4 * Copyright (C) 2002, Linus Torvalds.
5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
7 * Contains functions related to writing back dirty pages at the
10 * 10Apr2002 Andrew Morton
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/spinlock.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <linux/mm_inline.h>
40 #include <trace/events/writeback.h>
45 * Sleep at most 200ms at a time in balance_dirty_pages().
47 #define MAX_PAUSE max(HZ/5, 1)
50 * Try to keep balance_dirty_pages() call intervals higher than this many pages
51 * by raising pause time to max_pause when falls below it.
53 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
56 * Estimate write bandwidth at 200ms intervals.
58 #define BANDWIDTH_INTERVAL max(HZ/5, 1)
60 #define RATELIMIT_CALC_SHIFT 10
63 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
64 * will look to see if it needs to force writeback or throttling.
66 static long ratelimit_pages
= 32;
68 /* The following parameters are exported via /proc/sys/vm */
71 * Start background writeback (via writeback threads) at this percentage
73 int dirty_background_ratio
= 10;
76 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
77 * dirty_background_ratio * the amount of dirtyable memory
79 unsigned long dirty_background_bytes
;
82 * free highmem will not be subtracted from the total free memory
83 * for calculating free ratios if vm_highmem_is_dirtyable is true
85 int vm_highmem_is_dirtyable
;
88 * The generator of dirty data starts writeback at this percentage
90 int vm_dirty_ratio
= 20;
93 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
94 * vm_dirty_ratio * the amount of dirtyable memory
96 unsigned long vm_dirty_bytes
;
99 * The interval between `kupdate'-style writebacks
101 unsigned int dirty_writeback_interval
= 5 * 100; /* centiseconds */
103 EXPORT_SYMBOL_GPL(dirty_writeback_interval
);
106 * The longest time for which data is allowed to remain dirty
108 unsigned int dirty_expire_interval
= 30 * 100; /* centiseconds */
111 * Flag that makes the machine dump writes/reads and block dirtyings.
116 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
117 * a full sync is triggered after this time elapses without any disk activity.
121 EXPORT_SYMBOL(laptop_mode
);
123 /* End of sysctl-exported parameters */
125 struct wb_domain global_wb_domain
;
127 /* consolidated parameters for balance_dirty_pages() and its subroutines */
128 struct dirty_throttle_control
{
129 #ifdef CONFIG_CGROUP_WRITEBACK
130 struct wb_domain
*dom
;
131 struct dirty_throttle_control
*gdtc
; /* only set in memcg dtc's */
133 struct bdi_writeback
*wb
;
134 struct fprop_local_percpu
*wb_completions
;
136 unsigned long avail
; /* dirtyable */
137 unsigned long dirty
; /* file_dirty + write + nfs */
138 unsigned long thresh
; /* dirty threshold */
139 unsigned long bg_thresh
; /* dirty background threshold */
141 unsigned long wb_dirty
; /* per-wb counterparts */
142 unsigned long wb_thresh
;
143 unsigned long wb_bg_thresh
;
145 unsigned long pos_ratio
;
149 * Length of period for aging writeout fractions of bdis. This is an
150 * arbitrarily chosen number. The longer the period, the slower fractions will
151 * reflect changes in current writeout rate.
153 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
155 #ifdef CONFIG_CGROUP_WRITEBACK
157 #define GDTC_INIT(__wb) .wb = (__wb), \
158 .dom = &global_wb_domain, \
159 .wb_completions = &(__wb)->completions
161 #define GDTC_INIT_NO_WB .dom = &global_wb_domain
163 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \
164 .dom = mem_cgroup_wb_domain(__wb), \
165 .wb_completions = &(__wb)->memcg_completions, \
168 static bool mdtc_valid(struct dirty_throttle_control
*dtc
)
173 static struct wb_domain
*dtc_dom(struct dirty_throttle_control
*dtc
)
178 static struct dirty_throttle_control
*mdtc_gdtc(struct dirty_throttle_control
*mdtc
)
183 static struct fprop_local_percpu
*wb_memcg_completions(struct bdi_writeback
*wb
)
185 return &wb
->memcg_completions
;
188 static void wb_min_max_ratio(struct bdi_writeback
*wb
,
189 unsigned long *minp
, unsigned long *maxp
)
191 unsigned long this_bw
= wb
->avg_write_bandwidth
;
192 unsigned long tot_bw
= atomic_long_read(&wb
->bdi
->tot_write_bandwidth
);
193 unsigned long long min
= wb
->bdi
->min_ratio
;
194 unsigned long long max
= wb
->bdi
->max_ratio
;
197 * @wb may already be clean by the time control reaches here and
198 * the total may not include its bw.
200 if (this_bw
< tot_bw
) {
215 #else /* CONFIG_CGROUP_WRITEBACK */
217 #define GDTC_INIT(__wb) .wb = (__wb), \
218 .wb_completions = &(__wb)->completions
219 #define GDTC_INIT_NO_WB
220 #define MDTC_INIT(__wb, __gdtc)
222 static bool mdtc_valid(struct dirty_throttle_control
*dtc
)
227 static struct wb_domain
*dtc_dom(struct dirty_throttle_control
*dtc
)
229 return &global_wb_domain
;
232 static struct dirty_throttle_control
*mdtc_gdtc(struct dirty_throttle_control
*mdtc
)
237 static struct fprop_local_percpu
*wb_memcg_completions(struct bdi_writeback
*wb
)
242 static void wb_min_max_ratio(struct bdi_writeback
*wb
,
243 unsigned long *minp
, unsigned long *maxp
)
245 *minp
= wb
->bdi
->min_ratio
;
246 *maxp
= wb
->bdi
->max_ratio
;
249 #endif /* CONFIG_CGROUP_WRITEBACK */
252 * In a memory zone, there is a certain amount of pages we consider
253 * available for the page cache, which is essentially the number of
254 * free and reclaimable pages, minus some zone reserves to protect
255 * lowmem and the ability to uphold the zone's watermarks without
256 * requiring writeback.
258 * This number of dirtyable pages is the base value of which the
259 * user-configurable dirty ratio is the effictive number of pages that
260 * are allowed to be actually dirtied. Per individual zone, or
261 * globally by using the sum of dirtyable pages over all zones.
263 * Because the user is allowed to specify the dirty limit globally as
264 * absolute number of bytes, calculating the per-zone dirty limit can
265 * require translating the configured limit into a percentage of
266 * global dirtyable memory first.
270 * zone_dirtyable_memory - number of dirtyable pages in a zone
273 * Returns the zone's number of pages potentially available for dirty
274 * page cache. This is the base value for the per-zone dirty limits.
276 static unsigned long zone_dirtyable_memory(struct zone
*zone
)
278 unsigned long nr_pages
;
280 nr_pages
= zone_page_state(zone
, NR_FREE_PAGES
);
281 nr_pages
-= min(nr_pages
, zone
->dirty_balance_reserve
);
283 nr_pages
+= zone_page_state(zone
, NR_INACTIVE_FILE
);
284 nr_pages
+= zone_page_state(zone
, NR_ACTIVE_FILE
);
289 static unsigned long highmem_dirtyable_memory(unsigned long total
)
291 #ifdef CONFIG_HIGHMEM
295 for_each_node_state(node
, N_HIGH_MEMORY
) {
296 struct zone
*z
= &NODE_DATA(node
)->node_zones
[ZONE_HIGHMEM
];
298 x
+= zone_dirtyable_memory(z
);
301 * Unreclaimable memory (kernel memory or anonymous memory
302 * without swap) can bring down the dirtyable pages below
303 * the zone's dirty balance reserve and the above calculation
304 * will underflow. However we still want to add in nodes
305 * which are below threshold (negative values) to get a more
306 * accurate calculation but make sure that the total never
313 * Make sure that the number of highmem pages is never larger
314 * than the number of the total dirtyable memory. This can only
315 * occur in very strange VM situations but we want to make sure
316 * that this does not occur.
318 return min(x
, total
);
325 * global_dirtyable_memory - number of globally dirtyable pages
327 * Returns the global number of pages potentially available for dirty
328 * page cache. This is the base value for the global dirty limits.
330 static unsigned long global_dirtyable_memory(void)
334 x
= global_page_state(NR_FREE_PAGES
);
335 x
-= min(x
, dirty_balance_reserve
);
337 x
+= global_page_state(NR_INACTIVE_FILE
);
338 x
+= global_page_state(NR_ACTIVE_FILE
);
340 if (!vm_highmem_is_dirtyable
)
341 x
-= highmem_dirtyable_memory(x
);
343 return x
+ 1; /* Ensure that we never return 0 */
347 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
348 * @dtc: dirty_throttle_control of interest
350 * Calculate @dtc->thresh and ->bg_thresh considering
351 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller
352 * must ensure that @dtc->avail is set before calling this function. The
353 * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
356 static void domain_dirty_limits(struct dirty_throttle_control
*dtc
)
358 const unsigned long available_memory
= dtc
->avail
;
359 struct dirty_throttle_control
*gdtc
= mdtc_gdtc(dtc
);
360 unsigned long bytes
= vm_dirty_bytes
;
361 unsigned long bg_bytes
= dirty_background_bytes
;
362 /* convert ratios to per-PAGE_SIZE for higher precision */
363 unsigned long ratio
= (vm_dirty_ratio
* PAGE_SIZE
) / 100;
364 unsigned long bg_ratio
= (dirty_background_ratio
* PAGE_SIZE
) / 100;
365 unsigned long thresh
;
366 unsigned long bg_thresh
;
367 struct task_struct
*tsk
;
369 /* gdtc is !NULL iff @dtc is for memcg domain */
371 unsigned long global_avail
= gdtc
->avail
;
374 * The byte settings can't be applied directly to memcg
375 * domains. Convert them to ratios by scaling against
376 * globally available memory. As the ratios are in
377 * per-PAGE_SIZE, they can be obtained by dividing bytes by
381 ratio
= min(DIV_ROUND_UP(bytes
, global_avail
),
384 bg_ratio
= min(DIV_ROUND_UP(bg_bytes
, global_avail
),
386 bytes
= bg_bytes
= 0;
390 thresh
= DIV_ROUND_UP(bytes
, PAGE_SIZE
);
392 thresh
= (ratio
* available_memory
) / PAGE_SIZE
;
395 bg_thresh
= DIV_ROUND_UP(bg_bytes
, PAGE_SIZE
);
397 bg_thresh
= (bg_ratio
* available_memory
) / PAGE_SIZE
;
399 if (bg_thresh
>= thresh
)
400 bg_thresh
= thresh
/ 2;
402 if (tsk
->flags
& PF_LESS_THROTTLE
|| rt_task(tsk
)) {
403 bg_thresh
+= bg_thresh
/ 4;
404 thresh
+= thresh
/ 4;
406 dtc
->thresh
= thresh
;
407 dtc
->bg_thresh
= bg_thresh
;
409 /* we should eventually report the domain in the TP */
411 trace_global_dirty_state(bg_thresh
, thresh
);
415 * global_dirty_limits - background-writeback and dirty-throttling thresholds
416 * @pbackground: out parameter for bg_thresh
417 * @pdirty: out parameter for thresh
419 * Calculate bg_thresh and thresh for global_wb_domain. See
420 * domain_dirty_limits() for details.
422 void global_dirty_limits(unsigned long *pbackground
, unsigned long *pdirty
)
424 struct dirty_throttle_control gdtc
= { GDTC_INIT_NO_WB
};
426 gdtc
.avail
= global_dirtyable_memory();
427 domain_dirty_limits(&gdtc
);
429 *pbackground
= gdtc
.bg_thresh
;
430 *pdirty
= gdtc
.thresh
;
434 * zone_dirty_limit - maximum number of dirty pages allowed in a zone
437 * Returns the maximum number of dirty pages allowed in a zone, based
438 * on the zone's dirtyable memory.
440 static unsigned long zone_dirty_limit(struct zone
*zone
)
442 unsigned long zone_memory
= zone_dirtyable_memory(zone
);
443 struct task_struct
*tsk
= current
;
447 dirty
= DIV_ROUND_UP(vm_dirty_bytes
, PAGE_SIZE
) *
448 zone_memory
/ global_dirtyable_memory();
450 dirty
= vm_dirty_ratio
* zone_memory
/ 100;
452 if (tsk
->flags
& PF_LESS_THROTTLE
|| rt_task(tsk
))
459 * zone_dirty_ok - tells whether a zone is within its dirty limits
460 * @zone: the zone to check
462 * Returns %true when the dirty pages in @zone are within the zone's
463 * dirty limit, %false if the limit is exceeded.
465 bool zone_dirty_ok(struct zone
*zone
)
467 unsigned long limit
= zone_dirty_limit(zone
);
469 return zone_page_state(zone
, NR_FILE_DIRTY
) +
470 zone_page_state(zone
, NR_UNSTABLE_NFS
) +
471 zone_page_state(zone
, NR_WRITEBACK
) <= limit
;
474 int dirty_background_ratio_handler(struct ctl_table
*table
, int write
,
475 void __user
*buffer
, size_t *lenp
,
480 ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
481 if (ret
== 0 && write
)
482 dirty_background_bytes
= 0;
486 int dirty_background_bytes_handler(struct ctl_table
*table
, int write
,
487 void __user
*buffer
, size_t *lenp
,
492 ret
= proc_doulongvec_minmax(table
, write
, buffer
, lenp
, ppos
);
493 if (ret
== 0 && write
)
494 dirty_background_ratio
= 0;
498 int dirty_ratio_handler(struct ctl_table
*table
, int write
,
499 void __user
*buffer
, size_t *lenp
,
502 int old_ratio
= vm_dirty_ratio
;
505 ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
506 if (ret
== 0 && write
&& vm_dirty_ratio
!= old_ratio
) {
507 writeback_set_ratelimit();
513 int dirty_bytes_handler(struct ctl_table
*table
, int write
,
514 void __user
*buffer
, size_t *lenp
,
517 unsigned long old_bytes
= vm_dirty_bytes
;
520 ret
= proc_doulongvec_minmax(table
, write
, buffer
, lenp
, ppos
);
521 if (ret
== 0 && write
&& vm_dirty_bytes
!= old_bytes
) {
522 writeback_set_ratelimit();
528 static unsigned long wp_next_time(unsigned long cur_time
)
530 cur_time
+= VM_COMPLETIONS_PERIOD_LEN
;
531 /* 0 has a special meaning... */
537 static void wb_domain_writeout_inc(struct wb_domain
*dom
,
538 struct fprop_local_percpu
*completions
,
539 unsigned int max_prop_frac
)
541 __fprop_inc_percpu_max(&dom
->completions
, completions
,
543 /* First event after period switching was turned off? */
544 if (!unlikely(dom
->period_time
)) {
546 * We can race with other __bdi_writeout_inc calls here but
547 * it does not cause any harm since the resulting time when
548 * timer will fire and what is in writeout_period_time will be
551 dom
->period_time
= wp_next_time(jiffies
);
552 mod_timer(&dom
->period_timer
, dom
->period_time
);
557 * Increment @wb's writeout completion count and the global writeout
558 * completion count. Called from test_clear_page_writeback().
560 static inline void __wb_writeout_inc(struct bdi_writeback
*wb
)
562 struct wb_domain
*cgdom
;
564 __inc_wb_stat(wb
, WB_WRITTEN
);
565 wb_domain_writeout_inc(&global_wb_domain
, &wb
->completions
,
566 wb
->bdi
->max_prop_frac
);
568 cgdom
= mem_cgroup_wb_domain(wb
);
570 wb_domain_writeout_inc(cgdom
, wb_memcg_completions(wb
),
571 wb
->bdi
->max_prop_frac
);
574 void wb_writeout_inc(struct bdi_writeback
*wb
)
578 local_irq_save(flags
);
579 __wb_writeout_inc(wb
);
580 local_irq_restore(flags
);
582 EXPORT_SYMBOL_GPL(wb_writeout_inc
);
585 * On idle system, we can be called long after we scheduled because we use
586 * deferred timers so count with missed periods.
588 static void writeout_period(unsigned long t
)
590 struct wb_domain
*dom
= (void *)t
;
591 int miss_periods
= (jiffies
- dom
->period_time
) /
592 VM_COMPLETIONS_PERIOD_LEN
;
594 if (fprop_new_period(&dom
->completions
, miss_periods
+ 1)) {
595 dom
->period_time
= wp_next_time(dom
->period_time
+
596 miss_periods
* VM_COMPLETIONS_PERIOD_LEN
);
597 mod_timer(&dom
->period_timer
, dom
->period_time
);
600 * Aging has zeroed all fractions. Stop wasting CPU on period
603 dom
->period_time
= 0;
607 int wb_domain_init(struct wb_domain
*dom
, gfp_t gfp
)
609 memset(dom
, 0, sizeof(*dom
));
611 spin_lock_init(&dom
->lock
);
613 init_timer_deferrable(&dom
->period_timer
);
614 dom
->period_timer
.function
= writeout_period
;
615 dom
->period_timer
.data
= (unsigned long)dom
;
617 dom
->dirty_limit_tstamp
= jiffies
;
619 return fprop_global_init(&dom
->completions
, gfp
);
622 #ifdef CONFIG_CGROUP_WRITEBACK
623 void wb_domain_exit(struct wb_domain
*dom
)
625 del_timer_sync(&dom
->period_timer
);
626 fprop_global_destroy(&dom
->completions
);
631 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
632 * registered backing devices, which, for obvious reasons, can not
635 static unsigned int bdi_min_ratio
;
637 int bdi_set_min_ratio(struct backing_dev_info
*bdi
, unsigned int min_ratio
)
641 spin_lock_bh(&bdi_lock
);
642 if (min_ratio
> bdi
->max_ratio
) {
645 min_ratio
-= bdi
->min_ratio
;
646 if (bdi_min_ratio
+ min_ratio
< 100) {
647 bdi_min_ratio
+= min_ratio
;
648 bdi
->min_ratio
+= min_ratio
;
653 spin_unlock_bh(&bdi_lock
);
658 int bdi_set_max_ratio(struct backing_dev_info
*bdi
, unsigned max_ratio
)
665 spin_lock_bh(&bdi_lock
);
666 if (bdi
->min_ratio
> max_ratio
) {
669 bdi
->max_ratio
= max_ratio
;
670 bdi
->max_prop_frac
= (FPROP_FRAC_BASE
* max_ratio
) / 100;
672 spin_unlock_bh(&bdi_lock
);
676 EXPORT_SYMBOL(bdi_set_max_ratio
);
678 static unsigned long dirty_freerun_ceiling(unsigned long thresh
,
679 unsigned long bg_thresh
)
681 return (thresh
+ bg_thresh
) / 2;
684 static unsigned long hard_dirty_limit(struct wb_domain
*dom
,
685 unsigned long thresh
)
687 return max(thresh
, dom
->dirty_limit
);
691 * Memory which can be further allocated to a memcg domain is capped by
692 * system-wide clean memory excluding the amount being used in the domain.
694 static void mdtc_calc_avail(struct dirty_throttle_control
*mdtc
,
695 unsigned long filepages
, unsigned long headroom
)
697 struct dirty_throttle_control
*gdtc
= mdtc_gdtc(mdtc
);
698 unsigned long clean
= filepages
- min(filepages
, mdtc
->dirty
);
699 unsigned long global_clean
= gdtc
->avail
- min(gdtc
->avail
, gdtc
->dirty
);
700 unsigned long other_clean
= global_clean
- min(global_clean
, clean
);
702 mdtc
->avail
= filepages
+ min(headroom
, other_clean
);
706 * __wb_calc_thresh - @wb's share of dirty throttling threshold
707 * @dtc: dirty_throttle_context of interest
709 * Returns @wb's dirty limit in pages. The term "dirty" in the context of
710 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
712 * Note that balance_dirty_pages() will only seriously take it as a hard limit
713 * when sleeping max_pause per page is not enough to keep the dirty pages under
714 * control. For example, when the device is completely stalled due to some error
715 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
716 * In the other normal situations, it acts more gently by throttling the tasks
717 * more (rather than completely block them) when the wb dirty pages go high.
719 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
720 * - starving fast devices
721 * - piling up dirty pages (that will take long time to sync) on slow devices
723 * The wb's share of dirty limit will be adapting to its throughput and
724 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
726 static unsigned long __wb_calc_thresh(struct dirty_throttle_control
*dtc
)
728 struct wb_domain
*dom
= dtc_dom(dtc
);
729 unsigned long thresh
= dtc
->thresh
;
731 long numerator
, denominator
;
732 unsigned long wb_min_ratio
, wb_max_ratio
;
735 * Calculate this BDI's share of the thresh ratio.
737 fprop_fraction_percpu(&dom
->completions
, dtc
->wb_completions
,
738 &numerator
, &denominator
);
740 wb_thresh
= (thresh
* (100 - bdi_min_ratio
)) / 100;
741 wb_thresh
*= numerator
;
742 do_div(wb_thresh
, denominator
);
744 wb_min_max_ratio(dtc
->wb
, &wb_min_ratio
, &wb_max_ratio
);
746 wb_thresh
+= (thresh
* wb_min_ratio
) / 100;
747 if (wb_thresh
> (thresh
* wb_max_ratio
) / 100)
748 wb_thresh
= thresh
* wb_max_ratio
/ 100;
753 unsigned long wb_calc_thresh(struct bdi_writeback
*wb
, unsigned long thresh
)
755 struct dirty_throttle_control gdtc
= { GDTC_INIT(wb
),
757 return __wb_calc_thresh(&gdtc
);
762 * f(dirty) := 1.0 + (----------------)
765 * it's a 3rd order polynomial that subjects to
767 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
768 * (2) f(setpoint) = 1.0 => the balance point
769 * (3) f(limit) = 0 => the hard limit
770 * (4) df/dx <= 0 => negative feedback control
771 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
772 * => fast response on large errors; small oscillation near setpoint
774 static long long pos_ratio_polynom(unsigned long setpoint
,
781 x
= div64_s64(((s64
)setpoint
- (s64
)dirty
) << RATELIMIT_CALC_SHIFT
,
782 (limit
- setpoint
) | 1);
784 pos_ratio
= pos_ratio
* x
>> RATELIMIT_CALC_SHIFT
;
785 pos_ratio
= pos_ratio
* x
>> RATELIMIT_CALC_SHIFT
;
786 pos_ratio
+= 1 << RATELIMIT_CALC_SHIFT
;
788 return clamp(pos_ratio
, 0LL, 2LL << RATELIMIT_CALC_SHIFT
);
792 * Dirty position control.
794 * (o) global/bdi setpoints
796 * We want the dirty pages be balanced around the global/wb setpoints.
797 * When the number of dirty pages is higher/lower than the setpoint, the
798 * dirty position control ratio (and hence task dirty ratelimit) will be
799 * decreased/increased to bring the dirty pages back to the setpoint.
801 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
803 * if (dirty < setpoint) scale up pos_ratio
804 * if (dirty > setpoint) scale down pos_ratio
806 * if (wb_dirty < wb_setpoint) scale up pos_ratio
807 * if (wb_dirty > wb_setpoint) scale down pos_ratio
809 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
811 * (o) global control line
815 * | |<===== global dirty control scope ======>|
823 * 1.0 ................................*
829 * 0 +------------.------------------.----------------------*------------->
830 * freerun^ setpoint^ limit^ dirty pages
832 * (o) wb control line
840 * | * |<=========== span ============>|
841 * 1.0 .......................*
853 * 1/4 ...............................................* * * * * * * * * * * *
857 * 0 +----------------------.-------------------------------.------------->
858 * wb_setpoint^ x_intercept^
860 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
861 * be smoothly throttled down to normal if it starts high in situations like
862 * - start writing to a slow SD card and a fast disk at the same time. The SD
863 * card's wb_dirty may rush to many times higher than wb_setpoint.
864 * - the wb dirty thresh drops quickly due to change of JBOD workload
866 static void wb_position_ratio(struct dirty_throttle_control
*dtc
)
868 struct bdi_writeback
*wb
= dtc
->wb
;
869 unsigned long write_bw
= wb
->avg_write_bandwidth
;
870 unsigned long freerun
= dirty_freerun_ceiling(dtc
->thresh
, dtc
->bg_thresh
);
871 unsigned long limit
= hard_dirty_limit(dtc_dom(dtc
), dtc
->thresh
);
872 unsigned long wb_thresh
= dtc
->wb_thresh
;
873 unsigned long x_intercept
;
874 unsigned long setpoint
; /* dirty pages' target balance point */
875 unsigned long wb_setpoint
;
877 long long pos_ratio
; /* for scaling up/down the rate limit */
882 if (unlikely(dtc
->dirty
>= limit
))
888 * See comment for pos_ratio_polynom().
890 setpoint
= (freerun
+ limit
) / 2;
891 pos_ratio
= pos_ratio_polynom(setpoint
, dtc
->dirty
, limit
);
894 * The strictlimit feature is a tool preventing mistrusted filesystems
895 * from growing a large number of dirty pages before throttling. For
896 * such filesystems balance_dirty_pages always checks wb counters
897 * against wb limits. Even if global "nr_dirty" is under "freerun".
898 * This is especially important for fuse which sets bdi->max_ratio to
899 * 1% by default. Without strictlimit feature, fuse writeback may
900 * consume arbitrary amount of RAM because it is accounted in
901 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
903 * Here, in wb_position_ratio(), we calculate pos_ratio based on
904 * two values: wb_dirty and wb_thresh. Let's consider an example:
905 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
906 * limits are set by default to 10% and 20% (background and throttle).
907 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
908 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
909 * about ~6K pages (as the average of background and throttle wb
910 * limits). The 3rd order polynomial will provide positive feedback if
911 * wb_dirty is under wb_setpoint and vice versa.
913 * Note, that we cannot use global counters in these calculations
914 * because we want to throttle process writing to a strictlimit wb
915 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
916 * in the example above).
918 if (unlikely(wb
->bdi
->capabilities
& BDI_CAP_STRICTLIMIT
)) {
919 long long wb_pos_ratio
;
921 if (dtc
->wb_dirty
< 8) {
922 dtc
->pos_ratio
= min_t(long long, pos_ratio
* 2,
923 2 << RATELIMIT_CALC_SHIFT
);
927 if (dtc
->wb_dirty
>= wb_thresh
)
930 wb_setpoint
= dirty_freerun_ceiling(wb_thresh
,
933 if (wb_setpoint
== 0 || wb_setpoint
== wb_thresh
)
936 wb_pos_ratio
= pos_ratio_polynom(wb_setpoint
, dtc
->wb_dirty
,
940 * Typically, for strictlimit case, wb_setpoint << setpoint
941 * and pos_ratio >> wb_pos_ratio. In the other words global
942 * state ("dirty") is not limiting factor and we have to
943 * make decision based on wb counters. But there is an
944 * important case when global pos_ratio should get precedence:
945 * global limits are exceeded (e.g. due to activities on other
946 * wb's) while given strictlimit wb is below limit.
948 * "pos_ratio * wb_pos_ratio" would work for the case above,
949 * but it would look too non-natural for the case of all
950 * activity in the system coming from a single strictlimit wb
951 * with bdi->max_ratio == 100%.
953 * Note that min() below somewhat changes the dynamics of the
954 * control system. Normally, pos_ratio value can be well over 3
955 * (when globally we are at freerun and wb is well below wb
956 * setpoint). Now the maximum pos_ratio in the same situation
957 * is 2. We might want to tweak this if we observe the control
958 * system is too slow to adapt.
960 dtc
->pos_ratio
= min(pos_ratio
, wb_pos_ratio
);
965 * We have computed basic pos_ratio above based on global situation. If
966 * the wb is over/under its share of dirty pages, we want to scale
967 * pos_ratio further down/up. That is done by the following mechanism.
973 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
975 * x_intercept - wb_dirty
976 * := --------------------------
977 * x_intercept - wb_setpoint
979 * The main wb control line is a linear function that subjects to
981 * (1) f(wb_setpoint) = 1.0
982 * (2) k = - 1 / (8 * write_bw) (in single wb case)
983 * or equally: x_intercept = wb_setpoint + 8 * write_bw
985 * For single wb case, the dirty pages are observed to fluctuate
986 * regularly within range
987 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
988 * for various filesystems, where (2) can yield in a reasonable 12.5%
989 * fluctuation range for pos_ratio.
991 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
992 * own size, so move the slope over accordingly and choose a slope that
993 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
995 if (unlikely(wb_thresh
> dtc
->thresh
))
996 wb_thresh
= dtc
->thresh
;
998 * It's very possible that wb_thresh is close to 0 not because the
999 * device is slow, but that it has remained inactive for long time.
1000 * Honour such devices a reasonable good (hopefully IO efficient)
1001 * threshold, so that the occasional writes won't be blocked and active
1002 * writes can rampup the threshold quickly.
1004 wb_thresh
= max(wb_thresh
, (limit
- dtc
->dirty
) / 8);
1006 * scale global setpoint to wb's:
1007 * wb_setpoint = setpoint * wb_thresh / thresh
1009 x
= div_u64((u64
)wb_thresh
<< 16, dtc
->thresh
| 1);
1010 wb_setpoint
= setpoint
* (u64
)x
>> 16;
1012 * Use span=(8*write_bw) in single wb case as indicated by
1013 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1015 * wb_thresh thresh - wb_thresh
1016 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1019 span
= (dtc
->thresh
- wb_thresh
+ 8 * write_bw
) * (u64
)x
>> 16;
1020 x_intercept
= wb_setpoint
+ span
;
1022 if (dtc
->wb_dirty
< x_intercept
- span
/ 4) {
1023 pos_ratio
= div64_u64(pos_ratio
* (x_intercept
- dtc
->wb_dirty
),
1024 (x_intercept
- wb_setpoint
) | 1);
1029 * wb reserve area, safeguard against dirty pool underrun and disk idle
1030 * It may push the desired control point of global dirty pages higher
1033 x_intercept
= wb_thresh
/ 2;
1034 if (dtc
->wb_dirty
< x_intercept
) {
1035 if (dtc
->wb_dirty
> x_intercept
/ 8)
1036 pos_ratio
= div_u64(pos_ratio
* x_intercept
,
1042 dtc
->pos_ratio
= pos_ratio
;
1045 static void wb_update_write_bandwidth(struct bdi_writeback
*wb
,
1046 unsigned long elapsed
,
1047 unsigned long written
)
1049 const unsigned long period
= roundup_pow_of_two(3 * HZ
);
1050 unsigned long avg
= wb
->avg_write_bandwidth
;
1051 unsigned long old
= wb
->write_bandwidth
;
1055 * bw = written * HZ / elapsed
1057 * bw * elapsed + write_bandwidth * (period - elapsed)
1058 * write_bandwidth = ---------------------------------------------------
1061 * @written may have decreased due to account_page_redirty().
1062 * Avoid underflowing @bw calculation.
1064 bw
= written
- min(written
, wb
->written_stamp
);
1066 if (unlikely(elapsed
> period
)) {
1067 do_div(bw
, elapsed
);
1071 bw
+= (u64
)wb
->write_bandwidth
* (period
- elapsed
);
1072 bw
>>= ilog2(period
);
1075 * one more level of smoothing, for filtering out sudden spikes
1077 if (avg
> old
&& old
>= (unsigned long)bw
)
1078 avg
-= (avg
- old
) >> 3;
1080 if (avg
< old
&& old
<= (unsigned long)bw
)
1081 avg
+= (old
- avg
) >> 3;
1084 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1085 avg
= max(avg
, 1LU);
1086 if (wb_has_dirty_io(wb
)) {
1087 long delta
= avg
- wb
->avg_write_bandwidth
;
1088 WARN_ON_ONCE(atomic_long_add_return(delta
,
1089 &wb
->bdi
->tot_write_bandwidth
) <= 0);
1091 wb
->write_bandwidth
= bw
;
1092 wb
->avg_write_bandwidth
= avg
;
1095 static void update_dirty_limit(struct dirty_throttle_control
*dtc
)
1097 struct wb_domain
*dom
= dtc_dom(dtc
);
1098 unsigned long thresh
= dtc
->thresh
;
1099 unsigned long limit
= dom
->dirty_limit
;
1102 * Follow up in one step.
1104 if (limit
< thresh
) {
1110 * Follow down slowly. Use the higher one as the target, because thresh
1111 * may drop below dirty. This is exactly the reason to introduce
1112 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1114 thresh
= max(thresh
, dtc
->dirty
);
1115 if (limit
> thresh
) {
1116 limit
-= (limit
- thresh
) >> 5;
1121 dom
->dirty_limit
= limit
;
1124 static void domain_update_bandwidth(struct dirty_throttle_control
*dtc
,
1127 struct wb_domain
*dom
= dtc_dom(dtc
);
1130 * check locklessly first to optimize away locking for the most time
1132 if (time_before(now
, dom
->dirty_limit_tstamp
+ BANDWIDTH_INTERVAL
))
1135 spin_lock(&dom
->lock
);
1136 if (time_after_eq(now
, dom
->dirty_limit_tstamp
+ BANDWIDTH_INTERVAL
)) {
1137 update_dirty_limit(dtc
);
1138 dom
->dirty_limit_tstamp
= now
;
1140 spin_unlock(&dom
->lock
);
1144 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1146 * Normal wb tasks will be curbed at or below it in long term.
1147 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1149 static void wb_update_dirty_ratelimit(struct dirty_throttle_control
*dtc
,
1150 unsigned long dirtied
,
1151 unsigned long elapsed
)
1153 struct bdi_writeback
*wb
= dtc
->wb
;
1154 unsigned long dirty
= dtc
->dirty
;
1155 unsigned long freerun
= dirty_freerun_ceiling(dtc
->thresh
, dtc
->bg_thresh
);
1156 unsigned long limit
= hard_dirty_limit(dtc_dom(dtc
), dtc
->thresh
);
1157 unsigned long setpoint
= (freerun
+ limit
) / 2;
1158 unsigned long write_bw
= wb
->avg_write_bandwidth
;
1159 unsigned long dirty_ratelimit
= wb
->dirty_ratelimit
;
1160 unsigned long dirty_rate
;
1161 unsigned long task_ratelimit
;
1162 unsigned long balanced_dirty_ratelimit
;
1167 * The dirty rate will match the writeout rate in long term, except
1168 * when dirty pages are truncated by userspace or re-dirtied by FS.
1170 dirty_rate
= (dirtied
- wb
->dirtied_stamp
) * HZ
/ elapsed
;
1173 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1175 task_ratelimit
= (u64
)dirty_ratelimit
*
1176 dtc
->pos_ratio
>> RATELIMIT_CALC_SHIFT
;
1177 task_ratelimit
++; /* it helps rampup dirty_ratelimit from tiny values */
1180 * A linear estimation of the "balanced" throttle rate. The theory is,
1181 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1182 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1183 * formula will yield the balanced rate limit (write_bw / N).
1185 * Note that the expanded form is not a pure rate feedback:
1186 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
1187 * but also takes pos_ratio into account:
1188 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
1190 * (1) is not realistic because pos_ratio also takes part in balancing
1191 * the dirty rate. Consider the state
1192 * pos_ratio = 0.5 (3)
1193 * rate = 2 * (write_bw / N) (4)
1194 * If (1) is used, it will stuck in that state! Because each dd will
1196 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
1198 * dirty_rate = N * task_ratelimit = write_bw (6)
1199 * put (6) into (1) we get
1200 * rate_(i+1) = rate_(i) (7)
1202 * So we end up using (2) to always keep
1203 * rate_(i+1) ~= (write_bw / N) (8)
1204 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1205 * pos_ratio is able to drive itself to 1.0, which is not only where
1206 * the dirty count meet the setpoint, but also where the slope of
1207 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1209 balanced_dirty_ratelimit
= div_u64((u64
)task_ratelimit
* write_bw
,
1212 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1214 if (unlikely(balanced_dirty_ratelimit
> write_bw
))
1215 balanced_dirty_ratelimit
= write_bw
;
1218 * We could safely do this and return immediately:
1220 * wb->dirty_ratelimit = balanced_dirty_ratelimit;
1222 * However to get a more stable dirty_ratelimit, the below elaborated
1223 * code makes use of task_ratelimit to filter out singular points and
1224 * limit the step size.
1226 * The below code essentially only uses the relative value of
1228 * task_ratelimit - dirty_ratelimit
1229 * = (pos_ratio - 1) * dirty_ratelimit
1231 * which reflects the direction and size of dirty position error.
1235 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1236 * task_ratelimit is on the same side of dirty_ratelimit, too.
1238 * - dirty_ratelimit > balanced_dirty_ratelimit
1239 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1240 * lowering dirty_ratelimit will help meet both the position and rate
1241 * control targets. Otherwise, don't update dirty_ratelimit if it will
1242 * only help meet the rate target. After all, what the users ultimately
1243 * feel and care are stable dirty rate and small position error.
1245 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1246 * and filter out the singular points of balanced_dirty_ratelimit. Which
1247 * keeps jumping around randomly and can even leap far away at times
1248 * due to the small 200ms estimation period of dirty_rate (we want to
1249 * keep that period small to reduce time lags).
1254 * For strictlimit case, calculations above were based on wb counters
1255 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1256 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1257 * Hence, to calculate "step" properly, we have to use wb_dirty as
1258 * "dirty" and wb_setpoint as "setpoint".
1260 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1261 * it's possible that wb_thresh is close to zero due to inactivity
1262 * of backing device.
1264 if (unlikely(wb
->bdi
->capabilities
& BDI_CAP_STRICTLIMIT
)) {
1265 dirty
= dtc
->wb_dirty
;
1266 if (dtc
->wb_dirty
< 8)
1267 setpoint
= dtc
->wb_dirty
+ 1;
1269 setpoint
= (dtc
->wb_thresh
+ dtc
->wb_bg_thresh
) / 2;
1272 if (dirty
< setpoint
) {
1273 x
= min3(wb
->balanced_dirty_ratelimit
,
1274 balanced_dirty_ratelimit
, task_ratelimit
);
1275 if (dirty_ratelimit
< x
)
1276 step
= x
- dirty_ratelimit
;
1278 x
= max3(wb
->balanced_dirty_ratelimit
,
1279 balanced_dirty_ratelimit
, task_ratelimit
);
1280 if (dirty_ratelimit
> x
)
1281 step
= dirty_ratelimit
- x
;
1285 * Don't pursue 100% rate matching. It's impossible since the balanced
1286 * rate itself is constantly fluctuating. So decrease the track speed
1287 * when it gets close to the target. Helps eliminate pointless tremors.
1289 step
>>= dirty_ratelimit
/ (2 * step
+ 1);
1291 * Limit the tracking speed to avoid overshooting.
1293 step
= (step
+ 7) / 8;
1295 if (dirty_ratelimit
< balanced_dirty_ratelimit
)
1296 dirty_ratelimit
+= step
;
1298 dirty_ratelimit
-= step
;
1300 wb
->dirty_ratelimit
= max(dirty_ratelimit
, 1UL);
1301 wb
->balanced_dirty_ratelimit
= balanced_dirty_ratelimit
;
1303 trace_bdi_dirty_ratelimit(wb
, dirty_rate
, task_ratelimit
);
1306 static void __wb_update_bandwidth(struct dirty_throttle_control
*gdtc
,
1307 struct dirty_throttle_control
*mdtc
,
1308 unsigned long start_time
,
1309 bool update_ratelimit
)
1311 struct bdi_writeback
*wb
= gdtc
->wb
;
1312 unsigned long now
= jiffies
;
1313 unsigned long elapsed
= now
- wb
->bw_time_stamp
;
1314 unsigned long dirtied
;
1315 unsigned long written
;
1317 lockdep_assert_held(&wb
->list_lock
);
1320 * rate-limit, only update once every 200ms.
1322 if (elapsed
< BANDWIDTH_INTERVAL
)
1325 dirtied
= percpu_counter_read(&wb
->stat
[WB_DIRTIED
]);
1326 written
= percpu_counter_read(&wb
->stat
[WB_WRITTEN
]);
1329 * Skip quiet periods when disk bandwidth is under-utilized.
1330 * (at least 1s idle time between two flusher runs)
1332 if (elapsed
> HZ
&& time_before(wb
->bw_time_stamp
, start_time
))
1335 if (update_ratelimit
) {
1336 domain_update_bandwidth(gdtc
, now
);
1337 wb_update_dirty_ratelimit(gdtc
, dirtied
, elapsed
);
1340 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1341 * compiler has no way to figure that out. Help it.
1343 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK
) && mdtc
) {
1344 domain_update_bandwidth(mdtc
, now
);
1345 wb_update_dirty_ratelimit(mdtc
, dirtied
, elapsed
);
1348 wb_update_write_bandwidth(wb
, elapsed
, written
);
1351 wb
->dirtied_stamp
= dirtied
;
1352 wb
->written_stamp
= written
;
1353 wb
->bw_time_stamp
= now
;
1356 void wb_update_bandwidth(struct bdi_writeback
*wb
, unsigned long start_time
)
1358 struct dirty_throttle_control gdtc
= { GDTC_INIT(wb
) };
1360 __wb_update_bandwidth(&gdtc
, NULL
, start_time
, false);
1364 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1365 * will look to see if it needs to start dirty throttling.
1367 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1368 * global_page_state() too often. So scale it near-sqrt to the safety margin
1369 * (the number of pages we may dirty without exceeding the dirty limits).
1371 static unsigned long dirty_poll_interval(unsigned long dirty
,
1372 unsigned long thresh
)
1375 return 1UL << (ilog2(thresh
- dirty
) >> 1);
1380 static unsigned long wb_max_pause(struct bdi_writeback
*wb
,
1381 unsigned long wb_dirty
)
1383 unsigned long bw
= wb
->avg_write_bandwidth
;
1387 * Limit pause time for small memory systems. If sleeping for too long
1388 * time, a small pool of dirty/writeback pages may go empty and disk go
1391 * 8 serves as the safety ratio.
1393 t
= wb_dirty
/ (1 + bw
/ roundup_pow_of_two(1 + HZ
/ 8));
1396 return min_t(unsigned long, t
, MAX_PAUSE
);
1399 static long wb_min_pause(struct bdi_writeback
*wb
,
1401 unsigned long task_ratelimit
,
1402 unsigned long dirty_ratelimit
,
1403 int *nr_dirtied_pause
)
1405 long hi
= ilog2(wb
->avg_write_bandwidth
);
1406 long lo
= ilog2(wb
->dirty_ratelimit
);
1407 long t
; /* target pause */
1408 long pause
; /* estimated next pause */
1409 int pages
; /* target nr_dirtied_pause */
1411 /* target for 10ms pause on 1-dd case */
1412 t
= max(1, HZ
/ 100);
1415 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1418 * (N * 10ms) on 2^N concurrent tasks.
1421 t
+= (hi
- lo
) * (10 * HZ
) / 1024;
1424 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1425 * on the much more stable dirty_ratelimit. However the next pause time
1426 * will be computed based on task_ratelimit and the two rate limits may
1427 * depart considerably at some time. Especially if task_ratelimit goes
1428 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1429 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1430 * result task_ratelimit won't be executed faithfully, which could
1431 * eventually bring down dirty_ratelimit.
1433 * We apply two rules to fix it up:
1434 * 1) try to estimate the next pause time and if necessary, use a lower
1435 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1436 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1437 * 2) limit the target pause time to max_pause/2, so that the normal
1438 * small fluctuations of task_ratelimit won't trigger rule (1) and
1439 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
1441 t
= min(t
, 1 + max_pause
/ 2);
1442 pages
= dirty_ratelimit
* t
/ roundup_pow_of_two(HZ
);
1445 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1446 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1447 * When the 16 consecutive reads are often interrupted by some dirty
1448 * throttling pause during the async writes, cfq will go into idles
1449 * (deadline is fine). So push nr_dirtied_pause as high as possible
1450 * until reaches DIRTY_POLL_THRESH=32 pages.
1452 if (pages
< DIRTY_POLL_THRESH
) {
1454 pages
= dirty_ratelimit
* t
/ roundup_pow_of_two(HZ
);
1455 if (pages
> DIRTY_POLL_THRESH
) {
1456 pages
= DIRTY_POLL_THRESH
;
1457 t
= HZ
* DIRTY_POLL_THRESH
/ dirty_ratelimit
;
1461 pause
= HZ
* pages
/ (task_ratelimit
+ 1);
1462 if (pause
> max_pause
) {
1464 pages
= task_ratelimit
* t
/ roundup_pow_of_two(HZ
);
1467 *nr_dirtied_pause
= pages
;
1469 * The minimal pause time will normally be half the target pause time.
1471 return pages
>= DIRTY_POLL_THRESH
? 1 + t
/ 2 : t
;
1474 static inline void wb_dirty_limits(struct dirty_throttle_control
*dtc
)
1476 struct bdi_writeback
*wb
= dtc
->wb
;
1477 unsigned long wb_reclaimable
;
1480 * wb_thresh is not treated as some limiting factor as
1481 * dirty_thresh, due to reasons
1482 * - in JBOD setup, wb_thresh can fluctuate a lot
1483 * - in a system with HDD and USB key, the USB key may somehow
1484 * go into state (wb_dirty >> wb_thresh) either because
1485 * wb_dirty starts high, or because wb_thresh drops low.
1486 * In this case we don't want to hard throttle the USB key
1487 * dirtiers for 100 seconds until wb_dirty drops under
1488 * wb_thresh. Instead the auxiliary wb control line in
1489 * wb_position_ratio() will let the dirtier task progress
1490 * at some rate <= (write_bw / 2) for bringing down wb_dirty.
1492 dtc
->wb_thresh
= __wb_calc_thresh(dtc
);
1493 dtc
->wb_bg_thresh
= dtc
->thresh
?
1494 div_u64((u64
)dtc
->wb_thresh
* dtc
->bg_thresh
, dtc
->thresh
) : 0;
1497 * In order to avoid the stacked BDI deadlock we need
1498 * to ensure we accurately count the 'dirty' pages when
1499 * the threshold is low.
1501 * Otherwise it would be possible to get thresh+n pages
1502 * reported dirty, even though there are thresh-m pages
1503 * actually dirty; with m+n sitting in the percpu
1506 if (dtc
->wb_thresh
< 2 * wb_stat_error(wb
)) {
1507 wb_reclaimable
= wb_stat_sum(wb
, WB_RECLAIMABLE
);
1508 dtc
->wb_dirty
= wb_reclaimable
+ wb_stat_sum(wb
, WB_WRITEBACK
);
1510 wb_reclaimable
= wb_stat(wb
, WB_RECLAIMABLE
);
1511 dtc
->wb_dirty
= wb_reclaimable
+ wb_stat(wb
, WB_WRITEBACK
);
1516 * balance_dirty_pages() must be called by processes which are generating dirty
1517 * data. It looks at the number of dirty pages in the machine and will force
1518 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1519 * If we're over `background_thresh' then the writeback threads are woken to
1520 * perform some writeout.
1522 static void balance_dirty_pages(struct address_space
*mapping
,
1523 struct bdi_writeback
*wb
,
1524 unsigned long pages_dirtied
)
1526 struct dirty_throttle_control gdtc_stor
= { GDTC_INIT(wb
) };
1527 struct dirty_throttle_control mdtc_stor
= { MDTC_INIT(wb
, &gdtc_stor
) };
1528 struct dirty_throttle_control
* const gdtc
= &gdtc_stor
;
1529 struct dirty_throttle_control
* const mdtc
= mdtc_valid(&mdtc_stor
) ?
1531 struct dirty_throttle_control
*sdtc
;
1532 unsigned long nr_reclaimable
; /* = file_dirty + unstable_nfs */
1537 int nr_dirtied_pause
;
1538 bool dirty_exceeded
= false;
1539 unsigned long task_ratelimit
;
1540 unsigned long dirty_ratelimit
;
1541 struct backing_dev_info
*bdi
= wb
->bdi
;
1542 bool strictlimit
= bdi
->capabilities
& BDI_CAP_STRICTLIMIT
;
1543 unsigned long start_time
= jiffies
;
1546 unsigned long now
= jiffies
;
1547 unsigned long dirty
, thresh
, bg_thresh
;
1548 unsigned long m_dirty
= 0; /* stop bogus uninit warnings */
1549 unsigned long m_thresh
= 0;
1550 unsigned long m_bg_thresh
= 0;
1553 * Unstable writes are a feature of certain networked
1554 * filesystems (i.e. NFS) in which data may have been
1555 * written to the server's write cache, but has not yet
1556 * been flushed to permanent storage.
1558 nr_reclaimable
= global_page_state(NR_FILE_DIRTY
) +
1559 global_page_state(NR_UNSTABLE_NFS
);
1560 gdtc
->avail
= global_dirtyable_memory();
1561 gdtc
->dirty
= nr_reclaimable
+ global_page_state(NR_WRITEBACK
);
1563 domain_dirty_limits(gdtc
);
1565 if (unlikely(strictlimit
)) {
1566 wb_dirty_limits(gdtc
);
1568 dirty
= gdtc
->wb_dirty
;
1569 thresh
= gdtc
->wb_thresh
;
1570 bg_thresh
= gdtc
->wb_bg_thresh
;
1572 dirty
= gdtc
->dirty
;
1573 thresh
= gdtc
->thresh
;
1574 bg_thresh
= gdtc
->bg_thresh
;
1578 unsigned long filepages
, headroom
, writeback
;
1581 * If @wb belongs to !root memcg, repeat the same
1582 * basic calculations for the memcg domain.
1584 mem_cgroup_wb_stats(wb
, &filepages
, &headroom
,
1585 &mdtc
->dirty
, &writeback
);
1586 mdtc
->dirty
+= writeback
;
1587 mdtc_calc_avail(mdtc
, filepages
, headroom
);
1589 domain_dirty_limits(mdtc
);
1591 if (unlikely(strictlimit
)) {
1592 wb_dirty_limits(mdtc
);
1593 m_dirty
= mdtc
->wb_dirty
;
1594 m_thresh
= mdtc
->wb_thresh
;
1595 m_bg_thresh
= mdtc
->wb_bg_thresh
;
1597 m_dirty
= mdtc
->dirty
;
1598 m_thresh
= mdtc
->thresh
;
1599 m_bg_thresh
= mdtc
->bg_thresh
;
1604 * Throttle it only when the background writeback cannot
1605 * catch-up. This avoids (excessively) small writeouts
1606 * when the wb limits are ramping up in case of !strictlimit.
1608 * In strictlimit case make decision based on the wb counters
1609 * and limits. Small writeouts when the wb limits are ramping
1610 * up are the price we consciously pay for strictlimit-ing.
1612 * If memcg domain is in effect, @dirty should be under
1613 * both global and memcg freerun ceilings.
1615 if (dirty
<= dirty_freerun_ceiling(thresh
, bg_thresh
) &&
1617 m_dirty
<= dirty_freerun_ceiling(m_thresh
, m_bg_thresh
))) {
1618 unsigned long intv
= dirty_poll_interval(dirty
, thresh
);
1619 unsigned long m_intv
= ULONG_MAX
;
1621 current
->dirty_paused_when
= now
;
1622 current
->nr_dirtied
= 0;
1624 m_intv
= dirty_poll_interval(m_dirty
, m_thresh
);
1625 current
->nr_dirtied_pause
= min(intv
, m_intv
);
1629 if (unlikely(!writeback_in_progress(wb
)))
1630 wb_start_background_writeback(wb
);
1633 * Calculate global domain's pos_ratio and select the
1634 * global dtc by default.
1637 wb_dirty_limits(gdtc
);
1639 dirty_exceeded
= (gdtc
->wb_dirty
> gdtc
->wb_thresh
) &&
1640 ((gdtc
->dirty
> gdtc
->thresh
) || strictlimit
);
1642 wb_position_ratio(gdtc
);
1647 * If memcg domain is in effect, calculate its
1648 * pos_ratio. @wb should satisfy constraints from
1649 * both global and memcg domains. Choose the one
1650 * w/ lower pos_ratio.
1653 wb_dirty_limits(mdtc
);
1655 dirty_exceeded
|= (mdtc
->wb_dirty
> mdtc
->wb_thresh
) &&
1656 ((mdtc
->dirty
> mdtc
->thresh
) || strictlimit
);
1658 wb_position_ratio(mdtc
);
1659 if (mdtc
->pos_ratio
< gdtc
->pos_ratio
)
1663 if (dirty_exceeded
&& !wb
->dirty_exceeded
)
1664 wb
->dirty_exceeded
= 1;
1666 if (time_is_before_jiffies(wb
->bw_time_stamp
+
1667 BANDWIDTH_INTERVAL
)) {
1668 spin_lock(&wb
->list_lock
);
1669 __wb_update_bandwidth(gdtc
, mdtc
, start_time
, true);
1670 spin_unlock(&wb
->list_lock
);
1673 /* throttle according to the chosen dtc */
1674 dirty_ratelimit
= wb
->dirty_ratelimit
;
1675 task_ratelimit
= ((u64
)dirty_ratelimit
* sdtc
->pos_ratio
) >>
1676 RATELIMIT_CALC_SHIFT
;
1677 max_pause
= wb_max_pause(wb
, sdtc
->wb_dirty
);
1678 min_pause
= wb_min_pause(wb
, max_pause
,
1679 task_ratelimit
, dirty_ratelimit
,
1682 if (unlikely(task_ratelimit
== 0)) {
1687 period
= HZ
* pages_dirtied
/ task_ratelimit
;
1689 if (current
->dirty_paused_when
)
1690 pause
-= now
- current
->dirty_paused_when
;
1692 * For less than 1s think time (ext3/4 may block the dirtier
1693 * for up to 800ms from time to time on 1-HDD; so does xfs,
1694 * however at much less frequency), try to compensate it in
1695 * future periods by updating the virtual time; otherwise just
1696 * do a reset, as it may be a light dirtier.
1698 if (pause
< min_pause
) {
1699 trace_balance_dirty_pages(wb
,
1712 current
->dirty_paused_when
= now
;
1713 current
->nr_dirtied
= 0;
1714 } else if (period
) {
1715 current
->dirty_paused_when
+= period
;
1716 current
->nr_dirtied
= 0;
1717 } else if (current
->nr_dirtied_pause
<= pages_dirtied
)
1718 current
->nr_dirtied_pause
+= pages_dirtied
;
1721 if (unlikely(pause
> max_pause
)) {
1722 /* for occasional dropped task_ratelimit */
1723 now
+= min(pause
- max_pause
, max_pause
);
1728 trace_balance_dirty_pages(wb
,
1740 __set_current_state(TASK_KILLABLE
);
1741 io_schedule_timeout(pause
);
1743 current
->dirty_paused_when
= now
+ pause
;
1744 current
->nr_dirtied
= 0;
1745 current
->nr_dirtied_pause
= nr_dirtied_pause
;
1748 * This is typically equal to (dirty < thresh) and can also
1749 * keep "1000+ dd on a slow USB stick" under control.
1755 * In the case of an unresponding NFS server and the NFS dirty
1756 * pages exceeds dirty_thresh, give the other good wb's a pipe
1757 * to go through, so that tasks on them still remain responsive.
1759 * In theory 1 page is enough to keep the comsumer-producer
1760 * pipe going: the flusher cleans 1 page => the task dirties 1
1761 * more page. However wb_dirty has accounting errors. So use
1762 * the larger and more IO friendly wb_stat_error.
1764 if (sdtc
->wb_dirty
<= wb_stat_error(wb
))
1767 if (fatal_signal_pending(current
))
1771 if (!dirty_exceeded
&& wb
->dirty_exceeded
)
1772 wb
->dirty_exceeded
= 0;
1774 if (writeback_in_progress(wb
))
1778 * In laptop mode, we wait until hitting the higher threshold before
1779 * starting background writeout, and then write out all the way down
1780 * to the lower threshold. So slow writers cause minimal disk activity.
1782 * In normal mode, we start background writeout at the lower
1783 * background_thresh, to keep the amount of dirty memory low.
1788 if (nr_reclaimable
> gdtc
->bg_thresh
)
1789 wb_start_background_writeback(wb
);
1792 static DEFINE_PER_CPU(int, bdp_ratelimits
);
1795 * Normal tasks are throttled by
1797 * dirty tsk->nr_dirtied_pause pages;
1798 * take a snap in balance_dirty_pages();
1800 * However there is a worst case. If every task exit immediately when dirtied
1801 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1802 * called to throttle the page dirties. The solution is to save the not yet
1803 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1804 * randomly into the running tasks. This works well for the above worst case,
1805 * as the new task will pick up and accumulate the old task's leaked dirty
1806 * count and eventually get throttled.
1808 DEFINE_PER_CPU(int, dirty_throttle_leaks
) = 0;
1811 * balance_dirty_pages_ratelimited - balance dirty memory state
1812 * @mapping: address_space which was dirtied
1814 * Processes which are dirtying memory should call in here once for each page
1815 * which was newly dirtied. The function will periodically check the system's
1816 * dirty state and will initiate writeback if needed.
1818 * On really big machines, get_writeback_state is expensive, so try to avoid
1819 * calling it too often (ratelimiting). But once we're over the dirty memory
1820 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1821 * from overshooting the limit by (ratelimit_pages) each.
1823 void balance_dirty_pages_ratelimited(struct address_space
*mapping
)
1825 struct inode
*inode
= mapping
->host
;
1826 struct backing_dev_info
*bdi
= inode_to_bdi(inode
);
1827 struct bdi_writeback
*wb
= NULL
;
1831 if (!bdi_cap_account_dirty(bdi
))
1834 if (inode_cgwb_enabled(inode
))
1835 wb
= wb_get_create_current(bdi
, GFP_KERNEL
);
1839 ratelimit
= current
->nr_dirtied_pause
;
1840 if (wb
->dirty_exceeded
)
1841 ratelimit
= min(ratelimit
, 32 >> (PAGE_SHIFT
- 10));
1845 * This prevents one CPU to accumulate too many dirtied pages without
1846 * calling into balance_dirty_pages(), which can happen when there are
1847 * 1000+ tasks, all of them start dirtying pages at exactly the same
1848 * time, hence all honoured too large initial task->nr_dirtied_pause.
1850 p
= this_cpu_ptr(&bdp_ratelimits
);
1851 if (unlikely(current
->nr_dirtied
>= ratelimit
))
1853 else if (unlikely(*p
>= ratelimit_pages
)) {
1858 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1859 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1860 * the dirty throttling and livelock other long-run dirtiers.
1862 p
= this_cpu_ptr(&dirty_throttle_leaks
);
1863 if (*p
> 0 && current
->nr_dirtied
< ratelimit
) {
1864 unsigned long nr_pages_dirtied
;
1865 nr_pages_dirtied
= min(*p
, ratelimit
- current
->nr_dirtied
);
1866 *p
-= nr_pages_dirtied
;
1867 current
->nr_dirtied
+= nr_pages_dirtied
;
1871 if (unlikely(current
->nr_dirtied
>= ratelimit
))
1872 balance_dirty_pages(mapping
, wb
, current
->nr_dirtied
);
1876 EXPORT_SYMBOL(balance_dirty_pages_ratelimited
);
1879 * wb_over_bg_thresh - does @wb need to be written back?
1880 * @wb: bdi_writeback of interest
1882 * Determines whether background writeback should keep writing @wb or it's
1883 * clean enough. Returns %true if writeback should continue.
1885 bool wb_over_bg_thresh(struct bdi_writeback
*wb
)
1887 struct dirty_throttle_control gdtc_stor
= { GDTC_INIT(wb
) };
1888 struct dirty_throttle_control mdtc_stor
= { MDTC_INIT(wb
, &gdtc_stor
) };
1889 struct dirty_throttle_control
* const gdtc
= &gdtc_stor
;
1890 struct dirty_throttle_control
* const mdtc
= mdtc_valid(&mdtc_stor
) ?
1894 * Similar to balance_dirty_pages() but ignores pages being written
1895 * as we're trying to decide whether to put more under writeback.
1897 gdtc
->avail
= global_dirtyable_memory();
1898 gdtc
->dirty
= global_page_state(NR_FILE_DIRTY
) +
1899 global_page_state(NR_UNSTABLE_NFS
);
1900 domain_dirty_limits(gdtc
);
1902 if (gdtc
->dirty
> gdtc
->bg_thresh
)
1905 if (wb_stat(wb
, WB_RECLAIMABLE
) >
1906 wb_calc_thresh(gdtc
->wb
, gdtc
->bg_thresh
))
1910 unsigned long filepages
, headroom
, writeback
;
1912 mem_cgroup_wb_stats(wb
, &filepages
, &headroom
, &mdtc
->dirty
,
1914 mdtc_calc_avail(mdtc
, filepages
, headroom
);
1915 domain_dirty_limits(mdtc
); /* ditto, ignore writeback */
1917 if (mdtc
->dirty
> mdtc
->bg_thresh
)
1920 if (wb_stat(wb
, WB_RECLAIMABLE
) >
1921 wb_calc_thresh(mdtc
->wb
, mdtc
->bg_thresh
))
1928 void throttle_vm_writeout(gfp_t gfp_mask
)
1930 unsigned long background_thresh
;
1931 unsigned long dirty_thresh
;
1934 global_dirty_limits(&background_thresh
, &dirty_thresh
);
1935 dirty_thresh
= hard_dirty_limit(&global_wb_domain
, dirty_thresh
);
1938 * Boost the allowable dirty threshold a bit for page
1939 * allocators so they don't get DoS'ed by heavy writers
1941 dirty_thresh
+= dirty_thresh
/ 10; /* wheeee... */
1943 if (global_page_state(NR_UNSTABLE_NFS
) +
1944 global_page_state(NR_WRITEBACK
) <= dirty_thresh
)
1946 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
1949 * The caller might hold locks which can prevent IO completion
1950 * or progress in the filesystem. So we cannot just sit here
1951 * waiting for IO to complete.
1953 if ((gfp_mask
& (__GFP_FS
|__GFP_IO
)) != (__GFP_FS
|__GFP_IO
))
1959 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1961 int dirty_writeback_centisecs_handler(struct ctl_table
*table
, int write
,
1962 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
1964 proc_dointvec(table
, write
, buffer
, length
, ppos
);
1969 void laptop_mode_timer_fn(unsigned long data
)
1971 struct request_queue
*q
= (struct request_queue
*)data
;
1972 int nr_pages
= global_page_state(NR_FILE_DIRTY
) +
1973 global_page_state(NR_UNSTABLE_NFS
);
1974 struct bdi_writeback
*wb
;
1977 * We want to write everything out, not just down to the dirty
1980 if (!bdi_has_dirty_io(&q
->backing_dev_info
))
1984 list_for_each_entry_rcu(wb
, &q
->backing_dev_info
.wb_list
, bdi_node
)
1985 if (wb_has_dirty_io(wb
))
1986 wb_start_writeback(wb
, nr_pages
, true,
1987 WB_REASON_LAPTOP_TIMER
);
1992 * We've spun up the disk and we're in laptop mode: schedule writeback
1993 * of all dirty data a few seconds from now. If the flush is already scheduled
1994 * then push it back - the user is still using the disk.
1996 void laptop_io_completion(struct backing_dev_info
*info
)
1998 mod_timer(&info
->laptop_mode_wb_timer
, jiffies
+ laptop_mode
);
2002 * We're in laptop mode and we've just synced. The sync's writes will have
2003 * caused another writeback to be scheduled by laptop_io_completion.
2004 * Nothing needs to be written back anymore, so we unschedule the writeback.
2006 void laptop_sync_completion(void)
2008 struct backing_dev_info
*bdi
;
2012 list_for_each_entry_rcu(bdi
, &bdi_list
, bdi_list
)
2013 del_timer(&bdi
->laptop_mode_wb_timer
);
2020 * If ratelimit_pages is too high then we can get into dirty-data overload
2021 * if a large number of processes all perform writes at the same time.
2022 * If it is too low then SMP machines will call the (expensive)
2023 * get_writeback_state too often.
2025 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2026 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2030 void writeback_set_ratelimit(void)
2032 struct wb_domain
*dom
= &global_wb_domain
;
2033 unsigned long background_thresh
;
2034 unsigned long dirty_thresh
;
2036 global_dirty_limits(&background_thresh
, &dirty_thresh
);
2037 dom
->dirty_limit
= dirty_thresh
;
2038 ratelimit_pages
= dirty_thresh
/ (num_online_cpus() * 32);
2039 if (ratelimit_pages
< 16)
2040 ratelimit_pages
= 16;
2044 ratelimit_handler(struct notifier_block
*self
, unsigned long action
,
2048 switch (action
& ~CPU_TASKS_FROZEN
) {
2051 writeback_set_ratelimit();
2058 static struct notifier_block ratelimit_nb
= {
2059 .notifier_call
= ratelimit_handler
,
2064 * Called early on to tune the page writeback dirty limits.
2066 * We used to scale dirty pages according to how total memory
2067 * related to pages that could be allocated for buffers (by
2068 * comparing nr_free_buffer_pages() to vm_total_pages.
2070 * However, that was when we used "dirty_ratio" to scale with
2071 * all memory, and we don't do that any more. "dirty_ratio"
2072 * is now applied to total non-HIGHPAGE memory (by subtracting
2073 * totalhigh_pages from vm_total_pages), and as such we can't
2074 * get into the old insane situation any more where we had
2075 * large amounts of dirty pages compared to a small amount of
2076 * non-HIGHMEM memory.
2078 * But we might still want to scale the dirty_ratio by how
2079 * much memory the box has..
2081 void __init
page_writeback_init(void)
2083 BUG_ON(wb_domain_init(&global_wb_domain
, GFP_KERNEL
));
2085 writeback_set_ratelimit();
2086 register_cpu_notifier(&ratelimit_nb
);
2090 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2091 * @mapping: address space structure to write
2092 * @start: starting page index
2093 * @end: ending page index (inclusive)
2095 * This function scans the page range from @start to @end (inclusive) and tags
2096 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2097 * that write_cache_pages (or whoever calls this function) will then use
2098 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
2099 * used to avoid livelocking of writeback by a process steadily creating new
2100 * dirty pages in the file (thus it is important for this function to be quick
2101 * so that it can tag pages faster than a dirtying process can create them).
2104 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
2106 void tag_pages_for_writeback(struct address_space
*mapping
,
2107 pgoff_t start
, pgoff_t end
)
2109 #define WRITEBACK_TAG_BATCH 4096
2110 unsigned long tagged
;
2113 spin_lock_irq(&mapping
->tree_lock
);
2114 tagged
= radix_tree_range_tag_if_tagged(&mapping
->page_tree
,
2115 &start
, end
, WRITEBACK_TAG_BATCH
,
2116 PAGECACHE_TAG_DIRTY
, PAGECACHE_TAG_TOWRITE
);
2117 spin_unlock_irq(&mapping
->tree_lock
);
2118 WARN_ON_ONCE(tagged
> WRITEBACK_TAG_BATCH
);
2120 /* We check 'start' to handle wrapping when end == ~0UL */
2121 } while (tagged
>= WRITEBACK_TAG_BATCH
&& start
);
2123 EXPORT_SYMBOL(tag_pages_for_writeback
);
2126 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2127 * @mapping: address space structure to write
2128 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2129 * @writepage: function called for each page
2130 * @data: data passed to writepage function
2132 * If a page is already under I/O, write_cache_pages() skips it, even
2133 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2134 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2135 * and msync() need to guarantee that all the data which was dirty at the time
2136 * the call was made get new I/O started against them. If wbc->sync_mode is
2137 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2138 * existing IO to complete.
2140 * To avoid livelocks (when other process dirties new pages), we first tag
2141 * pages which should be written back with TOWRITE tag and only then start
2142 * writing them. For data-integrity sync we have to be careful so that we do
2143 * not miss some pages (e.g., because some other process has cleared TOWRITE
2144 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2145 * by the process clearing the DIRTY tag (and submitting the page for IO).
2147 int write_cache_pages(struct address_space
*mapping
,
2148 struct writeback_control
*wbc
, writepage_t writepage
,
2153 struct pagevec pvec
;
2155 pgoff_t
uninitialized_var(writeback_index
);
2157 pgoff_t end
; /* Inclusive */
2160 int range_whole
= 0;
2163 pagevec_init(&pvec
, 0);
2164 if (wbc
->range_cyclic
) {
2165 writeback_index
= mapping
->writeback_index
; /* prev offset */
2166 index
= writeback_index
;
2173 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
2174 end
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
2175 if (wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
)
2177 cycled
= 1; /* ignore range_cyclic tests */
2179 if (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
)
2180 tag
= PAGECACHE_TAG_TOWRITE
;
2182 tag
= PAGECACHE_TAG_DIRTY
;
2184 if (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
)
2185 tag_pages_for_writeback(mapping
, index
, end
);
2187 while (!done
&& (index
<= end
)) {
2190 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
, tag
,
2191 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
2195 for (i
= 0; i
< nr_pages
; i
++) {
2196 struct page
*page
= pvec
.pages
[i
];
2199 * At this point, the page may be truncated or
2200 * invalidated (changing page->mapping to NULL), or
2201 * even swizzled back from swapper_space to tmpfs file
2202 * mapping. However, page->index will not change
2203 * because we have a reference on the page.
2205 if (page
->index
> end
) {
2207 * can't be range_cyclic (1st pass) because
2208 * end == -1 in that case.
2214 done_index
= page
->index
;
2219 * Page truncated or invalidated. We can freely skip it
2220 * then, even for data integrity operations: the page
2221 * has disappeared concurrently, so there could be no
2222 * real expectation of this data interity operation
2223 * even if there is now a new, dirty page at the same
2224 * pagecache address.
2226 if (unlikely(page
->mapping
!= mapping
)) {
2232 if (!PageDirty(page
)) {
2233 /* someone wrote it for us */
2234 goto continue_unlock
;
2237 if (PageWriteback(page
)) {
2238 if (wbc
->sync_mode
!= WB_SYNC_NONE
)
2239 wait_on_page_writeback(page
);
2241 goto continue_unlock
;
2244 BUG_ON(PageWriteback(page
));
2245 if (!clear_page_dirty_for_io(page
))
2246 goto continue_unlock
;
2248 trace_wbc_writepage(wbc
, inode_to_bdi(mapping
->host
));
2249 ret
= (*writepage
)(page
, wbc
, data
);
2250 if (unlikely(ret
)) {
2251 if (ret
== AOP_WRITEPAGE_ACTIVATE
) {
2256 * done_index is set past this page,
2257 * so media errors will not choke
2258 * background writeout for the entire
2259 * file. This has consequences for
2260 * range_cyclic semantics (ie. it may
2261 * not be suitable for data integrity
2264 done_index
= page
->index
+ 1;
2271 * We stop writing back only if we are not doing
2272 * integrity sync. In case of integrity sync we have to
2273 * keep going until we have written all the pages
2274 * we tagged for writeback prior to entering this loop.
2276 if (--wbc
->nr_to_write
<= 0 &&
2277 wbc
->sync_mode
== WB_SYNC_NONE
) {
2282 pagevec_release(&pvec
);
2285 if (!cycled
&& !done
) {
2288 * We hit the last page and there is more work to be done: wrap
2289 * back to the start of the file
2293 end
= writeback_index
- 1;
2296 if (wbc
->range_cyclic
|| (range_whole
&& wbc
->nr_to_write
> 0))
2297 mapping
->writeback_index
= done_index
;
2301 EXPORT_SYMBOL(write_cache_pages
);
2304 * Function used by generic_writepages to call the real writepage
2305 * function and set the mapping flags on error
2307 static int __writepage(struct page
*page
, struct writeback_control
*wbc
,
2310 struct address_space
*mapping
= data
;
2311 int ret
= mapping
->a_ops
->writepage(page
, wbc
);
2312 mapping_set_error(mapping
, ret
);
2317 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2318 * @mapping: address space structure to write
2319 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2321 * This is a library function, which implements the writepages()
2322 * address_space_operation.
2324 int generic_writepages(struct address_space
*mapping
,
2325 struct writeback_control
*wbc
)
2327 struct blk_plug plug
;
2330 /* deal with chardevs and other special file */
2331 if (!mapping
->a_ops
->writepage
)
2334 blk_start_plug(&plug
);
2335 ret
= write_cache_pages(mapping
, wbc
, __writepage
, mapping
);
2336 blk_finish_plug(&plug
);
2340 EXPORT_SYMBOL(generic_writepages
);
2342 int do_writepages(struct address_space
*mapping
, struct writeback_control
*wbc
)
2346 if (wbc
->nr_to_write
<= 0)
2348 if (mapping
->a_ops
->writepages
)
2349 ret
= mapping
->a_ops
->writepages(mapping
, wbc
);
2351 ret
= generic_writepages(mapping
, wbc
);
2356 * write_one_page - write out a single page and optionally wait on I/O
2357 * @page: the page to write
2358 * @wait: if true, wait on writeout
2360 * The page must be locked by the caller and will be unlocked upon return.
2362 * write_one_page() returns a negative error code if I/O failed.
2364 int write_one_page(struct page
*page
, int wait
)
2366 struct address_space
*mapping
= page
->mapping
;
2368 struct writeback_control wbc
= {
2369 .sync_mode
= WB_SYNC_ALL
,
2373 BUG_ON(!PageLocked(page
));
2376 wait_on_page_writeback(page
);
2378 if (clear_page_dirty_for_io(page
)) {
2379 page_cache_get(page
);
2380 ret
= mapping
->a_ops
->writepage(page
, &wbc
);
2381 if (ret
== 0 && wait
) {
2382 wait_on_page_writeback(page
);
2383 if (PageError(page
))
2386 page_cache_release(page
);
2392 EXPORT_SYMBOL(write_one_page
);
2395 * For address_spaces which do not use buffers nor write back.
2397 int __set_page_dirty_no_writeback(struct page
*page
)
2399 if (!PageDirty(page
))
2400 return !TestSetPageDirty(page
);
2405 * Helper function for set_page_dirty family.
2407 * Caller must hold mem_cgroup_begin_page_stat().
2409 * NOTE: This relies on being atomic wrt interrupts.
2411 void account_page_dirtied(struct page
*page
, struct address_space
*mapping
,
2412 struct mem_cgroup
*memcg
)
2414 struct inode
*inode
= mapping
->host
;
2416 trace_writeback_dirty_page(page
, mapping
);
2418 if (mapping_cap_account_dirty(mapping
)) {
2419 struct bdi_writeback
*wb
;
2421 inode_attach_wb(inode
, page
);
2422 wb
= inode_to_wb(inode
);
2424 mem_cgroup_inc_page_stat(memcg
, MEM_CGROUP_STAT_DIRTY
);
2425 __inc_zone_page_state(page
, NR_FILE_DIRTY
);
2426 __inc_zone_page_state(page
, NR_DIRTIED
);
2427 __inc_wb_stat(wb
, WB_RECLAIMABLE
);
2428 __inc_wb_stat(wb
, WB_DIRTIED
);
2429 task_io_account_write(PAGE_CACHE_SIZE
);
2430 current
->nr_dirtied
++;
2431 this_cpu_inc(bdp_ratelimits
);
2434 EXPORT_SYMBOL(account_page_dirtied
);
2437 * Helper function for deaccounting dirty page without writeback.
2439 * Caller must hold mem_cgroup_begin_page_stat().
2441 void account_page_cleaned(struct page
*page
, struct address_space
*mapping
,
2442 struct mem_cgroup
*memcg
, struct bdi_writeback
*wb
)
2444 if (mapping_cap_account_dirty(mapping
)) {
2445 mem_cgroup_dec_page_stat(memcg
, MEM_CGROUP_STAT_DIRTY
);
2446 dec_zone_page_state(page
, NR_FILE_DIRTY
);
2447 dec_wb_stat(wb
, WB_RECLAIMABLE
);
2448 task_io_account_cancelled_write(PAGE_CACHE_SIZE
);
2453 * For address_spaces which do not use buffers. Just tag the page as dirty in
2456 * This is also used when a single buffer is being dirtied: we want to set the
2457 * page dirty in that case, but not all the buffers. This is a "bottom-up"
2458 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2460 * The caller must ensure this doesn't race with truncation. Most will simply
2461 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2462 * the pte lock held, which also locks out truncation.
2464 int __set_page_dirty_nobuffers(struct page
*page
)
2466 struct mem_cgroup
*memcg
;
2468 memcg
= mem_cgroup_begin_page_stat(page
);
2469 if (!TestSetPageDirty(page
)) {
2470 struct address_space
*mapping
= page_mapping(page
);
2471 unsigned long flags
;
2474 mem_cgroup_end_page_stat(memcg
);
2478 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
2479 BUG_ON(page_mapping(page
) != mapping
);
2480 WARN_ON_ONCE(!PagePrivate(page
) && !PageUptodate(page
));
2481 account_page_dirtied(page
, mapping
, memcg
);
2482 radix_tree_tag_set(&mapping
->page_tree
, page_index(page
),
2483 PAGECACHE_TAG_DIRTY
);
2484 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
2485 mem_cgroup_end_page_stat(memcg
);
2487 if (mapping
->host
) {
2488 /* !PageAnon && !swapper_space */
2489 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
2493 mem_cgroup_end_page_stat(memcg
);
2496 EXPORT_SYMBOL(__set_page_dirty_nobuffers
);
2499 * Call this whenever redirtying a page, to de-account the dirty counters
2500 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2501 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2502 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2505 void account_page_redirty(struct page
*page
)
2507 struct address_space
*mapping
= page
->mapping
;
2509 if (mapping
&& mapping_cap_account_dirty(mapping
)) {
2510 struct inode
*inode
= mapping
->host
;
2511 struct bdi_writeback
*wb
;
2514 wb
= unlocked_inode_to_wb_begin(inode
, &locked
);
2515 current
->nr_dirtied
--;
2516 dec_zone_page_state(page
, NR_DIRTIED
);
2517 dec_wb_stat(wb
, WB_DIRTIED
);
2518 unlocked_inode_to_wb_end(inode
, locked
);
2521 EXPORT_SYMBOL(account_page_redirty
);
2524 * When a writepage implementation decides that it doesn't want to write this
2525 * page for some reason, it should redirty the locked page via
2526 * redirty_page_for_writepage() and it should then unlock the page and return 0
2528 int redirty_page_for_writepage(struct writeback_control
*wbc
, struct page
*page
)
2532 wbc
->pages_skipped
++;
2533 ret
= __set_page_dirty_nobuffers(page
);
2534 account_page_redirty(page
);
2537 EXPORT_SYMBOL(redirty_page_for_writepage
);
2542 * For pages with a mapping this should be done under the page lock
2543 * for the benefit of asynchronous memory errors who prefer a consistent
2544 * dirty state. This rule can be broken in some special cases,
2545 * but should be better not to.
2547 * If the mapping doesn't provide a set_page_dirty a_op, then
2548 * just fall through and assume that it wants buffer_heads.
2550 int set_page_dirty(struct page
*page
)
2552 struct address_space
*mapping
= page_mapping(page
);
2554 if (likely(mapping
)) {
2555 int (*spd
)(struct page
*) = mapping
->a_ops
->set_page_dirty
;
2557 * readahead/lru_deactivate_page could remain
2558 * PG_readahead/PG_reclaim due to race with end_page_writeback
2559 * About readahead, if the page is written, the flags would be
2560 * reset. So no problem.
2561 * About lru_deactivate_page, if the page is redirty, the flag
2562 * will be reset. So no problem. but if the page is used by readahead
2563 * it will confuse readahead and make it restart the size rampup
2564 * process. But it's a trivial problem.
2566 if (PageReclaim(page
))
2567 ClearPageReclaim(page
);
2570 spd
= __set_page_dirty_buffers
;
2572 return (*spd
)(page
);
2574 if (!PageDirty(page
)) {
2575 if (!TestSetPageDirty(page
))
2580 EXPORT_SYMBOL(set_page_dirty
);
2583 * set_page_dirty() is racy if the caller has no reference against
2584 * page->mapping->host, and if the page is unlocked. This is because another
2585 * CPU could truncate the page off the mapping and then free the mapping.
2587 * Usually, the page _is_ locked, or the caller is a user-space process which
2588 * holds a reference on the inode by having an open file.
2590 * In other cases, the page should be locked before running set_page_dirty().
2592 int set_page_dirty_lock(struct page
*page
)
2597 ret
= set_page_dirty(page
);
2601 EXPORT_SYMBOL(set_page_dirty_lock
);
2604 * This cancels just the dirty bit on the kernel page itself, it does NOT
2605 * actually remove dirty bits on any mmap's that may be around. It also
2606 * leaves the page tagged dirty, so any sync activity will still find it on
2607 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2608 * look at the dirty bits in the VM.
2610 * Doing this should *normally* only ever be done when a page is truncated,
2611 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2612 * this when it notices that somebody has cleaned out all the buffers on a
2613 * page without actually doing it through the VM. Can you say "ext3 is
2614 * horribly ugly"? Thought you could.
2616 void cancel_dirty_page(struct page
*page
)
2618 struct address_space
*mapping
= page_mapping(page
);
2620 if (mapping_cap_account_dirty(mapping
)) {
2621 struct inode
*inode
= mapping
->host
;
2622 struct bdi_writeback
*wb
;
2623 struct mem_cgroup
*memcg
;
2626 memcg
= mem_cgroup_begin_page_stat(page
);
2627 wb
= unlocked_inode_to_wb_begin(inode
, &locked
);
2629 if (TestClearPageDirty(page
))
2630 account_page_cleaned(page
, mapping
, memcg
, wb
);
2632 unlocked_inode_to_wb_end(inode
, locked
);
2633 mem_cgroup_end_page_stat(memcg
);
2635 ClearPageDirty(page
);
2638 EXPORT_SYMBOL(cancel_dirty_page
);
2641 * Clear a page's dirty flag, while caring for dirty memory accounting.
2642 * Returns true if the page was previously dirty.
2644 * This is for preparing to put the page under writeout. We leave the page
2645 * tagged as dirty in the radix tree so that a concurrent write-for-sync
2646 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
2647 * implementation will run either set_page_writeback() or set_page_dirty(),
2648 * at which stage we bring the page's dirty flag and radix-tree dirty tag
2651 * This incoherency between the page's dirty flag and radix-tree tag is
2652 * unfortunate, but it only exists while the page is locked.
2654 int clear_page_dirty_for_io(struct page
*page
)
2656 struct address_space
*mapping
= page_mapping(page
);
2659 BUG_ON(!PageLocked(page
));
2661 if (mapping
&& mapping_cap_account_dirty(mapping
)) {
2662 struct inode
*inode
= mapping
->host
;
2663 struct bdi_writeback
*wb
;
2664 struct mem_cgroup
*memcg
;
2668 * Yes, Virginia, this is indeed insane.
2670 * We use this sequence to make sure that
2671 * (a) we account for dirty stats properly
2672 * (b) we tell the low-level filesystem to
2673 * mark the whole page dirty if it was
2674 * dirty in a pagetable. Only to then
2675 * (c) clean the page again and return 1 to
2676 * cause the writeback.
2678 * This way we avoid all nasty races with the
2679 * dirty bit in multiple places and clearing
2680 * them concurrently from different threads.
2682 * Note! Normally the "set_page_dirty(page)"
2683 * has no effect on the actual dirty bit - since
2684 * that will already usually be set. But we
2685 * need the side effects, and it can help us
2688 * We basically use the page "master dirty bit"
2689 * as a serialization point for all the different
2690 * threads doing their things.
2692 if (page_mkclean(page
))
2693 set_page_dirty(page
);
2695 * We carefully synchronise fault handlers against
2696 * installing a dirty pte and marking the page dirty
2697 * at this point. We do this by having them hold the
2698 * page lock while dirtying the page, and pages are
2699 * always locked coming in here, so we get the desired
2702 memcg
= mem_cgroup_begin_page_stat(page
);
2703 wb
= unlocked_inode_to_wb_begin(inode
, &locked
);
2704 if (TestClearPageDirty(page
)) {
2705 mem_cgroup_dec_page_stat(memcg
, MEM_CGROUP_STAT_DIRTY
);
2706 dec_zone_page_state(page
, NR_FILE_DIRTY
);
2707 dec_wb_stat(wb
, WB_RECLAIMABLE
);
2710 unlocked_inode_to_wb_end(inode
, locked
);
2711 mem_cgroup_end_page_stat(memcg
);
2714 return TestClearPageDirty(page
);
2716 EXPORT_SYMBOL(clear_page_dirty_for_io
);
2718 int test_clear_page_writeback(struct page
*page
)
2720 struct address_space
*mapping
= page_mapping(page
);
2721 struct mem_cgroup
*memcg
;
2724 memcg
= mem_cgroup_begin_page_stat(page
);
2726 struct inode
*inode
= mapping
->host
;
2727 struct backing_dev_info
*bdi
= inode_to_bdi(inode
);
2728 unsigned long flags
;
2730 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
2731 ret
= TestClearPageWriteback(page
);
2733 radix_tree_tag_clear(&mapping
->page_tree
,
2735 PAGECACHE_TAG_WRITEBACK
);
2736 if (bdi_cap_account_writeback(bdi
)) {
2737 struct bdi_writeback
*wb
= inode_to_wb(inode
);
2739 __dec_wb_stat(wb
, WB_WRITEBACK
);
2740 __wb_writeout_inc(wb
);
2743 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
2745 ret
= TestClearPageWriteback(page
);
2748 mem_cgroup_dec_page_stat(memcg
, MEM_CGROUP_STAT_WRITEBACK
);
2749 dec_zone_page_state(page
, NR_WRITEBACK
);
2750 inc_zone_page_state(page
, NR_WRITTEN
);
2752 mem_cgroup_end_page_stat(memcg
);
2756 int __test_set_page_writeback(struct page
*page
, bool keep_write
)
2758 struct address_space
*mapping
= page_mapping(page
);
2759 struct mem_cgroup
*memcg
;
2762 memcg
= mem_cgroup_begin_page_stat(page
);
2764 struct inode
*inode
= mapping
->host
;
2765 struct backing_dev_info
*bdi
= inode_to_bdi(inode
);
2766 unsigned long flags
;
2768 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
2769 ret
= TestSetPageWriteback(page
);
2771 radix_tree_tag_set(&mapping
->page_tree
,
2773 PAGECACHE_TAG_WRITEBACK
);
2774 if (bdi_cap_account_writeback(bdi
))
2775 __inc_wb_stat(inode_to_wb(inode
), WB_WRITEBACK
);
2777 if (!PageDirty(page
))
2778 radix_tree_tag_clear(&mapping
->page_tree
,
2780 PAGECACHE_TAG_DIRTY
);
2782 radix_tree_tag_clear(&mapping
->page_tree
,
2784 PAGECACHE_TAG_TOWRITE
);
2785 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
2787 ret
= TestSetPageWriteback(page
);
2790 mem_cgroup_inc_page_stat(memcg
, MEM_CGROUP_STAT_WRITEBACK
);
2791 inc_zone_page_state(page
, NR_WRITEBACK
);
2793 mem_cgroup_end_page_stat(memcg
);
2797 EXPORT_SYMBOL(__test_set_page_writeback
);
2800 * Return true if any of the pages in the mapping are marked with the
2803 int mapping_tagged(struct address_space
*mapping
, int tag
)
2805 return radix_tree_tagged(&mapping
->page_tree
, tag
);
2807 EXPORT_SYMBOL(mapping_tagged
);
2810 * wait_for_stable_page() - wait for writeback to finish, if necessary.
2811 * @page: The page to wait on.
2813 * This function determines if the given page is related to a backing device
2814 * that requires page contents to be held stable during writeback. If so, then
2815 * it will wait for any pending writeback to complete.
2817 void wait_for_stable_page(struct page
*page
)
2819 if (bdi_cap_stable_pages_required(inode_to_bdi(page
->mapping
->host
)))
2820 wait_on_page_writeback(page
);
2822 EXPORT_SYMBOL_GPL(wait_for_stable_page
);