2 * (C) 1997 Linus Torvalds
3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5 #include <linux/export.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
23 * Inode locking rules:
25 * inode->i_lock protects:
26 * inode->i_state, inode->i_hash, __iget()
27 * inode->i_sb->s_inode_lru_lock protects:
28 * inode->i_sb->s_inode_lru, inode->i_lru
29 * inode_sb_list_lock protects:
30 * sb->s_inodes, inode->i_sb_list
31 * bdi->wb.list_lock protects:
32 * bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list
33 * inode_hash_lock protects:
34 * inode_hashtable, inode->i_hash
40 * inode->i_sb->s_inode_lru_lock
53 static unsigned int i_hash_mask __read_mostly
;
54 static unsigned int i_hash_shift __read_mostly
;
55 static struct hlist_head
*inode_hashtable __read_mostly
;
56 static __cacheline_aligned_in_smp
DEFINE_SPINLOCK(inode_hash_lock
);
58 __cacheline_aligned_in_smp
DEFINE_SPINLOCK(inode_sb_list_lock
);
61 * Empty aops. Can be used for the cases where the user does not
62 * define any of the address_space operations.
64 const struct address_space_operations empty_aops
= {
66 EXPORT_SYMBOL(empty_aops
);
69 * Statistics gathering..
71 struct inodes_stat_t inodes_stat
;
73 static DEFINE_PER_CPU(unsigned int, nr_inodes
);
74 static DEFINE_PER_CPU(unsigned int, nr_unused
);
76 static struct kmem_cache
*inode_cachep __read_mostly
;
78 static int get_nr_inodes(void)
82 for_each_possible_cpu(i
)
83 sum
+= per_cpu(nr_inodes
, i
);
84 return sum
< 0 ? 0 : sum
;
87 static inline int get_nr_inodes_unused(void)
91 for_each_possible_cpu(i
)
92 sum
+= per_cpu(nr_unused
, i
);
93 return sum
< 0 ? 0 : sum
;
96 int get_nr_dirty_inodes(void)
98 /* not actually dirty inodes, but a wild approximation */
99 int nr_dirty
= get_nr_inodes() - get_nr_inodes_unused();
100 return nr_dirty
> 0 ? nr_dirty
: 0;
104 * Handle nr_inode sysctl
107 int proc_nr_inodes(ctl_table
*table
, int write
,
108 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
110 inodes_stat
.nr_inodes
= get_nr_inodes();
111 inodes_stat
.nr_unused
= get_nr_inodes_unused();
112 return proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
117 * inode_init_always - perform inode structure intialisation
118 * @sb: superblock inode belongs to
119 * @inode: inode to initialise
121 * These are initializations that need to be done on every inode
122 * allocation as the fields are not initialised by slab allocation.
124 int inode_init_always(struct super_block
*sb
, struct inode
*inode
)
126 static const struct inode_operations empty_iops
;
127 static const struct file_operations empty_fops
;
128 struct address_space
*const mapping
= &inode
->i_data
;
131 inode
->i_blkbits
= sb
->s_blocksize_bits
;
133 atomic_set(&inode
->i_count
, 1);
134 inode
->i_op
= &empty_iops
;
135 inode
->i_fop
= &empty_fops
;
136 inode
->__i_nlink
= 1;
137 inode
->i_opflags
= 0;
138 i_uid_write(inode
, 0);
139 i_gid_write(inode
, 0);
140 atomic_set(&inode
->i_writecount
, 0);
144 inode
->i_generation
= 0;
146 memset(&inode
->i_dquot
, 0, sizeof(inode
->i_dquot
));
148 inode
->i_pipe
= NULL
;
149 inode
->i_bdev
= NULL
;
150 inode
->i_cdev
= NULL
;
152 inode
->dirtied_when
= 0;
154 if (security_inode_alloc(inode
))
156 spin_lock_init(&inode
->i_lock
);
157 lockdep_set_class(&inode
->i_lock
, &sb
->s_type
->i_lock_key
);
159 mutex_init(&inode
->i_mutex
);
160 lockdep_set_class(&inode
->i_mutex
, &sb
->s_type
->i_mutex_key
);
162 atomic_set(&inode
->i_dio_count
, 0);
164 mapping
->a_ops
= &empty_aops
;
165 mapping
->host
= inode
;
167 mapping_set_gfp_mask(mapping
, GFP_HIGHUSER_MOVABLE
);
168 mapping
->private_data
= NULL
;
169 mapping
->backing_dev_info
= &default_backing_dev_info
;
170 mapping
->writeback_index
= 0;
173 * If the block_device provides a backing_dev_info for client
174 * inodes then use that. Otherwise the inode share the bdev's
178 struct backing_dev_info
*bdi
;
180 bdi
= sb
->s_bdev
->bd_inode
->i_mapping
->backing_dev_info
;
181 mapping
->backing_dev_info
= bdi
;
183 inode
->i_private
= NULL
;
184 inode
->i_mapping
= mapping
;
185 INIT_HLIST_HEAD(&inode
->i_dentry
); /* buggered by rcu freeing */
186 #ifdef CONFIG_FS_POSIX_ACL
187 inode
->i_acl
= inode
->i_default_acl
= ACL_NOT_CACHED
;
190 #ifdef CONFIG_FSNOTIFY
191 inode
->i_fsnotify_mask
= 0;
194 this_cpu_inc(nr_inodes
);
200 EXPORT_SYMBOL(inode_init_always
);
202 static struct inode
*alloc_inode(struct super_block
*sb
)
206 if (sb
->s_op
->alloc_inode
)
207 inode
= sb
->s_op
->alloc_inode(sb
);
209 inode
= kmem_cache_alloc(inode_cachep
, GFP_KERNEL
);
214 if (unlikely(inode_init_always(sb
, inode
))) {
215 if (inode
->i_sb
->s_op
->destroy_inode
)
216 inode
->i_sb
->s_op
->destroy_inode(inode
);
218 kmem_cache_free(inode_cachep
, inode
);
225 void free_inode_nonrcu(struct inode
*inode
)
227 kmem_cache_free(inode_cachep
, inode
);
229 EXPORT_SYMBOL(free_inode_nonrcu
);
231 void __destroy_inode(struct inode
*inode
)
233 BUG_ON(inode_has_buffers(inode
));
234 security_inode_free(inode
);
235 fsnotify_inode_delete(inode
);
236 if (!inode
->i_nlink
) {
237 WARN_ON(atomic_long_read(&inode
->i_sb
->s_remove_count
) == 0);
238 atomic_long_dec(&inode
->i_sb
->s_remove_count
);
241 #ifdef CONFIG_FS_POSIX_ACL
242 if (inode
->i_acl
&& inode
->i_acl
!= ACL_NOT_CACHED
)
243 posix_acl_release(inode
->i_acl
);
244 if (inode
->i_default_acl
&& inode
->i_default_acl
!= ACL_NOT_CACHED
)
245 posix_acl_release(inode
->i_default_acl
);
247 this_cpu_dec(nr_inodes
);
249 EXPORT_SYMBOL(__destroy_inode
);
251 static void i_callback(struct rcu_head
*head
)
253 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
254 kmem_cache_free(inode_cachep
, inode
);
257 static void destroy_inode(struct inode
*inode
)
259 BUG_ON(!list_empty(&inode
->i_lru
));
260 __destroy_inode(inode
);
261 if (inode
->i_sb
->s_op
->destroy_inode
)
262 inode
->i_sb
->s_op
->destroy_inode(inode
);
264 call_rcu(&inode
->i_rcu
, i_callback
);
268 * drop_nlink - directly drop an inode's link count
271 * This is a low-level filesystem helper to replace any
272 * direct filesystem manipulation of i_nlink. In cases
273 * where we are attempting to track writes to the
274 * filesystem, a decrement to zero means an imminent
275 * write when the file is truncated and actually unlinked
278 void drop_nlink(struct inode
*inode
)
280 WARN_ON(inode
->i_nlink
== 0);
283 atomic_long_inc(&inode
->i_sb
->s_remove_count
);
285 EXPORT_SYMBOL(drop_nlink
);
288 * clear_nlink - directly zero an inode's link count
291 * This is a low-level filesystem helper to replace any
292 * direct filesystem manipulation of i_nlink. See
293 * drop_nlink() for why we care about i_nlink hitting zero.
295 void clear_nlink(struct inode
*inode
)
297 if (inode
->i_nlink
) {
298 inode
->__i_nlink
= 0;
299 atomic_long_inc(&inode
->i_sb
->s_remove_count
);
302 EXPORT_SYMBOL(clear_nlink
);
305 * set_nlink - directly set an inode's link count
307 * @nlink: new nlink (should be non-zero)
309 * This is a low-level filesystem helper to replace any
310 * direct filesystem manipulation of i_nlink.
312 void set_nlink(struct inode
*inode
, unsigned int nlink
)
317 /* Yes, some filesystems do change nlink from zero to one */
318 if (inode
->i_nlink
== 0)
319 atomic_long_dec(&inode
->i_sb
->s_remove_count
);
321 inode
->__i_nlink
= nlink
;
324 EXPORT_SYMBOL(set_nlink
);
327 * inc_nlink - directly increment an inode's link count
330 * This is a low-level filesystem helper to replace any
331 * direct filesystem manipulation of i_nlink. Currently,
332 * it is only here for parity with dec_nlink().
334 void inc_nlink(struct inode
*inode
)
336 if (WARN_ON(inode
->i_nlink
== 0))
337 atomic_long_dec(&inode
->i_sb
->s_remove_count
);
341 EXPORT_SYMBOL(inc_nlink
);
343 void address_space_init_once(struct address_space
*mapping
)
345 memset(mapping
, 0, sizeof(*mapping
));
346 INIT_RADIX_TREE(&mapping
->page_tree
, GFP_ATOMIC
);
347 spin_lock_init(&mapping
->tree_lock
);
348 mutex_init(&mapping
->i_mmap_mutex
);
349 INIT_LIST_HEAD(&mapping
->private_list
);
350 spin_lock_init(&mapping
->private_lock
);
351 mapping
->i_mmap
= RB_ROOT
;
352 INIT_LIST_HEAD(&mapping
->i_mmap_nonlinear
);
354 EXPORT_SYMBOL(address_space_init_once
);
357 * These are initializations that only need to be done
358 * once, because the fields are idempotent across use
359 * of the inode, so let the slab aware of that.
361 void inode_init_once(struct inode
*inode
)
363 memset(inode
, 0, sizeof(*inode
));
364 INIT_HLIST_NODE(&inode
->i_hash
);
365 INIT_LIST_HEAD(&inode
->i_devices
);
366 INIT_LIST_HEAD(&inode
->i_wb_list
);
367 INIT_LIST_HEAD(&inode
->i_lru
);
368 address_space_init_once(&inode
->i_data
);
369 i_size_ordered_init(inode
);
370 #ifdef CONFIG_FSNOTIFY
371 INIT_HLIST_HEAD(&inode
->i_fsnotify_marks
);
374 EXPORT_SYMBOL(inode_init_once
);
376 static void init_once(void *foo
)
378 struct inode
*inode
= (struct inode
*) foo
;
380 inode_init_once(inode
);
384 * inode->i_lock must be held
386 void __iget(struct inode
*inode
)
388 atomic_inc(&inode
->i_count
);
392 * get additional reference to inode; caller must already hold one.
394 void ihold(struct inode
*inode
)
396 WARN_ON(atomic_inc_return(&inode
->i_count
) < 2);
398 EXPORT_SYMBOL(ihold
);
400 static void inode_lru_list_add(struct inode
*inode
)
402 spin_lock(&inode
->i_sb
->s_inode_lru_lock
);
403 if (list_empty(&inode
->i_lru
)) {
404 list_add(&inode
->i_lru
, &inode
->i_sb
->s_inode_lru
);
405 inode
->i_sb
->s_nr_inodes_unused
++;
406 this_cpu_inc(nr_unused
);
408 spin_unlock(&inode
->i_sb
->s_inode_lru_lock
);
412 * Add inode to LRU if needed (inode is unused and clean).
414 * Needs inode->i_lock held.
416 void inode_add_lru(struct inode
*inode
)
418 if (!(inode
->i_state
& (I_DIRTY
| I_SYNC
| I_FREEING
| I_WILL_FREE
)) &&
419 !atomic_read(&inode
->i_count
) && inode
->i_sb
->s_flags
& MS_ACTIVE
)
420 inode_lru_list_add(inode
);
424 static void inode_lru_list_del(struct inode
*inode
)
426 spin_lock(&inode
->i_sb
->s_inode_lru_lock
);
427 if (!list_empty(&inode
->i_lru
)) {
428 list_del_init(&inode
->i_lru
);
429 inode
->i_sb
->s_nr_inodes_unused
--;
430 this_cpu_dec(nr_unused
);
432 spin_unlock(&inode
->i_sb
->s_inode_lru_lock
);
436 * inode_sb_list_add - add inode to the superblock list of inodes
437 * @inode: inode to add
439 void inode_sb_list_add(struct inode
*inode
)
441 spin_lock(&inode_sb_list_lock
);
442 list_add(&inode
->i_sb_list
, &inode
->i_sb
->s_inodes
);
443 spin_unlock(&inode_sb_list_lock
);
445 EXPORT_SYMBOL_GPL(inode_sb_list_add
);
447 static inline void inode_sb_list_del(struct inode
*inode
)
449 if (!list_empty(&inode
->i_sb_list
)) {
450 spin_lock(&inode_sb_list_lock
);
451 list_del_init(&inode
->i_sb_list
);
452 spin_unlock(&inode_sb_list_lock
);
456 static unsigned long hash(struct super_block
*sb
, unsigned long hashval
)
460 tmp
= (hashval
* (unsigned long)sb
) ^ (GOLDEN_RATIO_PRIME
+ hashval
) /
462 tmp
= tmp
^ ((tmp
^ GOLDEN_RATIO_PRIME
) >> i_hash_shift
);
463 return tmp
& i_hash_mask
;
467 * __insert_inode_hash - hash an inode
468 * @inode: unhashed inode
469 * @hashval: unsigned long value used to locate this object in the
472 * Add an inode to the inode hash for this superblock.
474 void __insert_inode_hash(struct inode
*inode
, unsigned long hashval
)
476 struct hlist_head
*b
= inode_hashtable
+ hash(inode
->i_sb
, hashval
);
478 spin_lock(&inode_hash_lock
);
479 spin_lock(&inode
->i_lock
);
480 hlist_add_head(&inode
->i_hash
, b
);
481 spin_unlock(&inode
->i_lock
);
482 spin_unlock(&inode_hash_lock
);
484 EXPORT_SYMBOL(__insert_inode_hash
);
487 * __remove_inode_hash - remove an inode from the hash
488 * @inode: inode to unhash
490 * Remove an inode from the superblock.
492 void __remove_inode_hash(struct inode
*inode
)
494 spin_lock(&inode_hash_lock
);
495 spin_lock(&inode
->i_lock
);
496 hlist_del_init(&inode
->i_hash
);
497 spin_unlock(&inode
->i_lock
);
498 spin_unlock(&inode_hash_lock
);
500 EXPORT_SYMBOL(__remove_inode_hash
);
502 void clear_inode(struct inode
*inode
)
506 * We have to cycle tree_lock here because reclaim can be still in the
507 * process of removing the last page (in __delete_from_page_cache())
508 * and we must not free mapping under it.
510 spin_lock_irq(&inode
->i_data
.tree_lock
);
511 BUG_ON(inode
->i_data
.nrpages
);
512 spin_unlock_irq(&inode
->i_data
.tree_lock
);
513 BUG_ON(!list_empty(&inode
->i_data
.private_list
));
514 BUG_ON(!(inode
->i_state
& I_FREEING
));
515 BUG_ON(inode
->i_state
& I_CLEAR
);
516 /* don't need i_lock here, no concurrent mods to i_state */
517 inode
->i_state
= I_FREEING
| I_CLEAR
;
519 EXPORT_SYMBOL(clear_inode
);
522 * Free the inode passed in, removing it from the lists it is still connected
523 * to. We remove any pages still attached to the inode and wait for any IO that
524 * is still in progress before finally destroying the inode.
526 * An inode must already be marked I_FREEING so that we avoid the inode being
527 * moved back onto lists if we race with other code that manipulates the lists
528 * (e.g. writeback_single_inode). The caller is responsible for setting this.
530 * An inode must already be removed from the LRU list before being evicted from
531 * the cache. This should occur atomically with setting the I_FREEING state
532 * flag, so no inodes here should ever be on the LRU when being evicted.
534 static void evict(struct inode
*inode
)
536 const struct super_operations
*op
= inode
->i_sb
->s_op
;
538 BUG_ON(!(inode
->i_state
& I_FREEING
));
539 BUG_ON(!list_empty(&inode
->i_lru
));
541 if (!list_empty(&inode
->i_wb_list
))
542 inode_wb_list_del(inode
);
544 inode_sb_list_del(inode
);
547 * Wait for flusher thread to be done with the inode so that filesystem
548 * does not start destroying it while writeback is still running. Since
549 * the inode has I_FREEING set, flusher thread won't start new work on
550 * the inode. We just have to wait for running writeback to finish.
552 inode_wait_for_writeback(inode
);
554 if (op
->evict_inode
) {
555 op
->evict_inode(inode
);
557 if (inode
->i_data
.nrpages
)
558 truncate_inode_pages(&inode
->i_data
, 0);
561 if (S_ISBLK(inode
->i_mode
) && inode
->i_bdev
)
563 if (S_ISCHR(inode
->i_mode
) && inode
->i_cdev
)
566 remove_inode_hash(inode
);
568 spin_lock(&inode
->i_lock
);
569 wake_up_bit(&inode
->i_state
, __I_NEW
);
570 BUG_ON(inode
->i_state
!= (I_FREEING
| I_CLEAR
));
571 spin_unlock(&inode
->i_lock
);
573 destroy_inode(inode
);
577 * dispose_list - dispose of the contents of a local list
578 * @head: the head of the list to free
580 * Dispose-list gets a local list with local inodes in it, so it doesn't
581 * need to worry about list corruption and SMP locks.
583 static void dispose_list(struct list_head
*head
)
585 while (!list_empty(head
)) {
588 inode
= list_first_entry(head
, struct inode
, i_lru
);
589 list_del_init(&inode
->i_lru
);
596 * evict_inodes - evict all evictable inodes for a superblock
597 * @sb: superblock to operate on
599 * Make sure that no inodes with zero refcount are retained. This is
600 * called by superblock shutdown after having MS_ACTIVE flag removed,
601 * so any inode reaching zero refcount during or after that call will
602 * be immediately evicted.
604 void evict_inodes(struct super_block
*sb
)
606 struct inode
*inode
, *next
;
609 spin_lock(&inode_sb_list_lock
);
610 list_for_each_entry_safe(inode
, next
, &sb
->s_inodes
, i_sb_list
) {
611 if (atomic_read(&inode
->i_count
))
614 spin_lock(&inode
->i_lock
);
615 if (inode
->i_state
& (I_NEW
| I_FREEING
| I_WILL_FREE
)) {
616 spin_unlock(&inode
->i_lock
);
620 inode
->i_state
|= I_FREEING
;
621 inode_lru_list_del(inode
);
622 spin_unlock(&inode
->i_lock
);
623 list_add(&inode
->i_lru
, &dispose
);
625 spin_unlock(&inode_sb_list_lock
);
627 dispose_list(&dispose
);
631 * invalidate_inodes - attempt to free all inodes on a superblock
632 * @sb: superblock to operate on
633 * @kill_dirty: flag to guide handling of dirty inodes
635 * Attempts to free all inodes for a given superblock. If there were any
636 * busy inodes return a non-zero value, else zero.
637 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
640 int invalidate_inodes(struct super_block
*sb
, bool kill_dirty
)
643 struct inode
*inode
, *next
;
646 spin_lock(&inode_sb_list_lock
);
647 list_for_each_entry_safe(inode
, next
, &sb
->s_inodes
, i_sb_list
) {
648 spin_lock(&inode
->i_lock
);
649 if (inode
->i_state
& (I_NEW
| I_FREEING
| I_WILL_FREE
)) {
650 spin_unlock(&inode
->i_lock
);
653 if (inode
->i_state
& I_DIRTY
&& !kill_dirty
) {
654 spin_unlock(&inode
->i_lock
);
658 if (atomic_read(&inode
->i_count
)) {
659 spin_unlock(&inode
->i_lock
);
664 inode
->i_state
|= I_FREEING
;
665 inode_lru_list_del(inode
);
666 spin_unlock(&inode
->i_lock
);
667 list_add(&inode
->i_lru
, &dispose
);
669 spin_unlock(&inode_sb_list_lock
);
671 dispose_list(&dispose
);
676 static int can_unuse(struct inode
*inode
)
678 if (inode
->i_state
& ~I_REFERENCED
)
680 if (inode_has_buffers(inode
))
682 if (atomic_read(&inode
->i_count
))
684 if (inode
->i_data
.nrpages
)
690 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
691 * This is called from the superblock shrinker function with a number of inodes
692 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
693 * then are freed outside inode_lock by dispose_list().
695 * Any inodes which are pinned purely because of attached pagecache have their
696 * pagecache removed. If the inode has metadata buffers attached to
697 * mapping->private_list then try to remove them.
699 * If the inode has the I_REFERENCED flag set, then it means that it has been
700 * used recently - the flag is set in iput_final(). When we encounter such an
701 * inode, clear the flag and move it to the back of the LRU so it gets another
702 * pass through the LRU before it gets reclaimed. This is necessary because of
703 * the fact we are doing lazy LRU updates to minimise lock contention so the
704 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
705 * with this flag set because they are the inodes that are out of order.
707 void prune_icache_sb(struct super_block
*sb
, int nr_to_scan
)
711 unsigned long reap
= 0;
713 spin_lock(&sb
->s_inode_lru_lock
);
714 for (nr_scanned
= nr_to_scan
; nr_scanned
>= 0; nr_scanned
--) {
717 if (list_empty(&sb
->s_inode_lru
))
720 inode
= list_entry(sb
->s_inode_lru
.prev
, struct inode
, i_lru
);
723 * we are inverting the sb->s_inode_lru_lock/inode->i_lock here,
724 * so use a trylock. If we fail to get the lock, just move the
725 * inode to the back of the list so we don't spin on it.
727 if (!spin_trylock(&inode
->i_lock
)) {
728 list_move_tail(&inode
->i_lru
, &sb
->s_inode_lru
);
733 * Referenced or dirty inodes are still in use. Give them
734 * another pass through the LRU as we canot reclaim them now.
736 if (atomic_read(&inode
->i_count
) ||
737 (inode
->i_state
& ~I_REFERENCED
)) {
738 list_del_init(&inode
->i_lru
);
739 spin_unlock(&inode
->i_lock
);
740 sb
->s_nr_inodes_unused
--;
741 this_cpu_dec(nr_unused
);
745 /* recently referenced inodes get one more pass */
746 if (inode
->i_state
& I_REFERENCED
) {
747 inode
->i_state
&= ~I_REFERENCED
;
748 list_move(&inode
->i_lru
, &sb
->s_inode_lru
);
749 spin_unlock(&inode
->i_lock
);
752 if (inode_has_buffers(inode
) || inode
->i_data
.nrpages
) {
754 spin_unlock(&inode
->i_lock
);
755 spin_unlock(&sb
->s_inode_lru_lock
);
756 if (remove_inode_buffers(inode
))
757 reap
+= invalidate_mapping_pages(&inode
->i_data
,
760 spin_lock(&sb
->s_inode_lru_lock
);
762 if (inode
!= list_entry(sb
->s_inode_lru
.next
,
763 struct inode
, i_lru
))
764 continue; /* wrong inode or list_empty */
765 /* avoid lock inversions with trylock */
766 if (!spin_trylock(&inode
->i_lock
))
768 if (!can_unuse(inode
)) {
769 spin_unlock(&inode
->i_lock
);
773 WARN_ON(inode
->i_state
& I_NEW
);
774 inode
->i_state
|= I_FREEING
;
775 spin_unlock(&inode
->i_lock
);
777 list_move(&inode
->i_lru
, &freeable
);
778 sb
->s_nr_inodes_unused
--;
779 this_cpu_dec(nr_unused
);
781 if (current_is_kswapd())
782 __count_vm_events(KSWAPD_INODESTEAL
, reap
);
784 __count_vm_events(PGINODESTEAL
, reap
);
785 spin_unlock(&sb
->s_inode_lru_lock
);
786 if (current
->reclaim_state
)
787 current
->reclaim_state
->reclaimed_slab
+= reap
;
789 dispose_list(&freeable
);
792 static void __wait_on_freeing_inode(struct inode
*inode
);
794 * Called with the inode lock held.
796 static struct inode
*find_inode(struct super_block
*sb
,
797 struct hlist_head
*head
,
798 int (*test
)(struct inode
*, void *),
801 struct hlist_node
*node
;
802 struct inode
*inode
= NULL
;
805 hlist_for_each_entry(inode
, node
, head
, i_hash
) {
806 spin_lock(&inode
->i_lock
);
807 if (inode
->i_sb
!= sb
) {
808 spin_unlock(&inode
->i_lock
);
811 if (!test(inode
, data
)) {
812 spin_unlock(&inode
->i_lock
);
815 if (inode
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
816 __wait_on_freeing_inode(inode
);
820 spin_unlock(&inode
->i_lock
);
827 * find_inode_fast is the fast path version of find_inode, see the comment at
828 * iget_locked for details.
830 static struct inode
*find_inode_fast(struct super_block
*sb
,
831 struct hlist_head
*head
, unsigned long ino
)
833 struct hlist_node
*node
;
834 struct inode
*inode
= NULL
;
837 hlist_for_each_entry(inode
, node
, head
, i_hash
) {
838 spin_lock(&inode
->i_lock
);
839 if (inode
->i_ino
!= ino
) {
840 spin_unlock(&inode
->i_lock
);
843 if (inode
->i_sb
!= sb
) {
844 spin_unlock(&inode
->i_lock
);
847 if (inode
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
848 __wait_on_freeing_inode(inode
);
852 spin_unlock(&inode
->i_lock
);
859 * Each cpu owns a range of LAST_INO_BATCH numbers.
860 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
861 * to renew the exhausted range.
863 * This does not significantly increase overflow rate because every CPU can
864 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
865 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
866 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
867 * overflow rate by 2x, which does not seem too significant.
869 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
870 * error if st_ino won't fit in target struct field. Use 32bit counter
871 * here to attempt to avoid that.
873 #define LAST_INO_BATCH 1024
874 static DEFINE_PER_CPU(unsigned int, last_ino
);
876 unsigned int get_next_ino(void)
878 unsigned int *p
= &get_cpu_var(last_ino
);
879 unsigned int res
= *p
;
882 if (unlikely((res
& (LAST_INO_BATCH
-1)) == 0)) {
883 static atomic_t shared_last_ino
;
884 int next
= atomic_add_return(LAST_INO_BATCH
, &shared_last_ino
);
886 res
= next
- LAST_INO_BATCH
;
891 put_cpu_var(last_ino
);
894 EXPORT_SYMBOL(get_next_ino
);
897 * new_inode_pseudo - obtain an inode
900 * Allocates a new inode for given superblock.
901 * Inode wont be chained in superblock s_inodes list
903 * - fs can't be unmount
904 * - quotas, fsnotify, writeback can't work
906 struct inode
*new_inode_pseudo(struct super_block
*sb
)
908 struct inode
*inode
= alloc_inode(sb
);
911 spin_lock(&inode
->i_lock
);
913 spin_unlock(&inode
->i_lock
);
914 INIT_LIST_HEAD(&inode
->i_sb_list
);
920 * new_inode - obtain an inode
923 * Allocates a new inode for given superblock. The default gfp_mask
924 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
925 * If HIGHMEM pages are unsuitable or it is known that pages allocated
926 * for the page cache are not reclaimable or migratable,
927 * mapping_set_gfp_mask() must be called with suitable flags on the
928 * newly created inode's mapping
931 struct inode
*new_inode(struct super_block
*sb
)
935 spin_lock_prefetch(&inode_sb_list_lock
);
937 inode
= new_inode_pseudo(sb
);
939 inode_sb_list_add(inode
);
942 EXPORT_SYMBOL(new_inode
);
944 #ifdef CONFIG_DEBUG_LOCK_ALLOC
945 void lockdep_annotate_inode_mutex_key(struct inode
*inode
)
947 if (S_ISDIR(inode
->i_mode
)) {
948 struct file_system_type
*type
= inode
->i_sb
->s_type
;
950 /* Set new key only if filesystem hasn't already changed it */
951 if (lockdep_match_class(&inode
->i_mutex
, &type
->i_mutex_key
)) {
953 * ensure nobody is actually holding i_mutex
955 mutex_destroy(&inode
->i_mutex
);
956 mutex_init(&inode
->i_mutex
);
957 lockdep_set_class(&inode
->i_mutex
,
958 &type
->i_mutex_dir_key
);
962 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key
);
966 * unlock_new_inode - clear the I_NEW state and wake up any waiters
967 * @inode: new inode to unlock
969 * Called when the inode is fully initialised to clear the new state of the
970 * inode and wake up anyone waiting for the inode to finish initialisation.
972 void unlock_new_inode(struct inode
*inode
)
974 lockdep_annotate_inode_mutex_key(inode
);
975 spin_lock(&inode
->i_lock
);
976 WARN_ON(!(inode
->i_state
& I_NEW
));
977 inode
->i_state
&= ~I_NEW
;
979 wake_up_bit(&inode
->i_state
, __I_NEW
);
980 spin_unlock(&inode
->i_lock
);
982 EXPORT_SYMBOL(unlock_new_inode
);
985 * iget5_locked - obtain an inode from a mounted file system
986 * @sb: super block of file system
987 * @hashval: hash value (usually inode number) to get
988 * @test: callback used for comparisons between inodes
989 * @set: callback used to initialize a new struct inode
990 * @data: opaque data pointer to pass to @test and @set
992 * Search for the inode specified by @hashval and @data in the inode cache,
993 * and if present it is return it with an increased reference count. This is
994 * a generalized version of iget_locked() for file systems where the inode
995 * number is not sufficient for unique identification of an inode.
997 * If the inode is not in cache, allocate a new inode and return it locked,
998 * hashed, and with the I_NEW flag set. The file system gets to fill it in
999 * before unlocking it via unlock_new_inode().
1001 * Note both @test and @set are called with the inode_hash_lock held, so can't
1004 struct inode
*iget5_locked(struct super_block
*sb
, unsigned long hashval
,
1005 int (*test
)(struct inode
*, void *),
1006 int (*set
)(struct inode
*, void *), void *data
)
1008 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1009 struct inode
*inode
;
1011 spin_lock(&inode_hash_lock
);
1012 inode
= find_inode(sb
, head
, test
, data
);
1013 spin_unlock(&inode_hash_lock
);
1016 wait_on_inode(inode
);
1020 inode
= alloc_inode(sb
);
1024 spin_lock(&inode_hash_lock
);
1025 /* We released the lock, so.. */
1026 old
= find_inode(sb
, head
, test
, data
);
1028 if (set(inode
, data
))
1031 spin_lock(&inode
->i_lock
);
1032 inode
->i_state
= I_NEW
;
1033 hlist_add_head(&inode
->i_hash
, head
);
1034 spin_unlock(&inode
->i_lock
);
1035 inode_sb_list_add(inode
);
1036 spin_unlock(&inode_hash_lock
);
1038 /* Return the locked inode with I_NEW set, the
1039 * caller is responsible for filling in the contents
1045 * Uhhuh, somebody else created the same inode under
1046 * us. Use the old inode instead of the one we just
1049 spin_unlock(&inode_hash_lock
);
1050 destroy_inode(inode
);
1052 wait_on_inode(inode
);
1057 spin_unlock(&inode_hash_lock
);
1058 destroy_inode(inode
);
1061 EXPORT_SYMBOL(iget5_locked
);
1064 * iget_locked - obtain an inode from a mounted file system
1065 * @sb: super block of file system
1066 * @ino: inode number to get
1068 * Search for the inode specified by @ino in the inode cache and if present
1069 * return it with an increased reference count. This is for file systems
1070 * where the inode number is sufficient for unique identification of an inode.
1072 * If the inode is not in cache, allocate a new inode and return it locked,
1073 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1074 * before unlocking it via unlock_new_inode().
1076 struct inode
*iget_locked(struct super_block
*sb
, unsigned long ino
)
1078 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1079 struct inode
*inode
;
1081 spin_lock(&inode_hash_lock
);
1082 inode
= find_inode_fast(sb
, head
, ino
);
1083 spin_unlock(&inode_hash_lock
);
1085 wait_on_inode(inode
);
1089 inode
= alloc_inode(sb
);
1093 spin_lock(&inode_hash_lock
);
1094 /* We released the lock, so.. */
1095 old
= find_inode_fast(sb
, head
, ino
);
1098 spin_lock(&inode
->i_lock
);
1099 inode
->i_state
= I_NEW
;
1100 hlist_add_head(&inode
->i_hash
, head
);
1101 spin_unlock(&inode
->i_lock
);
1102 inode_sb_list_add(inode
);
1103 spin_unlock(&inode_hash_lock
);
1105 /* Return the locked inode with I_NEW set, the
1106 * caller is responsible for filling in the contents
1112 * Uhhuh, somebody else created the same inode under
1113 * us. Use the old inode instead of the one we just
1116 spin_unlock(&inode_hash_lock
);
1117 destroy_inode(inode
);
1119 wait_on_inode(inode
);
1123 EXPORT_SYMBOL(iget_locked
);
1126 * search the inode cache for a matching inode number.
1127 * If we find one, then the inode number we are trying to
1128 * allocate is not unique and so we should not use it.
1130 * Returns 1 if the inode number is unique, 0 if it is not.
1132 static int test_inode_iunique(struct super_block
*sb
, unsigned long ino
)
1134 struct hlist_head
*b
= inode_hashtable
+ hash(sb
, ino
);
1135 struct hlist_node
*node
;
1136 struct inode
*inode
;
1138 spin_lock(&inode_hash_lock
);
1139 hlist_for_each_entry(inode
, node
, b
, i_hash
) {
1140 if (inode
->i_ino
== ino
&& inode
->i_sb
== sb
) {
1141 spin_unlock(&inode_hash_lock
);
1145 spin_unlock(&inode_hash_lock
);
1151 * iunique - get a unique inode number
1153 * @max_reserved: highest reserved inode number
1155 * Obtain an inode number that is unique on the system for a given
1156 * superblock. This is used by file systems that have no natural
1157 * permanent inode numbering system. An inode number is returned that
1158 * is higher than the reserved limit but unique.
1161 * With a large number of inodes live on the file system this function
1162 * currently becomes quite slow.
1164 ino_t
iunique(struct super_block
*sb
, ino_t max_reserved
)
1167 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1168 * error if st_ino won't fit in target struct field. Use 32bit counter
1169 * here to attempt to avoid that.
1171 static DEFINE_SPINLOCK(iunique_lock
);
1172 static unsigned int counter
;
1175 spin_lock(&iunique_lock
);
1177 if (counter
<= max_reserved
)
1178 counter
= max_reserved
+ 1;
1180 } while (!test_inode_iunique(sb
, res
));
1181 spin_unlock(&iunique_lock
);
1185 EXPORT_SYMBOL(iunique
);
1187 struct inode
*igrab(struct inode
*inode
)
1189 spin_lock(&inode
->i_lock
);
1190 if (!(inode
->i_state
& (I_FREEING
|I_WILL_FREE
))) {
1192 spin_unlock(&inode
->i_lock
);
1194 spin_unlock(&inode
->i_lock
);
1196 * Handle the case where s_op->clear_inode is not been
1197 * called yet, and somebody is calling igrab
1198 * while the inode is getting freed.
1204 EXPORT_SYMBOL(igrab
);
1207 * ilookup5_nowait - search for an inode in the inode cache
1208 * @sb: super block of file system to search
1209 * @hashval: hash value (usually inode number) to search for
1210 * @test: callback used for comparisons between inodes
1211 * @data: opaque data pointer to pass to @test
1213 * Search for the inode specified by @hashval and @data in the inode cache.
1214 * If the inode is in the cache, the inode is returned with an incremented
1217 * Note: I_NEW is not waited upon so you have to be very careful what you do
1218 * with the returned inode. You probably should be using ilookup5() instead.
1220 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1222 struct inode
*ilookup5_nowait(struct super_block
*sb
, unsigned long hashval
,
1223 int (*test
)(struct inode
*, void *), void *data
)
1225 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1226 struct inode
*inode
;
1228 spin_lock(&inode_hash_lock
);
1229 inode
= find_inode(sb
, head
, test
, data
);
1230 spin_unlock(&inode_hash_lock
);
1234 EXPORT_SYMBOL(ilookup5_nowait
);
1237 * ilookup5 - search for an inode in the inode cache
1238 * @sb: super block of file system to search
1239 * @hashval: hash value (usually inode number) to search for
1240 * @test: callback used for comparisons between inodes
1241 * @data: opaque data pointer to pass to @test
1243 * Search for the inode specified by @hashval and @data in the inode cache,
1244 * and if the inode is in the cache, return the inode with an incremented
1245 * reference count. Waits on I_NEW before returning the inode.
1246 * returned with an incremented reference count.
1248 * This is a generalized version of ilookup() for file systems where the
1249 * inode number is not sufficient for unique identification of an inode.
1251 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1253 struct inode
*ilookup5(struct super_block
*sb
, unsigned long hashval
,
1254 int (*test
)(struct inode
*, void *), void *data
)
1256 struct inode
*inode
= ilookup5_nowait(sb
, hashval
, test
, data
);
1259 wait_on_inode(inode
);
1262 EXPORT_SYMBOL(ilookup5
);
1265 * ilookup - search for an inode in the inode cache
1266 * @sb: super block of file system to search
1267 * @ino: inode number to search for
1269 * Search for the inode @ino in the inode cache, and if the inode is in the
1270 * cache, the inode is returned with an incremented reference count.
1272 struct inode
*ilookup(struct super_block
*sb
, unsigned long ino
)
1274 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1275 struct inode
*inode
;
1277 spin_lock(&inode_hash_lock
);
1278 inode
= find_inode_fast(sb
, head
, ino
);
1279 spin_unlock(&inode_hash_lock
);
1282 wait_on_inode(inode
);
1285 EXPORT_SYMBOL(ilookup
);
1287 int insert_inode_locked(struct inode
*inode
)
1289 struct super_block
*sb
= inode
->i_sb
;
1290 ino_t ino
= inode
->i_ino
;
1291 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1294 struct hlist_node
*node
;
1295 struct inode
*old
= NULL
;
1296 spin_lock(&inode_hash_lock
);
1297 hlist_for_each_entry(old
, node
, head
, i_hash
) {
1298 if (old
->i_ino
!= ino
)
1300 if (old
->i_sb
!= sb
)
1302 spin_lock(&old
->i_lock
);
1303 if (old
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
1304 spin_unlock(&old
->i_lock
);
1309 if (likely(!node
)) {
1310 spin_lock(&inode
->i_lock
);
1311 inode
->i_state
|= I_NEW
;
1312 hlist_add_head(&inode
->i_hash
, head
);
1313 spin_unlock(&inode
->i_lock
);
1314 spin_unlock(&inode_hash_lock
);
1318 spin_unlock(&old
->i_lock
);
1319 spin_unlock(&inode_hash_lock
);
1321 if (unlikely(!inode_unhashed(old
))) {
1328 EXPORT_SYMBOL(insert_inode_locked
);
1330 int insert_inode_locked4(struct inode
*inode
, unsigned long hashval
,
1331 int (*test
)(struct inode
*, void *), void *data
)
1333 struct super_block
*sb
= inode
->i_sb
;
1334 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1337 struct hlist_node
*node
;
1338 struct inode
*old
= NULL
;
1340 spin_lock(&inode_hash_lock
);
1341 hlist_for_each_entry(old
, node
, head
, i_hash
) {
1342 if (old
->i_sb
!= sb
)
1344 if (!test(old
, data
))
1346 spin_lock(&old
->i_lock
);
1347 if (old
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
1348 spin_unlock(&old
->i_lock
);
1353 if (likely(!node
)) {
1354 spin_lock(&inode
->i_lock
);
1355 inode
->i_state
|= I_NEW
;
1356 hlist_add_head(&inode
->i_hash
, head
);
1357 spin_unlock(&inode
->i_lock
);
1358 spin_unlock(&inode_hash_lock
);
1362 spin_unlock(&old
->i_lock
);
1363 spin_unlock(&inode_hash_lock
);
1365 if (unlikely(!inode_unhashed(old
))) {
1372 EXPORT_SYMBOL(insert_inode_locked4
);
1375 int generic_delete_inode(struct inode
*inode
)
1379 EXPORT_SYMBOL(generic_delete_inode
);
1382 * Called when we're dropping the last reference
1385 * Call the FS "drop_inode()" function, defaulting to
1386 * the legacy UNIX filesystem behaviour. If it tells
1387 * us to evict inode, do so. Otherwise, retain inode
1388 * in cache if fs is alive, sync and evict if fs is
1391 static void iput_final(struct inode
*inode
)
1393 struct super_block
*sb
= inode
->i_sb
;
1394 const struct super_operations
*op
= inode
->i_sb
->s_op
;
1397 WARN_ON(inode
->i_state
& I_NEW
);
1400 drop
= op
->drop_inode(inode
);
1402 drop
= generic_drop_inode(inode
);
1404 if (!drop
&& (sb
->s_flags
& MS_ACTIVE
)) {
1405 inode
->i_state
|= I_REFERENCED
;
1406 inode_add_lru(inode
);
1407 spin_unlock(&inode
->i_lock
);
1412 inode
->i_state
|= I_WILL_FREE
;
1413 spin_unlock(&inode
->i_lock
);
1414 write_inode_now(inode
, 1);
1415 spin_lock(&inode
->i_lock
);
1416 WARN_ON(inode
->i_state
& I_NEW
);
1417 inode
->i_state
&= ~I_WILL_FREE
;
1420 inode
->i_state
|= I_FREEING
;
1421 if (!list_empty(&inode
->i_lru
))
1422 inode_lru_list_del(inode
);
1423 spin_unlock(&inode
->i_lock
);
1429 * iput - put an inode
1430 * @inode: inode to put
1432 * Puts an inode, dropping its usage count. If the inode use count hits
1433 * zero, the inode is then freed and may also be destroyed.
1435 * Consequently, iput() can sleep.
1437 void iput(struct inode
*inode
)
1440 BUG_ON(inode
->i_state
& I_CLEAR
);
1442 if (atomic_dec_and_lock(&inode
->i_count
, &inode
->i_lock
))
1446 EXPORT_SYMBOL(iput
);
1449 * bmap - find a block number in a file
1450 * @inode: inode of file
1451 * @block: block to find
1453 * Returns the block number on the device holding the inode that
1454 * is the disk block number for the block of the file requested.
1455 * That is, asked for block 4 of inode 1 the function will return the
1456 * disk block relative to the disk start that holds that block of the
1459 sector_t
bmap(struct inode
*inode
, sector_t block
)
1462 if (inode
->i_mapping
->a_ops
->bmap
)
1463 res
= inode
->i_mapping
->a_ops
->bmap(inode
->i_mapping
, block
);
1466 EXPORT_SYMBOL(bmap
);
1469 * With relative atime, only update atime if the previous atime is
1470 * earlier than either the ctime or mtime or if at least a day has
1471 * passed since the last atime update.
1473 static int relatime_need_update(struct vfsmount
*mnt
, struct inode
*inode
,
1474 struct timespec now
)
1477 if (!(mnt
->mnt_flags
& MNT_RELATIME
))
1480 * Is mtime younger than atime? If yes, update atime:
1482 if (timespec_compare(&inode
->i_mtime
, &inode
->i_atime
) >= 0)
1485 * Is ctime younger than atime? If yes, update atime:
1487 if (timespec_compare(&inode
->i_ctime
, &inode
->i_atime
) >= 0)
1491 * Is the previous atime value older than a day? If yes,
1494 if ((long)(now
.tv_sec
- inode
->i_atime
.tv_sec
) >= 24*60*60)
1497 * Good, we can skip the atime update:
1503 * This does the actual work of updating an inodes time or version. Must have
1504 * had called mnt_want_write() before calling this.
1506 static int update_time(struct inode
*inode
, struct timespec
*time
, int flags
)
1508 if (inode
->i_op
->update_time
)
1509 return inode
->i_op
->update_time(inode
, time
, flags
);
1511 if (flags
& S_ATIME
)
1512 inode
->i_atime
= *time
;
1513 if (flags
& S_VERSION
)
1514 inode_inc_iversion(inode
);
1515 if (flags
& S_CTIME
)
1516 inode
->i_ctime
= *time
;
1517 if (flags
& S_MTIME
)
1518 inode
->i_mtime
= *time
;
1519 mark_inode_dirty_sync(inode
);
1524 * touch_atime - update the access time
1525 * @path: the &struct path to update
1527 * Update the accessed time on an inode and mark it for writeback.
1528 * This function automatically handles read only file systems and media,
1529 * as well as the "noatime" flag and inode specific "noatime" markers.
1531 void touch_atime(struct path
*path
)
1533 struct vfsmount
*mnt
= path
->mnt
;
1534 struct inode
*inode
= path
->dentry
->d_inode
;
1535 struct timespec now
;
1537 if (inode
->i_flags
& S_NOATIME
)
1539 if (IS_NOATIME(inode
))
1541 if ((inode
->i_sb
->s_flags
& MS_NODIRATIME
) && S_ISDIR(inode
->i_mode
))
1544 if (mnt
->mnt_flags
& MNT_NOATIME
)
1546 if ((mnt
->mnt_flags
& MNT_NODIRATIME
) && S_ISDIR(inode
->i_mode
))
1549 now
= current_fs_time(inode
->i_sb
);
1551 if (!relatime_need_update(mnt
, inode
, now
))
1554 if (timespec_equal(&inode
->i_atime
, &now
))
1557 if (!sb_start_write_trylock(inode
->i_sb
))
1560 if (__mnt_want_write(mnt
))
1563 * File systems can error out when updating inodes if they need to
1564 * allocate new space to modify an inode (such is the case for
1565 * Btrfs), but since we touch atime while walking down the path we
1566 * really don't care if we failed to update the atime of the file,
1567 * so just ignore the return value.
1568 * We may also fail on filesystems that have the ability to make parts
1569 * of the fs read only, e.g. subvolumes in Btrfs.
1571 update_time(inode
, &now
, S_ATIME
);
1572 __mnt_drop_write(mnt
);
1574 sb_end_write(inode
->i_sb
);
1576 EXPORT_SYMBOL(touch_atime
);
1579 * The logic we want is
1581 * if suid or (sgid and xgrp)
1584 int should_remove_suid(struct dentry
*dentry
)
1586 umode_t mode
= dentry
->d_inode
->i_mode
;
1589 /* suid always must be killed */
1590 if (unlikely(mode
& S_ISUID
))
1591 kill
= ATTR_KILL_SUID
;
1594 * sgid without any exec bits is just a mandatory locking mark; leave
1595 * it alone. If some exec bits are set, it's a real sgid; kill it.
1597 if (unlikely((mode
& S_ISGID
) && (mode
& S_IXGRP
)))
1598 kill
|= ATTR_KILL_SGID
;
1600 if (unlikely(kill
&& !capable(CAP_FSETID
) && S_ISREG(mode
)))
1605 EXPORT_SYMBOL(should_remove_suid
);
1607 static int __remove_suid(struct dentry
*dentry
, int kill
)
1609 struct iattr newattrs
;
1611 newattrs
.ia_valid
= ATTR_FORCE
| kill
;
1612 return notify_change(dentry
, &newattrs
);
1615 int file_remove_suid(struct file
*file
)
1617 struct dentry
*dentry
= file
->f_path
.dentry
;
1618 struct inode
*inode
= dentry
->d_inode
;
1623 /* Fast path for nothing security related */
1624 if (IS_NOSEC(inode
))
1627 killsuid
= should_remove_suid(dentry
);
1628 killpriv
= security_inode_need_killpriv(dentry
);
1633 error
= security_inode_killpriv(dentry
);
1634 if (!error
&& killsuid
)
1635 error
= __remove_suid(dentry
, killsuid
);
1636 if (!error
&& (inode
->i_sb
->s_flags
& MS_NOSEC
))
1637 inode
->i_flags
|= S_NOSEC
;
1641 EXPORT_SYMBOL(file_remove_suid
);
1644 * file_update_time - update mtime and ctime time
1645 * @file: file accessed
1647 * Update the mtime and ctime members of an inode and mark the inode
1648 * for writeback. Note that this function is meant exclusively for
1649 * usage in the file write path of filesystems, and filesystems may
1650 * choose to explicitly ignore update via this function with the
1651 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1652 * timestamps are handled by the server. This can return an error for
1653 * file systems who need to allocate space in order to update an inode.
1656 int file_update_time(struct file
*file
)
1658 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
1659 struct timespec now
;
1663 /* First try to exhaust all avenues to not sync */
1664 if (IS_NOCMTIME(inode
))
1667 now
= current_fs_time(inode
->i_sb
);
1668 if (!timespec_equal(&inode
->i_mtime
, &now
))
1671 if (!timespec_equal(&inode
->i_ctime
, &now
))
1674 if (IS_I_VERSION(inode
))
1675 sync_it
|= S_VERSION
;
1680 /* Finally allowed to write? Takes lock. */
1681 if (__mnt_want_write_file(file
))
1684 ret
= update_time(inode
, &now
, sync_it
);
1685 __mnt_drop_write_file(file
);
1689 EXPORT_SYMBOL(file_update_time
);
1691 int inode_needs_sync(struct inode
*inode
)
1695 if (S_ISDIR(inode
->i_mode
) && IS_DIRSYNC(inode
))
1699 EXPORT_SYMBOL(inode_needs_sync
);
1701 int inode_wait(void *word
)
1706 EXPORT_SYMBOL(inode_wait
);
1709 * If we try to find an inode in the inode hash while it is being
1710 * deleted, we have to wait until the filesystem completes its
1711 * deletion before reporting that it isn't found. This function waits
1712 * until the deletion _might_ have completed. Callers are responsible
1713 * to recheck inode state.
1715 * It doesn't matter if I_NEW is not set initially, a call to
1716 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1719 static void __wait_on_freeing_inode(struct inode
*inode
)
1721 wait_queue_head_t
*wq
;
1722 DEFINE_WAIT_BIT(wait
, &inode
->i_state
, __I_NEW
);
1723 wq
= bit_waitqueue(&inode
->i_state
, __I_NEW
);
1724 prepare_to_wait(wq
, &wait
.wait
, TASK_UNINTERRUPTIBLE
);
1725 spin_unlock(&inode
->i_lock
);
1726 spin_unlock(&inode_hash_lock
);
1728 finish_wait(wq
, &wait
.wait
);
1729 spin_lock(&inode_hash_lock
);
1732 static __initdata
unsigned long ihash_entries
;
1733 static int __init
set_ihash_entries(char *str
)
1737 ihash_entries
= simple_strtoul(str
, &str
, 0);
1740 __setup("ihash_entries=", set_ihash_entries
);
1743 * Initialize the waitqueues and inode hash table.
1745 void __init
inode_init_early(void)
1749 /* If hashes are distributed across NUMA nodes, defer
1750 * hash allocation until vmalloc space is available.
1756 alloc_large_system_hash("Inode-cache",
1757 sizeof(struct hlist_head
),
1766 for (loop
= 0; loop
< (1U << i_hash_shift
); loop
++)
1767 INIT_HLIST_HEAD(&inode_hashtable
[loop
]);
1770 void __init
inode_init(void)
1774 /* inode slab cache */
1775 inode_cachep
= kmem_cache_create("inode_cache",
1776 sizeof(struct inode
),
1778 (SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|
1782 /* Hash may have been set up in inode_init_early */
1787 alloc_large_system_hash("Inode-cache",
1788 sizeof(struct hlist_head
),
1797 for (loop
= 0; loop
< (1U << i_hash_shift
); loop
++)
1798 INIT_HLIST_HEAD(&inode_hashtable
[loop
]);
1801 void init_special_inode(struct inode
*inode
, umode_t mode
, dev_t rdev
)
1803 inode
->i_mode
= mode
;
1804 if (S_ISCHR(mode
)) {
1805 inode
->i_fop
= &def_chr_fops
;
1806 inode
->i_rdev
= rdev
;
1807 } else if (S_ISBLK(mode
)) {
1808 inode
->i_fop
= &def_blk_fops
;
1809 inode
->i_rdev
= rdev
;
1810 } else if (S_ISFIFO(mode
))
1811 inode
->i_fop
= &def_fifo_fops
;
1812 else if (S_ISSOCK(mode
))
1813 inode
->i_fop
= &bad_sock_fops
;
1815 printk(KERN_DEBUG
"init_special_inode: bogus i_mode (%o) for"
1816 " inode %s:%lu\n", mode
, inode
->i_sb
->s_id
,
1819 EXPORT_SYMBOL(init_special_inode
);
1822 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1824 * @dir: Directory inode
1825 * @mode: mode of the new inode
1827 void inode_init_owner(struct inode
*inode
, const struct inode
*dir
,
1830 inode
->i_uid
= current_fsuid();
1831 if (dir
&& dir
->i_mode
& S_ISGID
) {
1832 inode
->i_gid
= dir
->i_gid
;
1836 inode
->i_gid
= current_fsgid();
1837 inode
->i_mode
= mode
;
1839 EXPORT_SYMBOL(inode_init_owner
);
1842 * inode_owner_or_capable - check current task permissions to inode
1843 * @inode: inode being checked
1845 * Return true if current either has CAP_FOWNER to the inode, or
1848 bool inode_owner_or_capable(const struct inode
*inode
)
1850 if (uid_eq(current_fsuid(), inode
->i_uid
))
1852 if (inode_capable(inode
, CAP_FOWNER
))
1856 EXPORT_SYMBOL(inode_owner_or_capable
);
1859 * Direct i/o helper functions
1861 static void __inode_dio_wait(struct inode
*inode
)
1863 wait_queue_head_t
*wq
= bit_waitqueue(&inode
->i_state
, __I_DIO_WAKEUP
);
1864 DEFINE_WAIT_BIT(q
, &inode
->i_state
, __I_DIO_WAKEUP
);
1867 prepare_to_wait(wq
, &q
.wait
, TASK_UNINTERRUPTIBLE
);
1868 if (atomic_read(&inode
->i_dio_count
))
1870 } while (atomic_read(&inode
->i_dio_count
));
1871 finish_wait(wq
, &q
.wait
);
1875 * inode_dio_wait - wait for outstanding DIO requests to finish
1876 * @inode: inode to wait for
1878 * Waits for all pending direct I/O requests to finish so that we can
1879 * proceed with a truncate or equivalent operation.
1881 * Must be called under a lock that serializes taking new references
1882 * to i_dio_count, usually by inode->i_mutex.
1884 void inode_dio_wait(struct inode
*inode
)
1886 if (atomic_read(&inode
->i_dio_count
))
1887 __inode_dio_wait(inode
);
1889 EXPORT_SYMBOL(inode_dio_wait
);
1892 * inode_dio_done - signal finish of a direct I/O requests
1893 * @inode: inode the direct I/O happens on
1895 * This is called once we've finished processing a direct I/O request,
1896 * and is used to wake up callers waiting for direct I/O to be quiesced.
1898 void inode_dio_done(struct inode
*inode
)
1900 if (atomic_dec_and_test(&inode
->i_dio_count
))
1901 wake_up_bit(&inode
->i_state
, __I_DIO_WAKEUP
);
1903 EXPORT_SYMBOL(inode_dio_done
);