the biggest size' games. RCVBUF/SNDBUF
583 are treated in BSD as hints */
585 if (val
> sysctl_wmem_max
)
586 val
= sysctl_wmem_max
;
588 sk
->sk_userlocks
|= SOCK_SNDBUF_LOCK
;
589 if ((val
* 2) < SOCK_MIN_SNDBUF
)
590 sk
->sk_sndbuf
= SOCK_MIN_SNDBUF
;
592 sk
->sk_sndbuf
= val
* 2;
595 * Wake up sending tasks if we
598 sk
->sk_write_space(sk
);
602 if (!capable(CAP_NET_ADMIN
)) {
609 /* Don't error on this BSD doesn't and if you think
610 about it this is right. Otherwise apps have to
611 play 'guess the biggest size' games. RCVBUF/SNDBUF
612 are treated in BSD as hints */
614 if (val
> sysctl_rmem_max
)
615 val
= sysctl_rmem_max
;
617 sk
->sk_userlocks
|= SOCK_RCVBUF_LOCK
;
619 * We double it on the way in to account for
620 * "struct sk_buff" etc. overhead. Applications
621 * assume that the SO_RCVBUF setting they make will
622 * allow that much actual data to be received on that
625 * Applications are unaware that "struct sk_buff" and
626 * other overheads allocate from the receive buffer
627 * during socket buffer allocation.
629 * And after considering the possible alternatives,
630 * returning the value we actually used in getsockopt
631 * is the most desirable behavior.
633 if ((val
* 2) < SOCK_MIN_RCVBUF
)
634 sk
->sk_rcvbuf
= SOCK_MIN_RCVBUF
;
636 sk
->sk_rcvbuf
= val
* 2;
640 if (!capable(CAP_NET_ADMIN
)) {
648 if (sk
->sk_protocol
== IPPROTO_TCP
)
649 tcp_set_keepalive(sk
, valbool
);
651 sock_valbool_flag(sk
, SOCK_KEEPOPEN
, valbool
);
655 sock_valbool_flag(sk
, SOCK_URGINLINE
, valbool
);
659 sk
->sk_no_check
= valbool
;
663 if ((val
>= 0 && val
<= 6) || capable(CAP_NET_ADMIN
))
664 sk
->sk_priority
= val
;
670 if (optlen
< sizeof(ling
)) {
671 ret
= -EINVAL
; /* 1003.1g */
674 if (copy_from_user(&ling
, optval
, sizeof(ling
))) {
679 sock_reset_flag(sk
, SOCK_LINGER
);
681 #if (BITS_PER_LONG == 32)
682 if ((unsigned int)ling
.l_linger
>= MAX_SCHEDULE_TIMEOUT
/HZ
)
683 sk
->sk_lingertime
= MAX_SCHEDULE_TIMEOUT
;
686 sk
->sk_lingertime
= (unsigned int)ling
.l_linger
* HZ
;
687 sock_set_flag(sk
, SOCK_LINGER
);
692 sock_warn_obsolete_bsdism("setsockopt");
697 set_bit(SOCK_PASSCRED
, &sock
->flags
);
699 clear_bit(SOCK_PASSCRED
, &sock
->flags
);
705 if (optname
== SO_TIMESTAMP
)
706 sock_reset_flag(sk
, SOCK_RCVTSTAMPNS
);
708 sock_set_flag(sk
, SOCK_RCVTSTAMPNS
);
709 sock_set_flag(sk
, SOCK_RCVTSTAMP
);
710 sock_enable_timestamp(sk
, SOCK_TIMESTAMP
);
712 sock_reset_flag(sk
, SOCK_RCVTSTAMP
);
713 sock_reset_flag(sk
, SOCK_RCVTSTAMPNS
);
717 case SO_TIMESTAMPING
:
718 if (val
& ~SOF_TIMESTAMPING_MASK
) {
722 sock_valbool_flag(sk
, SOCK_TIMESTAMPING_TX_HARDWARE
,
723 val
& SOF_TIMESTAMPING_TX_HARDWARE
);
724 sock_valbool_flag(sk
, SOCK_TIMESTAMPING_TX_SOFTWARE
,
725 val
& SOF_TIMESTAMPING_TX_SOFTWARE
);
726 sock_valbool_flag(sk
, SOCK_TIMESTAMPING_RX_HARDWARE
,
727 val
& SOF_TIMESTAMPING_RX_HARDWARE
);
728 if (val
& SOF_TIMESTAMPING_RX_SOFTWARE
)
729 sock_enable_timestamp(sk
,
730 SOCK_TIMESTAMPING_RX_SOFTWARE
);
732 sock_disable_timestamp(sk
,
733 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE
));
734 sock_valbool_flag(sk
, SOCK_TIMESTAMPING_SOFTWARE
,
735 val
& SOF_TIMESTAMPING_SOFTWARE
);
736 sock_valbool_flag(sk
, SOCK_TIMESTAMPING_SYS_HARDWARE
,
737 val
& SOF_TIMESTAMPING_SYS_HARDWARE
);
738 sock_valbool_flag(sk
, SOCK_TIMESTAMPING_RAW_HARDWARE
,
739 val
& SOF_TIMESTAMPING_RAW_HARDWARE
);
745 sk
->sk_rcvlowat
= val
? : 1;
749 ret
= sock_set_timeout(&sk
->sk_rcvtimeo
, optval
, optlen
);
753 ret
= sock_set_timeout(&sk
->sk_sndtimeo
, optval
, optlen
);
756 case SO_ATTACH_FILTER
:
758 if (optlen
== sizeof(struct sock_fprog
)) {
759 struct sock_fprog fprog
;
762 if (copy_from_user(&fprog
, optval
, sizeof(fprog
)))
765 ret
= sk_attach_filter(&fprog
, sk
);
769 case SO_DETACH_FILTER
:
770 ret
= sk_detach_filter(sk
);
775 set_bit(SOCK_PASSSEC
, &sock
->flags
);
777 clear_bit(SOCK_PASSSEC
, &sock
->flags
);
780 if (!capable(CAP_NET_ADMIN
))
786 /* We implement the SO_SNDLOWAT etc to
787 not be settable (1003.1g 5.3) */
789 sock_valbool_flag(sk
, SOCK_RXQ_OVFL
, valbool
);
793 sock_valbool_flag(sk
, SOCK_WIFI_STATUS
, valbool
);
803 EXPORT_SYMBOL(sock_setsockopt
);
806 void cred_to_ucred(struct pid
*pid
, const struct cred
*cred
,
809 ucred
->pid
= pid_vnr(pid
);
810 ucred
->uid
= ucred
->gid
= -1;
812 struct user_namespace
*current_ns
= current_user_ns();
814 ucred
->uid
= user_ns_map_uid(current_ns
, cred
, cred
->euid
);
815 ucred
->gid
= user_ns_map_gid(current_ns
, cred
, cred
->egid
);
818 EXPORT_SYMBOL_GPL(cred_to_ucred
);
820 int sock_getsockopt(struct socket
*sock
, int level
, int optname
,
821 char __user
*optval
, int __user
*optlen
)
823 struct sock
*sk
= sock
->sk
;
831 int lv
= sizeof(int);
834 if (get_user(len
, optlen
))
839 memset(&v
, 0, sizeof(v
));
843 v
.val
= sock_flag(sk
, SOCK_DBG
);
847 v
.val
= sock_flag(sk
, SOCK_LOCALROUTE
);
851 v
.val
= !!sock_flag(sk
, SOCK_BROADCAST
);
855 v
.val
= sk
->sk_sndbuf
;
859 v
.val
= sk
->sk_rcvbuf
;
863 v
.val
= sk
->sk_reuse
;
867 v
.val
= !!sock_flag(sk
, SOCK_KEEPOPEN
);
875 v
.val
= sk
->sk_protocol
;
879 v
.val
= sk
->sk_family
;
883 v
.val
= -sock_error(sk
);
885 v
.val
= xchg(&sk
->sk_err_soft
, 0);
889 v
.val
= !!sock_flag(sk
, SOCK_URGINLINE
);
893 v
.val
= sk
->sk_no_check
;
897 v
.val
= sk
->sk_priority
;
902 v
.ling
.l_onoff
= !!sock_flag(sk
, SOCK_LINGER
);
903 v
.ling
.l_linger
= sk
->sk_lingertime
/ HZ
;
907 sock_warn_obsolete_bsdism("getsockopt");
911 v
.val
= sock_flag(sk
, SOCK_RCVTSTAMP
) &&
912 !sock_flag(sk
, SOCK_RCVTSTAMPNS
);
916 v
.val
= sock_flag(sk
, SOCK_RCVTSTAMPNS
);
919 case SO_TIMESTAMPING
:
921 if (sock_flag(sk
, SOCK_TIMESTAMPING_TX_HARDWARE
))
922 v
.val
|= SOF_TIMESTAMPING_TX_HARDWARE
;
923 if (sock_flag(sk
, SOCK_TIMESTAMPING_TX_SOFTWARE
))
924 v
.val
|= SOF_TIMESTAMPING_TX_SOFTWARE
;
925 if (sock_flag(sk
, SOCK_TIMESTAMPING_RX_HARDWARE
))
926 v
.val
|= SOF_TIMESTAMPING_RX_HARDWARE
;
927 if (sock_flag(sk
, SOCK_TIMESTAMPING_RX_SOFTWARE
))
928 v
.val
|= SOF_TIMESTAMPING_RX_SOFTWARE
;
929 if (sock_flag(sk
, SOCK_TIMESTAMPING_SOFTWARE
))
930 v
.val
|= SOF_TIMESTAMPING_SOFTWARE
;
931 if (sock_flag(sk
, SOCK_TIMESTAMPING_SYS_HARDWARE
))
932 v
.val
|= SOF_TIMESTAMPING_SYS_HARDWARE
;
933 if (sock_flag(sk
, SOCK_TIMESTAMPING_RAW_HARDWARE
))
934 v
.val
|= SOF_TIMESTAMPING_RAW_HARDWARE
;
938 lv
= sizeof(struct timeval
);
939 if (sk
->sk_rcvtimeo
== MAX_SCHEDULE_TIMEOUT
) {
943 v
.tm
.tv_sec
= sk
->sk_rcvtimeo
/ HZ
;
944 v
.tm
.tv_usec
= ((sk
->sk_rcvtimeo
% HZ
) * 1000000) / HZ
;
949 lv
= sizeof(struct timeval
);
950 if (sk
->sk_sndtimeo
== MAX_SCHEDULE_TIMEOUT
) {
954 v
.tm
.tv_sec
= sk
->sk_sndtimeo
/ HZ
;
955 v
.tm
.tv_usec
= ((sk
->sk_sndtimeo
% HZ
) * 1000000) / HZ
;
960 v
.val
= sk
->sk_rcvlowat
;
968 v
.val
= test_bit(SOCK_PASSCRED
, &sock
->flags
) ? 1 : 0;
973 struct ucred peercred
;
974 if (len
> sizeof(peercred
))
975 len
= sizeof(peercred
);
976 cred_to_ucred(sk
->sk_peer_pid
, sk
->sk_peer_cred
, &peercred
);
977 if (copy_to_user(optval
, &peercred
, len
))
986 if (sock
->ops
->getname(sock
, (struct sockaddr
*)address
, &lv
, 2))
990 if (copy_to_user(optval
, address
, len
))
995 /* Dubious BSD thing... Probably nobody even uses it, but
996 * the UNIX standard wants it for whatever reason... -DaveM
999 v
.val
= sk
->sk_state
== TCP_LISTEN
;
1003 v
.val
= test_bit(SOCK_PASSSEC
, &sock
->flags
) ? 1 : 0;
1007 return security_socket_getpeersec_stream(sock
, optval
, optlen
, len
);
1010 v
.val
= sk
->sk_mark
;
1014 v
.val
= !!sock_flag(sk
, SOCK_RXQ_OVFL
);
1017 case SO_WIFI_STATUS
:
1018 v
.val
= !!sock_flag(sk
, SOCK_WIFI_STATUS
);
1022 return -ENOPROTOOPT
;
1027 if (copy_to_user(optval
, &v
, len
))
1030 if (put_user(len
, optlen
))
1036 * Initialize an sk_lock.
1038 * (We also register the sk_lock with the lock validator.)
1040 static inline void sock_lock_init(struct sock
*sk
)
1042 sock_lock_init_class_and_name(sk
,
1043 af_family_slock_key_strings
[sk
->sk_family
],
1044 af_family_slock_keys
+ sk
->sk_family
,
1045 af_family_key_strings
[sk
->sk_family
],
1046 af_family_keys
+ sk
->sk_family
);
1050 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1051 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1052 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1054 static void sock_copy(struct sock
*nsk
, const struct sock
*osk
)
1056 #ifdef CONFIG_SECURITY_NETWORK
1057 void *sptr
= nsk
->sk_security
;
1059 memcpy(nsk
, osk
, offsetof(struct sock
, sk_dontcopy_begin
));
1061 memcpy(&nsk
->sk_dontcopy_end
, &osk
->sk_dontcopy_end
,
1062 osk
->sk_prot
->obj_size
- offsetof(struct sock
, sk_dontcopy_end
));
1064 #ifdef CONFIG_SECURITY_NETWORK
1065 nsk
->sk_security
= sptr
;
1066 security_sk_clone(osk
, nsk
);
1071 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
1072 * un-modified. Special care is taken when initializing object to zero.
1074 static inline void sk_prot_clear_nulls(struct sock
*sk
, int size
)
1076 if (offsetof(struct sock
, sk_node
.next
) != 0)
1077 memset(sk
, 0, offsetof(struct sock
, sk_node
.next
));
1078 memset(&sk
->sk_node
.pprev
, 0,
1079 size
- offsetof(struct sock
, sk_node
.pprev
));
1082 void sk_prot_clear_portaddr_nulls(struct sock
*sk
, int size
)
1084 unsigned long nulls1
, nulls2
;
1086 nulls1
= offsetof(struct sock
, __sk_common
.skc_node
.next
);
1087 nulls2
= offsetof(struct sock
, __sk_common
.skc_portaddr_node
.next
);
1088 if (nulls1
> nulls2
)
1089 swap(nulls1
, nulls2
);
1092 memset((char *)sk
, 0, nulls1
);
1093 memset((char *)sk
+ nulls1
+ sizeof(void *), 0,
1094 nulls2
- nulls1
- sizeof(void *));
1095 memset((char *)sk
+ nulls2
+ sizeof(void *), 0,
1096 size
- nulls2
- sizeof(void *));
1098 EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls
);
1100 static struct sock
*sk_prot_alloc(struct proto
*prot
, gfp_t priority
,
1104 struct kmem_cache
*slab
;
1108 sk
= kmem_cache_alloc(slab
, priority
& ~__GFP_ZERO
);
1111 if (priority
& __GFP_ZERO
) {
1113 prot
->clear_sk(sk
, prot
->obj_size
);
1115 sk_prot_clear_nulls(sk
, prot
->obj_size
);
1118 sk
= kmalloc(prot
->obj_size
, priority
);
1121 kmemcheck_annotate_bitfield(sk
, flags
);
1123 if (security_sk_alloc(sk
, family
, priority
))
1126 if (!try_module_get(prot
->owner
))
1128 sk_tx_queue_clear(sk
);
1134 security_sk_free(sk
);
1137 kmem_cache_free(slab
, sk
);
1143 static void sk_prot_free(struct proto
*prot
, struct sock
*sk
)
1145 struct kmem_cache
*slab
;
1146 struct module
*owner
;
1148 owner
= prot
->owner
;
1151 security_sk_free(sk
);
1153 kmem_cache_free(slab
, sk
);
1159 #ifdef CONFIG_CGROUPS
1160 void sock_update_classid(struct sock
*sk
)
1164 rcu_read_lock(); /* doing current task, which cannot vanish. */
1165 classid
= task_cls_classid(current
);
1167 if (classid
&& classid
!= sk
->sk_classid
)
1168 sk
->sk_classid
= classid
;
1170 EXPORT_SYMBOL(sock_update_classid
);
1172 void sock_update_netprioidx(struct sock
*sk
)
1177 sk
->sk_cgrp_prioidx
= task_netprioidx(current
);
1179 EXPORT_SYMBOL_GPL(sock_update_netprioidx
);
1183 * sk_alloc - All socket objects are allocated here
1184 * @net: the applicable net namespace
1185 * @family: protocol family
1186 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1187 * @prot: struct proto associated with this new sock instance
1189 struct sock
*sk_alloc(struct net
*net
, int family
, gfp_t priority
,
1194 sk
= sk_prot_alloc(prot
, priority
| __GFP_ZERO
, family
);
1196 sk
->sk_family
= family
;
1198 * See comment in struct sock definition to understand
1199 * why we need sk_prot_creator -acme
1201 sk
->sk_prot
= sk
->sk_prot_creator
= prot
;
1203 sock_net_set(sk
, get_net(net
));
1204 atomic_set(&sk
->sk_wmem_alloc
, 1);
1206 sock_update_classid(sk
);
1207 sock_update_netprioidx(sk
);
1212 EXPORT_SYMBOL(sk_alloc
);
1214 static void __sk_free(struct sock
*sk
)
1216 struct sk_filter
*filter
;
1218 if (sk
->sk_destruct
)
1219 sk
->sk_destruct(sk
);
1221 filter
= rcu_dereference_check(sk
->sk_filter
,
1222 atomic_read(&sk
->sk_wmem_alloc
) == 0);
1224 sk_filter_uncharge(sk
, filter
);
1225 RCU_INIT_POINTER(sk
->sk_filter
, NULL
);
1228 sock_disable_timestamp(sk
, SK_FLAGS_TIMESTAMP
);
1230 if (atomic_read(&sk
->sk_omem_alloc
))
1231 printk(KERN_DEBUG
"%s: optmem leakage (%d bytes) detected.\n",
1232 __func__
, atomic_read(&sk
->sk_omem_alloc
));
1234 if (sk
->sk_peer_cred
)
1235 put_cred(sk
->sk_peer_cred
);
1236 put_pid(sk
->sk_peer_pid
);
1237 put_net(sock_net(sk
));
1238 sk_prot_free(sk
->sk_prot_creator
, sk
);
1241 void sk_free(struct sock
*sk
)
1244 * We subtract one from sk_wmem_alloc and can know if
1245 * some packets are still in some tx queue.
1246 * If not null, sock_wfree() will call __sk_free(sk) later
1248 if (atomic_dec_and_test(&sk
->sk_wmem_alloc
))
1251 EXPORT_SYMBOL(sk_free
);
1254 * Last sock_put should drop reference to sk->sk_net. It has already
1255 * been dropped in sk_change_net. Taking reference to stopping namespace
1257 * Take reference to a socket to remove it from hash _alive_ and after that
1258 * destroy it in the context of init_net.
1260 void sk_release_kernel(struct sock
*sk
)
1262 if (sk
== NULL
|| sk
->sk_socket
== NULL
)
1266 sock_release(sk
->sk_socket
);
1267 release_net(sock_net(sk
));
1268 sock_net_set(sk
, get_net(&init_net
));
1271 EXPORT_SYMBOL(sk_release_kernel
);
1273 static void sk_update_clone(const struct sock
*sk
, struct sock
*newsk
)
1275 if (mem_cgroup_sockets_enabled
&& sk
->sk_cgrp
)
1276 sock_update_memcg(newsk
);
1280 * sk_clone_lock - clone a socket, and lock its clone
1281 * @sk: the socket to clone
1282 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1284 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1286 struct sock
*sk_clone_lock(const struct sock
*sk
, const gfp_t priority
)
1290 newsk
= sk_prot_alloc(sk
->sk_prot
, priority
, sk
->sk_family
);
1291 if (newsk
!= NULL
) {
1292 struct sk_filter
*filter
;
1294 sock_copy(newsk
, sk
);
1297 get_net(sock_net(newsk
));
1298 sk_node_init(&newsk
->sk_node
);
1299 sock_lock_init(newsk
);
1300 bh_lock_sock(newsk
);
1301 newsk
->sk_backlog
.head
= newsk
->sk_backlog
.tail
= NULL
;
1302 newsk
->sk_backlog
.len
= 0;
1304 atomic_set(&newsk
->sk_rmem_alloc
, 0);
1306 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1308 atomic_set(&newsk
->sk_wmem_alloc
, 1);
1309 atomic_set(&newsk
->sk_omem_alloc
, 0);
1310 skb_queue_head_init(&newsk
->sk_receive_queue
);
1311 skb_queue_head_init(&newsk
->sk_write_queue
);
1312 #ifdef CONFIG_NET_DMA
1313 skb_queue_head_init(&newsk
->sk_async_wait_queue
);
1316 spin_lock_init(&newsk
->sk_dst_lock
);
1317 rwlock_init(&newsk
->sk_callback_lock
);
1318 lockdep_set_class_and_name(&newsk
->sk_callback_lock
,
1319 af_callback_keys
+ newsk
->sk_family
,
1320 af_family_clock_key_strings
[newsk
->sk_family
]);
1322 newsk
->sk_dst_cache
= NULL
;
1323 newsk
->sk_wmem_queued
= 0;
1324 newsk
->sk_forward_alloc
= 0;
1325 newsk
->sk_send_head
= NULL
;
1326 newsk
->sk_userlocks
= sk
->sk_userlocks
& ~SOCK_BINDPORT_LOCK
;
1328 sock_reset_flag(newsk
, SOCK_DONE
);
1329 skb_queue_head_init(&newsk
->sk_error_queue
);
1331 filter
= rcu_dereference_protected(newsk
->sk_filter
, 1);
1333 sk_filter_charge(newsk
, filter
);
1335 if (unlikely(xfrm_sk_clone_policy(newsk
))) {
1336 /* It is still raw copy of parent, so invalidate
1337 * destructor and make plain sk_free() */
1338 newsk
->sk_destruct
= NULL
;
1339 bh_unlock_sock(newsk
);
1346 newsk
->sk_priority
= 0;
1348 * Before updating sk_refcnt, we must commit prior changes to memory
1349 * (Documentation/RCU/rculist_nulls.txt for details)
1352 atomic_set(&newsk
->sk_refcnt
, 2);
1355 * Increment the counter in the same struct proto as the master
1356 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1357 * is the same as sk->sk_prot->socks, as this field was copied
1360 * This _changes_ the previous behaviour, where
1361 * tcp_create_openreq_child always was incrementing the
1362 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1363 * to be taken into account in all callers. -acme
1365 sk_refcnt_debug_inc(newsk
);
1366 sk_set_socket(newsk
, NULL
);
1367 newsk
->sk_wq
= NULL
;
1369 sk_update_clone(sk
, newsk
);
1371 if (newsk
->sk_prot
->sockets_allocated
)
1372 sk_sockets_allocated_inc(newsk
);
1374 if (newsk
->sk_flags
& SK_FLAGS_TIMESTAMP
)
1375 net_enable_timestamp();
1380 EXPORT_SYMBOL_GPL(sk_clone_lock
);
1382 void sk_setup_caps(struct sock
*sk
, struct dst_entry
*dst
)
1384 __sk_dst_set(sk
, dst
);
1385 sk
->sk_route_caps
= dst
->dev
->features
;
1386 if (sk
->sk_route_caps
& NETIF_F_GSO
)
1387 sk
->sk_route_caps
|= NETIF_F_GSO_SOFTWARE
;
1388 sk
->sk_route_caps
&= ~sk
->sk_route_nocaps
;
1389 if (sk_can_gso(sk
)) {
1390 if (dst
->header_len
) {
1391 sk
->sk_route_caps
&= ~NETIF_F_GSO_MASK
;
1393 sk
->sk_route_caps
|= NETIF_F_SG
| NETIF_F_HW_CSUM
;
1394 sk
->sk_gso_max_size
= dst
->dev
->gso_max_size
;
1398 EXPORT_SYMBOL_GPL(sk_setup_caps
);
1400 void __init
sk_init(void)
1402 if (totalram_pages
<= 4096) {
1403 sysctl_wmem_max
= 32767;
1404 sysctl_rmem_max
= 32767;
1405 sysctl_wmem_default
= 32767;
1406 sysctl_rmem_default
= 32767;
1407 } else if (totalram_pages
>= 131072) {
1408 sysctl_wmem_max
= 131071;
1409 sysctl_rmem_max
= 131071;
1414 * Simple resource managers for sockets.
1419 * Write buffer destructor automatically called from kfree_skb.
1421 void sock_wfree(struct sk_buff
*skb
)
1423 struct sock
*sk
= skb
->sk
;
1424 unsigned int len
= skb
->truesize
;
1426 if (!sock_flag(sk
, SOCK_USE_WRITE_QUEUE
)) {
1428 * Keep a reference on sk_wmem_alloc, this will be released
1429 * after sk_write_space() call
1431 atomic_sub(len
- 1, &sk
->sk_wmem_alloc
);
1432 sk
->sk_write_space(sk
);
1436 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1437 * could not do because of in-flight packets
1439 if (atomic_sub_and_test(len
, &sk
->sk_wmem_alloc
))
1442 EXPORT_SYMBOL(sock_wfree
);
1445 * Read buffer destructor automatically called from kfree_skb.
1447 void sock_rfree(struct sk_buff
*skb
)
1449 struct sock
*sk
= skb
->sk
;
1450 unsigned int len
= skb
->truesize
;
1452 atomic_sub(len
, &sk
->sk_rmem_alloc
);
1453 sk_mem_uncharge(sk
, len
);
1455 EXPORT_SYMBOL(sock_rfree
);
1458 int sock_i_uid(struct sock
*sk
)
1462 read_lock_bh(&sk
->sk_callback_lock
);
1463 uid
= sk
->sk_socket
? SOCK_INODE(sk
->sk_socket
)->i_uid
: 0;
1464 read_unlock_bh(&sk
->sk_callback_lock
);
1467 EXPORT_SYMBOL(sock_i_uid
);
1469 unsigned long sock_i_ino(struct sock
*sk
)
1473 read_lock_bh(&sk
->sk_callback_lock
);
1474 ino
= sk
->sk_socket
? SOCK_INODE(sk
->sk_socket
)->i_ino
: 0;
1475 read_unlock_bh(&sk
->sk_callback_lock
);
1478 EXPORT_SYMBOL(sock_i_ino
);
1481 * Allocate a skb from the socket's send buffer.
1483 struct sk_buff
*sock_wmalloc(struct sock
*sk
, unsigned long size
, int force
,
1486 if (force
|| atomic_read(&sk
->sk_wmem_alloc
) < sk
->sk_sndbuf
) {
1487 struct sk_buff
*skb
= alloc_skb(size
, priority
);
1489 skb_set_owner_w(skb
, sk
);
1495 EXPORT_SYMBOL(sock_wmalloc
);
1498 * Allocate a skb from the socket's receive buffer.
1500 struct sk_buff
*sock_rmalloc(struct sock
*sk
, unsigned long size
, int force
,
1503 if (force
|| atomic_read(&sk
->sk_rmem_alloc
) < sk
->sk_rcvbuf
) {
1504 struct sk_buff
*skb
= alloc_skb(size
, priority
);
1506 skb_set_owner_r(skb
, sk
);
1514 * Allocate a memory block from the socket's option memory buffer.
1516 void *sock_kmalloc(struct sock
*sk
, int size
, gfp_t priority
)
1518 if ((unsigned)size
<= sysctl_optmem_max
&&
1519 atomic_read(&sk
->sk_omem_alloc
) + size
< sysctl_optmem_max
) {
1521 /* First do the add, to avoid the race if kmalloc
1524 atomic_add(size
, &sk
->sk_omem_alloc
);
1525 mem
= kmalloc(size
, priority
);
1528 atomic_sub(size
, &sk
->sk_omem_alloc
);
1532 EXPORT_SYMBOL(sock_kmalloc
);
1535 * Free an option memory block.
1537 void sock_kfree_s(struct sock
*sk
, void *mem
, int size
)
1540 atomic_sub(size
, &sk
->sk_omem_alloc
);
1542 EXPORT_SYMBOL(sock_kfree_s
);
1544 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1545 I think, these locks should be removed for datagram sockets.
1547 static long sock_wait_for_wmem(struct sock
*sk
, long timeo
)
1551 clear_bit(SOCK_ASYNC_NOSPACE
, &sk
->sk_socket
->flags
);
1555 if (signal_pending(current
))
1557 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
1558 prepare_to_wait(sk_sleep(sk
), &wait
, TASK_INTERRUPTIBLE
);
1559 if (atomic_read(&sk
->sk_wmem_alloc
) < sk
->sk_sndbuf
)
1561 if (sk
->sk_shutdown
& SEND_SHUTDOWN
)
1565 timeo
= schedule_timeout(timeo
);
1567 finish_wait(sk_sleep(sk
), &wait
);
1573 * Generic send/receive buffer handlers
1576 struct sk_buff
*sock_alloc_send_pskb(struct sock
*sk
, unsigned long header_len
,
1577 unsigned long data_len
, int noblock
,
1580 struct sk_buff
*skb
;
1585 gfp_mask
= sk
->sk_allocation
;
1586 if (gfp_mask
& __GFP_WAIT
)
1587 gfp_mask
|= __GFP_REPEAT
;
1589 timeo
= sock_sndtimeo(sk
, noblock
);
1591 err
= sock_error(sk
);
1596 if (sk
->sk_shutdown
& SEND_SHUTDOWN
)
1599 if (atomic_read(&sk
->sk_wmem_alloc
) < sk
->sk_sndbuf
) {
1600 skb
= alloc_skb(header_len
, gfp_mask
);
1605 /* No pages, we're done... */
1609 npages
= (data_len
+ (PAGE_SIZE
- 1)) >> PAGE_SHIFT
;
1610 skb
->truesize
+= data_len
;
1611 skb_shinfo(skb
)->nr_frags
= npages
;
1612 for (i
= 0; i
< npages
; i
++) {
1615 page
= alloc_pages(sk
->sk_allocation
, 0);
1618 skb_shinfo(skb
)->nr_frags
= i
;
1623 __skb_fill_page_desc(skb
, i
,
1625 (data_len
>= PAGE_SIZE
?
1628 data_len
-= PAGE_SIZE
;
1631 /* Full success... */
1637 set_bit(SOCK_ASYNC_NOSPACE
, &sk
->sk_socket
->flags
);
1638 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
1642 if (signal_pending(current
))
1644 timeo
= sock_wait_for_wmem(sk
, timeo
);
1647 skb_set_owner_w(skb
, sk
);
1651 err
= sock_intr_errno(timeo
);
1656 EXPORT_SYMBOL(sock_alloc_send_pskb
);
1658 struct sk_buff
*sock_alloc_send_skb(struct sock
*sk
, unsigned long size
,
1659 int noblock
, int *errcode
)
1661 return sock_alloc_send_pskb(sk
, size
, 0, noblock
, errcode
);
1663 EXPORT_SYMBOL(sock_alloc_send_skb
);
1665 static void __lock_sock(struct sock
*sk
)
1666 __releases(&sk
->sk_lock
.slock
)
1667 __acquires(&sk
->sk_lock
.slock
)
1672 prepare_to_wait_exclusive(&sk
->sk_lock
.wq
, &wait
,
1673 TASK_UNINTERRUPTIBLE
);
1674 spin_unlock_bh(&sk
->sk_lock
.slock
);
1676 spin_lock_bh(&sk
->sk_lock
.slock
);
1677 if (!sock_owned_by_user(sk
))
1680 finish_wait(&sk
->sk_lock
.wq
, &wait
);
1683 static void __release_sock(struct sock
*sk
)
1684 __releases(&sk
->sk_lock
.slock
)
1685 __acquires(&sk
->sk_lock
.slock
)
1687 struct sk_buff
*skb
= sk
->sk_backlog
.head
;
1690 sk
->sk_backlog
.head
= sk
->sk_backlog
.tail
= NULL
;
1694 struct sk_buff
*next
= skb
->next
;
1696 WARN_ON_ONCE(skb_dst_is_noref(skb
));
1698 sk_backlog_rcv(sk
, skb
);
1701 * We are in process context here with softirqs
1702 * disabled, use cond_resched_softirq() to preempt.
1703 * This is safe to do because we've taken the backlog
1706 cond_resched_softirq();
1709 } while (skb
!= NULL
);
1712 } while ((skb
= sk
->sk_backlog
.head
) != NULL
);
1715 * Doing the zeroing here guarantee we can not loop forever
1716 * while a wild producer attempts to flood us.
1718 sk
->sk_backlog
.len
= 0;
1722 * sk_wait_data - wait for data to arrive at sk_receive_queue
1723 * @sk: sock to wait on
1724 * @timeo: for how long
1726 * Now socket state including sk->sk_err is changed only under lock,
1727 * hence we may omit checks after joining wait queue.
1728 * We check receive queue before schedule() only as optimization;
1729 * it is very likely that release_sock() added new data.
1731 int sk_wait_data(struct sock
*sk
, long *timeo
)
1736 prepare_to_wait(sk_sleep(sk
), &wait
, TASK_INTERRUPTIBLE
);
1737 set_bit(SOCK_ASYNC_WAITDATA
, &sk
->sk_socket
->flags
);
1738 rc
= sk_wait_event(sk
, timeo
, !skb_queue_empty(&sk
->sk_receive_queue
));
1739 clear_bit(SOCK_ASYNC_WAITDATA
, &sk
->sk_socket
->flags
);
1740 finish_wait(sk_sleep(sk
), &wait
);
1743 EXPORT_SYMBOL(sk_wait_data
);
1746 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1748 * @size: memory size to allocate
1749 * @kind: allocation type
1751 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1752 * rmem allocation. This function assumes that protocols which have
1753 * memory_pressure use sk_wmem_queued as write buffer accounting.
1755 int __sk_mem_schedule(struct sock
*sk
, int size
, int kind
)
1757 struct proto
*prot
= sk
->sk_prot
;
1758 int amt
= sk_mem_pages(size
);
1760 int parent_status
= UNDER_LIMIT
;
1762 sk
->sk_forward_alloc
+= amt
* SK_MEM_QUANTUM
;
1764 allocated
= sk_memory_allocated_add(sk
, amt
, &parent_status
);
1767 if (parent_status
== UNDER_LIMIT
&&
1768 allocated
<= sk_prot_mem_limits(sk
, 0)) {
1769 sk_leave_memory_pressure(sk
);
1773 /* Under pressure. (we or our parents) */
1774 if ((parent_status
> SOFT_LIMIT
) ||
1775 allocated
> sk_prot_mem_limits(sk
, 1))
1776 sk_enter_memory_pressure(sk
);
1778 /* Over hard limit (we or our parents) */
1779 if ((parent_status
== OVER_LIMIT
) ||
1780 (allocated
> sk_prot_mem_limits(sk
, 2)))
1781 goto suppress_allocation
;
1783 /* guarantee minimum buffer size under pressure */
1784 if (kind
== SK_MEM_RECV
) {
1785 if (atomic_read(&sk
->sk_rmem_alloc
) < prot
->sysctl_rmem
[0])
1788 } else { /* SK_MEM_SEND */
1789 if (sk
->sk_type
== SOCK_STREAM
) {
1790 if (sk
->sk_wmem_queued
< prot
->sysctl_wmem
[0])
1792 } else if (atomic_read(&sk
->sk_wmem_alloc
) <
1793 prot
->sysctl_wmem
[0])
1797 if (sk_has_memory_pressure(sk
)) {
1800 if (!sk_under_memory_pressure(sk
))
1802 alloc
= sk_sockets_allocated_read_positive(sk
);
1803 if (sk_prot_mem_limits(sk
, 2) > alloc
*
1804 sk_mem_pages(sk
->sk_wmem_queued
+
1805 atomic_read(&sk
->sk_rmem_alloc
) +
1806 sk
->sk_forward_alloc
))
1810 suppress_allocation
:
1812 if (kind
== SK_MEM_SEND
&& sk
->sk_type
== SOCK_STREAM
) {
1813 sk_stream_moderate_sndbuf(sk
);
1815 /* Fail only if socket is _under_ its sndbuf.
1816 * In this case we cannot block, so that we have to fail.
1818 if (sk
->sk_wmem_queued
+ size
>= sk
->sk_sndbuf
)
1822 trace_sock_exceed_buf_limit(sk
, prot
, allocated
);
1824 /* Alas. Undo changes. */
1825 sk
->sk_forward_alloc
-= amt
* SK_MEM_QUANTUM
;
1827 sk_memory_allocated_sub(sk
, amt
);
1831 EXPORT_SYMBOL(__sk_mem_schedule
);
1834 * __sk_reclaim - reclaim memory_allocated
1837 void __sk_mem_reclaim(struct sock
*sk
)
1839 sk_memory_allocated_sub(sk
,
1840 sk
->sk_forward_alloc
>> SK_MEM_QUANTUM_SHIFT
);
1841 sk
->sk_forward_alloc
&= SK_MEM_QUANTUM
- 1;
1843 if (sk_under_memory_pressure(sk
) &&
1844 (sk_memory_allocated(sk
) < sk_prot_mem_limits(sk
, 0)))
1845 sk_leave_memory_pressure(sk
);
1847 EXPORT_SYMBOL(__sk_mem_reclaim
);
1851 * Set of default routines for initialising struct proto_ops when
1852 * the protocol does not support a particular function. In certain
1853 * cases where it makes no sense for a protocol to have a "do nothing"
1854 * function, some default processing is provided.
1857 int sock_no_bind(struct socket
*sock
, struct sockaddr
*saddr
, int len
)
1861 EXPORT_SYMBOL(sock_no_bind
);
1863 int sock_no_connect(struct socket
*sock
, struct sockaddr
*saddr
,
1868 EXPORT_SYMBOL(sock_no_connect
);
1870 int sock_no_socketpair(struct socket
*sock1
, struct socket
*sock2
)
1874 EXPORT_SYMBOL(sock_no_socketpair
);
1876 int sock_no_accept(struct socket
*sock
, struct socket
*newsock
, int flags
)
1880 EXPORT_SYMBOL(sock_no_accept
);
1882 int sock_no_getname(struct socket
*sock
, struct sockaddr
*saddr
,
1887 EXPORT_SYMBOL(sock_no_getname
);
1889 unsigned int sock_no_poll(struct file
*file
, struct socket
*sock
, poll_table
*pt
)
1893 EXPORT_SYMBOL(sock_no_poll
);
1895 int sock_no_ioctl(struct socket
*sock
, unsigned int cmd
, unsigned long arg
)
1899 EXPORT_SYMBOL(sock_no_ioctl
);
1901 int sock_no_listen(struct socket
*sock
, int backlog
)
1905 EXPORT_SYMBOL(sock_no_listen
);
1907 int sock_no_shutdown(struct socket
*sock
, int how
)
1911 EXPORT_SYMBOL(sock_no_shutdown
);
1913 int sock_no_setsockopt(struct socket
*sock
, int level
, int optname
,
1914 char __user
*optval
, unsigned int optlen
)
1918 EXPORT_SYMBOL(sock_no_setsockopt
);
1920 int sock_no_getsockopt(struct socket
*sock
, int level
, int optname
,
1921 char __user
*optval
, int __user
*optlen
)
1925 EXPORT_SYMBOL(sock_no_getsockopt
);
1927 int sock_no_sendmsg(struct kiocb
*iocb
, struct socket
*sock
, struct msghdr
*m
,
1932 EXPORT_SYMBOL(sock_no_sendmsg
);
1934 int sock_no_recvmsg(struct kiocb
*iocb
, struct socket
*sock
, struct msghdr
*m
,
1935 size_t len
, int flags
)
1939 EXPORT_SYMBOL(sock_no_recvmsg
);
1941 int sock_no_mmap(struct file
*file
, struct socket
*sock
, struct vm_area_struct
*vma
)
1943 /* Mirror missing mmap method error code */
1946 EXPORT_SYMBOL(sock_no_mmap
);
1948 ssize_t
sock_no_sendpage(struct socket
*sock
, struct page
*page
, int offset
, size_t size
, int flags
)
1951 struct msghdr msg
= {.msg_flags
= flags
};
1953 char *kaddr
= kmap(page
);
1954 iov
.iov_base
= kaddr
+ offset
;
1956 res
= kernel_sendmsg(sock
, &msg
, &iov
, 1, size
);
1960 EXPORT_SYMBOL(sock_no_sendpage
);
1963 * Default Socket Callbacks
1966 static void sock_def_wakeup(struct sock
*sk
)
1968 struct socket_wq
*wq
;
1971 wq
= rcu_dereference(sk
->sk_wq
);
1972 if (wq_has_sleeper(wq
))
1973 wake_up_interruptible_all(&wq
->wait
);
1977 static void sock_def_error_report(struct sock
*sk
)
1979 struct socket_wq
*wq
;
1982 wq
= rcu_dereference(sk
->sk_wq
);
1983 if (wq_has_sleeper(wq
))
1984 wake_up_interruptible_poll(&wq
->wait
, POLLERR
);
1985 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_ERR
);
1989 static void sock_def_readable(struct sock
*sk
, int len
)
1991 struct socket_wq
*wq
;
1994 wq
= rcu_dereference(sk
->sk_wq
);
1995 if (wq_has_sleeper(wq
))
1996 wake_up_interruptible_sync_poll(&wq
->wait
, POLLIN
| POLLPRI
|
1997 POLLRDNORM
| POLLRDBAND
);
1998 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_IN
);
2002 static void sock_def_write_space(struct sock
*sk
)
2004 struct socket_wq
*wq
;
2008 /* Do not wake up a writer until he can make "significant"
2011 if ((atomic_read(&sk
->sk_wmem_alloc
) << 1) <= sk
->sk_sndbuf
) {
2012 wq
= rcu_dereference(sk
->sk_wq
);
2013 if (wq_has_sleeper(wq
))
2014 wake_up_interruptible_sync_poll(&wq
->wait
, POLLOUT
|
2015 POLLWRNORM
| POLLWRBAND
);
2017 /* Should agree with poll, otherwise some programs break */
2018 if (sock_writeable(sk
))
2019 sk_wake_async(sk
, SOCK_WAKE_SPACE
, POLL_OUT
);
2025 static void sock_def_destruct(struct sock
*sk
)
2027 kfree(sk
->sk_protinfo
);
2030 void sk_send_sigurg(struct sock
*sk
)
2032 if (sk
->sk_socket
&& sk
->sk_socket
->file
)
2033 if (send_sigurg(&sk
->sk_socket
->file
->f_owner
))
2034 sk_wake_async(sk
, SOCK_WAKE_URG
, POLL_PRI
);
2036 EXPORT_SYMBOL(sk_send_sigurg
);
2038 void sk_reset_timer(struct sock
*sk
, struct timer_list
* timer
,
2039 unsigned long expires
)
2041 if (!mod_timer(timer
, expires
))
2044 EXPORT_SYMBOL(sk_reset_timer
);
2046 void sk_stop_timer(struct sock
*sk
, struct timer_list
* timer
)
2048 if (timer_pending(timer
) && del_timer(timer
))
2051 EXPORT_SYMBOL(sk_stop_timer
);
2053 void sock_init_data(struct socket
*sock
, struct sock
*sk
)
2055 skb_queue_head_init(&sk
->sk_receive_queue
);
2056 skb_queue_head_init(&sk
->sk_write_queue
);
2057 skb_queue_head_init(&sk
->sk_error_queue
);
2058 #ifdef CONFIG_NET_DMA
2059 skb_queue_head_init(&sk
->sk_async_wait_queue
);
2062 sk
->sk_send_head
= NULL
;
2064 init_timer(&sk
->sk_timer
);
2066 sk
->sk_allocation
= GFP_KERNEL
;
2067 sk
->sk_rcvbuf
= sysctl_rmem_default
;
2068 sk
->sk_sndbuf
= sysctl_wmem_default
;
2069 sk
->sk_state
= TCP_CLOSE
;
2070 sk_set_socket(sk
, sock
);
2072 sock_set_flag(sk
, SOCK_ZAPPED
);
2075 sk
->sk_type
= sock
->type
;
2076 sk
->sk_wq
= sock
->wq
;
2081 spin_lock_init(&sk
->sk_dst_lock
);
2082 rwlock_init(&sk
->sk_callback_lock
);
2083 lockdep_set_class_and_name(&sk
->sk_callback_lock
,
2084 af_callback_keys
+ sk
->sk_family
,
2085 af_family_clock_key_strings
[sk
->sk_family
]);
2087 sk
->sk_state_change
= sock_def_wakeup
;
2088 sk
->sk_data_ready
= sock_def_readable
;
2089 sk
->sk_write_space
= sock_def_write_space
;
2090 sk
->sk_error_report
= sock_def_error_report
;
2091 sk
->sk_destruct
= sock_def_destruct
;
2093 sk
->sk_sndmsg_page
= NULL
;
2094 sk
->sk_sndmsg_off
= 0;
2096 sk
->sk_peer_pid
= NULL
;
2097 sk
->sk_peer_cred
= NULL
;
2098 sk
->sk_write_pending
= 0;
2099 sk
->sk_rcvlowat
= 1;
2100 sk
->sk_rcvtimeo
= MAX_SCHEDULE_TIMEOUT
;
2101 sk
->sk_sndtimeo
= MAX_SCHEDULE_TIMEOUT
;
2103 sk
->sk_stamp
= ktime_set(-1L, 0);
2106 * Before updating sk_refcnt, we must commit prior changes to memory
2107 * (Documentation/RCU/rculist_nulls.txt for details)
2110 atomic_set(&sk
->sk_refcnt
, 1);
2111 atomic_set(&sk
->sk_drops
, 0);
2113 EXPORT_SYMBOL(sock_init_data
);
2115 void lock_sock_nested(struct sock
*sk
, int subclass
)
2118 spin_lock_bh(&sk
->sk_lock
.slock
);
2119 if (sk
->sk_lock
.owned
)
2121 sk
->sk_lock
.owned
= 1;
2122 spin_unlock(&sk
->sk_lock
.slock
);
2124 * The sk_lock has mutex_lock() semantics here:
2126 mutex_acquire(&sk
->sk_lock
.dep_map
, subclass
, 0, _RET_IP_
);
2129 EXPORT_SYMBOL(lock_sock_nested
);
2131 void release_sock(struct sock
*sk
)
2134 * The sk_lock has mutex_unlock() semantics:
2136 mutex_release(&sk
->sk_lock
.dep_map
, 1, _RET_IP_
);
2138 spin_lock_bh(&sk
->sk_lock
.slock
);
2139 if (sk
->sk_backlog
.tail
)
2141 sk
->sk_lock
.owned
= 0;
2142 if (waitqueue_active(&sk
->sk_lock
.wq
))
2143 wake_up(&sk
->sk_lock
.wq
);
2144 spin_unlock_bh(&sk
->sk_lock
.slock
);
2146 EXPORT_SYMBOL(release_sock
);
2149 * lock_sock_fast - fast version of lock_sock
2152 * This version should be used for very small section, where process wont block
2153 * return false if fast path is taken
2154 * sk_lock.slock locked, owned = 0, BH disabled
2155 * return true if slow path is taken
2156 * sk_lock.slock unlocked, owned = 1, BH enabled
2158 bool lock_sock_fast(struct sock
*sk
)
2161 spin_lock_bh(&sk
->sk_lock
.slock
);
2163 if (!sk
->sk_lock
.owned
)
2165 * Note : We must disable BH
2170 sk
->sk_lock
.owned
= 1;
2171 spin_unlock(&sk
->sk_lock
.slock
);
2173 * The sk_lock has mutex_lock() semantics here:
2175 mutex_acquire(&sk
->sk_lock
.dep_map
, 0, 0, _RET_IP_
);
2179 EXPORT_SYMBOL(lock_sock_fast
);
2181 int sock_get_timestamp(struct sock
*sk
, struct timeval __user
*userstamp
)
2184 if (!sock_flag(sk
, SOCK_TIMESTAMP
))
2185 sock_enable_timestamp(sk
, SOCK_TIMESTAMP
);
2186 tv
= ktime_to_timeval(sk
->sk_stamp
);
2187 if (tv
.tv_sec
== -1)
2189 if (tv
.tv_sec
== 0) {
2190 sk
->sk_stamp
= ktime_get_real();
2191 tv
= ktime_to_timeval(sk
->sk_stamp
);
2193 return copy_to_user(userstamp
, &tv
, sizeof(tv
)) ? -EFAULT
: 0;
2195 EXPORT_SYMBOL(sock_get_timestamp
);
2197 int sock_get_timestampns(struct sock
*sk
, struct timespec __user
*userstamp
)
2200 if (!sock_flag(sk
, SOCK_TIMESTAMP
))
2201 sock_enable_timestamp(sk
, SOCK_TIMESTAMP
);
2202 ts
= ktime_to_timespec(sk
->sk_stamp
);
2203 if (ts
.tv_sec
== -1)
2205 if (ts
.tv_sec
== 0) {
2206 sk
->sk_stamp
= ktime_get_real();
2207 ts
= ktime_to_timespec(sk
->sk_stamp
);
2209 return copy_to_user(userstamp
, &ts
, sizeof(ts
)) ? -EFAULT
: 0;
2211 EXPORT_SYMBOL(sock_get_timestampns
);
2213 void sock_enable_timestamp(struct sock
*sk
, int flag
)
2215 if (!sock_flag(sk
, flag
)) {
2216 unsigned long previous_flags
= sk
->sk_flags
;
2218 sock_set_flag(sk
, flag
);
2220 * we just set one of the two flags which require net
2221 * time stamping, but time stamping might have been on
2222 * already because of the other one
2224 if (!(previous_flags
& SK_FLAGS_TIMESTAMP
))
2225 net_enable_timestamp();
2230 * Get a socket option on an socket.
2232 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2233 * asynchronous errors should be reported by getsockopt. We assume
2234 * this means if you specify SO_ERROR (otherwise whats the point of it).
2236 int sock_common_getsockopt(struct socket
*sock
, int level
, int optname
,
2237 char __user
*optval
, int __user
*optlen
)
2239 struct sock
*sk
= sock
->sk
;
2241 return sk
->sk_prot
->getsockopt(sk
, level
, optname
, optval
, optlen
);
2243 EXPORT_SYMBOL(sock_common_getsockopt
);
2245 #ifdef CONFIG_COMPAT
2246 int compat_sock_common_getsockopt(struct socket
*sock
, int level
, int optname
,
2247 char __user
*optval
, int __user
*optlen
)
2249 struct sock
*sk
= sock
->sk
;
2251 if (sk
->sk_prot
->compat_getsockopt
!= NULL
)
2252 return sk
->sk_prot
->compat_getsockopt(sk
, level
, optname
,
2254 return sk
->sk_prot
->getsockopt(sk
, level
, optname
, optval
, optlen
);
2256 EXPORT_SYMBOL(compat_sock_common_getsockopt
);
2259 int sock_common_recvmsg(struct kiocb
*iocb
, struct socket
*sock
,
2260 struct msghdr
*msg
, size_t size
, int flags
)
2262 struct sock
*sk
= sock
->sk
;
2266 err
= sk
->sk_prot
->recvmsg(iocb
, sk
, msg
, size
, flags
& MSG_DONTWAIT
,
2267 flags
& ~MSG_DONTWAIT
, &addr_len
);
2269 msg
->msg_namelen
= addr_len
;
2272 EXPORT_SYMBOL(sock_common_recvmsg
);
2275 * Set socket options on an inet socket.
2277 int sock_common_setsockopt(struct socket
*sock
, int level
, int optname
,
2278 char __user
*optval
, unsigned int optlen
)
2280 struct sock
*sk
= sock
->sk
;
2282 return sk
->sk_prot
->setsockopt(sk
, level
, optname
, optval
, optlen
);
2284 EXPORT_SYMBOL(sock_common_setsockopt
);
2286 #ifdef CONFIG_COMPAT
2287 int compat_sock_common_setsockopt(struct socket
*sock
, int level
, int optname
,
2288 char __user
*optval
, unsigned int optlen
)
2290 struct sock
*sk
= sock
->sk
;
2292 if (sk
->sk_prot
->compat_setsockopt
!= NULL
)
2293 return sk
->sk_prot
->compat_setsockopt(sk
, level
, optname
,
2295 return sk
->sk_prot
->setsockopt(sk
, level
, optname
, optval
, optlen
);
2297 EXPORT_SYMBOL(compat_sock_common_setsockopt
);
2300 void sk_common_release(struct sock
*sk
)
2302 if (sk
->sk_prot
->destroy
)
2303 sk
->sk_prot
->destroy(sk
);
2306 * Observation: when sock_common_release is called, processes have
2307 * no access to socket. But net still has.
2308 * Step one, detach it from networking:
2310 * A. Remove from hash tables.
2313 sk
->sk_prot
->unhash(sk
);
2316 * In this point socket cannot receive new packets, but it is possible
2317 * that some packets are in flight because some CPU runs receiver and
2318 * did hash table lookup before we unhashed socket. They will achieve
2319 * receive queue and will be purged by socket destructor.
2321 * Also we still have packets pending on receive queue and probably,
2322 * our own packets waiting in device queues. sock_destroy will drain
2323 * receive queue, but transmitted packets will delay socket destruction
2324 * until the last reference will be released.
2329 xfrm_sk_free_policy(sk
);
2331 sk_refcnt_debug_release(sk
);
2334 EXPORT_SYMBOL(sk_common_release
);
2336 #ifdef CONFIG_PROC_FS
2337 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
2339 int val
[PROTO_INUSE_NR
];
2342 static DECLARE_BITMAP(proto_inuse_idx
, PROTO_INUSE_NR
);
2344 #ifdef CONFIG_NET_NS
2345 void sock_prot_inuse_add(struct net
*net
, struct proto
*prot
, int val
)
2347 __this_cpu_add(net
->core
.inuse
->val
[prot
->inuse_idx
], val
);
2349 EXPORT_SYMBOL_GPL(sock_prot_inuse_add
);
2351 int sock_prot_inuse_get(struct net
*net
, struct proto
*prot
)
2353 int cpu
, idx
= prot
->inuse_idx
;
2356 for_each_possible_cpu(cpu
)
2357 res
+= per_cpu_ptr(net
->core
.inuse
, cpu
)->val
[idx
];
2359 return res
>= 0 ? res
: 0;
2361 EXPORT_SYMBOL_GPL(sock_prot_inuse_get
);
2363 static int __net_init
sock_inuse_init_net(struct net
*net
)
2365 net
->core
.inuse
= alloc_percpu(struct prot_inuse
);
2366 return net
->core
.inuse
? 0 : -ENOMEM
;
2369 static void __net_exit
sock_inuse_exit_net(struct net
*net
)
2371 free_percpu(net
->core
.inuse
);
2374 static struct pernet_operations net_inuse_ops
= {
2375 .init
= sock_inuse_init_net
,
2376 .exit
= sock_inuse_exit_net
,
2379 static __init
int net_inuse_init(void)
2381 if (register_pernet_subsys(&net_inuse_ops
))
2382 panic("Cannot initialize net inuse counters");
2387 core_initcall(net_inuse_init
);
2389 static DEFINE_PER_CPU(struct prot_inuse
, prot_inuse
);
2391 void sock_prot_inuse_add(struct net
*net
, struct proto
*prot
, int val
)
2393 __this_cpu_add(prot_inuse
.val
[prot
->inuse_idx
], val
);
2395 EXPORT_SYMBOL_GPL(sock_prot_inuse_add
);
2397 int sock_prot_inuse_get(struct net
*net
, struct proto
*prot
)
2399 int cpu
, idx
= prot
->inuse_idx
;
2402 for_each_possible_cpu(cpu
)
2403 res
+= per_cpu(prot_inuse
, cpu
).val
[idx
];
2405 return res
>= 0 ? res
: 0;
2407 EXPORT_SYMBOL_GPL(sock_prot_inuse_get
);
2410 static void assign_proto_idx(struct proto
*prot
)
2412 prot
->inuse_idx
= find_first_zero_bit(proto_inuse_idx
, PROTO_INUSE_NR
);
2414 if (unlikely(prot
->inuse_idx
== PROTO_INUSE_NR
- 1)) {
2415 printk(KERN_ERR
"PROTO_INUSE_NR exhausted\n");
2419 set_bit(prot
->inuse_idx
, proto_inuse_idx
);
2422 static void release_proto_idx(struct proto
*prot
)
2424 if (prot
->inuse_idx
!= PROTO_INUSE_NR
- 1)
2425 clear_bit(prot
->inuse_idx
, proto_inuse_idx
);
2428 static inline void assign_proto_idx(struct proto
*prot
)
2432 static inline void release_proto_idx(struct proto
*prot
)
2437 int proto_register(struct proto
*prot
, int alloc_slab
)
2440 prot
->slab
= kmem_cache_create(prot
->name
, prot
->obj_size
, 0,
2441 SLAB_HWCACHE_ALIGN
| prot
->slab_flags
,
2444 if (prot
->slab
== NULL
) {
2445 printk(KERN_CRIT
"%s: Can't create sock SLAB cache!\n",
2450 if (prot
->rsk_prot
!= NULL
) {
2451 prot
->rsk_prot
->slab_name
= kasprintf(GFP_KERNEL
, "request_sock_%s", prot
->name
);
2452 if (prot
->rsk_prot
->slab_name
== NULL
)
2453 goto out_free_sock_slab
;
2455 prot
->rsk_prot
->slab
= kmem_cache_create(prot
->rsk_prot
->slab_name
,
2456 prot
->rsk_prot
->obj_size
, 0,
2457 SLAB_HWCACHE_ALIGN
, NULL
);
2459 if (prot
->rsk_prot
->slab
== NULL
) {
2460 printk(KERN_CRIT
"%s: Can't create request sock SLAB cache!\n",
2462 goto out_free_request_sock_slab_name
;
2466 if (prot
->twsk_prot
!= NULL
) {
2467 prot
->twsk_prot
->twsk_slab_name
= kasprintf(GFP_KERNEL
, "tw_sock_%s", prot
->name
);
2469 if (prot
->twsk_prot
->twsk_slab_name
== NULL
)
2470 goto out_free_request_sock_slab
;
2472 prot
->twsk_prot
->twsk_slab
=
2473 kmem_cache_create(prot
->twsk_prot
->twsk_slab_name
,
2474 prot
->twsk_prot
->twsk_obj_size
,
2476 SLAB_HWCACHE_ALIGN
|
2479 if (prot
->twsk_prot
->twsk_slab
== NULL
)
2480 goto out_free_timewait_sock_slab_name
;
2484 mutex_lock(&proto_list_mutex
);
2485 list_add(&prot
->node
, &proto_list
);
2486 assign_proto_idx(prot
);
2487 mutex_unlock(&proto_list_mutex
);
2490 out_free_timewait_sock_slab_name
:
2491 kfree(prot
->twsk_prot
->twsk_slab_name
);
2492 out_free_request_sock_slab
:
2493 if (prot
->rsk_prot
&& prot
->rsk_prot
->slab
) {
2494 kmem_cache_destroy(prot
->rsk_prot
->slab
);
2495 prot
->rsk_prot
->slab
= NULL
;
2497 out_free_request_sock_slab_name
:
2499 kfree(prot
->rsk_prot
->slab_name
);
2501 kmem_cache_destroy(prot
->slab
);
2506 EXPORT_SYMBOL(proto_register
);
2508 void proto_unregister(struct proto
*prot
)
2510 mutex_lock(&proto_list_mutex
);
2511 release_proto_idx(prot
);
2512 list_del(&prot
->node
);
2513 mutex_unlock(&proto_list_mutex
);
2515 if (prot
->slab
!= NULL
) {
2516 kmem_cache_destroy(prot
->slab
);
2520 if (prot
->rsk_prot
!= NULL
&& prot
->rsk_prot
->slab
!= NULL
) {
2521 kmem_cache_destroy(prot
->rsk_prot
->slab
);
2522 kfree(prot
->rsk_prot
->slab_name
);
2523 prot
->rsk_prot
->slab
= NULL
;
2526 if (prot
->twsk_prot
!= NULL
&& prot
->twsk_prot
->twsk_slab
!= NULL
) {
2527 kmem_cache_destroy(prot
->twsk_prot
->twsk_slab
);
2528 kfree(prot
->twsk_prot
->twsk_slab_name
);
2529 prot
->twsk_prot
->twsk_slab
= NULL
;
2532 EXPORT_SYMBOL(proto_unregister
);
2534 #ifdef CONFIG_PROC_FS
2535 static void *proto_seq_start(struct seq_file
*seq
, loff_t
*pos
)
2536 __acquires(proto_list_mutex
)
2538 mutex_lock(&proto_list_mutex
);
2539 return seq_list_start_head(&proto_list
, *pos
);
2542 static void *proto_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2544 return seq_list_next(v
, &proto_list
, pos
);
2547 static void proto_seq_stop(struct seq_file
*seq
, void *v
)
2548 __releases(proto_list_mutex
)
2550 mutex_unlock(&proto_list_mutex
);
2553 static char proto_method_implemented(const void *method
)
2555 return method
== NULL
? 'n' : 'y';
2557 static long sock_prot_memory_allocated(struct proto
*proto
)
2559 return proto
->memory_allocated
!= NULL
? proto_memory_allocated(proto
): -1L;
2562 static char *sock_prot_memory_pressure(struct proto
*proto
)
2564 return proto
->memory_pressure
!= NULL
?
2565 proto_memory_pressure(proto
) ? "yes" : "no" : "NI";
2568 static void proto_seq_printf(struct seq_file
*seq
, struct proto
*proto
)
2571 seq_printf(seq
, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
2572 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2575 sock_prot_inuse_get(seq_file_net(seq
), proto
),
2576 sock_prot_memory_allocated(proto
),
2577 sock_prot_memory_pressure(proto
),
2579 proto
->slab
== NULL
? "no" : "yes",
2580 module_name(proto
->owner
),
2581 proto_method_implemented(proto
->close
),
2582 proto_method_implemented(proto
->connect
),
2583 proto_method_implemented(proto
->disconnect
),
2584 proto_method_implemented(proto
->accept
),
2585 proto_method_implemented(proto
->ioctl
),
2586 proto_method_implemented(proto
->init
),
2587 proto_method_implemented(proto
->destroy
),
2588 proto_method_implemented(proto
->shutdown
),
2589 proto_method_implemented(proto
->setsockopt
),
2590 proto_method_implemented(proto
->getsockopt
),
2591 proto_method_implemented(proto
->sendmsg
),
2592 proto_method_implemented(proto
->recvmsg
),
2593 proto_method_implemented(proto
->sendpage
),
2594 proto_method_implemented(proto
->bind
),
2595 proto_method_implemented(proto
->backlog_rcv
),
2596 proto_method_implemented(proto
->hash
),
2597 proto_method_implemented(proto
->unhash
),
2598 proto_method_implemented(proto
->get_port
),
2599 proto_method_implemented(proto
->enter_memory_pressure
));
2602 static int proto_seq_show(struct seq_file
*seq
, void *v
)
2604 if (v
== &proto_list
)
2605 seq_printf(seq
, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2614 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2616 proto_seq_printf(seq
, list_entry(v
, struct proto
, node
));
2620 static const struct seq_operations proto_seq_ops
= {
2621 .start
= proto_seq_start
,
2622 .next
= proto_seq_next
,
2623 .stop
= proto_seq_stop
,
2624 .show
= proto_seq_show
,
2627 static int proto_seq_open(struct inode
*inode
, struct file
*file
)
2629 return seq_open_net(inode
, file
, &proto_seq_ops
,
2630 sizeof(struct seq_net_private
));
2633 static const struct file_operations proto_seq_fops
= {
2634 .owner
= THIS_MODULE
,
2635 .open
= proto_seq_open
,
2637 .llseek
= seq_lseek
,
2638 .release
= seq_release_net
,
2641 static __net_init
int proto_init_net(struct net
*net
)
2643 if (!proc_net_fops_create(net
, "protocols", S_IRUGO
, &proto_seq_fops
))
2649 static __net_exit
void proto_exit_net(struct net
*net
)
2651 proc_net_remove(net
, "protocols");
2655 static __net_initdata
struct pernet_operations proto_net_ops
= {
2656 .init
= proto_init_net
,
2657 .exit
= proto_exit_net
,
2660 static int __init
proto_init(void)
2662 return register_pernet_subsys(&proto_net_ops
);
2665 subsys_initcall(proto_init
);
2667 #endif /* PROC_FS */