RDMA/nes: Fix for terminate timer crash
[linux/fpc-iii.git] / kernel / exit.c
blob234e152c609e2dcfc1e3f8cabbcd28d443fb466d
1 /*
2 * linux/kernel/exit.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/binfmts.h>
24 #include <linux/nsproxy.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/ptrace.h>
27 #include <linux/profile.h>
28 #include <linux/mount.h>
29 #include <linux/proc_fs.h>
30 #include <linux/kthread.h>
31 #include <linux/mempolicy.h>
32 #include <linux/taskstats_kern.h>
33 #include <linux/delayacct.h>
34 #include <linux/freezer.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
55 #include <asm/uaccess.h>
56 #include <asm/unistd.h>
57 #include <asm/pgtable.h>
58 #include <asm/mmu_context.h>
60 static void exit_mm(struct task_struct * tsk);
62 static void __unhash_process(struct task_struct *p, bool group_dead)
64 nr_threads--;
65 detach_pid(p, PIDTYPE_PID);
66 if (group_dead) {
67 detach_pid(p, PIDTYPE_PGID);
68 detach_pid(p, PIDTYPE_SID);
70 list_del_rcu(&p->tasks);
71 list_del_init(&p->sibling);
72 __this_cpu_dec(process_counts);
74 list_del_rcu(&p->thread_group);
78 * This function expects the tasklist_lock write-locked.
80 static void __exit_signal(struct task_struct *tsk)
82 struct signal_struct *sig = tsk->signal;
83 bool group_dead = thread_group_leader(tsk);
84 struct sighand_struct *sighand;
85 struct tty_struct *uninitialized_var(tty);
87 sighand = rcu_dereference_check(tsk->sighand,
88 lockdep_tasklist_lock_is_held());
89 spin_lock(&sighand->siglock);
91 posix_cpu_timers_exit(tsk);
92 if (group_dead) {
93 posix_cpu_timers_exit_group(tsk);
94 tty = sig->tty;
95 sig->tty = NULL;
96 } else {
98 * This can only happen if the caller is de_thread().
99 * FIXME: this is the temporary hack, we should teach
100 * posix-cpu-timers to handle this case correctly.
102 if (unlikely(has_group_leader_pid(tsk)))
103 posix_cpu_timers_exit_group(tsk);
106 * If there is any task waiting for the group exit
107 * then notify it:
109 if (sig->notify_count > 0 && !--sig->notify_count)
110 wake_up_process(sig->group_exit_task);
112 if (tsk == sig->curr_target)
113 sig->curr_target = next_thread(tsk);
115 * Accumulate here the counters for all threads but the
116 * group leader as they die, so they can be added into
117 * the process-wide totals when those are taken.
118 * The group leader stays around as a zombie as long
119 * as there are other threads. When it gets reaped,
120 * the exit.c code will add its counts into these totals.
121 * We won't ever get here for the group leader, since it
122 * will have been the last reference on the signal_struct.
124 sig->utime = cputime_add(sig->utime, tsk->utime);
125 sig->stime = cputime_add(sig->stime, tsk->stime);
126 sig->gtime = cputime_add(sig->gtime, tsk->gtime);
127 sig->min_flt += tsk->min_flt;
128 sig->maj_flt += tsk->maj_flt;
129 sig->nvcsw += tsk->nvcsw;
130 sig->nivcsw += tsk->nivcsw;
131 sig->inblock += task_io_get_inblock(tsk);
132 sig->oublock += task_io_get_oublock(tsk);
133 task_io_accounting_add(&sig->ioac, &tsk->ioac);
134 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
137 sig->nr_threads--;
138 __unhash_process(tsk, group_dead);
141 * Do this under ->siglock, we can race with another thread
142 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
144 flush_sigqueue(&tsk->pending);
145 tsk->sighand = NULL;
146 spin_unlock(&sighand->siglock);
148 __cleanup_sighand(sighand);
149 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
150 if (group_dead) {
151 flush_sigqueue(&sig->shared_pending);
152 tty_kref_put(tty);
156 static void delayed_put_task_struct(struct rcu_head *rhp)
158 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
160 perf_event_delayed_put(tsk);
161 trace_sched_process_free(tsk);
162 put_task_struct(tsk);
166 void release_task(struct task_struct * p)
168 struct task_struct *leader;
169 int zap_leader;
170 repeat:
171 /* don't need to get the RCU readlock here - the process is dead and
172 * can't be modifying its own credentials. But shut RCU-lockdep up */
173 rcu_read_lock();
174 atomic_dec(&__task_cred(p)->user->processes);
175 rcu_read_unlock();
177 proc_flush_task(p);
179 write_lock_irq(&tasklist_lock);
180 ptrace_release_task(p);
181 __exit_signal(p);
184 * If we are the last non-leader member of the thread
185 * group, and the leader is zombie, then notify the
186 * group leader's parent process. (if it wants notification.)
188 zap_leader = 0;
189 leader = p->group_leader;
190 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
192 * If we were the last child thread and the leader has
193 * exited already, and the leader's parent ignores SIGCHLD,
194 * then we are the one who should release the leader.
196 zap_leader = do_notify_parent(leader, leader->exit_signal);
197 if (zap_leader)
198 leader->exit_state = EXIT_DEAD;
201 write_unlock_irq(&tasklist_lock);
202 release_thread(p);
203 call_rcu(&p->rcu, delayed_put_task_struct);
205 p = leader;
206 if (unlikely(zap_leader))
207 goto repeat;
211 * This checks not only the pgrp, but falls back on the pid if no
212 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
213 * without this...
215 * The caller must hold rcu lock or the tasklist lock.
217 struct pid *session_of_pgrp(struct pid *pgrp)
219 struct task_struct *p;
220 struct pid *sid = NULL;
222 p = pid_task(pgrp, PIDTYPE_PGID);
223 if (p == NULL)
224 p = pid_task(pgrp, PIDTYPE_PID);
225 if (p != NULL)
226 sid = task_session(p);
228 return sid;
232 * Determine if a process group is "orphaned", according to the POSIX
233 * definition in 2.2.2.52. Orphaned process groups are not to be affected
234 * by terminal-generated stop signals. Newly orphaned process groups are
235 * to receive a SIGHUP and a SIGCONT.
237 * "I ask you, have you ever known what it is to be an orphan?"
239 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
241 struct task_struct *p;
243 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
244 if ((p == ignored_task) ||
245 (p->exit_state && thread_group_empty(p)) ||
246 is_global_init(p->real_parent))
247 continue;
249 if (task_pgrp(p->real_parent) != pgrp &&
250 task_session(p->real_parent) == task_session(p))
251 return 0;
252 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
254 return 1;
257 int is_current_pgrp_orphaned(void)
259 int retval;
261 read_lock(&tasklist_lock);
262 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
263 read_unlock(&tasklist_lock);
265 return retval;
268 static bool has_stopped_jobs(struct pid *pgrp)
270 struct task_struct *p;
272 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
273 if (p->signal->flags & SIGNAL_STOP_STOPPED)
274 return true;
275 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
277 return false;
281 * Check to see if any process groups have become orphaned as
282 * a result of our exiting, and if they have any stopped jobs,
283 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
285 static void
286 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
288 struct pid *pgrp = task_pgrp(tsk);
289 struct task_struct *ignored_task = tsk;
291 if (!parent)
292 /* exit: our father is in a different pgrp than
293 * we are and we were the only connection outside.
295 parent = tsk->real_parent;
296 else
297 /* reparent: our child is in a different pgrp than
298 * we are, and it was the only connection outside.
300 ignored_task = NULL;
302 if (task_pgrp(parent) != pgrp &&
303 task_session(parent) == task_session(tsk) &&
304 will_become_orphaned_pgrp(pgrp, ignored_task) &&
305 has_stopped_jobs(pgrp)) {
306 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
307 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
312 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
314 * If a kernel thread is launched as a result of a system call, or if
315 * it ever exits, it should generally reparent itself to kthreadd so it
316 * isn't in the way of other processes and is correctly cleaned up on exit.
318 * The various task state such as scheduling policy and priority may have
319 * been inherited from a user process, so we reset them to sane values here.
321 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
323 static void reparent_to_kthreadd(void)
325 write_lock_irq(&tasklist_lock);
327 ptrace_unlink(current);
328 /* Reparent to init */
329 current->real_parent = current->parent = kthreadd_task;
330 list_move_tail(&current->sibling, &current->real_parent->children);
332 /* Set the exit signal to SIGCHLD so we signal init on exit */
333 current->exit_signal = SIGCHLD;
335 if (task_nice(current) < 0)
336 set_user_nice(current, 0);
337 /* cpus_allowed? */
338 /* rt_priority? */
339 /* signals? */
340 memcpy(current->signal->rlim, init_task.signal->rlim,
341 sizeof(current->signal->rlim));
343 atomic_inc(&init_cred.usage);
344 commit_creds(&init_cred);
345 write_unlock_irq(&tasklist_lock);
348 void __set_special_pids(struct pid *pid)
350 struct task_struct *curr = current->group_leader;
352 if (task_session(curr) != pid)
353 change_pid(curr, PIDTYPE_SID, pid);
355 if (task_pgrp(curr) != pid)
356 change_pid(curr, PIDTYPE_PGID, pid);
359 static void set_special_pids(struct pid *pid)
361 write_lock_irq(&tasklist_lock);
362 __set_special_pids(pid);
363 write_unlock_irq(&tasklist_lock);
367 * Let kernel threads use this to say that they allow a certain signal.
368 * Must not be used if kthread was cloned with CLONE_SIGHAND.
370 int allow_signal(int sig)
372 if (!valid_signal(sig) || sig < 1)
373 return -EINVAL;
375 spin_lock_irq(&current->sighand->siglock);
376 /* This is only needed for daemonize()'ed kthreads */
377 sigdelset(&current->blocked, sig);
379 * Kernel threads handle their own signals. Let the signal code
380 * know it'll be handled, so that they don't get converted to
381 * SIGKILL or just silently dropped.
383 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
384 recalc_sigpending();
385 spin_unlock_irq(&current->sighand->siglock);
386 return 0;
389 EXPORT_SYMBOL(allow_signal);
391 int disallow_signal(int sig)
393 if (!valid_signal(sig) || sig < 1)
394 return -EINVAL;
396 spin_lock_irq(&current->sighand->siglock);
397 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
398 recalc_sigpending();
399 spin_unlock_irq(&current->sighand->siglock);
400 return 0;
403 EXPORT_SYMBOL(disallow_signal);
406 * Put all the gunge required to become a kernel thread without
407 * attached user resources in one place where it belongs.
410 void daemonize(const char *name, ...)
412 va_list args;
413 sigset_t blocked;
415 va_start(args, name);
416 vsnprintf(current->comm, sizeof(current->comm), name, args);
417 va_end(args);
420 * If we were started as result of loading a module, close all of the
421 * user space pages. We don't need them, and if we didn't close them
422 * they would be locked into memory.
424 exit_mm(current);
426 * We don't want to have TIF_FREEZE set if the system-wide hibernation
427 * or suspend transition begins right now.
429 current->flags |= (PF_NOFREEZE | PF_KTHREAD);
431 if (current->nsproxy != &init_nsproxy) {
432 get_nsproxy(&init_nsproxy);
433 switch_task_namespaces(current, &init_nsproxy);
435 set_special_pids(&init_struct_pid);
436 proc_clear_tty(current);
438 /* Block and flush all signals */
439 sigfillset(&blocked);
440 sigprocmask(SIG_BLOCK, &blocked, NULL);
441 flush_signals(current);
443 /* Become as one with the init task */
445 daemonize_fs_struct();
446 exit_files(current);
447 current->files = init_task.files;
448 atomic_inc(&current->files->count);
450 reparent_to_kthreadd();
453 EXPORT_SYMBOL(daemonize);
455 static void close_files(struct files_struct * files)
457 int i, j;
458 struct fdtable *fdt;
460 j = 0;
463 * It is safe to dereference the fd table without RCU or
464 * ->file_lock because this is the last reference to the
465 * files structure. But use RCU to shut RCU-lockdep up.
467 rcu_read_lock();
468 fdt = files_fdtable(files);
469 rcu_read_unlock();
470 for (;;) {
471 unsigned long set;
472 i = j * __NFDBITS;
473 if (i >= fdt->max_fds)
474 break;
475 set = fdt->open_fds->fds_bits[j++];
476 while (set) {
477 if (set & 1) {
478 struct file * file = xchg(&fdt->fd[i], NULL);
479 if (file) {
480 filp_close(file, files);
481 cond_resched();
484 i++;
485 set >>= 1;
490 struct files_struct *get_files_struct(struct task_struct *task)
492 struct files_struct *files;
494 task_lock(task);
495 files = task->files;
496 if (files)
497 atomic_inc(&files->count);
498 task_unlock(task);
500 return files;
503 void put_files_struct(struct files_struct *files)
505 struct fdtable *fdt;
507 if (atomic_dec_and_test(&files->count)) {
508 close_files(files);
510 * Free the fd and fdset arrays if we expanded them.
511 * If the fdtable was embedded, pass files for freeing
512 * at the end of the RCU grace period. Otherwise,
513 * you can free files immediately.
515 rcu_read_lock();
516 fdt = files_fdtable(files);
517 if (fdt != &files->fdtab)
518 kmem_cache_free(files_cachep, files);
519 free_fdtable(fdt);
520 rcu_read_unlock();
524 void reset_files_struct(struct files_struct *files)
526 struct task_struct *tsk = current;
527 struct files_struct *old;
529 old = tsk->files;
530 task_lock(tsk);
531 tsk->files = files;
532 task_unlock(tsk);
533 put_files_struct(old);
536 void exit_files(struct task_struct *tsk)
538 struct files_struct * files = tsk->files;
540 if (files) {
541 task_lock(tsk);
542 tsk->files = NULL;
543 task_unlock(tsk);
544 put_files_struct(files);
548 #ifdef CONFIG_MM_OWNER
550 * A task is exiting. If it owned this mm, find a new owner for the mm.
552 void mm_update_next_owner(struct mm_struct *mm)
554 struct task_struct *c, *g, *p = current;
556 retry:
558 * If the exiting or execing task is not the owner, it's
559 * someone else's problem.
561 if (mm->owner != p)
562 return;
564 * The current owner is exiting/execing and there are no other
565 * candidates. Do not leave the mm pointing to a possibly
566 * freed task structure.
568 if (atomic_read(&mm->mm_users) <= 1) {
569 mm->owner = NULL;
570 return;
573 read_lock(&tasklist_lock);
575 * Search in the children
577 list_for_each_entry(c, &p->children, sibling) {
578 if (c->mm == mm)
579 goto assign_new_owner;
583 * Search in the siblings
585 list_for_each_entry(c, &p->real_parent->children, sibling) {
586 if (c->mm == mm)
587 goto assign_new_owner;
591 * Search through everything else. We should not get
592 * here often
594 do_each_thread(g, c) {
595 if (c->mm == mm)
596 goto assign_new_owner;
597 } while_each_thread(g, c);
599 read_unlock(&tasklist_lock);
601 * We found no owner yet mm_users > 1: this implies that we are
602 * most likely racing with swapoff (try_to_unuse()) or /proc or
603 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
605 mm->owner = NULL;
606 return;
608 assign_new_owner:
609 BUG_ON(c == p);
610 get_task_struct(c);
612 * The task_lock protects c->mm from changing.
613 * We always want mm->owner->mm == mm
615 task_lock(c);
617 * Delay read_unlock() till we have the task_lock()
618 * to ensure that c does not slip away underneath us
620 read_unlock(&tasklist_lock);
621 if (c->mm != mm) {
622 task_unlock(c);
623 put_task_struct(c);
624 goto retry;
626 mm->owner = c;
627 task_unlock(c);
628 put_task_struct(c);
630 #endif /* CONFIG_MM_OWNER */
633 * Turn us into a lazy TLB process if we
634 * aren't already..
636 static void exit_mm(struct task_struct * tsk)
638 struct mm_struct *mm = tsk->mm;
639 struct core_state *core_state;
641 mm_release(tsk, mm);
642 if (!mm)
643 return;
645 * Serialize with any possible pending coredump.
646 * We must hold mmap_sem around checking core_state
647 * and clearing tsk->mm. The core-inducing thread
648 * will increment ->nr_threads for each thread in the
649 * group with ->mm != NULL.
651 down_read(&mm->mmap_sem);
652 core_state = mm->core_state;
653 if (core_state) {
654 struct core_thread self;
655 up_read(&mm->mmap_sem);
657 self.task = tsk;
658 self.next = xchg(&core_state->dumper.next, &self);
660 * Implies mb(), the result of xchg() must be visible
661 * to core_state->dumper.
663 if (atomic_dec_and_test(&core_state->nr_threads))
664 complete(&core_state->startup);
666 for (;;) {
667 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
668 if (!self.task) /* see coredump_finish() */
669 break;
670 schedule();
672 __set_task_state(tsk, TASK_RUNNING);
673 down_read(&mm->mmap_sem);
675 atomic_inc(&mm->mm_count);
676 BUG_ON(mm != tsk->active_mm);
677 /* more a memory barrier than a real lock */
678 task_lock(tsk);
679 tsk->mm = NULL;
680 up_read(&mm->mmap_sem);
681 enter_lazy_tlb(mm, current);
682 /* We don't want this task to be frozen prematurely */
683 clear_freeze_flag(tsk);
684 task_unlock(tsk);
685 mm_update_next_owner(mm);
686 mmput(mm);
690 * When we die, we re-parent all our children.
691 * Try to give them to another thread in our thread
692 * group, and if no such member exists, give it to
693 * the child reaper process (ie "init") in our pid
694 * space.
696 static struct task_struct *find_new_reaper(struct task_struct *father)
697 __releases(&tasklist_lock)
698 __acquires(&tasklist_lock)
700 struct pid_namespace *pid_ns = task_active_pid_ns(father);
701 struct task_struct *thread;
703 thread = father;
704 while_each_thread(father, thread) {
705 if (thread->flags & PF_EXITING)
706 continue;
707 if (unlikely(pid_ns->child_reaper == father))
708 pid_ns->child_reaper = thread;
709 return thread;
712 if (unlikely(pid_ns->child_reaper == father)) {
713 write_unlock_irq(&tasklist_lock);
714 if (unlikely(pid_ns == &init_pid_ns))
715 panic("Attempted to kill init!");
717 zap_pid_ns_processes(pid_ns);
718 write_lock_irq(&tasklist_lock);
720 * We can not clear ->child_reaper or leave it alone.
721 * There may by stealth EXIT_DEAD tasks on ->children,
722 * forget_original_parent() must move them somewhere.
724 pid_ns->child_reaper = init_pid_ns.child_reaper;
727 return pid_ns->child_reaper;
731 * Any that need to be release_task'd are put on the @dead list.
733 static void reparent_leader(struct task_struct *father, struct task_struct *p,
734 struct list_head *dead)
736 list_move_tail(&p->sibling, &p->real_parent->children);
738 if (p->exit_state == EXIT_DEAD)
739 return;
741 * If this is a threaded reparent there is no need to
742 * notify anyone anything has happened.
744 if (same_thread_group(p->real_parent, father))
745 return;
747 /* We don't want people slaying init. */
748 p->exit_signal = SIGCHLD;
750 /* If it has exited notify the new parent about this child's death. */
751 if (!p->ptrace &&
752 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
753 if (do_notify_parent(p, p->exit_signal)) {
754 p->exit_state = EXIT_DEAD;
755 list_move_tail(&p->sibling, dead);
759 kill_orphaned_pgrp(p, father);
762 static void forget_original_parent(struct task_struct *father)
764 struct task_struct *p, *n, *reaper;
765 LIST_HEAD(dead_children);
767 write_lock_irq(&tasklist_lock);
769 * Note that exit_ptrace() and find_new_reaper() might
770 * drop tasklist_lock and reacquire it.
772 exit_ptrace(father);
773 reaper = find_new_reaper(father);
775 list_for_each_entry_safe(p, n, &father->children, sibling) {
776 struct task_struct *t = p;
777 do {
778 t->real_parent = reaper;
779 if (t->parent == father) {
780 BUG_ON(t->ptrace);
781 t->parent = t->real_parent;
783 if (t->pdeath_signal)
784 group_send_sig_info(t->pdeath_signal,
785 SEND_SIG_NOINFO, t);
786 } while_each_thread(p, t);
787 reparent_leader(father, p, &dead_children);
789 write_unlock_irq(&tasklist_lock);
791 BUG_ON(!list_empty(&father->children));
793 list_for_each_entry_safe(p, n, &dead_children, sibling) {
794 list_del_init(&p->sibling);
795 release_task(p);
800 * Send signals to all our closest relatives so that they know
801 * to properly mourn us..
803 static void exit_notify(struct task_struct *tsk, int group_dead)
805 bool autoreap;
808 * This does two things:
810 * A. Make init inherit all the child processes
811 * B. Check to see if any process groups have become orphaned
812 * as a result of our exiting, and if they have any stopped
813 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
815 forget_original_parent(tsk);
816 exit_task_namespaces(tsk);
818 write_lock_irq(&tasklist_lock);
819 if (group_dead)
820 kill_orphaned_pgrp(tsk->group_leader, NULL);
822 if (unlikely(tsk->ptrace)) {
823 int sig = thread_group_leader(tsk) &&
824 thread_group_empty(tsk) &&
825 !ptrace_reparented(tsk) ?
826 tsk->exit_signal : SIGCHLD;
827 autoreap = do_notify_parent(tsk, sig);
828 } else if (thread_group_leader(tsk)) {
829 autoreap = thread_group_empty(tsk) &&
830 do_notify_parent(tsk, tsk->exit_signal);
831 } else {
832 autoreap = true;
835 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
837 /* mt-exec, de_thread() is waiting for group leader */
838 if (unlikely(tsk->signal->notify_count < 0))
839 wake_up_process(tsk->signal->group_exit_task);
840 write_unlock_irq(&tasklist_lock);
842 /* If the process is dead, release it - nobody will wait for it */
843 if (autoreap)
844 release_task(tsk);
847 #ifdef CONFIG_DEBUG_STACK_USAGE
848 static void check_stack_usage(void)
850 static DEFINE_SPINLOCK(low_water_lock);
851 static int lowest_to_date = THREAD_SIZE;
852 unsigned long free;
854 free = stack_not_used(current);
856 if (free >= lowest_to_date)
857 return;
859 spin_lock(&low_water_lock);
860 if (free < lowest_to_date) {
861 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
862 "left\n",
863 current->comm, free);
864 lowest_to_date = free;
866 spin_unlock(&low_water_lock);
868 #else
869 static inline void check_stack_usage(void) {}
870 #endif
872 NORET_TYPE void do_exit(long code)
874 struct task_struct *tsk = current;
875 int group_dead;
877 profile_task_exit(tsk);
879 WARN_ON(blk_needs_flush_plug(tsk));
881 if (unlikely(in_interrupt()))
882 panic("Aiee, killing interrupt handler!");
883 if (unlikely(!tsk->pid))
884 panic("Attempted to kill the idle task!");
887 * If do_exit is called because this processes oopsed, it's possible
888 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
889 * continuing. Amongst other possible reasons, this is to prevent
890 * mm_release()->clear_child_tid() from writing to a user-controlled
891 * kernel address.
893 set_fs(USER_DS);
895 ptrace_event(PTRACE_EVENT_EXIT, code);
897 validate_creds_for_do_exit(tsk);
900 * We're taking recursive faults here in do_exit. Safest is to just
901 * leave this task alone and wait for reboot.
903 if (unlikely(tsk->flags & PF_EXITING)) {
904 printk(KERN_ALERT
905 "Fixing recursive fault but reboot is needed!\n");
907 * We can do this unlocked here. The futex code uses
908 * this flag just to verify whether the pi state
909 * cleanup has been done or not. In the worst case it
910 * loops once more. We pretend that the cleanup was
911 * done as there is no way to return. Either the
912 * OWNER_DIED bit is set by now or we push the blocked
913 * task into the wait for ever nirwana as well.
915 tsk->flags |= PF_EXITPIDONE;
916 set_current_state(TASK_UNINTERRUPTIBLE);
917 schedule();
920 exit_irq_thread();
922 exit_signals(tsk); /* sets PF_EXITING */
924 * tsk->flags are checked in the futex code to protect against
925 * an exiting task cleaning up the robust pi futexes.
927 smp_mb();
928 raw_spin_unlock_wait(&tsk->pi_lock);
930 if (unlikely(in_atomic()))
931 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
932 current->comm, task_pid_nr(current),
933 preempt_count());
935 acct_update_integrals(tsk);
936 /* sync mm's RSS info before statistics gathering */
937 if (tsk->mm)
938 sync_mm_rss(tsk, tsk->mm);
939 group_dead = atomic_dec_and_test(&tsk->signal->live);
940 if (group_dead) {
941 hrtimer_cancel(&tsk->signal->real_timer);
942 exit_itimers(tsk->signal);
943 if (tsk->mm)
944 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
946 acct_collect(code, group_dead);
947 if (group_dead)
948 tty_audit_exit();
949 if (unlikely(tsk->audit_context))
950 audit_free(tsk);
952 tsk->exit_code = code;
953 taskstats_exit(tsk, group_dead);
955 exit_mm(tsk);
957 if (group_dead)
958 acct_process();
959 trace_sched_process_exit(tsk);
961 exit_sem(tsk);
962 exit_shm(tsk);
963 exit_files(tsk);
964 exit_fs(tsk);
965 check_stack_usage();
966 exit_thread();
969 * Flush inherited counters to the parent - before the parent
970 * gets woken up by child-exit notifications.
972 * because of cgroup mode, must be called before cgroup_exit()
974 perf_event_exit_task(tsk);
976 cgroup_exit(tsk, 1);
978 if (group_dead)
979 disassociate_ctty(1);
981 module_put(task_thread_info(tsk)->exec_domain->module);
983 proc_exit_connector(tsk);
986 * FIXME: do that only when needed, using sched_exit tracepoint
988 ptrace_put_breakpoints(tsk);
990 exit_notify(tsk, group_dead);
991 #ifdef CONFIG_NUMA
992 task_lock(tsk);
993 mpol_put(tsk->mempolicy);
994 tsk->mempolicy = NULL;
995 task_unlock(tsk);
996 #endif
997 #ifdef CONFIG_FUTEX
998 if (unlikely(current->pi_state_cache))
999 kfree(current->pi_state_cache);
1000 #endif
1002 * Make sure we are holding no locks:
1004 debug_check_no_locks_held(tsk);
1006 * We can do this unlocked here. The futex code uses this flag
1007 * just to verify whether the pi state cleanup has been done
1008 * or not. In the worst case it loops once more.
1010 tsk->flags |= PF_EXITPIDONE;
1012 if (tsk->io_context)
1013 exit_io_context(tsk);
1015 if (tsk->splice_pipe)
1016 __free_pipe_info(tsk->splice_pipe);
1018 validate_creds_for_do_exit(tsk);
1020 preempt_disable();
1021 exit_rcu();
1024 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
1025 * when the following two conditions become true.
1026 * - There is race condition of mmap_sem (It is acquired by
1027 * exit_mm()), and
1028 * - SMI occurs before setting TASK_RUNINNG.
1029 * (or hypervisor of virtual machine switches to other guest)
1030 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
1032 * To avoid it, we have to wait for releasing tsk->pi_lock which
1033 * is held by try_to_wake_up()
1035 smp_mb();
1036 raw_spin_unlock_wait(&tsk->pi_lock);
1038 /* causes final put_task_struct in finish_task_switch(). */
1039 tsk->state = TASK_DEAD;
1040 schedule();
1041 BUG();
1042 /* Avoid "noreturn function does return". */
1043 for (;;)
1044 cpu_relax(); /* For when BUG is null */
1047 EXPORT_SYMBOL_GPL(do_exit);
1049 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1051 if (comp)
1052 complete(comp);
1054 do_exit(code);
1057 EXPORT_SYMBOL(complete_and_exit);
1059 SYSCALL_DEFINE1(exit, int, error_code)
1061 do_exit((error_code&0xff)<<8);
1065 * Take down every thread in the group. This is called by fatal signals
1066 * as well as by sys_exit_group (below).
1068 NORET_TYPE void
1069 do_group_exit(int exit_code)
1071 struct signal_struct *sig = current->signal;
1073 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1075 if (signal_group_exit(sig))
1076 exit_code = sig->group_exit_code;
1077 else if (!thread_group_empty(current)) {
1078 struct sighand_struct *const sighand = current->sighand;
1079 spin_lock_irq(&sighand->siglock);
1080 if (signal_group_exit(sig))
1081 /* Another thread got here before we took the lock. */
1082 exit_code = sig->group_exit_code;
1083 else {
1084 sig->group_exit_code = exit_code;
1085 sig->flags = SIGNAL_GROUP_EXIT;
1086 zap_other_threads(current);
1088 spin_unlock_irq(&sighand->siglock);
1091 do_exit(exit_code);
1092 /* NOTREACHED */
1096 * this kills every thread in the thread group. Note that any externally
1097 * wait4()-ing process will get the correct exit code - even if this
1098 * thread is not the thread group leader.
1100 SYSCALL_DEFINE1(exit_group, int, error_code)
1102 do_group_exit((error_code & 0xff) << 8);
1103 /* NOTREACHED */
1104 return 0;
1107 struct wait_opts {
1108 enum pid_type wo_type;
1109 int wo_flags;
1110 struct pid *wo_pid;
1112 struct siginfo __user *wo_info;
1113 int __user *wo_stat;
1114 struct rusage __user *wo_rusage;
1116 wait_queue_t child_wait;
1117 int notask_error;
1120 static inline
1121 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1123 if (type != PIDTYPE_PID)
1124 task = task->group_leader;
1125 return task->pids[type].pid;
1128 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1130 return wo->wo_type == PIDTYPE_MAX ||
1131 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1134 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
1136 if (!eligible_pid(wo, p))
1137 return 0;
1138 /* Wait for all children (clone and not) if __WALL is set;
1139 * otherwise, wait for clone children *only* if __WCLONE is
1140 * set; otherwise, wait for non-clone children *only*. (Note:
1141 * A "clone" child here is one that reports to its parent
1142 * using a signal other than SIGCHLD.) */
1143 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1144 && !(wo->wo_flags & __WALL))
1145 return 0;
1147 return 1;
1150 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1151 pid_t pid, uid_t uid, int why, int status)
1153 struct siginfo __user *infop;
1154 int retval = wo->wo_rusage
1155 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1157 put_task_struct(p);
1158 infop = wo->wo_info;
1159 if (infop) {
1160 if (!retval)
1161 retval = put_user(SIGCHLD, &infop->si_signo);
1162 if (!retval)
1163 retval = put_user(0, &infop->si_errno);
1164 if (!retval)
1165 retval = put_user((short)why, &infop->si_code);
1166 if (!retval)
1167 retval = put_user(pid, &infop->si_pid);
1168 if (!retval)
1169 retval = put_user(uid, &infop->si_uid);
1170 if (!retval)
1171 retval = put_user(status, &infop->si_status);
1173 if (!retval)
1174 retval = pid;
1175 return retval;
1179 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1180 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1181 * the lock and this task is uninteresting. If we return nonzero, we have
1182 * released the lock and the system call should return.
1184 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1186 unsigned long state;
1187 int retval, status, traced;
1188 pid_t pid = task_pid_vnr(p);
1189 uid_t uid = __task_cred(p)->uid;
1190 struct siginfo __user *infop;
1192 if (!likely(wo->wo_flags & WEXITED))
1193 return 0;
1195 if (unlikely(wo->wo_flags & WNOWAIT)) {
1196 int exit_code = p->exit_code;
1197 int why;
1199 get_task_struct(p);
1200 read_unlock(&tasklist_lock);
1201 if ((exit_code & 0x7f) == 0) {
1202 why = CLD_EXITED;
1203 status = exit_code >> 8;
1204 } else {
1205 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1206 status = exit_code & 0x7f;
1208 return wait_noreap_copyout(wo, p, pid, uid, why, status);
1212 * Try to move the task's state to DEAD
1213 * only one thread is allowed to do this:
1215 state = xchg(&p->exit_state, EXIT_DEAD);
1216 if (state != EXIT_ZOMBIE) {
1217 BUG_ON(state != EXIT_DEAD);
1218 return 0;
1221 traced = ptrace_reparented(p);
1223 * It can be ptraced but not reparented, check
1224 * thread_group_leader() to filter out sub-threads.
1226 if (likely(!traced) && thread_group_leader(p)) {
1227 struct signal_struct *psig;
1228 struct signal_struct *sig;
1229 unsigned long maxrss;
1230 cputime_t tgutime, tgstime;
1233 * The resource counters for the group leader are in its
1234 * own task_struct. Those for dead threads in the group
1235 * are in its signal_struct, as are those for the child
1236 * processes it has previously reaped. All these
1237 * accumulate in the parent's signal_struct c* fields.
1239 * We don't bother to take a lock here to protect these
1240 * p->signal fields, because they are only touched by
1241 * __exit_signal, which runs with tasklist_lock
1242 * write-locked anyway, and so is excluded here. We do
1243 * need to protect the access to parent->signal fields,
1244 * as other threads in the parent group can be right
1245 * here reaping other children at the same time.
1247 * We use thread_group_times() to get times for the thread
1248 * group, which consolidates times for all threads in the
1249 * group including the group leader.
1251 thread_group_times(p, &tgutime, &tgstime);
1252 spin_lock_irq(&p->real_parent->sighand->siglock);
1253 psig = p->real_parent->signal;
1254 sig = p->signal;
1255 psig->cutime =
1256 cputime_add(psig->cutime,
1257 cputime_add(tgutime,
1258 sig->cutime));
1259 psig->cstime =
1260 cputime_add(psig->cstime,
1261 cputime_add(tgstime,
1262 sig->cstime));
1263 psig->cgtime =
1264 cputime_add(psig->cgtime,
1265 cputime_add(p->gtime,
1266 cputime_add(sig->gtime,
1267 sig->cgtime)));
1268 psig->cmin_flt +=
1269 p->min_flt + sig->min_flt + sig->cmin_flt;
1270 psig->cmaj_flt +=
1271 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1272 psig->cnvcsw +=
1273 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1274 psig->cnivcsw +=
1275 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1276 psig->cinblock +=
1277 task_io_get_inblock(p) +
1278 sig->inblock + sig->cinblock;
1279 psig->coublock +=
1280 task_io_get_oublock(p) +
1281 sig->oublock + sig->coublock;
1282 maxrss = max(sig->maxrss, sig->cmaxrss);
1283 if (psig->cmaxrss < maxrss)
1284 psig->cmaxrss = maxrss;
1285 task_io_accounting_add(&psig->ioac, &p->ioac);
1286 task_io_accounting_add(&psig->ioac, &sig->ioac);
1287 spin_unlock_irq(&p->real_parent->sighand->siglock);
1291 * Now we are sure this task is interesting, and no other
1292 * thread can reap it because we set its state to EXIT_DEAD.
1294 read_unlock(&tasklist_lock);
1296 retval = wo->wo_rusage
1297 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1298 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1299 ? p->signal->group_exit_code : p->exit_code;
1300 if (!retval && wo->wo_stat)
1301 retval = put_user(status, wo->wo_stat);
1303 infop = wo->wo_info;
1304 if (!retval && infop)
1305 retval = put_user(SIGCHLD, &infop->si_signo);
1306 if (!retval && infop)
1307 retval = put_user(0, &infop->si_errno);
1308 if (!retval && infop) {
1309 int why;
1311 if ((status & 0x7f) == 0) {
1312 why = CLD_EXITED;
1313 status >>= 8;
1314 } else {
1315 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1316 status &= 0x7f;
1318 retval = put_user((short)why, &infop->si_code);
1319 if (!retval)
1320 retval = put_user(status, &infop->si_status);
1322 if (!retval && infop)
1323 retval = put_user(pid, &infop->si_pid);
1324 if (!retval && infop)
1325 retval = put_user(uid, &infop->si_uid);
1326 if (!retval)
1327 retval = pid;
1329 if (traced) {
1330 write_lock_irq(&tasklist_lock);
1331 /* We dropped tasklist, ptracer could die and untrace */
1332 ptrace_unlink(p);
1334 * If this is not a sub-thread, notify the parent.
1335 * If parent wants a zombie, don't release it now.
1337 if (thread_group_leader(p) &&
1338 !do_notify_parent(p, p->exit_signal)) {
1339 p->exit_state = EXIT_ZOMBIE;
1340 p = NULL;
1342 write_unlock_irq(&tasklist_lock);
1344 if (p != NULL)
1345 release_task(p);
1347 return retval;
1350 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1352 if (ptrace) {
1353 if (task_is_stopped_or_traced(p) &&
1354 !(p->jobctl & JOBCTL_LISTENING))
1355 return &p->exit_code;
1356 } else {
1357 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1358 return &p->signal->group_exit_code;
1360 return NULL;
1364 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1365 * @wo: wait options
1366 * @ptrace: is the wait for ptrace
1367 * @p: task to wait for
1369 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1371 * CONTEXT:
1372 * read_lock(&tasklist_lock), which is released if return value is
1373 * non-zero. Also, grabs and releases @p->sighand->siglock.
1375 * RETURNS:
1376 * 0 if wait condition didn't exist and search for other wait conditions
1377 * should continue. Non-zero return, -errno on failure and @p's pid on
1378 * success, implies that tasklist_lock is released and wait condition
1379 * search should terminate.
1381 static int wait_task_stopped(struct wait_opts *wo,
1382 int ptrace, struct task_struct *p)
1384 struct siginfo __user *infop;
1385 int retval, exit_code, *p_code, why;
1386 uid_t uid = 0; /* unneeded, required by compiler */
1387 pid_t pid;
1390 * Traditionally we see ptrace'd stopped tasks regardless of options.
1392 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1393 return 0;
1395 if (!task_stopped_code(p, ptrace))
1396 return 0;
1398 exit_code = 0;
1399 spin_lock_irq(&p->sighand->siglock);
1401 p_code = task_stopped_code(p, ptrace);
1402 if (unlikely(!p_code))
1403 goto unlock_sig;
1405 exit_code = *p_code;
1406 if (!exit_code)
1407 goto unlock_sig;
1409 if (!unlikely(wo->wo_flags & WNOWAIT))
1410 *p_code = 0;
1412 uid = task_uid(p);
1413 unlock_sig:
1414 spin_unlock_irq(&p->sighand->siglock);
1415 if (!exit_code)
1416 return 0;
1419 * Now we are pretty sure this task is interesting.
1420 * Make sure it doesn't get reaped out from under us while we
1421 * give up the lock and then examine it below. We don't want to
1422 * keep holding onto the tasklist_lock while we call getrusage and
1423 * possibly take page faults for user memory.
1425 get_task_struct(p);
1426 pid = task_pid_vnr(p);
1427 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1428 read_unlock(&tasklist_lock);
1430 if (unlikely(wo->wo_flags & WNOWAIT))
1431 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1433 retval = wo->wo_rusage
1434 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1435 if (!retval && wo->wo_stat)
1436 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1438 infop = wo->wo_info;
1439 if (!retval && infop)
1440 retval = put_user(SIGCHLD, &infop->si_signo);
1441 if (!retval && infop)
1442 retval = put_user(0, &infop->si_errno);
1443 if (!retval && infop)
1444 retval = put_user((short)why, &infop->si_code);
1445 if (!retval && infop)
1446 retval = put_user(exit_code, &infop->si_status);
1447 if (!retval && infop)
1448 retval = put_user(pid, &infop->si_pid);
1449 if (!retval && infop)
1450 retval = put_user(uid, &infop->si_uid);
1451 if (!retval)
1452 retval = pid;
1453 put_task_struct(p);
1455 BUG_ON(!retval);
1456 return retval;
1460 * Handle do_wait work for one task in a live, non-stopped state.
1461 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1462 * the lock and this task is uninteresting. If we return nonzero, we have
1463 * released the lock and the system call should return.
1465 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1467 int retval;
1468 pid_t pid;
1469 uid_t uid;
1471 if (!unlikely(wo->wo_flags & WCONTINUED))
1472 return 0;
1474 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1475 return 0;
1477 spin_lock_irq(&p->sighand->siglock);
1478 /* Re-check with the lock held. */
1479 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1480 spin_unlock_irq(&p->sighand->siglock);
1481 return 0;
1483 if (!unlikely(wo->wo_flags & WNOWAIT))
1484 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1485 uid = task_uid(p);
1486 spin_unlock_irq(&p->sighand->siglock);
1488 pid = task_pid_vnr(p);
1489 get_task_struct(p);
1490 read_unlock(&tasklist_lock);
1492 if (!wo->wo_info) {
1493 retval = wo->wo_rusage
1494 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1495 put_task_struct(p);
1496 if (!retval && wo->wo_stat)
1497 retval = put_user(0xffff, wo->wo_stat);
1498 if (!retval)
1499 retval = pid;
1500 } else {
1501 retval = wait_noreap_copyout(wo, p, pid, uid,
1502 CLD_CONTINUED, SIGCONT);
1503 BUG_ON(retval == 0);
1506 return retval;
1510 * Consider @p for a wait by @parent.
1512 * -ECHILD should be in ->notask_error before the first call.
1513 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1514 * Returns zero if the search for a child should continue;
1515 * then ->notask_error is 0 if @p is an eligible child,
1516 * or another error from security_task_wait(), or still -ECHILD.
1518 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1519 struct task_struct *p)
1521 int ret = eligible_child(wo, p);
1522 if (!ret)
1523 return ret;
1525 ret = security_task_wait(p);
1526 if (unlikely(ret < 0)) {
1528 * If we have not yet seen any eligible child,
1529 * then let this error code replace -ECHILD.
1530 * A permission error will give the user a clue
1531 * to look for security policy problems, rather
1532 * than for mysterious wait bugs.
1534 if (wo->notask_error)
1535 wo->notask_error = ret;
1536 return 0;
1539 /* dead body doesn't have much to contribute */
1540 if (unlikely(p->exit_state == EXIT_DEAD)) {
1542 * But do not ignore this task until the tracer does
1543 * wait_task_zombie()->do_notify_parent().
1545 if (likely(!ptrace) && unlikely(ptrace_reparented(p)))
1546 wo->notask_error = 0;
1547 return 0;
1550 /* slay zombie? */
1551 if (p->exit_state == EXIT_ZOMBIE) {
1553 * A zombie ptracee is only visible to its ptracer.
1554 * Notification and reaping will be cascaded to the real
1555 * parent when the ptracer detaches.
1557 if (likely(!ptrace) && unlikely(p->ptrace)) {
1558 /* it will become visible, clear notask_error */
1559 wo->notask_error = 0;
1560 return 0;
1563 /* we don't reap group leaders with subthreads */
1564 if (!delay_group_leader(p))
1565 return wait_task_zombie(wo, p);
1568 * Allow access to stopped/continued state via zombie by
1569 * falling through. Clearing of notask_error is complex.
1571 * When !@ptrace:
1573 * If WEXITED is set, notask_error should naturally be
1574 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1575 * so, if there are live subthreads, there are events to
1576 * wait for. If all subthreads are dead, it's still safe
1577 * to clear - this function will be called again in finite
1578 * amount time once all the subthreads are released and
1579 * will then return without clearing.
1581 * When @ptrace:
1583 * Stopped state is per-task and thus can't change once the
1584 * target task dies. Only continued and exited can happen.
1585 * Clear notask_error if WCONTINUED | WEXITED.
1587 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1588 wo->notask_error = 0;
1589 } else {
1591 * If @p is ptraced by a task in its real parent's group,
1592 * hide group stop/continued state when looking at @p as
1593 * the real parent; otherwise, a single stop can be
1594 * reported twice as group and ptrace stops.
1596 * If a ptracer wants to distinguish the two events for its
1597 * own children, it should create a separate process which
1598 * takes the role of real parent.
1600 if (likely(!ptrace) && p->ptrace && !ptrace_reparented(p))
1601 return 0;
1604 * @p is alive and it's gonna stop, continue or exit, so
1605 * there always is something to wait for.
1607 wo->notask_error = 0;
1611 * Wait for stopped. Depending on @ptrace, different stopped state
1612 * is used and the two don't interact with each other.
1614 ret = wait_task_stopped(wo, ptrace, p);
1615 if (ret)
1616 return ret;
1619 * Wait for continued. There's only one continued state and the
1620 * ptracer can consume it which can confuse the real parent. Don't
1621 * use WCONTINUED from ptracer. You don't need or want it.
1623 return wait_task_continued(wo, p);
1627 * Do the work of do_wait() for one thread in the group, @tsk.
1629 * -ECHILD should be in ->notask_error before the first call.
1630 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1631 * Returns zero if the search for a child should continue; then
1632 * ->notask_error is 0 if there were any eligible children,
1633 * or another error from security_task_wait(), or still -ECHILD.
1635 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1637 struct task_struct *p;
1639 list_for_each_entry(p, &tsk->children, sibling) {
1640 int ret = wait_consider_task(wo, 0, p);
1641 if (ret)
1642 return ret;
1645 return 0;
1648 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1650 struct task_struct *p;
1652 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1653 int ret = wait_consider_task(wo, 1, p);
1654 if (ret)
1655 return ret;
1658 return 0;
1661 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1662 int sync, void *key)
1664 struct wait_opts *wo = container_of(wait, struct wait_opts,
1665 child_wait);
1666 struct task_struct *p = key;
1668 if (!eligible_pid(wo, p))
1669 return 0;
1671 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1672 return 0;
1674 return default_wake_function(wait, mode, sync, key);
1677 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1679 __wake_up_sync_key(&parent->signal->wait_chldexit,
1680 TASK_INTERRUPTIBLE, 1, p);
1683 static long do_wait(struct wait_opts *wo)
1685 struct task_struct *tsk;
1686 int retval;
1688 trace_sched_process_wait(wo->wo_pid);
1690 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1691 wo->child_wait.private = current;
1692 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1693 repeat:
1695 * If there is nothing that can match our critiera just get out.
1696 * We will clear ->notask_error to zero if we see any child that
1697 * might later match our criteria, even if we are not able to reap
1698 * it yet.
1700 wo->notask_error = -ECHILD;
1701 if ((wo->wo_type < PIDTYPE_MAX) &&
1702 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1703 goto notask;
1705 set_current_state(TASK_INTERRUPTIBLE);
1706 read_lock(&tasklist_lock);
1707 tsk = current;
1708 do {
1709 retval = do_wait_thread(wo, tsk);
1710 if (retval)
1711 goto end;
1713 retval = ptrace_do_wait(wo, tsk);
1714 if (retval)
1715 goto end;
1717 if (wo->wo_flags & __WNOTHREAD)
1718 break;
1719 } while_each_thread(current, tsk);
1720 read_unlock(&tasklist_lock);
1722 notask:
1723 retval = wo->notask_error;
1724 if (!retval && !(wo->wo_flags & WNOHANG)) {
1725 retval = -ERESTARTSYS;
1726 if (!signal_pending(current)) {
1727 schedule();
1728 goto repeat;
1731 end:
1732 __set_current_state(TASK_RUNNING);
1733 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1734 return retval;
1737 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1738 infop, int, options, struct rusage __user *, ru)
1740 struct wait_opts wo;
1741 struct pid *pid = NULL;
1742 enum pid_type type;
1743 long ret;
1745 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1746 return -EINVAL;
1747 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1748 return -EINVAL;
1750 switch (which) {
1751 case P_ALL:
1752 type = PIDTYPE_MAX;
1753 break;
1754 case P_PID:
1755 type = PIDTYPE_PID;
1756 if (upid <= 0)
1757 return -EINVAL;
1758 break;
1759 case P_PGID:
1760 type = PIDTYPE_PGID;
1761 if (upid <= 0)
1762 return -EINVAL;
1763 break;
1764 default:
1765 return -EINVAL;
1768 if (type < PIDTYPE_MAX)
1769 pid = find_get_pid(upid);
1771 wo.wo_type = type;
1772 wo.wo_pid = pid;
1773 wo.wo_flags = options;
1774 wo.wo_info = infop;
1775 wo.wo_stat = NULL;
1776 wo.wo_rusage = ru;
1777 ret = do_wait(&wo);
1779 if (ret > 0) {
1780 ret = 0;
1781 } else if (infop) {
1783 * For a WNOHANG return, clear out all the fields
1784 * we would set so the user can easily tell the
1785 * difference.
1787 if (!ret)
1788 ret = put_user(0, &infop->si_signo);
1789 if (!ret)
1790 ret = put_user(0, &infop->si_errno);
1791 if (!ret)
1792 ret = put_user(0, &infop->si_code);
1793 if (!ret)
1794 ret = put_user(0, &infop->si_pid);
1795 if (!ret)
1796 ret = put_user(0, &infop->si_uid);
1797 if (!ret)
1798 ret = put_user(0, &infop->si_status);
1801 put_pid(pid);
1803 /* avoid REGPARM breakage on x86: */
1804 asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1805 return ret;
1808 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1809 int, options, struct rusage __user *, ru)
1811 struct wait_opts wo;
1812 struct pid *pid = NULL;
1813 enum pid_type type;
1814 long ret;
1816 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1817 __WNOTHREAD|__WCLONE|__WALL))
1818 return -EINVAL;
1820 if (upid == -1)
1821 type = PIDTYPE_MAX;
1822 else if (upid < 0) {
1823 type = PIDTYPE_PGID;
1824 pid = find_get_pid(-upid);
1825 } else if (upid == 0) {
1826 type = PIDTYPE_PGID;
1827 pid = get_task_pid(current, PIDTYPE_PGID);
1828 } else /* upid > 0 */ {
1829 type = PIDTYPE_PID;
1830 pid = find_get_pid(upid);
1833 wo.wo_type = type;
1834 wo.wo_pid = pid;
1835 wo.wo_flags = options | WEXITED;
1836 wo.wo_info = NULL;
1837 wo.wo_stat = stat_addr;
1838 wo.wo_rusage = ru;
1839 ret = do_wait(&wo);
1840 put_pid(pid);
1842 /* avoid REGPARM breakage on x86: */
1843 asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1844 return ret;
1847 #ifdef __ARCH_WANT_SYS_WAITPID
1850 * sys_waitpid() remains for compatibility. waitpid() should be
1851 * implemented by calling sys_wait4() from libc.a.
1853 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1855 return sys_wait4(pid, stat_addr, options, NULL);
1858 #endif