2 * Linux INET6 implementation
3 * Forwarding Information Database
6 * Pedro Roque <roque@di.fc.ul.pt>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
16 * Yuji SEKIYA @USAGI: Support default route on router node;
17 * remove ip6_null_entry from the top of
19 * Ville Nuorvala: Fixed routing subtrees.
22 #define pr_fmt(fmt) "IPv6: " fmt
24 #include <linux/errno.h>
25 #include <linux/types.h>
26 #include <linux/net.h>
27 #include <linux/route.h>
28 #include <linux/netdevice.h>
29 #include <linux/in6.h>
30 #include <linux/init.h>
31 #include <linux/list.h>
32 #include <linux/slab.h>
35 #include <net/ndisc.h>
36 #include <net/addrconf.h>
38 #include <net/ip6_fib.h>
39 #include <net/ip6_route.h>
44 #define RT6_TRACE(x...) pr_debug(x)
46 #define RT6_TRACE(x...) do { ; } while (0)
49 static struct kmem_cache
* fib6_node_kmem __read_mostly
;
53 #ifdef CONFIG_IPV6_SUBTREES
64 struct fib6_walker_t w
;
66 int (*func
)(struct rt6_info
*, void *arg
);
70 static DEFINE_RWLOCK(fib6_walker_lock
);
72 #ifdef CONFIG_IPV6_SUBTREES
73 #define FWS_INIT FWS_S
75 #define FWS_INIT FWS_L
78 static void fib6_prune_clones(struct net
*net
, struct fib6_node
*fn
,
80 static struct rt6_info
*fib6_find_prefix(struct net
*net
, struct fib6_node
*fn
);
81 static struct fib6_node
*fib6_repair_tree(struct net
*net
, struct fib6_node
*fn
);
82 static int fib6_walk(struct fib6_walker_t
*w
);
83 static int fib6_walk_continue(struct fib6_walker_t
*w
);
86 * A routing update causes an increase of the serial number on the
87 * affected subtree. This allows for cached routes to be asynchronously
88 * tested when modifications are made to the destination cache as a
89 * result of redirects, path MTU changes, etc.
92 static __u32 rt_sernum
;
94 static void fib6_gc_timer_cb(unsigned long arg
);
96 static LIST_HEAD(fib6_walkers
);
97 #define FOR_WALKERS(w) list_for_each_entry(w, &fib6_walkers, lh)
99 static inline void fib6_walker_link(struct fib6_walker_t
*w
)
101 write_lock_bh(&fib6_walker_lock
);
102 list_add(&w
->lh
, &fib6_walkers
);
103 write_unlock_bh(&fib6_walker_lock
);
106 static inline void fib6_walker_unlink(struct fib6_walker_t
*w
)
108 write_lock_bh(&fib6_walker_lock
);
110 write_unlock_bh(&fib6_walker_lock
);
112 static __inline__ u32
fib6_new_sernum(void)
121 * Auxiliary address test functions for the radix tree.
123 * These assume a 32bit processor (although it will work on
130 #if defined(__LITTLE_ENDIAN)
131 # define BITOP_BE32_SWIZZLE (0x1F & ~7)
133 # define BITOP_BE32_SWIZZLE 0
136 static __inline__ __be32
addr_bit_set(const void *token
, int fn_bit
)
138 const __be32
*addr
= token
;
141 * 1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
142 * is optimized version of
143 * htonl(1 << ((~fn_bit)&0x1F))
144 * See include/asm-generic/bitops/le.h.
146 return (__force __be32
)(1 << ((~fn_bit
^ BITOP_BE32_SWIZZLE
) & 0x1f)) &
150 static __inline__
struct fib6_node
* node_alloc(void)
152 struct fib6_node
*fn
;
154 fn
= kmem_cache_zalloc(fib6_node_kmem
, GFP_ATOMIC
);
159 static __inline__
void node_free(struct fib6_node
* fn
)
161 kmem_cache_free(fib6_node_kmem
, fn
);
164 static __inline__
void rt6_release(struct rt6_info
*rt
)
166 if (atomic_dec_and_test(&rt
->rt6i_ref
))
170 static void fib6_link_table(struct net
*net
, struct fib6_table
*tb
)
175 * Initialize table lock at a single place to give lockdep a key,
176 * tables aren't visible prior to being linked to the list.
178 rwlock_init(&tb
->tb6_lock
);
180 h
= tb
->tb6_id
& (FIB6_TABLE_HASHSZ
- 1);
183 * No protection necessary, this is the only list mutatation
184 * operation, tables never disappear once they exist.
186 hlist_add_head_rcu(&tb
->tb6_hlist
, &net
->ipv6
.fib_table_hash
[h
]);
189 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
191 static struct fib6_table
*fib6_alloc_table(struct net
*net
, u32 id
)
193 struct fib6_table
*table
;
195 table
= kzalloc(sizeof(*table
), GFP_ATOMIC
);
198 table
->tb6_root
.leaf
= net
->ipv6
.ip6_null_entry
;
199 table
->tb6_root
.fn_flags
= RTN_ROOT
| RTN_TL_ROOT
| RTN_RTINFO
;
200 inet_peer_base_init(&table
->tb6_peers
);
206 struct fib6_table
*fib6_new_table(struct net
*net
, u32 id
)
208 struct fib6_table
*tb
;
212 tb
= fib6_get_table(net
, id
);
216 tb
= fib6_alloc_table(net
, id
);
218 fib6_link_table(net
, tb
);
223 struct fib6_table
*fib6_get_table(struct net
*net
, u32 id
)
225 struct fib6_table
*tb
;
226 struct hlist_head
*head
;
227 struct hlist_node
*node
;
232 h
= id
& (FIB6_TABLE_HASHSZ
- 1);
234 head
= &net
->ipv6
.fib_table_hash
[h
];
235 hlist_for_each_entry_rcu(tb
, node
, head
, tb6_hlist
) {
236 if (tb
->tb6_id
== id
) {
246 static void __net_init
fib6_tables_init(struct net
*net
)
248 fib6_link_table(net
, net
->ipv6
.fib6_main_tbl
);
249 fib6_link_table(net
, net
->ipv6
.fib6_local_tbl
);
253 struct fib6_table
*fib6_new_table(struct net
*net
, u32 id
)
255 return fib6_get_table(net
, id
);
258 struct fib6_table
*fib6_get_table(struct net
*net
, u32 id
)
260 return net
->ipv6
.fib6_main_tbl
;
263 struct dst_entry
*fib6_rule_lookup(struct net
*net
, struct flowi6
*fl6
,
264 int flags
, pol_lookup_t lookup
)
266 return (struct dst_entry
*) lookup(net
, net
->ipv6
.fib6_main_tbl
, fl6
, flags
);
269 static void __net_init
fib6_tables_init(struct net
*net
)
271 fib6_link_table(net
, net
->ipv6
.fib6_main_tbl
);
276 static int fib6_dump_node(struct fib6_walker_t
*w
)
281 for (rt
= w
->leaf
; rt
; rt
= rt
->dst
.rt6_next
) {
282 res
= rt6_dump_route(rt
, w
->args
);
284 /* Frame is full, suspend walking */
294 static void fib6_dump_end(struct netlink_callback
*cb
)
296 struct fib6_walker_t
*w
= (void*)cb
->args
[2];
301 fib6_walker_unlink(w
);
306 cb
->done
= (void*)cb
->args
[3];
310 static int fib6_dump_done(struct netlink_callback
*cb
)
313 return cb
->done
? cb
->done(cb
) : 0;
316 static int fib6_dump_table(struct fib6_table
*table
, struct sk_buff
*skb
,
317 struct netlink_callback
*cb
)
319 struct fib6_walker_t
*w
;
322 w
= (void *)cb
->args
[2];
323 w
->root
= &table
->tb6_root
;
325 if (cb
->args
[4] == 0) {
329 read_lock_bh(&table
->tb6_lock
);
331 read_unlock_bh(&table
->tb6_lock
);
334 cb
->args
[5] = w
->root
->fn_sernum
;
337 if (cb
->args
[5] != w
->root
->fn_sernum
) {
338 /* Begin at the root if the tree changed */
339 cb
->args
[5] = w
->root
->fn_sernum
;
346 read_lock_bh(&table
->tb6_lock
);
347 res
= fib6_walk_continue(w
);
348 read_unlock_bh(&table
->tb6_lock
);
350 fib6_walker_unlink(w
);
358 static int inet6_dump_fib(struct sk_buff
*skb
, struct netlink_callback
*cb
)
360 struct net
*net
= sock_net(skb
->sk
);
362 unsigned int e
= 0, s_e
;
363 struct rt6_rtnl_dump_arg arg
;
364 struct fib6_walker_t
*w
;
365 struct fib6_table
*tb
;
366 struct hlist_node
*node
;
367 struct hlist_head
*head
;
373 w
= (void *)cb
->args
[2];
377 * 1. hook callback destructor.
379 cb
->args
[3] = (long)cb
->done
;
380 cb
->done
= fib6_dump_done
;
383 * 2. allocate and initialize walker.
385 w
= kzalloc(sizeof(*w
), GFP_ATOMIC
);
388 w
->func
= fib6_dump_node
;
389 cb
->args
[2] = (long)w
;
398 for (h
= s_h
; h
< FIB6_TABLE_HASHSZ
; h
++, s_e
= 0) {
400 head
= &net
->ipv6
.fib_table_hash
[h
];
401 hlist_for_each_entry_rcu(tb
, node
, head
, tb6_hlist
) {
404 res
= fib6_dump_table(tb
, skb
, cb
);
416 res
= res
< 0 ? res
: skb
->len
;
425 * return the appropriate node for a routing tree "add" operation
426 * by either creating and inserting or by returning an existing
430 static struct fib6_node
* fib6_add_1(struct fib6_node
*root
, void *addr
,
431 int addrlen
, int plen
,
432 int offset
, int allow_create
,
433 int replace_required
)
435 struct fib6_node
*fn
, *in
, *ln
;
436 struct fib6_node
*pn
= NULL
;
440 __u32 sernum
= fib6_new_sernum();
442 RT6_TRACE("fib6_add_1\n");
444 /* insert node in tree */
449 key
= (struct rt6key
*)((u8
*)fn
->leaf
+ offset
);
454 if (plen
< fn
->fn_bit
||
455 !ipv6_prefix_equal(&key
->addr
, addr
, fn
->fn_bit
)) {
457 if (replace_required
) {
458 pr_warn("Can't replace route, no match found\n");
459 return ERR_PTR(-ENOENT
);
461 pr_warn("NLM_F_CREATE should be set when creating new route\n");
470 if (plen
== fn
->fn_bit
) {
471 /* clean up an intermediate node */
472 if (!(fn
->fn_flags
& RTN_RTINFO
)) {
473 rt6_release(fn
->leaf
);
477 fn
->fn_sernum
= sernum
;
483 * We have more bits to go
486 /* Try to walk down on tree. */
487 fn
->fn_sernum
= sernum
;
488 dir
= addr_bit_set(addr
, fn
->fn_bit
);
490 fn
= dir
? fn
->right
: fn
->left
;
494 /* We should not create new node because
495 * NLM_F_REPLACE was specified without NLM_F_CREATE
496 * I assume it is safe to require NLM_F_CREATE when
497 * REPLACE flag is used! Later we may want to remove the
498 * check for replace_required, because according
499 * to netlink specification, NLM_F_CREATE
500 * MUST be specified if new route is created.
501 * That would keep IPv6 consistent with IPv4
503 if (replace_required
) {
504 pr_warn("Can't replace route, no match found\n");
505 return ERR_PTR(-ENOENT
);
507 pr_warn("NLM_F_CREATE should be set when creating new route\n");
510 * We walked to the bottom of tree.
511 * Create new leaf node without children.
517 return ERR_PTR(-ENOMEM
);
521 ln
->fn_sernum
= sernum
;
533 * split since we don't have a common prefix anymore or
534 * we have a less significant route.
535 * we've to insert an intermediate node on the list
536 * this new node will point to the one we need to create
542 /* find 1st bit in difference between the 2 addrs.
544 See comment in __ipv6_addr_diff: bit may be an invalid value,
545 but if it is >= plen, the value is ignored in any case.
548 bit
= __ipv6_addr_diff(addr
, &key
->addr
, addrlen
);
553 * (new leaf node)[ln] (old node)[fn]
564 return ERR_PTR(-ENOMEM
);
568 * new intermediate node.
570 * be off since that an address that chooses one of
571 * the branches would not match less specific routes
572 * in the other branch
579 atomic_inc(&in
->leaf
->rt6i_ref
);
581 in
->fn_sernum
= sernum
;
583 /* update parent pointer */
594 ln
->fn_sernum
= sernum
;
596 if (addr_bit_set(addr
, bit
)) {
603 } else { /* plen <= bit */
606 * (new leaf node)[ln]
608 * (old node)[fn] NULL
614 return ERR_PTR(-ENOMEM
);
620 ln
->fn_sernum
= sernum
;
627 if (addr_bit_set(&key
->addr
, plen
))
638 * Insert routing information in a node.
641 static int fib6_add_rt2node(struct fib6_node
*fn
, struct rt6_info
*rt
,
642 struct nl_info
*info
)
644 struct rt6_info
*iter
= NULL
;
645 struct rt6_info
**ins
;
646 int replace
= (info
->nlh
&&
647 (info
->nlh
->nlmsg_flags
& NLM_F_REPLACE
));
648 int add
= (!info
->nlh
||
649 (info
->nlh
->nlmsg_flags
& NLM_F_CREATE
));
654 for (iter
= fn
->leaf
; iter
; iter
= iter
->dst
.rt6_next
) {
656 * Search for duplicates
659 if (iter
->rt6i_metric
== rt
->rt6i_metric
) {
661 * Same priority level
664 (info
->nlh
->nlmsg_flags
& NLM_F_EXCL
))
671 if (iter
->dst
.dev
== rt
->dst
.dev
&&
672 iter
->rt6i_idev
== rt
->rt6i_idev
&&
673 ipv6_addr_equal(&iter
->rt6i_gateway
,
674 &rt
->rt6i_gateway
)) {
675 if (rt
->rt6i_nsiblings
)
676 rt
->rt6i_nsiblings
= 0;
677 if (!(iter
->rt6i_flags
& RTF_EXPIRES
))
679 if (!(rt
->rt6i_flags
& RTF_EXPIRES
))
680 rt6_clean_expires(iter
);
682 rt6_set_expires(iter
, rt
->dst
.expires
);
685 /* If we have the same destination and the same metric,
686 * but not the same gateway, then the route we try to
687 * add is sibling to this route, increment our counter
688 * of siblings, and later we will add our route to the
690 * Only static routes (which don't have flag
691 * RTF_EXPIRES) are used for ECMPv6.
693 * To avoid long list, we only had siblings if the
694 * route have a gateway.
696 if (rt
->rt6i_flags
& RTF_GATEWAY
&&
697 !(rt
->rt6i_flags
& RTF_EXPIRES
) &&
698 !(iter
->rt6i_flags
& RTF_EXPIRES
))
699 rt
->rt6i_nsiblings
++;
702 if (iter
->rt6i_metric
> rt
->rt6i_metric
)
705 ins
= &iter
->dst
.rt6_next
;
708 /* Reset round-robin state, if necessary */
709 if (ins
== &fn
->leaf
)
712 /* Link this route to others same route. */
713 if (rt
->rt6i_nsiblings
) {
714 unsigned int rt6i_nsiblings
;
715 struct rt6_info
*sibling
, *temp_sibling
;
717 /* Find the first route that have the same metric */
720 if (sibling
->rt6i_metric
== rt
->rt6i_metric
) {
721 list_add_tail(&rt
->rt6i_siblings
,
722 &sibling
->rt6i_siblings
);
725 sibling
= sibling
->dst
.rt6_next
;
727 /* For each sibling in the list, increment the counter of
728 * siblings. BUG() if counters does not match, list of siblings
732 list_for_each_entry_safe(sibling
, temp_sibling
,
733 &rt
->rt6i_siblings
, rt6i_siblings
) {
734 sibling
->rt6i_nsiblings
++;
735 BUG_ON(sibling
->rt6i_nsiblings
!= rt
->rt6i_nsiblings
);
738 BUG_ON(rt6i_nsiblings
!= rt
->rt6i_nsiblings
);
746 pr_warn("NLM_F_CREATE should be set when creating new route\n");
749 rt
->dst
.rt6_next
= iter
;
752 atomic_inc(&rt
->rt6i_ref
);
753 inet6_rt_notify(RTM_NEWROUTE
, rt
, info
);
754 info
->nl_net
->ipv6
.rt6_stats
->fib_rt_entries
++;
756 if (!(fn
->fn_flags
& RTN_RTINFO
)) {
757 info
->nl_net
->ipv6
.rt6_stats
->fib_route_nodes
++;
758 fn
->fn_flags
|= RTN_RTINFO
;
765 pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
770 rt
->dst
.rt6_next
= iter
->dst
.rt6_next
;
771 atomic_inc(&rt
->rt6i_ref
);
772 inet6_rt_notify(RTM_NEWROUTE
, rt
, info
);
774 if (!(fn
->fn_flags
& RTN_RTINFO
)) {
775 info
->nl_net
->ipv6
.rt6_stats
->fib_route_nodes
++;
776 fn
->fn_flags
|= RTN_RTINFO
;
783 static __inline__
void fib6_start_gc(struct net
*net
, struct rt6_info
*rt
)
785 if (!timer_pending(&net
->ipv6
.ip6_fib_timer
) &&
786 (rt
->rt6i_flags
& (RTF_EXPIRES
| RTF_CACHE
)))
787 mod_timer(&net
->ipv6
.ip6_fib_timer
,
788 jiffies
+ net
->ipv6
.sysctl
.ip6_rt_gc_interval
);
791 void fib6_force_start_gc(struct net
*net
)
793 if (!timer_pending(&net
->ipv6
.ip6_fib_timer
))
794 mod_timer(&net
->ipv6
.ip6_fib_timer
,
795 jiffies
+ net
->ipv6
.sysctl
.ip6_rt_gc_interval
);
799 * Add routing information to the routing tree.
800 * <destination addr>/<source addr>
801 * with source addr info in sub-trees
804 int fib6_add(struct fib6_node
*root
, struct rt6_info
*rt
, struct nl_info
*info
)
806 struct fib6_node
*fn
, *pn
= NULL
;
808 int allow_create
= 1;
809 int replace_required
= 0;
812 if (!(info
->nlh
->nlmsg_flags
& NLM_F_CREATE
))
814 if (info
->nlh
->nlmsg_flags
& NLM_F_REPLACE
)
815 replace_required
= 1;
817 if (!allow_create
&& !replace_required
)
818 pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
820 fn
= fib6_add_1(root
, &rt
->rt6i_dst
.addr
, sizeof(struct in6_addr
),
821 rt
->rt6i_dst
.plen
, offsetof(struct rt6_info
, rt6i_dst
),
822 allow_create
, replace_required
);
831 #ifdef CONFIG_IPV6_SUBTREES
832 if (rt
->rt6i_src
.plen
) {
833 struct fib6_node
*sn
;
836 struct fib6_node
*sfn
;
848 /* Create subtree root node */
853 sfn
->leaf
= info
->nl_net
->ipv6
.ip6_null_entry
;
854 atomic_inc(&info
->nl_net
->ipv6
.ip6_null_entry
->rt6i_ref
);
855 sfn
->fn_flags
= RTN_ROOT
;
856 sfn
->fn_sernum
= fib6_new_sernum();
858 /* Now add the first leaf node to new subtree */
860 sn
= fib6_add_1(sfn
, &rt
->rt6i_src
.addr
,
861 sizeof(struct in6_addr
), rt
->rt6i_src
.plen
,
862 offsetof(struct rt6_info
, rt6i_src
),
863 allow_create
, replace_required
);
866 /* If it is failed, discard just allocated
867 root, and then (in st_failure) stale node
875 /* Now link new subtree to main tree */
879 sn
= fib6_add_1(fn
->subtree
, &rt
->rt6i_src
.addr
,
880 sizeof(struct in6_addr
), rt
->rt6i_src
.plen
,
881 offsetof(struct rt6_info
, rt6i_src
),
882 allow_create
, replace_required
);
892 atomic_inc(&rt
->rt6i_ref
);
898 err
= fib6_add_rt2node(fn
, rt
, info
);
900 fib6_start_gc(info
->nl_net
, rt
);
901 if (!(rt
->rt6i_flags
& RTF_CACHE
))
902 fib6_prune_clones(info
->nl_net
, pn
, rt
);
907 #ifdef CONFIG_IPV6_SUBTREES
909 * If fib6_add_1 has cleared the old leaf pointer in the
910 * super-tree leaf node we have to find a new one for it.
912 if (pn
!= fn
&& pn
->leaf
== rt
) {
914 atomic_dec(&rt
->rt6i_ref
);
916 if (pn
!= fn
&& !pn
->leaf
&& !(pn
->fn_flags
& RTN_RTINFO
)) {
917 pn
->leaf
= fib6_find_prefix(info
->nl_net
, pn
);
920 WARN_ON(pn
->leaf
== NULL
);
921 pn
->leaf
= info
->nl_net
->ipv6
.ip6_null_entry
;
924 atomic_inc(&pn
->leaf
->rt6i_ref
);
931 #ifdef CONFIG_IPV6_SUBTREES
932 /* Subtree creation failed, probably main tree node
933 is orphan. If it is, shoot it.
936 if (fn
&& !(fn
->fn_flags
& (RTN_RTINFO
|RTN_ROOT
)))
937 fib6_repair_tree(info
->nl_net
, fn
);
944 * Routing tree lookup
949 int offset
; /* key offset on rt6_info */
950 const struct in6_addr
*addr
; /* search key */
953 static struct fib6_node
* fib6_lookup_1(struct fib6_node
*root
,
954 struct lookup_args
*args
)
956 struct fib6_node
*fn
;
959 if (unlikely(args
->offset
== 0))
969 struct fib6_node
*next
;
971 dir
= addr_bit_set(args
->addr
, fn
->fn_bit
);
973 next
= dir
? fn
->right
: fn
->left
;
983 if (FIB6_SUBTREE(fn
) || fn
->fn_flags
& RTN_RTINFO
) {
986 key
= (struct rt6key
*) ((u8
*) fn
->leaf
+
989 if (ipv6_prefix_equal(&key
->addr
, args
->addr
, key
->plen
)) {
990 #ifdef CONFIG_IPV6_SUBTREES
992 fn
= fib6_lookup_1(fn
->subtree
, args
+ 1);
994 if (!fn
|| fn
->fn_flags
& RTN_RTINFO
)
999 if (fn
->fn_flags
& RTN_ROOT
)
1008 struct fib6_node
* fib6_lookup(struct fib6_node
*root
, const struct in6_addr
*daddr
,
1009 const struct in6_addr
*saddr
)
1011 struct fib6_node
*fn
;
1012 struct lookup_args args
[] = {
1014 .offset
= offsetof(struct rt6_info
, rt6i_dst
),
1017 #ifdef CONFIG_IPV6_SUBTREES
1019 .offset
= offsetof(struct rt6_info
, rt6i_src
),
1024 .offset
= 0, /* sentinel */
1028 fn
= fib6_lookup_1(root
, daddr
? args
: args
+ 1);
1029 if (!fn
|| fn
->fn_flags
& RTN_TL_ROOT
)
1036 * Get node with specified destination prefix (and source prefix,
1037 * if subtrees are used)
1041 static struct fib6_node
* fib6_locate_1(struct fib6_node
*root
,
1042 const struct in6_addr
*addr
,
1043 int plen
, int offset
)
1045 struct fib6_node
*fn
;
1047 for (fn
= root
; fn
; ) {
1048 struct rt6key
*key
= (struct rt6key
*)((u8
*)fn
->leaf
+ offset
);
1053 if (plen
< fn
->fn_bit
||
1054 !ipv6_prefix_equal(&key
->addr
, addr
, fn
->fn_bit
))
1057 if (plen
== fn
->fn_bit
)
1061 * We have more bits to go
1063 if (addr_bit_set(addr
, fn
->fn_bit
))
1071 struct fib6_node
* fib6_locate(struct fib6_node
*root
,
1072 const struct in6_addr
*daddr
, int dst_len
,
1073 const struct in6_addr
*saddr
, int src_len
)
1075 struct fib6_node
*fn
;
1077 fn
= fib6_locate_1(root
, daddr
, dst_len
,
1078 offsetof(struct rt6_info
, rt6i_dst
));
1080 #ifdef CONFIG_IPV6_SUBTREES
1082 WARN_ON(saddr
== NULL
);
1083 if (fn
&& fn
->subtree
)
1084 fn
= fib6_locate_1(fn
->subtree
, saddr
, src_len
,
1085 offsetof(struct rt6_info
, rt6i_src
));
1089 if (fn
&& fn
->fn_flags
& RTN_RTINFO
)
1101 static struct rt6_info
*fib6_find_prefix(struct net
*net
, struct fib6_node
*fn
)
1103 if (fn
->fn_flags
& RTN_ROOT
)
1104 return net
->ipv6
.ip6_null_entry
;
1108 return fn
->left
->leaf
;
1110 return fn
->right
->leaf
;
1112 fn
= FIB6_SUBTREE(fn
);
1118 * Called to trim the tree of intermediate nodes when possible. "fn"
1119 * is the node we want to try and remove.
1122 static struct fib6_node
*fib6_repair_tree(struct net
*net
,
1123 struct fib6_node
*fn
)
1127 struct fib6_node
*child
, *pn
;
1128 struct fib6_walker_t
*w
;
1132 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn
->fn_bit
, iter
);
1135 WARN_ON(fn
->fn_flags
& RTN_RTINFO
);
1136 WARN_ON(fn
->fn_flags
& RTN_TL_ROOT
);
1137 WARN_ON(fn
->leaf
!= NULL
);
1141 if (fn
->right
) child
= fn
->right
, children
|= 1;
1142 if (fn
->left
) child
= fn
->left
, children
|= 2;
1144 if (children
== 3 || FIB6_SUBTREE(fn
)
1145 #ifdef CONFIG_IPV6_SUBTREES
1146 /* Subtree root (i.e. fn) may have one child */
1147 || (children
&& fn
->fn_flags
& RTN_ROOT
)
1150 fn
->leaf
= fib6_find_prefix(net
, fn
);
1154 fn
->leaf
= net
->ipv6
.ip6_null_entry
;
1157 atomic_inc(&fn
->leaf
->rt6i_ref
);
1162 #ifdef CONFIG_IPV6_SUBTREES
1163 if (FIB6_SUBTREE(pn
) == fn
) {
1164 WARN_ON(!(fn
->fn_flags
& RTN_ROOT
));
1165 FIB6_SUBTREE(pn
) = NULL
;
1168 WARN_ON(fn
->fn_flags
& RTN_ROOT
);
1170 if (pn
->right
== fn
) pn
->right
= child
;
1171 else if (pn
->left
== fn
) pn
->left
= child
;
1179 #ifdef CONFIG_IPV6_SUBTREES
1183 read_lock(&fib6_walker_lock
);
1186 if (w
->root
== fn
) {
1187 w
->root
= w
->node
= NULL
;
1188 RT6_TRACE("W %p adjusted by delroot 1\n", w
);
1189 } else if (w
->node
== fn
) {
1190 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w
, w
->state
, nstate
);
1195 if (w
->root
== fn
) {
1197 RT6_TRACE("W %p adjusted by delroot 2\n", w
);
1199 if (w
->node
== fn
) {
1202 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w
, w
->state
);
1203 w
->state
= w
->state
>=FWS_R
? FWS_U
: FWS_INIT
;
1205 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w
, w
->state
);
1206 w
->state
= w
->state
>=FWS_C
? FWS_U
: FWS_INIT
;
1211 read_unlock(&fib6_walker_lock
);
1214 if (pn
->fn_flags
& RTN_RTINFO
|| FIB6_SUBTREE(pn
))
1217 rt6_release(pn
->leaf
);
1223 static void fib6_del_route(struct fib6_node
*fn
, struct rt6_info
**rtp
,
1224 struct nl_info
*info
)
1226 struct fib6_walker_t
*w
;
1227 struct rt6_info
*rt
= *rtp
;
1228 struct net
*net
= info
->nl_net
;
1230 RT6_TRACE("fib6_del_route\n");
1233 *rtp
= rt
->dst
.rt6_next
;
1234 rt
->rt6i_node
= NULL
;
1235 net
->ipv6
.rt6_stats
->fib_rt_entries
--;
1236 net
->ipv6
.rt6_stats
->fib_discarded_routes
++;
1238 /* Reset round-robin state, if necessary */
1239 if (fn
->rr_ptr
== rt
)
1242 /* Remove this entry from other siblings */
1243 if (rt
->rt6i_nsiblings
) {
1244 struct rt6_info
*sibling
, *next_sibling
;
1246 list_for_each_entry_safe(sibling
, next_sibling
,
1247 &rt
->rt6i_siblings
, rt6i_siblings
)
1248 sibling
->rt6i_nsiblings
--;
1249 rt
->rt6i_nsiblings
= 0;
1250 list_del_init(&rt
->rt6i_siblings
);
1253 /* Adjust walkers */
1254 read_lock(&fib6_walker_lock
);
1256 if (w
->state
== FWS_C
&& w
->leaf
== rt
) {
1257 RT6_TRACE("walker %p adjusted by delroute\n", w
);
1258 w
->leaf
= rt
->dst
.rt6_next
;
1263 read_unlock(&fib6_walker_lock
);
1265 rt
->dst
.rt6_next
= NULL
;
1267 /* If it was last route, expunge its radix tree node */
1269 fn
->fn_flags
&= ~RTN_RTINFO
;
1270 net
->ipv6
.rt6_stats
->fib_route_nodes
--;
1271 fn
= fib6_repair_tree(net
, fn
);
1274 if (atomic_read(&rt
->rt6i_ref
) != 1) {
1275 /* This route is used as dummy address holder in some split
1276 * nodes. It is not leaked, but it still holds other resources,
1277 * which must be released in time. So, scan ascendant nodes
1278 * and replace dummy references to this route with references
1279 * to still alive ones.
1282 if (!(fn
->fn_flags
& RTN_RTINFO
) && fn
->leaf
== rt
) {
1283 fn
->leaf
= fib6_find_prefix(net
, fn
);
1284 atomic_inc(&fn
->leaf
->rt6i_ref
);
1289 /* No more references are possible at this point. */
1290 BUG_ON(atomic_read(&rt
->rt6i_ref
) != 1);
1293 inet6_rt_notify(RTM_DELROUTE
, rt
, info
);
1297 int fib6_del(struct rt6_info
*rt
, struct nl_info
*info
)
1299 struct net
*net
= info
->nl_net
;
1300 struct fib6_node
*fn
= rt
->rt6i_node
;
1301 struct rt6_info
**rtp
;
1304 if (rt
->dst
.obsolete
>0) {
1305 WARN_ON(fn
!= NULL
);
1309 if (!fn
|| rt
== net
->ipv6
.ip6_null_entry
)
1312 WARN_ON(!(fn
->fn_flags
& RTN_RTINFO
));
1314 if (!(rt
->rt6i_flags
& RTF_CACHE
)) {
1315 struct fib6_node
*pn
= fn
;
1316 #ifdef CONFIG_IPV6_SUBTREES
1317 /* clones of this route might be in another subtree */
1318 if (rt
->rt6i_src
.plen
) {
1319 while (!(pn
->fn_flags
& RTN_ROOT
))
1324 fib6_prune_clones(info
->nl_net
, pn
, rt
);
1328 * Walk the leaf entries looking for ourself
1331 for (rtp
= &fn
->leaf
; *rtp
; rtp
= &(*rtp
)->dst
.rt6_next
) {
1333 fib6_del_route(fn
, rtp
, info
);
1341 * Tree traversal function.
1343 * Certainly, it is not interrupt safe.
1344 * However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1345 * It means, that we can modify tree during walking
1346 * and use this function for garbage collection, clone pruning,
1347 * cleaning tree when a device goes down etc. etc.
1349 * It guarantees that every node will be traversed,
1350 * and that it will be traversed only once.
1352 * Callback function w->func may return:
1353 * 0 -> continue walking.
1354 * positive value -> walking is suspended (used by tree dumps,
1355 * and probably by gc, if it will be split to several slices)
1356 * negative value -> terminate walking.
1358 * The function itself returns:
1359 * 0 -> walk is complete.
1360 * >0 -> walk is incomplete (i.e. suspended)
1361 * <0 -> walk is terminated by an error.
1364 static int fib6_walk_continue(struct fib6_walker_t
*w
)
1366 struct fib6_node
*fn
, *pn
;
1373 if (w
->prune
&& fn
!= w
->root
&&
1374 fn
->fn_flags
& RTN_RTINFO
&& w
->state
< FWS_C
) {
1379 #ifdef CONFIG_IPV6_SUBTREES
1381 if (FIB6_SUBTREE(fn
)) {
1382 w
->node
= FIB6_SUBTREE(fn
);
1390 w
->state
= FWS_INIT
;
1396 w
->node
= fn
->right
;
1397 w
->state
= FWS_INIT
;
1403 if (w
->leaf
&& fn
->fn_flags
& RTN_RTINFO
) {
1424 #ifdef CONFIG_IPV6_SUBTREES
1425 if (FIB6_SUBTREE(pn
) == fn
) {
1426 WARN_ON(!(fn
->fn_flags
& RTN_ROOT
));
1431 if (pn
->left
== fn
) {
1435 if (pn
->right
== fn
) {
1437 w
->leaf
= w
->node
->leaf
;
1447 static int fib6_walk(struct fib6_walker_t
*w
)
1451 w
->state
= FWS_INIT
;
1454 fib6_walker_link(w
);
1455 res
= fib6_walk_continue(w
);
1457 fib6_walker_unlink(w
);
1461 static int fib6_clean_node(struct fib6_walker_t
*w
)
1464 struct rt6_info
*rt
;
1465 struct fib6_cleaner_t
*c
= container_of(w
, struct fib6_cleaner_t
, w
);
1466 struct nl_info info
= {
1470 for (rt
= w
->leaf
; rt
; rt
= rt
->dst
.rt6_next
) {
1471 res
= c
->func(rt
, c
->arg
);
1474 res
= fib6_del(rt
, &info
);
1477 pr_debug("%s: del failed: rt=%p@%p err=%d\n",
1478 __func__
, rt
, rt
->rt6i_node
, res
);
1491 * Convenient frontend to tree walker.
1493 * func is called on each route.
1494 * It may return -1 -> delete this route.
1495 * 0 -> continue walking
1497 * prune==1 -> only immediate children of node (certainly,
1498 * ignoring pure split nodes) will be scanned.
1501 static void fib6_clean_tree(struct net
*net
, struct fib6_node
*root
,
1502 int (*func
)(struct rt6_info
*, void *arg
),
1503 int prune
, void *arg
)
1505 struct fib6_cleaner_t c
;
1508 c
.w
.func
= fib6_clean_node
;
1519 void fib6_clean_all_ro(struct net
*net
, int (*func
)(struct rt6_info
*, void *arg
),
1520 int prune
, void *arg
)
1522 struct fib6_table
*table
;
1523 struct hlist_node
*node
;
1524 struct hlist_head
*head
;
1528 for (h
= 0; h
< FIB6_TABLE_HASHSZ
; h
++) {
1529 head
= &net
->ipv6
.fib_table_hash
[h
];
1530 hlist_for_each_entry_rcu(table
, node
, head
, tb6_hlist
) {
1531 read_lock_bh(&table
->tb6_lock
);
1532 fib6_clean_tree(net
, &table
->tb6_root
,
1534 read_unlock_bh(&table
->tb6_lock
);
1539 void fib6_clean_all(struct net
*net
, int (*func
)(struct rt6_info
*, void *arg
),
1540 int prune
, void *arg
)
1542 struct fib6_table
*table
;
1543 struct hlist_node
*node
;
1544 struct hlist_head
*head
;
1548 for (h
= 0; h
< FIB6_TABLE_HASHSZ
; h
++) {
1549 head
= &net
->ipv6
.fib_table_hash
[h
];
1550 hlist_for_each_entry_rcu(table
, node
, head
, tb6_hlist
) {
1551 write_lock_bh(&table
->tb6_lock
);
1552 fib6_clean_tree(net
, &table
->tb6_root
,
1554 write_unlock_bh(&table
->tb6_lock
);
1560 static int fib6_prune_clone(struct rt6_info
*rt
, void *arg
)
1562 if (rt
->rt6i_flags
& RTF_CACHE
) {
1563 RT6_TRACE("pruning clone %p\n", rt
);
1570 static void fib6_prune_clones(struct net
*net
, struct fib6_node
*fn
,
1571 struct rt6_info
*rt
)
1573 fib6_clean_tree(net
, fn
, fib6_prune_clone
, 1, rt
);
1577 * Garbage collection
1580 static struct fib6_gc_args
1586 static int fib6_age(struct rt6_info
*rt
, void *arg
)
1588 unsigned long now
= jiffies
;
1591 * check addrconf expiration here.
1592 * Routes are expired even if they are in use.
1594 * Also age clones. Note, that clones are aged out
1595 * only if they are not in use now.
1598 if (rt
->rt6i_flags
& RTF_EXPIRES
&& rt
->dst
.expires
) {
1599 if (time_after(now
, rt
->dst
.expires
)) {
1600 RT6_TRACE("expiring %p\n", rt
);
1604 } else if (rt
->rt6i_flags
& RTF_CACHE
) {
1605 if (atomic_read(&rt
->dst
.__refcnt
) == 0 &&
1606 time_after_eq(now
, rt
->dst
.lastuse
+ gc_args
.timeout
)) {
1607 RT6_TRACE("aging clone %p\n", rt
);
1609 } else if (rt
->rt6i_flags
& RTF_GATEWAY
) {
1610 struct neighbour
*neigh
;
1611 __u8 neigh_flags
= 0;
1613 neigh
= dst_neigh_lookup(&rt
->dst
, &rt
->rt6i_gateway
);
1615 neigh_flags
= neigh
->flags
;
1616 neigh_release(neigh
);
1618 if (!(neigh_flags
& NTF_ROUTER
)) {
1619 RT6_TRACE("purging route %p via non-router but gateway\n",
1630 static DEFINE_SPINLOCK(fib6_gc_lock
);
1632 void fib6_run_gc(unsigned long expires
, struct net
*net
)
1634 if (expires
!= ~0UL) {
1635 spin_lock_bh(&fib6_gc_lock
);
1636 gc_args
.timeout
= expires
? (int)expires
:
1637 net
->ipv6
.sysctl
.ip6_rt_gc_interval
;
1639 if (!spin_trylock_bh(&fib6_gc_lock
)) {
1640 mod_timer(&net
->ipv6
.ip6_fib_timer
, jiffies
+ HZ
);
1643 gc_args
.timeout
= net
->ipv6
.sysctl
.ip6_rt_gc_interval
;
1646 gc_args
.more
= icmp6_dst_gc();
1648 fib6_clean_all(net
, fib6_age
, 0, NULL
);
1651 mod_timer(&net
->ipv6
.ip6_fib_timer
,
1652 round_jiffies(jiffies
1653 + net
->ipv6
.sysctl
.ip6_rt_gc_interval
));
1655 del_timer(&net
->ipv6
.ip6_fib_timer
);
1656 spin_unlock_bh(&fib6_gc_lock
);
1659 static void fib6_gc_timer_cb(unsigned long arg
)
1661 fib6_run_gc(0, (struct net
*)arg
);
1664 static int __net_init
fib6_net_init(struct net
*net
)
1666 size_t size
= sizeof(struct hlist_head
) * FIB6_TABLE_HASHSZ
;
1668 setup_timer(&net
->ipv6
.ip6_fib_timer
, fib6_gc_timer_cb
, (unsigned long)net
);
1670 net
->ipv6
.rt6_stats
= kzalloc(sizeof(*net
->ipv6
.rt6_stats
), GFP_KERNEL
);
1671 if (!net
->ipv6
.rt6_stats
)
1674 /* Avoid false sharing : Use at least a full cache line */
1675 size
= max_t(size_t, size
, L1_CACHE_BYTES
);
1677 net
->ipv6
.fib_table_hash
= kzalloc(size
, GFP_KERNEL
);
1678 if (!net
->ipv6
.fib_table_hash
)
1681 net
->ipv6
.fib6_main_tbl
= kzalloc(sizeof(*net
->ipv6
.fib6_main_tbl
),
1683 if (!net
->ipv6
.fib6_main_tbl
)
1684 goto out_fib_table_hash
;
1686 net
->ipv6
.fib6_main_tbl
->tb6_id
= RT6_TABLE_MAIN
;
1687 net
->ipv6
.fib6_main_tbl
->tb6_root
.leaf
= net
->ipv6
.ip6_null_entry
;
1688 net
->ipv6
.fib6_main_tbl
->tb6_root
.fn_flags
=
1689 RTN_ROOT
| RTN_TL_ROOT
| RTN_RTINFO
;
1690 inet_peer_base_init(&net
->ipv6
.fib6_main_tbl
->tb6_peers
);
1692 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1693 net
->ipv6
.fib6_local_tbl
= kzalloc(sizeof(*net
->ipv6
.fib6_local_tbl
),
1695 if (!net
->ipv6
.fib6_local_tbl
)
1696 goto out_fib6_main_tbl
;
1697 net
->ipv6
.fib6_local_tbl
->tb6_id
= RT6_TABLE_LOCAL
;
1698 net
->ipv6
.fib6_local_tbl
->tb6_root
.leaf
= net
->ipv6
.ip6_null_entry
;
1699 net
->ipv6
.fib6_local_tbl
->tb6_root
.fn_flags
=
1700 RTN_ROOT
| RTN_TL_ROOT
| RTN_RTINFO
;
1701 inet_peer_base_init(&net
->ipv6
.fib6_local_tbl
->tb6_peers
);
1703 fib6_tables_init(net
);
1707 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1709 kfree(net
->ipv6
.fib6_main_tbl
);
1712 kfree(net
->ipv6
.fib_table_hash
);
1714 kfree(net
->ipv6
.rt6_stats
);
1719 static void fib6_net_exit(struct net
*net
)
1721 rt6_ifdown(net
, NULL
);
1722 del_timer_sync(&net
->ipv6
.ip6_fib_timer
);
1724 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1725 inetpeer_invalidate_tree(&net
->ipv6
.fib6_local_tbl
->tb6_peers
);
1726 kfree(net
->ipv6
.fib6_local_tbl
);
1728 inetpeer_invalidate_tree(&net
->ipv6
.fib6_main_tbl
->tb6_peers
);
1729 kfree(net
->ipv6
.fib6_main_tbl
);
1730 kfree(net
->ipv6
.fib_table_hash
);
1731 kfree(net
->ipv6
.rt6_stats
);
1734 static struct pernet_operations fib6_net_ops
= {
1735 .init
= fib6_net_init
,
1736 .exit
= fib6_net_exit
,
1739 int __init
fib6_init(void)
1743 fib6_node_kmem
= kmem_cache_create("fib6_nodes",
1744 sizeof(struct fib6_node
),
1745 0, SLAB_HWCACHE_ALIGN
,
1747 if (!fib6_node_kmem
)
1750 ret
= register_pernet_subsys(&fib6_net_ops
);
1752 goto out_kmem_cache_create
;
1754 ret
= __rtnl_register(PF_INET6
, RTM_GETROUTE
, NULL
, inet6_dump_fib
,
1757 goto out_unregister_subsys
;
1761 out_unregister_subsys
:
1762 unregister_pernet_subsys(&fib6_net_ops
);
1763 out_kmem_cache_create
:
1764 kmem_cache_destroy(fib6_node_kmem
);
1768 void fib6_gc_cleanup(void)
1770 unregister_pernet_subsys(&fib6_net_ops
);
1771 kmem_cache_destroy(fib6_node_kmem
);