2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
21 * Alan Cox : Numerous verify_area() calls
22 * Alan Cox : Set the ACK bit on a reset
23 * Alan Cox : Stopped it crashing if it closed while
24 * sk->inuse=1 and was trying to connect
26 * Alan Cox : All icmp error handling was broken
27 * pointers passed where wrong and the
28 * socket was looked up backwards. Nobody
29 * tested any icmp error code obviously.
30 * Alan Cox : tcp_err() now handled properly. It
31 * wakes people on errors. poll
32 * behaves and the icmp error race
33 * has gone by moving it into sock.c
34 * Alan Cox : tcp_send_reset() fixed to work for
35 * everything not just packets for
37 * Alan Cox : tcp option processing.
38 * Alan Cox : Reset tweaked (still not 100%) [Had
40 * Herp Rosmanith : More reset fixes
41 * Alan Cox : No longer acks invalid rst frames.
42 * Acking any kind of RST is right out.
43 * Alan Cox : Sets an ignore me flag on an rst
44 * receive otherwise odd bits of prattle
46 * Alan Cox : Fixed another acking RST frame bug.
47 * Should stop LAN workplace lockups.
48 * Alan Cox : Some tidyups using the new skb list
50 * Alan Cox : sk->keepopen now seems to work
51 * Alan Cox : Pulls options out correctly on accepts
52 * Alan Cox : Fixed assorted sk->rqueue->next errors
53 * Alan Cox : PSH doesn't end a TCP read. Switched a
55 * Alan Cox : Tidied tcp_data to avoid a potential
57 * Alan Cox : Added some better commenting, as the
58 * tcp is hard to follow
59 * Alan Cox : Removed incorrect check for 20 * psh
60 * Michael O'Reilly : ack < copied bug fix.
61 * Johannes Stille : Misc tcp fixes (not all in yet).
62 * Alan Cox : FIN with no memory -> CRASH
63 * Alan Cox : Added socket option proto entries.
64 * Also added awareness of them to accept.
65 * Alan Cox : Added TCP options (SOL_TCP)
66 * Alan Cox : Switched wakeup calls to callbacks,
67 * so the kernel can layer network
69 * Alan Cox : Use ip_tos/ip_ttl settings.
70 * Alan Cox : Handle FIN (more) properly (we hope).
71 * Alan Cox : RST frames sent on unsynchronised
73 * Alan Cox : Put in missing check for SYN bit.
74 * Alan Cox : Added tcp_select_window() aka NET2E
75 * window non shrink trick.
76 * Alan Cox : Added a couple of small NET2E timer
78 * Charles Hedrick : TCP fixes
79 * Toomas Tamm : TCP window fixes
80 * Alan Cox : Small URG fix to rlogin ^C ack fight
81 * Charles Hedrick : Rewrote most of it to actually work
82 * Linus : Rewrote tcp_read() and URG handling
84 * Gerhard Koerting: Fixed some missing timer handling
85 * Matthew Dillon : Reworked TCP machine states as per RFC
86 * Gerhard Koerting: PC/TCP workarounds
87 * Adam Caldwell : Assorted timer/timing errors
88 * Matthew Dillon : Fixed another RST bug
89 * Alan Cox : Move to kernel side addressing changes.
90 * Alan Cox : Beginning work on TCP fastpathing
92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
93 * Alan Cox : TCP fast path debugging
94 * Alan Cox : Window clamping
95 * Michael Riepe : Bug in tcp_check()
96 * Matt Dillon : More TCP improvements and RST bug fixes
97 * Matt Dillon : Yet more small nasties remove from the
98 * TCP code (Be very nice to this man if
99 * tcp finally works 100%) 8)
100 * Alan Cox : BSD accept semantics.
101 * Alan Cox : Reset on closedown bug.
102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
103 * Michael Pall : Handle poll() after URG properly in
105 * Michael Pall : Undo the last fix in tcp_read_urg()
106 * (multi URG PUSH broke rlogin).
107 * Michael Pall : Fix the multi URG PUSH problem in
108 * tcp_readable(), poll() after URG
110 * Michael Pall : recv(...,MSG_OOB) never blocks in the
112 * Alan Cox : Changed the semantics of sk->socket to
113 * fix a race and a signal problem with
114 * accept() and async I/O.
115 * Alan Cox : Relaxed the rules on tcp_sendto().
116 * Yury Shevchuk : Really fixed accept() blocking problem.
117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
118 * clients/servers which listen in on
120 * Alan Cox : Cleaned the above up and shrank it to
121 * a sensible code size.
122 * Alan Cox : Self connect lockup fix.
123 * Alan Cox : No connect to multicast.
124 * Ross Biro : Close unaccepted children on master
126 * Alan Cox : Reset tracing code.
127 * Alan Cox : Spurious resets on shutdown.
128 * Alan Cox : Giant 15 minute/60 second timer error
129 * Alan Cox : Small whoops in polling before an
131 * Alan Cox : Kept the state trace facility since
132 * it's handy for debugging.
133 * Alan Cox : More reset handler fixes.
134 * Alan Cox : Started rewriting the code based on
135 * the RFC's for other useful protocol
136 * references see: Comer, KA9Q NOS, and
137 * for a reference on the difference
138 * between specifications and how BSD
139 * works see the 4.4lite source.
140 * A.N.Kuznetsov : Don't time wait on completion of tidy
142 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
143 * Linus Torvalds : Fixed BSD port reuse to work first syn
144 * Alan Cox : Reimplemented timers as per the RFC
145 * and using multiple timers for sanity.
146 * Alan Cox : Small bug fixes, and a lot of new
148 * Alan Cox : Fixed dual reader crash by locking
149 * the buffers (much like datagram.c)
150 * Alan Cox : Fixed stuck sockets in probe. A probe
151 * now gets fed up of retrying without
152 * (even a no space) answer.
153 * Alan Cox : Extracted closing code better
154 * Alan Cox : Fixed the closing state machine to
156 * Alan Cox : More 'per spec' fixes.
157 * Jorge Cwik : Even faster checksumming.
158 * Alan Cox : tcp_data() doesn't ack illegal PSH
159 * only frames. At least one pc tcp stack
161 * Alan Cox : Cache last socket.
162 * Alan Cox : Per route irtt.
163 * Matt Day : poll()->select() match BSD precisely on error
164 * Alan Cox : New buffers
165 * Marc Tamsky : Various sk->prot->retransmits and
166 * sk->retransmits misupdating fixed.
167 * Fixed tcp_write_timeout: stuck close,
168 * and TCP syn retries gets used now.
169 * Mark Yarvis : In tcp_read_wakeup(), don't send an
170 * ack if state is TCP_CLOSED.
171 * Alan Cox : Look up device on a retransmit - routes may
172 * change. Doesn't yet cope with MSS shrink right
174 * Marc Tamsky : Closing in closing fixes.
175 * Mike Shaver : RFC1122 verifications.
176 * Alan Cox : rcv_saddr errors.
177 * Alan Cox : Block double connect().
178 * Alan Cox : Small hooks for enSKIP.
179 * Alexey Kuznetsov: Path MTU discovery.
180 * Alan Cox : Support soft errors.
181 * Alan Cox : Fix MTU discovery pathological case
182 * when the remote claims no mtu!
183 * Marc Tamsky : TCP_CLOSE fix.
184 * Colin (G3TNE) : Send a reset on syn ack replies in
185 * window but wrong (fixes NT lpd problems)
186 * Pedro Roque : Better TCP window handling, delayed ack.
187 * Joerg Reuter : No modification of locked buffers in
188 * tcp_do_retransmit()
189 * Eric Schenk : Changed receiver side silly window
190 * avoidance algorithm to BSD style
191 * algorithm. This doubles throughput
192 * against machines running Solaris,
193 * and seems to result in general
195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
196 * Willy Konynenberg : Transparent proxying support.
197 * Mike McLagan : Routing by source
198 * Keith Owens : Do proper merging with partial SKB's in
199 * tcp_do_sendmsg to avoid burstiness.
200 * Eric Schenk : Fix fast close down bug with
201 * shutdown() followed by close().
202 * Andi Kleen : Make poll agree with SIGIO
203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
204 * lingertime == 0 (RFC 793 ABORT Call)
205 * Hirokazu Takahashi : Use copy_from_user() instead of
206 * csum_and_copy_from_user() if possible.
208 * This program is free software; you can redistribute it and/or
209 * modify it under the terms of the GNU General Public License
210 * as published by the Free Software Foundation; either version
211 * 2 of the License, or(at your option) any later version.
213 * Description of States:
215 * TCP_SYN_SENT sent a connection request, waiting for ack
217 * TCP_SYN_RECV received a connection request, sent ack,
218 * waiting for final ack in three-way handshake.
220 * TCP_ESTABLISHED connection established
222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
223 * transmission of remaining buffered data
225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
228 * TCP_CLOSING both sides have shutdown but we still have
229 * data we have to finish sending
231 * TCP_TIME_WAIT timeout to catch resent junk before entering
232 * closed, can only be entered from FIN_WAIT2
233 * or CLOSING. Required because the other end
234 * may not have gotten our last ACK causing it
235 * to retransmit the data packet (which we ignore)
237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
238 * us to finish writing our data and to shutdown
239 * (we have to close() to move on to LAST_ACK)
241 * TCP_LAST_ACK out side has shutdown after remote has
242 * shutdown. There may still be data in our
243 * buffer that we have to finish sending
245 * TCP_CLOSE socket is finished
248 #include <linux/kernel.h>
249 #include <linux/module.h>
250 #include <linux/types.h>
251 #include <linux/fcntl.h>
252 #include <linux/poll.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/bootmem.h>
262 #include <linux/highmem.h>
263 #include <linux/swap.h>
264 #include <linux/cache.h>
265 #include <linux/err.h>
266 #include <linux/crypto.h>
267 #include <linux/time.h>
268 #include <linux/slab.h>
270 #include <net/icmp.h>
272 #include <net/xfrm.h>
274 #include <net/netdma.h>
275 #include <net/sock.h>
277 #include <asm/uaccess.h>
278 #include <asm/ioctls.h>
280 int sysctl_tcp_fin_timeout __read_mostly
= TCP_FIN_TIMEOUT
;
282 struct percpu_counter tcp_orphan_count
;
283 EXPORT_SYMBOL_GPL(tcp_orphan_count
);
285 int sysctl_tcp_wmem
[3] __read_mostly
;
286 int sysctl_tcp_rmem
[3] __read_mostly
;
288 EXPORT_SYMBOL(sysctl_tcp_rmem
);
289 EXPORT_SYMBOL(sysctl_tcp_wmem
);
291 atomic_long_t tcp_memory_allocated
; /* Current allocated memory. */
292 EXPORT_SYMBOL(tcp_memory_allocated
);
295 * Current number of TCP sockets.
297 struct percpu_counter tcp_sockets_allocated
;
298 EXPORT_SYMBOL(tcp_sockets_allocated
);
303 struct tcp_splice_state
{
304 struct pipe_inode_info
*pipe
;
310 * Pressure flag: try to collapse.
311 * Technical note: it is used by multiple contexts non atomically.
312 * All the __sk_mem_schedule() is of this nature: accounting
313 * is strict, actions are advisory and have some latency.
315 int tcp_memory_pressure __read_mostly
;
316 EXPORT_SYMBOL(tcp_memory_pressure
);
318 void tcp_enter_memory_pressure(struct sock
*sk
)
320 if (!tcp_memory_pressure
) {
321 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPMEMORYPRESSURES
);
322 tcp_memory_pressure
= 1;
325 EXPORT_SYMBOL(tcp_enter_memory_pressure
);
327 /* Convert seconds to retransmits based on initial and max timeout */
328 static u8
secs_to_retrans(int seconds
, int timeout
, int rto_max
)
333 int period
= timeout
;
336 while (seconds
> period
&& res
< 255) {
339 if (timeout
> rto_max
)
347 /* Convert retransmits to seconds based on initial and max timeout */
348 static int retrans_to_secs(u8 retrans
, int timeout
, int rto_max
)
356 if (timeout
> rto_max
)
365 * Wait for a TCP event.
367 * Note that we don't need to lock the socket, as the upper poll layers
368 * take care of normal races (between the test and the event) and we don't
369 * go look at any of the socket buffers directly.
371 unsigned int tcp_poll(struct file
*file
, struct socket
*sock
, poll_table
*wait
)
374 struct sock
*sk
= sock
->sk
;
375 const struct tcp_sock
*tp
= tcp_sk(sk
);
377 sock_poll_wait(file
, sk_sleep(sk
), wait
);
378 if (sk
->sk_state
== TCP_LISTEN
)
379 return inet_csk_listen_poll(sk
);
381 /* Socket is not locked. We are protected from async events
382 * by poll logic and correct handling of state changes
383 * made by other threads is impossible in any case.
389 * POLLHUP is certainly not done right. But poll() doesn't
390 * have a notion of HUP in just one direction, and for a
391 * socket the read side is more interesting.
393 * Some poll() documentation says that POLLHUP is incompatible
394 * with the POLLOUT/POLLWR flags, so somebody should check this
395 * all. But careful, it tends to be safer to return too many
396 * bits than too few, and you can easily break real applications
397 * if you don't tell them that something has hung up!
401 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
402 * our fs/select.c). It means that after we received EOF,
403 * poll always returns immediately, making impossible poll() on write()
404 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
405 * if and only if shutdown has been made in both directions.
406 * Actually, it is interesting to look how Solaris and DUX
407 * solve this dilemma. I would prefer, if POLLHUP were maskable,
408 * then we could set it on SND_SHUTDOWN. BTW examples given
409 * in Stevens' books assume exactly this behaviour, it explains
410 * why POLLHUP is incompatible with POLLOUT. --ANK
412 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
413 * blocking on fresh not-connected or disconnected socket. --ANK
415 if (sk
->sk_shutdown
== SHUTDOWN_MASK
|| sk
->sk_state
== TCP_CLOSE
)
417 if (sk
->sk_shutdown
& RCV_SHUTDOWN
)
418 mask
|= POLLIN
| POLLRDNORM
| POLLRDHUP
;
421 if ((1 << sk
->sk_state
) & ~(TCPF_SYN_SENT
| TCPF_SYN_RECV
)) {
422 int target
= sock_rcvlowat(sk
, 0, INT_MAX
);
424 if (tp
->urg_seq
== tp
->copied_seq
&&
425 !sock_flag(sk
, SOCK_URGINLINE
) &&
429 /* Potential race condition. If read of tp below will
430 * escape above sk->sk_state, we can be illegally awaken
431 * in SYN_* states. */
432 if (tp
->rcv_nxt
- tp
->copied_seq
>= target
)
433 mask
|= POLLIN
| POLLRDNORM
;
435 if (!(sk
->sk_shutdown
& SEND_SHUTDOWN
)) {
436 if (sk_stream_wspace(sk
) >= sk_stream_min_wspace(sk
)) {
437 mask
|= POLLOUT
| POLLWRNORM
;
438 } else { /* send SIGIO later */
439 set_bit(SOCK_ASYNC_NOSPACE
,
440 &sk
->sk_socket
->flags
);
441 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
443 /* Race breaker. If space is freed after
444 * wspace test but before the flags are set,
445 * IO signal will be lost.
447 if (sk_stream_wspace(sk
) >= sk_stream_min_wspace(sk
))
448 mask
|= POLLOUT
| POLLWRNORM
;
451 mask
|= POLLOUT
| POLLWRNORM
;
453 if (tp
->urg_data
& TCP_URG_VALID
)
456 /* This barrier is coupled with smp_wmb() in tcp_reset() */
463 EXPORT_SYMBOL(tcp_poll
);
465 int tcp_ioctl(struct sock
*sk
, int cmd
, unsigned long arg
)
467 struct tcp_sock
*tp
= tcp_sk(sk
);
472 if (sk
->sk_state
== TCP_LISTEN
)
476 if ((1 << sk
->sk_state
) & (TCPF_SYN_SENT
| TCPF_SYN_RECV
))
478 else if (sock_flag(sk
, SOCK_URGINLINE
) ||
480 before(tp
->urg_seq
, tp
->copied_seq
) ||
481 !before(tp
->urg_seq
, tp
->rcv_nxt
)) {
484 answ
= tp
->rcv_nxt
- tp
->copied_seq
;
486 /* Subtract 1, if FIN is in queue. */
487 skb
= skb_peek_tail(&sk
->sk_receive_queue
);
489 answ
-= tcp_hdr(skb
)->fin
;
491 answ
= tp
->urg_seq
- tp
->copied_seq
;
495 answ
= tp
->urg_data
&& tp
->urg_seq
== tp
->copied_seq
;
498 if (sk
->sk_state
== TCP_LISTEN
)
501 if ((1 << sk
->sk_state
) & (TCPF_SYN_SENT
| TCPF_SYN_RECV
))
504 answ
= tp
->write_seq
- tp
->snd_una
;
507 if (sk
->sk_state
== TCP_LISTEN
)
510 if ((1 << sk
->sk_state
) & (TCPF_SYN_SENT
| TCPF_SYN_RECV
))
513 answ
= tp
->write_seq
- tp
->snd_nxt
;
519 return put_user(answ
, (int __user
*)arg
);
521 EXPORT_SYMBOL(tcp_ioctl
);
523 static inline void tcp_mark_push(struct tcp_sock
*tp
, struct sk_buff
*skb
)
525 TCP_SKB_CB(skb
)->tcp_flags
|= TCPHDR_PSH
;
526 tp
->pushed_seq
= tp
->write_seq
;
529 static inline int forced_push(const struct tcp_sock
*tp
)
531 return after(tp
->write_seq
, tp
->pushed_seq
+ (tp
->max_window
>> 1));
534 static inline void skb_entail(struct sock
*sk
, struct sk_buff
*skb
)
536 struct tcp_sock
*tp
= tcp_sk(sk
);
537 struct tcp_skb_cb
*tcb
= TCP_SKB_CB(skb
);
540 tcb
->seq
= tcb
->end_seq
= tp
->write_seq
;
541 tcb
->tcp_flags
= TCPHDR_ACK
;
543 skb_header_release(skb
);
544 tcp_add_write_queue_tail(sk
, skb
);
545 sk
->sk_wmem_queued
+= skb
->truesize
;
546 sk_mem_charge(sk
, skb
->truesize
);
547 if (tp
->nonagle
& TCP_NAGLE_PUSH
)
548 tp
->nonagle
&= ~TCP_NAGLE_PUSH
;
551 static inline void tcp_mark_urg(struct tcp_sock
*tp
, int flags
)
554 tp
->snd_up
= tp
->write_seq
;
557 static inline void tcp_push(struct sock
*sk
, int flags
, int mss_now
,
560 if (tcp_send_head(sk
)) {
561 struct tcp_sock
*tp
= tcp_sk(sk
);
563 if (!(flags
& MSG_MORE
) || forced_push(tp
))
564 tcp_mark_push(tp
, tcp_write_queue_tail(sk
));
566 tcp_mark_urg(tp
, flags
);
567 __tcp_push_pending_frames(sk
, mss_now
,
568 (flags
& MSG_MORE
) ? TCP_NAGLE_CORK
: nonagle
);
572 static int tcp_splice_data_recv(read_descriptor_t
*rd_desc
, struct sk_buff
*skb
,
573 unsigned int offset
, size_t len
)
575 struct tcp_splice_state
*tss
= rd_desc
->arg
.data
;
578 ret
= skb_splice_bits(skb
, offset
, tss
->pipe
, min(rd_desc
->count
, len
),
581 rd_desc
->count
-= ret
;
585 static int __tcp_splice_read(struct sock
*sk
, struct tcp_splice_state
*tss
)
587 /* Store TCP splice context information in read_descriptor_t. */
588 read_descriptor_t rd_desc
= {
593 return tcp_read_sock(sk
, &rd_desc
, tcp_splice_data_recv
);
597 * tcp_splice_read - splice data from TCP socket to a pipe
598 * @sock: socket to splice from
599 * @ppos: position (not valid)
600 * @pipe: pipe to splice to
601 * @len: number of bytes to splice
602 * @flags: splice modifier flags
605 * Will read pages from given socket and fill them into a pipe.
608 ssize_t
tcp_splice_read(struct socket
*sock
, loff_t
*ppos
,
609 struct pipe_inode_info
*pipe
, size_t len
,
612 struct sock
*sk
= sock
->sk
;
613 struct tcp_splice_state tss
= {
622 sock_rps_record_flow(sk
);
624 * We can't seek on a socket input
633 timeo
= sock_rcvtimeo(sk
, sock
->file
->f_flags
& O_NONBLOCK
);
635 ret
= __tcp_splice_read(sk
, &tss
);
641 if (sock_flag(sk
, SOCK_DONE
))
644 ret
= sock_error(sk
);
647 if (sk
->sk_shutdown
& RCV_SHUTDOWN
)
649 if (sk
->sk_state
== TCP_CLOSE
) {
651 * This occurs when user tries to read
652 * from never connected socket.
654 if (!sock_flag(sk
, SOCK_DONE
))
662 sk_wait_data(sk
, &timeo
);
663 if (signal_pending(current
)) {
664 ret
= sock_intr_errno(timeo
);
677 if (sk
->sk_err
|| sk
->sk_state
== TCP_CLOSE
||
678 (sk
->sk_shutdown
& RCV_SHUTDOWN
) ||
679 signal_pending(current
))
690 EXPORT_SYMBOL(tcp_splice_read
);
692 struct sk_buff
*sk_stream_alloc_skb(struct sock
*sk
, int size
, gfp_t gfp
)
696 /* The TCP header must be at least 32-bit aligned. */
697 size
= ALIGN(size
, 4);
699 skb
= alloc_skb_fclone(size
+ sk
->sk_prot
->max_header
, gfp
);
701 if (sk_wmem_schedule(sk
, skb
->truesize
)) {
702 skb_reserve(skb
, sk
->sk_prot
->max_header
);
704 * Make sure that we have exactly size bytes
705 * available to the caller, no more, no less.
707 skb
->avail_size
= size
;
712 sk
->sk_prot
->enter_memory_pressure(sk
);
713 sk_stream_moderate_sndbuf(sk
);
718 static unsigned int tcp_xmit_size_goal(struct sock
*sk
, u32 mss_now
,
721 struct tcp_sock
*tp
= tcp_sk(sk
);
722 u32 xmit_size_goal
, old_size_goal
;
724 xmit_size_goal
= mss_now
;
726 if (large_allowed
&& sk_can_gso(sk
)) {
727 xmit_size_goal
= ((sk
->sk_gso_max_size
- 1) -
728 inet_csk(sk
)->icsk_af_ops
->net_header_len
-
729 inet_csk(sk
)->icsk_ext_hdr_len
-
732 xmit_size_goal
= tcp_bound_to_half_wnd(tp
, xmit_size_goal
);
734 /* We try hard to avoid divides here */
735 old_size_goal
= tp
->xmit_size_goal_segs
* mss_now
;
737 if (likely(old_size_goal
<= xmit_size_goal
&&
738 old_size_goal
+ mss_now
> xmit_size_goal
)) {
739 xmit_size_goal
= old_size_goal
;
741 tp
->xmit_size_goal_segs
= xmit_size_goal
/ mss_now
;
742 xmit_size_goal
= tp
->xmit_size_goal_segs
* mss_now
;
746 return max(xmit_size_goal
, mss_now
);
749 static int tcp_send_mss(struct sock
*sk
, int *size_goal
, int flags
)
753 mss_now
= tcp_current_mss(sk
);
754 *size_goal
= tcp_xmit_size_goal(sk
, mss_now
, !(flags
& MSG_OOB
));
759 static ssize_t
do_tcp_sendpages(struct sock
*sk
, struct page
**pages
, int poffset
,
760 size_t psize
, int flags
)
762 struct tcp_sock
*tp
= tcp_sk(sk
);
763 int mss_now
, size_goal
;
766 long timeo
= sock_sndtimeo(sk
, flags
& MSG_DONTWAIT
);
768 /* Wait for a connection to finish. */
769 if ((1 << sk
->sk_state
) & ~(TCPF_ESTABLISHED
| TCPF_CLOSE_WAIT
))
770 if ((err
= sk_stream_wait_connect(sk
, &timeo
)) != 0)
773 clear_bit(SOCK_ASYNC_NOSPACE
, &sk
->sk_socket
->flags
);
775 mss_now
= tcp_send_mss(sk
, &size_goal
, flags
);
779 if (sk
->sk_err
|| (sk
->sk_shutdown
& SEND_SHUTDOWN
))
783 struct sk_buff
*skb
= tcp_write_queue_tail(sk
);
784 struct page
*page
= pages
[poffset
/ PAGE_SIZE
];
785 int copy
, i
, can_coalesce
;
786 int offset
= poffset
% PAGE_SIZE
;
787 int size
= min_t(size_t, psize
, PAGE_SIZE
- offset
);
789 if (!tcp_send_head(sk
) || (copy
= size_goal
- skb
->len
) <= 0) {
791 if (!sk_stream_memory_free(sk
))
792 goto wait_for_sndbuf
;
794 skb
= sk_stream_alloc_skb(sk
, 0, sk
->sk_allocation
);
796 goto wait_for_memory
;
805 i
= skb_shinfo(skb
)->nr_frags
;
806 can_coalesce
= skb_can_coalesce(skb
, i
, page
, offset
);
807 if (!can_coalesce
&& i
>= MAX_SKB_FRAGS
) {
808 tcp_mark_push(tp
, skb
);
811 if (!sk_wmem_schedule(sk
, copy
))
812 goto wait_for_memory
;
815 skb_frag_size_add(&skb_shinfo(skb
)->frags
[i
- 1], copy
);
818 skb_fill_page_desc(skb
, i
, page
, offset
, copy
);
822 skb
->data_len
+= copy
;
823 skb
->truesize
+= copy
;
824 sk
->sk_wmem_queued
+= copy
;
825 sk_mem_charge(sk
, copy
);
826 skb
->ip_summed
= CHECKSUM_PARTIAL
;
827 tp
->write_seq
+= copy
;
828 TCP_SKB_CB(skb
)->end_seq
+= copy
;
829 skb_shinfo(skb
)->gso_segs
= 0;
832 TCP_SKB_CB(skb
)->tcp_flags
&= ~TCPHDR_PSH
;
836 if (!(psize
-= copy
))
839 if (skb
->len
< size_goal
|| (flags
& MSG_OOB
))
842 if (forced_push(tp
)) {
843 tcp_mark_push(tp
, skb
);
844 __tcp_push_pending_frames(sk
, mss_now
, TCP_NAGLE_PUSH
);
845 } else if (skb
== tcp_send_head(sk
))
846 tcp_push_one(sk
, mss_now
);
850 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
852 tcp_push(sk
, flags
& ~MSG_MORE
, mss_now
, TCP_NAGLE_PUSH
);
854 if ((err
= sk_stream_wait_memory(sk
, &timeo
)) != 0)
857 mss_now
= tcp_send_mss(sk
, &size_goal
, flags
);
861 if (copied
&& !(flags
& MSG_SENDPAGE_NOTLAST
))
862 tcp_push(sk
, flags
, mss_now
, tp
->nonagle
);
869 return sk_stream_error(sk
, flags
, err
);
872 int tcp_sendpage(struct sock
*sk
, struct page
*page
, int offset
,
873 size_t size
, int flags
)
877 if (!(sk
->sk_route_caps
& NETIF_F_SG
) ||
878 !(sk
->sk_route_caps
& NETIF_F_ALL_CSUM
))
879 return sock_no_sendpage(sk
->sk_socket
, page
, offset
, size
,
883 res
= do_tcp_sendpages(sk
, &page
, offset
, size
, flags
);
887 EXPORT_SYMBOL(tcp_sendpage
);
889 static inline int select_size(const struct sock
*sk
, bool sg
)
891 const struct tcp_sock
*tp
= tcp_sk(sk
);
892 int tmp
= tp
->mss_cache
;
895 if (sk_can_gso(sk
)) {
896 /* Small frames wont use a full page:
897 * Payload will immediately follow tcp header.
899 tmp
= SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER
);
901 int pgbreak
= SKB_MAX_HEAD(MAX_TCP_HEADER
);
903 if (tmp
>= pgbreak
&&
904 tmp
<= pgbreak
+ (MAX_SKB_FRAGS
- 1) * PAGE_SIZE
)
912 int tcp_sendmsg(struct kiocb
*iocb
, struct sock
*sk
, struct msghdr
*msg
,
916 struct tcp_sock
*tp
= tcp_sk(sk
);
918 int iovlen
, flags
, err
, copied
;
919 int mss_now
, size_goal
;
925 flags
= msg
->msg_flags
;
926 timeo
= sock_sndtimeo(sk
, flags
& MSG_DONTWAIT
);
928 /* Wait for a connection to finish. */
929 if ((1 << sk
->sk_state
) & ~(TCPF_ESTABLISHED
| TCPF_CLOSE_WAIT
))
930 if ((err
= sk_stream_wait_connect(sk
, &timeo
)) != 0)
933 /* This should be in poll */
934 clear_bit(SOCK_ASYNC_NOSPACE
, &sk
->sk_socket
->flags
);
936 mss_now
= tcp_send_mss(sk
, &size_goal
, flags
);
938 /* Ok commence sending. */
939 iovlen
= msg
->msg_iovlen
;
944 if (sk
->sk_err
|| (sk
->sk_shutdown
& SEND_SHUTDOWN
))
947 sg
= !!(sk
->sk_route_caps
& NETIF_F_SG
);
949 while (--iovlen
>= 0) {
950 size_t seglen
= iov
->iov_len
;
951 unsigned char __user
*from
= iov
->iov_base
;
959 skb
= tcp_write_queue_tail(sk
);
960 if (tcp_send_head(sk
)) {
961 if (skb
->ip_summed
== CHECKSUM_NONE
)
963 copy
= max
- skb
->len
;
968 /* Allocate new segment. If the interface is SG,
969 * allocate skb fitting to single page.
971 if (!sk_stream_memory_free(sk
))
972 goto wait_for_sndbuf
;
974 skb
= sk_stream_alloc_skb(sk
,
978 goto wait_for_memory
;
981 * Check whether we can use HW checksum.
983 if (sk
->sk_route_caps
& NETIF_F_ALL_CSUM
)
984 skb
->ip_summed
= CHECKSUM_PARTIAL
;
991 /* Try to append data to the end of skb. */
995 /* Where to copy to? */
996 if (skb_availroom(skb
) > 0) {
997 /* We have some space in skb head. Superb! */
998 copy
= min_t(int, copy
, skb_availroom(skb
));
999 err
= skb_add_data_nocache(sk
, skb
, from
, copy
);
1004 int i
= skb_shinfo(skb
)->nr_frags
;
1005 struct page
*page
= sk
->sk_sndmsg_page
;
1008 if (page
&& page_count(page
) == 1)
1009 sk
->sk_sndmsg_off
= 0;
1011 off
= sk
->sk_sndmsg_off
;
1013 if (skb_can_coalesce(skb
, i
, page
, off
) &&
1015 /* We can extend the last page
1018 } else if (i
== MAX_SKB_FRAGS
|| !sg
) {
1019 /* Need to add new fragment and cannot
1020 * do this because interface is non-SG,
1021 * or because all the page slots are
1023 tcp_mark_push(tp
, skb
);
1026 if (off
== PAGE_SIZE
) {
1028 sk
->sk_sndmsg_page
= page
= NULL
;
1034 if (copy
> PAGE_SIZE
- off
)
1035 copy
= PAGE_SIZE
- off
;
1037 if (!sk_wmem_schedule(sk
, copy
))
1038 goto wait_for_memory
;
1041 /* Allocate new cache page. */
1042 if (!(page
= sk_stream_alloc_page(sk
)))
1043 goto wait_for_memory
;
1046 /* Time to copy data. We are close to
1048 err
= skb_copy_to_page_nocache(sk
, from
, skb
,
1051 /* If this page was new, give it to the
1052 * socket so it does not get leaked.
1054 if (!sk
->sk_sndmsg_page
) {
1055 sk
->sk_sndmsg_page
= page
;
1056 sk
->sk_sndmsg_off
= 0;
1061 /* Update the skb. */
1063 skb_frag_size_add(&skb_shinfo(skb
)->frags
[i
- 1], copy
);
1065 skb_fill_page_desc(skb
, i
, page
, off
, copy
);
1066 if (sk
->sk_sndmsg_page
) {
1068 } else if (off
+ copy
< PAGE_SIZE
) {
1070 sk
->sk_sndmsg_page
= page
;
1074 sk
->sk_sndmsg_off
= off
+ copy
;
1078 TCP_SKB_CB(skb
)->tcp_flags
&= ~TCPHDR_PSH
;
1080 tp
->write_seq
+= copy
;
1081 TCP_SKB_CB(skb
)->end_seq
+= copy
;
1082 skb_shinfo(skb
)->gso_segs
= 0;
1086 if ((seglen
-= copy
) == 0 && iovlen
== 0)
1089 if (skb
->len
< max
|| (flags
& MSG_OOB
))
1092 if (forced_push(tp
)) {
1093 tcp_mark_push(tp
, skb
);
1094 __tcp_push_pending_frames(sk
, mss_now
, TCP_NAGLE_PUSH
);
1095 } else if (skb
== tcp_send_head(sk
))
1096 tcp_push_one(sk
, mss_now
);
1100 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
1103 tcp_push(sk
, flags
& ~MSG_MORE
, mss_now
, TCP_NAGLE_PUSH
);
1105 if ((err
= sk_stream_wait_memory(sk
, &timeo
)) != 0)
1108 mss_now
= tcp_send_mss(sk
, &size_goal
, flags
);
1114 tcp_push(sk
, flags
, mss_now
, tp
->nonagle
);
1120 tcp_unlink_write_queue(skb
, sk
);
1121 /* It is the one place in all of TCP, except connection
1122 * reset, where we can be unlinking the send_head.
1124 tcp_check_send_head(sk
, skb
);
1125 sk_wmem_free_skb(sk
, skb
);
1132 err
= sk_stream_error(sk
, flags
, err
);
1136 EXPORT_SYMBOL(tcp_sendmsg
);
1139 * Handle reading urgent data. BSD has very simple semantics for
1140 * this, no blocking and very strange errors 8)
1143 static int tcp_recv_urg(struct sock
*sk
, struct msghdr
*msg
, int len
, int flags
)
1145 struct tcp_sock
*tp
= tcp_sk(sk
);
1147 /* No URG data to read. */
1148 if (sock_flag(sk
, SOCK_URGINLINE
) || !tp
->urg_data
||
1149 tp
->urg_data
== TCP_URG_READ
)
1150 return -EINVAL
; /* Yes this is right ! */
1152 if (sk
->sk_state
== TCP_CLOSE
&& !sock_flag(sk
, SOCK_DONE
))
1155 if (tp
->urg_data
& TCP_URG_VALID
) {
1157 char c
= tp
->urg_data
;
1159 if (!(flags
& MSG_PEEK
))
1160 tp
->urg_data
= TCP_URG_READ
;
1162 /* Read urgent data. */
1163 msg
->msg_flags
|= MSG_OOB
;
1166 if (!(flags
& MSG_TRUNC
))
1167 err
= memcpy_toiovec(msg
->msg_iov
, &c
, 1);
1170 msg
->msg_flags
|= MSG_TRUNC
;
1172 return err
? -EFAULT
: len
;
1175 if (sk
->sk_state
== TCP_CLOSE
|| (sk
->sk_shutdown
& RCV_SHUTDOWN
))
1178 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1179 * the available implementations agree in this case:
1180 * this call should never block, independent of the
1181 * blocking state of the socket.
1182 * Mike <pall@rz.uni-karlsruhe.de>
1187 /* Clean up the receive buffer for full frames taken by the user,
1188 * then send an ACK if necessary. COPIED is the number of bytes
1189 * tcp_recvmsg has given to the user so far, it speeds up the
1190 * calculation of whether or not we must ACK for the sake of
1193 void tcp_cleanup_rbuf(struct sock
*sk
, int copied
)
1195 struct tcp_sock
*tp
= tcp_sk(sk
);
1196 int time_to_ack
= 0;
1198 struct sk_buff
*skb
= skb_peek(&sk
->sk_receive_queue
);
1200 WARN(skb
&& !before(tp
->copied_seq
, TCP_SKB_CB(skb
)->end_seq
),
1201 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1202 tp
->copied_seq
, TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
);
1204 if (inet_csk_ack_scheduled(sk
)) {
1205 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1206 /* Delayed ACKs frequently hit locked sockets during bulk
1208 if (icsk
->icsk_ack
.blocked
||
1209 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1210 tp
->rcv_nxt
- tp
->rcv_wup
> icsk
->icsk_ack
.rcv_mss
||
1212 * If this read emptied read buffer, we send ACK, if
1213 * connection is not bidirectional, user drained
1214 * receive buffer and there was a small segment
1218 ((icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED2
) ||
1219 ((icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED
) &&
1220 !icsk
->icsk_ack
.pingpong
)) &&
1221 !atomic_read(&sk
->sk_rmem_alloc
)))
1225 /* We send an ACK if we can now advertise a non-zero window
1226 * which has been raised "significantly".
1228 * Even if window raised up to infinity, do not send window open ACK
1229 * in states, where we will not receive more. It is useless.
1231 if (copied
> 0 && !time_to_ack
&& !(sk
->sk_shutdown
& RCV_SHUTDOWN
)) {
1232 __u32 rcv_window_now
= tcp_receive_window(tp
);
1234 /* Optimize, __tcp_select_window() is not cheap. */
1235 if (2*rcv_window_now
<= tp
->window_clamp
) {
1236 __u32 new_window
= __tcp_select_window(sk
);
1238 /* Send ACK now, if this read freed lots of space
1239 * in our buffer. Certainly, new_window is new window.
1240 * We can advertise it now, if it is not less than current one.
1241 * "Lots" means "at least twice" here.
1243 if (new_window
&& new_window
>= 2 * rcv_window_now
)
1251 static void tcp_prequeue_process(struct sock
*sk
)
1253 struct sk_buff
*skb
;
1254 struct tcp_sock
*tp
= tcp_sk(sk
);
1256 NET_INC_STATS_USER(sock_net(sk
), LINUX_MIB_TCPPREQUEUED
);
1258 /* RX process wants to run with disabled BHs, though it is not
1261 while ((skb
= __skb_dequeue(&tp
->ucopy
.prequeue
)) != NULL
)
1262 sk_backlog_rcv(sk
, skb
);
1265 /* Clear memory counter. */
1266 tp
->ucopy
.memory
= 0;
1269 #ifdef CONFIG_NET_DMA
1270 static void tcp_service_net_dma(struct sock
*sk
, bool wait
)
1272 dma_cookie_t done
, used
;
1273 dma_cookie_t last_issued
;
1274 struct tcp_sock
*tp
= tcp_sk(sk
);
1276 if (!tp
->ucopy
.dma_chan
)
1279 last_issued
= tp
->ucopy
.dma_cookie
;
1280 dma_async_memcpy_issue_pending(tp
->ucopy
.dma_chan
);
1283 if (dma_async_memcpy_complete(tp
->ucopy
.dma_chan
,
1285 &used
) == DMA_SUCCESS
) {
1286 /* Safe to free early-copied skbs now */
1287 __skb_queue_purge(&sk
->sk_async_wait_queue
);
1290 struct sk_buff
*skb
;
1291 while ((skb
= skb_peek(&sk
->sk_async_wait_queue
)) &&
1292 (dma_async_is_complete(skb
->dma_cookie
, done
,
1293 used
) == DMA_SUCCESS
)) {
1294 __skb_dequeue(&sk
->sk_async_wait_queue
);
1302 static inline struct sk_buff
*tcp_recv_skb(struct sock
*sk
, u32 seq
, u32
*off
)
1304 struct sk_buff
*skb
;
1307 skb_queue_walk(&sk
->sk_receive_queue
, skb
) {
1308 offset
= seq
- TCP_SKB_CB(skb
)->seq
;
1309 if (tcp_hdr(skb
)->syn
)
1311 if (offset
< skb
->len
|| tcp_hdr(skb
)->fin
) {
1320 * This routine provides an alternative to tcp_recvmsg() for routines
1321 * that would like to handle copying from skbuffs directly in 'sendfile'
1324 * - It is assumed that the socket was locked by the caller.
1325 * - The routine does not block.
1326 * - At present, there is no support for reading OOB data
1327 * or for 'peeking' the socket using this routine
1328 * (although both would be easy to implement).
1330 int tcp_read_sock(struct sock
*sk
, read_descriptor_t
*desc
,
1331 sk_read_actor_t recv_actor
)
1333 struct sk_buff
*skb
;
1334 struct tcp_sock
*tp
= tcp_sk(sk
);
1335 u32 seq
= tp
->copied_seq
;
1339 if (sk
->sk_state
== TCP_LISTEN
)
1341 while ((skb
= tcp_recv_skb(sk
, seq
, &offset
)) != NULL
) {
1342 if (offset
< skb
->len
) {
1346 len
= skb
->len
- offset
;
1347 /* Stop reading if we hit a patch of urgent data */
1349 u32 urg_offset
= tp
->urg_seq
- seq
;
1350 if (urg_offset
< len
)
1355 used
= recv_actor(desc
, skb
, offset
, len
);
1360 } else if (used
<= len
) {
1366 * If recv_actor drops the lock (e.g. TCP splice
1367 * receive) the skb pointer might be invalid when
1368 * getting here: tcp_collapse might have deleted it
1369 * while aggregating skbs from the socket queue.
1371 skb
= tcp_recv_skb(sk
, seq
-1, &offset
);
1372 if (!skb
|| (offset
+1 != skb
->len
))
1375 if (tcp_hdr(skb
)->fin
) {
1376 sk_eat_skb(sk
, skb
, 0);
1380 sk_eat_skb(sk
, skb
, 0);
1383 tp
->copied_seq
= seq
;
1385 tp
->copied_seq
= seq
;
1387 tcp_rcv_space_adjust(sk
);
1389 /* Clean up data we have read: This will do ACK frames. */
1391 tcp_cleanup_rbuf(sk
, copied
);
1394 EXPORT_SYMBOL(tcp_read_sock
);
1397 * This routine copies from a sock struct into the user buffer.
1399 * Technical note: in 2.3 we work on _locked_ socket, so that
1400 * tricks with *seq access order and skb->users are not required.
1401 * Probably, code can be easily improved even more.
1404 int tcp_recvmsg(struct kiocb
*iocb
, struct sock
*sk
, struct msghdr
*msg
,
1405 size_t len
, int nonblock
, int flags
, int *addr_len
)
1407 struct tcp_sock
*tp
= tcp_sk(sk
);
1413 int target
; /* Read at least this many bytes */
1415 struct task_struct
*user_recv
= NULL
;
1416 int copied_early
= 0;
1417 struct sk_buff
*skb
;
1423 if (sk
->sk_state
== TCP_LISTEN
)
1426 timeo
= sock_rcvtimeo(sk
, nonblock
);
1428 /* Urgent data needs to be handled specially. */
1429 if (flags
& MSG_OOB
)
1432 seq
= &tp
->copied_seq
;
1433 if (flags
& MSG_PEEK
) {
1434 peek_seq
= tp
->copied_seq
;
1438 target
= sock_rcvlowat(sk
, flags
& MSG_WAITALL
, len
);
1440 #ifdef CONFIG_NET_DMA
1441 tp
->ucopy
.dma_chan
= NULL
;
1443 skb
= skb_peek_tail(&sk
->sk_receive_queue
);
1448 available
= TCP_SKB_CB(skb
)->seq
+ skb
->len
- (*seq
);
1449 if ((available
< target
) &&
1450 (len
> sysctl_tcp_dma_copybreak
) && !(flags
& MSG_PEEK
) &&
1451 !sysctl_tcp_low_latency
&&
1452 dma_find_channel(DMA_MEMCPY
)) {
1453 preempt_enable_no_resched();
1454 tp
->ucopy
.pinned_list
=
1455 dma_pin_iovec_pages(msg
->msg_iov
, len
);
1457 preempt_enable_no_resched();
1465 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1466 if (tp
->urg_data
&& tp
->urg_seq
== *seq
) {
1469 if (signal_pending(current
)) {
1470 copied
= timeo
? sock_intr_errno(timeo
) : -EAGAIN
;
1475 /* Next get a buffer. */
1477 skb_queue_walk(&sk
->sk_receive_queue
, skb
) {
1478 /* Now that we have two receive queues this
1481 if (WARN(before(*seq
, TCP_SKB_CB(skb
)->seq
),
1482 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1483 *seq
, TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
,
1487 offset
= *seq
- TCP_SKB_CB(skb
)->seq
;
1488 if (tcp_hdr(skb
)->syn
)
1490 if (offset
< skb
->len
)
1492 if (tcp_hdr(skb
)->fin
)
1494 WARN(!(flags
& MSG_PEEK
),
1495 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1496 *seq
, TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
, flags
);
1499 /* Well, if we have backlog, try to process it now yet. */
1501 if (copied
>= target
&& !sk
->sk_backlog
.tail
)
1506 sk
->sk_state
== TCP_CLOSE
||
1507 (sk
->sk_shutdown
& RCV_SHUTDOWN
) ||
1509 signal_pending(current
))
1512 if (sock_flag(sk
, SOCK_DONE
))
1516 copied
= sock_error(sk
);
1520 if (sk
->sk_shutdown
& RCV_SHUTDOWN
)
1523 if (sk
->sk_state
== TCP_CLOSE
) {
1524 if (!sock_flag(sk
, SOCK_DONE
)) {
1525 /* This occurs when user tries to read
1526 * from never connected socket.
1539 if (signal_pending(current
)) {
1540 copied
= sock_intr_errno(timeo
);
1545 tcp_cleanup_rbuf(sk
, copied
);
1547 if (!sysctl_tcp_low_latency
&& tp
->ucopy
.task
== user_recv
) {
1548 /* Install new reader */
1549 if (!user_recv
&& !(flags
& (MSG_TRUNC
| MSG_PEEK
))) {
1550 user_recv
= current
;
1551 tp
->ucopy
.task
= user_recv
;
1552 tp
->ucopy
.iov
= msg
->msg_iov
;
1555 tp
->ucopy
.len
= len
;
1557 WARN_ON(tp
->copied_seq
!= tp
->rcv_nxt
&&
1558 !(flags
& (MSG_PEEK
| MSG_TRUNC
)));
1560 /* Ugly... If prequeue is not empty, we have to
1561 * process it before releasing socket, otherwise
1562 * order will be broken at second iteration.
1563 * More elegant solution is required!!!
1565 * Look: we have the following (pseudo)queues:
1567 * 1. packets in flight
1572 * Each queue can be processed only if the next ones
1573 * are empty. At this point we have empty receive_queue.
1574 * But prequeue _can_ be not empty after 2nd iteration,
1575 * when we jumped to start of loop because backlog
1576 * processing added something to receive_queue.
1577 * We cannot release_sock(), because backlog contains
1578 * packets arrived _after_ prequeued ones.
1580 * Shortly, algorithm is clear --- to process all
1581 * the queues in order. We could make it more directly,
1582 * requeueing packets from backlog to prequeue, if
1583 * is not empty. It is more elegant, but eats cycles,
1586 if (!skb_queue_empty(&tp
->ucopy
.prequeue
))
1589 /* __ Set realtime policy in scheduler __ */
1592 #ifdef CONFIG_NET_DMA
1593 if (tp
->ucopy
.dma_chan
)
1594 dma_async_memcpy_issue_pending(tp
->ucopy
.dma_chan
);
1596 if (copied
>= target
) {
1597 /* Do not sleep, just process backlog. */
1601 sk_wait_data(sk
, &timeo
);
1603 #ifdef CONFIG_NET_DMA
1604 tcp_service_net_dma(sk
, false); /* Don't block */
1605 tp
->ucopy
.wakeup
= 0;
1611 /* __ Restore normal policy in scheduler __ */
1613 if ((chunk
= len
- tp
->ucopy
.len
) != 0) {
1614 NET_ADD_STATS_USER(sock_net(sk
), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG
, chunk
);
1619 if (tp
->rcv_nxt
== tp
->copied_seq
&&
1620 !skb_queue_empty(&tp
->ucopy
.prequeue
)) {
1622 tcp_prequeue_process(sk
);
1624 if ((chunk
= len
- tp
->ucopy
.len
) != 0) {
1625 NET_ADD_STATS_USER(sock_net(sk
), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE
, chunk
);
1631 if ((flags
& MSG_PEEK
) &&
1632 (peek_seq
- copied
- urg_hole
!= tp
->copied_seq
)) {
1633 if (net_ratelimit())
1634 printk(KERN_DEBUG
"TCP(%s:%d): Application bug, race in MSG_PEEK.\n",
1635 current
->comm
, task_pid_nr(current
));
1636 peek_seq
= tp
->copied_seq
;
1641 /* Ok so how much can we use? */
1642 used
= skb
->len
- offset
;
1646 /* Do we have urgent data here? */
1648 u32 urg_offset
= tp
->urg_seq
- *seq
;
1649 if (urg_offset
< used
) {
1651 if (!sock_flag(sk
, SOCK_URGINLINE
)) {
1664 if (!(flags
& MSG_TRUNC
)) {
1665 #ifdef CONFIG_NET_DMA
1666 if (!tp
->ucopy
.dma_chan
&& tp
->ucopy
.pinned_list
)
1667 tp
->ucopy
.dma_chan
= dma_find_channel(DMA_MEMCPY
);
1669 if (tp
->ucopy
.dma_chan
) {
1670 tp
->ucopy
.dma_cookie
= dma_skb_copy_datagram_iovec(
1671 tp
->ucopy
.dma_chan
, skb
, offset
,
1673 tp
->ucopy
.pinned_list
);
1675 if (tp
->ucopy
.dma_cookie
< 0) {
1677 printk(KERN_ALERT
"dma_cookie < 0\n");
1679 /* Exception. Bailout! */
1685 dma_async_memcpy_issue_pending(tp
->ucopy
.dma_chan
);
1687 if ((offset
+ used
) == skb
->len
)
1693 err
= skb_copy_datagram_iovec(skb
, offset
,
1694 msg
->msg_iov
, used
);
1696 /* Exception. Bailout! */
1708 tcp_rcv_space_adjust(sk
);
1711 if (tp
->urg_data
&& after(tp
->copied_seq
, tp
->urg_seq
)) {
1713 tcp_fast_path_check(sk
);
1715 if (used
+ offset
< skb
->len
)
1718 if (tcp_hdr(skb
)->fin
)
1720 if (!(flags
& MSG_PEEK
)) {
1721 sk_eat_skb(sk
, skb
, copied_early
);
1727 /* Process the FIN. */
1729 if (!(flags
& MSG_PEEK
)) {
1730 sk_eat_skb(sk
, skb
, copied_early
);
1737 if (!skb_queue_empty(&tp
->ucopy
.prequeue
)) {
1740 tp
->ucopy
.len
= copied
> 0 ? len
: 0;
1742 tcp_prequeue_process(sk
);
1744 if (copied
> 0 && (chunk
= len
- tp
->ucopy
.len
) != 0) {
1745 NET_ADD_STATS_USER(sock_net(sk
), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE
, chunk
);
1751 tp
->ucopy
.task
= NULL
;
1755 #ifdef CONFIG_NET_DMA
1756 tcp_service_net_dma(sk
, true); /* Wait for queue to drain */
1757 tp
->ucopy
.dma_chan
= NULL
;
1759 if (tp
->ucopy
.pinned_list
) {
1760 dma_unpin_iovec_pages(tp
->ucopy
.pinned_list
);
1761 tp
->ucopy
.pinned_list
= NULL
;
1765 /* According to UNIX98, msg_name/msg_namelen are ignored
1766 * on connected socket. I was just happy when found this 8) --ANK
1769 /* Clean up data we have read: This will do ACK frames. */
1770 tcp_cleanup_rbuf(sk
, copied
);
1780 err
= tcp_recv_urg(sk
, msg
, len
, flags
);
1783 EXPORT_SYMBOL(tcp_recvmsg
);
1785 void tcp_set_state(struct sock
*sk
, int state
)
1787 int oldstate
= sk
->sk_state
;
1790 case TCP_ESTABLISHED
:
1791 if (oldstate
!= TCP_ESTABLISHED
)
1792 TCP_INC_STATS(sock_net(sk
), TCP_MIB_CURRESTAB
);
1796 if (oldstate
== TCP_CLOSE_WAIT
|| oldstate
== TCP_ESTABLISHED
)
1797 TCP_INC_STATS(sock_net(sk
), TCP_MIB_ESTABRESETS
);
1799 sk
->sk_prot
->unhash(sk
);
1800 if (inet_csk(sk
)->icsk_bind_hash
&&
1801 !(sk
->sk_userlocks
& SOCK_BINDPORT_LOCK
))
1805 if (oldstate
== TCP_ESTABLISHED
)
1806 TCP_DEC_STATS(sock_net(sk
), TCP_MIB_CURRESTAB
);
1809 /* Change state AFTER socket is unhashed to avoid closed
1810 * socket sitting in hash tables.
1812 sk
->sk_state
= state
;
1815 SOCK_DEBUG(sk
, "TCP sk=%p, State %s -> %s\n", sk
, statename
[oldstate
], statename
[state
]);
1818 EXPORT_SYMBOL_GPL(tcp_set_state
);
1821 * State processing on a close. This implements the state shift for
1822 * sending our FIN frame. Note that we only send a FIN for some
1823 * states. A shutdown() may have already sent the FIN, or we may be
1827 static const unsigned char new_state
[16] = {
1828 /* current state: new state: action: */
1829 /* (Invalid) */ TCP_CLOSE
,
1830 /* TCP_ESTABLISHED */ TCP_FIN_WAIT1
| TCP_ACTION_FIN
,
1831 /* TCP_SYN_SENT */ TCP_CLOSE
,
1832 /* TCP_SYN_RECV */ TCP_FIN_WAIT1
| TCP_ACTION_FIN
,
1833 /* TCP_FIN_WAIT1 */ TCP_FIN_WAIT1
,
1834 /* TCP_FIN_WAIT2 */ TCP_FIN_WAIT2
,
1835 /* TCP_TIME_WAIT */ TCP_CLOSE
,
1836 /* TCP_CLOSE */ TCP_CLOSE
,
1837 /* TCP_CLOSE_WAIT */ TCP_LAST_ACK
| TCP_ACTION_FIN
,
1838 /* TCP_LAST_ACK */ TCP_LAST_ACK
,
1839 /* TCP_LISTEN */ TCP_CLOSE
,
1840 /* TCP_CLOSING */ TCP_CLOSING
,
1843 static int tcp_close_state(struct sock
*sk
)
1845 int next
= (int)new_state
[sk
->sk_state
];
1846 int ns
= next
& TCP_STATE_MASK
;
1848 tcp_set_state(sk
, ns
);
1850 return next
& TCP_ACTION_FIN
;
1854 * Shutdown the sending side of a connection. Much like close except
1855 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
1858 void tcp_shutdown(struct sock
*sk
, int how
)
1860 /* We need to grab some memory, and put together a FIN,
1861 * and then put it into the queue to be sent.
1862 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1864 if (!(how
& SEND_SHUTDOWN
))
1867 /* If we've already sent a FIN, or it's a closed state, skip this. */
1868 if ((1 << sk
->sk_state
) &
1869 (TCPF_ESTABLISHED
| TCPF_SYN_SENT
|
1870 TCPF_SYN_RECV
| TCPF_CLOSE_WAIT
)) {
1871 /* Clear out any half completed packets. FIN if needed. */
1872 if (tcp_close_state(sk
))
1876 EXPORT_SYMBOL(tcp_shutdown
);
1878 bool tcp_check_oom(struct sock
*sk
, int shift
)
1880 bool too_many_orphans
, out_of_socket_memory
;
1882 too_many_orphans
= tcp_too_many_orphans(sk
, shift
);
1883 out_of_socket_memory
= tcp_out_of_memory(sk
);
1885 if (too_many_orphans
&& net_ratelimit())
1886 pr_info("TCP: too many orphaned sockets\n");
1887 if (out_of_socket_memory
&& net_ratelimit())
1888 pr_info("TCP: out of memory -- consider tuning tcp_mem\n");
1889 return too_many_orphans
|| out_of_socket_memory
;
1892 void tcp_close(struct sock
*sk
, long timeout
)
1894 struct sk_buff
*skb
;
1895 int data_was_unread
= 0;
1899 sk
->sk_shutdown
= SHUTDOWN_MASK
;
1901 if (sk
->sk_state
== TCP_LISTEN
) {
1902 tcp_set_state(sk
, TCP_CLOSE
);
1905 inet_csk_listen_stop(sk
);
1907 goto adjudge_to_death
;
1910 /* We need to flush the recv. buffs. We do this only on the
1911 * descriptor close, not protocol-sourced closes, because the
1912 * reader process may not have drained the data yet!
1914 while ((skb
= __skb_dequeue(&sk
->sk_receive_queue
)) != NULL
) {
1915 u32 len
= TCP_SKB_CB(skb
)->end_seq
- TCP_SKB_CB(skb
)->seq
-
1917 data_was_unread
+= len
;
1923 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
1924 if (sk
->sk_state
== TCP_CLOSE
)
1925 goto adjudge_to_death
;
1927 /* As outlined in RFC 2525, section 2.17, we send a RST here because
1928 * data was lost. To witness the awful effects of the old behavior of
1929 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
1930 * GET in an FTP client, suspend the process, wait for the client to
1931 * advertise a zero window, then kill -9 the FTP client, wheee...
1932 * Note: timeout is always zero in such a case.
1934 if (data_was_unread
) {
1935 /* Unread data was tossed, zap the connection. */
1936 NET_INC_STATS_USER(sock_net(sk
), LINUX_MIB_TCPABORTONCLOSE
);
1937 tcp_set_state(sk
, TCP_CLOSE
);
1938 tcp_send_active_reset(sk
, sk
->sk_allocation
);
1939 } else if (sock_flag(sk
, SOCK_LINGER
) && !sk
->sk_lingertime
) {
1940 /* Check zero linger _after_ checking for unread data. */
1941 sk
->sk_prot
->disconnect(sk
, 0);
1942 NET_INC_STATS_USER(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
1943 } else if (tcp_close_state(sk
)) {
1944 /* We FIN if the application ate all the data before
1945 * zapping the connection.
1948 /* RED-PEN. Formally speaking, we have broken TCP state
1949 * machine. State transitions:
1951 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
1952 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
1953 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
1955 * are legal only when FIN has been sent (i.e. in window),
1956 * rather than queued out of window. Purists blame.
1958 * F.e. "RFC state" is ESTABLISHED,
1959 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
1961 * The visible declinations are that sometimes
1962 * we enter time-wait state, when it is not required really
1963 * (harmless), do not send active resets, when they are
1964 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
1965 * they look as CLOSING or LAST_ACK for Linux)
1966 * Probably, I missed some more holelets.
1972 sk_stream_wait_close(sk
, timeout
);
1975 state
= sk
->sk_state
;
1979 /* It is the last release_sock in its life. It will remove backlog. */
1983 /* Now socket is owned by kernel and we acquire BH lock
1984 to finish close. No need to check for user refs.
1988 WARN_ON(sock_owned_by_user(sk
));
1990 percpu_counter_inc(sk
->sk_prot
->orphan_count
);
1992 /* Have we already been destroyed by a softirq or backlog? */
1993 if (state
!= TCP_CLOSE
&& sk
->sk_state
== TCP_CLOSE
)
1996 /* This is a (useful) BSD violating of the RFC. There is a
1997 * problem with TCP as specified in that the other end could
1998 * keep a socket open forever with no application left this end.
1999 * We use a 3 minute timeout (about the same as BSD) then kill
2000 * our end. If they send after that then tough - BUT: long enough
2001 * that we won't make the old 4*rto = almost no time - whoops
2004 * Nope, it was not mistake. It is really desired behaviour
2005 * f.e. on http servers, when such sockets are useless, but
2006 * consume significant resources. Let's do it with special
2007 * linger2 option. --ANK
2010 if (sk
->sk_state
== TCP_FIN_WAIT2
) {
2011 struct tcp_sock
*tp
= tcp_sk(sk
);
2012 if (tp
->linger2
< 0) {
2013 tcp_set_state(sk
, TCP_CLOSE
);
2014 tcp_send_active_reset(sk
, GFP_ATOMIC
);
2015 NET_INC_STATS_BH(sock_net(sk
),
2016 LINUX_MIB_TCPABORTONLINGER
);
2018 const int tmo
= tcp_fin_time(sk
);
2020 if (tmo
> TCP_TIMEWAIT_LEN
) {
2021 inet_csk_reset_keepalive_timer(sk
,
2022 tmo
- TCP_TIMEWAIT_LEN
);
2024 tcp_time_wait(sk
, TCP_FIN_WAIT2
, tmo
);
2029 if (sk
->sk_state
!= TCP_CLOSE
) {
2031 if (tcp_check_oom(sk
, 0)) {
2032 tcp_set_state(sk
, TCP_CLOSE
);
2033 tcp_send_active_reset(sk
, GFP_ATOMIC
);
2034 NET_INC_STATS_BH(sock_net(sk
),
2035 LINUX_MIB_TCPABORTONMEMORY
);
2039 if (sk
->sk_state
== TCP_CLOSE
)
2040 inet_csk_destroy_sock(sk
);
2041 /* Otherwise, socket is reprieved until protocol close. */
2048 EXPORT_SYMBOL(tcp_close
);
2050 /* These states need RST on ABORT according to RFC793 */
2052 static inline int tcp_need_reset(int state
)
2054 return (1 << state
) &
2055 (TCPF_ESTABLISHED
| TCPF_CLOSE_WAIT
| TCPF_FIN_WAIT1
|
2056 TCPF_FIN_WAIT2
| TCPF_SYN_RECV
);
2059 int tcp_disconnect(struct sock
*sk
, int flags
)
2061 struct inet_sock
*inet
= inet_sk(sk
);
2062 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2063 struct tcp_sock
*tp
= tcp_sk(sk
);
2065 int old_state
= sk
->sk_state
;
2067 if (old_state
!= TCP_CLOSE
)
2068 tcp_set_state(sk
, TCP_CLOSE
);
2070 /* ABORT function of RFC793 */
2071 if (old_state
== TCP_LISTEN
) {
2072 inet_csk_listen_stop(sk
);
2073 } else if (tcp_need_reset(old_state
) ||
2074 (tp
->snd_nxt
!= tp
->write_seq
&&
2075 (1 << old_state
) & (TCPF_CLOSING
| TCPF_LAST_ACK
))) {
2076 /* The last check adjusts for discrepancy of Linux wrt. RFC
2079 tcp_send_active_reset(sk
, gfp_any());
2080 sk
->sk_err
= ECONNRESET
;
2081 } else if (old_state
== TCP_SYN_SENT
)
2082 sk
->sk_err
= ECONNRESET
;
2084 tcp_clear_xmit_timers(sk
);
2085 __skb_queue_purge(&sk
->sk_receive_queue
);
2086 tcp_write_queue_purge(sk
);
2087 __skb_queue_purge(&tp
->out_of_order_queue
);
2088 #ifdef CONFIG_NET_DMA
2089 __skb_queue_purge(&sk
->sk_async_wait_queue
);
2092 inet
->inet_dport
= 0;
2094 if (!(sk
->sk_userlocks
& SOCK_BINDADDR_LOCK
))
2095 inet_reset_saddr(sk
);
2097 sk
->sk_shutdown
= 0;
2098 sock_reset_flag(sk
, SOCK_DONE
);
2100 if ((tp
->write_seq
+= tp
->max_window
+ 2) == 0)
2102 icsk
->icsk_backoff
= 0;
2104 icsk
->icsk_probes_out
= 0;
2105 tp
->packets_out
= 0;
2106 tp
->snd_ssthresh
= TCP_INFINITE_SSTHRESH
;
2107 tp
->snd_cwnd_cnt
= 0;
2108 tp
->bytes_acked
= 0;
2109 tp
->window_clamp
= 0;
2110 tcp_set_ca_state(sk
, TCP_CA_Open
);
2111 tcp_clear_retrans(tp
);
2112 inet_csk_delack_init(sk
);
2113 tcp_init_send_head(sk
);
2114 memset(&tp
->rx_opt
, 0, sizeof(tp
->rx_opt
));
2117 WARN_ON(inet
->inet_num
&& !icsk
->icsk_bind_hash
);
2119 sk
->sk_error_report(sk
);
2122 EXPORT_SYMBOL(tcp_disconnect
);
2125 * Socket option code for TCP.
2127 static int do_tcp_setsockopt(struct sock
*sk
, int level
,
2128 int optname
, char __user
*optval
, unsigned int optlen
)
2130 struct tcp_sock
*tp
= tcp_sk(sk
);
2131 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2135 /* These are data/string values, all the others are ints */
2137 case TCP_CONGESTION
: {
2138 char name
[TCP_CA_NAME_MAX
];
2143 val
= strncpy_from_user(name
, optval
,
2144 min_t(long, TCP_CA_NAME_MAX
-1, optlen
));
2150 err
= tcp_set_congestion_control(sk
, name
);
2154 case TCP_COOKIE_TRANSACTIONS
: {
2155 struct tcp_cookie_transactions ctd
;
2156 struct tcp_cookie_values
*cvp
= NULL
;
2158 if (sizeof(ctd
) > optlen
)
2160 if (copy_from_user(&ctd
, optval
, sizeof(ctd
)))
2163 if (ctd
.tcpct_used
> sizeof(ctd
.tcpct_value
) ||
2164 ctd
.tcpct_s_data_desired
> TCP_MSS_DESIRED
)
2167 if (ctd
.tcpct_cookie_desired
== 0) {
2168 /* default to global value */
2169 } else if ((0x1 & ctd
.tcpct_cookie_desired
) ||
2170 ctd
.tcpct_cookie_desired
> TCP_COOKIE_MAX
||
2171 ctd
.tcpct_cookie_desired
< TCP_COOKIE_MIN
) {
2175 if (TCP_COOKIE_OUT_NEVER
& ctd
.tcpct_flags
) {
2176 /* Supercedes all other values */
2178 if (tp
->cookie_values
!= NULL
) {
2179 kref_put(&tp
->cookie_values
->kref
,
2180 tcp_cookie_values_release
);
2181 tp
->cookie_values
= NULL
;
2183 tp
->rx_opt
.cookie_in_always
= 0; /* false */
2184 tp
->rx_opt
.cookie_out_never
= 1; /* true */
2189 /* Allocate ancillary memory before locking.
2191 if (ctd
.tcpct_used
> 0 ||
2192 (tp
->cookie_values
== NULL
&&
2193 (sysctl_tcp_cookie_size
> 0 ||
2194 ctd
.tcpct_cookie_desired
> 0 ||
2195 ctd
.tcpct_s_data_desired
> 0))) {
2196 cvp
= kzalloc(sizeof(*cvp
) + ctd
.tcpct_used
,
2201 kref_init(&cvp
->kref
);
2204 tp
->rx_opt
.cookie_in_always
=
2205 (TCP_COOKIE_IN_ALWAYS
& ctd
.tcpct_flags
);
2206 tp
->rx_opt
.cookie_out_never
= 0; /* false */
2208 if (tp
->cookie_values
!= NULL
) {
2210 /* Changed values are recorded by a changed
2211 * pointer, ensuring the cookie will differ,
2212 * without separately hashing each value later.
2214 kref_put(&tp
->cookie_values
->kref
,
2215 tcp_cookie_values_release
);
2217 cvp
= tp
->cookie_values
;
2222 cvp
->cookie_desired
= ctd
.tcpct_cookie_desired
;
2224 if (ctd
.tcpct_used
> 0) {
2225 memcpy(cvp
->s_data_payload
, ctd
.tcpct_value
,
2227 cvp
->s_data_desired
= ctd
.tcpct_used
;
2228 cvp
->s_data_constant
= 1; /* true */
2230 /* No constant payload data. */
2231 cvp
->s_data_desired
= ctd
.tcpct_s_data_desired
;
2232 cvp
->s_data_constant
= 0; /* false */
2235 tp
->cookie_values
= cvp
;
2245 if (optlen
< sizeof(int))
2248 if (get_user(val
, (int __user
*)optval
))
2255 /* Values greater than interface MTU won't take effect. However
2256 * at the point when this call is done we typically don't yet
2257 * know which interface is going to be used */
2258 if (val
< TCP_MIN_MSS
|| val
> MAX_TCP_WINDOW
) {
2262 tp
->rx_opt
.user_mss
= val
;
2267 /* TCP_NODELAY is weaker than TCP_CORK, so that
2268 * this option on corked socket is remembered, but
2269 * it is not activated until cork is cleared.
2271 * However, when TCP_NODELAY is set we make
2272 * an explicit push, which overrides even TCP_CORK
2273 * for currently queued segments.
2275 tp
->nonagle
|= TCP_NAGLE_OFF
|TCP_NAGLE_PUSH
;
2276 tcp_push_pending_frames(sk
);
2278 tp
->nonagle
&= ~TCP_NAGLE_OFF
;
2282 case TCP_THIN_LINEAR_TIMEOUTS
:
2283 if (val
< 0 || val
> 1)
2289 case TCP_THIN_DUPACK
:
2290 if (val
< 0 || val
> 1)
2293 tp
->thin_dupack
= val
;
2297 /* When set indicates to always queue non-full frames.
2298 * Later the user clears this option and we transmit
2299 * any pending partial frames in the queue. This is
2300 * meant to be used alongside sendfile() to get properly
2301 * filled frames when the user (for example) must write
2302 * out headers with a write() call first and then use
2303 * sendfile to send out the data parts.
2305 * TCP_CORK can be set together with TCP_NODELAY and it is
2306 * stronger than TCP_NODELAY.
2309 tp
->nonagle
|= TCP_NAGLE_CORK
;
2311 tp
->nonagle
&= ~TCP_NAGLE_CORK
;
2312 if (tp
->nonagle
&TCP_NAGLE_OFF
)
2313 tp
->nonagle
|= TCP_NAGLE_PUSH
;
2314 tcp_push_pending_frames(sk
);
2319 if (val
< 1 || val
> MAX_TCP_KEEPIDLE
)
2322 tp
->keepalive_time
= val
* HZ
;
2323 if (sock_flag(sk
, SOCK_KEEPOPEN
) &&
2324 !((1 << sk
->sk_state
) &
2325 (TCPF_CLOSE
| TCPF_LISTEN
))) {
2326 u32 elapsed
= keepalive_time_elapsed(tp
);
2327 if (tp
->keepalive_time
> elapsed
)
2328 elapsed
= tp
->keepalive_time
- elapsed
;
2331 inet_csk_reset_keepalive_timer(sk
, elapsed
);
2336 if (val
< 1 || val
> MAX_TCP_KEEPINTVL
)
2339 tp
->keepalive_intvl
= val
* HZ
;
2342 if (val
< 1 || val
> MAX_TCP_KEEPCNT
)
2345 tp
->keepalive_probes
= val
;
2348 if (val
< 1 || val
> MAX_TCP_SYNCNT
)
2351 icsk
->icsk_syn_retries
= val
;
2357 else if (val
> sysctl_tcp_fin_timeout
/ HZ
)
2360 tp
->linger2
= val
* HZ
;
2363 case TCP_DEFER_ACCEPT
:
2364 /* Translate value in seconds to number of retransmits */
2365 icsk
->icsk_accept_queue
.rskq_defer_accept
=
2366 secs_to_retrans(val
, TCP_TIMEOUT_INIT
/ HZ
,
2370 case TCP_WINDOW_CLAMP
:
2372 if (sk
->sk_state
!= TCP_CLOSE
) {
2376 tp
->window_clamp
= 0;
2378 tp
->window_clamp
= val
< SOCK_MIN_RCVBUF
/ 2 ?
2379 SOCK_MIN_RCVBUF
/ 2 : val
;
2384 icsk
->icsk_ack
.pingpong
= 1;
2386 icsk
->icsk_ack
.pingpong
= 0;
2387 if ((1 << sk
->sk_state
) &
2388 (TCPF_ESTABLISHED
| TCPF_CLOSE_WAIT
) &&
2389 inet_csk_ack_scheduled(sk
)) {
2390 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED
;
2391 tcp_cleanup_rbuf(sk
, 1);
2393 icsk
->icsk_ack
.pingpong
= 1;
2398 #ifdef CONFIG_TCP_MD5SIG
2400 /* Read the IP->Key mappings from userspace */
2401 err
= tp
->af_specific
->md5_parse(sk
, optval
, optlen
);
2404 case TCP_USER_TIMEOUT
:
2405 /* Cap the max timeout in ms TCP will retry/retrans
2406 * before giving up and aborting (ETIMEDOUT) a connection.
2408 icsk
->icsk_user_timeout
= msecs_to_jiffies(val
);
2419 int tcp_setsockopt(struct sock
*sk
, int level
, int optname
, char __user
*optval
,
2420 unsigned int optlen
)
2422 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2424 if (level
!= SOL_TCP
)
2425 return icsk
->icsk_af_ops
->setsockopt(sk
, level
, optname
,
2427 return do_tcp_setsockopt(sk
, level
, optname
, optval
, optlen
);
2429 EXPORT_SYMBOL(tcp_setsockopt
);
2431 #ifdef CONFIG_COMPAT
2432 int compat_tcp_setsockopt(struct sock
*sk
, int level
, int optname
,
2433 char __user
*optval
, unsigned int optlen
)
2435 if (level
!= SOL_TCP
)
2436 return inet_csk_compat_setsockopt(sk
, level
, optname
,
2438 return do_tcp_setsockopt(sk
, level
, optname
, optval
, optlen
);
2440 EXPORT_SYMBOL(compat_tcp_setsockopt
);
2443 /* Return information about state of tcp endpoint in API format. */
2444 void tcp_get_info(const struct sock
*sk
, struct tcp_info
*info
)
2446 const struct tcp_sock
*tp
= tcp_sk(sk
);
2447 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2448 u32 now
= tcp_time_stamp
;
2450 memset(info
, 0, sizeof(*info
));
2452 info
->tcpi_state
= sk
->sk_state
;
2453 info
->tcpi_ca_state
= icsk
->icsk_ca_state
;
2454 info
->tcpi_retransmits
= icsk
->icsk_retransmits
;
2455 info
->tcpi_probes
= icsk
->icsk_probes_out
;
2456 info
->tcpi_backoff
= icsk
->icsk_backoff
;
2458 if (tp
->rx_opt
.tstamp_ok
)
2459 info
->tcpi_options
|= TCPI_OPT_TIMESTAMPS
;
2460 if (tcp_is_sack(tp
))
2461 info
->tcpi_options
|= TCPI_OPT_SACK
;
2462 if (tp
->rx_opt
.wscale_ok
) {
2463 info
->tcpi_options
|= TCPI_OPT_WSCALE
;
2464 info
->tcpi_snd_wscale
= tp
->rx_opt
.snd_wscale
;
2465 info
->tcpi_rcv_wscale
= tp
->rx_opt
.rcv_wscale
;
2468 if (tp
->ecn_flags
& TCP_ECN_OK
)
2469 info
->tcpi_options
|= TCPI_OPT_ECN
;
2470 if (tp
->ecn_flags
& TCP_ECN_SEEN
)
2471 info
->tcpi_options
|= TCPI_OPT_ECN_SEEN
;
2473 info
->tcpi_rto
= jiffies_to_usecs(icsk
->icsk_rto
);
2474 info
->tcpi_ato
= jiffies_to_usecs(icsk
->icsk_ack
.ato
);
2475 info
->tcpi_snd_mss
= tp
->mss_cache
;
2476 info
->tcpi_rcv_mss
= icsk
->icsk_ack
.rcv_mss
;
2478 if (sk
->sk_state
== TCP_LISTEN
) {
2479 info
->tcpi_unacked
= sk
->sk_ack_backlog
;
2480 info
->tcpi_sacked
= sk
->sk_max_ack_backlog
;
2482 info
->tcpi_unacked
= tp
->packets_out
;
2483 info
->tcpi_sacked
= tp
->sacked_out
;
2485 info
->tcpi_lost
= tp
->lost_out
;
2486 info
->tcpi_retrans
= tp
->retrans_out
;
2487 info
->tcpi_fackets
= tp
->fackets_out
;
2489 info
->tcpi_last_data_sent
= jiffies_to_msecs(now
- tp
->lsndtime
);
2490 info
->tcpi_last_data_recv
= jiffies_to_msecs(now
- icsk
->icsk_ack
.lrcvtime
);
2491 info
->tcpi_last_ack_recv
= jiffies_to_msecs(now
- tp
->rcv_tstamp
);
2493 info
->tcpi_pmtu
= icsk
->icsk_pmtu_cookie
;
2494 info
->tcpi_rcv_ssthresh
= tp
->rcv_ssthresh
;
2495 info
->tcpi_rtt
= jiffies_to_usecs(tp
->srtt
)>>3;
2496 info
->tcpi_rttvar
= jiffies_to_usecs(tp
->mdev
)>>2;
2497 info
->tcpi_snd_ssthresh
= tp
->snd_ssthresh
;
2498 info
->tcpi_snd_cwnd
= tp
->snd_cwnd
;
2499 info
->tcpi_advmss
= tp
->advmss
;
2500 info
->tcpi_reordering
= tp
->reordering
;
2502 info
->tcpi_rcv_rtt
= jiffies_to_usecs(tp
->rcv_rtt_est
.rtt
)>>3;
2503 info
->tcpi_rcv_space
= tp
->rcvq_space
.space
;
2505 info
->tcpi_total_retrans
= tp
->total_retrans
;
2507 EXPORT_SYMBOL_GPL(tcp_get_info
);
2509 static int do_tcp_getsockopt(struct sock
*sk
, int level
,
2510 int optname
, char __user
*optval
, int __user
*optlen
)
2512 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2513 struct tcp_sock
*tp
= tcp_sk(sk
);
2516 if (get_user(len
, optlen
))
2519 len
= min_t(unsigned int, len
, sizeof(int));
2526 val
= tp
->mss_cache
;
2527 if (!val
&& ((1 << sk
->sk_state
) & (TCPF_CLOSE
| TCPF_LISTEN
)))
2528 val
= tp
->rx_opt
.user_mss
;
2531 val
= !!(tp
->nonagle
&TCP_NAGLE_OFF
);
2534 val
= !!(tp
->nonagle
&TCP_NAGLE_CORK
);
2537 val
= keepalive_time_when(tp
) / HZ
;
2540 val
= keepalive_intvl_when(tp
) / HZ
;
2543 val
= keepalive_probes(tp
);
2546 val
= icsk
->icsk_syn_retries
? : sysctl_tcp_syn_retries
;
2551 val
= (val
? : sysctl_tcp_fin_timeout
) / HZ
;
2553 case TCP_DEFER_ACCEPT
:
2554 val
= retrans_to_secs(icsk
->icsk_accept_queue
.rskq_defer_accept
,
2555 TCP_TIMEOUT_INIT
/ HZ
, TCP_RTO_MAX
/ HZ
);
2557 case TCP_WINDOW_CLAMP
:
2558 val
= tp
->window_clamp
;
2561 struct tcp_info info
;
2563 if (get_user(len
, optlen
))
2566 tcp_get_info(sk
, &info
);
2568 len
= min_t(unsigned int, len
, sizeof(info
));
2569 if (put_user(len
, optlen
))
2571 if (copy_to_user(optval
, &info
, len
))
2576 val
= !icsk
->icsk_ack
.pingpong
;
2579 case TCP_CONGESTION
:
2580 if (get_user(len
, optlen
))
2582 len
= min_t(unsigned int, len
, TCP_CA_NAME_MAX
);
2583 if (put_user(len
, optlen
))
2585 if (copy_to_user(optval
, icsk
->icsk_ca_ops
->name
, len
))
2589 case TCP_COOKIE_TRANSACTIONS
: {
2590 struct tcp_cookie_transactions ctd
;
2591 struct tcp_cookie_values
*cvp
= tp
->cookie_values
;
2593 if (get_user(len
, optlen
))
2595 if (len
< sizeof(ctd
))
2598 memset(&ctd
, 0, sizeof(ctd
));
2599 ctd
.tcpct_flags
= (tp
->rx_opt
.cookie_in_always
?
2600 TCP_COOKIE_IN_ALWAYS
: 0)
2601 | (tp
->rx_opt
.cookie_out_never
?
2602 TCP_COOKIE_OUT_NEVER
: 0);
2605 ctd
.tcpct_flags
|= (cvp
->s_data_in
?
2607 | (cvp
->s_data_out
?
2608 TCP_S_DATA_OUT
: 0);
2610 ctd
.tcpct_cookie_desired
= cvp
->cookie_desired
;
2611 ctd
.tcpct_s_data_desired
= cvp
->s_data_desired
;
2613 memcpy(&ctd
.tcpct_value
[0], &cvp
->cookie_pair
[0],
2614 cvp
->cookie_pair_size
);
2615 ctd
.tcpct_used
= cvp
->cookie_pair_size
;
2618 if (put_user(sizeof(ctd
), optlen
))
2620 if (copy_to_user(optval
, &ctd
, sizeof(ctd
)))
2624 case TCP_THIN_LINEAR_TIMEOUTS
:
2627 case TCP_THIN_DUPACK
:
2628 val
= tp
->thin_dupack
;
2631 case TCP_USER_TIMEOUT
:
2632 val
= jiffies_to_msecs(icsk
->icsk_user_timeout
);
2635 return -ENOPROTOOPT
;
2638 if (put_user(len
, optlen
))
2640 if (copy_to_user(optval
, &val
, len
))
2645 int tcp_getsockopt(struct sock
*sk
, int level
, int optname
, char __user
*optval
,
2648 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2650 if (level
!= SOL_TCP
)
2651 return icsk
->icsk_af_ops
->getsockopt(sk
, level
, optname
,
2653 return do_tcp_getsockopt(sk
, level
, optname
, optval
, optlen
);
2655 EXPORT_SYMBOL(tcp_getsockopt
);
2657 #ifdef CONFIG_COMPAT
2658 int compat_tcp_getsockopt(struct sock
*sk
, int level
, int optname
,
2659 char __user
*optval
, int __user
*optlen
)
2661 if (level
!= SOL_TCP
)
2662 return inet_csk_compat_getsockopt(sk
, level
, optname
,
2664 return do_tcp_getsockopt(sk
, level
, optname
, optval
, optlen
);
2666 EXPORT_SYMBOL(compat_tcp_getsockopt
);
2669 struct sk_buff
*tcp_tso_segment(struct sk_buff
*skb
,
2670 netdev_features_t features
)
2672 struct sk_buff
*segs
= ERR_PTR(-EINVAL
);
2677 unsigned int oldlen
;
2680 if (!pskb_may_pull(skb
, sizeof(*th
)))
2684 thlen
= th
->doff
* 4;
2685 if (thlen
< sizeof(*th
))
2688 if (!pskb_may_pull(skb
, thlen
))
2691 oldlen
= (u16
)~skb
->len
;
2692 __skb_pull(skb
, thlen
);
2694 mss
= skb_shinfo(skb
)->gso_size
;
2695 if (unlikely(skb
->len
<= mss
))
2698 if (skb_gso_ok(skb
, features
| NETIF_F_GSO_ROBUST
)) {
2699 /* Packet is from an untrusted source, reset gso_segs. */
2700 int type
= skb_shinfo(skb
)->gso_type
;
2708 !(type
& (SKB_GSO_TCPV4
| SKB_GSO_TCPV6
))))
2711 skb_shinfo(skb
)->gso_segs
= DIV_ROUND_UP(skb
->len
, mss
);
2717 segs
= skb_segment(skb
, features
);
2721 delta
= htonl(oldlen
+ (thlen
+ mss
));
2725 seq
= ntohl(th
->seq
);
2728 th
->fin
= th
->psh
= 0;
2730 th
->check
= ~csum_fold((__force __wsum
)((__force u32
)th
->check
+
2731 (__force u32
)delta
));
2732 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
2734 csum_fold(csum_partial(skb_transport_header(skb
),
2741 th
->seq
= htonl(seq
);
2743 } while (skb
->next
);
2745 delta
= htonl(oldlen
+ (skb
->tail
- skb
->transport_header
) +
2747 th
->check
= ~csum_fold((__force __wsum
)((__force u32
)th
->check
+
2748 (__force u32
)delta
));
2749 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
2750 th
->check
= csum_fold(csum_partial(skb_transport_header(skb
),
2756 EXPORT_SYMBOL(tcp_tso_segment
);
2758 struct sk_buff
**tcp_gro_receive(struct sk_buff
**head
, struct sk_buff
*skb
)
2760 struct sk_buff
**pp
= NULL
;
2767 unsigned int mss
= 1;
2773 off
= skb_gro_offset(skb
);
2774 hlen
= off
+ sizeof(*th
);
2775 th
= skb_gro_header_fast(skb
, off
);
2776 if (skb_gro_header_hard(skb
, hlen
)) {
2777 th
= skb_gro_header_slow(skb
, hlen
, off
);
2782 thlen
= th
->doff
* 4;
2783 if (thlen
< sizeof(*th
))
2787 if (skb_gro_header_hard(skb
, hlen
)) {
2788 th
= skb_gro_header_slow(skb
, hlen
, off
);
2793 skb_gro_pull(skb
, thlen
);
2795 len
= skb_gro_len(skb
);
2796 flags
= tcp_flag_word(th
);
2798 for (; (p
= *head
); head
= &p
->next
) {
2799 if (!NAPI_GRO_CB(p
)->same_flow
)
2804 if (*(u32
*)&th
->source
^ *(u32
*)&th2
->source
) {
2805 NAPI_GRO_CB(p
)->same_flow
= 0;
2812 goto out_check_final
;
2815 flush
= NAPI_GRO_CB(p
)->flush
;
2816 flush
|= (__force
int)(flags
& TCP_FLAG_CWR
);
2817 flush
|= (__force
int)((flags
^ tcp_flag_word(th2
)) &
2818 ~(TCP_FLAG_CWR
| TCP_FLAG_FIN
| TCP_FLAG_PSH
));
2819 flush
|= (__force
int)(th
->ack_seq
^ th2
->ack_seq
);
2820 for (i
= sizeof(*th
); i
< thlen
; i
+= 4)
2821 flush
|= *(u32
*)((u8
*)th
+ i
) ^
2822 *(u32
*)((u8
*)th2
+ i
);
2824 mss
= skb_shinfo(p
)->gso_size
;
2826 flush
|= (len
- 1) >= mss
;
2827 flush
|= (ntohl(th2
->seq
) + skb_gro_len(p
)) ^ ntohl(th
->seq
);
2829 if (flush
|| skb_gro_receive(head
, skb
)) {
2831 goto out_check_final
;
2836 tcp_flag_word(th2
) |= flags
& (TCP_FLAG_FIN
| TCP_FLAG_PSH
);
2840 flush
|= (__force
int)(flags
& (TCP_FLAG_URG
| TCP_FLAG_PSH
|
2841 TCP_FLAG_RST
| TCP_FLAG_SYN
|
2844 if (p
&& (!NAPI_GRO_CB(skb
)->same_flow
|| flush
))
2848 NAPI_GRO_CB(skb
)->flush
|= flush
;
2852 EXPORT_SYMBOL(tcp_gro_receive
);
2854 int tcp_gro_complete(struct sk_buff
*skb
)
2856 struct tcphdr
*th
= tcp_hdr(skb
);
2858 skb
->csum_start
= skb_transport_header(skb
) - skb
->head
;
2859 skb
->csum_offset
= offsetof(struct tcphdr
, check
);
2860 skb
->ip_summed
= CHECKSUM_PARTIAL
;
2862 skb_shinfo(skb
)->gso_segs
= NAPI_GRO_CB(skb
)->count
;
2865 skb_shinfo(skb
)->gso_type
|= SKB_GSO_TCP_ECN
;
2869 EXPORT_SYMBOL(tcp_gro_complete
);
2871 #ifdef CONFIG_TCP_MD5SIG
2872 static unsigned long tcp_md5sig_users
;
2873 static struct tcp_md5sig_pool __percpu
*tcp_md5sig_pool
;
2874 static DEFINE_SPINLOCK(tcp_md5sig_pool_lock
);
2876 static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool __percpu
*pool
)
2880 for_each_possible_cpu(cpu
) {
2881 struct tcp_md5sig_pool
*p
= per_cpu_ptr(pool
, cpu
);
2883 if (p
->md5_desc
.tfm
)
2884 crypto_free_hash(p
->md5_desc
.tfm
);
2889 void tcp_free_md5sig_pool(void)
2891 struct tcp_md5sig_pool __percpu
*pool
= NULL
;
2893 spin_lock_bh(&tcp_md5sig_pool_lock
);
2894 if (--tcp_md5sig_users
== 0) {
2895 pool
= tcp_md5sig_pool
;
2896 tcp_md5sig_pool
= NULL
;
2898 spin_unlock_bh(&tcp_md5sig_pool_lock
);
2900 __tcp_free_md5sig_pool(pool
);
2902 EXPORT_SYMBOL(tcp_free_md5sig_pool
);
2904 static struct tcp_md5sig_pool __percpu
*
2905 __tcp_alloc_md5sig_pool(struct sock
*sk
)
2908 struct tcp_md5sig_pool __percpu
*pool
;
2910 pool
= alloc_percpu(struct tcp_md5sig_pool
);
2914 for_each_possible_cpu(cpu
) {
2915 struct crypto_hash
*hash
;
2917 hash
= crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC
);
2918 if (!hash
|| IS_ERR(hash
))
2921 per_cpu_ptr(pool
, cpu
)->md5_desc
.tfm
= hash
;
2925 __tcp_free_md5sig_pool(pool
);
2929 struct tcp_md5sig_pool __percpu
*tcp_alloc_md5sig_pool(struct sock
*sk
)
2931 struct tcp_md5sig_pool __percpu
*pool
;
2935 spin_lock_bh(&tcp_md5sig_pool_lock
);
2936 pool
= tcp_md5sig_pool
;
2937 if (tcp_md5sig_users
++ == 0) {
2939 spin_unlock_bh(&tcp_md5sig_pool_lock
);
2942 spin_unlock_bh(&tcp_md5sig_pool_lock
);
2946 spin_unlock_bh(&tcp_md5sig_pool_lock
);
2949 /* we cannot hold spinlock here because this may sleep. */
2950 struct tcp_md5sig_pool __percpu
*p
;
2952 p
= __tcp_alloc_md5sig_pool(sk
);
2953 spin_lock_bh(&tcp_md5sig_pool_lock
);
2956 spin_unlock_bh(&tcp_md5sig_pool_lock
);
2959 pool
= tcp_md5sig_pool
;
2961 /* oops, it has already been assigned. */
2962 spin_unlock_bh(&tcp_md5sig_pool_lock
);
2963 __tcp_free_md5sig_pool(p
);
2965 tcp_md5sig_pool
= pool
= p
;
2966 spin_unlock_bh(&tcp_md5sig_pool_lock
);
2971 EXPORT_SYMBOL(tcp_alloc_md5sig_pool
);
2975 * tcp_get_md5sig_pool - get md5sig_pool for this user
2977 * We use percpu structure, so if we succeed, we exit with preemption
2978 * and BH disabled, to make sure another thread or softirq handling
2979 * wont try to get same context.
2981 struct tcp_md5sig_pool
*tcp_get_md5sig_pool(void)
2983 struct tcp_md5sig_pool __percpu
*p
;
2987 spin_lock(&tcp_md5sig_pool_lock
);
2988 p
= tcp_md5sig_pool
;
2991 spin_unlock(&tcp_md5sig_pool_lock
);
2994 return this_cpu_ptr(p
);
2999 EXPORT_SYMBOL(tcp_get_md5sig_pool
);
3001 void tcp_put_md5sig_pool(void)
3004 tcp_free_md5sig_pool();
3006 EXPORT_SYMBOL(tcp_put_md5sig_pool
);
3008 int tcp_md5_hash_header(struct tcp_md5sig_pool
*hp
,
3009 const struct tcphdr
*th
)
3011 struct scatterlist sg
;
3015 /* We are not allowed to change tcphdr, make a local copy */
3016 memcpy(&hdr
, th
, sizeof(hdr
));
3019 /* options aren't included in the hash */
3020 sg_init_one(&sg
, &hdr
, sizeof(hdr
));
3021 err
= crypto_hash_update(&hp
->md5_desc
, &sg
, sizeof(hdr
));
3024 EXPORT_SYMBOL(tcp_md5_hash_header
);
3026 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool
*hp
,
3027 const struct sk_buff
*skb
, unsigned int header_len
)
3029 struct scatterlist sg
;
3030 const struct tcphdr
*tp
= tcp_hdr(skb
);
3031 struct hash_desc
*desc
= &hp
->md5_desc
;
3033 const unsigned head_data_len
= skb_headlen(skb
) > header_len
?
3034 skb_headlen(skb
) - header_len
: 0;
3035 const struct skb_shared_info
*shi
= skb_shinfo(skb
);
3036 struct sk_buff
*frag_iter
;
3038 sg_init_table(&sg
, 1);
3040 sg_set_buf(&sg
, ((u8
*) tp
) + header_len
, head_data_len
);
3041 if (crypto_hash_update(desc
, &sg
, head_data_len
))
3044 for (i
= 0; i
< shi
->nr_frags
; ++i
) {
3045 const struct skb_frag_struct
*f
= &shi
->frags
[i
];
3046 struct page
*page
= skb_frag_page(f
);
3047 sg_set_page(&sg
, page
, skb_frag_size(f
), f
->page_offset
);
3048 if (crypto_hash_update(desc
, &sg
, skb_frag_size(f
)))
3052 skb_walk_frags(skb
, frag_iter
)
3053 if (tcp_md5_hash_skb_data(hp
, frag_iter
, 0))
3058 EXPORT_SYMBOL(tcp_md5_hash_skb_data
);
3060 int tcp_md5_hash_key(struct tcp_md5sig_pool
*hp
, const struct tcp_md5sig_key
*key
)
3062 struct scatterlist sg
;
3064 sg_init_one(&sg
, key
->key
, key
->keylen
);
3065 return crypto_hash_update(&hp
->md5_desc
, &sg
, key
->keylen
);
3067 EXPORT_SYMBOL(tcp_md5_hash_key
);
3072 * Each Responder maintains up to two secret values concurrently for
3073 * efficient secret rollover. Each secret value has 4 states:
3075 * Generating. (tcp_secret_generating != tcp_secret_primary)
3076 * Generates new Responder-Cookies, but not yet used for primary
3077 * verification. This is a short-term state, typically lasting only
3078 * one round trip time (RTT).
3080 * Primary. (tcp_secret_generating == tcp_secret_primary)
3081 * Used both for generation and primary verification.
3083 * Retiring. (tcp_secret_retiring != tcp_secret_secondary)
3084 * Used for verification, until the first failure that can be
3085 * verified by the newer Generating secret. At that time, this
3086 * cookie's state is changed to Secondary, and the Generating
3087 * cookie's state is changed to Primary. This is a short-term state,
3088 * typically lasting only one round trip time (RTT).
3090 * Secondary. (tcp_secret_retiring == tcp_secret_secondary)
3091 * Used for secondary verification, after primary verification
3092 * failures. This state lasts no more than twice the Maximum Segment
3093 * Lifetime (2MSL). Then, the secret is discarded.
3095 struct tcp_cookie_secret
{
3096 /* The secret is divided into two parts. The digest part is the
3097 * equivalent of previously hashing a secret and saving the state,
3098 * and serves as an initialization vector (IV). The message part
3099 * serves as the trailing secret.
3101 u32 secrets
[COOKIE_WORKSPACE_WORDS
];
3102 unsigned long expires
;
3105 #define TCP_SECRET_1MSL (HZ * TCP_PAWS_MSL)
3106 #define TCP_SECRET_2MSL (HZ * TCP_PAWS_MSL * 2)
3107 #define TCP_SECRET_LIFE (HZ * 600)
3109 static struct tcp_cookie_secret tcp_secret_one
;
3110 static struct tcp_cookie_secret tcp_secret_two
;
3112 /* Essentially a circular list, without dynamic allocation. */
3113 static struct tcp_cookie_secret
*tcp_secret_generating
;
3114 static struct tcp_cookie_secret
*tcp_secret_primary
;
3115 static struct tcp_cookie_secret
*tcp_secret_retiring
;
3116 static struct tcp_cookie_secret
*tcp_secret_secondary
;
3118 static DEFINE_SPINLOCK(tcp_secret_locker
);
3120 /* Select a pseudo-random word in the cookie workspace.
3122 static inline u32
tcp_cookie_work(const u32
*ws
, const int n
)
3124 return ws
[COOKIE_DIGEST_WORDS
+ ((COOKIE_MESSAGE_WORDS
-1) & ws
[n
])];
3127 /* Fill bakery[COOKIE_WORKSPACE_WORDS] with generator, updating as needed.
3128 * Called in softirq context.
3129 * Returns: 0 for success.
3131 int tcp_cookie_generator(u32
*bakery
)
3133 unsigned long jiffy
= jiffies
;
3135 if (unlikely(time_after_eq(jiffy
, tcp_secret_generating
->expires
))) {
3136 spin_lock_bh(&tcp_secret_locker
);
3137 if (!time_after_eq(jiffy
, tcp_secret_generating
->expires
)) {
3138 /* refreshed by another */
3140 &tcp_secret_generating
->secrets
[0],
3141 COOKIE_WORKSPACE_WORDS
);
3143 /* still needs refreshing */
3144 get_random_bytes(bakery
, COOKIE_WORKSPACE_WORDS
);
3146 /* The first time, paranoia assumes that the
3147 * randomization function isn't as strong. But,
3148 * this secret initialization is delayed until
3149 * the last possible moment (packet arrival).
3150 * Although that time is observable, it is
3151 * unpredictably variable. Mash in the most
3152 * volatile clock bits available, and expire the
3153 * secret extra quickly.
3155 if (unlikely(tcp_secret_primary
->expires
==
3156 tcp_secret_secondary
->expires
)) {
3159 getnstimeofday(&tv
);
3160 bakery
[COOKIE_DIGEST_WORDS
+0] ^=
3163 tcp_secret_secondary
->expires
= jiffy
3165 + (0x0f & tcp_cookie_work(bakery
, 0));
3167 tcp_secret_secondary
->expires
= jiffy
3169 + (0xff & tcp_cookie_work(bakery
, 1));
3170 tcp_secret_primary
->expires
= jiffy
3172 + (0x1f & tcp_cookie_work(bakery
, 2));
3174 memcpy(&tcp_secret_secondary
->secrets
[0],
3175 bakery
, COOKIE_WORKSPACE_WORDS
);
3177 rcu_assign_pointer(tcp_secret_generating
,
3178 tcp_secret_secondary
);
3179 rcu_assign_pointer(tcp_secret_retiring
,
3180 tcp_secret_primary
);
3182 * Neither call_rcu() nor synchronize_rcu() needed.
3183 * Retiring data is not freed. It is replaced after
3184 * further (locked) pointer updates, and a quiet time
3185 * (minimum 1MSL, maximum LIFE - 2MSL).
3188 spin_unlock_bh(&tcp_secret_locker
);
3192 &rcu_dereference(tcp_secret_generating
)->secrets
[0],
3193 COOKIE_WORKSPACE_WORDS
);
3194 rcu_read_unlock_bh();
3198 EXPORT_SYMBOL(tcp_cookie_generator
);
3200 void tcp_done(struct sock
*sk
)
3202 if (sk
->sk_state
== TCP_SYN_SENT
|| sk
->sk_state
== TCP_SYN_RECV
)
3203 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_ATTEMPTFAILS
);
3205 tcp_set_state(sk
, TCP_CLOSE
);
3206 tcp_clear_xmit_timers(sk
);
3208 sk
->sk_shutdown
= SHUTDOWN_MASK
;
3210 if (!sock_flag(sk
, SOCK_DEAD
))
3211 sk
->sk_state_change(sk
);
3213 inet_csk_destroy_sock(sk
);
3215 EXPORT_SYMBOL_GPL(tcp_done
);
3217 extern struct tcp_congestion_ops tcp_reno
;
3219 static __initdata
unsigned long thash_entries
;
3220 static int __init
set_thash_entries(char *str
)
3224 thash_entries
= simple_strtoul(str
, &str
, 0);
3227 __setup("thash_entries=", set_thash_entries
);
3229 void tcp_init_mem(struct net
*net
)
3231 unsigned long limit
= nr_free_buffer_pages() / 8;
3232 limit
= max(limit
, 128UL);
3233 net
->ipv4
.sysctl_tcp_mem
[0] = limit
/ 4 * 3;
3234 net
->ipv4
.sysctl_tcp_mem
[1] = limit
;
3235 net
->ipv4
.sysctl_tcp_mem
[2] = net
->ipv4
.sysctl_tcp_mem
[0] * 2;
3238 void __init
tcp_init(void)
3240 struct sk_buff
*skb
= NULL
;
3241 unsigned long limit
;
3242 int max_rshare
, max_wshare
, cnt
;
3244 unsigned long jiffy
= jiffies
;
3246 BUILD_BUG_ON(sizeof(struct tcp_skb_cb
) > sizeof(skb
->cb
));
3248 percpu_counter_init(&tcp_sockets_allocated
, 0);
3249 percpu_counter_init(&tcp_orphan_count
, 0);
3250 tcp_hashinfo
.bind_bucket_cachep
=
3251 kmem_cache_create("tcp_bind_bucket",
3252 sizeof(struct inet_bind_bucket
), 0,
3253 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
3255 /* Size and allocate the main established and bind bucket
3258 * The methodology is similar to that of the buffer cache.
3260 tcp_hashinfo
.ehash
=
3261 alloc_large_system_hash("TCP established",
3262 sizeof(struct inet_ehash_bucket
),
3264 (totalram_pages
>= 128 * 1024) ?
3268 &tcp_hashinfo
.ehash_mask
,
3269 thash_entries
? 0 : 512 * 1024);
3270 for (i
= 0; i
<= tcp_hashinfo
.ehash_mask
; i
++) {
3271 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo
.ehash
[i
].chain
, i
);
3272 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo
.ehash
[i
].twchain
, i
);
3274 if (inet_ehash_locks_alloc(&tcp_hashinfo
))
3275 panic("TCP: failed to alloc ehash_locks");
3276 tcp_hashinfo
.bhash
=
3277 alloc_large_system_hash("TCP bind",
3278 sizeof(struct inet_bind_hashbucket
),
3279 tcp_hashinfo
.ehash_mask
+ 1,
3280 (totalram_pages
>= 128 * 1024) ?
3283 &tcp_hashinfo
.bhash_size
,
3286 tcp_hashinfo
.bhash_size
= 1U << tcp_hashinfo
.bhash_size
;
3287 for (i
= 0; i
< tcp_hashinfo
.bhash_size
; i
++) {
3288 spin_lock_init(&tcp_hashinfo
.bhash
[i
].lock
);
3289 INIT_HLIST_HEAD(&tcp_hashinfo
.bhash
[i
].chain
);
3293 cnt
= tcp_hashinfo
.ehash_mask
+ 1;
3295 tcp_death_row
.sysctl_max_tw_buckets
= cnt
/ 2;
3296 sysctl_tcp_max_orphans
= cnt
/ 2;
3297 sysctl_max_syn_backlog
= max(128, cnt
/ 256);
3299 tcp_init_mem(&init_net
);
3300 /* Set per-socket limits to no more than 1/128 the pressure threshold */
3301 limit
= nr_free_buffer_pages() << (PAGE_SHIFT
- 7);
3302 max_wshare
= min(4UL*1024*1024, limit
);
3303 max_rshare
= min(6UL*1024*1024, limit
);
3305 sysctl_tcp_wmem
[0] = SK_MEM_QUANTUM
;
3306 sysctl_tcp_wmem
[1] = 16*1024;
3307 sysctl_tcp_wmem
[2] = max(64*1024, max_wshare
);
3309 sysctl_tcp_rmem
[0] = SK_MEM_QUANTUM
;
3310 sysctl_tcp_rmem
[1] = 87380;
3311 sysctl_tcp_rmem
[2] = max(87380, max_rshare
);
3313 printk(KERN_INFO
"TCP: Hash tables configured "
3314 "(established %u bind %u)\n",
3315 tcp_hashinfo
.ehash_mask
+ 1, tcp_hashinfo
.bhash_size
);
3317 tcp_register_congestion_control(&tcp_reno
);
3319 memset(&tcp_secret_one
.secrets
[0], 0, sizeof(tcp_secret_one
.secrets
));
3320 memset(&tcp_secret_two
.secrets
[0], 0, sizeof(tcp_secret_two
.secrets
));
3321 tcp_secret_one
.expires
= jiffy
; /* past due */
3322 tcp_secret_two
.expires
= jiffy
; /* past due */
3323 tcp_secret_generating
= &tcp_secret_one
;
3324 tcp_secret_primary
= &tcp_secret_one
;
3325 tcp_secret_retiring
= &tcp_secret_two
;
3326 tcp_secret_secondary
= &tcp_secret_two
;