1 Coresight - HW Assisted Tracing on ARM
2 ======================================
4 Author: Mathieu Poirier <mathieu.poirier@linaro.org>
5 Date: September 11th, 2014
10 Coresight is an umbrella of technologies allowing for the debugging of ARM
11 based SoC. It includes solutions for JTAG and HW assisted tracing. This
12 document is concerned with the latter.
14 HW assisted tracing is becoming increasingly useful when dealing with systems
15 that have many SoCs and other components like GPU and DMA engines. ARM has
16 developed a HW assisted tracing solution by means of different components, each
17 being added to a design at synthesis time to cater to specific tracing needs.
18 Components are generally categorised as source, link and sinks and are
19 (usually) discovered using the AMBA bus.
21 "Sources" generate a compressed stream representing the processor instruction
22 path based on tracing scenarios as configured by users. From there the stream
23 flows through the coresight system (via ATB bus) using links that are connecting
24 the emanating source to a sink(s). Sinks serve as endpoints to the coresight
25 implementation, either storing the compressed stream in a memory buffer or
26 creating an interface to the outside world where data can be transferred to a
27 host without fear of filling up the onboard coresight memory buffer.
29 At typical coresight system would look like this:
31 *****************************************************************
32 **************************** AMBA AXI ****************************===||
33 ***************************************************************** ||
36 0000000 ::::: 0000000 ::::: ::::: @@@@@@@ ||||||||||||
37 0 CPU 0<-->: C : 0 CPU 0<-->: C : : C : @ STM @ || System ||
38 |->0000000 : T : |->0000000 : T : : T :<--->@@@@@ || Memory ||
39 | #######<-->: I : | #######<-->: I : : I : @@@<-| ||||||||||||
40 | # ETM # ::::: | # PTM # ::::: ::::: @ |
41 | ##### ^ ^ | ##### ^ ! ^ ! . | |||||||||
42 | |->### | ! | |->### | ! | ! . | || DAP ||
43 | | # | ! | | # | ! | ! . | |||||||||
44 | | . | ! | | . | ! | ! . | | |
45 | | . | ! | | . | ! | ! . | | *
46 | | . | ! | | . | ! | ! . | | SWD/
47 | | . | ! | | . | ! | ! . | | JTAG
48 *****************************************************************<-|
49 *************************** AMBA Debug APB ************************
50 *****************************************************************
53 *****************************************************************
54 ******************** Cross Trigger Matrix (CTM) *******************
55 *****************************************************************
58 *****************************************************************
59 ****************** AMBA Advanced Trace Bus (ATB) ******************
60 *****************************************************************
62 | * ===== F =====<---------|
63 | ::::::::: ==== U ====
64 |-->:: CTI ::<!! === N ===
67 | ! &&&&&&&&& IIIIIII == L ==
68 |------>&& ETB &&<......II I =======
71 | ! I REP I<..........
73 | !!>&&&&&&&&& II I *Source: ARM ltd.
74 |------>& TPIU &<......II I DAP = Debug Access Port
75 &&&&&&&&& IIIIIII ETM = Embedded Trace Macrocell
76 ; PTM = Program Trace Macrocell
77 ; CTI = Cross Trigger Interface
78 * ETB = Embedded Trace Buffer
79 To trace port TPIU= Trace Port Interface Unit
80 SWD = Serial Wire Debug
82 While on target configuration of the components is done via the APB bus,
83 all trace data are carried out-of-band on the ATB bus. The CTM provides
84 a way to aggregate and distribute signals between CoreSight components.
86 The coresight framework provides a central point to represent, configure and
87 manage coresight devices on a platform. This first implementation centers on
88 the basic tracing functionality, enabling components such ETM/PTM, funnel,
89 replicator, TMC, TPIU and ETB. Future work will enable more
90 intricate IP blocks such as STM and CTI.
93 Acronyms and Classification
94 ---------------------------
98 PTM: Program Trace Macrocell
99 ETM: Embedded Trace Macrocell
100 STM: System trace Macrocell
101 ETB: Embedded Trace Buffer
102 ITM: Instrumentation Trace Macrocell
103 TPIU: Trace Port Interface Unit
104 TMC-ETR: Trace Memory Controller, configured as Embedded Trace Router
105 TMC-ETF: Trace Memory Controller, configured as Embedded Trace FIFO
106 CTI: Cross Trigger Interface
111 ETMv3.x ETMv4, PTMv1.0, PTMv1.1, STM, STM500, ITM
113 Funnel, replicator (intelligent or not), TMC-ETR
115 ETBv1.0, ETB1.1, TPIU, TMC-ETF
121 ----------------------
123 See Documentation/devicetree/bindings/arm/coresight.txt for details.
125 As of this writing drivers for ITM, STMs and CTIs are not provided but are
126 expected to be added as the solution matures.
129 Framework and implementation
130 ----------------------------
132 The coresight framework provides a central point to represent, configure and
133 manage coresight devices on a platform. Any coresight compliant device can
134 register with the framework for as long as they use the right APIs:
136 struct coresight_device *coresight_register(struct coresight_desc *desc);
137 void coresight_unregister(struct coresight_device *csdev);
139 The registering function is taking a "struct coresight_device *csdev" and
140 register the device with the core framework. The unregister function takes
141 a reference to a "struct coresight_device", obtained at registration time.
143 If everything goes well during the registration process the new devices will
144 show up under /sys/bus/coresight/devices, as showns here for a TC2 platform:
146 root:~# ls /sys/bus/coresight/devices/
147 replicator 20030000.tpiu 2201c000.ptm 2203c000.etm 2203e000.etm
148 20010000.etb 20040000.funnel 2201d000.ptm 2203d000.etm
151 The functions take a "struct coresight_device", which looks like this:
153 struct coresight_desc {
154 enum coresight_dev_type type;
155 struct coresight_dev_subtype subtype;
156 const struct coresight_ops *ops;
157 struct coresight_platform_data *pdata;
159 const struct attribute_group **groups;
163 The "coresight_dev_type" identifies what the device is, i.e, source link or
164 sink while the "coresight_dev_subtype" will characterise that type further.
166 The "struct coresight_ops" is mandatory and will tell the framework how to
167 perform base operations related to the components, each component having
168 a different set of requirement. For that "struct coresight_ops_sink",
169 "struct coresight_ops_link" and "struct coresight_ops_source" have been
172 The next field, "struct coresight_platform_data *pdata" is acquired by calling
173 "of_get_coresight_platform_data()", as part of the driver's _probe routine and
174 "struct device *dev" gets the device reference embedded in the "amba_device":
176 static int etm_probe(struct amba_device *adev, const struct amba_id *id)
180 drvdata->dev = &adev->dev;
184 Specific class of device (source, link, or sink) have generic operations
185 that can be performed on them (see "struct coresight_ops"). The
186 "**groups" is a list of sysfs entries pertaining to operations
187 specific to that component only. "Implementation defined" customisations are
188 expected to be accessed and controlled using those entries.
190 Last but not least, "struct module *owner" is expected to be set to reflect
191 the information carried in "THIS_MODULE".
193 How to use the tracer modules
194 -----------------------------
196 Before trace collection can start, a coresight sink needs to be identify.
197 There is no limit on the amount of sinks (nor sources) that can be enabled at
198 any given moment. As a generic operation, all device pertaining to the sink
199 class will have an "active" entry in sysfs:
201 root:/sys/bus/coresight/devices# ls
202 replicator 20030000.tpiu 2201c000.ptm 2203c000.etm 2203e000.etm
203 20010000.etb 20040000.funnel 2201d000.ptm 2203d000.etm
204 root:/sys/bus/coresight/devices# ls 20010000.etb
205 enable_sink status trigger_cntr
206 root:/sys/bus/coresight/devices# echo 1 > 20010000.etb/enable_sink
207 root:/sys/bus/coresight/devices# cat 20010000.etb/enable_sink
209 root:/sys/bus/coresight/devices#
211 At boot time the current etm3x driver will configure the first address
212 comparator with "_stext" and "_etext", essentially tracing any instruction
213 that falls within that range. As such "enabling" a source will immediately
214 trigger a trace capture:
216 root:/sys/bus/coresight/devices# echo 1 > 2201c000.ptm/enable_source
217 root:/sys/bus/coresight/devices# cat 2201c000.ptm/enable_source
219 root:/sys/bus/coresight/devices# cat 20010000.etb/status
223 RAM wrt ptr: 0x19d3 <----- The write pointer is moving
228 root:/sys/bus/coresight/devices#
230 Trace collection is stopped the same way:
232 root:/sys/bus/coresight/devices# echo 0 > 2201c000.ptm/enable_source
233 root:/sys/bus/coresight/devices#
235 The content of the ETB buffer can be harvested directly from /dev:
237 root:/sys/bus/coresight/devices# dd if=/dev/20010000.etb \
242 32768 bytes (33 kB) copied, 0.00125258 s, 26.2 MB/s
243 root:/sys/bus/coresight/devices#
245 The file cstrace.bin can be decompressed using "ptm2human", DS-5 or Trace32.
247 Following is a DS-5 output of an experimental loop that increments a variable up
248 to a certain value. The example is simple and yet provides a glimpse of the
249 wealth of possibilities that coresight provides.
252 Instruction 106378866 0x8026B53C E52DE004 false PUSH {lr}
253 Instruction 0 0x8026B540 E24DD00C false SUB sp,sp,#0xc
254 Instruction 0 0x8026B544 E3A03000 false MOV r3,#0
255 Instruction 0 0x8026B548 E58D3004 false STR r3,[sp,#4]
256 Instruction 0 0x8026B54C E59D3004 false LDR r3,[sp,#4]
257 Instruction 0 0x8026B550 E3530004 false CMP r3,#4
258 Instruction 0 0x8026B554 E2833001 false ADD r3,r3,#1
259 Instruction 0 0x8026B558 E58D3004 false STR r3,[sp,#4]
260 Instruction 0 0x8026B55C DAFFFFFA true BLE {pc}-0x10 ; 0x8026b54c
261 Timestamp Timestamp: 17106715833
262 Instruction 319 0x8026B54C E59D3004 false LDR r3,[sp,#4]
263 Instruction 0 0x8026B550 E3530004 false CMP r3,#4
264 Instruction 0 0x8026B554 E2833001 false ADD r3,r3,#1
265 Instruction 0 0x8026B558 E58D3004 false STR r3,[sp,#4]
266 Instruction 0 0x8026B55C DAFFFFFA true BLE {pc}-0x10 ; 0x8026b54c
267 Instruction 9 0x8026B54C E59D3004 false LDR r3,[sp,#4]
268 Instruction 0 0x8026B550 E3530004 false CMP r3,#4
269 Instruction 0 0x8026B554 E2833001 false ADD r3,r3,#1
270 Instruction 0 0x8026B558 E58D3004 false STR r3,[sp,#4]
271 Instruction 0 0x8026B55C DAFFFFFA true BLE {pc}-0x10 ; 0x8026b54c
272 Instruction 7 0x8026B54C E59D3004 false LDR r3,[sp,#4]
273 Instruction 0 0x8026B550 E3530004 false CMP r3,#4
274 Instruction 0 0x8026B554 E2833001 false ADD r3,r3,#1
275 Instruction 0 0x8026B558 E58D3004 false STR r3,[sp,#4]
276 Instruction 0 0x8026B55C DAFFFFFA true BLE {pc}-0x10 ; 0x8026b54c
277 Instruction 7 0x8026B54C E59D3004 false LDR r3,[sp,#4]
278 Instruction 0 0x8026B550 E3530004 false CMP r3,#4
279 Instruction 0 0x8026B554 E2833001 false ADD r3,r3,#1
280 Instruction 0 0x8026B558 E58D3004 false STR r3,[sp,#4]
281 Instruction 0 0x8026B55C DAFFFFFA true BLE {pc}-0x10 ; 0x8026b54c
282 Instruction 10 0x8026B54C E59D3004 false LDR r3,[sp,#4]
283 Instruction 0 0x8026B550 E3530004 false CMP r3,#4
284 Instruction 0 0x8026B554 E2833001 false ADD r3,r3,#1
285 Instruction 0 0x8026B558 E58D3004 false STR r3,[sp,#4]
286 Instruction 0 0x8026B55C DAFFFFFA true BLE {pc}-0x10 ; 0x8026b54c
287 Instruction 6 0x8026B560 EE1D3F30 false MRC p15,#0x0,r3,c13,c0,#1
288 Instruction 0 0x8026B564 E1A0100D false MOV r1,sp
289 Instruction 0 0x8026B568 E3C12D7F false BIC r2,r1,#0x1fc0
290 Instruction 0 0x8026B56C E3C2203F false BIC r2,r2,#0x3f
291 Instruction 0 0x8026B570 E59D1004 false LDR r1,[sp,#4]
292 Instruction 0 0x8026B574 E59F0010 false LDR r0,[pc,#16] ; [0x8026B58C] = 0x80550368
293 Instruction 0 0x8026B578 E592200C false LDR r2,[r2,#0xc]
294 Instruction 0 0x8026B57C E59221D0 false LDR r2,[r2,#0x1d0]
295 Instruction 0 0x8026B580 EB07A4CF true BL {pc}+0x1e9344 ; 0x804548c4
297 Instruction 13570831 0x8026B584 E28DD00C false ADD sp,sp,#0xc
298 Instruction 0 0x8026B588 E8BD8000 true LDM sp!,{pc}
299 Timestamp Timestamp: 17107041535
301 How to use the STM module
302 -------------------------
304 Using the System Trace Macrocell module is the same as the tracers - the only
305 difference is that clients are driving the trace capture rather
306 than the program flow through the code.
308 As with any other CoreSight component, specifics about the STM tracer can be
309 found in sysfs with more information on each entry being found in [1]:
311 root@genericarmv8:~# ls /sys/bus/coresight/devices/20100000.stm
312 enable_source hwevent_select port_enable subsystem uevent
313 hwevent_enable mgmt port_select traceid
316 Like any other source a sink needs to be identified and the STM enabled before
319 root@genericarmv8:~# echo 1 > /sys/bus/coresight/devices/20010000.etf/enable_sink
320 root@genericarmv8:~# echo 1 > /sys/bus/coresight/devices/20100000.stm/enable_source
322 From there user space applications can request and use channels using the devfs
323 interface provided for that purpose by the generic STM API:
325 root@genericarmv8:~# ls -l /dev/20100000.stm
326 crw------- 1 root root 10, 61 Jan 3 18:11 /dev/20100000.stm
329 Details on how to use the generic STM API can be found here [2].
331 [1]. Documentation/ABI/testing/sysfs-bus-coresight-devices-stm
332 [2]. Documentation/trace/stm.txt
338 perf can be used to record and analyze trace of programs.
340 Execution can be recorded using 'perf record' with the cs_etm event,
341 specifying the name of the sink to record to, e.g:
343 perf record -e cs_etm/@20070000.etr/u --per-thread
345 The 'perf report' and 'perf script' commands can be used to analyze execution,
346 synthesizing instruction and branch events from the instruction trace.
347 'perf inject' can be used to replace the trace data with the synthesized events.
348 The --itrace option controls the type and frequency of synthesized events
349 (see perf documentation).
351 Note that only 64-bit programs are currently supported - further work is
352 required to support instruction decode of 32-bit Arm programs.
355 Generating coverage files for Feedback Directed Optimization: AutoFDO
356 ---------------------------------------------------------------------
358 'perf inject' accepts the --itrace option in which case tracing data is
359 removed and replaced with the synthesized events. e.g.
361 perf inject --itrace --strip -i perf.data -o perf.data.new
363 Below is an example of using ARM ETM for autoFDO. It requires autofdo
364 (https://github.com/google/autofdo) and gcc version 5. The bubble
365 sort example is from the AutoFDO tutorial (https://gcc.gnu.org/wiki/AutoFDO/Tutorial).
367 $ gcc-5 -O3 sort.c -o sort
368 $ taskset -c 2 ./sort
369 Bubble sorting array of 30000 elements
372 $ perf record -e cs_etm/@20070000.etr/u --per-thread taskset -c 2 ./sort
373 Bubble sorting array of 30000 elements
375 [ perf record: Woken up 35 times to write data ]
376 [ perf record: Captured and wrote 69.640 MB perf.data ]
378 $ perf inject -i perf.data -o inj.data --itrace=il64 --strip
379 $ create_gcov --binary=./sort --profile=inj.data --gcov=sort.gcov -gcov_version=1
380 $ gcc-5 -O3 -fauto-profile=sort.gcov sort.c -o sort_autofdo
381 $ taskset -c 2 ./sort_autofdo
382 Bubble sorting array of 30000 elements