2 * Block multiqueue core code
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
29 #include <trace/events/block.h>
31 #include <linux/blk-mq.h>
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
37 #include "blk-mq-sched.h"
38 #include "blk-rq-qos.h"
40 static bool blk_mq_poll(struct request_queue
*q
, blk_qc_t cookie
);
41 static void blk_mq_poll_stats_start(struct request_queue
*q
);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback
*cb
);
44 static int blk_mq_poll_stats_bkt(const struct request
*rq
)
46 int ddir
, bytes
, bucket
;
48 ddir
= rq_data_dir(rq
);
49 bytes
= blk_rq_bytes(rq
);
51 bucket
= ddir
+ 2*(ilog2(bytes
) - 9);
55 else if (bucket
>= BLK_MQ_POLL_STATS_BKTS
)
56 return ddir
+ BLK_MQ_POLL_STATS_BKTS
- 2;
62 * Check if any of the ctx's have pending work in this hardware queue
64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx
*hctx
)
66 return !list_empty_careful(&hctx
->dispatch
) ||
67 sbitmap_any_bit_set(&hctx
->ctx_map
) ||
68 blk_mq_sched_has_work(hctx
);
72 * Mark this ctx as having pending work in this hardware queue
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx
*hctx
,
75 struct blk_mq_ctx
*ctx
)
77 if (!sbitmap_test_bit(&hctx
->ctx_map
, ctx
->index_hw
))
78 sbitmap_set_bit(&hctx
->ctx_map
, ctx
->index_hw
);
81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx
*hctx
,
82 struct blk_mq_ctx
*ctx
)
84 sbitmap_clear_bit(&hctx
->ctx_map
, ctx
->index_hw
);
88 struct hd_struct
*part
;
89 unsigned int *inflight
;
92 static void blk_mq_check_inflight(struct blk_mq_hw_ctx
*hctx
,
93 struct request
*rq
, void *priv
,
96 struct mq_inflight
*mi
= priv
;
99 * index[0] counts the specific partition that was asked for. index[1]
100 * counts the ones that are active on the whole device, so increment
101 * that if mi->part is indeed a partition, and not a whole device.
103 if (rq
->part
== mi
->part
)
105 if (mi
->part
->partno
)
109 void blk_mq_in_flight(struct request_queue
*q
, struct hd_struct
*part
,
110 unsigned int inflight
[2])
112 struct mq_inflight mi
= { .part
= part
, .inflight
= inflight
, };
114 inflight
[0] = inflight
[1] = 0;
115 blk_mq_queue_tag_busy_iter(q
, blk_mq_check_inflight
, &mi
);
118 static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx
*hctx
,
119 struct request
*rq
, void *priv
,
122 struct mq_inflight
*mi
= priv
;
124 if (rq
->part
== mi
->part
)
125 mi
->inflight
[rq_data_dir(rq
)]++;
128 void blk_mq_in_flight_rw(struct request_queue
*q
, struct hd_struct
*part
,
129 unsigned int inflight
[2])
131 struct mq_inflight mi
= { .part
= part
, .inflight
= inflight
, };
133 inflight
[0] = inflight
[1] = 0;
134 blk_mq_queue_tag_busy_iter(q
, blk_mq_check_inflight_rw
, &mi
);
137 void blk_freeze_queue_start(struct request_queue
*q
)
141 freeze_depth
= atomic_inc_return(&q
->mq_freeze_depth
);
142 if (freeze_depth
== 1) {
143 percpu_ref_kill(&q
->q_usage_counter
);
145 blk_mq_run_hw_queues(q
, false);
148 EXPORT_SYMBOL_GPL(blk_freeze_queue_start
);
150 void blk_mq_freeze_queue_wait(struct request_queue
*q
)
152 wait_event(q
->mq_freeze_wq
, percpu_ref_is_zero(&q
->q_usage_counter
));
154 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait
);
156 int blk_mq_freeze_queue_wait_timeout(struct request_queue
*q
,
157 unsigned long timeout
)
159 return wait_event_timeout(q
->mq_freeze_wq
,
160 percpu_ref_is_zero(&q
->q_usage_counter
),
163 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout
);
166 * Guarantee no request is in use, so we can change any data structure of
167 * the queue afterward.
169 void blk_freeze_queue(struct request_queue
*q
)
172 * In the !blk_mq case we are only calling this to kill the
173 * q_usage_counter, otherwise this increases the freeze depth
174 * and waits for it to return to zero. For this reason there is
175 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
176 * exported to drivers as the only user for unfreeze is blk_mq.
178 blk_freeze_queue_start(q
);
181 blk_mq_freeze_queue_wait(q
);
184 void blk_mq_freeze_queue(struct request_queue
*q
)
187 * ...just an alias to keep freeze and unfreeze actions balanced
188 * in the blk_mq_* namespace
192 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue
);
194 void blk_mq_unfreeze_queue(struct request_queue
*q
)
198 freeze_depth
= atomic_dec_return(&q
->mq_freeze_depth
);
199 WARN_ON_ONCE(freeze_depth
< 0);
201 percpu_ref_reinit(&q
->q_usage_counter
);
202 wake_up_all(&q
->mq_freeze_wq
);
205 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue
);
208 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
209 * mpt3sas driver such that this function can be removed.
211 void blk_mq_quiesce_queue_nowait(struct request_queue
*q
)
213 blk_queue_flag_set(QUEUE_FLAG_QUIESCED
, q
);
215 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait
);
218 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
221 * Note: this function does not prevent that the struct request end_io()
222 * callback function is invoked. Once this function is returned, we make
223 * sure no dispatch can happen until the queue is unquiesced via
224 * blk_mq_unquiesce_queue().
226 void blk_mq_quiesce_queue(struct request_queue
*q
)
228 struct blk_mq_hw_ctx
*hctx
;
232 blk_mq_quiesce_queue_nowait(q
);
234 queue_for_each_hw_ctx(q
, hctx
, i
) {
235 if (hctx
->flags
& BLK_MQ_F_BLOCKING
)
236 synchronize_srcu(hctx
->srcu
);
243 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue
);
246 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
249 * This function recovers queue into the state before quiescing
250 * which is done by blk_mq_quiesce_queue.
252 void blk_mq_unquiesce_queue(struct request_queue
*q
)
254 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED
, q
);
256 /* dispatch requests which are inserted during quiescing */
257 blk_mq_run_hw_queues(q
, true);
259 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue
);
261 void blk_mq_wake_waiters(struct request_queue
*q
)
263 struct blk_mq_hw_ctx
*hctx
;
266 queue_for_each_hw_ctx(q
, hctx
, i
)
267 if (blk_mq_hw_queue_mapped(hctx
))
268 blk_mq_tag_wakeup_all(hctx
->tags
, true);
271 bool blk_mq_can_queue(struct blk_mq_hw_ctx
*hctx
)
273 return blk_mq_has_free_tags(hctx
->tags
);
275 EXPORT_SYMBOL(blk_mq_can_queue
);
277 static struct request
*blk_mq_rq_ctx_init(struct blk_mq_alloc_data
*data
,
278 unsigned int tag
, unsigned int op
)
280 struct blk_mq_tags
*tags
= blk_mq_tags_from_data(data
);
281 struct request
*rq
= tags
->static_rqs
[tag
];
282 req_flags_t rq_flags
= 0;
284 if (data
->flags
& BLK_MQ_REQ_INTERNAL
) {
286 rq
->internal_tag
= tag
;
288 if (data
->hctx
->flags
& BLK_MQ_F_TAG_SHARED
) {
289 rq_flags
= RQF_MQ_INFLIGHT
;
290 atomic_inc(&data
->hctx
->nr_active
);
293 rq
->internal_tag
= -1;
294 data
->hctx
->tags
->rqs
[rq
->tag
] = rq
;
297 /* csd/requeue_work/fifo_time is initialized before use */
299 rq
->mq_ctx
= data
->ctx
;
300 rq
->rq_flags
= rq_flags
;
303 if (data
->flags
& BLK_MQ_REQ_PREEMPT
)
304 rq
->rq_flags
|= RQF_PREEMPT
;
305 if (blk_queue_io_stat(data
->q
))
306 rq
->rq_flags
|= RQF_IO_STAT
;
307 INIT_LIST_HEAD(&rq
->queuelist
);
308 INIT_HLIST_NODE(&rq
->hash
);
309 RB_CLEAR_NODE(&rq
->rb_node
);
312 rq
->start_time_ns
= ktime_get_ns();
313 rq
->io_start_time_ns
= 0;
314 rq
->nr_phys_segments
= 0;
315 #if defined(CONFIG_BLK_DEV_INTEGRITY)
316 rq
->nr_integrity_segments
= 0;
319 /* tag was already set */
323 INIT_LIST_HEAD(&rq
->timeout_list
);
327 rq
->end_io_data
= NULL
;
330 #ifdef CONFIG_BLK_CGROUP
334 data
->ctx
->rq_dispatched
[op_is_sync(op
)]++;
335 refcount_set(&rq
->ref
, 1);
339 static struct request
*blk_mq_get_request(struct request_queue
*q
,
340 struct bio
*bio
, unsigned int op
,
341 struct blk_mq_alloc_data
*data
)
343 struct elevator_queue
*e
= q
->elevator
;
346 bool put_ctx_on_error
= false;
348 blk_queue_enter_live(q
);
350 if (likely(!data
->ctx
)) {
351 data
->ctx
= blk_mq_get_ctx(q
);
352 put_ctx_on_error
= true;
354 if (likely(!data
->hctx
))
355 data
->hctx
= blk_mq_map_queue(q
, data
->ctx
->cpu
);
357 data
->flags
|= BLK_MQ_REQ_NOWAIT
;
360 data
->flags
|= BLK_MQ_REQ_INTERNAL
;
363 * Flush requests are special and go directly to the
364 * dispatch list. Don't include reserved tags in the
365 * limiting, as it isn't useful.
367 if (!op_is_flush(op
) && e
->type
->ops
.mq
.limit_depth
&&
368 !(data
->flags
& BLK_MQ_REQ_RESERVED
))
369 e
->type
->ops
.mq
.limit_depth(op
, data
);
371 blk_mq_tag_busy(data
->hctx
);
374 tag
= blk_mq_get_tag(data
);
375 if (tag
== BLK_MQ_TAG_FAIL
) {
376 if (put_ctx_on_error
) {
377 blk_mq_put_ctx(data
->ctx
);
384 rq
= blk_mq_rq_ctx_init(data
, tag
, op
);
385 if (!op_is_flush(op
)) {
387 if (e
&& e
->type
->ops
.mq
.prepare_request
) {
388 if (e
->type
->icq_cache
&& rq_ioc(bio
))
389 blk_mq_sched_assign_ioc(rq
, bio
);
391 e
->type
->ops
.mq
.prepare_request(rq
, bio
);
392 rq
->rq_flags
|= RQF_ELVPRIV
;
395 data
->hctx
->queued
++;
399 struct request
*blk_mq_alloc_request(struct request_queue
*q
, unsigned int op
,
400 blk_mq_req_flags_t flags
)
402 struct blk_mq_alloc_data alloc_data
= { .flags
= flags
};
406 ret
= blk_queue_enter(q
, flags
);
410 rq
= blk_mq_get_request(q
, NULL
, op
, &alloc_data
);
414 return ERR_PTR(-EWOULDBLOCK
);
416 blk_mq_put_ctx(alloc_data
.ctx
);
419 rq
->__sector
= (sector_t
) -1;
420 rq
->bio
= rq
->biotail
= NULL
;
423 EXPORT_SYMBOL(blk_mq_alloc_request
);
425 struct request
*blk_mq_alloc_request_hctx(struct request_queue
*q
,
426 unsigned int op
, blk_mq_req_flags_t flags
, unsigned int hctx_idx
)
428 struct blk_mq_alloc_data alloc_data
= { .flags
= flags
};
434 * If the tag allocator sleeps we could get an allocation for a
435 * different hardware context. No need to complicate the low level
436 * allocator for this for the rare use case of a command tied to
439 if (WARN_ON_ONCE(!(flags
& BLK_MQ_REQ_NOWAIT
)))
440 return ERR_PTR(-EINVAL
);
442 if (hctx_idx
>= q
->nr_hw_queues
)
443 return ERR_PTR(-EIO
);
445 ret
= blk_queue_enter(q
, flags
);
450 * Check if the hardware context is actually mapped to anything.
451 * If not tell the caller that it should skip this queue.
453 alloc_data
.hctx
= q
->queue_hw_ctx
[hctx_idx
];
454 if (!blk_mq_hw_queue_mapped(alloc_data
.hctx
)) {
456 return ERR_PTR(-EXDEV
);
458 cpu
= cpumask_first_and(alloc_data
.hctx
->cpumask
, cpu_online_mask
);
459 alloc_data
.ctx
= __blk_mq_get_ctx(q
, cpu
);
461 rq
= blk_mq_get_request(q
, NULL
, op
, &alloc_data
);
465 return ERR_PTR(-EWOULDBLOCK
);
469 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx
);
471 static void __blk_mq_free_request(struct request
*rq
)
473 struct request_queue
*q
= rq
->q
;
474 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
475 struct blk_mq_hw_ctx
*hctx
= blk_mq_map_queue(q
, ctx
->cpu
);
476 const int sched_tag
= rq
->internal_tag
;
479 blk_mq_put_tag(hctx
, hctx
->tags
, ctx
, rq
->tag
);
481 blk_mq_put_tag(hctx
, hctx
->sched_tags
, ctx
, sched_tag
);
482 blk_mq_sched_restart(hctx
);
486 void blk_mq_free_request(struct request
*rq
)
488 struct request_queue
*q
= rq
->q
;
489 struct elevator_queue
*e
= q
->elevator
;
490 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
491 struct blk_mq_hw_ctx
*hctx
= blk_mq_map_queue(q
, ctx
->cpu
);
493 if (rq
->rq_flags
& RQF_ELVPRIV
) {
494 if (e
&& e
->type
->ops
.mq
.finish_request
)
495 e
->type
->ops
.mq
.finish_request(rq
);
497 put_io_context(rq
->elv
.icq
->ioc
);
502 ctx
->rq_completed
[rq_is_sync(rq
)]++;
503 if (rq
->rq_flags
& RQF_MQ_INFLIGHT
)
504 atomic_dec(&hctx
->nr_active
);
506 if (unlikely(laptop_mode
&& !blk_rq_is_passthrough(rq
)))
507 laptop_io_completion(q
->backing_dev_info
);
512 blk_put_rl(blk_rq_rl(rq
));
514 WRITE_ONCE(rq
->state
, MQ_RQ_IDLE
);
515 if (refcount_dec_and_test(&rq
->ref
))
516 __blk_mq_free_request(rq
);
518 EXPORT_SYMBOL_GPL(blk_mq_free_request
);
520 inline void __blk_mq_end_request(struct request
*rq
, blk_status_t error
)
522 u64 now
= ktime_get_ns();
524 if (rq
->rq_flags
& RQF_STATS
) {
525 blk_mq_poll_stats_start(rq
->q
);
526 blk_stat_add(rq
, now
);
529 blk_account_io_done(rq
, now
);
532 rq_qos_done(rq
->q
, rq
);
533 rq
->end_io(rq
, error
);
535 if (unlikely(blk_bidi_rq(rq
)))
536 blk_mq_free_request(rq
->next_rq
);
537 blk_mq_free_request(rq
);
540 EXPORT_SYMBOL(__blk_mq_end_request
);
542 void blk_mq_end_request(struct request
*rq
, blk_status_t error
)
544 if (blk_update_request(rq
, error
, blk_rq_bytes(rq
)))
546 __blk_mq_end_request(rq
, error
);
548 EXPORT_SYMBOL(blk_mq_end_request
);
550 static void __blk_mq_complete_request_remote(void *data
)
552 struct request
*rq
= data
;
554 rq
->q
->softirq_done_fn(rq
);
557 static void __blk_mq_complete_request(struct request
*rq
)
559 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
563 if (!blk_mq_mark_complete(rq
))
565 if (rq
->internal_tag
!= -1)
566 blk_mq_sched_completed_request(rq
);
568 if (!test_bit(QUEUE_FLAG_SAME_COMP
, &rq
->q
->queue_flags
)) {
569 rq
->q
->softirq_done_fn(rq
);
574 if (!test_bit(QUEUE_FLAG_SAME_FORCE
, &rq
->q
->queue_flags
))
575 shared
= cpus_share_cache(cpu
, ctx
->cpu
);
577 if (cpu
!= ctx
->cpu
&& !shared
&& cpu_online(ctx
->cpu
)) {
578 rq
->csd
.func
= __blk_mq_complete_request_remote
;
581 smp_call_function_single_async(ctx
->cpu
, &rq
->csd
);
583 rq
->q
->softirq_done_fn(rq
);
588 static void hctx_unlock(struct blk_mq_hw_ctx
*hctx
, int srcu_idx
)
589 __releases(hctx
->srcu
)
591 if (!(hctx
->flags
& BLK_MQ_F_BLOCKING
))
594 srcu_read_unlock(hctx
->srcu
, srcu_idx
);
597 static void hctx_lock(struct blk_mq_hw_ctx
*hctx
, int *srcu_idx
)
598 __acquires(hctx
->srcu
)
600 if (!(hctx
->flags
& BLK_MQ_F_BLOCKING
)) {
601 /* shut up gcc false positive */
605 *srcu_idx
= srcu_read_lock(hctx
->srcu
);
609 * blk_mq_complete_request - end I/O on a request
610 * @rq: the request being processed
613 * Ends all I/O on a request. It does not handle partial completions.
614 * The actual completion happens out-of-order, through a IPI handler.
616 void blk_mq_complete_request(struct request
*rq
)
618 if (unlikely(blk_should_fake_timeout(rq
->q
)))
620 __blk_mq_complete_request(rq
);
622 EXPORT_SYMBOL(blk_mq_complete_request
);
624 int blk_mq_request_started(struct request
*rq
)
626 return blk_mq_rq_state(rq
) != MQ_RQ_IDLE
;
628 EXPORT_SYMBOL_GPL(blk_mq_request_started
);
630 void blk_mq_start_request(struct request
*rq
)
632 struct request_queue
*q
= rq
->q
;
634 blk_mq_sched_started_request(rq
);
636 trace_block_rq_issue(q
, rq
);
638 if (test_bit(QUEUE_FLAG_STATS
, &q
->queue_flags
)) {
639 rq
->io_start_time_ns
= ktime_get_ns();
640 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
641 rq
->throtl_size
= blk_rq_sectors(rq
);
643 rq
->rq_flags
|= RQF_STATS
;
647 WARN_ON_ONCE(blk_mq_rq_state(rq
) != MQ_RQ_IDLE
);
650 WRITE_ONCE(rq
->state
, MQ_RQ_IN_FLIGHT
);
652 if (q
->dma_drain_size
&& blk_rq_bytes(rq
)) {
654 * Make sure space for the drain appears. We know we can do
655 * this because max_hw_segments has been adjusted to be one
656 * fewer than the device can handle.
658 rq
->nr_phys_segments
++;
661 EXPORT_SYMBOL(blk_mq_start_request
);
663 static void __blk_mq_requeue_request(struct request
*rq
)
665 struct request_queue
*q
= rq
->q
;
667 blk_mq_put_driver_tag(rq
);
669 trace_block_rq_requeue(q
, rq
);
670 rq_qos_requeue(q
, rq
);
672 if (blk_mq_request_started(rq
)) {
673 WRITE_ONCE(rq
->state
, MQ_RQ_IDLE
);
674 rq
->rq_flags
&= ~RQF_TIMED_OUT
;
675 if (q
->dma_drain_size
&& blk_rq_bytes(rq
))
676 rq
->nr_phys_segments
--;
680 void blk_mq_requeue_request(struct request
*rq
, bool kick_requeue_list
)
682 __blk_mq_requeue_request(rq
);
684 /* this request will be re-inserted to io scheduler queue */
685 blk_mq_sched_requeue_request(rq
);
687 BUG_ON(blk_queued_rq(rq
));
688 blk_mq_add_to_requeue_list(rq
, true, kick_requeue_list
);
690 EXPORT_SYMBOL(blk_mq_requeue_request
);
692 static void blk_mq_requeue_work(struct work_struct
*work
)
694 struct request_queue
*q
=
695 container_of(work
, struct request_queue
, requeue_work
.work
);
697 struct request
*rq
, *next
;
699 spin_lock_irq(&q
->requeue_lock
);
700 list_splice_init(&q
->requeue_list
, &rq_list
);
701 spin_unlock_irq(&q
->requeue_lock
);
703 list_for_each_entry_safe(rq
, next
, &rq_list
, queuelist
) {
704 if (!(rq
->rq_flags
& RQF_SOFTBARRIER
))
707 rq
->rq_flags
&= ~RQF_SOFTBARRIER
;
708 list_del_init(&rq
->queuelist
);
709 blk_mq_sched_insert_request(rq
, true, false, false);
712 while (!list_empty(&rq_list
)) {
713 rq
= list_entry(rq_list
.next
, struct request
, queuelist
);
714 list_del_init(&rq
->queuelist
);
715 blk_mq_sched_insert_request(rq
, false, false, false);
718 blk_mq_run_hw_queues(q
, false);
721 void blk_mq_add_to_requeue_list(struct request
*rq
, bool at_head
,
722 bool kick_requeue_list
)
724 struct request_queue
*q
= rq
->q
;
728 * We abuse this flag that is otherwise used by the I/O scheduler to
729 * request head insertion from the workqueue.
731 BUG_ON(rq
->rq_flags
& RQF_SOFTBARRIER
);
733 spin_lock_irqsave(&q
->requeue_lock
, flags
);
735 rq
->rq_flags
|= RQF_SOFTBARRIER
;
736 list_add(&rq
->queuelist
, &q
->requeue_list
);
738 list_add_tail(&rq
->queuelist
, &q
->requeue_list
);
740 spin_unlock_irqrestore(&q
->requeue_lock
, flags
);
742 if (kick_requeue_list
)
743 blk_mq_kick_requeue_list(q
);
745 EXPORT_SYMBOL(blk_mq_add_to_requeue_list
);
747 void blk_mq_kick_requeue_list(struct request_queue
*q
)
749 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND
, &q
->requeue_work
, 0);
751 EXPORT_SYMBOL(blk_mq_kick_requeue_list
);
753 void blk_mq_delay_kick_requeue_list(struct request_queue
*q
,
756 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND
, &q
->requeue_work
,
757 msecs_to_jiffies(msecs
));
759 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list
);
761 struct request
*blk_mq_tag_to_rq(struct blk_mq_tags
*tags
, unsigned int tag
)
763 if (tag
< tags
->nr_tags
) {
764 prefetch(tags
->rqs
[tag
]);
765 return tags
->rqs
[tag
];
770 EXPORT_SYMBOL(blk_mq_tag_to_rq
);
772 static void blk_mq_rq_timed_out(struct request
*req
, bool reserved
)
774 req
->rq_flags
|= RQF_TIMED_OUT
;
775 if (req
->q
->mq_ops
->timeout
) {
776 enum blk_eh_timer_return ret
;
778 ret
= req
->q
->mq_ops
->timeout(req
, reserved
);
779 if (ret
== BLK_EH_DONE
)
781 WARN_ON_ONCE(ret
!= BLK_EH_RESET_TIMER
);
787 static bool blk_mq_req_expired(struct request
*rq
, unsigned long *next
)
789 unsigned long deadline
;
791 if (blk_mq_rq_state(rq
) != MQ_RQ_IN_FLIGHT
)
793 if (rq
->rq_flags
& RQF_TIMED_OUT
)
796 deadline
= blk_rq_deadline(rq
);
797 if (time_after_eq(jiffies
, deadline
))
802 else if (time_after(*next
, deadline
))
807 static void blk_mq_check_expired(struct blk_mq_hw_ctx
*hctx
,
808 struct request
*rq
, void *priv
, bool reserved
)
810 unsigned long *next
= priv
;
813 * Just do a quick check if it is expired before locking the request in
814 * so we're not unnecessarilly synchronizing across CPUs.
816 if (!blk_mq_req_expired(rq
, next
))
820 * We have reason to believe the request may be expired. Take a
821 * reference on the request to lock this request lifetime into its
822 * currently allocated context to prevent it from being reallocated in
823 * the event the completion by-passes this timeout handler.
825 * If the reference was already released, then the driver beat the
826 * timeout handler to posting a natural completion.
828 if (!refcount_inc_not_zero(&rq
->ref
))
832 * The request is now locked and cannot be reallocated underneath the
833 * timeout handler's processing. Re-verify this exact request is truly
834 * expired; if it is not expired, then the request was completed and
835 * reallocated as a new request.
837 if (blk_mq_req_expired(rq
, next
))
838 blk_mq_rq_timed_out(rq
, reserved
);
839 if (refcount_dec_and_test(&rq
->ref
))
840 __blk_mq_free_request(rq
);
843 static void blk_mq_timeout_work(struct work_struct
*work
)
845 struct request_queue
*q
=
846 container_of(work
, struct request_queue
, timeout_work
);
847 unsigned long next
= 0;
848 struct blk_mq_hw_ctx
*hctx
;
851 /* A deadlock might occur if a request is stuck requiring a
852 * timeout at the same time a queue freeze is waiting
853 * completion, since the timeout code would not be able to
854 * acquire the queue reference here.
856 * That's why we don't use blk_queue_enter here; instead, we use
857 * percpu_ref_tryget directly, because we need to be able to
858 * obtain a reference even in the short window between the queue
859 * starting to freeze, by dropping the first reference in
860 * blk_freeze_queue_start, and the moment the last request is
861 * consumed, marked by the instant q_usage_counter reaches
864 if (!percpu_ref_tryget(&q
->q_usage_counter
))
867 blk_mq_queue_tag_busy_iter(q
, blk_mq_check_expired
, &next
);
870 mod_timer(&q
->timeout
, next
);
873 * Request timeouts are handled as a forward rolling timer. If
874 * we end up here it means that no requests are pending and
875 * also that no request has been pending for a while. Mark
878 queue_for_each_hw_ctx(q
, hctx
, i
) {
879 /* the hctx may be unmapped, so check it here */
880 if (blk_mq_hw_queue_mapped(hctx
))
881 blk_mq_tag_idle(hctx
);
887 struct flush_busy_ctx_data
{
888 struct blk_mq_hw_ctx
*hctx
;
889 struct list_head
*list
;
892 static bool flush_busy_ctx(struct sbitmap
*sb
, unsigned int bitnr
, void *data
)
894 struct flush_busy_ctx_data
*flush_data
= data
;
895 struct blk_mq_hw_ctx
*hctx
= flush_data
->hctx
;
896 struct blk_mq_ctx
*ctx
= hctx
->ctxs
[bitnr
];
898 spin_lock(&ctx
->lock
);
899 list_splice_tail_init(&ctx
->rq_list
, flush_data
->list
);
900 sbitmap_clear_bit(sb
, bitnr
);
901 spin_unlock(&ctx
->lock
);
906 * Process software queues that have been marked busy, splicing them
907 * to the for-dispatch
909 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx
*hctx
, struct list_head
*list
)
911 struct flush_busy_ctx_data data
= {
916 sbitmap_for_each_set(&hctx
->ctx_map
, flush_busy_ctx
, &data
);
918 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs
);
920 struct dispatch_rq_data
{
921 struct blk_mq_hw_ctx
*hctx
;
925 static bool dispatch_rq_from_ctx(struct sbitmap
*sb
, unsigned int bitnr
,
928 struct dispatch_rq_data
*dispatch_data
= data
;
929 struct blk_mq_hw_ctx
*hctx
= dispatch_data
->hctx
;
930 struct blk_mq_ctx
*ctx
= hctx
->ctxs
[bitnr
];
932 spin_lock(&ctx
->lock
);
933 if (!list_empty(&ctx
->rq_list
)) {
934 dispatch_data
->rq
= list_entry_rq(ctx
->rq_list
.next
);
935 list_del_init(&dispatch_data
->rq
->queuelist
);
936 if (list_empty(&ctx
->rq_list
))
937 sbitmap_clear_bit(sb
, bitnr
);
939 spin_unlock(&ctx
->lock
);
941 return !dispatch_data
->rq
;
944 struct request
*blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx
*hctx
,
945 struct blk_mq_ctx
*start
)
947 unsigned off
= start
? start
->index_hw
: 0;
948 struct dispatch_rq_data data
= {
953 __sbitmap_for_each_set(&hctx
->ctx_map
, off
,
954 dispatch_rq_from_ctx
, &data
);
959 static inline unsigned int queued_to_index(unsigned int queued
)
964 return min(BLK_MQ_MAX_DISPATCH_ORDER
- 1, ilog2(queued
) + 1);
967 bool blk_mq_get_driver_tag(struct request
*rq
)
969 struct blk_mq_alloc_data data
= {
971 .hctx
= blk_mq_map_queue(rq
->q
, rq
->mq_ctx
->cpu
),
972 .flags
= BLK_MQ_REQ_NOWAIT
,
979 if (blk_mq_tag_is_reserved(data
.hctx
->sched_tags
, rq
->internal_tag
))
980 data
.flags
|= BLK_MQ_REQ_RESERVED
;
982 shared
= blk_mq_tag_busy(data
.hctx
);
983 rq
->tag
= blk_mq_get_tag(&data
);
986 rq
->rq_flags
|= RQF_MQ_INFLIGHT
;
987 atomic_inc(&data
.hctx
->nr_active
);
989 data
.hctx
->tags
->rqs
[rq
->tag
] = rq
;
993 return rq
->tag
!= -1;
996 static int blk_mq_dispatch_wake(wait_queue_entry_t
*wait
, unsigned mode
,
997 int flags
, void *key
)
999 struct blk_mq_hw_ctx
*hctx
;
1001 hctx
= container_of(wait
, struct blk_mq_hw_ctx
, dispatch_wait
);
1003 spin_lock(&hctx
->dispatch_wait_lock
);
1004 list_del_init(&wait
->entry
);
1005 spin_unlock(&hctx
->dispatch_wait_lock
);
1007 blk_mq_run_hw_queue(hctx
, true);
1012 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1013 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1014 * restart. For both cases, take care to check the condition again after
1015 * marking us as waiting.
1017 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx
*hctx
,
1020 struct wait_queue_head
*wq
;
1021 wait_queue_entry_t
*wait
;
1024 if (!(hctx
->flags
& BLK_MQ_F_TAG_SHARED
)) {
1025 if (!test_bit(BLK_MQ_S_SCHED_RESTART
, &hctx
->state
))
1026 set_bit(BLK_MQ_S_SCHED_RESTART
, &hctx
->state
);
1029 * It's possible that a tag was freed in the window between the
1030 * allocation failure and adding the hardware queue to the wait
1033 * Don't clear RESTART here, someone else could have set it.
1034 * At most this will cost an extra queue run.
1036 return blk_mq_get_driver_tag(rq
);
1039 wait
= &hctx
->dispatch_wait
;
1040 if (!list_empty_careful(&wait
->entry
))
1043 wq
= &bt_wait_ptr(&hctx
->tags
->bitmap_tags
, hctx
)->wait
;
1045 spin_lock_irq(&wq
->lock
);
1046 spin_lock(&hctx
->dispatch_wait_lock
);
1047 if (!list_empty(&wait
->entry
)) {
1048 spin_unlock(&hctx
->dispatch_wait_lock
);
1049 spin_unlock_irq(&wq
->lock
);
1053 wait
->flags
&= ~WQ_FLAG_EXCLUSIVE
;
1054 __add_wait_queue(wq
, wait
);
1057 * It's possible that a tag was freed in the window between the
1058 * allocation failure and adding the hardware queue to the wait
1061 ret
= blk_mq_get_driver_tag(rq
);
1063 spin_unlock(&hctx
->dispatch_wait_lock
);
1064 spin_unlock_irq(&wq
->lock
);
1069 * We got a tag, remove ourselves from the wait queue to ensure
1070 * someone else gets the wakeup.
1072 list_del_init(&wait
->entry
);
1073 spin_unlock(&hctx
->dispatch_wait_lock
);
1074 spin_unlock_irq(&wq
->lock
);
1079 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1080 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1082 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1083 * - EWMA is one simple way to compute running average value
1084 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1085 * - take 4 as factor for avoiding to get too small(0) result, and this
1086 * factor doesn't matter because EWMA decreases exponentially
1088 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx
*hctx
, bool busy
)
1092 if (hctx
->queue
->elevator
)
1095 ewma
= hctx
->dispatch_busy
;
1100 ewma
*= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT
- 1;
1102 ewma
+= 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR
;
1103 ewma
/= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT
;
1105 hctx
->dispatch_busy
= ewma
;
1108 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1111 * Returns true if we did some work AND can potentially do more.
1113 bool blk_mq_dispatch_rq_list(struct request_queue
*q
, struct list_head
*list
,
1116 struct blk_mq_hw_ctx
*hctx
;
1117 struct request
*rq
, *nxt
;
1118 bool no_tag
= false;
1120 blk_status_t ret
= BLK_STS_OK
;
1122 if (list_empty(list
))
1125 WARN_ON(!list_is_singular(list
) && got_budget
);
1128 * Now process all the entries, sending them to the driver.
1130 errors
= queued
= 0;
1132 struct blk_mq_queue_data bd
;
1134 rq
= list_first_entry(list
, struct request
, queuelist
);
1136 hctx
= blk_mq_map_queue(rq
->q
, rq
->mq_ctx
->cpu
);
1137 if (!got_budget
&& !blk_mq_get_dispatch_budget(hctx
))
1140 if (!blk_mq_get_driver_tag(rq
)) {
1142 * The initial allocation attempt failed, so we need to
1143 * rerun the hardware queue when a tag is freed. The
1144 * waitqueue takes care of that. If the queue is run
1145 * before we add this entry back on the dispatch list,
1146 * we'll re-run it below.
1148 if (!blk_mq_mark_tag_wait(hctx
, rq
)) {
1149 blk_mq_put_dispatch_budget(hctx
);
1151 * For non-shared tags, the RESTART check
1154 if (hctx
->flags
& BLK_MQ_F_TAG_SHARED
)
1160 list_del_init(&rq
->queuelist
);
1165 * Flag last if we have no more requests, or if we have more
1166 * but can't assign a driver tag to it.
1168 if (list_empty(list
))
1171 nxt
= list_first_entry(list
, struct request
, queuelist
);
1172 bd
.last
= !blk_mq_get_driver_tag(nxt
);
1175 ret
= q
->mq_ops
->queue_rq(hctx
, &bd
);
1176 if (ret
== BLK_STS_RESOURCE
|| ret
== BLK_STS_DEV_RESOURCE
) {
1178 * If an I/O scheduler has been configured and we got a
1179 * driver tag for the next request already, free it
1182 if (!list_empty(list
)) {
1183 nxt
= list_first_entry(list
, struct request
, queuelist
);
1184 blk_mq_put_driver_tag(nxt
);
1186 list_add(&rq
->queuelist
, list
);
1187 __blk_mq_requeue_request(rq
);
1191 if (unlikely(ret
!= BLK_STS_OK
)) {
1193 blk_mq_end_request(rq
, BLK_STS_IOERR
);
1198 } while (!list_empty(list
));
1200 hctx
->dispatched
[queued_to_index(queued
)]++;
1203 * Any items that need requeuing? Stuff them into hctx->dispatch,
1204 * that is where we will continue on next queue run.
1206 if (!list_empty(list
)) {
1209 spin_lock(&hctx
->lock
);
1210 list_splice_init(list
, &hctx
->dispatch
);
1211 spin_unlock(&hctx
->lock
);
1214 * If SCHED_RESTART was set by the caller of this function and
1215 * it is no longer set that means that it was cleared by another
1216 * thread and hence that a queue rerun is needed.
1218 * If 'no_tag' is set, that means that we failed getting
1219 * a driver tag with an I/O scheduler attached. If our dispatch
1220 * waitqueue is no longer active, ensure that we run the queue
1221 * AFTER adding our entries back to the list.
1223 * If no I/O scheduler has been configured it is possible that
1224 * the hardware queue got stopped and restarted before requests
1225 * were pushed back onto the dispatch list. Rerun the queue to
1226 * avoid starvation. Notes:
1227 * - blk_mq_run_hw_queue() checks whether or not a queue has
1228 * been stopped before rerunning a queue.
1229 * - Some but not all block drivers stop a queue before
1230 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1233 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1234 * bit is set, run queue after a delay to avoid IO stalls
1235 * that could otherwise occur if the queue is idle.
1237 needs_restart
= blk_mq_sched_needs_restart(hctx
);
1238 if (!needs_restart
||
1239 (no_tag
&& list_empty_careful(&hctx
->dispatch_wait
.entry
)))
1240 blk_mq_run_hw_queue(hctx
, true);
1241 else if (needs_restart
&& (ret
== BLK_STS_RESOURCE
))
1242 blk_mq_delay_run_hw_queue(hctx
, BLK_MQ_RESOURCE_DELAY
);
1244 blk_mq_update_dispatch_busy(hctx
, true);
1247 blk_mq_update_dispatch_busy(hctx
, false);
1250 * If the host/device is unable to accept more work, inform the
1253 if (ret
== BLK_STS_RESOURCE
|| ret
== BLK_STS_DEV_RESOURCE
)
1256 return (queued
+ errors
) != 0;
1259 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
)
1264 * We should be running this queue from one of the CPUs that
1267 * There are at least two related races now between setting
1268 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1269 * __blk_mq_run_hw_queue():
1271 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1272 * but later it becomes online, then this warning is harmless
1275 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1276 * but later it becomes offline, then the warning can't be
1277 * triggered, and we depend on blk-mq timeout handler to
1278 * handle dispatched requests to this hctx
1280 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx
->cpumask
) &&
1281 cpu_online(hctx
->next_cpu
)) {
1282 printk(KERN_WARNING
"run queue from wrong CPU %d, hctx %s\n",
1283 raw_smp_processor_id(),
1284 cpumask_empty(hctx
->cpumask
) ? "inactive": "active");
1289 * We can't run the queue inline with ints disabled. Ensure that
1290 * we catch bad users of this early.
1292 WARN_ON_ONCE(in_interrupt());
1294 might_sleep_if(hctx
->flags
& BLK_MQ_F_BLOCKING
);
1296 hctx_lock(hctx
, &srcu_idx
);
1297 blk_mq_sched_dispatch_requests(hctx
);
1298 hctx_unlock(hctx
, srcu_idx
);
1301 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx
*hctx
)
1303 int cpu
= cpumask_first_and(hctx
->cpumask
, cpu_online_mask
);
1305 if (cpu
>= nr_cpu_ids
)
1306 cpu
= cpumask_first(hctx
->cpumask
);
1311 * It'd be great if the workqueue API had a way to pass
1312 * in a mask and had some smarts for more clever placement.
1313 * For now we just round-robin here, switching for every
1314 * BLK_MQ_CPU_WORK_BATCH queued items.
1316 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx
*hctx
)
1319 int next_cpu
= hctx
->next_cpu
;
1321 if (hctx
->queue
->nr_hw_queues
== 1)
1322 return WORK_CPU_UNBOUND
;
1324 if (--hctx
->next_cpu_batch
<= 0) {
1326 next_cpu
= cpumask_next_and(next_cpu
, hctx
->cpumask
,
1328 if (next_cpu
>= nr_cpu_ids
)
1329 next_cpu
= blk_mq_first_mapped_cpu(hctx
);
1330 hctx
->next_cpu_batch
= BLK_MQ_CPU_WORK_BATCH
;
1334 * Do unbound schedule if we can't find a online CPU for this hctx,
1335 * and it should only happen in the path of handling CPU DEAD.
1337 if (!cpu_online(next_cpu
)) {
1344 * Make sure to re-select CPU next time once after CPUs
1345 * in hctx->cpumask become online again.
1347 hctx
->next_cpu
= next_cpu
;
1348 hctx
->next_cpu_batch
= 1;
1349 return WORK_CPU_UNBOUND
;
1352 hctx
->next_cpu
= next_cpu
;
1356 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
,
1357 unsigned long msecs
)
1359 if (unlikely(blk_mq_hctx_stopped(hctx
)))
1362 if (!async
&& !(hctx
->flags
& BLK_MQ_F_BLOCKING
)) {
1363 int cpu
= get_cpu();
1364 if (cpumask_test_cpu(cpu
, hctx
->cpumask
)) {
1365 __blk_mq_run_hw_queue(hctx
);
1373 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx
), &hctx
->run_work
,
1374 msecs_to_jiffies(msecs
));
1377 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, unsigned long msecs
)
1379 __blk_mq_delay_run_hw_queue(hctx
, true, msecs
);
1381 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue
);
1383 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
)
1389 * When queue is quiesced, we may be switching io scheduler, or
1390 * updating nr_hw_queues, or other things, and we can't run queue
1391 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1393 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1396 hctx_lock(hctx
, &srcu_idx
);
1397 need_run
= !blk_queue_quiesced(hctx
->queue
) &&
1398 blk_mq_hctx_has_pending(hctx
);
1399 hctx_unlock(hctx
, srcu_idx
);
1402 __blk_mq_delay_run_hw_queue(hctx
, async
, 0);
1408 EXPORT_SYMBOL(blk_mq_run_hw_queue
);
1410 void blk_mq_run_hw_queues(struct request_queue
*q
, bool async
)
1412 struct blk_mq_hw_ctx
*hctx
;
1415 queue_for_each_hw_ctx(q
, hctx
, i
) {
1416 if (blk_mq_hctx_stopped(hctx
))
1419 blk_mq_run_hw_queue(hctx
, async
);
1422 EXPORT_SYMBOL(blk_mq_run_hw_queues
);
1425 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1426 * @q: request queue.
1428 * The caller is responsible for serializing this function against
1429 * blk_mq_{start,stop}_hw_queue().
1431 bool blk_mq_queue_stopped(struct request_queue
*q
)
1433 struct blk_mq_hw_ctx
*hctx
;
1436 queue_for_each_hw_ctx(q
, hctx
, i
)
1437 if (blk_mq_hctx_stopped(hctx
))
1442 EXPORT_SYMBOL(blk_mq_queue_stopped
);
1445 * This function is often used for pausing .queue_rq() by driver when
1446 * there isn't enough resource or some conditions aren't satisfied, and
1447 * BLK_STS_RESOURCE is usually returned.
1449 * We do not guarantee that dispatch can be drained or blocked
1450 * after blk_mq_stop_hw_queue() returns. Please use
1451 * blk_mq_quiesce_queue() for that requirement.
1453 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx
*hctx
)
1455 cancel_delayed_work(&hctx
->run_work
);
1457 set_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
1459 EXPORT_SYMBOL(blk_mq_stop_hw_queue
);
1462 * This function is often used for pausing .queue_rq() by driver when
1463 * there isn't enough resource or some conditions aren't satisfied, and
1464 * BLK_STS_RESOURCE is usually returned.
1466 * We do not guarantee that dispatch can be drained or blocked
1467 * after blk_mq_stop_hw_queues() returns. Please use
1468 * blk_mq_quiesce_queue() for that requirement.
1470 void blk_mq_stop_hw_queues(struct request_queue
*q
)
1472 struct blk_mq_hw_ctx
*hctx
;
1475 queue_for_each_hw_ctx(q
, hctx
, i
)
1476 blk_mq_stop_hw_queue(hctx
);
1478 EXPORT_SYMBOL(blk_mq_stop_hw_queues
);
1480 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx
*hctx
)
1482 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
1484 blk_mq_run_hw_queue(hctx
, false);
1486 EXPORT_SYMBOL(blk_mq_start_hw_queue
);
1488 void blk_mq_start_hw_queues(struct request_queue
*q
)
1490 struct blk_mq_hw_ctx
*hctx
;
1493 queue_for_each_hw_ctx(q
, hctx
, i
)
1494 blk_mq_start_hw_queue(hctx
);
1496 EXPORT_SYMBOL(blk_mq_start_hw_queues
);
1498 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
)
1500 if (!blk_mq_hctx_stopped(hctx
))
1503 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
1504 blk_mq_run_hw_queue(hctx
, async
);
1506 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue
);
1508 void blk_mq_start_stopped_hw_queues(struct request_queue
*q
, bool async
)
1510 struct blk_mq_hw_ctx
*hctx
;
1513 queue_for_each_hw_ctx(q
, hctx
, i
)
1514 blk_mq_start_stopped_hw_queue(hctx
, async
);
1516 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues
);
1518 static void blk_mq_run_work_fn(struct work_struct
*work
)
1520 struct blk_mq_hw_ctx
*hctx
;
1522 hctx
= container_of(work
, struct blk_mq_hw_ctx
, run_work
.work
);
1525 * If we are stopped, don't run the queue.
1527 if (test_bit(BLK_MQ_S_STOPPED
, &hctx
->state
))
1530 __blk_mq_run_hw_queue(hctx
);
1533 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx
*hctx
,
1537 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
1539 lockdep_assert_held(&ctx
->lock
);
1541 trace_block_rq_insert(hctx
->queue
, rq
);
1544 list_add(&rq
->queuelist
, &ctx
->rq_list
);
1546 list_add_tail(&rq
->queuelist
, &ctx
->rq_list
);
1549 void __blk_mq_insert_request(struct blk_mq_hw_ctx
*hctx
, struct request
*rq
,
1552 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
1554 lockdep_assert_held(&ctx
->lock
);
1556 __blk_mq_insert_req_list(hctx
, rq
, at_head
);
1557 blk_mq_hctx_mark_pending(hctx
, ctx
);
1561 * Should only be used carefully, when the caller knows we want to
1562 * bypass a potential IO scheduler on the target device.
1564 void blk_mq_request_bypass_insert(struct request
*rq
, bool run_queue
)
1566 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
1567 struct blk_mq_hw_ctx
*hctx
= blk_mq_map_queue(rq
->q
, ctx
->cpu
);
1569 spin_lock(&hctx
->lock
);
1570 list_add_tail(&rq
->queuelist
, &hctx
->dispatch
);
1571 spin_unlock(&hctx
->lock
);
1574 blk_mq_run_hw_queue(hctx
, false);
1577 void blk_mq_insert_requests(struct blk_mq_hw_ctx
*hctx
, struct blk_mq_ctx
*ctx
,
1578 struct list_head
*list
)
1584 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1587 list_for_each_entry(rq
, list
, queuelist
) {
1588 BUG_ON(rq
->mq_ctx
!= ctx
);
1589 trace_block_rq_insert(hctx
->queue
, rq
);
1592 spin_lock(&ctx
->lock
);
1593 list_splice_tail_init(list
, &ctx
->rq_list
);
1594 blk_mq_hctx_mark_pending(hctx
, ctx
);
1595 spin_unlock(&ctx
->lock
);
1598 static int plug_ctx_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
1600 struct request
*rqa
= container_of(a
, struct request
, queuelist
);
1601 struct request
*rqb
= container_of(b
, struct request
, queuelist
);
1603 return !(rqa
->mq_ctx
< rqb
->mq_ctx
||
1604 (rqa
->mq_ctx
== rqb
->mq_ctx
&&
1605 blk_rq_pos(rqa
) < blk_rq_pos(rqb
)));
1608 void blk_mq_flush_plug_list(struct blk_plug
*plug
, bool from_schedule
)
1610 struct blk_mq_ctx
*this_ctx
;
1611 struct request_queue
*this_q
;
1614 LIST_HEAD(ctx_list
);
1617 list_splice_init(&plug
->mq_list
, &list
);
1619 list_sort(NULL
, &list
, plug_ctx_cmp
);
1625 while (!list_empty(&list
)) {
1626 rq
= list_entry_rq(list
.next
);
1627 list_del_init(&rq
->queuelist
);
1629 if (rq
->mq_ctx
!= this_ctx
) {
1631 trace_block_unplug(this_q
, depth
, from_schedule
);
1632 blk_mq_sched_insert_requests(this_q
, this_ctx
,
1637 this_ctx
= rq
->mq_ctx
;
1643 list_add_tail(&rq
->queuelist
, &ctx_list
);
1647 * If 'this_ctx' is set, we know we have entries to complete
1648 * on 'ctx_list'. Do those.
1651 trace_block_unplug(this_q
, depth
, from_schedule
);
1652 blk_mq_sched_insert_requests(this_q
, this_ctx
, &ctx_list
,
1657 static void blk_mq_bio_to_request(struct request
*rq
, struct bio
*bio
)
1659 blk_init_request_from_bio(rq
, bio
);
1661 blk_rq_set_rl(rq
, blk_get_rl(rq
->q
, bio
));
1663 blk_account_io_start(rq
, true);
1666 static blk_qc_t
request_to_qc_t(struct blk_mq_hw_ctx
*hctx
, struct request
*rq
)
1669 return blk_tag_to_qc_t(rq
->tag
, hctx
->queue_num
, false);
1671 return blk_tag_to_qc_t(rq
->internal_tag
, hctx
->queue_num
, true);
1674 static blk_status_t
__blk_mq_issue_directly(struct blk_mq_hw_ctx
*hctx
,
1678 struct request_queue
*q
= rq
->q
;
1679 struct blk_mq_queue_data bd
= {
1683 blk_qc_t new_cookie
;
1686 new_cookie
= request_to_qc_t(hctx
, rq
);
1689 * For OK queue, we are done. For error, caller may kill it.
1690 * Any other error (busy), just add it to our list as we
1691 * previously would have done.
1693 ret
= q
->mq_ops
->queue_rq(hctx
, &bd
);
1696 blk_mq_update_dispatch_busy(hctx
, false);
1697 *cookie
= new_cookie
;
1699 case BLK_STS_RESOURCE
:
1700 case BLK_STS_DEV_RESOURCE
:
1701 blk_mq_update_dispatch_busy(hctx
, true);
1702 __blk_mq_requeue_request(rq
);
1705 blk_mq_update_dispatch_busy(hctx
, false);
1706 *cookie
= BLK_QC_T_NONE
;
1713 static blk_status_t
__blk_mq_try_issue_directly(struct blk_mq_hw_ctx
*hctx
,
1718 struct request_queue
*q
= rq
->q
;
1719 bool run_queue
= true;
1722 * RCU or SRCU read lock is needed before checking quiesced flag.
1724 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1725 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1726 * and avoid driver to try to dispatch again.
1728 if (blk_mq_hctx_stopped(hctx
) || blk_queue_quiesced(q
)) {
1730 bypass_insert
= false;
1734 if (q
->elevator
&& !bypass_insert
)
1737 if (!blk_mq_get_dispatch_budget(hctx
))
1740 if (!blk_mq_get_driver_tag(rq
)) {
1741 blk_mq_put_dispatch_budget(hctx
);
1745 return __blk_mq_issue_directly(hctx
, rq
, cookie
);
1748 return BLK_STS_RESOURCE
;
1750 blk_mq_sched_insert_request(rq
, false, run_queue
, false);
1754 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx
*hctx
,
1755 struct request
*rq
, blk_qc_t
*cookie
)
1760 might_sleep_if(hctx
->flags
& BLK_MQ_F_BLOCKING
);
1762 hctx_lock(hctx
, &srcu_idx
);
1764 ret
= __blk_mq_try_issue_directly(hctx
, rq
, cookie
, false);
1765 if (ret
== BLK_STS_RESOURCE
|| ret
== BLK_STS_DEV_RESOURCE
)
1766 blk_mq_sched_insert_request(rq
, false, true, false);
1767 else if (ret
!= BLK_STS_OK
)
1768 blk_mq_end_request(rq
, ret
);
1770 hctx_unlock(hctx
, srcu_idx
);
1773 blk_status_t
blk_mq_request_issue_directly(struct request
*rq
)
1777 blk_qc_t unused_cookie
;
1778 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
1779 struct blk_mq_hw_ctx
*hctx
= blk_mq_map_queue(rq
->q
, ctx
->cpu
);
1781 hctx_lock(hctx
, &srcu_idx
);
1782 ret
= __blk_mq_try_issue_directly(hctx
, rq
, &unused_cookie
, true);
1783 hctx_unlock(hctx
, srcu_idx
);
1788 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx
*hctx
,
1789 struct list_head
*list
)
1791 while (!list_empty(list
)) {
1793 struct request
*rq
= list_first_entry(list
, struct request
,
1796 list_del_init(&rq
->queuelist
);
1797 ret
= blk_mq_request_issue_directly(rq
);
1798 if (ret
!= BLK_STS_OK
) {
1799 if (ret
== BLK_STS_RESOURCE
||
1800 ret
== BLK_STS_DEV_RESOURCE
) {
1801 list_add(&rq
->queuelist
, list
);
1804 blk_mq_end_request(rq
, ret
);
1809 static blk_qc_t
blk_mq_make_request(struct request_queue
*q
, struct bio
*bio
)
1811 const int is_sync
= op_is_sync(bio
->bi_opf
);
1812 const int is_flush_fua
= op_is_flush(bio
->bi_opf
);
1813 struct blk_mq_alloc_data data
= { .flags
= 0 };
1815 unsigned int request_count
= 0;
1816 struct blk_plug
*plug
;
1817 struct request
*same_queue_rq
= NULL
;
1820 blk_queue_bounce(q
, &bio
);
1822 blk_queue_split(q
, &bio
);
1824 if (!bio_integrity_prep(bio
))
1825 return BLK_QC_T_NONE
;
1827 if (!is_flush_fua
&& !blk_queue_nomerges(q
) &&
1828 blk_attempt_plug_merge(q
, bio
, &request_count
, &same_queue_rq
))
1829 return BLK_QC_T_NONE
;
1831 if (blk_mq_sched_bio_merge(q
, bio
))
1832 return BLK_QC_T_NONE
;
1834 rq_qos_throttle(q
, bio
, NULL
);
1836 trace_block_getrq(q
, bio
, bio
->bi_opf
);
1838 rq
= blk_mq_get_request(q
, bio
, bio
->bi_opf
, &data
);
1839 if (unlikely(!rq
)) {
1840 rq_qos_cleanup(q
, bio
);
1841 if (bio
->bi_opf
& REQ_NOWAIT
)
1842 bio_wouldblock_error(bio
);
1843 return BLK_QC_T_NONE
;
1846 rq_qos_track(q
, rq
, bio
);
1848 cookie
= request_to_qc_t(data
.hctx
, rq
);
1850 plug
= current
->plug
;
1851 if (unlikely(is_flush_fua
)) {
1852 blk_mq_put_ctx(data
.ctx
);
1853 blk_mq_bio_to_request(rq
, bio
);
1855 /* bypass scheduler for flush rq */
1856 blk_insert_flush(rq
);
1857 blk_mq_run_hw_queue(data
.hctx
, true);
1858 } else if (plug
&& q
->nr_hw_queues
== 1) {
1859 struct request
*last
= NULL
;
1861 blk_mq_put_ctx(data
.ctx
);
1862 blk_mq_bio_to_request(rq
, bio
);
1865 * @request_count may become stale because of schedule
1866 * out, so check the list again.
1868 if (list_empty(&plug
->mq_list
))
1870 else if (blk_queue_nomerges(q
))
1871 request_count
= blk_plug_queued_count(q
);
1874 trace_block_plug(q
);
1876 last
= list_entry_rq(plug
->mq_list
.prev
);
1878 if (request_count
>= BLK_MAX_REQUEST_COUNT
|| (last
&&
1879 blk_rq_bytes(last
) >= BLK_PLUG_FLUSH_SIZE
)) {
1880 blk_flush_plug_list(plug
, false);
1881 trace_block_plug(q
);
1884 list_add_tail(&rq
->queuelist
, &plug
->mq_list
);
1885 } else if (plug
&& !blk_queue_nomerges(q
)) {
1886 blk_mq_bio_to_request(rq
, bio
);
1889 * We do limited plugging. If the bio can be merged, do that.
1890 * Otherwise the existing request in the plug list will be
1891 * issued. So the plug list will have one request at most
1892 * The plug list might get flushed before this. If that happens,
1893 * the plug list is empty, and same_queue_rq is invalid.
1895 if (list_empty(&plug
->mq_list
))
1896 same_queue_rq
= NULL
;
1898 list_del_init(&same_queue_rq
->queuelist
);
1899 list_add_tail(&rq
->queuelist
, &plug
->mq_list
);
1901 blk_mq_put_ctx(data
.ctx
);
1903 if (same_queue_rq
) {
1904 data
.hctx
= blk_mq_map_queue(q
,
1905 same_queue_rq
->mq_ctx
->cpu
);
1906 blk_mq_try_issue_directly(data
.hctx
, same_queue_rq
,
1909 } else if ((q
->nr_hw_queues
> 1 && is_sync
) || (!q
->elevator
&&
1910 !data
.hctx
->dispatch_busy
)) {
1911 blk_mq_put_ctx(data
.ctx
);
1912 blk_mq_bio_to_request(rq
, bio
);
1913 blk_mq_try_issue_directly(data
.hctx
, rq
, &cookie
);
1915 blk_mq_put_ctx(data
.ctx
);
1916 blk_mq_bio_to_request(rq
, bio
);
1917 blk_mq_sched_insert_request(rq
, false, true, true);
1923 void blk_mq_free_rqs(struct blk_mq_tag_set
*set
, struct blk_mq_tags
*tags
,
1924 unsigned int hctx_idx
)
1928 if (tags
->rqs
&& set
->ops
->exit_request
) {
1931 for (i
= 0; i
< tags
->nr_tags
; i
++) {
1932 struct request
*rq
= tags
->static_rqs
[i
];
1936 set
->ops
->exit_request(set
, rq
, hctx_idx
);
1937 tags
->static_rqs
[i
] = NULL
;
1941 while (!list_empty(&tags
->page_list
)) {
1942 page
= list_first_entry(&tags
->page_list
, struct page
, lru
);
1943 list_del_init(&page
->lru
);
1945 * Remove kmemleak object previously allocated in
1946 * blk_mq_init_rq_map().
1948 kmemleak_free(page_address(page
));
1949 __free_pages(page
, page
->private);
1953 void blk_mq_free_rq_map(struct blk_mq_tags
*tags
)
1957 kfree(tags
->static_rqs
);
1958 tags
->static_rqs
= NULL
;
1960 blk_mq_free_tags(tags
);
1963 struct blk_mq_tags
*blk_mq_alloc_rq_map(struct blk_mq_tag_set
*set
,
1964 unsigned int hctx_idx
,
1965 unsigned int nr_tags
,
1966 unsigned int reserved_tags
)
1968 struct blk_mq_tags
*tags
;
1971 node
= blk_mq_hw_queue_to_node(set
->mq_map
, hctx_idx
);
1972 if (node
== NUMA_NO_NODE
)
1973 node
= set
->numa_node
;
1975 tags
= blk_mq_init_tags(nr_tags
, reserved_tags
, node
,
1976 BLK_MQ_FLAG_TO_ALLOC_POLICY(set
->flags
));
1980 tags
->rqs
= kcalloc_node(nr_tags
, sizeof(struct request
*),
1981 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
,
1984 blk_mq_free_tags(tags
);
1988 tags
->static_rqs
= kcalloc_node(nr_tags
, sizeof(struct request
*),
1989 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
,
1991 if (!tags
->static_rqs
) {
1993 blk_mq_free_tags(tags
);
2000 static size_t order_to_size(unsigned int order
)
2002 return (size_t)PAGE_SIZE
<< order
;
2005 static int blk_mq_init_request(struct blk_mq_tag_set
*set
, struct request
*rq
,
2006 unsigned int hctx_idx
, int node
)
2010 if (set
->ops
->init_request
) {
2011 ret
= set
->ops
->init_request(set
, rq
, hctx_idx
, node
);
2016 WRITE_ONCE(rq
->state
, MQ_RQ_IDLE
);
2020 int blk_mq_alloc_rqs(struct blk_mq_tag_set
*set
, struct blk_mq_tags
*tags
,
2021 unsigned int hctx_idx
, unsigned int depth
)
2023 unsigned int i
, j
, entries_per_page
, max_order
= 4;
2024 size_t rq_size
, left
;
2027 node
= blk_mq_hw_queue_to_node(set
->mq_map
, hctx_idx
);
2028 if (node
== NUMA_NO_NODE
)
2029 node
= set
->numa_node
;
2031 INIT_LIST_HEAD(&tags
->page_list
);
2034 * rq_size is the size of the request plus driver payload, rounded
2035 * to the cacheline size
2037 rq_size
= round_up(sizeof(struct request
) + set
->cmd_size
,
2039 left
= rq_size
* depth
;
2041 for (i
= 0; i
< depth
; ) {
2042 int this_order
= max_order
;
2047 while (this_order
&& left
< order_to_size(this_order
- 1))
2051 page
= alloc_pages_node(node
,
2052 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
| __GFP_ZERO
,
2058 if (order_to_size(this_order
) < rq_size
)
2065 page
->private = this_order
;
2066 list_add_tail(&page
->lru
, &tags
->page_list
);
2068 p
= page_address(page
);
2070 * Allow kmemleak to scan these pages as they contain pointers
2071 * to additional allocations like via ops->init_request().
2073 kmemleak_alloc(p
, order_to_size(this_order
), 1, GFP_NOIO
);
2074 entries_per_page
= order_to_size(this_order
) / rq_size
;
2075 to_do
= min(entries_per_page
, depth
- i
);
2076 left
-= to_do
* rq_size
;
2077 for (j
= 0; j
< to_do
; j
++) {
2078 struct request
*rq
= p
;
2080 tags
->static_rqs
[i
] = rq
;
2081 if (blk_mq_init_request(set
, rq
, hctx_idx
, node
)) {
2082 tags
->static_rqs
[i
] = NULL
;
2093 blk_mq_free_rqs(set
, tags
, hctx_idx
);
2098 * 'cpu' is going away. splice any existing rq_list entries from this
2099 * software queue to the hw queue dispatch list, and ensure that it
2102 static int blk_mq_hctx_notify_dead(unsigned int cpu
, struct hlist_node
*node
)
2104 struct blk_mq_hw_ctx
*hctx
;
2105 struct blk_mq_ctx
*ctx
;
2108 hctx
= hlist_entry_safe(node
, struct blk_mq_hw_ctx
, cpuhp_dead
);
2109 ctx
= __blk_mq_get_ctx(hctx
->queue
, cpu
);
2111 spin_lock(&ctx
->lock
);
2112 if (!list_empty(&ctx
->rq_list
)) {
2113 list_splice_init(&ctx
->rq_list
, &tmp
);
2114 blk_mq_hctx_clear_pending(hctx
, ctx
);
2116 spin_unlock(&ctx
->lock
);
2118 if (list_empty(&tmp
))
2121 spin_lock(&hctx
->lock
);
2122 list_splice_tail_init(&tmp
, &hctx
->dispatch
);
2123 spin_unlock(&hctx
->lock
);
2125 blk_mq_run_hw_queue(hctx
, true);
2129 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx
*hctx
)
2131 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD
,
2135 /* hctx->ctxs will be freed in queue's release handler */
2136 static void blk_mq_exit_hctx(struct request_queue
*q
,
2137 struct blk_mq_tag_set
*set
,
2138 struct blk_mq_hw_ctx
*hctx
, unsigned int hctx_idx
)
2140 blk_mq_debugfs_unregister_hctx(hctx
);
2142 if (blk_mq_hw_queue_mapped(hctx
))
2143 blk_mq_tag_idle(hctx
);
2145 if (set
->ops
->exit_request
)
2146 set
->ops
->exit_request(set
, hctx
->fq
->flush_rq
, hctx_idx
);
2148 if (set
->ops
->exit_hctx
)
2149 set
->ops
->exit_hctx(hctx
, hctx_idx
);
2151 if (hctx
->flags
& BLK_MQ_F_BLOCKING
)
2152 cleanup_srcu_struct(hctx
->srcu
);
2154 blk_mq_remove_cpuhp(hctx
);
2155 blk_free_flush_queue(hctx
->fq
);
2156 sbitmap_free(&hctx
->ctx_map
);
2159 static void blk_mq_exit_hw_queues(struct request_queue
*q
,
2160 struct blk_mq_tag_set
*set
, int nr_queue
)
2162 struct blk_mq_hw_ctx
*hctx
;
2165 queue_for_each_hw_ctx(q
, hctx
, i
) {
2168 blk_mq_exit_hctx(q
, set
, hctx
, i
);
2172 static int blk_mq_init_hctx(struct request_queue
*q
,
2173 struct blk_mq_tag_set
*set
,
2174 struct blk_mq_hw_ctx
*hctx
, unsigned hctx_idx
)
2178 node
= hctx
->numa_node
;
2179 if (node
== NUMA_NO_NODE
)
2180 node
= hctx
->numa_node
= set
->numa_node
;
2182 INIT_DELAYED_WORK(&hctx
->run_work
, blk_mq_run_work_fn
);
2183 spin_lock_init(&hctx
->lock
);
2184 INIT_LIST_HEAD(&hctx
->dispatch
);
2186 hctx
->flags
= set
->flags
& ~BLK_MQ_F_TAG_SHARED
;
2188 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD
, &hctx
->cpuhp_dead
);
2190 hctx
->tags
= set
->tags
[hctx_idx
];
2193 * Allocate space for all possible cpus to avoid allocation at
2196 hctx
->ctxs
= kmalloc_array_node(nr_cpu_ids
, sizeof(void *),
2199 goto unregister_cpu_notifier
;
2201 if (sbitmap_init_node(&hctx
->ctx_map
, nr_cpu_ids
, ilog2(8), GFP_KERNEL
,
2207 spin_lock_init(&hctx
->dispatch_wait_lock
);
2208 init_waitqueue_func_entry(&hctx
->dispatch_wait
, blk_mq_dispatch_wake
);
2209 INIT_LIST_HEAD(&hctx
->dispatch_wait
.entry
);
2211 if (set
->ops
->init_hctx
&&
2212 set
->ops
->init_hctx(hctx
, set
->driver_data
, hctx_idx
))
2215 hctx
->fq
= blk_alloc_flush_queue(q
, hctx
->numa_node
, set
->cmd_size
);
2219 if (blk_mq_init_request(set
, hctx
->fq
->flush_rq
, hctx_idx
, node
))
2222 if (hctx
->flags
& BLK_MQ_F_BLOCKING
)
2223 init_srcu_struct(hctx
->srcu
);
2225 blk_mq_debugfs_register_hctx(q
, hctx
);
2232 if (set
->ops
->exit_hctx
)
2233 set
->ops
->exit_hctx(hctx
, hctx_idx
);
2235 sbitmap_free(&hctx
->ctx_map
);
2238 unregister_cpu_notifier
:
2239 blk_mq_remove_cpuhp(hctx
);
2243 static void blk_mq_init_cpu_queues(struct request_queue
*q
,
2244 unsigned int nr_hw_queues
)
2248 for_each_possible_cpu(i
) {
2249 struct blk_mq_ctx
*__ctx
= per_cpu_ptr(q
->queue_ctx
, i
);
2250 struct blk_mq_hw_ctx
*hctx
;
2253 spin_lock_init(&__ctx
->lock
);
2254 INIT_LIST_HEAD(&__ctx
->rq_list
);
2258 * Set local node, IFF we have more than one hw queue. If
2259 * not, we remain on the home node of the device
2261 hctx
= blk_mq_map_queue(q
, i
);
2262 if (nr_hw_queues
> 1 && hctx
->numa_node
== NUMA_NO_NODE
)
2263 hctx
->numa_node
= local_memory_node(cpu_to_node(i
));
2267 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set
*set
, int hctx_idx
)
2271 set
->tags
[hctx_idx
] = blk_mq_alloc_rq_map(set
, hctx_idx
,
2272 set
->queue_depth
, set
->reserved_tags
);
2273 if (!set
->tags
[hctx_idx
])
2276 ret
= blk_mq_alloc_rqs(set
, set
->tags
[hctx_idx
], hctx_idx
,
2281 blk_mq_free_rq_map(set
->tags
[hctx_idx
]);
2282 set
->tags
[hctx_idx
] = NULL
;
2286 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set
*set
,
2287 unsigned int hctx_idx
)
2289 if (set
->tags
[hctx_idx
]) {
2290 blk_mq_free_rqs(set
, set
->tags
[hctx_idx
], hctx_idx
);
2291 blk_mq_free_rq_map(set
->tags
[hctx_idx
]);
2292 set
->tags
[hctx_idx
] = NULL
;
2296 static void blk_mq_map_swqueue(struct request_queue
*q
)
2298 unsigned int i
, hctx_idx
;
2299 struct blk_mq_hw_ctx
*hctx
;
2300 struct blk_mq_ctx
*ctx
;
2301 struct blk_mq_tag_set
*set
= q
->tag_set
;
2304 * Avoid others reading imcomplete hctx->cpumask through sysfs
2306 mutex_lock(&q
->sysfs_lock
);
2308 queue_for_each_hw_ctx(q
, hctx
, i
) {
2309 cpumask_clear(hctx
->cpumask
);
2311 hctx
->dispatch_from
= NULL
;
2315 * Map software to hardware queues.
2317 * If the cpu isn't present, the cpu is mapped to first hctx.
2319 for_each_possible_cpu(i
) {
2320 hctx_idx
= q
->mq_map
[i
];
2321 /* unmapped hw queue can be remapped after CPU topo changed */
2322 if (!set
->tags
[hctx_idx
] &&
2323 !__blk_mq_alloc_rq_map(set
, hctx_idx
)) {
2325 * If tags initialization fail for some hctx,
2326 * that hctx won't be brought online. In this
2327 * case, remap the current ctx to hctx[0] which
2328 * is guaranteed to always have tags allocated
2333 ctx
= per_cpu_ptr(q
->queue_ctx
, i
);
2334 hctx
= blk_mq_map_queue(q
, i
);
2336 cpumask_set_cpu(i
, hctx
->cpumask
);
2337 ctx
->index_hw
= hctx
->nr_ctx
;
2338 hctx
->ctxs
[hctx
->nr_ctx
++] = ctx
;
2341 mutex_unlock(&q
->sysfs_lock
);
2343 queue_for_each_hw_ctx(q
, hctx
, i
) {
2345 * If no software queues are mapped to this hardware queue,
2346 * disable it and free the request entries.
2348 if (!hctx
->nr_ctx
) {
2349 /* Never unmap queue 0. We need it as a
2350 * fallback in case of a new remap fails
2353 if (i
&& set
->tags
[i
])
2354 blk_mq_free_map_and_requests(set
, i
);
2360 hctx
->tags
= set
->tags
[i
];
2361 WARN_ON(!hctx
->tags
);
2364 * Set the map size to the number of mapped software queues.
2365 * This is more accurate and more efficient than looping
2366 * over all possibly mapped software queues.
2368 sbitmap_resize(&hctx
->ctx_map
, hctx
->nr_ctx
);
2371 * Initialize batch roundrobin counts
2373 hctx
->next_cpu
= blk_mq_first_mapped_cpu(hctx
);
2374 hctx
->next_cpu_batch
= BLK_MQ_CPU_WORK_BATCH
;
2379 * Caller needs to ensure that we're either frozen/quiesced, or that
2380 * the queue isn't live yet.
2382 static void queue_set_hctx_shared(struct request_queue
*q
, bool shared
)
2384 struct blk_mq_hw_ctx
*hctx
;
2387 queue_for_each_hw_ctx(q
, hctx
, i
) {
2389 hctx
->flags
|= BLK_MQ_F_TAG_SHARED
;
2391 hctx
->flags
&= ~BLK_MQ_F_TAG_SHARED
;
2395 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set
*set
,
2398 struct request_queue
*q
;
2400 lockdep_assert_held(&set
->tag_list_lock
);
2402 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
2403 blk_mq_freeze_queue(q
);
2404 queue_set_hctx_shared(q
, shared
);
2405 blk_mq_unfreeze_queue(q
);
2409 static void blk_mq_del_queue_tag_set(struct request_queue
*q
)
2411 struct blk_mq_tag_set
*set
= q
->tag_set
;
2413 mutex_lock(&set
->tag_list_lock
);
2414 list_del_rcu(&q
->tag_set_list
);
2415 if (list_is_singular(&set
->tag_list
)) {
2416 /* just transitioned to unshared */
2417 set
->flags
&= ~BLK_MQ_F_TAG_SHARED
;
2418 /* update existing queue */
2419 blk_mq_update_tag_set_depth(set
, false);
2421 mutex_unlock(&set
->tag_list_lock
);
2422 INIT_LIST_HEAD(&q
->tag_set_list
);
2425 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set
*set
,
2426 struct request_queue
*q
)
2430 mutex_lock(&set
->tag_list_lock
);
2433 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2435 if (!list_empty(&set
->tag_list
) &&
2436 !(set
->flags
& BLK_MQ_F_TAG_SHARED
)) {
2437 set
->flags
|= BLK_MQ_F_TAG_SHARED
;
2438 /* update existing queue */
2439 blk_mq_update_tag_set_depth(set
, true);
2441 if (set
->flags
& BLK_MQ_F_TAG_SHARED
)
2442 queue_set_hctx_shared(q
, true);
2443 list_add_tail_rcu(&q
->tag_set_list
, &set
->tag_list
);
2445 mutex_unlock(&set
->tag_list_lock
);
2449 * It is the actual release handler for mq, but we do it from
2450 * request queue's release handler for avoiding use-after-free
2451 * and headache because q->mq_kobj shouldn't have been introduced,
2452 * but we can't group ctx/kctx kobj without it.
2454 void blk_mq_release(struct request_queue
*q
)
2456 struct blk_mq_hw_ctx
*hctx
;
2459 /* hctx kobj stays in hctx */
2460 queue_for_each_hw_ctx(q
, hctx
, i
) {
2463 kobject_put(&hctx
->kobj
);
2468 kfree(q
->queue_hw_ctx
);
2471 * release .mq_kobj and sw queue's kobject now because
2472 * both share lifetime with request queue.
2474 blk_mq_sysfs_deinit(q
);
2476 free_percpu(q
->queue_ctx
);
2479 struct request_queue
*blk_mq_init_queue(struct blk_mq_tag_set
*set
)
2481 struct request_queue
*uninit_q
, *q
;
2483 uninit_q
= blk_alloc_queue_node(GFP_KERNEL
, set
->numa_node
, NULL
);
2485 return ERR_PTR(-ENOMEM
);
2487 q
= blk_mq_init_allocated_queue(set
, uninit_q
);
2489 blk_cleanup_queue(uninit_q
);
2493 EXPORT_SYMBOL(blk_mq_init_queue
);
2495 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set
*tag_set
)
2497 int hw_ctx_size
= sizeof(struct blk_mq_hw_ctx
);
2499 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx
, srcu
),
2500 __alignof__(struct blk_mq_hw_ctx
)) !=
2501 sizeof(struct blk_mq_hw_ctx
));
2503 if (tag_set
->flags
& BLK_MQ_F_BLOCKING
)
2504 hw_ctx_size
+= sizeof(struct srcu_struct
);
2509 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set
*set
,
2510 struct request_queue
*q
)
2513 struct blk_mq_hw_ctx
**hctxs
= q
->queue_hw_ctx
;
2515 blk_mq_sysfs_unregister(q
);
2517 /* protect against switching io scheduler */
2518 mutex_lock(&q
->sysfs_lock
);
2519 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
2525 node
= blk_mq_hw_queue_to_node(q
->mq_map
, i
);
2526 hctxs
[i
] = kzalloc_node(blk_mq_hw_ctx_size(set
),
2531 if (!zalloc_cpumask_var_node(&hctxs
[i
]->cpumask
, GFP_KERNEL
,
2538 atomic_set(&hctxs
[i
]->nr_active
, 0);
2539 hctxs
[i
]->numa_node
= node
;
2540 hctxs
[i
]->queue_num
= i
;
2542 if (blk_mq_init_hctx(q
, set
, hctxs
[i
], i
)) {
2543 free_cpumask_var(hctxs
[i
]->cpumask
);
2548 blk_mq_hctx_kobj_init(hctxs
[i
]);
2550 for (j
= i
; j
< q
->nr_hw_queues
; j
++) {
2551 struct blk_mq_hw_ctx
*hctx
= hctxs
[j
];
2555 blk_mq_free_map_and_requests(set
, j
);
2556 blk_mq_exit_hctx(q
, set
, hctx
, j
);
2557 kobject_put(&hctx
->kobj
);
2562 q
->nr_hw_queues
= i
;
2563 mutex_unlock(&q
->sysfs_lock
);
2564 blk_mq_sysfs_register(q
);
2567 struct request_queue
*blk_mq_init_allocated_queue(struct blk_mq_tag_set
*set
,
2568 struct request_queue
*q
)
2570 /* mark the queue as mq asap */
2571 q
->mq_ops
= set
->ops
;
2573 q
->poll_cb
= blk_stat_alloc_callback(blk_mq_poll_stats_fn
,
2574 blk_mq_poll_stats_bkt
,
2575 BLK_MQ_POLL_STATS_BKTS
, q
);
2579 q
->queue_ctx
= alloc_percpu(struct blk_mq_ctx
);
2583 /* init q->mq_kobj and sw queues' kobjects */
2584 blk_mq_sysfs_init(q
);
2586 q
->queue_hw_ctx
= kcalloc_node(nr_cpu_ids
, sizeof(*(q
->queue_hw_ctx
)),
2587 GFP_KERNEL
, set
->numa_node
);
2588 if (!q
->queue_hw_ctx
)
2591 q
->mq_map
= set
->mq_map
;
2593 blk_mq_realloc_hw_ctxs(set
, q
);
2594 if (!q
->nr_hw_queues
)
2597 INIT_WORK(&q
->timeout_work
, blk_mq_timeout_work
);
2598 blk_queue_rq_timeout(q
, set
->timeout
? set
->timeout
: 30 * HZ
);
2600 q
->nr_queues
= nr_cpu_ids
;
2602 q
->queue_flags
|= QUEUE_FLAG_MQ_DEFAULT
;
2604 if (!(set
->flags
& BLK_MQ_F_SG_MERGE
))
2605 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE
, q
);
2607 q
->sg_reserved_size
= INT_MAX
;
2609 INIT_DELAYED_WORK(&q
->requeue_work
, blk_mq_requeue_work
);
2610 INIT_LIST_HEAD(&q
->requeue_list
);
2611 spin_lock_init(&q
->requeue_lock
);
2613 blk_queue_make_request(q
, blk_mq_make_request
);
2614 if (q
->mq_ops
->poll
)
2615 q
->poll_fn
= blk_mq_poll
;
2618 * Do this after blk_queue_make_request() overrides it...
2620 q
->nr_requests
= set
->queue_depth
;
2623 * Default to classic polling
2627 if (set
->ops
->complete
)
2628 blk_queue_softirq_done(q
, set
->ops
->complete
);
2630 blk_mq_init_cpu_queues(q
, set
->nr_hw_queues
);
2631 blk_mq_add_queue_tag_set(set
, q
);
2632 blk_mq_map_swqueue(q
);
2634 if (!(set
->flags
& BLK_MQ_F_NO_SCHED
)) {
2637 ret
= elevator_init_mq(q
);
2639 return ERR_PTR(ret
);
2645 kfree(q
->queue_hw_ctx
);
2647 free_percpu(q
->queue_ctx
);
2650 return ERR_PTR(-ENOMEM
);
2652 EXPORT_SYMBOL(blk_mq_init_allocated_queue
);
2654 void blk_mq_free_queue(struct request_queue
*q
)
2656 struct blk_mq_tag_set
*set
= q
->tag_set
;
2658 blk_mq_del_queue_tag_set(q
);
2659 blk_mq_exit_hw_queues(q
, set
, set
->nr_hw_queues
);
2662 /* Basically redo blk_mq_init_queue with queue frozen */
2663 static void blk_mq_queue_reinit(struct request_queue
*q
)
2665 WARN_ON_ONCE(!atomic_read(&q
->mq_freeze_depth
));
2667 blk_mq_debugfs_unregister_hctxs(q
);
2668 blk_mq_sysfs_unregister(q
);
2671 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2672 * we should change hctx numa_node according to the new topology (this
2673 * involves freeing and re-allocating memory, worth doing?)
2675 blk_mq_map_swqueue(q
);
2677 blk_mq_sysfs_register(q
);
2678 blk_mq_debugfs_register_hctxs(q
);
2681 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set
*set
)
2685 for (i
= 0; i
< set
->nr_hw_queues
; i
++)
2686 if (!__blk_mq_alloc_rq_map(set
, i
))
2693 blk_mq_free_rq_map(set
->tags
[i
]);
2699 * Allocate the request maps associated with this tag_set. Note that this
2700 * may reduce the depth asked for, if memory is tight. set->queue_depth
2701 * will be updated to reflect the allocated depth.
2703 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set
*set
)
2708 depth
= set
->queue_depth
;
2710 err
= __blk_mq_alloc_rq_maps(set
);
2714 set
->queue_depth
>>= 1;
2715 if (set
->queue_depth
< set
->reserved_tags
+ BLK_MQ_TAG_MIN
) {
2719 } while (set
->queue_depth
);
2721 if (!set
->queue_depth
|| err
) {
2722 pr_err("blk-mq: failed to allocate request map\n");
2726 if (depth
!= set
->queue_depth
)
2727 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2728 depth
, set
->queue_depth
);
2733 static int blk_mq_update_queue_map(struct blk_mq_tag_set
*set
)
2735 if (set
->ops
->map_queues
) {
2737 * transport .map_queues is usually done in the following
2740 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2741 * mask = get_cpu_mask(queue)
2742 * for_each_cpu(cpu, mask)
2743 * set->mq_map[cpu] = queue;
2746 * When we need to remap, the table has to be cleared for
2747 * killing stale mapping since one CPU may not be mapped
2750 blk_mq_clear_mq_map(set
);
2752 return set
->ops
->map_queues(set
);
2754 return blk_mq_map_queues(set
);
2758 * Alloc a tag set to be associated with one or more request queues.
2759 * May fail with EINVAL for various error conditions. May adjust the
2760 * requested depth down, if it's too large. In that case, the set
2761 * value will be stored in set->queue_depth.
2763 int blk_mq_alloc_tag_set(struct blk_mq_tag_set
*set
)
2767 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH
> 1 << BLK_MQ_UNIQUE_TAG_BITS
);
2769 if (!set
->nr_hw_queues
)
2771 if (!set
->queue_depth
)
2773 if (set
->queue_depth
< set
->reserved_tags
+ BLK_MQ_TAG_MIN
)
2776 if (!set
->ops
->queue_rq
)
2779 if (!set
->ops
->get_budget
^ !set
->ops
->put_budget
)
2782 if (set
->queue_depth
> BLK_MQ_MAX_DEPTH
) {
2783 pr_info("blk-mq: reduced tag depth to %u\n",
2785 set
->queue_depth
= BLK_MQ_MAX_DEPTH
;
2789 * If a crashdump is active, then we are potentially in a very
2790 * memory constrained environment. Limit us to 1 queue and
2791 * 64 tags to prevent using too much memory.
2793 if (is_kdump_kernel()) {
2794 set
->nr_hw_queues
= 1;
2795 set
->queue_depth
= min(64U, set
->queue_depth
);
2798 * There is no use for more h/w queues than cpus.
2800 if (set
->nr_hw_queues
> nr_cpu_ids
)
2801 set
->nr_hw_queues
= nr_cpu_ids
;
2803 set
->tags
= kcalloc_node(nr_cpu_ids
, sizeof(struct blk_mq_tags
*),
2804 GFP_KERNEL
, set
->numa_node
);
2809 set
->mq_map
= kcalloc_node(nr_cpu_ids
, sizeof(*set
->mq_map
),
2810 GFP_KERNEL
, set
->numa_node
);
2814 ret
= blk_mq_update_queue_map(set
);
2816 goto out_free_mq_map
;
2818 ret
= blk_mq_alloc_rq_maps(set
);
2820 goto out_free_mq_map
;
2822 mutex_init(&set
->tag_list_lock
);
2823 INIT_LIST_HEAD(&set
->tag_list
);
2835 EXPORT_SYMBOL(blk_mq_alloc_tag_set
);
2837 void blk_mq_free_tag_set(struct blk_mq_tag_set
*set
)
2841 for (i
= 0; i
< nr_cpu_ids
; i
++)
2842 blk_mq_free_map_and_requests(set
, i
);
2850 EXPORT_SYMBOL(blk_mq_free_tag_set
);
2852 int blk_mq_update_nr_requests(struct request_queue
*q
, unsigned int nr
)
2854 struct blk_mq_tag_set
*set
= q
->tag_set
;
2855 struct blk_mq_hw_ctx
*hctx
;
2861 blk_mq_freeze_queue(q
);
2862 blk_mq_quiesce_queue(q
);
2865 queue_for_each_hw_ctx(q
, hctx
, i
) {
2869 * If we're using an MQ scheduler, just update the scheduler
2870 * queue depth. This is similar to what the old code would do.
2872 if (!hctx
->sched_tags
) {
2873 ret
= blk_mq_tag_update_depth(hctx
, &hctx
->tags
, nr
,
2876 ret
= blk_mq_tag_update_depth(hctx
, &hctx
->sched_tags
,
2884 q
->nr_requests
= nr
;
2886 blk_mq_unquiesce_queue(q
);
2887 blk_mq_unfreeze_queue(q
);
2893 * request_queue and elevator_type pair.
2894 * It is just used by __blk_mq_update_nr_hw_queues to cache
2895 * the elevator_type associated with a request_queue.
2897 struct blk_mq_qe_pair
{
2898 struct list_head node
;
2899 struct request_queue
*q
;
2900 struct elevator_type
*type
;
2904 * Cache the elevator_type in qe pair list and switch the
2905 * io scheduler to 'none'
2907 static bool blk_mq_elv_switch_none(struct list_head
*head
,
2908 struct request_queue
*q
)
2910 struct blk_mq_qe_pair
*qe
;
2915 qe
= kmalloc(sizeof(*qe
), GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
);
2919 INIT_LIST_HEAD(&qe
->node
);
2921 qe
->type
= q
->elevator
->type
;
2922 list_add(&qe
->node
, head
);
2924 mutex_lock(&q
->sysfs_lock
);
2926 * After elevator_switch_mq, the previous elevator_queue will be
2927 * released by elevator_release. The reference of the io scheduler
2928 * module get by elevator_get will also be put. So we need to get
2929 * a reference of the io scheduler module here to prevent it to be
2932 __module_get(qe
->type
->elevator_owner
);
2933 elevator_switch_mq(q
, NULL
);
2934 mutex_unlock(&q
->sysfs_lock
);
2939 static void blk_mq_elv_switch_back(struct list_head
*head
,
2940 struct request_queue
*q
)
2942 struct blk_mq_qe_pair
*qe
;
2943 struct elevator_type
*t
= NULL
;
2945 list_for_each_entry(qe
, head
, node
)
2954 list_del(&qe
->node
);
2957 mutex_lock(&q
->sysfs_lock
);
2958 elevator_switch_mq(q
, t
);
2959 mutex_unlock(&q
->sysfs_lock
);
2962 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set
*set
,
2965 struct request_queue
*q
;
2968 lockdep_assert_held(&set
->tag_list_lock
);
2970 if (nr_hw_queues
> nr_cpu_ids
)
2971 nr_hw_queues
= nr_cpu_ids
;
2972 if (nr_hw_queues
< 1 || nr_hw_queues
== set
->nr_hw_queues
)
2975 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
2976 blk_mq_freeze_queue(q
);
2978 * Sync with blk_mq_queue_tag_busy_iter.
2982 * Switch IO scheduler to 'none', cleaning up the data associated
2983 * with the previous scheduler. We will switch back once we are done
2984 * updating the new sw to hw queue mappings.
2986 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
2987 if (!blk_mq_elv_switch_none(&head
, q
))
2990 set
->nr_hw_queues
= nr_hw_queues
;
2991 blk_mq_update_queue_map(set
);
2992 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
2993 blk_mq_realloc_hw_ctxs(set
, q
);
2994 blk_mq_queue_reinit(q
);
2998 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
2999 blk_mq_elv_switch_back(&head
, q
);
3001 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
3002 blk_mq_unfreeze_queue(q
);
3005 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set
*set
, int nr_hw_queues
)
3007 mutex_lock(&set
->tag_list_lock
);
3008 __blk_mq_update_nr_hw_queues(set
, nr_hw_queues
);
3009 mutex_unlock(&set
->tag_list_lock
);
3011 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues
);
3013 /* Enable polling stats and return whether they were already enabled. */
3014 static bool blk_poll_stats_enable(struct request_queue
*q
)
3016 if (test_bit(QUEUE_FLAG_POLL_STATS
, &q
->queue_flags
) ||
3017 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS
, q
))
3019 blk_stat_add_callback(q
, q
->poll_cb
);
3023 static void blk_mq_poll_stats_start(struct request_queue
*q
)
3026 * We don't arm the callback if polling stats are not enabled or the
3027 * callback is already active.
3029 if (!test_bit(QUEUE_FLAG_POLL_STATS
, &q
->queue_flags
) ||
3030 blk_stat_is_active(q
->poll_cb
))
3033 blk_stat_activate_msecs(q
->poll_cb
, 100);
3036 static void blk_mq_poll_stats_fn(struct blk_stat_callback
*cb
)
3038 struct request_queue
*q
= cb
->data
;
3041 for (bucket
= 0; bucket
< BLK_MQ_POLL_STATS_BKTS
; bucket
++) {
3042 if (cb
->stat
[bucket
].nr_samples
)
3043 q
->poll_stat
[bucket
] = cb
->stat
[bucket
];
3047 static unsigned long blk_mq_poll_nsecs(struct request_queue
*q
,
3048 struct blk_mq_hw_ctx
*hctx
,
3051 unsigned long ret
= 0;
3055 * If stats collection isn't on, don't sleep but turn it on for
3058 if (!blk_poll_stats_enable(q
))
3062 * As an optimistic guess, use half of the mean service time
3063 * for this type of request. We can (and should) make this smarter.
3064 * For instance, if the completion latencies are tight, we can
3065 * get closer than just half the mean. This is especially
3066 * important on devices where the completion latencies are longer
3067 * than ~10 usec. We do use the stats for the relevant IO size
3068 * if available which does lead to better estimates.
3070 bucket
= blk_mq_poll_stats_bkt(rq
);
3074 if (q
->poll_stat
[bucket
].nr_samples
)
3075 ret
= (q
->poll_stat
[bucket
].mean
+ 1) / 2;
3080 static bool blk_mq_poll_hybrid_sleep(struct request_queue
*q
,
3081 struct blk_mq_hw_ctx
*hctx
,
3084 struct hrtimer_sleeper hs
;
3085 enum hrtimer_mode mode
;
3089 if (rq
->rq_flags
& RQF_MQ_POLL_SLEPT
)
3095 * -1: don't ever hybrid sleep
3096 * 0: use half of prev avg
3097 * >0: use this specific value
3099 if (q
->poll_nsec
== -1)
3101 else if (q
->poll_nsec
> 0)
3102 nsecs
= q
->poll_nsec
;
3104 nsecs
= blk_mq_poll_nsecs(q
, hctx
, rq
);
3109 rq
->rq_flags
|= RQF_MQ_POLL_SLEPT
;
3112 * This will be replaced with the stats tracking code, using
3113 * 'avg_completion_time / 2' as the pre-sleep target.
3117 mode
= HRTIMER_MODE_REL
;
3118 hrtimer_init_on_stack(&hs
.timer
, CLOCK_MONOTONIC
, mode
);
3119 hrtimer_set_expires(&hs
.timer
, kt
);
3121 hrtimer_init_sleeper(&hs
, current
);
3123 if (blk_mq_rq_state(rq
) == MQ_RQ_COMPLETE
)
3125 set_current_state(TASK_UNINTERRUPTIBLE
);
3126 hrtimer_start_expires(&hs
.timer
, mode
);
3129 hrtimer_cancel(&hs
.timer
);
3130 mode
= HRTIMER_MODE_ABS
;
3131 } while (hs
.task
&& !signal_pending(current
));
3133 __set_current_state(TASK_RUNNING
);
3134 destroy_hrtimer_on_stack(&hs
.timer
);
3138 static bool __blk_mq_poll(struct blk_mq_hw_ctx
*hctx
, struct request
*rq
)
3140 struct request_queue
*q
= hctx
->queue
;
3144 * If we sleep, have the caller restart the poll loop to reset
3145 * the state. Like for the other success return cases, the
3146 * caller is responsible for checking if the IO completed. If
3147 * the IO isn't complete, we'll get called again and will go
3148 * straight to the busy poll loop.
3150 if (blk_mq_poll_hybrid_sleep(q
, hctx
, rq
))
3153 hctx
->poll_considered
++;
3155 state
= current
->state
;
3156 while (!need_resched()) {
3159 hctx
->poll_invoked
++;
3161 ret
= q
->mq_ops
->poll(hctx
, rq
->tag
);
3163 hctx
->poll_success
++;
3164 set_current_state(TASK_RUNNING
);
3168 if (signal_pending_state(state
, current
))
3169 set_current_state(TASK_RUNNING
);
3171 if (current
->state
== TASK_RUNNING
)
3178 __set_current_state(TASK_RUNNING
);
3182 static bool blk_mq_poll(struct request_queue
*q
, blk_qc_t cookie
)
3184 struct blk_mq_hw_ctx
*hctx
;
3187 if (!test_bit(QUEUE_FLAG_POLL
, &q
->queue_flags
))
3190 hctx
= q
->queue_hw_ctx
[blk_qc_t_to_queue_num(cookie
)];
3191 if (!blk_qc_t_is_internal(cookie
))
3192 rq
= blk_mq_tag_to_rq(hctx
->tags
, blk_qc_t_to_tag(cookie
));
3194 rq
= blk_mq_tag_to_rq(hctx
->sched_tags
, blk_qc_t_to_tag(cookie
));
3196 * With scheduling, if the request has completed, we'll
3197 * get a NULL return here, as we clear the sched tag when
3198 * that happens. The request still remains valid, like always,
3199 * so we should be safe with just the NULL check.
3205 return __blk_mq_poll(hctx
, rq
);
3208 static int __init
blk_mq_init(void)
3210 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD
, "block/mq:dead", NULL
,
3211 blk_mq_hctx_notify_dead
);
3214 subsys_initcall(blk_mq_init
);