2 * linux/kernel/time/timekeeping.c
4 * Kernel timekeeping code and accessor functions
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
27 #include "tick-internal.h"
28 #include "ntp_internal.h"
29 #include "timekeeping_internal.h"
31 #define TK_CLEAR_NTP (1 << 0)
32 #define TK_MIRROR (1 << 1)
33 #define TK_CLOCK_WAS_SET (1 << 2)
36 * The most important data for readout fits into a single 64 byte
41 struct timekeeper timekeeper
;
42 } tk_core ____cacheline_aligned
;
44 static DEFINE_RAW_SPINLOCK(timekeeper_lock
);
45 static struct timekeeper shadow_timekeeper
;
48 * struct tk_fast - NMI safe timekeeper
49 * @seq: Sequence counter for protecting updates. The lowest bit
50 * is the index for the tk_read_base array
51 * @base: tk_read_base array. Access is indexed by the lowest bit of
54 * See @update_fast_timekeeper() below.
58 struct tk_read_base base
[2];
61 static struct tk_fast tk_fast_mono ____cacheline_aligned
;
62 static struct tk_fast tk_fast_raw ____cacheline_aligned
;
64 /* flag for if timekeeping is suspended */
65 int __read_mostly timekeeping_suspended
;
67 static inline void tk_normalize_xtime(struct timekeeper
*tk
)
69 while (tk
->tkr_mono
.xtime_nsec
>= ((u64
)NSEC_PER_SEC
<< tk
->tkr_mono
.shift
)) {
70 tk
->tkr_mono
.xtime_nsec
-= (u64
)NSEC_PER_SEC
<< tk
->tkr_mono
.shift
;
75 static inline struct timespec64
tk_xtime(struct timekeeper
*tk
)
79 ts
.tv_sec
= tk
->xtime_sec
;
80 ts
.tv_nsec
= (long)(tk
->tkr_mono
.xtime_nsec
>> tk
->tkr_mono
.shift
);
84 static void tk_set_xtime(struct timekeeper
*tk
, const struct timespec64
*ts
)
86 tk
->xtime_sec
= ts
->tv_sec
;
87 tk
->tkr_mono
.xtime_nsec
= (u64
)ts
->tv_nsec
<< tk
->tkr_mono
.shift
;
90 static void tk_xtime_add(struct timekeeper
*tk
, const struct timespec64
*ts
)
92 tk
->xtime_sec
+= ts
->tv_sec
;
93 tk
->tkr_mono
.xtime_nsec
+= (u64
)ts
->tv_nsec
<< tk
->tkr_mono
.shift
;
94 tk_normalize_xtime(tk
);
97 static void tk_set_wall_to_mono(struct timekeeper
*tk
, struct timespec64 wtm
)
99 struct timespec64 tmp
;
102 * Verify consistency of: offset_real = -wall_to_monotonic
103 * before modifying anything
105 set_normalized_timespec64(&tmp
, -tk
->wall_to_monotonic
.tv_sec
,
106 -tk
->wall_to_monotonic
.tv_nsec
);
107 WARN_ON_ONCE(tk
->offs_real
.tv64
!= timespec64_to_ktime(tmp
).tv64
);
108 tk
->wall_to_monotonic
= wtm
;
109 set_normalized_timespec64(&tmp
, -wtm
.tv_sec
, -wtm
.tv_nsec
);
110 tk
->offs_real
= timespec64_to_ktime(tmp
);
111 tk
->offs_tai
= ktime_add(tk
->offs_real
, ktime_set(tk
->tai_offset
, 0));
114 static inline void tk_update_sleep_time(struct timekeeper
*tk
, ktime_t delta
)
116 tk
->offs_boot
= ktime_add(tk
->offs_boot
, delta
);
119 #ifdef CONFIG_DEBUG_TIMEKEEPING
120 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
122 static void timekeeping_check_update(struct timekeeper
*tk
, cycle_t offset
)
125 cycle_t max_cycles
= tk
->tkr_mono
.clock
->max_cycles
;
126 const char *name
= tk
->tkr_mono
.clock
->name
;
128 if (offset
> max_cycles
) {
129 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
130 offset
, name
, max_cycles
);
131 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
133 if (offset
> (max_cycles
>> 1)) {
134 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the the '%s' clock's 50%% safety margin (%lld)\n",
135 offset
, name
, max_cycles
>> 1);
136 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
140 if (tk
->underflow_seen
) {
141 if (jiffies
- tk
->last_warning
> WARNING_FREQ
) {
142 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name
);
143 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
144 printk_deferred(" Your kernel is probably still fine.\n");
145 tk
->last_warning
= jiffies
;
147 tk
->underflow_seen
= 0;
150 if (tk
->overflow_seen
) {
151 if (jiffies
- tk
->last_warning
> WARNING_FREQ
) {
152 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name
);
153 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
154 printk_deferred(" Your kernel is probably still fine.\n");
155 tk
->last_warning
= jiffies
;
157 tk
->overflow_seen
= 0;
161 static inline cycle_t
timekeeping_get_delta(struct tk_read_base
*tkr
)
163 struct timekeeper
*tk
= &tk_core
.timekeeper
;
164 cycle_t now
, last
, mask
, max
, delta
;
168 * Since we're called holding a seqlock, the data may shift
169 * under us while we're doing the calculation. This can cause
170 * false positives, since we'd note a problem but throw the
171 * results away. So nest another seqlock here to atomically
172 * grab the points we are checking with.
175 seq
= read_seqcount_begin(&tk_core
.seq
);
176 now
= tkr
->read(tkr
->clock
);
177 last
= tkr
->cycle_last
;
179 max
= tkr
->clock
->max_cycles
;
180 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
182 delta
= clocksource_delta(now
, last
, mask
);
185 * Try to catch underflows by checking if we are seeing small
186 * mask-relative negative values.
188 if (unlikely((~delta
& mask
) < (mask
>> 3))) {
189 tk
->underflow_seen
= 1;
193 /* Cap delta value to the max_cycles values to avoid mult overflows */
194 if (unlikely(delta
> max
)) {
195 tk
->overflow_seen
= 1;
196 delta
= tkr
->clock
->max_cycles
;
202 static inline void timekeeping_check_update(struct timekeeper
*tk
, cycle_t offset
)
205 static inline cycle_t
timekeeping_get_delta(struct tk_read_base
*tkr
)
207 cycle_t cycle_now
, delta
;
209 /* read clocksource */
210 cycle_now
= tkr
->read(tkr
->clock
);
212 /* calculate the delta since the last update_wall_time */
213 delta
= clocksource_delta(cycle_now
, tkr
->cycle_last
, tkr
->mask
);
220 * tk_setup_internals - Set up internals to use clocksource clock.
222 * @tk: The target timekeeper to setup.
223 * @clock: Pointer to clocksource.
225 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
226 * pair and interval request.
228 * Unless you're the timekeeping code, you should not be using this!
230 static void tk_setup_internals(struct timekeeper
*tk
, struct clocksource
*clock
)
233 u64 tmp
, ntpinterval
;
234 struct clocksource
*old_clock
;
236 old_clock
= tk
->tkr_mono
.clock
;
237 tk
->tkr_mono
.clock
= clock
;
238 tk
->tkr_mono
.read
= clock
->read
;
239 tk
->tkr_mono
.mask
= clock
->mask
;
240 tk
->tkr_mono
.cycle_last
= tk
->tkr_mono
.read(clock
);
242 tk
->tkr_raw
.clock
= clock
;
243 tk
->tkr_raw
.read
= clock
->read
;
244 tk
->tkr_raw
.mask
= clock
->mask
;
245 tk
->tkr_raw
.cycle_last
= tk
->tkr_mono
.cycle_last
;
247 /* Do the ns -> cycle conversion first, using original mult */
248 tmp
= NTP_INTERVAL_LENGTH
;
249 tmp
<<= clock
->shift
;
251 tmp
+= clock
->mult
/2;
252 do_div(tmp
, clock
->mult
);
256 interval
= (cycle_t
) tmp
;
257 tk
->cycle_interval
= interval
;
259 /* Go back from cycles -> shifted ns */
260 tk
->xtime_interval
= (u64
) interval
* clock
->mult
;
261 tk
->xtime_remainder
= ntpinterval
- tk
->xtime_interval
;
263 ((u64
) interval
* clock
->mult
) >> clock
->shift
;
265 /* if changing clocks, convert xtime_nsec shift units */
267 int shift_change
= clock
->shift
- old_clock
->shift
;
268 if (shift_change
< 0)
269 tk
->tkr_mono
.xtime_nsec
>>= -shift_change
;
271 tk
->tkr_mono
.xtime_nsec
<<= shift_change
;
273 tk
->tkr_raw
.xtime_nsec
= 0;
275 tk
->tkr_mono
.shift
= clock
->shift
;
276 tk
->tkr_raw
.shift
= clock
->shift
;
279 tk
->ntp_error_shift
= NTP_SCALE_SHIFT
- clock
->shift
;
280 tk
->ntp_tick
= ntpinterval
<< tk
->ntp_error_shift
;
283 * The timekeeper keeps its own mult values for the currently
284 * active clocksource. These value will be adjusted via NTP
285 * to counteract clock drifting.
287 tk
->tkr_mono
.mult
= clock
->mult
;
288 tk
->tkr_raw
.mult
= clock
->mult
;
289 tk
->ntp_err_mult
= 0;
292 /* Timekeeper helper functions. */
294 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
295 static u32
default_arch_gettimeoffset(void) { return 0; }
296 u32 (*arch_gettimeoffset
)(void) = default_arch_gettimeoffset
;
298 static inline u32
arch_gettimeoffset(void) { return 0; }
301 static inline u64
timekeeping_delta_to_ns(struct tk_read_base
*tkr
,
306 nsec
= delta
* tkr
->mult
+ tkr
->xtime_nsec
;
309 /* If arch requires, add in get_arch_timeoffset() */
310 return nsec
+ arch_gettimeoffset();
313 static inline s64
timekeeping_get_ns(struct tk_read_base
*tkr
)
317 delta
= timekeeping_get_delta(tkr
);
318 return timekeeping_delta_to_ns(tkr
, delta
);
321 static inline s64
timekeeping_cycles_to_ns(struct tk_read_base
*tkr
,
326 /* calculate the delta since the last update_wall_time */
327 delta
= clocksource_delta(cycles
, tkr
->cycle_last
, tkr
->mask
);
328 return timekeeping_delta_to_ns(tkr
, delta
);
332 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
333 * @tkr: Timekeeping readout base from which we take the update
335 * We want to use this from any context including NMI and tracing /
336 * instrumenting the timekeeping code itself.
338 * Employ the latch technique; see @raw_write_seqcount_latch.
340 * So if a NMI hits the update of base[0] then it will use base[1]
341 * which is still consistent. In the worst case this can result is a
342 * slightly wrong timestamp (a few nanoseconds). See
343 * @ktime_get_mono_fast_ns.
345 static void update_fast_timekeeper(struct tk_read_base
*tkr
, struct tk_fast
*tkf
)
347 struct tk_read_base
*base
= tkf
->base
;
349 /* Force readers off to base[1] */
350 raw_write_seqcount_latch(&tkf
->seq
);
353 memcpy(base
, tkr
, sizeof(*base
));
355 /* Force readers back to base[0] */
356 raw_write_seqcount_latch(&tkf
->seq
);
359 memcpy(base
+ 1, base
, sizeof(*base
));
363 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
365 * This timestamp is not guaranteed to be monotonic across an update.
366 * The timestamp is calculated by:
368 * now = base_mono + clock_delta * slope
370 * So if the update lowers the slope, readers who are forced to the
371 * not yet updated second array are still using the old steeper slope.
380 * |12345678---> reader order
386 * So reader 6 will observe time going backwards versus reader 5.
388 * While other CPUs are likely to be able observe that, the only way
389 * for a CPU local observation is when an NMI hits in the middle of
390 * the update. Timestamps taken from that NMI context might be ahead
391 * of the following timestamps. Callers need to be aware of that and
394 static __always_inline u64
__ktime_get_fast_ns(struct tk_fast
*tkf
)
396 struct tk_read_base
*tkr
;
401 seq
= raw_read_seqcount_latch(&tkf
->seq
);
402 tkr
= tkf
->base
+ (seq
& 0x01);
403 now
= ktime_to_ns(tkr
->base
);
405 now
+= timekeeping_delta_to_ns(tkr
,
407 tkr
->read(tkr
->clock
),
410 } while (read_seqcount_retry(&tkf
->seq
, seq
));
415 u64
ktime_get_mono_fast_ns(void)
417 return __ktime_get_fast_ns(&tk_fast_mono
);
419 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns
);
421 u64
ktime_get_raw_fast_ns(void)
423 return __ktime_get_fast_ns(&tk_fast_raw
);
425 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns
);
427 /* Suspend-time cycles value for halted fast timekeeper. */
428 static cycle_t cycles_at_suspend
;
430 static cycle_t
dummy_clock_read(struct clocksource
*cs
)
432 return cycles_at_suspend
;
436 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
437 * @tk: Timekeeper to snapshot.
439 * It generally is unsafe to access the clocksource after timekeeping has been
440 * suspended, so take a snapshot of the readout base of @tk and use it as the
441 * fast timekeeper's readout base while suspended. It will return the same
442 * number of cycles every time until timekeeping is resumed at which time the
443 * proper readout base for the fast timekeeper will be restored automatically.
445 static void halt_fast_timekeeper(struct timekeeper
*tk
)
447 static struct tk_read_base tkr_dummy
;
448 struct tk_read_base
*tkr
= &tk
->tkr_mono
;
450 memcpy(&tkr_dummy
, tkr
, sizeof(tkr_dummy
));
451 cycles_at_suspend
= tkr
->read(tkr
->clock
);
452 tkr_dummy
.read
= dummy_clock_read
;
453 update_fast_timekeeper(&tkr_dummy
, &tk_fast_mono
);
456 memcpy(&tkr_dummy
, tkr
, sizeof(tkr_dummy
));
457 tkr_dummy
.read
= dummy_clock_read
;
458 update_fast_timekeeper(&tkr_dummy
, &tk_fast_raw
);
461 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
463 static inline void update_vsyscall(struct timekeeper
*tk
)
465 struct timespec xt
, wm
;
467 xt
= timespec64_to_timespec(tk_xtime(tk
));
468 wm
= timespec64_to_timespec(tk
->wall_to_monotonic
);
469 update_vsyscall_old(&xt
, &wm
, tk
->tkr_mono
.clock
, tk
->tkr_mono
.mult
,
470 tk
->tkr_mono
.cycle_last
);
473 static inline void old_vsyscall_fixup(struct timekeeper
*tk
)
478 * Store only full nanoseconds into xtime_nsec after rounding
479 * it up and add the remainder to the error difference.
480 * XXX - This is necessary to avoid small 1ns inconsistnecies caused
481 * by truncating the remainder in vsyscalls. However, it causes
482 * additional work to be done in timekeeping_adjust(). Once
483 * the vsyscall implementations are converted to use xtime_nsec
484 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
485 * users are removed, this can be killed.
487 remainder
= tk
->tkr_mono
.xtime_nsec
& ((1ULL << tk
->tkr_mono
.shift
) - 1);
488 tk
->tkr_mono
.xtime_nsec
-= remainder
;
489 tk
->tkr_mono
.xtime_nsec
+= 1ULL << tk
->tkr_mono
.shift
;
490 tk
->ntp_error
+= remainder
<< tk
->ntp_error_shift
;
491 tk
->ntp_error
-= (1ULL << tk
->tkr_mono
.shift
) << tk
->ntp_error_shift
;
494 #define old_vsyscall_fixup(tk)
497 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain
);
499 static void update_pvclock_gtod(struct timekeeper
*tk
, bool was_set
)
501 raw_notifier_call_chain(&pvclock_gtod_chain
, was_set
, tk
);
505 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
507 int pvclock_gtod_register_notifier(struct notifier_block
*nb
)
509 struct timekeeper
*tk
= &tk_core
.timekeeper
;
513 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
514 ret
= raw_notifier_chain_register(&pvclock_gtod_chain
, nb
);
515 update_pvclock_gtod(tk
, true);
516 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
520 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier
);
523 * pvclock_gtod_unregister_notifier - unregister a pvclock
524 * timedata update listener
526 int pvclock_gtod_unregister_notifier(struct notifier_block
*nb
)
531 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
532 ret
= raw_notifier_chain_unregister(&pvclock_gtod_chain
, nb
);
533 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
537 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier
);
540 * tk_update_leap_state - helper to update the next_leap_ktime
542 static inline void tk_update_leap_state(struct timekeeper
*tk
)
544 tk
->next_leap_ktime
= ntp_get_next_leap();
545 if (tk
->next_leap_ktime
.tv64
!= KTIME_MAX
)
546 /* Convert to monotonic time */
547 tk
->next_leap_ktime
= ktime_sub(tk
->next_leap_ktime
, tk
->offs_real
);
551 * Update the ktime_t based scalar nsec members of the timekeeper
553 static inline void tk_update_ktime_data(struct timekeeper
*tk
)
559 * The xtime based monotonic readout is:
560 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
561 * The ktime based monotonic readout is:
562 * nsec = base_mono + now();
563 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
565 seconds
= (u64
)(tk
->xtime_sec
+ tk
->wall_to_monotonic
.tv_sec
);
566 nsec
= (u32
) tk
->wall_to_monotonic
.tv_nsec
;
567 tk
->tkr_mono
.base
= ns_to_ktime(seconds
* NSEC_PER_SEC
+ nsec
);
569 /* Update the monotonic raw base */
570 tk
->tkr_raw
.base
= timespec64_to_ktime(tk
->raw_time
);
573 * The sum of the nanoseconds portions of xtime and
574 * wall_to_monotonic can be greater/equal one second. Take
575 * this into account before updating tk->ktime_sec.
577 nsec
+= (u32
)(tk
->tkr_mono
.xtime_nsec
>> tk
->tkr_mono
.shift
);
578 if (nsec
>= NSEC_PER_SEC
)
580 tk
->ktime_sec
= seconds
;
583 /* must hold timekeeper_lock */
584 static void timekeeping_update(struct timekeeper
*tk
, unsigned int action
)
586 if (action
& TK_CLEAR_NTP
) {
591 tk_update_leap_state(tk
);
592 tk_update_ktime_data(tk
);
595 update_pvclock_gtod(tk
, action
& TK_CLOCK_WAS_SET
);
597 update_fast_timekeeper(&tk
->tkr_mono
, &tk_fast_mono
);
598 update_fast_timekeeper(&tk
->tkr_raw
, &tk_fast_raw
);
600 if (action
& TK_CLOCK_WAS_SET
)
601 tk
->clock_was_set_seq
++;
603 * The mirroring of the data to the shadow-timekeeper needs
604 * to happen last here to ensure we don't over-write the
605 * timekeeper structure on the next update with stale data
607 if (action
& TK_MIRROR
)
608 memcpy(&shadow_timekeeper
, &tk_core
.timekeeper
,
609 sizeof(tk_core
.timekeeper
));
613 * timekeeping_forward_now - update clock to the current time
615 * Forward the current clock to update its state since the last call to
616 * update_wall_time(). This is useful before significant clock changes,
617 * as it avoids having to deal with this time offset explicitly.
619 static void timekeeping_forward_now(struct timekeeper
*tk
)
621 struct clocksource
*clock
= tk
->tkr_mono
.clock
;
622 cycle_t cycle_now
, delta
;
625 cycle_now
= tk
->tkr_mono
.read(clock
);
626 delta
= clocksource_delta(cycle_now
, tk
->tkr_mono
.cycle_last
, tk
->tkr_mono
.mask
);
627 tk
->tkr_mono
.cycle_last
= cycle_now
;
628 tk
->tkr_raw
.cycle_last
= cycle_now
;
630 tk
->tkr_mono
.xtime_nsec
+= delta
* tk
->tkr_mono
.mult
;
632 /* If arch requires, add in get_arch_timeoffset() */
633 tk
->tkr_mono
.xtime_nsec
+= (u64
)arch_gettimeoffset() << tk
->tkr_mono
.shift
;
635 tk_normalize_xtime(tk
);
637 nsec
= clocksource_cyc2ns(delta
, tk
->tkr_raw
.mult
, tk
->tkr_raw
.shift
);
638 timespec64_add_ns(&tk
->raw_time
, nsec
);
642 * __getnstimeofday64 - Returns the time of day in a timespec64.
643 * @ts: pointer to the timespec to be set
645 * Updates the time of day in the timespec.
646 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
648 int __getnstimeofday64(struct timespec64
*ts
)
650 struct timekeeper
*tk
= &tk_core
.timekeeper
;
655 seq
= read_seqcount_begin(&tk_core
.seq
);
657 ts
->tv_sec
= tk
->xtime_sec
;
658 nsecs
= timekeeping_get_ns(&tk
->tkr_mono
);
660 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
663 timespec64_add_ns(ts
, nsecs
);
666 * Do not bail out early, in case there were callers still using
667 * the value, even in the face of the WARN_ON.
669 if (unlikely(timekeeping_suspended
))
673 EXPORT_SYMBOL(__getnstimeofday64
);
676 * getnstimeofday64 - Returns the time of day in a timespec64.
677 * @ts: pointer to the timespec64 to be set
679 * Returns the time of day in a timespec64 (WARN if suspended).
681 void getnstimeofday64(struct timespec64
*ts
)
683 WARN_ON(__getnstimeofday64(ts
));
685 EXPORT_SYMBOL(getnstimeofday64
);
687 ktime_t
ktime_get(void)
689 struct timekeeper
*tk
= &tk_core
.timekeeper
;
694 WARN_ON(timekeeping_suspended
);
697 seq
= read_seqcount_begin(&tk_core
.seq
);
698 base
= tk
->tkr_mono
.base
;
699 nsecs
= timekeeping_get_ns(&tk
->tkr_mono
);
701 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
703 return ktime_add_ns(base
, nsecs
);
705 EXPORT_SYMBOL_GPL(ktime_get
);
707 u32
ktime_get_resolution_ns(void)
709 struct timekeeper
*tk
= &tk_core
.timekeeper
;
713 WARN_ON(timekeeping_suspended
);
716 seq
= read_seqcount_begin(&tk_core
.seq
);
717 nsecs
= tk
->tkr_mono
.mult
>> tk
->tkr_mono
.shift
;
718 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
722 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns
);
724 static ktime_t
*offsets
[TK_OFFS_MAX
] = {
725 [TK_OFFS_REAL
] = &tk_core
.timekeeper
.offs_real
,
726 [TK_OFFS_BOOT
] = &tk_core
.timekeeper
.offs_boot
,
727 [TK_OFFS_TAI
] = &tk_core
.timekeeper
.offs_tai
,
730 ktime_t
ktime_get_with_offset(enum tk_offsets offs
)
732 struct timekeeper
*tk
= &tk_core
.timekeeper
;
734 ktime_t base
, *offset
= offsets
[offs
];
737 WARN_ON(timekeeping_suspended
);
740 seq
= read_seqcount_begin(&tk_core
.seq
);
741 base
= ktime_add(tk
->tkr_mono
.base
, *offset
);
742 nsecs
= timekeeping_get_ns(&tk
->tkr_mono
);
744 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
746 return ktime_add_ns(base
, nsecs
);
749 EXPORT_SYMBOL_GPL(ktime_get_with_offset
);
752 * ktime_mono_to_any() - convert mononotic time to any other time
753 * @tmono: time to convert.
754 * @offs: which offset to use
756 ktime_t
ktime_mono_to_any(ktime_t tmono
, enum tk_offsets offs
)
758 ktime_t
*offset
= offsets
[offs
];
763 seq
= read_seqcount_begin(&tk_core
.seq
);
764 tconv
= ktime_add(tmono
, *offset
);
765 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
769 EXPORT_SYMBOL_GPL(ktime_mono_to_any
);
772 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
774 ktime_t
ktime_get_raw(void)
776 struct timekeeper
*tk
= &tk_core
.timekeeper
;
782 seq
= read_seqcount_begin(&tk_core
.seq
);
783 base
= tk
->tkr_raw
.base
;
784 nsecs
= timekeeping_get_ns(&tk
->tkr_raw
);
786 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
788 return ktime_add_ns(base
, nsecs
);
790 EXPORT_SYMBOL_GPL(ktime_get_raw
);
793 * ktime_get_ts64 - get the monotonic clock in timespec64 format
794 * @ts: pointer to timespec variable
796 * The function calculates the monotonic clock from the realtime
797 * clock and the wall_to_monotonic offset and stores the result
798 * in normalized timespec64 format in the variable pointed to by @ts.
800 void ktime_get_ts64(struct timespec64
*ts
)
802 struct timekeeper
*tk
= &tk_core
.timekeeper
;
803 struct timespec64 tomono
;
807 WARN_ON(timekeeping_suspended
);
810 seq
= read_seqcount_begin(&tk_core
.seq
);
811 ts
->tv_sec
= tk
->xtime_sec
;
812 nsec
= timekeeping_get_ns(&tk
->tkr_mono
);
813 tomono
= tk
->wall_to_monotonic
;
815 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
817 ts
->tv_sec
+= tomono
.tv_sec
;
819 timespec64_add_ns(ts
, nsec
+ tomono
.tv_nsec
);
821 EXPORT_SYMBOL_GPL(ktime_get_ts64
);
824 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
826 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
827 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
828 * works on both 32 and 64 bit systems. On 32 bit systems the readout
829 * covers ~136 years of uptime which should be enough to prevent
830 * premature wrap arounds.
832 time64_t
ktime_get_seconds(void)
834 struct timekeeper
*tk
= &tk_core
.timekeeper
;
836 WARN_ON(timekeeping_suspended
);
837 return tk
->ktime_sec
;
839 EXPORT_SYMBOL_GPL(ktime_get_seconds
);
842 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
844 * Returns the wall clock seconds since 1970. This replaces the
845 * get_seconds() interface which is not y2038 safe on 32bit systems.
847 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
848 * 32bit systems the access must be protected with the sequence
849 * counter to provide "atomic" access to the 64bit tk->xtime_sec
852 time64_t
ktime_get_real_seconds(void)
854 struct timekeeper
*tk
= &tk_core
.timekeeper
;
858 if (IS_ENABLED(CONFIG_64BIT
))
859 return tk
->xtime_sec
;
862 seq
= read_seqcount_begin(&tk_core
.seq
);
863 seconds
= tk
->xtime_sec
;
865 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
869 EXPORT_SYMBOL_GPL(ktime_get_real_seconds
);
871 #ifdef CONFIG_NTP_PPS
874 * ktime_get_raw_and_real_ts64 - get day and raw monotonic time in timespec format
875 * @ts_raw: pointer to the timespec to be set to raw monotonic time
876 * @ts_real: pointer to the timespec to be set to the time of day
878 * This function reads both the time of day and raw monotonic time at the
879 * same time atomically and stores the resulting timestamps in timespec
882 void ktime_get_raw_and_real_ts64(struct timespec64
*ts_raw
, struct timespec64
*ts_real
)
884 struct timekeeper
*tk
= &tk_core
.timekeeper
;
886 s64 nsecs_raw
, nsecs_real
;
888 WARN_ON_ONCE(timekeeping_suspended
);
891 seq
= read_seqcount_begin(&tk_core
.seq
);
893 *ts_raw
= tk
->raw_time
;
894 ts_real
->tv_sec
= tk
->xtime_sec
;
895 ts_real
->tv_nsec
= 0;
897 nsecs_raw
= timekeeping_get_ns(&tk
->tkr_raw
);
898 nsecs_real
= timekeeping_get_ns(&tk
->tkr_mono
);
900 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
902 timespec64_add_ns(ts_raw
, nsecs_raw
);
903 timespec64_add_ns(ts_real
, nsecs_real
);
905 EXPORT_SYMBOL(ktime_get_raw_and_real_ts64
);
907 #endif /* CONFIG_NTP_PPS */
910 * do_gettimeofday - Returns the time of day in a timeval
911 * @tv: pointer to the timeval to be set
913 * NOTE: Users should be converted to using getnstimeofday()
915 void do_gettimeofday(struct timeval
*tv
)
917 struct timespec64 now
;
919 getnstimeofday64(&now
);
920 tv
->tv_sec
= now
.tv_sec
;
921 tv
->tv_usec
= now
.tv_nsec
/1000;
923 EXPORT_SYMBOL(do_gettimeofday
);
926 * do_settimeofday64 - Sets the time of day.
927 * @ts: pointer to the timespec64 variable containing the new time
929 * Sets the time of day to the new time and update NTP and notify hrtimers
931 int do_settimeofday64(const struct timespec64
*ts
)
933 struct timekeeper
*tk
= &tk_core
.timekeeper
;
934 struct timespec64 ts_delta
, xt
;
938 if (!timespec64_valid_strict(ts
))
941 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
942 write_seqcount_begin(&tk_core
.seq
);
944 timekeeping_forward_now(tk
);
947 ts_delta
.tv_sec
= ts
->tv_sec
- xt
.tv_sec
;
948 ts_delta
.tv_nsec
= ts
->tv_nsec
- xt
.tv_nsec
;
950 if (timespec64_compare(&tk
->wall_to_monotonic
, &ts_delta
) > 0) {
955 tk_set_wall_to_mono(tk
, timespec64_sub(tk
->wall_to_monotonic
, ts_delta
));
957 tk_set_xtime(tk
, ts
);
959 timekeeping_update(tk
, TK_CLEAR_NTP
| TK_MIRROR
| TK_CLOCK_WAS_SET
);
961 write_seqcount_end(&tk_core
.seq
);
962 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
964 /* signal hrtimers about time change */
969 EXPORT_SYMBOL(do_settimeofday64
);
972 * timekeeping_inject_offset - Adds or subtracts from the current time.
973 * @tv: pointer to the timespec variable containing the offset
975 * Adds or subtracts an offset value from the current time.
977 int timekeeping_inject_offset(struct timespec
*ts
)
979 struct timekeeper
*tk
= &tk_core
.timekeeper
;
981 struct timespec64 ts64
, tmp
;
984 if (!timespec_inject_offset_valid(ts
))
987 ts64
= timespec_to_timespec64(*ts
);
989 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
990 write_seqcount_begin(&tk_core
.seq
);
992 timekeeping_forward_now(tk
);
994 /* Make sure the proposed value is valid */
995 tmp
= timespec64_add(tk_xtime(tk
), ts64
);
996 if (timespec64_compare(&tk
->wall_to_monotonic
, &ts64
) > 0 ||
997 !timespec64_valid_strict(&tmp
)) {
1002 tk_xtime_add(tk
, &ts64
);
1003 tk_set_wall_to_mono(tk
, timespec64_sub(tk
->wall_to_monotonic
, ts64
));
1005 error
: /* even if we error out, we forwarded the time, so call update */
1006 timekeeping_update(tk
, TK_CLEAR_NTP
| TK_MIRROR
| TK_CLOCK_WAS_SET
);
1008 write_seqcount_end(&tk_core
.seq
);
1009 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
1011 /* signal hrtimers about time change */
1016 EXPORT_SYMBOL(timekeeping_inject_offset
);
1020 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
1023 s32
timekeeping_get_tai_offset(void)
1025 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1030 seq
= read_seqcount_begin(&tk_core
.seq
);
1031 ret
= tk
->tai_offset
;
1032 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
1038 * __timekeeping_set_tai_offset - Lock free worker function
1041 static void __timekeeping_set_tai_offset(struct timekeeper
*tk
, s32 tai_offset
)
1043 tk
->tai_offset
= tai_offset
;
1044 tk
->offs_tai
= ktime_add(tk
->offs_real
, ktime_set(tai_offset
, 0));
1048 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
1051 void timekeeping_set_tai_offset(s32 tai_offset
)
1053 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1054 unsigned long flags
;
1056 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
1057 write_seqcount_begin(&tk_core
.seq
);
1058 __timekeeping_set_tai_offset(tk
, tai_offset
);
1059 timekeeping_update(tk
, TK_MIRROR
| TK_CLOCK_WAS_SET
);
1060 write_seqcount_end(&tk_core
.seq
);
1061 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
1066 * change_clocksource - Swaps clocksources if a new one is available
1068 * Accumulates current time interval and initializes new clocksource
1070 static int change_clocksource(void *data
)
1072 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1073 struct clocksource
*new, *old
;
1074 unsigned long flags
;
1076 new = (struct clocksource
*) data
;
1078 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
1079 write_seqcount_begin(&tk_core
.seq
);
1081 timekeeping_forward_now(tk
);
1083 * If the cs is in module, get a module reference. Succeeds
1084 * for built-in code (owner == NULL) as well.
1086 if (try_module_get(new->owner
)) {
1087 if (!new->enable
|| new->enable(new) == 0) {
1088 old
= tk
->tkr_mono
.clock
;
1089 tk_setup_internals(tk
, new);
1092 module_put(old
->owner
);
1094 module_put(new->owner
);
1097 timekeeping_update(tk
, TK_CLEAR_NTP
| TK_MIRROR
| TK_CLOCK_WAS_SET
);
1099 write_seqcount_end(&tk_core
.seq
);
1100 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
1106 * timekeeping_notify - Install a new clock source
1107 * @clock: pointer to the clock source
1109 * This function is called from clocksource.c after a new, better clock
1110 * source has been registered. The caller holds the clocksource_mutex.
1112 int timekeeping_notify(struct clocksource
*clock
)
1114 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1116 if (tk
->tkr_mono
.clock
== clock
)
1118 stop_machine(change_clocksource
, clock
, NULL
);
1119 tick_clock_notify();
1120 return tk
->tkr_mono
.clock
== clock
? 0 : -1;
1124 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1125 * @ts: pointer to the timespec64 to be set
1127 * Returns the raw monotonic time (completely un-modified by ntp)
1129 void getrawmonotonic64(struct timespec64
*ts
)
1131 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1132 struct timespec64 ts64
;
1137 seq
= read_seqcount_begin(&tk_core
.seq
);
1138 nsecs
= timekeeping_get_ns(&tk
->tkr_raw
);
1139 ts64
= tk
->raw_time
;
1141 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
1143 timespec64_add_ns(&ts64
, nsecs
);
1146 EXPORT_SYMBOL(getrawmonotonic64
);
1150 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1152 int timekeeping_valid_for_hres(void)
1154 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1159 seq
= read_seqcount_begin(&tk_core
.seq
);
1161 ret
= tk
->tkr_mono
.clock
->flags
& CLOCK_SOURCE_VALID_FOR_HRES
;
1163 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
1169 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1171 u64
timekeeping_max_deferment(void)
1173 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1178 seq
= read_seqcount_begin(&tk_core
.seq
);
1180 ret
= tk
->tkr_mono
.clock
->max_idle_ns
;
1182 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
1188 * read_persistent_clock - Return time from the persistent clock.
1190 * Weak dummy function for arches that do not yet support it.
1191 * Reads the time from the battery backed persistent clock.
1192 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1194 * XXX - Do be sure to remove it once all arches implement it.
1196 void __weak
read_persistent_clock(struct timespec
*ts
)
1202 void __weak
read_persistent_clock64(struct timespec64
*ts64
)
1206 read_persistent_clock(&ts
);
1207 *ts64
= timespec_to_timespec64(ts
);
1211 * read_boot_clock64 - Return time of the system start.
1213 * Weak dummy function for arches that do not yet support it.
1214 * Function to read the exact time the system has been started.
1215 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1217 * XXX - Do be sure to remove it once all arches implement it.
1219 void __weak
read_boot_clock64(struct timespec64
*ts
)
1225 /* Flag for if timekeeping_resume() has injected sleeptime */
1226 static bool sleeptime_injected
;
1228 /* Flag for if there is a persistent clock on this platform */
1229 static bool persistent_clock_exists
;
1232 * timekeeping_init - Initializes the clocksource and common timekeeping values
1234 void __init
timekeeping_init(void)
1236 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1237 struct clocksource
*clock
;
1238 unsigned long flags
;
1239 struct timespec64 now
, boot
, tmp
;
1241 read_persistent_clock64(&now
);
1242 if (!timespec64_valid_strict(&now
)) {
1243 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1244 " Check your CMOS/BIOS settings.\n");
1247 } else if (now
.tv_sec
|| now
.tv_nsec
)
1248 persistent_clock_exists
= true;
1250 read_boot_clock64(&boot
);
1251 if (!timespec64_valid_strict(&boot
)) {
1252 pr_warn("WARNING: Boot clock returned invalid value!\n"
1253 " Check your CMOS/BIOS settings.\n");
1258 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
1259 write_seqcount_begin(&tk_core
.seq
);
1262 clock
= clocksource_default_clock();
1264 clock
->enable(clock
);
1265 tk_setup_internals(tk
, clock
);
1267 tk_set_xtime(tk
, &now
);
1268 tk
->raw_time
.tv_sec
= 0;
1269 tk
->raw_time
.tv_nsec
= 0;
1270 if (boot
.tv_sec
== 0 && boot
.tv_nsec
== 0)
1271 boot
= tk_xtime(tk
);
1273 set_normalized_timespec64(&tmp
, -boot
.tv_sec
, -boot
.tv_nsec
);
1274 tk_set_wall_to_mono(tk
, tmp
);
1276 timekeeping_update(tk
, TK_MIRROR
| TK_CLOCK_WAS_SET
);
1278 write_seqcount_end(&tk_core
.seq
);
1279 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
1282 /* time in seconds when suspend began for persistent clock */
1283 static struct timespec64 timekeeping_suspend_time
;
1286 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1287 * @delta: pointer to a timespec delta value
1289 * Takes a timespec offset measuring a suspend interval and properly
1290 * adds the sleep offset to the timekeeping variables.
1292 static void __timekeeping_inject_sleeptime(struct timekeeper
*tk
,
1293 struct timespec64
*delta
)
1295 if (!timespec64_valid_strict(delta
)) {
1296 printk_deferred(KERN_WARNING
1297 "__timekeeping_inject_sleeptime: Invalid "
1298 "sleep delta value!\n");
1301 tk_xtime_add(tk
, delta
);
1302 tk_set_wall_to_mono(tk
, timespec64_sub(tk
->wall_to_monotonic
, *delta
));
1303 tk_update_sleep_time(tk
, timespec64_to_ktime(*delta
));
1304 tk_debug_account_sleep_time(delta
);
1307 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1309 * We have three kinds of time sources to use for sleep time
1310 * injection, the preference order is:
1311 * 1) non-stop clocksource
1312 * 2) persistent clock (ie: RTC accessible when irqs are off)
1315 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1316 * If system has neither 1) nor 2), 3) will be used finally.
1319 * If timekeeping has injected sleeptime via either 1) or 2),
1320 * 3) becomes needless, so in this case we don't need to call
1321 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1324 bool timekeeping_rtc_skipresume(void)
1326 return sleeptime_injected
;
1330 * 1) can be determined whether to use or not only when doing
1331 * timekeeping_resume() which is invoked after rtc_suspend(),
1332 * so we can't skip rtc_suspend() surely if system has 1).
1334 * But if system has 2), 2) will definitely be used, so in this
1335 * case we don't need to call rtc_suspend(), and this is what
1336 * timekeeping_rtc_skipsuspend() means.
1338 bool timekeeping_rtc_skipsuspend(void)
1340 return persistent_clock_exists
;
1344 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1345 * @delta: pointer to a timespec64 delta value
1347 * This hook is for architectures that cannot support read_persistent_clock64
1348 * because their RTC/persistent clock is only accessible when irqs are enabled.
1349 * and also don't have an effective nonstop clocksource.
1351 * This function should only be called by rtc_resume(), and allows
1352 * a suspend offset to be injected into the timekeeping values.
1354 void timekeeping_inject_sleeptime64(struct timespec64
*delta
)
1356 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1357 unsigned long flags
;
1359 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
1360 write_seqcount_begin(&tk_core
.seq
);
1362 timekeeping_forward_now(tk
);
1364 __timekeeping_inject_sleeptime(tk
, delta
);
1366 timekeeping_update(tk
, TK_CLEAR_NTP
| TK_MIRROR
| TK_CLOCK_WAS_SET
);
1368 write_seqcount_end(&tk_core
.seq
);
1369 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
1371 /* signal hrtimers about time change */
1377 * timekeeping_resume - Resumes the generic timekeeping subsystem.
1379 void timekeeping_resume(void)
1381 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1382 struct clocksource
*clock
= tk
->tkr_mono
.clock
;
1383 unsigned long flags
;
1384 struct timespec64 ts_new
, ts_delta
;
1385 cycle_t cycle_now
, cycle_delta
;
1387 sleeptime_injected
= false;
1388 read_persistent_clock64(&ts_new
);
1390 clockevents_resume();
1391 clocksource_resume();
1393 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
1394 write_seqcount_begin(&tk_core
.seq
);
1397 * After system resumes, we need to calculate the suspended time and
1398 * compensate it for the OS time. There are 3 sources that could be
1399 * used: Nonstop clocksource during suspend, persistent clock and rtc
1402 * One specific platform may have 1 or 2 or all of them, and the
1403 * preference will be:
1404 * suspend-nonstop clocksource -> persistent clock -> rtc
1405 * The less preferred source will only be tried if there is no better
1406 * usable source. The rtc part is handled separately in rtc core code.
1408 cycle_now
= tk
->tkr_mono
.read(clock
);
1409 if ((clock
->flags
& CLOCK_SOURCE_SUSPEND_NONSTOP
) &&
1410 cycle_now
> tk
->tkr_mono
.cycle_last
) {
1411 u64 num
, max
= ULLONG_MAX
;
1412 u32 mult
= clock
->mult
;
1413 u32 shift
= clock
->shift
;
1416 cycle_delta
= clocksource_delta(cycle_now
, tk
->tkr_mono
.cycle_last
,
1420 * "cycle_delta * mutl" may cause 64 bits overflow, if the
1421 * suspended time is too long. In that case we need do the
1422 * 64 bits math carefully
1425 if (cycle_delta
> max
) {
1426 num
= div64_u64(cycle_delta
, max
);
1427 nsec
= (((u64
) max
* mult
) >> shift
) * num
;
1428 cycle_delta
-= num
* max
;
1430 nsec
+= ((u64
) cycle_delta
* mult
) >> shift
;
1432 ts_delta
= ns_to_timespec64(nsec
);
1433 sleeptime_injected
= true;
1434 } else if (timespec64_compare(&ts_new
, &timekeeping_suspend_time
) > 0) {
1435 ts_delta
= timespec64_sub(ts_new
, timekeeping_suspend_time
);
1436 sleeptime_injected
= true;
1439 if (sleeptime_injected
)
1440 __timekeeping_inject_sleeptime(tk
, &ts_delta
);
1442 /* Re-base the last cycle value */
1443 tk
->tkr_mono
.cycle_last
= cycle_now
;
1444 tk
->tkr_raw
.cycle_last
= cycle_now
;
1447 timekeeping_suspended
= 0;
1448 timekeeping_update(tk
, TK_MIRROR
| TK_CLOCK_WAS_SET
);
1449 write_seqcount_end(&tk_core
.seq
);
1450 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
1452 touch_softlockup_watchdog();
1458 int timekeeping_suspend(void)
1460 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1461 unsigned long flags
;
1462 struct timespec64 delta
, delta_delta
;
1463 static struct timespec64 old_delta
;
1465 read_persistent_clock64(&timekeeping_suspend_time
);
1468 * On some systems the persistent_clock can not be detected at
1469 * timekeeping_init by its return value, so if we see a valid
1470 * value returned, update the persistent_clock_exists flag.
1472 if (timekeeping_suspend_time
.tv_sec
|| timekeeping_suspend_time
.tv_nsec
)
1473 persistent_clock_exists
= true;
1475 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
1476 write_seqcount_begin(&tk_core
.seq
);
1477 timekeeping_forward_now(tk
);
1478 timekeeping_suspended
= 1;
1480 if (persistent_clock_exists
) {
1482 * To avoid drift caused by repeated suspend/resumes,
1483 * which each can add ~1 second drift error,
1484 * try to compensate so the difference in system time
1485 * and persistent_clock time stays close to constant.
1487 delta
= timespec64_sub(tk_xtime(tk
), timekeeping_suspend_time
);
1488 delta_delta
= timespec64_sub(delta
, old_delta
);
1489 if (abs(delta_delta
.tv_sec
) >= 2) {
1491 * if delta_delta is too large, assume time correction
1492 * has occurred and set old_delta to the current delta.
1496 /* Otherwise try to adjust old_system to compensate */
1497 timekeeping_suspend_time
=
1498 timespec64_add(timekeeping_suspend_time
, delta_delta
);
1502 timekeeping_update(tk
, TK_MIRROR
);
1503 halt_fast_timekeeper(tk
);
1504 write_seqcount_end(&tk_core
.seq
);
1505 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
1508 clocksource_suspend();
1509 clockevents_suspend();
1514 /* sysfs resume/suspend bits for timekeeping */
1515 static struct syscore_ops timekeeping_syscore_ops
= {
1516 .resume
= timekeeping_resume
,
1517 .suspend
= timekeeping_suspend
,
1520 static int __init
timekeeping_init_ops(void)
1522 register_syscore_ops(&timekeeping_syscore_ops
);
1525 device_initcall(timekeeping_init_ops
);
1528 * Apply a multiplier adjustment to the timekeeper
1530 static __always_inline
void timekeeping_apply_adjustment(struct timekeeper
*tk
,
1535 s64 interval
= tk
->cycle_interval
;
1539 mult_adj
= -mult_adj
;
1540 interval
= -interval
;
1543 mult_adj
<<= adj_scale
;
1544 interval
<<= adj_scale
;
1545 offset
<<= adj_scale
;
1548 * So the following can be confusing.
1550 * To keep things simple, lets assume mult_adj == 1 for now.
1552 * When mult_adj != 1, remember that the interval and offset values
1553 * have been appropriately scaled so the math is the same.
1555 * The basic idea here is that we're increasing the multiplier
1556 * by one, this causes the xtime_interval to be incremented by
1557 * one cycle_interval. This is because:
1558 * xtime_interval = cycle_interval * mult
1559 * So if mult is being incremented by one:
1560 * xtime_interval = cycle_interval * (mult + 1)
1562 * xtime_interval = (cycle_interval * mult) + cycle_interval
1563 * Which can be shortened to:
1564 * xtime_interval += cycle_interval
1566 * So offset stores the non-accumulated cycles. Thus the current
1567 * time (in shifted nanoseconds) is:
1568 * now = (offset * adj) + xtime_nsec
1569 * Now, even though we're adjusting the clock frequency, we have
1570 * to keep time consistent. In other words, we can't jump back
1571 * in time, and we also want to avoid jumping forward in time.
1573 * So given the same offset value, we need the time to be the same
1574 * both before and after the freq adjustment.
1575 * now = (offset * adj_1) + xtime_nsec_1
1576 * now = (offset * adj_2) + xtime_nsec_2
1578 * (offset * adj_1) + xtime_nsec_1 =
1579 * (offset * adj_2) + xtime_nsec_2
1583 * (offset * adj_1) + xtime_nsec_1 =
1584 * (offset * (adj_1+1)) + xtime_nsec_2
1585 * (offset * adj_1) + xtime_nsec_1 =
1586 * (offset * adj_1) + offset + xtime_nsec_2
1587 * Canceling the sides:
1588 * xtime_nsec_1 = offset + xtime_nsec_2
1590 * xtime_nsec_2 = xtime_nsec_1 - offset
1591 * Which simplfies to:
1592 * xtime_nsec -= offset
1594 * XXX - TODO: Doc ntp_error calculation.
1596 if ((mult_adj
> 0) && (tk
->tkr_mono
.mult
+ mult_adj
< mult_adj
)) {
1597 /* NTP adjustment caused clocksource mult overflow */
1602 tk
->tkr_mono
.mult
+= mult_adj
;
1603 tk
->xtime_interval
+= interval
;
1604 tk
->tkr_mono
.xtime_nsec
-= offset
;
1605 tk
->ntp_error
-= (interval
- offset
) << tk
->ntp_error_shift
;
1609 * Calculate the multiplier adjustment needed to match the frequency
1612 static __always_inline
void timekeeping_freqadjust(struct timekeeper
*tk
,
1615 s64 interval
= tk
->cycle_interval
;
1616 s64 xinterval
= tk
->xtime_interval
;
1621 /* Remove any current error adj from freq calculation */
1622 if (tk
->ntp_err_mult
)
1623 xinterval
-= tk
->cycle_interval
;
1625 tk
->ntp_tick
= ntp_tick_length();
1627 /* Calculate current error per tick */
1628 tick_error
= ntp_tick_length() >> tk
->ntp_error_shift
;
1629 tick_error
-= (xinterval
+ tk
->xtime_remainder
);
1631 /* Don't worry about correcting it if its small */
1632 if (likely((tick_error
>= 0) && (tick_error
<= interval
)))
1635 /* preserve the direction of correction */
1636 negative
= (tick_error
< 0);
1638 /* Sort out the magnitude of the correction */
1639 tick_error
= abs(tick_error
);
1640 for (adj
= 0; tick_error
> interval
; adj
++)
1643 /* scale the corrections */
1644 timekeeping_apply_adjustment(tk
, offset
, negative
, adj
);
1648 * Adjust the timekeeper's multiplier to the correct frequency
1649 * and also to reduce the accumulated error value.
1651 static void timekeeping_adjust(struct timekeeper
*tk
, s64 offset
)
1653 /* Correct for the current frequency error */
1654 timekeeping_freqadjust(tk
, offset
);
1656 /* Next make a small adjustment to fix any cumulative error */
1657 if (!tk
->ntp_err_mult
&& (tk
->ntp_error
> 0)) {
1658 tk
->ntp_err_mult
= 1;
1659 timekeeping_apply_adjustment(tk
, offset
, 0, 0);
1660 } else if (tk
->ntp_err_mult
&& (tk
->ntp_error
<= 0)) {
1661 /* Undo any existing error adjustment */
1662 timekeeping_apply_adjustment(tk
, offset
, 1, 0);
1663 tk
->ntp_err_mult
= 0;
1666 if (unlikely(tk
->tkr_mono
.clock
->maxadj
&&
1667 (abs(tk
->tkr_mono
.mult
- tk
->tkr_mono
.clock
->mult
)
1668 > tk
->tkr_mono
.clock
->maxadj
))) {
1669 printk_once(KERN_WARNING
1670 "Adjusting %s more than 11%% (%ld vs %ld)\n",
1671 tk
->tkr_mono
.clock
->name
, (long)tk
->tkr_mono
.mult
,
1672 (long)tk
->tkr_mono
.clock
->mult
+ tk
->tkr_mono
.clock
->maxadj
);
1676 * It may be possible that when we entered this function, xtime_nsec
1677 * was very small. Further, if we're slightly speeding the clocksource
1678 * in the code above, its possible the required corrective factor to
1679 * xtime_nsec could cause it to underflow.
1681 * Now, since we already accumulated the second, cannot simply roll
1682 * the accumulated second back, since the NTP subsystem has been
1683 * notified via second_overflow. So instead we push xtime_nsec forward
1684 * by the amount we underflowed, and add that amount into the error.
1686 * We'll correct this error next time through this function, when
1687 * xtime_nsec is not as small.
1689 if (unlikely((s64
)tk
->tkr_mono
.xtime_nsec
< 0)) {
1690 s64 neg
= -(s64
)tk
->tkr_mono
.xtime_nsec
;
1691 tk
->tkr_mono
.xtime_nsec
= 0;
1692 tk
->ntp_error
+= neg
<< tk
->ntp_error_shift
;
1697 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1699 * Helper function that accumulates the nsecs greater than a second
1700 * from the xtime_nsec field to the xtime_secs field.
1701 * It also calls into the NTP code to handle leapsecond processing.
1704 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper
*tk
)
1706 u64 nsecps
= (u64
)NSEC_PER_SEC
<< tk
->tkr_mono
.shift
;
1707 unsigned int clock_set
= 0;
1709 while (tk
->tkr_mono
.xtime_nsec
>= nsecps
) {
1712 tk
->tkr_mono
.xtime_nsec
-= nsecps
;
1715 /* Figure out if its a leap sec and apply if needed */
1716 leap
= second_overflow(tk
->xtime_sec
);
1717 if (unlikely(leap
)) {
1718 struct timespec64 ts
;
1720 tk
->xtime_sec
+= leap
;
1724 tk_set_wall_to_mono(tk
,
1725 timespec64_sub(tk
->wall_to_monotonic
, ts
));
1727 __timekeeping_set_tai_offset(tk
, tk
->tai_offset
- leap
);
1729 clock_set
= TK_CLOCK_WAS_SET
;
1736 * logarithmic_accumulation - shifted accumulation of cycles
1738 * This functions accumulates a shifted interval of cycles into
1739 * into a shifted interval nanoseconds. Allows for O(log) accumulation
1742 * Returns the unconsumed cycles.
1744 static cycle_t
logarithmic_accumulation(struct timekeeper
*tk
, cycle_t offset
,
1746 unsigned int *clock_set
)
1748 cycle_t interval
= tk
->cycle_interval
<< shift
;
1751 /* If the offset is smaller than a shifted interval, do nothing */
1752 if (offset
< interval
)
1755 /* Accumulate one shifted interval */
1757 tk
->tkr_mono
.cycle_last
+= interval
;
1758 tk
->tkr_raw
.cycle_last
+= interval
;
1760 tk
->tkr_mono
.xtime_nsec
+= tk
->xtime_interval
<< shift
;
1761 *clock_set
|= accumulate_nsecs_to_secs(tk
);
1763 /* Accumulate raw time */
1764 raw_nsecs
= (u64
)tk
->raw_interval
<< shift
;
1765 raw_nsecs
+= tk
->raw_time
.tv_nsec
;
1766 if (raw_nsecs
>= NSEC_PER_SEC
) {
1767 u64 raw_secs
= raw_nsecs
;
1768 raw_nsecs
= do_div(raw_secs
, NSEC_PER_SEC
);
1769 tk
->raw_time
.tv_sec
+= raw_secs
;
1771 tk
->raw_time
.tv_nsec
= raw_nsecs
;
1773 /* Accumulate error between NTP and clock interval */
1774 tk
->ntp_error
+= tk
->ntp_tick
<< shift
;
1775 tk
->ntp_error
-= (tk
->xtime_interval
+ tk
->xtime_remainder
) <<
1776 (tk
->ntp_error_shift
+ shift
);
1782 * update_wall_time - Uses the current clocksource to increment the wall time
1785 void update_wall_time(void)
1787 struct timekeeper
*real_tk
= &tk_core
.timekeeper
;
1788 struct timekeeper
*tk
= &shadow_timekeeper
;
1790 int shift
= 0, maxshift
;
1791 unsigned int clock_set
= 0;
1792 unsigned long flags
;
1794 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
1796 /* Make sure we're fully resumed: */
1797 if (unlikely(timekeeping_suspended
))
1800 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1801 offset
= real_tk
->cycle_interval
;
1803 offset
= clocksource_delta(tk
->tkr_mono
.read(tk
->tkr_mono
.clock
),
1804 tk
->tkr_mono
.cycle_last
, tk
->tkr_mono
.mask
);
1807 /* Check if there's really nothing to do */
1808 if (offset
< real_tk
->cycle_interval
)
1811 /* Do some additional sanity checking */
1812 timekeeping_check_update(real_tk
, offset
);
1815 * With NO_HZ we may have to accumulate many cycle_intervals
1816 * (think "ticks") worth of time at once. To do this efficiently,
1817 * we calculate the largest doubling multiple of cycle_intervals
1818 * that is smaller than the offset. We then accumulate that
1819 * chunk in one go, and then try to consume the next smaller
1822 shift
= ilog2(offset
) - ilog2(tk
->cycle_interval
);
1823 shift
= max(0, shift
);
1824 /* Bound shift to one less than what overflows tick_length */
1825 maxshift
= (64 - (ilog2(ntp_tick_length())+1)) - 1;
1826 shift
= min(shift
, maxshift
);
1827 while (offset
>= tk
->cycle_interval
) {
1828 offset
= logarithmic_accumulation(tk
, offset
, shift
,
1830 if (offset
< tk
->cycle_interval
<<shift
)
1834 /* correct the clock when NTP error is too big */
1835 timekeeping_adjust(tk
, offset
);
1838 * XXX This can be killed once everyone converts
1839 * to the new update_vsyscall.
1841 old_vsyscall_fixup(tk
);
1844 * Finally, make sure that after the rounding
1845 * xtime_nsec isn't larger than NSEC_PER_SEC
1847 clock_set
|= accumulate_nsecs_to_secs(tk
);
1849 write_seqcount_begin(&tk_core
.seq
);
1851 * Update the real timekeeper.
1853 * We could avoid this memcpy by switching pointers, but that
1854 * requires changes to all other timekeeper usage sites as
1855 * well, i.e. move the timekeeper pointer getter into the
1856 * spinlocked/seqcount protected sections. And we trade this
1857 * memcpy under the tk_core.seq against one before we start
1860 timekeeping_update(tk
, clock_set
);
1861 memcpy(real_tk
, tk
, sizeof(*tk
));
1862 /* The memcpy must come last. Do not put anything here! */
1863 write_seqcount_end(&tk_core
.seq
);
1865 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
1867 /* Have to call _delayed version, since in irq context*/
1868 clock_was_set_delayed();
1872 * getboottime64 - Return the real time of system boot.
1873 * @ts: pointer to the timespec64 to be set
1875 * Returns the wall-time of boot in a timespec64.
1877 * This is based on the wall_to_monotonic offset and the total suspend
1878 * time. Calls to settimeofday will affect the value returned (which
1879 * basically means that however wrong your real time clock is at boot time,
1880 * you get the right time here).
1882 void getboottime64(struct timespec64
*ts
)
1884 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1885 ktime_t t
= ktime_sub(tk
->offs_real
, tk
->offs_boot
);
1887 *ts
= ktime_to_timespec64(t
);
1889 EXPORT_SYMBOL_GPL(getboottime64
);
1891 unsigned long get_seconds(void)
1893 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1895 return tk
->xtime_sec
;
1897 EXPORT_SYMBOL(get_seconds
);
1899 struct timespec
__current_kernel_time(void)
1901 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1903 return timespec64_to_timespec(tk_xtime(tk
));
1906 struct timespec64
current_kernel_time64(void)
1908 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1909 struct timespec64 now
;
1913 seq
= read_seqcount_begin(&tk_core
.seq
);
1916 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
1920 EXPORT_SYMBOL(current_kernel_time64
);
1922 struct timespec64
get_monotonic_coarse64(void)
1924 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1925 struct timespec64 now
, mono
;
1929 seq
= read_seqcount_begin(&tk_core
.seq
);
1932 mono
= tk
->wall_to_monotonic
;
1933 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
1935 set_normalized_timespec64(&now
, now
.tv_sec
+ mono
.tv_sec
,
1936 now
.tv_nsec
+ mono
.tv_nsec
);
1942 * Must hold jiffies_lock
1944 void do_timer(unsigned long ticks
)
1946 jiffies_64
+= ticks
;
1947 calc_global_load(ticks
);
1951 * ktime_get_update_offsets_now - hrtimer helper
1952 * @cwsseq: pointer to check and store the clock was set sequence number
1953 * @offs_real: pointer to storage for monotonic -> realtime offset
1954 * @offs_boot: pointer to storage for monotonic -> boottime offset
1955 * @offs_tai: pointer to storage for monotonic -> clock tai offset
1957 * Returns current monotonic time and updates the offsets if the
1958 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
1961 * Called from hrtimer_interrupt() or retrigger_next_event()
1963 ktime_t
ktime_get_update_offsets_now(unsigned int *cwsseq
, ktime_t
*offs_real
,
1964 ktime_t
*offs_boot
, ktime_t
*offs_tai
)
1966 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1972 seq
= read_seqcount_begin(&tk_core
.seq
);
1974 base
= tk
->tkr_mono
.base
;
1975 nsecs
= timekeeping_get_ns(&tk
->tkr_mono
);
1976 base
= ktime_add_ns(base
, nsecs
);
1978 if (*cwsseq
!= tk
->clock_was_set_seq
) {
1979 *cwsseq
= tk
->clock_was_set_seq
;
1980 *offs_real
= tk
->offs_real
;
1981 *offs_boot
= tk
->offs_boot
;
1982 *offs_tai
= tk
->offs_tai
;
1985 /* Handle leapsecond insertion adjustments */
1986 if (unlikely(base
.tv64
>= tk
->next_leap_ktime
.tv64
))
1987 *offs_real
= ktime_sub(tk
->offs_real
, ktime_set(1, 0));
1989 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
1995 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
1997 int do_adjtimex(struct timex
*txc
)
1999 struct timekeeper
*tk
= &tk_core
.timekeeper
;
2000 unsigned long flags
;
2001 struct timespec64 ts
;
2005 /* Validate the data before disabling interrupts */
2006 ret
= ntp_validate_timex(txc
);
2010 if (txc
->modes
& ADJ_SETOFFSET
) {
2011 struct timespec delta
;
2012 delta
.tv_sec
= txc
->time
.tv_sec
;
2013 delta
.tv_nsec
= txc
->time
.tv_usec
;
2014 if (!(txc
->modes
& ADJ_NANO
))
2015 delta
.tv_nsec
*= 1000;
2016 ret
= timekeeping_inject_offset(&delta
);
2021 getnstimeofday64(&ts
);
2023 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
2024 write_seqcount_begin(&tk_core
.seq
);
2026 orig_tai
= tai
= tk
->tai_offset
;
2027 ret
= __do_adjtimex(txc
, &ts
, &tai
);
2029 if (tai
!= orig_tai
) {
2030 __timekeeping_set_tai_offset(tk
, tai
);
2031 timekeeping_update(tk
, TK_MIRROR
| TK_CLOCK_WAS_SET
);
2033 tk_update_leap_state(tk
);
2035 write_seqcount_end(&tk_core
.seq
);
2036 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
2038 if (tai
!= orig_tai
)
2041 ntp_notify_cmos_timer();
2046 #ifdef CONFIG_NTP_PPS
2048 * hardpps() - Accessor function to NTP __hardpps function
2050 void hardpps(const struct timespec64
*phase_ts
, const struct timespec64
*raw_ts
)
2052 unsigned long flags
;
2054 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
2055 write_seqcount_begin(&tk_core
.seq
);
2057 __hardpps(phase_ts
, raw_ts
);
2059 write_seqcount_end(&tk_core
.seq
);
2060 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
2062 EXPORT_SYMBOL(hardpps
);
2066 * xtime_update() - advances the timekeeping infrastructure
2067 * @ticks: number of ticks, that have elapsed since the last call.
2069 * Must be called with interrupts disabled.
2071 void xtime_update(unsigned long ticks
)
2073 write_seqlock(&jiffies_lock
);
2075 write_sequnlock(&jiffies_lock
);