md:raid1: fix a dead loop when read from a WriteMostly disk
[linux/fpc-iii.git] / mm / vmscan.c
blobbfc5050cbd01ba94ff3d1305b4a5b7ce87941a10
1 /*
2 * linux/mm/vmscan.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/oom.h>
47 #include <linux/prefetch.h>
48 #include <linux/printk.h>
50 #include <asm/tlbflush.h>
51 #include <asm/div64.h>
53 #include <linux/swapops.h>
54 #include <linux/balloon_compaction.h>
56 #include "internal.h"
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/vmscan.h>
61 struct scan_control {
62 /* How many pages shrink_list() should reclaim */
63 unsigned long nr_to_reclaim;
65 /* This context's GFP mask */
66 gfp_t gfp_mask;
68 /* Allocation order */
69 int order;
72 * Nodemask of nodes allowed by the caller. If NULL, all nodes
73 * are scanned.
75 nodemask_t *nodemask;
78 * The memory cgroup that hit its limit and as a result is the
79 * primary target of this reclaim invocation.
81 struct mem_cgroup *target_mem_cgroup;
83 /* Scan (total_size >> priority) pages at once */
84 int priority;
86 unsigned int may_writepage:1;
88 /* Can mapped pages be reclaimed? */
89 unsigned int may_unmap:1;
91 /* Can pages be swapped as part of reclaim? */
92 unsigned int may_swap:1;
94 /* Can cgroups be reclaimed below their normal consumption range? */
95 unsigned int may_thrash:1;
97 unsigned int hibernation_mode:1;
99 /* One of the zones is ready for compaction */
100 unsigned int compaction_ready:1;
102 /* Incremented by the number of inactive pages that were scanned */
103 unsigned long nr_scanned;
105 /* Number of pages freed so far during a call to shrink_zones() */
106 unsigned long nr_reclaimed;
109 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
111 #ifdef ARCH_HAS_PREFETCH
112 #define prefetch_prev_lru_page(_page, _base, _field) \
113 do { \
114 if ((_page)->lru.prev != _base) { \
115 struct page *prev; \
117 prev = lru_to_page(&(_page->lru)); \
118 prefetch(&prev->_field); \
120 } while (0)
121 #else
122 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
123 #endif
125 #ifdef ARCH_HAS_PREFETCHW
126 #define prefetchw_prev_lru_page(_page, _base, _field) \
127 do { \
128 if ((_page)->lru.prev != _base) { \
129 struct page *prev; \
131 prev = lru_to_page(&(_page->lru)); \
132 prefetchw(&prev->_field); \
134 } while (0)
135 #else
136 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
137 #endif
140 * From 0 .. 100. Higher means more swappy.
142 int vm_swappiness = 60;
144 * The total number of pages which are beyond the high watermark within all
145 * zones.
147 unsigned long vm_total_pages;
149 static LIST_HEAD(shrinker_list);
150 static DECLARE_RWSEM(shrinker_rwsem);
152 #ifdef CONFIG_MEMCG
153 static bool global_reclaim(struct scan_control *sc)
155 return !sc->target_mem_cgroup;
159 * sane_reclaim - is the usual dirty throttling mechanism operational?
160 * @sc: scan_control in question
162 * The normal page dirty throttling mechanism in balance_dirty_pages() is
163 * completely broken with the legacy memcg and direct stalling in
164 * shrink_page_list() is used for throttling instead, which lacks all the
165 * niceties such as fairness, adaptive pausing, bandwidth proportional
166 * allocation and configurability.
168 * This function tests whether the vmscan currently in progress can assume
169 * that the normal dirty throttling mechanism is operational.
171 static bool sane_reclaim(struct scan_control *sc)
173 struct mem_cgroup *memcg = sc->target_mem_cgroup;
175 if (!memcg)
176 return true;
177 #ifdef CONFIG_CGROUP_WRITEBACK
178 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
179 return true;
180 #endif
181 return false;
183 #else
184 static bool global_reclaim(struct scan_control *sc)
186 return true;
189 static bool sane_reclaim(struct scan_control *sc)
191 return true;
193 #endif
195 static unsigned long zone_reclaimable_pages(struct zone *zone)
197 unsigned long nr;
199 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
200 zone_page_state(zone, NR_INACTIVE_FILE);
202 if (get_nr_swap_pages() > 0)
203 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
204 zone_page_state(zone, NR_INACTIVE_ANON);
206 return nr;
209 bool zone_reclaimable(struct zone *zone)
211 return zone_page_state(zone, NR_PAGES_SCANNED) <
212 zone_reclaimable_pages(zone) * 6;
215 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
217 if (!mem_cgroup_disabled())
218 return mem_cgroup_get_lru_size(lruvec, lru);
220 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
224 * Add a shrinker callback to be called from the vm.
226 int register_shrinker(struct shrinker *shrinker)
228 size_t size = sizeof(*shrinker->nr_deferred);
231 * If we only have one possible node in the system anyway, save
232 * ourselves the trouble and disable NUMA aware behavior. This way we
233 * will save memory and some small loop time later.
235 if (nr_node_ids == 1)
236 shrinker->flags &= ~SHRINKER_NUMA_AWARE;
238 if (shrinker->flags & SHRINKER_NUMA_AWARE)
239 size *= nr_node_ids;
241 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
242 if (!shrinker->nr_deferred)
243 return -ENOMEM;
245 down_write(&shrinker_rwsem);
246 list_add_tail(&shrinker->list, &shrinker_list);
247 up_write(&shrinker_rwsem);
248 return 0;
250 EXPORT_SYMBOL(register_shrinker);
253 * Remove one
255 void unregister_shrinker(struct shrinker *shrinker)
257 down_write(&shrinker_rwsem);
258 list_del(&shrinker->list);
259 up_write(&shrinker_rwsem);
260 kfree(shrinker->nr_deferred);
262 EXPORT_SYMBOL(unregister_shrinker);
264 #define SHRINK_BATCH 128
266 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
267 struct shrinker *shrinker,
268 unsigned long nr_scanned,
269 unsigned long nr_eligible)
271 unsigned long freed = 0;
272 unsigned long long delta;
273 long total_scan;
274 long freeable;
275 long nr;
276 long new_nr;
277 int nid = shrinkctl->nid;
278 long batch_size = shrinker->batch ? shrinker->batch
279 : SHRINK_BATCH;
280 long scanned = 0, next_deferred;
282 freeable = shrinker->count_objects(shrinker, shrinkctl);
283 if (freeable == 0)
284 return 0;
287 * copy the current shrinker scan count into a local variable
288 * and zero it so that other concurrent shrinker invocations
289 * don't also do this scanning work.
291 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
293 total_scan = nr;
294 delta = (4 * nr_scanned) / shrinker->seeks;
295 delta *= freeable;
296 do_div(delta, nr_eligible + 1);
297 total_scan += delta;
298 if (total_scan < 0) {
299 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
300 shrinker->scan_objects, total_scan);
301 total_scan = freeable;
302 next_deferred = nr;
303 } else
304 next_deferred = total_scan;
307 * We need to avoid excessive windup on filesystem shrinkers
308 * due to large numbers of GFP_NOFS allocations causing the
309 * shrinkers to return -1 all the time. This results in a large
310 * nr being built up so when a shrink that can do some work
311 * comes along it empties the entire cache due to nr >>>
312 * freeable. This is bad for sustaining a working set in
313 * memory.
315 * Hence only allow the shrinker to scan the entire cache when
316 * a large delta change is calculated directly.
318 if (delta < freeable / 4)
319 total_scan = min(total_scan, freeable / 2);
322 * Avoid risking looping forever due to too large nr value:
323 * never try to free more than twice the estimate number of
324 * freeable entries.
326 if (total_scan > freeable * 2)
327 total_scan = freeable * 2;
329 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
330 nr_scanned, nr_eligible,
331 freeable, delta, total_scan);
334 * Normally, we should not scan less than batch_size objects in one
335 * pass to avoid too frequent shrinker calls, but if the slab has less
336 * than batch_size objects in total and we are really tight on memory,
337 * we will try to reclaim all available objects, otherwise we can end
338 * up failing allocations although there are plenty of reclaimable
339 * objects spread over several slabs with usage less than the
340 * batch_size.
342 * We detect the "tight on memory" situations by looking at the total
343 * number of objects we want to scan (total_scan). If it is greater
344 * than the total number of objects on slab (freeable), we must be
345 * scanning at high prio and therefore should try to reclaim as much as
346 * possible.
348 while (total_scan >= batch_size ||
349 total_scan >= freeable) {
350 unsigned long ret;
351 unsigned long nr_to_scan = min(batch_size, total_scan);
353 shrinkctl->nr_to_scan = nr_to_scan;
354 ret = shrinker->scan_objects(shrinker, shrinkctl);
355 if (ret == SHRINK_STOP)
356 break;
357 freed += ret;
359 count_vm_events(SLABS_SCANNED, nr_to_scan);
360 total_scan -= nr_to_scan;
361 scanned += nr_to_scan;
363 cond_resched();
366 if (next_deferred >= scanned)
367 next_deferred -= scanned;
368 else
369 next_deferred = 0;
371 * move the unused scan count back into the shrinker in a
372 * manner that handles concurrent updates. If we exhausted the
373 * scan, there is no need to do an update.
375 if (next_deferred > 0)
376 new_nr = atomic_long_add_return(next_deferred,
377 &shrinker->nr_deferred[nid]);
378 else
379 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
381 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
382 return freed;
386 * shrink_slab - shrink slab caches
387 * @gfp_mask: allocation context
388 * @nid: node whose slab caches to target
389 * @memcg: memory cgroup whose slab caches to target
390 * @nr_scanned: pressure numerator
391 * @nr_eligible: pressure denominator
393 * Call the shrink functions to age shrinkable caches.
395 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
396 * unaware shrinkers will receive a node id of 0 instead.
398 * @memcg specifies the memory cgroup to target. If it is not NULL,
399 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
400 * objects from the memory cgroup specified. Otherwise all shrinkers
401 * are called, and memcg aware shrinkers are supposed to scan the
402 * global list then.
404 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
405 * the available objects should be scanned. Page reclaim for example
406 * passes the number of pages scanned and the number of pages on the
407 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
408 * when it encountered mapped pages. The ratio is further biased by
409 * the ->seeks setting of the shrink function, which indicates the
410 * cost to recreate an object relative to that of an LRU page.
412 * Returns the number of reclaimed slab objects.
414 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
415 struct mem_cgroup *memcg,
416 unsigned long nr_scanned,
417 unsigned long nr_eligible)
419 struct shrinker *shrinker;
420 unsigned long freed = 0;
422 if (memcg && !memcg_kmem_is_active(memcg))
423 return 0;
425 if (nr_scanned == 0)
426 nr_scanned = SWAP_CLUSTER_MAX;
428 if (!down_read_trylock(&shrinker_rwsem)) {
430 * If we would return 0, our callers would understand that we
431 * have nothing else to shrink and give up trying. By returning
432 * 1 we keep it going and assume we'll be able to shrink next
433 * time.
435 freed = 1;
436 goto out;
439 list_for_each_entry(shrinker, &shrinker_list, list) {
440 struct shrink_control sc = {
441 .gfp_mask = gfp_mask,
442 .nid = nid,
443 .memcg = memcg,
446 if (memcg && !(shrinker->flags & SHRINKER_MEMCG_AWARE))
447 continue;
449 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
450 sc.nid = 0;
452 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
455 up_read(&shrinker_rwsem);
456 out:
457 cond_resched();
458 return freed;
461 void drop_slab_node(int nid)
463 unsigned long freed;
465 do {
466 struct mem_cgroup *memcg = NULL;
468 freed = 0;
469 do {
470 freed += shrink_slab(GFP_KERNEL, nid, memcg,
471 1000, 1000);
472 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
473 } while (freed > 10);
476 void drop_slab(void)
478 int nid;
480 for_each_online_node(nid)
481 drop_slab_node(nid);
484 static inline int is_page_cache_freeable(struct page *page)
487 * A freeable page cache page is referenced only by the caller
488 * that isolated the page, the page cache radix tree and
489 * optional buffer heads at page->private.
491 return page_count(page) - page_has_private(page) == 2;
494 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
496 if (current->flags & PF_SWAPWRITE)
497 return 1;
498 if (!inode_write_congested(inode))
499 return 1;
500 if (inode_to_bdi(inode) == current->backing_dev_info)
501 return 1;
502 return 0;
506 * We detected a synchronous write error writing a page out. Probably
507 * -ENOSPC. We need to propagate that into the address_space for a subsequent
508 * fsync(), msync() or close().
510 * The tricky part is that after writepage we cannot touch the mapping: nothing
511 * prevents it from being freed up. But we have a ref on the page and once
512 * that page is locked, the mapping is pinned.
514 * We're allowed to run sleeping lock_page() here because we know the caller has
515 * __GFP_FS.
517 static void handle_write_error(struct address_space *mapping,
518 struct page *page, int error)
520 lock_page(page);
521 if (page_mapping(page) == mapping)
522 mapping_set_error(mapping, error);
523 unlock_page(page);
526 /* possible outcome of pageout() */
527 typedef enum {
528 /* failed to write page out, page is locked */
529 PAGE_KEEP,
530 /* move page to the active list, page is locked */
531 PAGE_ACTIVATE,
532 /* page has been sent to the disk successfully, page is unlocked */
533 PAGE_SUCCESS,
534 /* page is clean and locked */
535 PAGE_CLEAN,
536 } pageout_t;
539 * pageout is called by shrink_page_list() for each dirty page.
540 * Calls ->writepage().
542 static pageout_t pageout(struct page *page, struct address_space *mapping,
543 struct scan_control *sc)
546 * If the page is dirty, only perform writeback if that write
547 * will be non-blocking. To prevent this allocation from being
548 * stalled by pagecache activity. But note that there may be
549 * stalls if we need to run get_block(). We could test
550 * PagePrivate for that.
552 * If this process is currently in __generic_file_write_iter() against
553 * this page's queue, we can perform writeback even if that
554 * will block.
556 * If the page is swapcache, write it back even if that would
557 * block, for some throttling. This happens by accident, because
558 * swap_backing_dev_info is bust: it doesn't reflect the
559 * congestion state of the swapdevs. Easy to fix, if needed.
561 if (!is_page_cache_freeable(page))
562 return PAGE_KEEP;
563 if (!mapping) {
565 * Some data journaling orphaned pages can have
566 * page->mapping == NULL while being dirty with clean buffers.
568 if (page_has_private(page)) {
569 if (try_to_free_buffers(page)) {
570 ClearPageDirty(page);
571 pr_info("%s: orphaned page\n", __func__);
572 return PAGE_CLEAN;
575 return PAGE_KEEP;
577 if (mapping->a_ops->writepage == NULL)
578 return PAGE_ACTIVATE;
579 if (!may_write_to_inode(mapping->host, sc))
580 return PAGE_KEEP;
582 if (clear_page_dirty_for_io(page)) {
583 int res;
584 struct writeback_control wbc = {
585 .sync_mode = WB_SYNC_NONE,
586 .nr_to_write = SWAP_CLUSTER_MAX,
587 .range_start = 0,
588 .range_end = LLONG_MAX,
589 .for_reclaim = 1,
592 SetPageReclaim(page);
593 res = mapping->a_ops->writepage(page, &wbc);
594 if (res < 0)
595 handle_write_error(mapping, page, res);
596 if (res == AOP_WRITEPAGE_ACTIVATE) {
597 ClearPageReclaim(page);
598 return PAGE_ACTIVATE;
601 if (!PageWriteback(page)) {
602 /* synchronous write or broken a_ops? */
603 ClearPageReclaim(page);
605 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
606 inc_zone_page_state(page, NR_VMSCAN_WRITE);
607 return PAGE_SUCCESS;
610 return PAGE_CLEAN;
614 * Same as remove_mapping, but if the page is removed from the mapping, it
615 * gets returned with a refcount of 0.
617 static int __remove_mapping(struct address_space *mapping, struct page *page,
618 bool reclaimed)
620 unsigned long flags;
621 struct mem_cgroup *memcg;
623 BUG_ON(!PageLocked(page));
624 BUG_ON(mapping != page_mapping(page));
626 memcg = mem_cgroup_begin_page_stat(page);
627 spin_lock_irqsave(&mapping->tree_lock, flags);
629 * The non racy check for a busy page.
631 * Must be careful with the order of the tests. When someone has
632 * a ref to the page, it may be possible that they dirty it then
633 * drop the reference. So if PageDirty is tested before page_count
634 * here, then the following race may occur:
636 * get_user_pages(&page);
637 * [user mapping goes away]
638 * write_to(page);
639 * !PageDirty(page) [good]
640 * SetPageDirty(page);
641 * put_page(page);
642 * !page_count(page) [good, discard it]
644 * [oops, our write_to data is lost]
646 * Reversing the order of the tests ensures such a situation cannot
647 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
648 * load is not satisfied before that of page->_count.
650 * Note that if SetPageDirty is always performed via set_page_dirty,
651 * and thus under tree_lock, then this ordering is not required.
653 if (!page_freeze_refs(page, 2))
654 goto cannot_free;
655 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
656 if (unlikely(PageDirty(page))) {
657 page_unfreeze_refs(page, 2);
658 goto cannot_free;
661 if (PageSwapCache(page)) {
662 swp_entry_t swap = { .val = page_private(page) };
663 mem_cgroup_swapout(page, swap);
664 __delete_from_swap_cache(page);
665 spin_unlock_irqrestore(&mapping->tree_lock, flags);
666 mem_cgroup_end_page_stat(memcg);
667 swapcache_free(swap);
668 } else {
669 void (*freepage)(struct page *);
670 void *shadow = NULL;
672 freepage = mapping->a_ops->freepage;
674 * Remember a shadow entry for reclaimed file cache in
675 * order to detect refaults, thus thrashing, later on.
677 * But don't store shadows in an address space that is
678 * already exiting. This is not just an optizimation,
679 * inode reclaim needs to empty out the radix tree or
680 * the nodes are lost. Don't plant shadows behind its
681 * back.
683 if (reclaimed && page_is_file_cache(page) &&
684 !mapping_exiting(mapping))
685 shadow = workingset_eviction(mapping, page);
686 __delete_from_page_cache(page, shadow, memcg);
687 spin_unlock_irqrestore(&mapping->tree_lock, flags);
688 mem_cgroup_end_page_stat(memcg);
690 if (freepage != NULL)
691 freepage(page);
694 return 1;
696 cannot_free:
697 spin_unlock_irqrestore(&mapping->tree_lock, flags);
698 mem_cgroup_end_page_stat(memcg);
699 return 0;
703 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
704 * someone else has a ref on the page, abort and return 0. If it was
705 * successfully detached, return 1. Assumes the caller has a single ref on
706 * this page.
708 int remove_mapping(struct address_space *mapping, struct page *page)
710 if (__remove_mapping(mapping, page, false)) {
712 * Unfreezing the refcount with 1 rather than 2 effectively
713 * drops the pagecache ref for us without requiring another
714 * atomic operation.
716 page_unfreeze_refs(page, 1);
717 return 1;
719 return 0;
723 * putback_lru_page - put previously isolated page onto appropriate LRU list
724 * @page: page to be put back to appropriate lru list
726 * Add previously isolated @page to appropriate LRU list.
727 * Page may still be unevictable for other reasons.
729 * lru_lock must not be held, interrupts must be enabled.
731 void putback_lru_page(struct page *page)
733 bool is_unevictable;
734 int was_unevictable = PageUnevictable(page);
736 VM_BUG_ON_PAGE(PageLRU(page), page);
738 redo:
739 ClearPageUnevictable(page);
741 if (page_evictable(page)) {
743 * For evictable pages, we can use the cache.
744 * In event of a race, worst case is we end up with an
745 * unevictable page on [in]active list.
746 * We know how to handle that.
748 is_unevictable = false;
749 lru_cache_add(page);
750 } else {
752 * Put unevictable pages directly on zone's unevictable
753 * list.
755 is_unevictable = true;
756 add_page_to_unevictable_list(page);
758 * When racing with an mlock or AS_UNEVICTABLE clearing
759 * (page is unlocked) make sure that if the other thread
760 * does not observe our setting of PG_lru and fails
761 * isolation/check_move_unevictable_pages,
762 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
763 * the page back to the evictable list.
765 * The other side is TestClearPageMlocked() or shmem_lock().
767 smp_mb();
771 * page's status can change while we move it among lru. If an evictable
772 * page is on unevictable list, it never be freed. To avoid that,
773 * check after we added it to the list, again.
775 if (is_unevictable && page_evictable(page)) {
776 if (!isolate_lru_page(page)) {
777 put_page(page);
778 goto redo;
780 /* This means someone else dropped this page from LRU
781 * So, it will be freed or putback to LRU again. There is
782 * nothing to do here.
786 if (was_unevictable && !is_unevictable)
787 count_vm_event(UNEVICTABLE_PGRESCUED);
788 else if (!was_unevictable && is_unevictable)
789 count_vm_event(UNEVICTABLE_PGCULLED);
791 put_page(page); /* drop ref from isolate */
794 enum page_references {
795 PAGEREF_RECLAIM,
796 PAGEREF_RECLAIM_CLEAN,
797 PAGEREF_KEEP,
798 PAGEREF_ACTIVATE,
801 static enum page_references page_check_references(struct page *page,
802 struct scan_control *sc)
804 int referenced_ptes, referenced_page;
805 unsigned long vm_flags;
807 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
808 &vm_flags);
809 referenced_page = TestClearPageReferenced(page);
812 * Mlock lost the isolation race with us. Let try_to_unmap()
813 * move the page to the unevictable list.
815 if (vm_flags & VM_LOCKED)
816 return PAGEREF_RECLAIM;
818 if (referenced_ptes) {
819 if (PageSwapBacked(page))
820 return PAGEREF_ACTIVATE;
822 * All mapped pages start out with page table
823 * references from the instantiating fault, so we need
824 * to look twice if a mapped file page is used more
825 * than once.
827 * Mark it and spare it for another trip around the
828 * inactive list. Another page table reference will
829 * lead to its activation.
831 * Note: the mark is set for activated pages as well
832 * so that recently deactivated but used pages are
833 * quickly recovered.
835 SetPageReferenced(page);
837 if (referenced_page || referenced_ptes > 1)
838 return PAGEREF_ACTIVATE;
841 * Activate file-backed executable pages after first usage.
843 if (vm_flags & VM_EXEC)
844 return PAGEREF_ACTIVATE;
846 return PAGEREF_KEEP;
849 /* Reclaim if clean, defer dirty pages to writeback */
850 if (referenced_page && !PageSwapBacked(page))
851 return PAGEREF_RECLAIM_CLEAN;
853 return PAGEREF_RECLAIM;
856 /* Check if a page is dirty or under writeback */
857 static void page_check_dirty_writeback(struct page *page,
858 bool *dirty, bool *writeback)
860 struct address_space *mapping;
863 * Anonymous pages are not handled by flushers and must be written
864 * from reclaim context. Do not stall reclaim based on them
866 if (!page_is_file_cache(page)) {
867 *dirty = false;
868 *writeback = false;
869 return;
872 /* By default assume that the page flags are accurate */
873 *dirty = PageDirty(page);
874 *writeback = PageWriteback(page);
876 /* Verify dirty/writeback state if the filesystem supports it */
877 if (!page_has_private(page))
878 return;
880 mapping = page_mapping(page);
881 if (mapping && mapping->a_ops->is_dirty_writeback)
882 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
886 * shrink_page_list() returns the number of reclaimed pages
888 static unsigned long shrink_page_list(struct list_head *page_list,
889 struct zone *zone,
890 struct scan_control *sc,
891 enum ttu_flags ttu_flags,
892 unsigned long *ret_nr_dirty,
893 unsigned long *ret_nr_unqueued_dirty,
894 unsigned long *ret_nr_congested,
895 unsigned long *ret_nr_writeback,
896 unsigned long *ret_nr_immediate,
897 bool force_reclaim)
899 LIST_HEAD(ret_pages);
900 LIST_HEAD(free_pages);
901 int pgactivate = 0;
902 unsigned long nr_unqueued_dirty = 0;
903 unsigned long nr_dirty = 0;
904 unsigned long nr_congested = 0;
905 unsigned long nr_reclaimed = 0;
906 unsigned long nr_writeback = 0;
907 unsigned long nr_immediate = 0;
909 cond_resched();
911 while (!list_empty(page_list)) {
912 struct address_space *mapping;
913 struct page *page;
914 int may_enter_fs;
915 enum page_references references = PAGEREF_RECLAIM_CLEAN;
916 bool dirty, writeback;
918 cond_resched();
920 page = lru_to_page(page_list);
921 list_del(&page->lru);
923 if (!trylock_page(page))
924 goto keep;
926 VM_BUG_ON_PAGE(PageActive(page), page);
927 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
929 sc->nr_scanned++;
931 if (unlikely(!page_evictable(page)))
932 goto cull_mlocked;
934 if (!sc->may_unmap && page_mapped(page))
935 goto keep_locked;
937 /* Double the slab pressure for mapped and swapcache pages */
938 if (page_mapped(page) || PageSwapCache(page))
939 sc->nr_scanned++;
941 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
942 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
945 * The number of dirty pages determines if a zone is marked
946 * reclaim_congested which affects wait_iff_congested. kswapd
947 * will stall and start writing pages if the tail of the LRU
948 * is all dirty unqueued pages.
950 page_check_dirty_writeback(page, &dirty, &writeback);
951 if (dirty || writeback)
952 nr_dirty++;
954 if (dirty && !writeback)
955 nr_unqueued_dirty++;
958 * Treat this page as congested if the underlying BDI is or if
959 * pages are cycling through the LRU so quickly that the
960 * pages marked for immediate reclaim are making it to the
961 * end of the LRU a second time.
963 mapping = page_mapping(page);
964 if (((dirty || writeback) && mapping &&
965 inode_write_congested(mapping->host)) ||
966 (writeback && PageReclaim(page)))
967 nr_congested++;
970 * If a page at the tail of the LRU is under writeback, there
971 * are three cases to consider.
973 * 1) If reclaim is encountering an excessive number of pages
974 * under writeback and this page is both under writeback and
975 * PageReclaim then it indicates that pages are being queued
976 * for IO but are being recycled through the LRU before the
977 * IO can complete. Waiting on the page itself risks an
978 * indefinite stall if it is impossible to writeback the
979 * page due to IO error or disconnected storage so instead
980 * note that the LRU is being scanned too quickly and the
981 * caller can stall after page list has been processed.
983 * 2) Global or new memcg reclaim encounters a page that is
984 * not marked for immediate reclaim, or the caller does not
985 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
986 * not to fs). In this case mark the page for immediate
987 * reclaim and continue scanning.
989 * Require may_enter_fs because we would wait on fs, which
990 * may not have submitted IO yet. And the loop driver might
991 * enter reclaim, and deadlock if it waits on a page for
992 * which it is needed to do the write (loop masks off
993 * __GFP_IO|__GFP_FS for this reason); but more thought
994 * would probably show more reasons.
996 * 3) Legacy memcg encounters a page that is already marked
997 * PageReclaim. memcg does not have any dirty pages
998 * throttling so we could easily OOM just because too many
999 * pages are in writeback and there is nothing else to
1000 * reclaim. Wait for the writeback to complete.
1002 if (PageWriteback(page)) {
1003 /* Case 1 above */
1004 if (current_is_kswapd() &&
1005 PageReclaim(page) &&
1006 test_bit(ZONE_WRITEBACK, &zone->flags)) {
1007 nr_immediate++;
1008 goto keep_locked;
1010 /* Case 2 above */
1011 } else if (sane_reclaim(sc) ||
1012 !PageReclaim(page) || !may_enter_fs) {
1014 * This is slightly racy - end_page_writeback()
1015 * might have just cleared PageReclaim, then
1016 * setting PageReclaim here end up interpreted
1017 * as PageReadahead - but that does not matter
1018 * enough to care. What we do want is for this
1019 * page to have PageReclaim set next time memcg
1020 * reclaim reaches the tests above, so it will
1021 * then wait_on_page_writeback() to avoid OOM;
1022 * and it's also appropriate in global reclaim.
1024 SetPageReclaim(page);
1025 nr_writeback++;
1026 goto keep_locked;
1028 /* Case 3 above */
1029 } else {
1030 unlock_page(page);
1031 wait_on_page_writeback(page);
1032 /* then go back and try same page again */
1033 list_add_tail(&page->lru, page_list);
1034 continue;
1038 if (!force_reclaim)
1039 references = page_check_references(page, sc);
1041 switch (references) {
1042 case PAGEREF_ACTIVATE:
1043 goto activate_locked;
1044 case PAGEREF_KEEP:
1045 goto keep_locked;
1046 case PAGEREF_RECLAIM:
1047 case PAGEREF_RECLAIM_CLEAN:
1048 ; /* try to reclaim the page below */
1052 * Anonymous process memory has backing store?
1053 * Try to allocate it some swap space here.
1055 if (PageAnon(page) && !PageSwapCache(page)) {
1056 if (!(sc->gfp_mask & __GFP_IO))
1057 goto keep_locked;
1058 if (!add_to_swap(page, page_list))
1059 goto activate_locked;
1060 may_enter_fs = 1;
1062 /* Adding to swap updated mapping */
1063 mapping = page_mapping(page);
1067 * The page is mapped into the page tables of one or more
1068 * processes. Try to unmap it here.
1070 if (page_mapped(page) && mapping) {
1071 switch (try_to_unmap(page,
1072 ttu_flags|TTU_BATCH_FLUSH)) {
1073 case SWAP_FAIL:
1074 goto activate_locked;
1075 case SWAP_AGAIN:
1076 goto keep_locked;
1077 case SWAP_MLOCK:
1078 goto cull_mlocked;
1079 case SWAP_SUCCESS:
1080 ; /* try to free the page below */
1084 if (PageDirty(page)) {
1086 * Only kswapd can writeback filesystem pages to
1087 * avoid risk of stack overflow but only writeback
1088 * if many dirty pages have been encountered.
1090 if (page_is_file_cache(page) &&
1091 (!current_is_kswapd() ||
1092 !test_bit(ZONE_DIRTY, &zone->flags))) {
1094 * Immediately reclaim when written back.
1095 * Similar in principal to deactivate_page()
1096 * except we already have the page isolated
1097 * and know it's dirty
1099 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
1100 SetPageReclaim(page);
1102 goto keep_locked;
1105 if (references == PAGEREF_RECLAIM_CLEAN)
1106 goto keep_locked;
1107 if (!may_enter_fs)
1108 goto keep_locked;
1109 if (!sc->may_writepage)
1110 goto keep_locked;
1113 * Page is dirty. Flush the TLB if a writable entry
1114 * potentially exists to avoid CPU writes after IO
1115 * starts and then write it out here.
1117 try_to_unmap_flush_dirty();
1118 switch (pageout(page, mapping, sc)) {
1119 case PAGE_KEEP:
1120 goto keep_locked;
1121 case PAGE_ACTIVATE:
1122 goto activate_locked;
1123 case PAGE_SUCCESS:
1124 if (PageWriteback(page))
1125 goto keep;
1126 if (PageDirty(page))
1127 goto keep;
1130 * A synchronous write - probably a ramdisk. Go
1131 * ahead and try to reclaim the page.
1133 if (!trylock_page(page))
1134 goto keep;
1135 if (PageDirty(page) || PageWriteback(page))
1136 goto keep_locked;
1137 mapping = page_mapping(page);
1138 case PAGE_CLEAN:
1139 ; /* try to free the page below */
1144 * If the page has buffers, try to free the buffer mappings
1145 * associated with this page. If we succeed we try to free
1146 * the page as well.
1148 * We do this even if the page is PageDirty().
1149 * try_to_release_page() does not perform I/O, but it is
1150 * possible for a page to have PageDirty set, but it is actually
1151 * clean (all its buffers are clean). This happens if the
1152 * buffers were written out directly, with submit_bh(). ext3
1153 * will do this, as well as the blockdev mapping.
1154 * try_to_release_page() will discover that cleanness and will
1155 * drop the buffers and mark the page clean - it can be freed.
1157 * Rarely, pages can have buffers and no ->mapping. These are
1158 * the pages which were not successfully invalidated in
1159 * truncate_complete_page(). We try to drop those buffers here
1160 * and if that worked, and the page is no longer mapped into
1161 * process address space (page_count == 1) it can be freed.
1162 * Otherwise, leave the page on the LRU so it is swappable.
1164 if (page_has_private(page)) {
1165 if (!try_to_release_page(page, sc->gfp_mask))
1166 goto activate_locked;
1167 if (!mapping && page_count(page) == 1) {
1168 unlock_page(page);
1169 if (put_page_testzero(page))
1170 goto free_it;
1171 else {
1173 * rare race with speculative reference.
1174 * the speculative reference will free
1175 * this page shortly, so we may
1176 * increment nr_reclaimed here (and
1177 * leave it off the LRU).
1179 nr_reclaimed++;
1180 continue;
1185 if (!mapping || !__remove_mapping(mapping, page, true))
1186 goto keep_locked;
1189 * At this point, we have no other references and there is
1190 * no way to pick any more up (removed from LRU, removed
1191 * from pagecache). Can use non-atomic bitops now (and
1192 * we obviously don't have to worry about waking up a process
1193 * waiting on the page lock, because there are no references.
1195 __clear_page_locked(page);
1196 free_it:
1197 nr_reclaimed++;
1200 * Is there need to periodically free_page_list? It would
1201 * appear not as the counts should be low
1203 list_add(&page->lru, &free_pages);
1204 continue;
1206 cull_mlocked:
1207 if (PageSwapCache(page))
1208 try_to_free_swap(page);
1209 unlock_page(page);
1210 list_add(&page->lru, &ret_pages);
1211 continue;
1213 activate_locked:
1214 /* Not a candidate for swapping, so reclaim swap space. */
1215 if (PageSwapCache(page) && vm_swap_full())
1216 try_to_free_swap(page);
1217 VM_BUG_ON_PAGE(PageActive(page), page);
1218 SetPageActive(page);
1219 pgactivate++;
1220 keep_locked:
1221 unlock_page(page);
1222 keep:
1223 list_add(&page->lru, &ret_pages);
1224 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1227 mem_cgroup_uncharge_list(&free_pages);
1228 try_to_unmap_flush();
1229 free_hot_cold_page_list(&free_pages, true);
1231 list_splice(&ret_pages, page_list);
1232 count_vm_events(PGACTIVATE, pgactivate);
1234 *ret_nr_dirty += nr_dirty;
1235 *ret_nr_congested += nr_congested;
1236 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
1237 *ret_nr_writeback += nr_writeback;
1238 *ret_nr_immediate += nr_immediate;
1239 return nr_reclaimed;
1242 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1243 struct list_head *page_list)
1245 struct scan_control sc = {
1246 .gfp_mask = GFP_KERNEL,
1247 .priority = DEF_PRIORITY,
1248 .may_unmap = 1,
1250 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1251 struct page *page, *next;
1252 LIST_HEAD(clean_pages);
1254 list_for_each_entry_safe(page, next, page_list, lru) {
1255 if (page_is_file_cache(page) && !PageDirty(page) &&
1256 !isolated_balloon_page(page)) {
1257 ClearPageActive(page);
1258 list_move(&page->lru, &clean_pages);
1262 ret = shrink_page_list(&clean_pages, zone, &sc,
1263 TTU_UNMAP|TTU_IGNORE_ACCESS,
1264 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1265 list_splice(&clean_pages, page_list);
1266 mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1267 return ret;
1271 * Attempt to remove the specified page from its LRU. Only take this page
1272 * if it is of the appropriate PageActive status. Pages which are being
1273 * freed elsewhere are also ignored.
1275 * page: page to consider
1276 * mode: one of the LRU isolation modes defined above
1278 * returns 0 on success, -ve errno on failure.
1280 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1282 int ret = -EINVAL;
1284 /* Only take pages on the LRU. */
1285 if (!PageLRU(page))
1286 return ret;
1288 /* Compaction should not handle unevictable pages but CMA can do so */
1289 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1290 return ret;
1292 ret = -EBUSY;
1295 * To minimise LRU disruption, the caller can indicate that it only
1296 * wants to isolate pages it will be able to operate on without
1297 * blocking - clean pages for the most part.
1299 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1300 * is used by reclaim when it is cannot write to backing storage
1302 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1303 * that it is possible to migrate without blocking
1305 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1306 /* All the caller can do on PageWriteback is block */
1307 if (PageWriteback(page))
1308 return ret;
1310 if (PageDirty(page)) {
1311 struct address_space *mapping;
1313 /* ISOLATE_CLEAN means only clean pages */
1314 if (mode & ISOLATE_CLEAN)
1315 return ret;
1318 * Only pages without mappings or that have a
1319 * ->migratepage callback are possible to migrate
1320 * without blocking
1322 mapping = page_mapping(page);
1323 if (mapping && !mapping->a_ops->migratepage)
1324 return ret;
1328 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1329 return ret;
1331 if (likely(get_page_unless_zero(page))) {
1333 * Be careful not to clear PageLRU until after we're
1334 * sure the page is not being freed elsewhere -- the
1335 * page release code relies on it.
1337 ClearPageLRU(page);
1338 ret = 0;
1341 return ret;
1345 * zone->lru_lock is heavily contended. Some of the functions that
1346 * shrink the lists perform better by taking out a batch of pages
1347 * and working on them outside the LRU lock.
1349 * For pagecache intensive workloads, this function is the hottest
1350 * spot in the kernel (apart from copy_*_user functions).
1352 * Appropriate locks must be held before calling this function.
1354 * @nr_to_scan: The number of pages to look through on the list.
1355 * @lruvec: The LRU vector to pull pages from.
1356 * @dst: The temp list to put pages on to.
1357 * @nr_scanned: The number of pages that were scanned.
1358 * @sc: The scan_control struct for this reclaim session
1359 * @mode: One of the LRU isolation modes
1360 * @lru: LRU list id for isolating
1362 * returns how many pages were moved onto *@dst.
1364 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1365 struct lruvec *lruvec, struct list_head *dst,
1366 unsigned long *nr_scanned, struct scan_control *sc,
1367 isolate_mode_t mode, enum lru_list lru)
1369 struct list_head *src = &lruvec->lists[lru];
1370 unsigned long nr_taken = 0;
1371 unsigned long scan;
1373 for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
1374 !list_empty(src); scan++) {
1375 struct page *page;
1376 int nr_pages;
1378 page = lru_to_page(src);
1379 prefetchw_prev_lru_page(page, src, flags);
1381 VM_BUG_ON_PAGE(!PageLRU(page), page);
1383 switch (__isolate_lru_page(page, mode)) {
1384 case 0:
1385 nr_pages = hpage_nr_pages(page);
1386 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1387 list_move(&page->lru, dst);
1388 nr_taken += nr_pages;
1389 break;
1391 case -EBUSY:
1392 /* else it is being freed elsewhere */
1393 list_move(&page->lru, src);
1394 continue;
1396 default:
1397 BUG();
1401 *nr_scanned = scan;
1402 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1403 nr_taken, mode, is_file_lru(lru));
1404 return nr_taken;
1408 * isolate_lru_page - tries to isolate a page from its LRU list
1409 * @page: page to isolate from its LRU list
1411 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1412 * vmstat statistic corresponding to whatever LRU list the page was on.
1414 * Returns 0 if the page was removed from an LRU list.
1415 * Returns -EBUSY if the page was not on an LRU list.
1417 * The returned page will have PageLRU() cleared. If it was found on
1418 * the active list, it will have PageActive set. If it was found on
1419 * the unevictable list, it will have the PageUnevictable bit set. That flag
1420 * may need to be cleared by the caller before letting the page go.
1422 * The vmstat statistic corresponding to the list on which the page was
1423 * found will be decremented.
1425 * Restrictions:
1426 * (1) Must be called with an elevated refcount on the page. This is a
1427 * fundamentnal difference from isolate_lru_pages (which is called
1428 * without a stable reference).
1429 * (2) the lru_lock must not be held.
1430 * (3) interrupts must be enabled.
1432 int isolate_lru_page(struct page *page)
1434 int ret = -EBUSY;
1436 VM_BUG_ON_PAGE(!page_count(page), page);
1438 if (PageLRU(page)) {
1439 struct zone *zone = page_zone(page);
1440 struct lruvec *lruvec;
1442 spin_lock_irq(&zone->lru_lock);
1443 lruvec = mem_cgroup_page_lruvec(page, zone);
1444 if (PageLRU(page)) {
1445 int lru = page_lru(page);
1446 get_page(page);
1447 ClearPageLRU(page);
1448 del_page_from_lru_list(page, lruvec, lru);
1449 ret = 0;
1451 spin_unlock_irq(&zone->lru_lock);
1453 return ret;
1457 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1458 * then get resheduled. When there are massive number of tasks doing page
1459 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1460 * the LRU list will go small and be scanned faster than necessary, leading to
1461 * unnecessary swapping, thrashing and OOM.
1463 static int too_many_isolated(struct zone *zone, int file,
1464 struct scan_control *sc)
1466 unsigned long inactive, isolated;
1468 if (current_is_kswapd())
1469 return 0;
1471 if (!sane_reclaim(sc))
1472 return 0;
1474 if (file) {
1475 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1476 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1477 } else {
1478 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1479 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1483 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1484 * won't get blocked by normal direct-reclaimers, forming a circular
1485 * deadlock.
1487 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1488 inactive >>= 3;
1490 return isolated > inactive;
1493 static noinline_for_stack void
1494 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1496 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1497 struct zone *zone = lruvec_zone(lruvec);
1498 LIST_HEAD(pages_to_free);
1501 * Put back any unfreeable pages.
1503 while (!list_empty(page_list)) {
1504 struct page *page = lru_to_page(page_list);
1505 int lru;
1507 VM_BUG_ON_PAGE(PageLRU(page), page);
1508 list_del(&page->lru);
1509 if (unlikely(!page_evictable(page))) {
1510 spin_unlock_irq(&zone->lru_lock);
1511 putback_lru_page(page);
1512 spin_lock_irq(&zone->lru_lock);
1513 continue;
1516 lruvec = mem_cgroup_page_lruvec(page, zone);
1518 SetPageLRU(page);
1519 lru = page_lru(page);
1520 add_page_to_lru_list(page, lruvec, lru);
1522 if (is_active_lru(lru)) {
1523 int file = is_file_lru(lru);
1524 int numpages = hpage_nr_pages(page);
1525 reclaim_stat->recent_rotated[file] += numpages;
1527 if (put_page_testzero(page)) {
1528 __ClearPageLRU(page);
1529 __ClearPageActive(page);
1530 del_page_from_lru_list(page, lruvec, lru);
1532 if (unlikely(PageCompound(page))) {
1533 spin_unlock_irq(&zone->lru_lock);
1534 mem_cgroup_uncharge(page);
1535 (*get_compound_page_dtor(page))(page);
1536 spin_lock_irq(&zone->lru_lock);
1537 } else
1538 list_add(&page->lru, &pages_to_free);
1543 * To save our caller's stack, now use input list for pages to free.
1545 list_splice(&pages_to_free, page_list);
1549 * If a kernel thread (such as nfsd for loop-back mounts) services
1550 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1551 * In that case we should only throttle if the backing device it is
1552 * writing to is congested. In other cases it is safe to throttle.
1554 static int current_may_throttle(void)
1556 return !(current->flags & PF_LESS_THROTTLE) ||
1557 current->backing_dev_info == NULL ||
1558 bdi_write_congested(current->backing_dev_info);
1562 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1563 * of reclaimed pages
1565 static noinline_for_stack unsigned long
1566 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1567 struct scan_control *sc, enum lru_list lru)
1569 LIST_HEAD(page_list);
1570 unsigned long nr_scanned;
1571 unsigned long nr_reclaimed = 0;
1572 unsigned long nr_taken;
1573 unsigned long nr_dirty = 0;
1574 unsigned long nr_congested = 0;
1575 unsigned long nr_unqueued_dirty = 0;
1576 unsigned long nr_writeback = 0;
1577 unsigned long nr_immediate = 0;
1578 isolate_mode_t isolate_mode = 0;
1579 int file = is_file_lru(lru);
1580 struct zone *zone = lruvec_zone(lruvec);
1581 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1583 while (unlikely(too_many_isolated(zone, file, sc))) {
1584 congestion_wait(BLK_RW_ASYNC, HZ/10);
1586 /* We are about to die and free our memory. Return now. */
1587 if (fatal_signal_pending(current))
1588 return SWAP_CLUSTER_MAX;
1591 lru_add_drain();
1593 if (!sc->may_unmap)
1594 isolate_mode |= ISOLATE_UNMAPPED;
1595 if (!sc->may_writepage)
1596 isolate_mode |= ISOLATE_CLEAN;
1598 spin_lock_irq(&zone->lru_lock);
1600 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1601 &nr_scanned, sc, isolate_mode, lru);
1603 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1604 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1606 if (global_reclaim(sc)) {
1607 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1608 if (current_is_kswapd())
1609 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1610 else
1611 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1613 spin_unlock_irq(&zone->lru_lock);
1615 if (nr_taken == 0)
1616 return 0;
1618 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1619 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1620 &nr_writeback, &nr_immediate,
1621 false);
1623 spin_lock_irq(&zone->lru_lock);
1625 reclaim_stat->recent_scanned[file] += nr_taken;
1627 if (global_reclaim(sc)) {
1628 if (current_is_kswapd())
1629 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1630 nr_reclaimed);
1631 else
1632 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1633 nr_reclaimed);
1636 putback_inactive_pages(lruvec, &page_list);
1638 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1640 spin_unlock_irq(&zone->lru_lock);
1642 mem_cgroup_uncharge_list(&page_list);
1643 free_hot_cold_page_list(&page_list, true);
1646 * If reclaim is isolating dirty pages under writeback, it implies
1647 * that the long-lived page allocation rate is exceeding the page
1648 * laundering rate. Either the global limits are not being effective
1649 * at throttling processes due to the page distribution throughout
1650 * zones or there is heavy usage of a slow backing device. The
1651 * only option is to throttle from reclaim context which is not ideal
1652 * as there is no guarantee the dirtying process is throttled in the
1653 * same way balance_dirty_pages() manages.
1655 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1656 * of pages under pages flagged for immediate reclaim and stall if any
1657 * are encountered in the nr_immediate check below.
1659 if (nr_writeback && nr_writeback == nr_taken)
1660 set_bit(ZONE_WRITEBACK, &zone->flags);
1663 * Legacy memcg will stall in page writeback so avoid forcibly
1664 * stalling here.
1666 if (sane_reclaim(sc)) {
1668 * Tag a zone as congested if all the dirty pages scanned were
1669 * backed by a congested BDI and wait_iff_congested will stall.
1671 if (nr_dirty && nr_dirty == nr_congested)
1672 set_bit(ZONE_CONGESTED, &zone->flags);
1675 * If dirty pages are scanned that are not queued for IO, it
1676 * implies that flushers are not keeping up. In this case, flag
1677 * the zone ZONE_DIRTY and kswapd will start writing pages from
1678 * reclaim context.
1680 if (nr_unqueued_dirty == nr_taken)
1681 set_bit(ZONE_DIRTY, &zone->flags);
1684 * If kswapd scans pages marked marked for immediate
1685 * reclaim and under writeback (nr_immediate), it implies
1686 * that pages are cycling through the LRU faster than
1687 * they are written so also forcibly stall.
1689 if (nr_immediate && current_may_throttle())
1690 congestion_wait(BLK_RW_ASYNC, HZ/10);
1694 * Stall direct reclaim for IO completions if underlying BDIs or zone
1695 * is congested. Allow kswapd to continue until it starts encountering
1696 * unqueued dirty pages or cycling through the LRU too quickly.
1698 if (!sc->hibernation_mode && !current_is_kswapd() &&
1699 current_may_throttle())
1700 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1702 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1703 zone_idx(zone),
1704 nr_scanned, nr_reclaimed,
1705 sc->priority,
1706 trace_shrink_flags(file));
1707 return nr_reclaimed;
1711 * This moves pages from the active list to the inactive list.
1713 * We move them the other way if the page is referenced by one or more
1714 * processes, from rmap.
1716 * If the pages are mostly unmapped, the processing is fast and it is
1717 * appropriate to hold zone->lru_lock across the whole operation. But if
1718 * the pages are mapped, the processing is slow (page_referenced()) so we
1719 * should drop zone->lru_lock around each page. It's impossible to balance
1720 * this, so instead we remove the pages from the LRU while processing them.
1721 * It is safe to rely on PG_active against the non-LRU pages in here because
1722 * nobody will play with that bit on a non-LRU page.
1724 * The downside is that we have to touch page->_count against each page.
1725 * But we had to alter page->flags anyway.
1728 static void move_active_pages_to_lru(struct lruvec *lruvec,
1729 struct list_head *list,
1730 struct list_head *pages_to_free,
1731 enum lru_list lru)
1733 struct zone *zone = lruvec_zone(lruvec);
1734 unsigned long pgmoved = 0;
1735 struct page *page;
1736 int nr_pages;
1738 while (!list_empty(list)) {
1739 page = lru_to_page(list);
1740 lruvec = mem_cgroup_page_lruvec(page, zone);
1742 VM_BUG_ON_PAGE(PageLRU(page), page);
1743 SetPageLRU(page);
1745 nr_pages = hpage_nr_pages(page);
1746 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1747 list_move(&page->lru, &lruvec->lists[lru]);
1748 pgmoved += nr_pages;
1750 if (put_page_testzero(page)) {
1751 __ClearPageLRU(page);
1752 __ClearPageActive(page);
1753 del_page_from_lru_list(page, lruvec, lru);
1755 if (unlikely(PageCompound(page))) {
1756 spin_unlock_irq(&zone->lru_lock);
1757 mem_cgroup_uncharge(page);
1758 (*get_compound_page_dtor(page))(page);
1759 spin_lock_irq(&zone->lru_lock);
1760 } else
1761 list_add(&page->lru, pages_to_free);
1764 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1765 if (!is_active_lru(lru))
1766 __count_vm_events(PGDEACTIVATE, pgmoved);
1769 static void shrink_active_list(unsigned long nr_to_scan,
1770 struct lruvec *lruvec,
1771 struct scan_control *sc,
1772 enum lru_list lru)
1774 unsigned long nr_taken;
1775 unsigned long nr_scanned;
1776 unsigned long vm_flags;
1777 LIST_HEAD(l_hold); /* The pages which were snipped off */
1778 LIST_HEAD(l_active);
1779 LIST_HEAD(l_inactive);
1780 struct page *page;
1781 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1782 unsigned long nr_rotated = 0;
1783 isolate_mode_t isolate_mode = 0;
1784 int file = is_file_lru(lru);
1785 struct zone *zone = lruvec_zone(lruvec);
1787 lru_add_drain();
1789 if (!sc->may_unmap)
1790 isolate_mode |= ISOLATE_UNMAPPED;
1791 if (!sc->may_writepage)
1792 isolate_mode |= ISOLATE_CLEAN;
1794 spin_lock_irq(&zone->lru_lock);
1796 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1797 &nr_scanned, sc, isolate_mode, lru);
1798 if (global_reclaim(sc))
1799 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1801 reclaim_stat->recent_scanned[file] += nr_taken;
1803 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1804 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1805 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1806 spin_unlock_irq(&zone->lru_lock);
1808 while (!list_empty(&l_hold)) {
1809 cond_resched();
1810 page = lru_to_page(&l_hold);
1811 list_del(&page->lru);
1813 if (unlikely(!page_evictable(page))) {
1814 putback_lru_page(page);
1815 continue;
1818 if (unlikely(buffer_heads_over_limit)) {
1819 if (page_has_private(page) && trylock_page(page)) {
1820 if (page_has_private(page))
1821 try_to_release_page(page, 0);
1822 unlock_page(page);
1826 if (page_referenced(page, 0, sc->target_mem_cgroup,
1827 &vm_flags)) {
1828 nr_rotated += hpage_nr_pages(page);
1830 * Identify referenced, file-backed active pages and
1831 * give them one more trip around the active list. So
1832 * that executable code get better chances to stay in
1833 * memory under moderate memory pressure. Anon pages
1834 * are not likely to be evicted by use-once streaming
1835 * IO, plus JVM can create lots of anon VM_EXEC pages,
1836 * so we ignore them here.
1838 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1839 list_add(&page->lru, &l_active);
1840 continue;
1844 ClearPageActive(page); /* we are de-activating */
1845 list_add(&page->lru, &l_inactive);
1849 * Move pages back to the lru list.
1851 spin_lock_irq(&zone->lru_lock);
1853 * Count referenced pages from currently used mappings as rotated,
1854 * even though only some of them are actually re-activated. This
1855 * helps balance scan pressure between file and anonymous pages in
1856 * get_scan_count.
1858 reclaim_stat->recent_rotated[file] += nr_rotated;
1860 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1861 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1862 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1863 spin_unlock_irq(&zone->lru_lock);
1865 mem_cgroup_uncharge_list(&l_hold);
1866 free_hot_cold_page_list(&l_hold, true);
1869 #ifdef CONFIG_SWAP
1870 static bool inactive_anon_is_low_global(struct zone *zone)
1872 unsigned long active, inactive;
1874 active = zone_page_state(zone, NR_ACTIVE_ANON);
1875 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1877 return inactive * zone->inactive_ratio < active;
1881 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1882 * @lruvec: LRU vector to check
1884 * Returns true if the zone does not have enough inactive anon pages,
1885 * meaning some active anon pages need to be deactivated.
1887 static bool inactive_anon_is_low(struct lruvec *lruvec)
1890 * If we don't have swap space, anonymous page deactivation
1891 * is pointless.
1893 if (!total_swap_pages)
1894 return false;
1896 if (!mem_cgroup_disabled())
1897 return mem_cgroup_inactive_anon_is_low(lruvec);
1899 return inactive_anon_is_low_global(lruvec_zone(lruvec));
1901 #else
1902 static inline bool inactive_anon_is_low(struct lruvec *lruvec)
1904 return false;
1906 #endif
1909 * inactive_file_is_low - check if file pages need to be deactivated
1910 * @lruvec: LRU vector to check
1912 * When the system is doing streaming IO, memory pressure here
1913 * ensures that active file pages get deactivated, until more
1914 * than half of the file pages are on the inactive list.
1916 * Once we get to that situation, protect the system's working
1917 * set from being evicted by disabling active file page aging.
1919 * This uses a different ratio than the anonymous pages, because
1920 * the page cache uses a use-once replacement algorithm.
1922 static bool inactive_file_is_low(struct lruvec *lruvec)
1924 unsigned long inactive;
1925 unsigned long active;
1927 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1928 active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1930 return active > inactive;
1933 static bool inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1935 if (is_file_lru(lru))
1936 return inactive_file_is_low(lruvec);
1937 else
1938 return inactive_anon_is_low(lruvec);
1941 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1942 struct lruvec *lruvec, struct scan_control *sc)
1944 if (is_active_lru(lru)) {
1945 if (inactive_list_is_low(lruvec, lru))
1946 shrink_active_list(nr_to_scan, lruvec, sc, lru);
1947 return 0;
1950 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1953 enum scan_balance {
1954 SCAN_EQUAL,
1955 SCAN_FRACT,
1956 SCAN_ANON,
1957 SCAN_FILE,
1961 * Determine how aggressively the anon and file LRU lists should be
1962 * scanned. The relative value of each set of LRU lists is determined
1963 * by looking at the fraction of the pages scanned we did rotate back
1964 * onto the active list instead of evict.
1966 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1967 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1969 static void get_scan_count(struct lruvec *lruvec, int swappiness,
1970 struct scan_control *sc, unsigned long *nr,
1971 unsigned long *lru_pages)
1973 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1974 u64 fraction[2];
1975 u64 denominator = 0; /* gcc */
1976 struct zone *zone = lruvec_zone(lruvec);
1977 unsigned long anon_prio, file_prio;
1978 enum scan_balance scan_balance;
1979 unsigned long anon, file;
1980 bool force_scan = false;
1981 unsigned long ap, fp;
1982 enum lru_list lru;
1983 bool some_scanned;
1984 int pass;
1987 * If the zone or memcg is small, nr[l] can be 0. This
1988 * results in no scanning on this priority and a potential
1989 * priority drop. Global direct reclaim can go to the next
1990 * zone and tends to have no problems. Global kswapd is for
1991 * zone balancing and it needs to scan a minimum amount. When
1992 * reclaiming for a memcg, a priority drop can cause high
1993 * latencies, so it's better to scan a minimum amount there as
1994 * well.
1996 if (current_is_kswapd()) {
1997 if (!zone_reclaimable(zone))
1998 force_scan = true;
1999 if (!mem_cgroup_lruvec_online(lruvec))
2000 force_scan = true;
2002 if (!global_reclaim(sc))
2003 force_scan = true;
2005 /* If we have no swap space, do not bother scanning anon pages. */
2006 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
2007 scan_balance = SCAN_FILE;
2008 goto out;
2012 * Global reclaim will swap to prevent OOM even with no
2013 * swappiness, but memcg users want to use this knob to
2014 * disable swapping for individual groups completely when
2015 * using the memory controller's swap limit feature would be
2016 * too expensive.
2018 if (!global_reclaim(sc) && !swappiness) {
2019 scan_balance = SCAN_FILE;
2020 goto out;
2024 * Do not apply any pressure balancing cleverness when the
2025 * system is close to OOM, scan both anon and file equally
2026 * (unless the swappiness setting disagrees with swapping).
2028 if (!sc->priority && swappiness) {
2029 scan_balance = SCAN_EQUAL;
2030 goto out;
2034 * Prevent the reclaimer from falling into the cache trap: as
2035 * cache pages start out inactive, every cache fault will tip
2036 * the scan balance towards the file LRU. And as the file LRU
2037 * shrinks, so does the window for rotation from references.
2038 * This means we have a runaway feedback loop where a tiny
2039 * thrashing file LRU becomes infinitely more attractive than
2040 * anon pages. Try to detect this based on file LRU size.
2042 if (global_reclaim(sc)) {
2043 unsigned long zonefile;
2044 unsigned long zonefree;
2046 zonefree = zone_page_state(zone, NR_FREE_PAGES);
2047 zonefile = zone_page_state(zone, NR_ACTIVE_FILE) +
2048 zone_page_state(zone, NR_INACTIVE_FILE);
2050 if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) {
2051 scan_balance = SCAN_ANON;
2052 goto out;
2057 * There is enough inactive page cache, do not reclaim
2058 * anything from the anonymous working set right now.
2060 if (!inactive_file_is_low(lruvec)) {
2061 scan_balance = SCAN_FILE;
2062 goto out;
2065 scan_balance = SCAN_FRACT;
2068 * With swappiness at 100, anonymous and file have the same priority.
2069 * This scanning priority is essentially the inverse of IO cost.
2071 anon_prio = swappiness;
2072 file_prio = 200 - anon_prio;
2075 * OK, so we have swap space and a fair amount of page cache
2076 * pages. We use the recently rotated / recently scanned
2077 * ratios to determine how valuable each cache is.
2079 * Because workloads change over time (and to avoid overflow)
2080 * we keep these statistics as a floating average, which ends
2081 * up weighing recent references more than old ones.
2083 * anon in [0], file in [1]
2086 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
2087 get_lru_size(lruvec, LRU_INACTIVE_ANON);
2088 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
2089 get_lru_size(lruvec, LRU_INACTIVE_FILE);
2091 spin_lock_irq(&zone->lru_lock);
2092 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2093 reclaim_stat->recent_scanned[0] /= 2;
2094 reclaim_stat->recent_rotated[0] /= 2;
2097 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2098 reclaim_stat->recent_scanned[1] /= 2;
2099 reclaim_stat->recent_rotated[1] /= 2;
2103 * The amount of pressure on anon vs file pages is inversely
2104 * proportional to the fraction of recently scanned pages on
2105 * each list that were recently referenced and in active use.
2107 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2108 ap /= reclaim_stat->recent_rotated[0] + 1;
2110 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2111 fp /= reclaim_stat->recent_rotated[1] + 1;
2112 spin_unlock_irq(&zone->lru_lock);
2114 fraction[0] = ap;
2115 fraction[1] = fp;
2116 denominator = ap + fp + 1;
2117 out:
2118 some_scanned = false;
2119 /* Only use force_scan on second pass. */
2120 for (pass = 0; !some_scanned && pass < 2; pass++) {
2121 *lru_pages = 0;
2122 for_each_evictable_lru(lru) {
2123 int file = is_file_lru(lru);
2124 unsigned long size;
2125 unsigned long scan;
2127 size = get_lru_size(lruvec, lru);
2128 scan = size >> sc->priority;
2130 if (!scan && pass && force_scan)
2131 scan = min(size, SWAP_CLUSTER_MAX);
2133 switch (scan_balance) {
2134 case SCAN_EQUAL:
2135 /* Scan lists relative to size */
2136 break;
2137 case SCAN_FRACT:
2139 * Scan types proportional to swappiness and
2140 * their relative recent reclaim efficiency.
2142 scan = div64_u64(scan * fraction[file],
2143 denominator);
2144 break;
2145 case SCAN_FILE:
2146 case SCAN_ANON:
2147 /* Scan one type exclusively */
2148 if ((scan_balance == SCAN_FILE) != file) {
2149 size = 0;
2150 scan = 0;
2152 break;
2153 default:
2154 /* Look ma, no brain */
2155 BUG();
2158 *lru_pages += size;
2159 nr[lru] = scan;
2162 * Skip the second pass and don't force_scan,
2163 * if we found something to scan.
2165 some_scanned |= !!scan;
2171 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2173 static void shrink_lruvec(struct lruvec *lruvec, int swappiness,
2174 struct scan_control *sc, unsigned long *lru_pages)
2176 unsigned long nr[NR_LRU_LISTS];
2177 unsigned long targets[NR_LRU_LISTS];
2178 unsigned long nr_to_scan;
2179 enum lru_list lru;
2180 unsigned long nr_reclaimed = 0;
2181 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2182 struct blk_plug plug;
2183 bool scan_adjusted;
2185 get_scan_count(lruvec, swappiness, sc, nr, lru_pages);
2187 /* Record the original scan target for proportional adjustments later */
2188 memcpy(targets, nr, sizeof(nr));
2191 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2192 * event that can occur when there is little memory pressure e.g.
2193 * multiple streaming readers/writers. Hence, we do not abort scanning
2194 * when the requested number of pages are reclaimed when scanning at
2195 * DEF_PRIORITY on the assumption that the fact we are direct
2196 * reclaiming implies that kswapd is not keeping up and it is best to
2197 * do a batch of work at once. For memcg reclaim one check is made to
2198 * abort proportional reclaim if either the file or anon lru has already
2199 * dropped to zero at the first pass.
2201 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2202 sc->priority == DEF_PRIORITY);
2204 blk_start_plug(&plug);
2205 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2206 nr[LRU_INACTIVE_FILE]) {
2207 unsigned long nr_anon, nr_file, percentage;
2208 unsigned long nr_scanned;
2210 for_each_evictable_lru(lru) {
2211 if (nr[lru]) {
2212 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2213 nr[lru] -= nr_to_scan;
2215 nr_reclaimed += shrink_list(lru, nr_to_scan,
2216 lruvec, sc);
2220 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2221 continue;
2224 * For kswapd and memcg, reclaim at least the number of pages
2225 * requested. Ensure that the anon and file LRUs are scanned
2226 * proportionally what was requested by get_scan_count(). We
2227 * stop reclaiming one LRU and reduce the amount scanning
2228 * proportional to the original scan target.
2230 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2231 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2234 * It's just vindictive to attack the larger once the smaller
2235 * has gone to zero. And given the way we stop scanning the
2236 * smaller below, this makes sure that we only make one nudge
2237 * towards proportionality once we've got nr_to_reclaim.
2239 if (!nr_file || !nr_anon)
2240 break;
2242 if (nr_file > nr_anon) {
2243 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2244 targets[LRU_ACTIVE_ANON] + 1;
2245 lru = LRU_BASE;
2246 percentage = nr_anon * 100 / scan_target;
2247 } else {
2248 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2249 targets[LRU_ACTIVE_FILE] + 1;
2250 lru = LRU_FILE;
2251 percentage = nr_file * 100 / scan_target;
2254 /* Stop scanning the smaller of the LRU */
2255 nr[lru] = 0;
2256 nr[lru + LRU_ACTIVE] = 0;
2259 * Recalculate the other LRU scan count based on its original
2260 * scan target and the percentage scanning already complete
2262 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2263 nr_scanned = targets[lru] - nr[lru];
2264 nr[lru] = targets[lru] * (100 - percentage) / 100;
2265 nr[lru] -= min(nr[lru], nr_scanned);
2267 lru += LRU_ACTIVE;
2268 nr_scanned = targets[lru] - nr[lru];
2269 nr[lru] = targets[lru] * (100 - percentage) / 100;
2270 nr[lru] -= min(nr[lru], nr_scanned);
2272 scan_adjusted = true;
2274 blk_finish_plug(&plug);
2275 sc->nr_reclaimed += nr_reclaimed;
2278 * Even if we did not try to evict anon pages at all, we want to
2279 * rebalance the anon lru active/inactive ratio.
2281 if (inactive_anon_is_low(lruvec))
2282 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2283 sc, LRU_ACTIVE_ANON);
2285 throttle_vm_writeout(sc->gfp_mask);
2288 /* Use reclaim/compaction for costly allocs or under memory pressure */
2289 static bool in_reclaim_compaction(struct scan_control *sc)
2291 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2292 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2293 sc->priority < DEF_PRIORITY - 2))
2294 return true;
2296 return false;
2300 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2301 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2302 * true if more pages should be reclaimed such that when the page allocator
2303 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2304 * It will give up earlier than that if there is difficulty reclaiming pages.
2306 static inline bool should_continue_reclaim(struct zone *zone,
2307 unsigned long nr_reclaimed,
2308 unsigned long nr_scanned,
2309 struct scan_control *sc)
2311 unsigned long pages_for_compaction;
2312 unsigned long inactive_lru_pages;
2314 /* If not in reclaim/compaction mode, stop */
2315 if (!in_reclaim_compaction(sc))
2316 return false;
2318 /* Consider stopping depending on scan and reclaim activity */
2319 if (sc->gfp_mask & __GFP_REPEAT) {
2321 * For __GFP_REPEAT allocations, stop reclaiming if the
2322 * full LRU list has been scanned and we are still failing
2323 * to reclaim pages. This full LRU scan is potentially
2324 * expensive but a __GFP_REPEAT caller really wants to succeed
2326 if (!nr_reclaimed && !nr_scanned)
2327 return false;
2328 } else {
2330 * For non-__GFP_REPEAT allocations which can presumably
2331 * fail without consequence, stop if we failed to reclaim
2332 * any pages from the last SWAP_CLUSTER_MAX number of
2333 * pages that were scanned. This will return to the
2334 * caller faster at the risk reclaim/compaction and
2335 * the resulting allocation attempt fails
2337 if (!nr_reclaimed)
2338 return false;
2342 * If we have not reclaimed enough pages for compaction and the
2343 * inactive lists are large enough, continue reclaiming
2345 pages_for_compaction = (2UL << sc->order);
2346 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2347 if (get_nr_swap_pages() > 0)
2348 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2349 if (sc->nr_reclaimed < pages_for_compaction &&
2350 inactive_lru_pages > pages_for_compaction)
2351 return true;
2353 /* If compaction would go ahead or the allocation would succeed, stop */
2354 switch (compaction_suitable(zone, sc->order, 0, 0)) {
2355 case COMPACT_PARTIAL:
2356 case COMPACT_CONTINUE:
2357 return false;
2358 default:
2359 return true;
2363 static bool shrink_zone(struct zone *zone, struct scan_control *sc,
2364 bool is_classzone)
2366 struct reclaim_state *reclaim_state = current->reclaim_state;
2367 unsigned long nr_reclaimed, nr_scanned;
2368 bool reclaimable = false;
2370 do {
2371 struct mem_cgroup *root = sc->target_mem_cgroup;
2372 struct mem_cgroup_reclaim_cookie reclaim = {
2373 .zone = zone,
2374 .priority = sc->priority,
2376 unsigned long zone_lru_pages = 0;
2377 struct mem_cgroup *memcg;
2379 nr_reclaimed = sc->nr_reclaimed;
2380 nr_scanned = sc->nr_scanned;
2382 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2383 do {
2384 unsigned long lru_pages;
2385 unsigned long scanned;
2386 struct lruvec *lruvec;
2387 int swappiness;
2389 if (mem_cgroup_low(root, memcg)) {
2390 if (!sc->may_thrash)
2391 continue;
2392 mem_cgroup_events(memcg, MEMCG_LOW, 1);
2395 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2396 swappiness = mem_cgroup_swappiness(memcg);
2397 scanned = sc->nr_scanned;
2399 shrink_lruvec(lruvec, swappiness, sc, &lru_pages);
2400 zone_lru_pages += lru_pages;
2402 if (memcg && is_classzone)
2403 shrink_slab(sc->gfp_mask, zone_to_nid(zone),
2404 memcg, sc->nr_scanned - scanned,
2405 lru_pages);
2408 * Direct reclaim and kswapd have to scan all memory
2409 * cgroups to fulfill the overall scan target for the
2410 * zone.
2412 * Limit reclaim, on the other hand, only cares about
2413 * nr_to_reclaim pages to be reclaimed and it will
2414 * retry with decreasing priority if one round over the
2415 * whole hierarchy is not sufficient.
2417 if (!global_reclaim(sc) &&
2418 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2419 mem_cgroup_iter_break(root, memcg);
2420 break;
2422 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2425 * Shrink the slab caches in the same proportion that
2426 * the eligible LRU pages were scanned.
2428 if (global_reclaim(sc) && is_classzone)
2429 shrink_slab(sc->gfp_mask, zone_to_nid(zone), NULL,
2430 sc->nr_scanned - nr_scanned,
2431 zone_lru_pages);
2433 if (reclaim_state) {
2434 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2435 reclaim_state->reclaimed_slab = 0;
2438 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2439 sc->nr_scanned - nr_scanned,
2440 sc->nr_reclaimed - nr_reclaimed);
2442 if (sc->nr_reclaimed - nr_reclaimed)
2443 reclaimable = true;
2445 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2446 sc->nr_scanned - nr_scanned, sc));
2448 return reclaimable;
2452 * Returns true if compaction should go ahead for a high-order request, or
2453 * the high-order allocation would succeed without compaction.
2455 static inline bool compaction_ready(struct zone *zone, int order)
2457 unsigned long balance_gap, watermark;
2458 bool watermark_ok;
2461 * Compaction takes time to run and there are potentially other
2462 * callers using the pages just freed. Continue reclaiming until
2463 * there is a buffer of free pages available to give compaction
2464 * a reasonable chance of completing and allocating the page
2466 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2467 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
2468 watermark = high_wmark_pages(zone) + balance_gap + (2UL << order);
2469 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0);
2472 * If compaction is deferred, reclaim up to a point where
2473 * compaction will have a chance of success when re-enabled
2475 if (compaction_deferred(zone, order))
2476 return watermark_ok;
2479 * If compaction is not ready to start and allocation is not likely
2480 * to succeed without it, then keep reclaiming.
2482 if (compaction_suitable(zone, order, 0, 0) == COMPACT_SKIPPED)
2483 return false;
2485 return watermark_ok;
2489 * This is the direct reclaim path, for page-allocating processes. We only
2490 * try to reclaim pages from zones which will satisfy the caller's allocation
2491 * request.
2493 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2494 * Because:
2495 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2496 * allocation or
2497 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2498 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2499 * zone defense algorithm.
2501 * If a zone is deemed to be full of pinned pages then just give it a light
2502 * scan then give up on it.
2504 * Returns true if a zone was reclaimable.
2506 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2508 struct zoneref *z;
2509 struct zone *zone;
2510 unsigned long nr_soft_reclaimed;
2511 unsigned long nr_soft_scanned;
2512 gfp_t orig_mask;
2513 enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2514 bool reclaimable = false;
2517 * If the number of buffer_heads in the machine exceeds the maximum
2518 * allowed level, force direct reclaim to scan the highmem zone as
2519 * highmem pages could be pinning lowmem pages storing buffer_heads
2521 orig_mask = sc->gfp_mask;
2522 if (buffer_heads_over_limit)
2523 sc->gfp_mask |= __GFP_HIGHMEM;
2525 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2526 gfp_zone(sc->gfp_mask), sc->nodemask) {
2527 enum zone_type classzone_idx;
2529 if (!populated_zone(zone))
2530 continue;
2532 classzone_idx = requested_highidx;
2533 while (!populated_zone(zone->zone_pgdat->node_zones +
2534 classzone_idx))
2535 classzone_idx--;
2538 * Take care memory controller reclaiming has small influence
2539 * to global LRU.
2541 if (global_reclaim(sc)) {
2542 if (!cpuset_zone_allowed(zone,
2543 GFP_KERNEL | __GFP_HARDWALL))
2544 continue;
2546 if (sc->priority != DEF_PRIORITY &&
2547 !zone_reclaimable(zone))
2548 continue; /* Let kswapd poll it */
2551 * If we already have plenty of memory free for
2552 * compaction in this zone, don't free any more.
2553 * Even though compaction is invoked for any
2554 * non-zero order, only frequent costly order
2555 * reclamation is disruptive enough to become a
2556 * noticeable problem, like transparent huge
2557 * page allocations.
2559 if (IS_ENABLED(CONFIG_COMPACTION) &&
2560 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2561 zonelist_zone_idx(z) <= requested_highidx &&
2562 compaction_ready(zone, sc->order)) {
2563 sc->compaction_ready = true;
2564 continue;
2568 * This steals pages from memory cgroups over softlimit
2569 * and returns the number of reclaimed pages and
2570 * scanned pages. This works for global memory pressure
2571 * and balancing, not for a memcg's limit.
2573 nr_soft_scanned = 0;
2574 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2575 sc->order, sc->gfp_mask,
2576 &nr_soft_scanned);
2577 sc->nr_reclaimed += nr_soft_reclaimed;
2578 sc->nr_scanned += nr_soft_scanned;
2579 if (nr_soft_reclaimed)
2580 reclaimable = true;
2581 /* need some check for avoid more shrink_zone() */
2584 if (shrink_zone(zone, sc, zone_idx(zone) == classzone_idx))
2585 reclaimable = true;
2587 if (global_reclaim(sc) &&
2588 !reclaimable && zone_reclaimable(zone))
2589 reclaimable = true;
2593 * Restore to original mask to avoid the impact on the caller if we
2594 * promoted it to __GFP_HIGHMEM.
2596 sc->gfp_mask = orig_mask;
2598 return reclaimable;
2602 * This is the main entry point to direct page reclaim.
2604 * If a full scan of the inactive list fails to free enough memory then we
2605 * are "out of memory" and something needs to be killed.
2607 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2608 * high - the zone may be full of dirty or under-writeback pages, which this
2609 * caller can't do much about. We kick the writeback threads and take explicit
2610 * naps in the hope that some of these pages can be written. But if the
2611 * allocating task holds filesystem locks which prevent writeout this might not
2612 * work, and the allocation attempt will fail.
2614 * returns: 0, if no pages reclaimed
2615 * else, the number of pages reclaimed
2617 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2618 struct scan_control *sc)
2620 int initial_priority = sc->priority;
2621 unsigned long total_scanned = 0;
2622 unsigned long writeback_threshold;
2623 bool zones_reclaimable;
2624 retry:
2625 delayacct_freepages_start();
2627 if (global_reclaim(sc))
2628 count_vm_event(ALLOCSTALL);
2630 do {
2631 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2632 sc->priority);
2633 sc->nr_scanned = 0;
2634 zones_reclaimable = shrink_zones(zonelist, sc);
2636 total_scanned += sc->nr_scanned;
2637 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2638 break;
2640 if (sc->compaction_ready)
2641 break;
2644 * If we're getting trouble reclaiming, start doing
2645 * writepage even in laptop mode.
2647 if (sc->priority < DEF_PRIORITY - 2)
2648 sc->may_writepage = 1;
2651 * Try to write back as many pages as we just scanned. This
2652 * tends to cause slow streaming writers to write data to the
2653 * disk smoothly, at the dirtying rate, which is nice. But
2654 * that's undesirable in laptop mode, where we *want* lumpy
2655 * writeout. So in laptop mode, write out the whole world.
2657 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2658 if (total_scanned > writeback_threshold) {
2659 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2660 WB_REASON_TRY_TO_FREE_PAGES);
2661 sc->may_writepage = 1;
2663 } while (--sc->priority >= 0);
2665 delayacct_freepages_end();
2667 if (sc->nr_reclaimed)
2668 return sc->nr_reclaimed;
2670 /* Aborted reclaim to try compaction? don't OOM, then */
2671 if (sc->compaction_ready)
2672 return 1;
2674 /* Untapped cgroup reserves? Don't OOM, retry. */
2675 if (!sc->may_thrash) {
2676 sc->priority = initial_priority;
2677 sc->may_thrash = 1;
2678 goto retry;
2681 /* Any of the zones still reclaimable? Don't OOM. */
2682 if (zones_reclaimable)
2683 return 1;
2685 return 0;
2688 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2690 struct zone *zone;
2691 unsigned long pfmemalloc_reserve = 0;
2692 unsigned long free_pages = 0;
2693 int i;
2694 bool wmark_ok;
2696 for (i = 0; i <= ZONE_NORMAL; i++) {
2697 zone = &pgdat->node_zones[i];
2698 if (!populated_zone(zone) ||
2699 zone_reclaimable_pages(zone) == 0)
2700 continue;
2702 pfmemalloc_reserve += min_wmark_pages(zone);
2703 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2706 /* If there are no reserves (unexpected config) then do not throttle */
2707 if (!pfmemalloc_reserve)
2708 return true;
2710 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2712 /* kswapd must be awake if processes are being throttled */
2713 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2714 pgdat->classzone_idx = min(pgdat->classzone_idx,
2715 (enum zone_type)ZONE_NORMAL);
2716 wake_up_interruptible(&pgdat->kswapd_wait);
2719 return wmark_ok;
2723 * Throttle direct reclaimers if backing storage is backed by the network
2724 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2725 * depleted. kswapd will continue to make progress and wake the processes
2726 * when the low watermark is reached.
2728 * Returns true if a fatal signal was delivered during throttling. If this
2729 * happens, the page allocator should not consider triggering the OOM killer.
2731 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2732 nodemask_t *nodemask)
2734 struct zoneref *z;
2735 struct zone *zone;
2736 pg_data_t *pgdat = NULL;
2739 * Kernel threads should not be throttled as they may be indirectly
2740 * responsible for cleaning pages necessary for reclaim to make forward
2741 * progress. kjournald for example may enter direct reclaim while
2742 * committing a transaction where throttling it could forcing other
2743 * processes to block on log_wait_commit().
2745 if (current->flags & PF_KTHREAD)
2746 goto out;
2749 * If a fatal signal is pending, this process should not throttle.
2750 * It should return quickly so it can exit and free its memory
2752 if (fatal_signal_pending(current))
2753 goto out;
2756 * Check if the pfmemalloc reserves are ok by finding the first node
2757 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2758 * GFP_KERNEL will be required for allocating network buffers when
2759 * swapping over the network so ZONE_HIGHMEM is unusable.
2761 * Throttling is based on the first usable node and throttled processes
2762 * wait on a queue until kswapd makes progress and wakes them. There
2763 * is an affinity then between processes waking up and where reclaim
2764 * progress has been made assuming the process wakes on the same node.
2765 * More importantly, processes running on remote nodes will not compete
2766 * for remote pfmemalloc reserves and processes on different nodes
2767 * should make reasonable progress.
2769 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2770 gfp_zone(gfp_mask), nodemask) {
2771 if (zone_idx(zone) > ZONE_NORMAL)
2772 continue;
2774 /* Throttle based on the first usable node */
2775 pgdat = zone->zone_pgdat;
2776 if (pfmemalloc_watermark_ok(pgdat))
2777 goto out;
2778 break;
2781 /* If no zone was usable by the allocation flags then do not throttle */
2782 if (!pgdat)
2783 goto out;
2785 /* Account for the throttling */
2786 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2789 * If the caller cannot enter the filesystem, it's possible that it
2790 * is due to the caller holding an FS lock or performing a journal
2791 * transaction in the case of a filesystem like ext[3|4]. In this case,
2792 * it is not safe to block on pfmemalloc_wait as kswapd could be
2793 * blocked waiting on the same lock. Instead, throttle for up to a
2794 * second before continuing.
2796 if (!(gfp_mask & __GFP_FS)) {
2797 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2798 pfmemalloc_watermark_ok(pgdat), HZ);
2800 goto check_pending;
2803 /* Throttle until kswapd wakes the process */
2804 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2805 pfmemalloc_watermark_ok(pgdat));
2807 check_pending:
2808 if (fatal_signal_pending(current))
2809 return true;
2811 out:
2812 return false;
2815 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2816 gfp_t gfp_mask, nodemask_t *nodemask)
2818 unsigned long nr_reclaimed;
2819 struct scan_control sc = {
2820 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2821 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2822 .order = order,
2823 .nodemask = nodemask,
2824 .priority = DEF_PRIORITY,
2825 .may_writepage = !laptop_mode,
2826 .may_unmap = 1,
2827 .may_swap = 1,
2831 * Do not enter reclaim if fatal signal was delivered while throttled.
2832 * 1 is returned so that the page allocator does not OOM kill at this
2833 * point.
2835 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2836 return 1;
2838 trace_mm_vmscan_direct_reclaim_begin(order,
2839 sc.may_writepage,
2840 gfp_mask);
2842 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2844 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2846 return nr_reclaimed;
2849 #ifdef CONFIG_MEMCG
2851 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2852 gfp_t gfp_mask, bool noswap,
2853 struct zone *zone,
2854 unsigned long *nr_scanned)
2856 struct scan_control sc = {
2857 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2858 .target_mem_cgroup = memcg,
2859 .may_writepage = !laptop_mode,
2860 .may_unmap = 1,
2861 .may_swap = !noswap,
2863 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2864 int swappiness = mem_cgroup_swappiness(memcg);
2865 unsigned long lru_pages;
2867 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2868 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2870 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2871 sc.may_writepage,
2872 sc.gfp_mask);
2875 * NOTE: Although we can get the priority field, using it
2876 * here is not a good idea, since it limits the pages we can scan.
2877 * if we don't reclaim here, the shrink_zone from balance_pgdat
2878 * will pick up pages from other mem cgroup's as well. We hack
2879 * the priority and make it zero.
2881 shrink_lruvec(lruvec, swappiness, &sc, &lru_pages);
2883 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2885 *nr_scanned = sc.nr_scanned;
2886 return sc.nr_reclaimed;
2889 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2890 unsigned long nr_pages,
2891 gfp_t gfp_mask,
2892 bool may_swap)
2894 struct zonelist *zonelist;
2895 unsigned long nr_reclaimed;
2896 int nid;
2897 struct scan_control sc = {
2898 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
2899 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2900 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2901 .target_mem_cgroup = memcg,
2902 .priority = DEF_PRIORITY,
2903 .may_writepage = !laptop_mode,
2904 .may_unmap = 1,
2905 .may_swap = may_swap,
2909 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2910 * take care of from where we get pages. So the node where we start the
2911 * scan does not need to be the current node.
2913 nid = mem_cgroup_select_victim_node(memcg);
2915 zonelist = NODE_DATA(nid)->node_zonelists;
2917 trace_mm_vmscan_memcg_reclaim_begin(0,
2918 sc.may_writepage,
2919 sc.gfp_mask);
2921 current->flags |= PF_MEMALLOC;
2922 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2923 current->flags &= ~PF_MEMALLOC;
2925 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2927 return nr_reclaimed;
2929 #endif
2931 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2933 struct mem_cgroup *memcg;
2935 if (!total_swap_pages)
2936 return;
2938 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2939 do {
2940 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2942 if (inactive_anon_is_low(lruvec))
2943 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2944 sc, LRU_ACTIVE_ANON);
2946 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2947 } while (memcg);
2950 static bool zone_balanced(struct zone *zone, int order,
2951 unsigned long balance_gap, int classzone_idx)
2953 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2954 balance_gap, classzone_idx))
2955 return false;
2957 if (IS_ENABLED(CONFIG_COMPACTION) && order && compaction_suitable(zone,
2958 order, 0, classzone_idx) == COMPACT_SKIPPED)
2959 return false;
2961 return true;
2965 * pgdat_balanced() is used when checking if a node is balanced.
2967 * For order-0, all zones must be balanced!
2969 * For high-order allocations only zones that meet watermarks and are in a
2970 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2971 * total of balanced pages must be at least 25% of the zones allowed by
2972 * classzone_idx for the node to be considered balanced. Forcing all zones to
2973 * be balanced for high orders can cause excessive reclaim when there are
2974 * imbalanced zones.
2975 * The choice of 25% is due to
2976 * o a 16M DMA zone that is balanced will not balance a zone on any
2977 * reasonable sized machine
2978 * o On all other machines, the top zone must be at least a reasonable
2979 * percentage of the middle zones. For example, on 32-bit x86, highmem
2980 * would need to be at least 256M for it to be balance a whole node.
2981 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2982 * to balance a node on its own. These seemed like reasonable ratios.
2984 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2986 unsigned long managed_pages = 0;
2987 unsigned long balanced_pages = 0;
2988 int i;
2990 /* Check the watermark levels */
2991 for (i = 0; i <= classzone_idx; i++) {
2992 struct zone *zone = pgdat->node_zones + i;
2994 if (!populated_zone(zone))
2995 continue;
2997 managed_pages += zone->managed_pages;
3000 * A special case here:
3002 * balance_pgdat() skips over all_unreclaimable after
3003 * DEF_PRIORITY. Effectively, it considers them balanced so
3004 * they must be considered balanced here as well!
3006 if (!zone_reclaimable(zone)) {
3007 balanced_pages += zone->managed_pages;
3008 continue;
3011 if (zone_balanced(zone, order, 0, i))
3012 balanced_pages += zone->managed_pages;
3013 else if (!order)
3014 return false;
3017 if (order)
3018 return balanced_pages >= (managed_pages >> 2);
3019 else
3020 return true;
3024 * Prepare kswapd for sleeping. This verifies that there are no processes
3025 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3027 * Returns true if kswapd is ready to sleep
3029 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
3030 int classzone_idx)
3032 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
3033 if (remaining)
3034 return false;
3037 * The throttled processes are normally woken up in balance_pgdat() as
3038 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
3039 * race between when kswapd checks the watermarks and a process gets
3040 * throttled. There is also a potential race if processes get
3041 * throttled, kswapd wakes, a large process exits thereby balancing the
3042 * zones, which causes kswapd to exit balance_pgdat() before reaching
3043 * the wake up checks. If kswapd is going to sleep, no process should
3044 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3045 * the wake up is premature, processes will wake kswapd and get
3046 * throttled again. The difference from wake ups in balance_pgdat() is
3047 * that here we are under prepare_to_wait().
3049 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3050 wake_up_all(&pgdat->pfmemalloc_wait);
3052 return pgdat_balanced(pgdat, order, classzone_idx);
3056 * kswapd shrinks the zone by the number of pages required to reach
3057 * the high watermark.
3059 * Returns true if kswapd scanned at least the requested number of pages to
3060 * reclaim or if the lack of progress was due to pages under writeback.
3061 * This is used to determine if the scanning priority needs to be raised.
3063 static bool kswapd_shrink_zone(struct zone *zone,
3064 int classzone_idx,
3065 struct scan_control *sc,
3066 unsigned long *nr_attempted)
3068 int testorder = sc->order;
3069 unsigned long balance_gap;
3070 bool lowmem_pressure;
3072 /* Reclaim above the high watermark. */
3073 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
3076 * Kswapd reclaims only single pages with compaction enabled. Trying
3077 * too hard to reclaim until contiguous free pages have become
3078 * available can hurt performance by evicting too much useful data
3079 * from memory. Do not reclaim more than needed for compaction.
3081 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
3082 compaction_suitable(zone, sc->order, 0, classzone_idx)
3083 != COMPACT_SKIPPED)
3084 testorder = 0;
3087 * We put equal pressure on every zone, unless one zone has way too
3088 * many pages free already. The "too many pages" is defined as the
3089 * high wmark plus a "gap" where the gap is either the low
3090 * watermark or 1% of the zone, whichever is smaller.
3092 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
3093 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
3096 * If there is no low memory pressure or the zone is balanced then no
3097 * reclaim is necessary
3099 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
3100 if (!lowmem_pressure && zone_balanced(zone, testorder,
3101 balance_gap, classzone_idx))
3102 return true;
3104 shrink_zone(zone, sc, zone_idx(zone) == classzone_idx);
3106 /* Account for the number of pages attempted to reclaim */
3107 *nr_attempted += sc->nr_to_reclaim;
3109 clear_bit(ZONE_WRITEBACK, &zone->flags);
3112 * If a zone reaches its high watermark, consider it to be no longer
3113 * congested. It's possible there are dirty pages backed by congested
3114 * BDIs but as pressure is relieved, speculatively avoid congestion
3115 * waits.
3117 if (zone_reclaimable(zone) &&
3118 zone_balanced(zone, testorder, 0, classzone_idx)) {
3119 clear_bit(ZONE_CONGESTED, &zone->flags);
3120 clear_bit(ZONE_DIRTY, &zone->flags);
3123 return sc->nr_scanned >= sc->nr_to_reclaim;
3127 * For kswapd, balance_pgdat() will work across all this node's zones until
3128 * they are all at high_wmark_pages(zone).
3130 * Returns the final order kswapd was reclaiming at
3132 * There is special handling here for zones which are full of pinned pages.
3133 * This can happen if the pages are all mlocked, or if they are all used by
3134 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
3135 * What we do is to detect the case where all pages in the zone have been
3136 * scanned twice and there has been zero successful reclaim. Mark the zone as
3137 * dead and from now on, only perform a short scan. Basically we're polling
3138 * the zone for when the problem goes away.
3140 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3141 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3142 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
3143 * lower zones regardless of the number of free pages in the lower zones. This
3144 * interoperates with the page allocator fallback scheme to ensure that aging
3145 * of pages is balanced across the zones.
3147 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
3148 int *classzone_idx)
3150 int i;
3151 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
3152 unsigned long nr_soft_reclaimed;
3153 unsigned long nr_soft_scanned;
3154 struct scan_control sc = {
3155 .gfp_mask = GFP_KERNEL,
3156 .order = order,
3157 .priority = DEF_PRIORITY,
3158 .may_writepage = !laptop_mode,
3159 .may_unmap = 1,
3160 .may_swap = 1,
3162 count_vm_event(PAGEOUTRUN);
3164 do {
3165 unsigned long nr_attempted = 0;
3166 bool raise_priority = true;
3167 bool pgdat_needs_compaction = (order > 0);
3169 sc.nr_reclaimed = 0;
3172 * Scan in the highmem->dma direction for the highest
3173 * zone which needs scanning
3175 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
3176 struct zone *zone = pgdat->node_zones + i;
3178 if (!populated_zone(zone))
3179 continue;
3181 if (sc.priority != DEF_PRIORITY &&
3182 !zone_reclaimable(zone))
3183 continue;
3186 * Do some background aging of the anon list, to give
3187 * pages a chance to be referenced before reclaiming.
3189 age_active_anon(zone, &sc);
3192 * If the number of buffer_heads in the machine
3193 * exceeds the maximum allowed level and this node
3194 * has a highmem zone, force kswapd to reclaim from
3195 * it to relieve lowmem pressure.
3197 if (buffer_heads_over_limit && is_highmem_idx(i)) {
3198 end_zone = i;
3199 break;
3202 if (!zone_balanced(zone, order, 0, 0)) {
3203 end_zone = i;
3204 break;
3205 } else {
3207 * If balanced, clear the dirty and congested
3208 * flags
3210 clear_bit(ZONE_CONGESTED, &zone->flags);
3211 clear_bit(ZONE_DIRTY, &zone->flags);
3215 if (i < 0)
3216 goto out;
3218 for (i = 0; i <= end_zone; i++) {
3219 struct zone *zone = pgdat->node_zones + i;
3221 if (!populated_zone(zone))
3222 continue;
3225 * If any zone is currently balanced then kswapd will
3226 * not call compaction as it is expected that the
3227 * necessary pages are already available.
3229 if (pgdat_needs_compaction &&
3230 zone_watermark_ok(zone, order,
3231 low_wmark_pages(zone),
3232 *classzone_idx, 0))
3233 pgdat_needs_compaction = false;
3237 * If we're getting trouble reclaiming, start doing writepage
3238 * even in laptop mode.
3240 if (sc.priority < DEF_PRIORITY - 2)
3241 sc.may_writepage = 1;
3244 * Now scan the zone in the dma->highmem direction, stopping
3245 * at the last zone which needs scanning.
3247 * We do this because the page allocator works in the opposite
3248 * direction. This prevents the page allocator from allocating
3249 * pages behind kswapd's direction of progress, which would
3250 * cause too much scanning of the lower zones.
3252 for (i = 0; i <= end_zone; i++) {
3253 struct zone *zone = pgdat->node_zones + i;
3255 if (!populated_zone(zone))
3256 continue;
3258 if (sc.priority != DEF_PRIORITY &&
3259 !zone_reclaimable(zone))
3260 continue;
3262 sc.nr_scanned = 0;
3264 nr_soft_scanned = 0;
3266 * Call soft limit reclaim before calling shrink_zone.
3268 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3269 order, sc.gfp_mask,
3270 &nr_soft_scanned);
3271 sc.nr_reclaimed += nr_soft_reclaimed;
3274 * There should be no need to raise the scanning
3275 * priority if enough pages are already being scanned
3276 * that that high watermark would be met at 100%
3277 * efficiency.
3279 if (kswapd_shrink_zone(zone, end_zone,
3280 &sc, &nr_attempted))
3281 raise_priority = false;
3285 * If the low watermark is met there is no need for processes
3286 * to be throttled on pfmemalloc_wait as they should not be
3287 * able to safely make forward progress. Wake them
3289 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3290 pfmemalloc_watermark_ok(pgdat))
3291 wake_up_all(&pgdat->pfmemalloc_wait);
3294 * Fragmentation may mean that the system cannot be rebalanced
3295 * for high-order allocations in all zones. If twice the
3296 * allocation size has been reclaimed and the zones are still
3297 * not balanced then recheck the watermarks at order-0 to
3298 * prevent kswapd reclaiming excessively. Assume that a
3299 * process requested a high-order can direct reclaim/compact.
3301 if (order && sc.nr_reclaimed >= 2UL << order)
3302 order = sc.order = 0;
3304 /* Check if kswapd should be suspending */
3305 if (try_to_freeze() || kthread_should_stop())
3306 break;
3309 * Compact if necessary and kswapd is reclaiming at least the
3310 * high watermark number of pages as requsted
3312 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3313 compact_pgdat(pgdat, order);
3316 * Raise priority if scanning rate is too low or there was no
3317 * progress in reclaiming pages
3319 if (raise_priority || !sc.nr_reclaimed)
3320 sc.priority--;
3321 } while (sc.priority >= 1 &&
3322 !pgdat_balanced(pgdat, order, *classzone_idx));
3324 out:
3326 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3327 * makes a decision on the order we were last reclaiming at. However,
3328 * if another caller entered the allocator slow path while kswapd
3329 * was awake, order will remain at the higher level
3331 *classzone_idx = end_zone;
3332 return order;
3335 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3337 long remaining = 0;
3338 DEFINE_WAIT(wait);
3340 if (freezing(current) || kthread_should_stop())
3341 return;
3343 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3345 /* Try to sleep for a short interval */
3346 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3347 remaining = schedule_timeout(HZ/10);
3348 finish_wait(&pgdat->kswapd_wait, &wait);
3349 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3353 * After a short sleep, check if it was a premature sleep. If not, then
3354 * go fully to sleep until explicitly woken up.
3356 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3357 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3360 * vmstat counters are not perfectly accurate and the estimated
3361 * value for counters such as NR_FREE_PAGES can deviate from the
3362 * true value by nr_online_cpus * threshold. To avoid the zone
3363 * watermarks being breached while under pressure, we reduce the
3364 * per-cpu vmstat threshold while kswapd is awake and restore
3365 * them before going back to sleep.
3367 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3370 * Compaction records what page blocks it recently failed to
3371 * isolate pages from and skips them in the future scanning.
3372 * When kswapd is going to sleep, it is reasonable to assume
3373 * that pages and compaction may succeed so reset the cache.
3375 reset_isolation_suitable(pgdat);
3377 if (!kthread_should_stop())
3378 schedule();
3380 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3381 } else {
3382 if (remaining)
3383 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3384 else
3385 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3387 finish_wait(&pgdat->kswapd_wait, &wait);
3391 * The background pageout daemon, started as a kernel thread
3392 * from the init process.
3394 * This basically trickles out pages so that we have _some_
3395 * free memory available even if there is no other activity
3396 * that frees anything up. This is needed for things like routing
3397 * etc, where we otherwise might have all activity going on in
3398 * asynchronous contexts that cannot page things out.
3400 * If there are applications that are active memory-allocators
3401 * (most normal use), this basically shouldn't matter.
3403 static int kswapd(void *p)
3405 unsigned long order, new_order;
3406 unsigned balanced_order;
3407 int classzone_idx, new_classzone_idx;
3408 int balanced_classzone_idx;
3409 pg_data_t *pgdat = (pg_data_t*)p;
3410 struct task_struct *tsk = current;
3412 struct reclaim_state reclaim_state = {
3413 .reclaimed_slab = 0,
3415 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3417 lockdep_set_current_reclaim_state(GFP_KERNEL);
3419 if (!cpumask_empty(cpumask))
3420 set_cpus_allowed_ptr(tsk, cpumask);
3421 current->reclaim_state = &reclaim_state;
3424 * Tell the memory management that we're a "memory allocator",
3425 * and that if we need more memory we should get access to it
3426 * regardless (see "__alloc_pages()"). "kswapd" should
3427 * never get caught in the normal page freeing logic.
3429 * (Kswapd normally doesn't need memory anyway, but sometimes
3430 * you need a small amount of memory in order to be able to
3431 * page out something else, and this flag essentially protects
3432 * us from recursively trying to free more memory as we're
3433 * trying to free the first piece of memory in the first place).
3435 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3436 set_freezable();
3438 order = new_order = 0;
3439 balanced_order = 0;
3440 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3441 balanced_classzone_idx = classzone_idx;
3442 for ( ; ; ) {
3443 bool ret;
3446 * If the last balance_pgdat was unsuccessful it's unlikely a
3447 * new request of a similar or harder type will succeed soon
3448 * so consider going to sleep on the basis we reclaimed at
3450 if (balanced_classzone_idx >= new_classzone_idx &&
3451 balanced_order == new_order) {
3452 new_order = pgdat->kswapd_max_order;
3453 new_classzone_idx = pgdat->classzone_idx;
3454 pgdat->kswapd_max_order = 0;
3455 pgdat->classzone_idx = pgdat->nr_zones - 1;
3458 if (order < new_order || classzone_idx > new_classzone_idx) {
3460 * Don't sleep if someone wants a larger 'order'
3461 * allocation or has tigher zone constraints
3463 order = new_order;
3464 classzone_idx = new_classzone_idx;
3465 } else {
3466 kswapd_try_to_sleep(pgdat, balanced_order,
3467 balanced_classzone_idx);
3468 order = pgdat->kswapd_max_order;
3469 classzone_idx = pgdat->classzone_idx;
3470 new_order = order;
3471 new_classzone_idx = classzone_idx;
3472 pgdat->kswapd_max_order = 0;
3473 pgdat->classzone_idx = pgdat->nr_zones - 1;
3476 ret = try_to_freeze();
3477 if (kthread_should_stop())
3478 break;
3481 * We can speed up thawing tasks if we don't call balance_pgdat
3482 * after returning from the refrigerator
3484 if (!ret) {
3485 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3486 balanced_classzone_idx = classzone_idx;
3487 balanced_order = balance_pgdat(pgdat, order,
3488 &balanced_classzone_idx);
3492 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3493 current->reclaim_state = NULL;
3494 lockdep_clear_current_reclaim_state();
3496 return 0;
3500 * A zone is low on free memory, so wake its kswapd task to service it.
3502 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3504 pg_data_t *pgdat;
3506 if (!populated_zone(zone))
3507 return;
3509 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3510 return;
3511 pgdat = zone->zone_pgdat;
3512 if (pgdat->kswapd_max_order < order) {
3513 pgdat->kswapd_max_order = order;
3514 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3516 if (!waitqueue_active(&pgdat->kswapd_wait))
3517 return;
3518 if (zone_balanced(zone, order, 0, 0))
3519 return;
3521 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3522 wake_up_interruptible(&pgdat->kswapd_wait);
3525 #ifdef CONFIG_HIBERNATION
3527 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3528 * freed pages.
3530 * Rather than trying to age LRUs the aim is to preserve the overall
3531 * LRU order by reclaiming preferentially
3532 * inactive > active > active referenced > active mapped
3534 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3536 struct reclaim_state reclaim_state;
3537 struct scan_control sc = {
3538 .nr_to_reclaim = nr_to_reclaim,
3539 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3540 .priority = DEF_PRIORITY,
3541 .may_writepage = 1,
3542 .may_unmap = 1,
3543 .may_swap = 1,
3544 .hibernation_mode = 1,
3546 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3547 struct task_struct *p = current;
3548 unsigned long nr_reclaimed;
3550 p->flags |= PF_MEMALLOC;
3551 lockdep_set_current_reclaim_state(sc.gfp_mask);
3552 reclaim_state.reclaimed_slab = 0;
3553 p->reclaim_state = &reclaim_state;
3555 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3557 p->reclaim_state = NULL;
3558 lockdep_clear_current_reclaim_state();
3559 p->flags &= ~PF_MEMALLOC;
3561 return nr_reclaimed;
3563 #endif /* CONFIG_HIBERNATION */
3565 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3566 not required for correctness. So if the last cpu in a node goes
3567 away, we get changed to run anywhere: as the first one comes back,
3568 restore their cpu bindings. */
3569 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3570 void *hcpu)
3572 int nid;
3574 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3575 for_each_node_state(nid, N_MEMORY) {
3576 pg_data_t *pgdat = NODE_DATA(nid);
3577 const struct cpumask *mask;
3579 mask = cpumask_of_node(pgdat->node_id);
3581 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3582 /* One of our CPUs online: restore mask */
3583 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3586 return NOTIFY_OK;
3590 * This kswapd start function will be called by init and node-hot-add.
3591 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3593 int kswapd_run(int nid)
3595 pg_data_t *pgdat = NODE_DATA(nid);
3596 int ret = 0;
3598 if (pgdat->kswapd)
3599 return 0;
3601 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3602 if (IS_ERR(pgdat->kswapd)) {
3603 /* failure at boot is fatal */
3604 BUG_ON(system_state == SYSTEM_BOOTING);
3605 pr_err("Failed to start kswapd on node %d\n", nid);
3606 ret = PTR_ERR(pgdat->kswapd);
3607 pgdat->kswapd = NULL;
3609 return ret;
3613 * Called by memory hotplug when all memory in a node is offlined. Caller must
3614 * hold mem_hotplug_begin/end().
3616 void kswapd_stop(int nid)
3618 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3620 if (kswapd) {
3621 kthread_stop(kswapd);
3622 NODE_DATA(nid)->kswapd = NULL;
3626 static int __init kswapd_init(void)
3628 int nid;
3630 swap_setup();
3631 for_each_node_state(nid, N_MEMORY)
3632 kswapd_run(nid);
3633 hotcpu_notifier(cpu_callback, 0);
3634 return 0;
3637 module_init(kswapd_init)
3639 #ifdef CONFIG_NUMA
3641 * Zone reclaim mode
3643 * If non-zero call zone_reclaim when the number of free pages falls below
3644 * the watermarks.
3646 int zone_reclaim_mode __read_mostly;
3648 #define RECLAIM_OFF 0
3649 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3650 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3651 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
3654 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3655 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3656 * a zone.
3658 #define ZONE_RECLAIM_PRIORITY 4
3661 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3662 * occur.
3664 int sysctl_min_unmapped_ratio = 1;
3667 * If the number of slab pages in a zone grows beyond this percentage then
3668 * slab reclaim needs to occur.
3670 int sysctl_min_slab_ratio = 5;
3672 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3674 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3675 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3676 zone_page_state(zone, NR_ACTIVE_FILE);
3679 * It's possible for there to be more file mapped pages than
3680 * accounted for by the pages on the file LRU lists because
3681 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3683 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3686 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3687 static unsigned long zone_pagecache_reclaimable(struct zone *zone)
3689 unsigned long nr_pagecache_reclaimable;
3690 unsigned long delta = 0;
3693 * If RECLAIM_UNMAP is set, then all file pages are considered
3694 * potentially reclaimable. Otherwise, we have to worry about
3695 * pages like swapcache and zone_unmapped_file_pages() provides
3696 * a better estimate
3698 if (zone_reclaim_mode & RECLAIM_UNMAP)
3699 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3700 else
3701 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3703 /* If we can't clean pages, remove dirty pages from consideration */
3704 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3705 delta += zone_page_state(zone, NR_FILE_DIRTY);
3707 /* Watch for any possible underflows due to delta */
3708 if (unlikely(delta > nr_pagecache_reclaimable))
3709 delta = nr_pagecache_reclaimable;
3711 return nr_pagecache_reclaimable - delta;
3715 * Try to free up some pages from this zone through reclaim.
3717 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3719 /* Minimum pages needed in order to stay on node */
3720 const unsigned long nr_pages = 1 << order;
3721 struct task_struct *p = current;
3722 struct reclaim_state reclaim_state;
3723 struct scan_control sc = {
3724 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3725 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3726 .order = order,
3727 .priority = ZONE_RECLAIM_PRIORITY,
3728 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3729 .may_unmap = !!(zone_reclaim_mode & RECLAIM_UNMAP),
3730 .may_swap = 1,
3733 cond_resched();
3735 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3736 * and we also need to be able to write out pages for RECLAIM_WRITE
3737 * and RECLAIM_UNMAP.
3739 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3740 lockdep_set_current_reclaim_state(gfp_mask);
3741 reclaim_state.reclaimed_slab = 0;
3742 p->reclaim_state = &reclaim_state;
3744 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3746 * Free memory by calling shrink zone with increasing
3747 * priorities until we have enough memory freed.
3749 do {
3750 shrink_zone(zone, &sc, true);
3751 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3754 p->reclaim_state = NULL;
3755 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3756 lockdep_clear_current_reclaim_state();
3757 return sc.nr_reclaimed >= nr_pages;
3760 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3762 int node_id;
3763 int ret;
3766 * Zone reclaim reclaims unmapped file backed pages and
3767 * slab pages if we are over the defined limits.
3769 * A small portion of unmapped file backed pages is needed for
3770 * file I/O otherwise pages read by file I/O will be immediately
3771 * thrown out if the zone is overallocated. So we do not reclaim
3772 * if less than a specified percentage of the zone is used by
3773 * unmapped file backed pages.
3775 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3776 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3777 return ZONE_RECLAIM_FULL;
3779 if (!zone_reclaimable(zone))
3780 return ZONE_RECLAIM_FULL;
3783 * Do not scan if the allocation should not be delayed.
3785 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3786 return ZONE_RECLAIM_NOSCAN;
3789 * Only run zone reclaim on the local zone or on zones that do not
3790 * have associated processors. This will favor the local processor
3791 * over remote processors and spread off node memory allocations
3792 * as wide as possible.
3794 node_id = zone_to_nid(zone);
3795 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3796 return ZONE_RECLAIM_NOSCAN;
3798 if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags))
3799 return ZONE_RECLAIM_NOSCAN;
3801 ret = __zone_reclaim(zone, gfp_mask, order);
3802 clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
3804 if (!ret)
3805 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3807 return ret;
3809 #endif
3812 * page_evictable - test whether a page is evictable
3813 * @page: the page to test
3815 * Test whether page is evictable--i.e., should be placed on active/inactive
3816 * lists vs unevictable list.
3818 * Reasons page might not be evictable:
3819 * (1) page's mapping marked unevictable
3820 * (2) page is part of an mlocked VMA
3823 int page_evictable(struct page *page)
3825 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3828 #ifdef CONFIG_SHMEM
3830 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3831 * @pages: array of pages to check
3832 * @nr_pages: number of pages to check
3834 * Checks pages for evictability and moves them to the appropriate lru list.
3836 * This function is only used for SysV IPC SHM_UNLOCK.
3838 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3840 struct lruvec *lruvec;
3841 struct zone *zone = NULL;
3842 int pgscanned = 0;
3843 int pgrescued = 0;
3844 int i;
3846 for (i = 0; i < nr_pages; i++) {
3847 struct page *page = pages[i];
3848 struct zone *pagezone;
3850 pgscanned++;
3851 pagezone = page_zone(page);
3852 if (pagezone != zone) {
3853 if (zone)
3854 spin_unlock_irq(&zone->lru_lock);
3855 zone = pagezone;
3856 spin_lock_irq(&zone->lru_lock);
3858 lruvec = mem_cgroup_page_lruvec(page, zone);
3860 if (!PageLRU(page) || !PageUnevictable(page))
3861 continue;
3863 if (page_evictable(page)) {
3864 enum lru_list lru = page_lru_base_type(page);
3866 VM_BUG_ON_PAGE(PageActive(page), page);
3867 ClearPageUnevictable(page);
3868 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3869 add_page_to_lru_list(page, lruvec, lru);
3870 pgrescued++;
3874 if (zone) {
3875 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3876 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3877 spin_unlock_irq(&zone->lru_lock);
3880 #endif /* CONFIG_SHMEM */