2 * Contains CPU feature definitions
4 * Copyright (C) 2015 ARM Ltd.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program. If not, see <http://www.gnu.org/licenses/>.
19 #define pr_fmt(fmt) "CPU features: " fmt
21 #include <linux/bsearch.h>
22 #include <linux/sort.h>
23 #include <linux/types.h>
25 #include <asm/cpufeature.h>
26 #include <asm/cpu_ops.h>
27 #include <asm/processor.h>
28 #include <asm/sysreg.h>
30 unsigned long elf_hwcap __read_mostly
;
31 EXPORT_SYMBOL_GPL(elf_hwcap
);
34 #define COMPAT_ELF_HWCAP_DEFAULT \
35 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
36 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
37 COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
38 COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
39 COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
41 unsigned int compat_elf_hwcap __read_mostly
= COMPAT_ELF_HWCAP_DEFAULT
;
42 unsigned int compat_elf_hwcap2 __read_mostly
;
45 DECLARE_BITMAP(cpu_hwcaps
, ARM64_NCAPS
);
47 #define __ARM64_FTR_BITS(SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
54 .safe_val = SAFE_VAL, \
57 /* Define a feature with signed values */
58 #define ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
59 __ARM64_FTR_BITS(FTR_SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
61 /* Define a feature with unsigned value */
62 #define U_ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
63 __ARM64_FTR_BITS(FTR_UNSIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
65 #define ARM64_FTR_END \
70 static struct arm64_ftr_bits ftr_id_aa64isar0
[] = {
71 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 32, 32, 0),
72 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, ID_AA64ISAR0_RDM_SHIFT
, 4, 0),
73 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 24, 4, 0),
74 ARM64_FTR_BITS(FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_ATOMICS_SHIFT
, 4, 0),
75 ARM64_FTR_BITS(FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_CRC32_SHIFT
, 4, 0),
76 ARM64_FTR_BITS(FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_SHA2_SHIFT
, 4, 0),
77 ARM64_FTR_BITS(FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_SHA1_SHIFT
, 4, 0),
78 ARM64_FTR_BITS(FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_AES_SHIFT
, 4, 0),
79 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 0, 4, 0), /* RAZ */
83 static struct arm64_ftr_bits ftr_id_aa64pfr0
[] = {
84 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 32, 32, 0),
85 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 28, 4, 0),
86 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, ID_AA64PFR0_GIC_SHIFT
, 4, 0),
87 ARM64_FTR_BITS(FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_ASIMD_SHIFT
, 4, ID_AA64PFR0_ASIMD_NI
),
88 ARM64_FTR_BITS(FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_FP_SHIFT
, 4, ID_AA64PFR0_FP_NI
),
89 /* Linux doesn't care about the EL3 */
90 ARM64_FTR_BITS(FTR_NONSTRICT
, FTR_EXACT
, ID_AA64PFR0_EL3_SHIFT
, 4, 0),
91 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, ID_AA64PFR0_EL2_SHIFT
, 4, 0),
92 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, ID_AA64PFR0_EL1_SHIFT
, 4, ID_AA64PFR0_EL1_64BIT_ONLY
),
93 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, ID_AA64PFR0_EL0_SHIFT
, 4, ID_AA64PFR0_EL0_64BIT_ONLY
),
97 static struct arm64_ftr_bits ftr_id_aa64mmfr0
[] = {
98 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 32, 32, 0),
99 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, ID_AA64MMFR0_TGRAN4_SHIFT
, 4, ID_AA64MMFR0_TGRAN4_NI
),
100 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, ID_AA64MMFR0_TGRAN64_SHIFT
, 4, ID_AA64MMFR0_TGRAN64_NI
),
101 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, ID_AA64MMFR0_TGRAN16_SHIFT
, 4, ID_AA64MMFR0_TGRAN16_NI
),
102 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, ID_AA64MMFR0_BIGENDEL0_SHIFT
, 4, 0),
103 /* Linux shouldn't care about secure memory */
104 ARM64_FTR_BITS(FTR_NONSTRICT
, FTR_EXACT
, ID_AA64MMFR0_SNSMEM_SHIFT
, 4, 0),
105 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, ID_AA64MMFR0_BIGENDEL_SHIFT
, 4, 0),
106 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, ID_AA64MMFR0_ASID_SHIFT
, 4, 0),
108 * Differing PARange is fine as long as all peripherals and memory are mapped
109 * within the minimum PARange of all CPUs
111 U_ARM64_FTR_BITS(FTR_NONSTRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR0_PARANGE_SHIFT
, 4, 0),
115 static struct arm64_ftr_bits ftr_id_aa64mmfr1
[] = {
116 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 32, 32, 0),
117 ARM64_FTR_BITS(FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR1_PAN_SHIFT
, 4, 0),
118 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, ID_AA64MMFR1_LOR_SHIFT
, 4, 0),
119 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, ID_AA64MMFR1_HPD_SHIFT
, 4, 0),
120 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, ID_AA64MMFR1_VHE_SHIFT
, 4, 0),
121 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, ID_AA64MMFR1_VMIDBITS_SHIFT
, 4, 0),
122 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, ID_AA64MMFR1_HADBS_SHIFT
, 4, 0),
126 static struct arm64_ftr_bits ftr_ctr
[] = {
127 U_ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 31, 1, 1), /* RAO */
128 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 28, 3, 0),
129 U_ARM64_FTR_BITS(FTR_STRICT
, FTR_HIGHER_SAFE
, 24, 4, 0), /* CWG */
130 U_ARM64_FTR_BITS(FTR_STRICT
, FTR_LOWER_SAFE
, 20, 4, 0), /* ERG */
131 U_ARM64_FTR_BITS(FTR_STRICT
, FTR_LOWER_SAFE
, 16, 4, 1), /* DminLine */
133 * Linux can handle differing I-cache policies. Userspace JITs will
134 * make use of *minLine
136 U_ARM64_FTR_BITS(FTR_NONSTRICT
, FTR_EXACT
, 14, 2, 0), /* L1Ip */
137 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 4, 10, 0), /* RAZ */
138 U_ARM64_FTR_BITS(FTR_STRICT
, FTR_LOWER_SAFE
, 0, 4, 0), /* IminLine */
142 static struct arm64_ftr_bits ftr_id_mmfr0
[] = {
143 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 28, 4, 0), /* InnerShr */
144 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 24, 4, 0), /* FCSE */
145 ARM64_FTR_BITS(FTR_NONSTRICT
, FTR_LOWER_SAFE
, 20, 4, 0), /* AuxReg */
146 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 16, 4, 0), /* TCM */
147 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 12, 4, 0), /* ShareLvl */
148 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 8, 4, 0), /* OuterShr */
149 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 4, 4, 0), /* PMSA */
150 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 0, 4, 0), /* VMSA */
154 static struct arm64_ftr_bits ftr_id_aa64dfr0
[] = {
155 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 32, 32, 0),
156 U_ARM64_FTR_BITS(FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64DFR0_CTX_CMPS_SHIFT
, 4, 0),
157 U_ARM64_FTR_BITS(FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64DFR0_WRPS_SHIFT
, 4, 0),
158 U_ARM64_FTR_BITS(FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64DFR0_BRPS_SHIFT
, 4, 0),
159 U_ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, ID_AA64DFR0_PMUVER_SHIFT
, 4, 0),
160 U_ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, ID_AA64DFR0_TRACEVER_SHIFT
, 4, 0),
161 U_ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, ID_AA64DFR0_DEBUGVER_SHIFT
, 4, 0x6),
165 static struct arm64_ftr_bits ftr_mvfr2
[] = {
166 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 8, 24, 0), /* RAZ */
167 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 4, 4, 0), /* FPMisc */
168 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 0, 4, 0), /* SIMDMisc */
172 static struct arm64_ftr_bits ftr_dczid
[] = {
173 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 5, 27, 0), /* RAZ */
174 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 4, 1, 1), /* DZP */
175 ARM64_FTR_BITS(FTR_STRICT
, FTR_LOWER_SAFE
, 0, 4, 0), /* BS */
180 static struct arm64_ftr_bits ftr_id_isar5
[] = {
181 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, ID_ISAR5_RDM_SHIFT
, 4, 0),
182 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 20, 4, 0), /* RAZ */
183 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, ID_ISAR5_CRC32_SHIFT
, 4, 0),
184 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, ID_ISAR5_SHA2_SHIFT
, 4, 0),
185 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, ID_ISAR5_SHA1_SHIFT
, 4, 0),
186 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, ID_ISAR5_AES_SHIFT
, 4, 0),
187 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, ID_ISAR5_SEVL_SHIFT
, 4, 0),
191 static struct arm64_ftr_bits ftr_id_mmfr4
[] = {
192 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 8, 24, 0), /* RAZ */
193 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 4, 4, 0), /* ac2 */
194 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 0, 4, 0), /* RAZ */
198 static struct arm64_ftr_bits ftr_id_pfr0
[] = {
199 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 16, 16, 0), /* RAZ */
200 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 12, 4, 0), /* State3 */
201 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 8, 4, 0), /* State2 */
202 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 4, 4, 0), /* State1 */
203 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 0, 4, 0), /* State0 */
208 * Common ftr bits for a 32bit register with all hidden, strict
209 * attributes, with 4bit feature fields and a default safe value of
210 * 0. Covers the following 32bit registers:
211 * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
213 static struct arm64_ftr_bits ftr_generic_32bits
[] = {
214 ARM64_FTR_BITS(FTR_STRICT
, FTR_LOWER_SAFE
, 28, 4, 0),
215 ARM64_FTR_BITS(FTR_STRICT
, FTR_LOWER_SAFE
, 24, 4, 0),
216 ARM64_FTR_BITS(FTR_STRICT
, FTR_LOWER_SAFE
, 20, 4, 0),
217 ARM64_FTR_BITS(FTR_STRICT
, FTR_LOWER_SAFE
, 16, 4, 0),
218 ARM64_FTR_BITS(FTR_STRICT
, FTR_LOWER_SAFE
, 12, 4, 0),
219 ARM64_FTR_BITS(FTR_STRICT
, FTR_LOWER_SAFE
, 8, 4, 0),
220 ARM64_FTR_BITS(FTR_STRICT
, FTR_LOWER_SAFE
, 4, 4, 0),
221 ARM64_FTR_BITS(FTR_STRICT
, FTR_LOWER_SAFE
, 0, 4, 0),
225 static struct arm64_ftr_bits ftr_generic
[] = {
226 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 0, 64, 0),
230 static struct arm64_ftr_bits ftr_generic32
[] = {
231 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 0, 32, 0),
235 static struct arm64_ftr_bits ftr_aa64raz
[] = {
236 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 0, 64, 0),
240 #define ARM64_FTR_REG(id, table) \
244 .ftr_bits = &((table)[0]), \
247 static struct arm64_ftr_reg arm64_ftr_regs
[] = {
249 /* Op1 = 0, CRn = 0, CRm = 1 */
250 ARM64_FTR_REG(SYS_ID_PFR0_EL1
, ftr_id_pfr0
),
251 ARM64_FTR_REG(SYS_ID_PFR1_EL1
, ftr_generic_32bits
),
252 ARM64_FTR_REG(SYS_ID_DFR0_EL1
, ftr_generic_32bits
),
253 ARM64_FTR_REG(SYS_ID_MMFR0_EL1
, ftr_id_mmfr0
),
254 ARM64_FTR_REG(SYS_ID_MMFR1_EL1
, ftr_generic_32bits
),
255 ARM64_FTR_REG(SYS_ID_MMFR2_EL1
, ftr_generic_32bits
),
256 ARM64_FTR_REG(SYS_ID_MMFR3_EL1
, ftr_generic_32bits
),
258 /* Op1 = 0, CRn = 0, CRm = 2 */
259 ARM64_FTR_REG(SYS_ID_ISAR0_EL1
, ftr_generic_32bits
),
260 ARM64_FTR_REG(SYS_ID_ISAR1_EL1
, ftr_generic_32bits
),
261 ARM64_FTR_REG(SYS_ID_ISAR2_EL1
, ftr_generic_32bits
),
262 ARM64_FTR_REG(SYS_ID_ISAR3_EL1
, ftr_generic_32bits
),
263 ARM64_FTR_REG(SYS_ID_ISAR4_EL1
, ftr_generic_32bits
),
264 ARM64_FTR_REG(SYS_ID_ISAR5_EL1
, ftr_id_isar5
),
265 ARM64_FTR_REG(SYS_ID_MMFR4_EL1
, ftr_id_mmfr4
),
267 /* Op1 = 0, CRn = 0, CRm = 3 */
268 ARM64_FTR_REG(SYS_MVFR0_EL1
, ftr_generic_32bits
),
269 ARM64_FTR_REG(SYS_MVFR1_EL1
, ftr_generic_32bits
),
270 ARM64_FTR_REG(SYS_MVFR2_EL1
, ftr_mvfr2
),
272 /* Op1 = 0, CRn = 0, CRm = 4 */
273 ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1
, ftr_id_aa64pfr0
),
274 ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1
, ftr_aa64raz
),
276 /* Op1 = 0, CRn = 0, CRm = 5 */
277 ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1
, ftr_id_aa64dfr0
),
278 ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1
, ftr_generic
),
280 /* Op1 = 0, CRn = 0, CRm = 6 */
281 ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1
, ftr_id_aa64isar0
),
282 ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1
, ftr_aa64raz
),
284 /* Op1 = 0, CRn = 0, CRm = 7 */
285 ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1
, ftr_id_aa64mmfr0
),
286 ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1
, ftr_id_aa64mmfr1
),
288 /* Op1 = 3, CRn = 0, CRm = 0 */
289 ARM64_FTR_REG(SYS_CTR_EL0
, ftr_ctr
),
290 ARM64_FTR_REG(SYS_DCZID_EL0
, ftr_dczid
),
292 /* Op1 = 3, CRn = 14, CRm = 0 */
293 ARM64_FTR_REG(SYS_CNTFRQ_EL0
, ftr_generic32
),
296 static int search_cmp_ftr_reg(const void *id
, const void *regp
)
298 return (int)(unsigned long)id
- (int)((const struct arm64_ftr_reg
*)regp
)->sys_id
;
302 * get_arm64_ftr_reg - Lookup a feature register entry using its
303 * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
304 * ascending order of sys_id , we use binary search to find a matching
307 * returns - Upon success, matching ftr_reg entry for id.
308 * - NULL on failure. It is upto the caller to decide
309 * the impact of a failure.
311 static struct arm64_ftr_reg
*get_arm64_ftr_reg(u32 sys_id
)
313 return bsearch((const void *)(unsigned long)sys_id
,
315 ARRAY_SIZE(arm64_ftr_regs
),
316 sizeof(arm64_ftr_regs
[0]),
320 static u64
arm64_ftr_set_value(struct arm64_ftr_bits
*ftrp
, s64 reg
, s64 ftr_val
)
322 u64 mask
= arm64_ftr_mask(ftrp
);
325 reg
|= (ftr_val
<< ftrp
->shift
) & mask
;
329 static s64
arm64_ftr_safe_value(struct arm64_ftr_bits
*ftrp
, s64
new, s64 cur
)
333 switch (ftrp
->type
) {
335 ret
= ftrp
->safe_val
;
338 ret
= new < cur
? new : cur
;
340 case FTR_HIGHER_SAFE
:
341 ret
= new > cur
? new : cur
;
350 static int __init
sort_cmp_ftr_regs(const void *a
, const void *b
)
352 return ((const struct arm64_ftr_reg
*)a
)->sys_id
-
353 ((const struct arm64_ftr_reg
*)b
)->sys_id
;
356 static void __init
swap_ftr_regs(void *a
, void *b
, int size
)
358 struct arm64_ftr_reg tmp
= *(struct arm64_ftr_reg
*)a
;
359 *(struct arm64_ftr_reg
*)a
= *(struct arm64_ftr_reg
*)b
;
360 *(struct arm64_ftr_reg
*)b
= tmp
;
363 static void __init
sort_ftr_regs(void)
365 /* Keep the array sorted so that we can do the binary search */
367 ARRAY_SIZE(arm64_ftr_regs
),
368 sizeof(arm64_ftr_regs
[0]),
374 * Initialise the CPU feature register from Boot CPU values.
375 * Also initiliases the strict_mask for the register.
377 static void __init
init_cpu_ftr_reg(u32 sys_reg
, u64
new)
380 u64 strict_mask
= ~0x0ULL
;
381 struct arm64_ftr_bits
*ftrp
;
382 struct arm64_ftr_reg
*reg
= get_arm64_ftr_reg(sys_reg
);
386 for (ftrp
= reg
->ftr_bits
; ftrp
->width
; ftrp
++) {
387 s64 ftr_new
= arm64_ftr_value(ftrp
, new);
389 val
= arm64_ftr_set_value(ftrp
, val
, ftr_new
);
391 strict_mask
&= ~arm64_ftr_mask(ftrp
);
394 reg
->strict_mask
= strict_mask
;
397 void __init
init_cpu_features(struct cpuinfo_arm64
*info
)
399 /* Before we start using the tables, make sure it is sorted */
402 init_cpu_ftr_reg(SYS_CTR_EL0
, info
->reg_ctr
);
403 init_cpu_ftr_reg(SYS_DCZID_EL0
, info
->reg_dczid
);
404 init_cpu_ftr_reg(SYS_CNTFRQ_EL0
, info
->reg_cntfrq
);
405 init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1
, info
->reg_id_aa64dfr0
);
406 init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1
, info
->reg_id_aa64dfr1
);
407 init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1
, info
->reg_id_aa64isar0
);
408 init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1
, info
->reg_id_aa64isar1
);
409 init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1
, info
->reg_id_aa64mmfr0
);
410 init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1
, info
->reg_id_aa64mmfr1
);
411 init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1
, info
->reg_id_aa64pfr0
);
412 init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1
, info
->reg_id_aa64pfr1
);
413 init_cpu_ftr_reg(SYS_ID_DFR0_EL1
, info
->reg_id_dfr0
);
414 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1
, info
->reg_id_isar0
);
415 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1
, info
->reg_id_isar1
);
416 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1
, info
->reg_id_isar2
);
417 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1
, info
->reg_id_isar3
);
418 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1
, info
->reg_id_isar4
);
419 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1
, info
->reg_id_isar5
);
420 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1
, info
->reg_id_mmfr0
);
421 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1
, info
->reg_id_mmfr1
);
422 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1
, info
->reg_id_mmfr2
);
423 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1
, info
->reg_id_mmfr3
);
424 init_cpu_ftr_reg(SYS_ID_PFR0_EL1
, info
->reg_id_pfr0
);
425 init_cpu_ftr_reg(SYS_ID_PFR1_EL1
, info
->reg_id_pfr1
);
426 init_cpu_ftr_reg(SYS_MVFR0_EL1
, info
->reg_mvfr0
);
427 init_cpu_ftr_reg(SYS_MVFR1_EL1
, info
->reg_mvfr1
);
428 init_cpu_ftr_reg(SYS_MVFR2_EL1
, info
->reg_mvfr2
);
431 static void update_cpu_ftr_reg(struct arm64_ftr_reg
*reg
, u64
new)
433 struct arm64_ftr_bits
*ftrp
;
435 for (ftrp
= reg
->ftr_bits
; ftrp
->width
; ftrp
++) {
436 s64 ftr_cur
= arm64_ftr_value(ftrp
, reg
->sys_val
);
437 s64 ftr_new
= arm64_ftr_value(ftrp
, new);
439 if (ftr_cur
== ftr_new
)
441 /* Find a safe value */
442 ftr_new
= arm64_ftr_safe_value(ftrp
, ftr_new
, ftr_cur
);
443 reg
->sys_val
= arm64_ftr_set_value(ftrp
, reg
->sys_val
, ftr_new
);
448 static int check_update_ftr_reg(u32 sys_id
, int cpu
, u64 val
, u64 boot
)
450 struct arm64_ftr_reg
*regp
= get_arm64_ftr_reg(sys_id
);
453 update_cpu_ftr_reg(regp
, val
);
454 if ((boot
& regp
->strict_mask
) == (val
& regp
->strict_mask
))
456 pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
457 regp
->name
, boot
, cpu
, val
);
462 * Update system wide CPU feature registers with the values from a
463 * non-boot CPU. Also performs SANITY checks to make sure that there
464 * aren't any insane variations from that of the boot CPU.
466 void update_cpu_features(int cpu
,
467 struct cpuinfo_arm64
*info
,
468 struct cpuinfo_arm64
*boot
)
473 * The kernel can handle differing I-cache policies, but otherwise
474 * caches should look identical. Userspace JITs will make use of
477 taint
|= check_update_ftr_reg(SYS_CTR_EL0
, cpu
,
478 info
->reg_ctr
, boot
->reg_ctr
);
481 * Userspace may perform DC ZVA instructions. Mismatched block sizes
482 * could result in too much or too little memory being zeroed if a
483 * process is preempted and migrated between CPUs.
485 taint
|= check_update_ftr_reg(SYS_DCZID_EL0
, cpu
,
486 info
->reg_dczid
, boot
->reg_dczid
);
488 /* If different, timekeeping will be broken (especially with KVM) */
489 taint
|= check_update_ftr_reg(SYS_CNTFRQ_EL0
, cpu
,
490 info
->reg_cntfrq
, boot
->reg_cntfrq
);
493 * The kernel uses self-hosted debug features and expects CPUs to
494 * support identical debug features. We presently need CTX_CMPs, WRPs,
495 * and BRPs to be identical.
496 * ID_AA64DFR1 is currently RES0.
498 taint
|= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1
, cpu
,
499 info
->reg_id_aa64dfr0
, boot
->reg_id_aa64dfr0
);
500 taint
|= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1
, cpu
,
501 info
->reg_id_aa64dfr1
, boot
->reg_id_aa64dfr1
);
503 * Even in big.LITTLE, processors should be identical instruction-set
506 taint
|= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1
, cpu
,
507 info
->reg_id_aa64isar0
, boot
->reg_id_aa64isar0
);
508 taint
|= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1
, cpu
,
509 info
->reg_id_aa64isar1
, boot
->reg_id_aa64isar1
);
512 * Differing PARange support is fine as long as all peripherals and
513 * memory are mapped within the minimum PARange of all CPUs.
514 * Linux should not care about secure memory.
516 taint
|= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1
, cpu
,
517 info
->reg_id_aa64mmfr0
, boot
->reg_id_aa64mmfr0
);
518 taint
|= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1
, cpu
,
519 info
->reg_id_aa64mmfr1
, boot
->reg_id_aa64mmfr1
);
522 * EL3 is not our concern.
523 * ID_AA64PFR1 is currently RES0.
525 taint
|= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1
, cpu
,
526 info
->reg_id_aa64pfr0
, boot
->reg_id_aa64pfr0
);
527 taint
|= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1
, cpu
,
528 info
->reg_id_aa64pfr1
, boot
->reg_id_aa64pfr1
);
531 * If we have AArch32, we care about 32-bit features for compat. These
532 * registers should be RES0 otherwise.
534 taint
|= check_update_ftr_reg(SYS_ID_DFR0_EL1
, cpu
,
535 info
->reg_id_dfr0
, boot
->reg_id_dfr0
);
536 taint
|= check_update_ftr_reg(SYS_ID_ISAR0_EL1
, cpu
,
537 info
->reg_id_isar0
, boot
->reg_id_isar0
);
538 taint
|= check_update_ftr_reg(SYS_ID_ISAR1_EL1
, cpu
,
539 info
->reg_id_isar1
, boot
->reg_id_isar1
);
540 taint
|= check_update_ftr_reg(SYS_ID_ISAR2_EL1
, cpu
,
541 info
->reg_id_isar2
, boot
->reg_id_isar2
);
542 taint
|= check_update_ftr_reg(SYS_ID_ISAR3_EL1
, cpu
,
543 info
->reg_id_isar3
, boot
->reg_id_isar3
);
544 taint
|= check_update_ftr_reg(SYS_ID_ISAR4_EL1
, cpu
,
545 info
->reg_id_isar4
, boot
->reg_id_isar4
);
546 taint
|= check_update_ftr_reg(SYS_ID_ISAR5_EL1
, cpu
,
547 info
->reg_id_isar5
, boot
->reg_id_isar5
);
550 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
551 * ACTLR formats could differ across CPUs and therefore would have to
552 * be trapped for virtualization anyway.
554 taint
|= check_update_ftr_reg(SYS_ID_MMFR0_EL1
, cpu
,
555 info
->reg_id_mmfr0
, boot
->reg_id_mmfr0
);
556 taint
|= check_update_ftr_reg(SYS_ID_MMFR1_EL1
, cpu
,
557 info
->reg_id_mmfr1
, boot
->reg_id_mmfr1
);
558 taint
|= check_update_ftr_reg(SYS_ID_MMFR2_EL1
, cpu
,
559 info
->reg_id_mmfr2
, boot
->reg_id_mmfr2
);
560 taint
|= check_update_ftr_reg(SYS_ID_MMFR3_EL1
, cpu
,
561 info
->reg_id_mmfr3
, boot
->reg_id_mmfr3
);
562 taint
|= check_update_ftr_reg(SYS_ID_PFR0_EL1
, cpu
,
563 info
->reg_id_pfr0
, boot
->reg_id_pfr0
);
564 taint
|= check_update_ftr_reg(SYS_ID_PFR1_EL1
, cpu
,
565 info
->reg_id_pfr1
, boot
->reg_id_pfr1
);
566 taint
|= check_update_ftr_reg(SYS_MVFR0_EL1
, cpu
,
567 info
->reg_mvfr0
, boot
->reg_mvfr0
);
568 taint
|= check_update_ftr_reg(SYS_MVFR1_EL1
, cpu
,
569 info
->reg_mvfr1
, boot
->reg_mvfr1
);
570 taint
|= check_update_ftr_reg(SYS_MVFR2_EL1
, cpu
,
571 info
->reg_mvfr2
, boot
->reg_mvfr2
);
574 * Mismatched CPU features are a recipe for disaster. Don't even
575 * pretend to support them.
577 WARN_TAINT_ONCE(taint
, TAINT_CPU_OUT_OF_SPEC
,
578 "Unsupported CPU feature variation.\n");
581 u64
read_system_reg(u32 id
)
583 struct arm64_ftr_reg
*regp
= get_arm64_ftr_reg(id
);
585 /* We shouldn't get a request for an unsupported register */
587 return regp
->sys_val
;
590 #include <linux/irqchip/arm-gic-v3.h>
593 feature_matches(u64 reg
, const struct arm64_cpu_capabilities
*entry
)
595 int val
= cpuid_feature_extract_field(reg
, entry
->field_pos
);
597 return val
>= entry
->min_field_value
;
601 has_cpuid_feature(const struct arm64_cpu_capabilities
*entry
)
605 val
= read_system_reg(entry
->sys_reg
);
606 return feature_matches(val
, entry
);
609 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities
*entry
)
613 if (!has_cpuid_feature(entry
))
616 has_sre
= gic_enable_sre();
618 pr_warn_once("%s present but disabled by higher exception level\n",
624 static const struct arm64_cpu_capabilities arm64_features
[] = {
626 .desc
= "GIC system register CPU interface",
627 .capability
= ARM64_HAS_SYSREG_GIC_CPUIF
,
628 .matches
= has_useable_gicv3_cpuif
,
629 .sys_reg
= SYS_ID_AA64PFR0_EL1
,
630 .field_pos
= ID_AA64PFR0_GIC_SHIFT
,
631 .min_field_value
= 1,
633 #ifdef CONFIG_ARM64_PAN
635 .desc
= "Privileged Access Never",
636 .capability
= ARM64_HAS_PAN
,
637 .matches
= has_cpuid_feature
,
638 .sys_reg
= SYS_ID_AA64MMFR1_EL1
,
639 .field_pos
= ID_AA64MMFR1_PAN_SHIFT
,
640 .min_field_value
= 1,
641 .enable
= cpu_enable_pan
,
643 #endif /* CONFIG_ARM64_PAN */
644 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
646 .desc
= "LSE atomic instructions",
647 .capability
= ARM64_HAS_LSE_ATOMICS
,
648 .matches
= has_cpuid_feature
,
649 .sys_reg
= SYS_ID_AA64ISAR0_EL1
,
650 .field_pos
= ID_AA64ISAR0_ATOMICS_SHIFT
,
651 .min_field_value
= 2,
653 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
657 #define HWCAP_CAP(reg, field, min_value, type, cap) \
660 .matches = has_cpuid_feature, \
662 .field_pos = field, \
663 .min_field_value = min_value, \
664 .hwcap_type = type, \
668 static const struct arm64_cpu_capabilities arm64_hwcaps
[] = {
669 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_AES_SHIFT
, 2, CAP_HWCAP
, HWCAP_PMULL
),
670 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_AES_SHIFT
, 1, CAP_HWCAP
, HWCAP_AES
),
671 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_SHA1_SHIFT
, 1, CAP_HWCAP
, HWCAP_SHA1
),
672 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_SHA2_SHIFT
, 1, CAP_HWCAP
, HWCAP_SHA2
),
673 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_CRC32_SHIFT
, 1, CAP_HWCAP
, HWCAP_CRC32
),
674 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_ATOMICS_SHIFT
, 2, CAP_HWCAP
, HWCAP_ATOMICS
),
675 HWCAP_CAP(SYS_ID_AA64PFR0_EL1
, ID_AA64PFR0_FP_SHIFT
, 0, CAP_HWCAP
, HWCAP_FP
),
676 HWCAP_CAP(SYS_ID_AA64PFR0_EL1
, ID_AA64PFR0_ASIMD_SHIFT
, 0, CAP_HWCAP
, HWCAP_ASIMD
),
678 HWCAP_CAP(SYS_ID_ISAR5_EL1
, ID_ISAR5_AES_SHIFT
, 2, CAP_COMPAT_HWCAP2
, COMPAT_HWCAP2_PMULL
),
679 HWCAP_CAP(SYS_ID_ISAR5_EL1
, ID_ISAR5_AES_SHIFT
, 1, CAP_COMPAT_HWCAP2
, COMPAT_HWCAP2_AES
),
680 HWCAP_CAP(SYS_ID_ISAR5_EL1
, ID_ISAR5_SHA1_SHIFT
, 1, CAP_COMPAT_HWCAP2
, COMPAT_HWCAP2_SHA1
),
681 HWCAP_CAP(SYS_ID_ISAR5_EL1
, ID_ISAR5_SHA2_SHIFT
, 1, CAP_COMPAT_HWCAP2
, COMPAT_HWCAP2_SHA2
),
682 HWCAP_CAP(SYS_ID_ISAR5_EL1
, ID_ISAR5_CRC32_SHIFT
, 1, CAP_COMPAT_HWCAP2
, COMPAT_HWCAP2_CRC32
),
687 static void __init
cap_set_hwcap(const struct arm64_cpu_capabilities
*cap
)
689 switch (cap
->hwcap_type
) {
691 elf_hwcap
|= cap
->hwcap
;
694 case CAP_COMPAT_HWCAP
:
695 compat_elf_hwcap
|= (u32
)cap
->hwcap
;
697 case CAP_COMPAT_HWCAP2
:
698 compat_elf_hwcap2
|= (u32
)cap
->hwcap
;
707 /* Check if we have a particular HWCAP enabled */
708 static bool __maybe_unused
cpus_have_hwcap(const struct arm64_cpu_capabilities
*cap
)
712 switch (cap
->hwcap_type
) {
714 rc
= (elf_hwcap
& cap
->hwcap
) != 0;
717 case CAP_COMPAT_HWCAP
:
718 rc
= (compat_elf_hwcap
& (u32
)cap
->hwcap
) != 0;
720 case CAP_COMPAT_HWCAP2
:
721 rc
= (compat_elf_hwcap2
& (u32
)cap
->hwcap
) != 0;
732 static void __init
setup_cpu_hwcaps(void)
735 const struct arm64_cpu_capabilities
*hwcaps
= arm64_hwcaps
;
737 for (i
= 0; hwcaps
[i
].desc
; i
++)
738 if (hwcaps
[i
].matches(&hwcaps
[i
]))
739 cap_set_hwcap(&hwcaps
[i
]);
742 void update_cpu_capabilities(const struct arm64_cpu_capabilities
*caps
,
747 for (i
= 0; caps
[i
].desc
; i
++) {
748 if (!caps
[i
].matches(&caps
[i
]))
751 if (!cpus_have_cap(caps
[i
].capability
))
752 pr_info("%s %s\n", info
, caps
[i
].desc
);
753 cpus_set_cap(caps
[i
].capability
);
758 * Run through the enabled capabilities and enable() it on all active
762 enable_cpu_capabilities(const struct arm64_cpu_capabilities
*caps
)
766 for (i
= 0; caps
[i
].desc
; i
++)
767 if (caps
[i
].enable
&& cpus_have_cap(caps
[i
].capability
))
768 on_each_cpu(caps
[i
].enable
, NULL
, true);
771 #ifdef CONFIG_HOTPLUG_CPU
774 * Flag to indicate if we have computed the system wide
775 * capabilities based on the boot time active CPUs. This
776 * will be used to determine if a new booting CPU should
777 * go through the verification process to make sure that it
778 * supports the system capabilities, without using a hotplug
781 static bool sys_caps_initialised
;
783 static inline void set_sys_caps_initialised(void)
785 sys_caps_initialised
= true;
789 * __raw_read_system_reg() - Used by a STARTING cpu before cpuinfo is populated.
791 static u64
__raw_read_system_reg(u32 sys_id
)
794 case SYS_ID_PFR0_EL1
: return (u64
)read_cpuid(ID_PFR0_EL1
);
795 case SYS_ID_PFR1_EL1
: return (u64
)read_cpuid(ID_PFR1_EL1
);
796 case SYS_ID_DFR0_EL1
: return (u64
)read_cpuid(ID_DFR0_EL1
);
797 case SYS_ID_MMFR0_EL1
: return (u64
)read_cpuid(ID_MMFR0_EL1
);
798 case SYS_ID_MMFR1_EL1
: return (u64
)read_cpuid(ID_MMFR1_EL1
);
799 case SYS_ID_MMFR2_EL1
: return (u64
)read_cpuid(ID_MMFR2_EL1
);
800 case SYS_ID_MMFR3_EL1
: return (u64
)read_cpuid(ID_MMFR3_EL1
);
801 case SYS_ID_ISAR0_EL1
: return (u64
)read_cpuid(ID_ISAR0_EL1
);
802 case SYS_ID_ISAR1_EL1
: return (u64
)read_cpuid(ID_ISAR1_EL1
);
803 case SYS_ID_ISAR2_EL1
: return (u64
)read_cpuid(ID_ISAR2_EL1
);
804 case SYS_ID_ISAR3_EL1
: return (u64
)read_cpuid(ID_ISAR3_EL1
);
805 case SYS_ID_ISAR4_EL1
: return (u64
)read_cpuid(ID_ISAR4_EL1
);
806 case SYS_ID_ISAR5_EL1
: return (u64
)read_cpuid(ID_ISAR4_EL1
);
807 case SYS_MVFR0_EL1
: return (u64
)read_cpuid(MVFR0_EL1
);
808 case SYS_MVFR1_EL1
: return (u64
)read_cpuid(MVFR1_EL1
);
809 case SYS_MVFR2_EL1
: return (u64
)read_cpuid(MVFR2_EL1
);
811 case SYS_ID_AA64PFR0_EL1
: return (u64
)read_cpuid(ID_AA64PFR0_EL1
);
812 case SYS_ID_AA64PFR1_EL1
: return (u64
)read_cpuid(ID_AA64PFR0_EL1
);
813 case SYS_ID_AA64DFR0_EL1
: return (u64
)read_cpuid(ID_AA64DFR0_EL1
);
814 case SYS_ID_AA64DFR1_EL1
: return (u64
)read_cpuid(ID_AA64DFR0_EL1
);
815 case SYS_ID_AA64MMFR0_EL1
: return (u64
)read_cpuid(ID_AA64MMFR0_EL1
);
816 case SYS_ID_AA64MMFR1_EL1
: return (u64
)read_cpuid(ID_AA64MMFR1_EL1
);
817 case SYS_ID_AA64ISAR0_EL1
: return (u64
)read_cpuid(ID_AA64ISAR0_EL1
);
818 case SYS_ID_AA64ISAR1_EL1
: return (u64
)read_cpuid(ID_AA64ISAR1_EL1
);
820 case SYS_CNTFRQ_EL0
: return (u64
)read_cpuid(CNTFRQ_EL0
);
821 case SYS_CTR_EL0
: return (u64
)read_cpuid(CTR_EL0
);
822 case SYS_DCZID_EL0
: return (u64
)read_cpuid(DCZID_EL0
);
830 * Park the CPU which doesn't have the capability as advertised
833 static void fail_incapable_cpu(char *cap_type
,
834 const struct arm64_cpu_capabilities
*cap
)
836 int cpu
= smp_processor_id();
838 pr_crit("CPU%d: missing %s : %s\n", cpu
, cap_type
, cap
->desc
);
839 /* Mark this CPU absent */
840 set_cpu_present(cpu
, 0);
842 /* Check if we can park ourselves */
843 if (cpu_ops
[cpu
] && cpu_ops
[cpu
]->cpu_die
)
844 cpu_ops
[cpu
]->cpu_die(cpu
);
852 * Run through the enabled system capabilities and enable() it on this CPU.
853 * The capabilities were decided based on the available CPUs at the boot time.
854 * Any new CPU should match the system wide status of the capability. If the
855 * new CPU doesn't have a capability which the system now has enabled, we
856 * cannot do anything to fix it up and could cause unexpected failures. So
859 void verify_local_cpu_capabilities(void)
862 const struct arm64_cpu_capabilities
*caps
;
865 * If we haven't computed the system capabilities, there is nothing
868 if (!sys_caps_initialised
)
871 caps
= arm64_features
;
872 for (i
= 0; caps
[i
].desc
; i
++) {
873 if (!cpus_have_cap(caps
[i
].capability
) || !caps
[i
].sys_reg
)
876 * If the new CPU misses an advertised feature, we cannot proceed
877 * further, park the cpu.
879 if (!feature_matches(__raw_read_system_reg(caps
[i
].sys_reg
), &caps
[i
]))
880 fail_incapable_cpu("arm64_features", &caps
[i
]);
882 caps
[i
].enable(NULL
);
885 for (i
= 0, caps
= arm64_hwcaps
; caps
[i
].desc
; i
++) {
886 if (!cpus_have_hwcap(&caps
[i
]))
888 if (!feature_matches(__raw_read_system_reg(caps
[i
].sys_reg
), &caps
[i
]))
889 fail_incapable_cpu("arm64_hwcaps", &caps
[i
]);
893 #else /* !CONFIG_HOTPLUG_CPU */
895 static inline void set_sys_caps_initialised(void)
899 #endif /* CONFIG_HOTPLUG_CPU */
901 static void __init
setup_feature_capabilities(void)
903 update_cpu_capabilities(arm64_features
, "detected feature:");
904 enable_cpu_capabilities(arm64_features
);
907 void __init
setup_cpu_features(void)
912 /* Set the CPU feature capabilies */
913 setup_feature_capabilities();
916 /* Advertise that we have computed the system capabilities */
917 set_sys_caps_initialised();
920 * Check for sane CTR_EL0.CWG value.
922 cwg
= cache_type_cwg();
923 cls
= cache_line_size();
925 pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
927 if (L1_CACHE_BYTES
< cls
)
928 pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
929 L1_CACHE_BYTES
, cls
);