4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/module.h>
12 #include <linux/init.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/f2fs_fs.h>
26 #include <linux/sysfs.h>
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/f2fs.h>
38 static struct proc_dir_entry
*f2fs_proc_root
;
39 static struct kmem_cache
*f2fs_inode_cachep
;
40 static struct kset
*f2fs_kset
;
42 #ifdef CONFIG_F2FS_FAULT_INJECTION
44 char *fault_name
[FAULT_MAX
] = {
45 [FAULT_KMALLOC
] = "kmalloc",
46 [FAULT_PAGE_ALLOC
] = "page alloc",
47 [FAULT_ALLOC_NID
] = "alloc nid",
48 [FAULT_ORPHAN
] = "orphan",
49 [FAULT_BLOCK
] = "no more block",
50 [FAULT_DIR_DEPTH
] = "too big dir depth",
51 [FAULT_EVICT_INODE
] = "evict_inode fail",
52 [FAULT_IO
] = "IO error",
53 [FAULT_CHECKPOINT
] = "checkpoint error",
56 static void f2fs_build_fault_attr(struct f2fs_sb_info
*sbi
,
59 struct f2fs_fault_info
*ffi
= &sbi
->fault_info
;
62 atomic_set(&ffi
->inject_ops
, 0);
63 ffi
->inject_rate
= rate
;
64 ffi
->inject_type
= (1 << FAULT_MAX
) - 1;
66 memset(ffi
, 0, sizeof(struct f2fs_fault_info
));
71 /* f2fs-wide shrinker description */
72 static struct shrinker f2fs_shrinker_info
= {
73 .scan_objects
= f2fs_shrink_scan
,
74 .count_objects
= f2fs_shrink_count
,
75 .seeks
= DEFAULT_SEEKS
,
80 Opt_disable_roll_forward
,
90 Opt_disable_ext_identify
,
110 static match_table_t f2fs_tokens
= {
111 {Opt_gc_background
, "background_gc=%s"},
112 {Opt_disable_roll_forward
, "disable_roll_forward"},
113 {Opt_norecovery
, "norecovery"},
114 {Opt_discard
, "discard"},
115 {Opt_nodiscard
, "nodiscard"},
116 {Opt_noheap
, "no_heap"},
117 {Opt_user_xattr
, "user_xattr"},
118 {Opt_nouser_xattr
, "nouser_xattr"},
120 {Opt_noacl
, "noacl"},
121 {Opt_active_logs
, "active_logs=%u"},
122 {Opt_disable_ext_identify
, "disable_ext_identify"},
123 {Opt_inline_xattr
, "inline_xattr"},
124 {Opt_inline_data
, "inline_data"},
125 {Opt_inline_dentry
, "inline_dentry"},
126 {Opt_noinline_dentry
, "noinline_dentry"},
127 {Opt_flush_merge
, "flush_merge"},
128 {Opt_noflush_merge
, "noflush_merge"},
129 {Opt_nobarrier
, "nobarrier"},
130 {Opt_fastboot
, "fastboot"},
131 {Opt_extent_cache
, "extent_cache"},
132 {Opt_noextent_cache
, "noextent_cache"},
133 {Opt_noinline_data
, "noinline_data"},
134 {Opt_data_flush
, "data_flush"},
135 {Opt_mode
, "mode=%s"},
136 {Opt_fault_injection
, "fault_injection=%u"},
137 {Opt_lazytime
, "lazytime"},
138 {Opt_nolazytime
, "nolazytime"},
142 /* Sysfs support for f2fs */
144 GC_THREAD
, /* struct f2fs_gc_thread */
145 SM_INFO
, /* struct f2fs_sm_info */
146 NM_INFO
, /* struct f2fs_nm_info */
147 F2FS_SBI
, /* struct f2fs_sb_info */
148 #ifdef CONFIG_F2FS_FAULT_INJECTION
149 FAULT_INFO_RATE
, /* struct f2fs_fault_info */
150 FAULT_INFO_TYPE
, /* struct f2fs_fault_info */
155 struct attribute attr
;
156 ssize_t (*show
)(struct f2fs_attr
*, struct f2fs_sb_info
*, char *);
157 ssize_t (*store
)(struct f2fs_attr
*, struct f2fs_sb_info
*,
158 const char *, size_t);
163 static unsigned char *__struct_ptr(struct f2fs_sb_info
*sbi
, int struct_type
)
165 if (struct_type
== GC_THREAD
)
166 return (unsigned char *)sbi
->gc_thread
;
167 else if (struct_type
== SM_INFO
)
168 return (unsigned char *)SM_I(sbi
);
169 else if (struct_type
== NM_INFO
)
170 return (unsigned char *)NM_I(sbi
);
171 else if (struct_type
== F2FS_SBI
)
172 return (unsigned char *)sbi
;
173 #ifdef CONFIG_F2FS_FAULT_INJECTION
174 else if (struct_type
== FAULT_INFO_RATE
||
175 struct_type
== FAULT_INFO_TYPE
)
176 return (unsigned char *)&sbi
->fault_info
;
181 static ssize_t
lifetime_write_kbytes_show(struct f2fs_attr
*a
,
182 struct f2fs_sb_info
*sbi
, char *buf
)
184 struct super_block
*sb
= sbi
->sb
;
186 if (!sb
->s_bdev
->bd_part
)
187 return snprintf(buf
, PAGE_SIZE
, "0\n");
189 return snprintf(buf
, PAGE_SIZE
, "%llu\n",
190 (unsigned long long)(sbi
->kbytes_written
+
191 BD_PART_WRITTEN(sbi
)));
194 static ssize_t
f2fs_sbi_show(struct f2fs_attr
*a
,
195 struct f2fs_sb_info
*sbi
, char *buf
)
197 unsigned char *ptr
= NULL
;
200 ptr
= __struct_ptr(sbi
, a
->struct_type
);
204 ui
= (unsigned int *)(ptr
+ a
->offset
);
206 return snprintf(buf
, PAGE_SIZE
, "%u\n", *ui
);
209 static ssize_t
f2fs_sbi_store(struct f2fs_attr
*a
,
210 struct f2fs_sb_info
*sbi
,
211 const char *buf
, size_t count
)
218 ptr
= __struct_ptr(sbi
, a
->struct_type
);
222 ui
= (unsigned int *)(ptr
+ a
->offset
);
224 ret
= kstrtoul(skip_spaces(buf
), 0, &t
);
227 #ifdef CONFIG_F2FS_FAULT_INJECTION
228 if (a
->struct_type
== FAULT_INFO_TYPE
&& t
>= (1 << FAULT_MAX
))
235 static ssize_t
f2fs_attr_show(struct kobject
*kobj
,
236 struct attribute
*attr
, char *buf
)
238 struct f2fs_sb_info
*sbi
= container_of(kobj
, struct f2fs_sb_info
,
240 struct f2fs_attr
*a
= container_of(attr
, struct f2fs_attr
, attr
);
242 return a
->show
? a
->show(a
, sbi
, buf
) : 0;
245 static ssize_t
f2fs_attr_store(struct kobject
*kobj
, struct attribute
*attr
,
246 const char *buf
, size_t len
)
248 struct f2fs_sb_info
*sbi
= container_of(kobj
, struct f2fs_sb_info
,
250 struct f2fs_attr
*a
= container_of(attr
, struct f2fs_attr
, attr
);
252 return a
->store
? a
->store(a
, sbi
, buf
, len
) : 0;
255 static void f2fs_sb_release(struct kobject
*kobj
)
257 struct f2fs_sb_info
*sbi
= container_of(kobj
, struct f2fs_sb_info
,
259 complete(&sbi
->s_kobj_unregister
);
262 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \
263 static struct f2fs_attr f2fs_attr_##_name = { \
264 .attr = {.name = __stringify(_name), .mode = _mode }, \
267 .struct_type = _struct_type, \
271 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname) \
272 F2FS_ATTR_OFFSET(struct_type, name, 0644, \
273 f2fs_sbi_show, f2fs_sbi_store, \
274 offsetof(struct struct_name, elname))
276 #define F2FS_GENERAL_RO_ATTR(name) \
277 static struct f2fs_attr f2fs_attr_##name = __ATTR(name, 0444, name##_show, NULL)
279 F2FS_RW_ATTR(GC_THREAD
, f2fs_gc_kthread
, gc_min_sleep_time
, min_sleep_time
);
280 F2FS_RW_ATTR(GC_THREAD
, f2fs_gc_kthread
, gc_max_sleep_time
, max_sleep_time
);
281 F2FS_RW_ATTR(GC_THREAD
, f2fs_gc_kthread
, gc_no_gc_sleep_time
, no_gc_sleep_time
);
282 F2FS_RW_ATTR(GC_THREAD
, f2fs_gc_kthread
, gc_idle
, gc_idle
);
283 F2FS_RW_ATTR(SM_INFO
, f2fs_sm_info
, reclaim_segments
, rec_prefree_segments
);
284 F2FS_RW_ATTR(SM_INFO
, f2fs_sm_info
, max_small_discards
, max_discards
);
285 F2FS_RW_ATTR(SM_INFO
, f2fs_sm_info
, batched_trim_sections
, trim_sections
);
286 F2FS_RW_ATTR(SM_INFO
, f2fs_sm_info
, ipu_policy
, ipu_policy
);
287 F2FS_RW_ATTR(SM_INFO
, f2fs_sm_info
, min_ipu_util
, min_ipu_util
);
288 F2FS_RW_ATTR(SM_INFO
, f2fs_sm_info
, min_fsync_blocks
, min_fsync_blocks
);
289 F2FS_RW_ATTR(NM_INFO
, f2fs_nm_info
, ram_thresh
, ram_thresh
);
290 F2FS_RW_ATTR(NM_INFO
, f2fs_nm_info
, ra_nid_pages
, ra_nid_pages
);
291 F2FS_RW_ATTR(NM_INFO
, f2fs_nm_info
, dirty_nats_ratio
, dirty_nats_ratio
);
292 F2FS_RW_ATTR(F2FS_SBI
, f2fs_sb_info
, max_victim_search
, max_victim_search
);
293 F2FS_RW_ATTR(F2FS_SBI
, f2fs_sb_info
, dir_level
, dir_level
);
294 F2FS_RW_ATTR(F2FS_SBI
, f2fs_sb_info
, cp_interval
, interval_time
[CP_TIME
]);
295 F2FS_RW_ATTR(F2FS_SBI
, f2fs_sb_info
, idle_interval
, interval_time
[REQ_TIME
]);
296 #ifdef CONFIG_F2FS_FAULT_INJECTION
297 F2FS_RW_ATTR(FAULT_INFO_RATE
, f2fs_fault_info
, inject_rate
, inject_rate
);
298 F2FS_RW_ATTR(FAULT_INFO_TYPE
, f2fs_fault_info
, inject_type
, inject_type
);
300 F2FS_GENERAL_RO_ATTR(lifetime_write_kbytes
);
302 #define ATTR_LIST(name) (&f2fs_attr_##name.attr)
303 static struct attribute
*f2fs_attrs
[] = {
304 ATTR_LIST(gc_min_sleep_time
),
305 ATTR_LIST(gc_max_sleep_time
),
306 ATTR_LIST(gc_no_gc_sleep_time
),
308 ATTR_LIST(reclaim_segments
),
309 ATTR_LIST(max_small_discards
),
310 ATTR_LIST(batched_trim_sections
),
311 ATTR_LIST(ipu_policy
),
312 ATTR_LIST(min_ipu_util
),
313 ATTR_LIST(min_fsync_blocks
),
314 ATTR_LIST(max_victim_search
),
315 ATTR_LIST(dir_level
),
316 ATTR_LIST(ram_thresh
),
317 ATTR_LIST(ra_nid_pages
),
318 ATTR_LIST(dirty_nats_ratio
),
319 ATTR_LIST(cp_interval
),
320 ATTR_LIST(idle_interval
),
321 #ifdef CONFIG_F2FS_FAULT_INJECTION
322 ATTR_LIST(inject_rate
),
323 ATTR_LIST(inject_type
),
325 ATTR_LIST(lifetime_write_kbytes
),
329 static const struct sysfs_ops f2fs_attr_ops
= {
330 .show
= f2fs_attr_show
,
331 .store
= f2fs_attr_store
,
334 static struct kobj_type f2fs_ktype
= {
335 .default_attrs
= f2fs_attrs
,
336 .sysfs_ops
= &f2fs_attr_ops
,
337 .release
= f2fs_sb_release
,
340 void f2fs_msg(struct super_block
*sb
, const char *level
, const char *fmt
, ...)
342 struct va_format vaf
;
348 printk("%sF2FS-fs (%s): %pV\n", level
, sb
->s_id
, &vaf
);
352 static void init_once(void *foo
)
354 struct f2fs_inode_info
*fi
= (struct f2fs_inode_info
*) foo
;
356 inode_init_once(&fi
->vfs_inode
);
359 static int parse_options(struct super_block
*sb
, char *options
)
361 struct f2fs_sb_info
*sbi
= F2FS_SB(sb
);
362 struct request_queue
*q
;
363 substring_t args
[MAX_OPT_ARGS
];
370 while ((p
= strsep(&options
, ",")) != NULL
) {
375 * Initialize args struct so we know whether arg was
376 * found; some options take optional arguments.
378 args
[0].to
= args
[0].from
= NULL
;
379 token
= match_token(p
, f2fs_tokens
, args
);
382 case Opt_gc_background
:
383 name
= match_strdup(&args
[0]);
387 if (strlen(name
) == 2 && !strncmp(name
, "on", 2)) {
389 clear_opt(sbi
, FORCE_FG_GC
);
390 } else if (strlen(name
) == 3 && !strncmp(name
, "off", 3)) {
391 clear_opt(sbi
, BG_GC
);
392 clear_opt(sbi
, FORCE_FG_GC
);
393 } else if (strlen(name
) == 4 && !strncmp(name
, "sync", 4)) {
395 set_opt(sbi
, FORCE_FG_GC
);
402 case Opt_disable_roll_forward
:
403 set_opt(sbi
, DISABLE_ROLL_FORWARD
);
406 /* this option mounts f2fs with ro */
407 set_opt(sbi
, DISABLE_ROLL_FORWARD
);
408 if (!f2fs_readonly(sb
))
412 q
= bdev_get_queue(sb
->s_bdev
);
413 if (blk_queue_discard(q
)) {
414 set_opt(sbi
, DISCARD
);
416 f2fs_msg(sb
, KERN_WARNING
,
417 "mounting with \"discard\" option, but "
418 "the device does not support discard");
422 clear_opt(sbi
, DISCARD
);
424 set_opt(sbi
, NOHEAP
);
426 #ifdef CONFIG_F2FS_FS_XATTR
428 set_opt(sbi
, XATTR_USER
);
430 case Opt_nouser_xattr
:
431 clear_opt(sbi
, XATTR_USER
);
433 case Opt_inline_xattr
:
434 set_opt(sbi
, INLINE_XATTR
);
438 f2fs_msg(sb
, KERN_INFO
,
439 "user_xattr options not supported");
441 case Opt_nouser_xattr
:
442 f2fs_msg(sb
, KERN_INFO
,
443 "nouser_xattr options not supported");
445 case Opt_inline_xattr
:
446 f2fs_msg(sb
, KERN_INFO
,
447 "inline_xattr options not supported");
450 #ifdef CONFIG_F2FS_FS_POSIX_ACL
452 set_opt(sbi
, POSIX_ACL
);
455 clear_opt(sbi
, POSIX_ACL
);
459 f2fs_msg(sb
, KERN_INFO
, "acl options not supported");
462 f2fs_msg(sb
, KERN_INFO
, "noacl options not supported");
465 case Opt_active_logs
:
466 if (args
->from
&& match_int(args
, &arg
))
468 if (arg
!= 2 && arg
!= 4 && arg
!= NR_CURSEG_TYPE
)
470 sbi
->active_logs
= arg
;
472 case Opt_disable_ext_identify
:
473 set_opt(sbi
, DISABLE_EXT_IDENTIFY
);
475 case Opt_inline_data
:
476 set_opt(sbi
, INLINE_DATA
);
478 case Opt_inline_dentry
:
479 set_opt(sbi
, INLINE_DENTRY
);
481 case Opt_noinline_dentry
:
482 clear_opt(sbi
, INLINE_DENTRY
);
484 case Opt_flush_merge
:
485 set_opt(sbi
, FLUSH_MERGE
);
487 case Opt_noflush_merge
:
488 clear_opt(sbi
, FLUSH_MERGE
);
491 set_opt(sbi
, NOBARRIER
);
494 set_opt(sbi
, FASTBOOT
);
496 case Opt_extent_cache
:
497 set_opt(sbi
, EXTENT_CACHE
);
499 case Opt_noextent_cache
:
500 clear_opt(sbi
, EXTENT_CACHE
);
502 case Opt_noinline_data
:
503 clear_opt(sbi
, INLINE_DATA
);
506 set_opt(sbi
, DATA_FLUSH
);
509 name
= match_strdup(&args
[0]);
513 if (strlen(name
) == 8 &&
514 !strncmp(name
, "adaptive", 8)) {
515 set_opt_mode(sbi
, F2FS_MOUNT_ADAPTIVE
);
516 } else if (strlen(name
) == 3 &&
517 !strncmp(name
, "lfs", 3)) {
518 set_opt_mode(sbi
, F2FS_MOUNT_LFS
);
525 case Opt_fault_injection
:
526 if (args
->from
&& match_int(args
, &arg
))
528 #ifdef CONFIG_F2FS_FAULT_INJECTION
529 f2fs_build_fault_attr(sbi
, arg
);
531 f2fs_msg(sb
, KERN_INFO
,
532 "FAULT_INJECTION was not selected");
536 sb
->s_flags
|= MS_LAZYTIME
;
539 sb
->s_flags
&= ~MS_LAZYTIME
;
542 f2fs_msg(sb
, KERN_ERR
,
543 "Unrecognized mount option \"%s\" or missing value",
551 static struct inode
*f2fs_alloc_inode(struct super_block
*sb
)
553 struct f2fs_inode_info
*fi
;
555 fi
= kmem_cache_alloc(f2fs_inode_cachep
, GFP_F2FS_ZERO
);
559 init_once((void *) fi
);
561 if (percpu_counter_init(&fi
->dirty_pages
, 0, GFP_NOFS
)) {
562 kmem_cache_free(f2fs_inode_cachep
, fi
);
566 /* Initialize f2fs-specific inode info */
567 fi
->vfs_inode
.i_version
= 1;
568 fi
->i_current_depth
= 1;
570 init_rwsem(&fi
->i_sem
);
571 INIT_LIST_HEAD(&fi
->dirty_list
);
572 INIT_LIST_HEAD(&fi
->gdirty_list
);
573 INIT_LIST_HEAD(&fi
->inmem_pages
);
574 mutex_init(&fi
->inmem_lock
);
575 init_rwsem(&fi
->dio_rwsem
[READ
]);
576 init_rwsem(&fi
->dio_rwsem
[WRITE
]);
578 /* Will be used by directory only */
579 fi
->i_dir_level
= F2FS_SB(sb
)->dir_level
;
580 return &fi
->vfs_inode
;
583 static int f2fs_drop_inode(struct inode
*inode
)
586 * This is to avoid a deadlock condition like below.
587 * writeback_single_inode(inode)
588 * - f2fs_write_data_page
589 * - f2fs_gc -> iput -> evict
590 * - inode_wait_for_writeback(inode)
592 if ((!inode_unhashed(inode
) && inode
->i_state
& I_SYNC
)) {
593 if (!inode
->i_nlink
&& !is_bad_inode(inode
)) {
594 /* to avoid evict_inode call simultaneously */
595 atomic_inc(&inode
->i_count
);
596 spin_unlock(&inode
->i_lock
);
598 /* some remained atomic pages should discarded */
599 if (f2fs_is_atomic_file(inode
))
600 drop_inmem_pages(inode
);
602 /* should remain fi->extent_tree for writepage */
603 f2fs_destroy_extent_node(inode
);
605 sb_start_intwrite(inode
->i_sb
);
606 f2fs_i_size_write(inode
, 0);
608 if (F2FS_HAS_BLOCKS(inode
))
609 f2fs_truncate(inode
);
611 sb_end_intwrite(inode
->i_sb
);
613 fscrypt_put_encryption_info(inode
, NULL
);
614 spin_lock(&inode
->i_lock
);
615 atomic_dec(&inode
->i_count
);
620 return generic_drop_inode(inode
);
623 int f2fs_inode_dirtied(struct inode
*inode
)
625 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
627 spin_lock(&sbi
->inode_lock
[DIRTY_META
]);
628 if (is_inode_flag_set(inode
, FI_DIRTY_INODE
)) {
629 spin_unlock(&sbi
->inode_lock
[DIRTY_META
]);
633 set_inode_flag(inode
, FI_DIRTY_INODE
);
634 list_add_tail(&F2FS_I(inode
)->gdirty_list
,
635 &sbi
->inode_list
[DIRTY_META
]);
636 inc_page_count(sbi
, F2FS_DIRTY_IMETA
);
637 stat_inc_dirty_inode(sbi
, DIRTY_META
);
638 spin_unlock(&sbi
->inode_lock
[DIRTY_META
]);
643 void f2fs_inode_synced(struct inode
*inode
)
645 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
647 spin_lock(&sbi
->inode_lock
[DIRTY_META
]);
648 if (!is_inode_flag_set(inode
, FI_DIRTY_INODE
)) {
649 spin_unlock(&sbi
->inode_lock
[DIRTY_META
]);
652 list_del_init(&F2FS_I(inode
)->gdirty_list
);
653 clear_inode_flag(inode
, FI_DIRTY_INODE
);
654 clear_inode_flag(inode
, FI_AUTO_RECOVER
);
655 dec_page_count(sbi
, F2FS_DIRTY_IMETA
);
656 stat_dec_dirty_inode(F2FS_I_SB(inode
), DIRTY_META
);
657 spin_unlock(&sbi
->inode_lock
[DIRTY_META
]);
661 * f2fs_dirty_inode() is called from __mark_inode_dirty()
663 * We should call set_dirty_inode to write the dirty inode through write_inode.
665 static void f2fs_dirty_inode(struct inode
*inode
, int flags
)
667 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
669 if (inode
->i_ino
== F2FS_NODE_INO(sbi
) ||
670 inode
->i_ino
== F2FS_META_INO(sbi
))
673 if (flags
== I_DIRTY_TIME
)
676 if (is_inode_flag_set(inode
, FI_AUTO_RECOVER
))
677 clear_inode_flag(inode
, FI_AUTO_RECOVER
);
679 f2fs_inode_dirtied(inode
);
682 static void f2fs_i_callback(struct rcu_head
*head
)
684 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
685 kmem_cache_free(f2fs_inode_cachep
, F2FS_I(inode
));
688 static void f2fs_destroy_inode(struct inode
*inode
)
690 percpu_counter_destroy(&F2FS_I(inode
)->dirty_pages
);
691 call_rcu(&inode
->i_rcu
, f2fs_i_callback
);
694 static void destroy_percpu_info(struct f2fs_sb_info
*sbi
)
698 for (i
= 0; i
< NR_COUNT_TYPE
; i
++)
699 percpu_counter_destroy(&sbi
->nr_pages
[i
]);
700 percpu_counter_destroy(&sbi
->alloc_valid_block_count
);
701 percpu_counter_destroy(&sbi
->total_valid_inode_count
);
704 static void f2fs_put_super(struct super_block
*sb
)
706 struct f2fs_sb_info
*sbi
= F2FS_SB(sb
);
709 remove_proc_entry("segment_info", sbi
->s_proc
);
710 remove_proc_entry("segment_bits", sbi
->s_proc
);
711 remove_proc_entry(sb
->s_id
, f2fs_proc_root
);
713 kobject_del(&sbi
->s_kobj
);
717 /* prevent remaining shrinker jobs */
718 mutex_lock(&sbi
->umount_mutex
);
721 * We don't need to do checkpoint when superblock is clean.
722 * But, the previous checkpoint was not done by umount, it needs to do
723 * clean checkpoint again.
725 if (is_sbi_flag_set(sbi
, SBI_IS_DIRTY
) ||
726 !is_set_ckpt_flags(sbi
, CP_UMOUNT_FLAG
)) {
727 struct cp_control cpc
= {
730 write_checkpoint(sbi
, &cpc
);
733 /* write_checkpoint can update stat informaion */
734 f2fs_destroy_stats(sbi
);
737 * normally superblock is clean, so we need to release this.
738 * In addition, EIO will skip do checkpoint, we need this as well.
740 release_ino_entry(sbi
, true);
741 release_discard_addrs(sbi
);
743 f2fs_leave_shrinker(sbi
);
744 mutex_unlock(&sbi
->umount_mutex
);
746 /* our cp_error case, we can wait for any writeback page */
747 f2fs_flush_merged_bios(sbi
);
749 iput(sbi
->node_inode
);
750 iput(sbi
->meta_inode
);
752 /* destroy f2fs internal modules */
753 destroy_node_manager(sbi
);
754 destroy_segment_manager(sbi
);
757 kobject_put(&sbi
->s_kobj
);
758 wait_for_completion(&sbi
->s_kobj_unregister
);
760 sb
->s_fs_info
= NULL
;
761 if (sbi
->s_chksum_driver
)
762 crypto_free_shash(sbi
->s_chksum_driver
);
763 kfree(sbi
->raw_super
);
765 destroy_percpu_info(sbi
);
769 int f2fs_sync_fs(struct super_block
*sb
, int sync
)
771 struct f2fs_sb_info
*sbi
= F2FS_SB(sb
);
774 trace_f2fs_sync_fs(sb
, sync
);
777 struct cp_control cpc
;
779 cpc
.reason
= __get_cp_reason(sbi
);
781 mutex_lock(&sbi
->gc_mutex
);
782 err
= write_checkpoint(sbi
, &cpc
);
783 mutex_unlock(&sbi
->gc_mutex
);
785 f2fs_trace_ios(NULL
, 1);
790 static int f2fs_freeze(struct super_block
*sb
)
794 if (f2fs_readonly(sb
))
797 err
= f2fs_sync_fs(sb
, 1);
801 static int f2fs_unfreeze(struct super_block
*sb
)
806 static int f2fs_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
808 struct super_block
*sb
= dentry
->d_sb
;
809 struct f2fs_sb_info
*sbi
= F2FS_SB(sb
);
810 u64 id
= huge_encode_dev(sb
->s_bdev
->bd_dev
);
811 block_t total_count
, user_block_count
, start_count
, ovp_count
;
813 total_count
= le64_to_cpu(sbi
->raw_super
->block_count
);
814 user_block_count
= sbi
->user_block_count
;
815 start_count
= le32_to_cpu(sbi
->raw_super
->segment0_blkaddr
);
816 ovp_count
= SM_I(sbi
)->ovp_segments
<< sbi
->log_blocks_per_seg
;
817 buf
->f_type
= F2FS_SUPER_MAGIC
;
818 buf
->f_bsize
= sbi
->blocksize
;
820 buf
->f_blocks
= total_count
- start_count
;
821 buf
->f_bfree
= user_block_count
- valid_user_blocks(sbi
) + ovp_count
;
822 buf
->f_bavail
= user_block_count
- valid_user_blocks(sbi
);
824 buf
->f_files
= sbi
->total_node_count
- F2FS_RESERVED_NODE_NUM
;
825 buf
->f_ffree
= buf
->f_files
- valid_inode_count(sbi
);
827 buf
->f_namelen
= F2FS_NAME_LEN
;
828 buf
->f_fsid
.val
[0] = (u32
)id
;
829 buf
->f_fsid
.val
[1] = (u32
)(id
>> 32);
834 static int f2fs_show_options(struct seq_file
*seq
, struct dentry
*root
)
836 struct f2fs_sb_info
*sbi
= F2FS_SB(root
->d_sb
);
838 if (!f2fs_readonly(sbi
->sb
) && test_opt(sbi
, BG_GC
)) {
839 if (test_opt(sbi
, FORCE_FG_GC
))
840 seq_printf(seq
, ",background_gc=%s", "sync");
842 seq_printf(seq
, ",background_gc=%s", "on");
844 seq_printf(seq
, ",background_gc=%s", "off");
846 if (test_opt(sbi
, DISABLE_ROLL_FORWARD
))
847 seq_puts(seq
, ",disable_roll_forward");
848 if (test_opt(sbi
, DISCARD
))
849 seq_puts(seq
, ",discard");
850 if (test_opt(sbi
, NOHEAP
))
851 seq_puts(seq
, ",no_heap_alloc");
852 #ifdef CONFIG_F2FS_FS_XATTR
853 if (test_opt(sbi
, XATTR_USER
))
854 seq_puts(seq
, ",user_xattr");
856 seq_puts(seq
, ",nouser_xattr");
857 if (test_opt(sbi
, INLINE_XATTR
))
858 seq_puts(seq
, ",inline_xattr");
860 #ifdef CONFIG_F2FS_FS_POSIX_ACL
861 if (test_opt(sbi
, POSIX_ACL
))
862 seq_puts(seq
, ",acl");
864 seq_puts(seq
, ",noacl");
866 if (test_opt(sbi
, DISABLE_EXT_IDENTIFY
))
867 seq_puts(seq
, ",disable_ext_identify");
868 if (test_opt(sbi
, INLINE_DATA
))
869 seq_puts(seq
, ",inline_data");
871 seq_puts(seq
, ",noinline_data");
872 if (test_opt(sbi
, INLINE_DENTRY
))
873 seq_puts(seq
, ",inline_dentry");
875 seq_puts(seq
, ",noinline_dentry");
876 if (!f2fs_readonly(sbi
->sb
) && test_opt(sbi
, FLUSH_MERGE
))
877 seq_puts(seq
, ",flush_merge");
878 if (test_opt(sbi
, NOBARRIER
))
879 seq_puts(seq
, ",nobarrier");
880 if (test_opt(sbi
, FASTBOOT
))
881 seq_puts(seq
, ",fastboot");
882 if (test_opt(sbi
, EXTENT_CACHE
))
883 seq_puts(seq
, ",extent_cache");
885 seq_puts(seq
, ",noextent_cache");
886 if (test_opt(sbi
, DATA_FLUSH
))
887 seq_puts(seq
, ",data_flush");
889 seq_puts(seq
, ",mode=");
890 if (test_opt(sbi
, ADAPTIVE
))
891 seq_puts(seq
, "adaptive");
892 else if (test_opt(sbi
, LFS
))
893 seq_puts(seq
, "lfs");
894 seq_printf(seq
, ",active_logs=%u", sbi
->active_logs
);
899 static int segment_info_seq_show(struct seq_file
*seq
, void *offset
)
901 struct super_block
*sb
= seq
->private;
902 struct f2fs_sb_info
*sbi
= F2FS_SB(sb
);
903 unsigned int total_segs
=
904 le32_to_cpu(sbi
->raw_super
->segment_count_main
);
907 seq_puts(seq
, "format: segment_type|valid_blocks\n"
908 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
910 for (i
= 0; i
< total_segs
; i
++) {
911 struct seg_entry
*se
= get_seg_entry(sbi
, i
);
914 seq_printf(seq
, "%-10d", i
);
915 seq_printf(seq
, "%d|%-3u", se
->type
,
916 get_valid_blocks(sbi
, i
, 1));
917 if ((i
% 10) == 9 || i
== (total_segs
- 1))
926 static int segment_bits_seq_show(struct seq_file
*seq
, void *offset
)
928 struct super_block
*sb
= seq
->private;
929 struct f2fs_sb_info
*sbi
= F2FS_SB(sb
);
930 unsigned int total_segs
=
931 le32_to_cpu(sbi
->raw_super
->segment_count_main
);
934 seq_puts(seq
, "format: segment_type|valid_blocks|bitmaps\n"
935 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
937 for (i
= 0; i
< total_segs
; i
++) {
938 struct seg_entry
*se
= get_seg_entry(sbi
, i
);
940 seq_printf(seq
, "%-10d", i
);
941 seq_printf(seq
, "%d|%-3u|", se
->type
,
942 get_valid_blocks(sbi
, i
, 1));
943 for (j
= 0; j
< SIT_VBLOCK_MAP_SIZE
; j
++)
944 seq_printf(seq
, " %.2x", se
->cur_valid_map
[j
]);
950 #define F2FS_PROC_FILE_DEF(_name) \
951 static int _name##_open_fs(struct inode *inode, struct file *file) \
953 return single_open(file, _name##_seq_show, PDE_DATA(inode)); \
956 static const struct file_operations f2fs_seq_##_name##_fops = { \
957 .open = _name##_open_fs, \
959 .llseek = seq_lseek, \
960 .release = single_release, \
963 F2FS_PROC_FILE_DEF(segment_info
);
964 F2FS_PROC_FILE_DEF(segment_bits
);
966 static void default_options(struct f2fs_sb_info
*sbi
)
968 /* init some FS parameters */
969 sbi
->active_logs
= NR_CURSEG_TYPE
;
972 set_opt(sbi
, INLINE_DATA
);
973 set_opt(sbi
, INLINE_DENTRY
);
974 set_opt(sbi
, EXTENT_CACHE
);
975 sbi
->sb
->s_flags
|= MS_LAZYTIME
;
976 set_opt(sbi
, FLUSH_MERGE
);
977 if (f2fs_sb_mounted_hmsmr(sbi
->sb
)) {
978 set_opt_mode(sbi
, F2FS_MOUNT_LFS
);
979 set_opt(sbi
, DISCARD
);
981 set_opt_mode(sbi
, F2FS_MOUNT_ADAPTIVE
);
984 #ifdef CONFIG_F2FS_FS_XATTR
985 set_opt(sbi
, XATTR_USER
);
987 #ifdef CONFIG_F2FS_FS_POSIX_ACL
988 set_opt(sbi
, POSIX_ACL
);
991 #ifdef CONFIG_F2FS_FAULT_INJECTION
992 f2fs_build_fault_attr(sbi
, 0);
996 static int f2fs_remount(struct super_block
*sb
, int *flags
, char *data
)
998 struct f2fs_sb_info
*sbi
= F2FS_SB(sb
);
999 struct f2fs_mount_info org_mount_opt
;
1000 int err
, active_logs
;
1001 bool need_restart_gc
= false;
1002 bool need_stop_gc
= false;
1003 bool no_extent_cache
= !test_opt(sbi
, EXTENT_CACHE
);
1004 #ifdef CONFIG_F2FS_FAULT_INJECTION
1005 struct f2fs_fault_info ffi
= sbi
->fault_info
;
1009 * Save the old mount options in case we
1010 * need to restore them.
1012 org_mount_opt
= sbi
->mount_opt
;
1013 active_logs
= sbi
->active_logs
;
1015 /* recover superblocks we couldn't write due to previous RO mount */
1016 if (!(*flags
& MS_RDONLY
) && is_sbi_flag_set(sbi
, SBI_NEED_SB_WRITE
)) {
1017 err
= f2fs_commit_super(sbi
, false);
1018 f2fs_msg(sb
, KERN_INFO
,
1019 "Try to recover all the superblocks, ret: %d", err
);
1021 clear_sbi_flag(sbi
, SBI_NEED_SB_WRITE
);
1024 sbi
->mount_opt
.opt
= 0;
1025 default_options(sbi
);
1027 /* parse mount options */
1028 err
= parse_options(sb
, data
);
1033 * Previous and new state of filesystem is RO,
1034 * so skip checking GC and FLUSH_MERGE conditions.
1036 if (f2fs_readonly(sb
) && (*flags
& MS_RDONLY
))
1039 /* disallow enable/disable extent_cache dynamically */
1040 if (no_extent_cache
== !!test_opt(sbi
, EXTENT_CACHE
)) {
1042 f2fs_msg(sbi
->sb
, KERN_WARNING
,
1043 "switch extent_cache option is not allowed");
1048 * We stop the GC thread if FS is mounted as RO
1049 * or if background_gc = off is passed in mount
1050 * option. Also sync the filesystem.
1052 if ((*flags
& MS_RDONLY
) || !test_opt(sbi
, BG_GC
)) {
1053 if (sbi
->gc_thread
) {
1054 stop_gc_thread(sbi
);
1055 need_restart_gc
= true;
1057 } else if (!sbi
->gc_thread
) {
1058 err
= start_gc_thread(sbi
);
1061 need_stop_gc
= true;
1064 if (*flags
& MS_RDONLY
) {
1065 writeback_inodes_sb(sb
, WB_REASON_SYNC
);
1068 set_sbi_flag(sbi
, SBI_IS_DIRTY
);
1069 set_sbi_flag(sbi
, SBI_IS_CLOSE
);
1070 f2fs_sync_fs(sb
, 1);
1071 clear_sbi_flag(sbi
, SBI_IS_CLOSE
);
1075 * We stop issue flush thread if FS is mounted as RO
1076 * or if flush_merge is not passed in mount option.
1078 if ((*flags
& MS_RDONLY
) || !test_opt(sbi
, FLUSH_MERGE
)) {
1079 destroy_flush_cmd_control(sbi
);
1080 } else if (!SM_I(sbi
)->cmd_control_info
) {
1081 err
= create_flush_cmd_control(sbi
);
1086 /* Update the POSIXACL Flag */
1087 sb
->s_flags
= (sb
->s_flags
& ~MS_POSIXACL
) |
1088 (test_opt(sbi
, POSIX_ACL
) ? MS_POSIXACL
: 0);
1092 if (need_restart_gc
) {
1093 if (start_gc_thread(sbi
))
1094 f2fs_msg(sbi
->sb
, KERN_WARNING
,
1095 "background gc thread has stopped");
1096 } else if (need_stop_gc
) {
1097 stop_gc_thread(sbi
);
1100 sbi
->mount_opt
= org_mount_opt
;
1101 sbi
->active_logs
= active_logs
;
1102 #ifdef CONFIG_F2FS_FAULT_INJECTION
1103 sbi
->fault_info
= ffi
;
1108 static struct super_operations f2fs_sops
= {
1109 .alloc_inode
= f2fs_alloc_inode
,
1110 .drop_inode
= f2fs_drop_inode
,
1111 .destroy_inode
= f2fs_destroy_inode
,
1112 .write_inode
= f2fs_write_inode
,
1113 .dirty_inode
= f2fs_dirty_inode
,
1114 .show_options
= f2fs_show_options
,
1115 .evict_inode
= f2fs_evict_inode
,
1116 .put_super
= f2fs_put_super
,
1117 .sync_fs
= f2fs_sync_fs
,
1118 .freeze_fs
= f2fs_freeze
,
1119 .unfreeze_fs
= f2fs_unfreeze
,
1120 .statfs
= f2fs_statfs
,
1121 .remount_fs
= f2fs_remount
,
1124 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1125 static int f2fs_get_context(struct inode
*inode
, void *ctx
, size_t len
)
1127 return f2fs_getxattr(inode
, F2FS_XATTR_INDEX_ENCRYPTION
,
1128 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT
,
1132 static int f2fs_key_prefix(struct inode
*inode
, u8
**key
)
1134 *key
= F2FS_I_SB(inode
)->key_prefix
;
1135 return F2FS_I_SB(inode
)->key_prefix_size
;
1138 static int f2fs_set_context(struct inode
*inode
, const void *ctx
, size_t len
,
1141 return f2fs_setxattr(inode
, F2FS_XATTR_INDEX_ENCRYPTION
,
1142 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT
,
1143 ctx
, len
, fs_data
, XATTR_CREATE
);
1146 static unsigned f2fs_max_namelen(struct inode
*inode
)
1148 return S_ISLNK(inode
->i_mode
) ?
1149 inode
->i_sb
->s_blocksize
: F2FS_NAME_LEN
;
1152 static struct fscrypt_operations f2fs_cryptops
= {
1153 .get_context
= f2fs_get_context
,
1154 .key_prefix
= f2fs_key_prefix
,
1155 .set_context
= f2fs_set_context
,
1156 .is_encrypted
= f2fs_encrypted_inode
,
1157 .empty_dir
= f2fs_empty_dir
,
1158 .max_namelen
= f2fs_max_namelen
,
1161 static struct fscrypt_operations f2fs_cryptops
= {
1162 .is_encrypted
= f2fs_encrypted_inode
,
1166 static struct inode
*f2fs_nfs_get_inode(struct super_block
*sb
,
1167 u64 ino
, u32 generation
)
1169 struct f2fs_sb_info
*sbi
= F2FS_SB(sb
);
1170 struct inode
*inode
;
1172 if (check_nid_range(sbi
, ino
))
1173 return ERR_PTR(-ESTALE
);
1176 * f2fs_iget isn't quite right if the inode is currently unallocated!
1177 * However f2fs_iget currently does appropriate checks to handle stale
1178 * inodes so everything is OK.
1180 inode
= f2fs_iget(sb
, ino
);
1182 return ERR_CAST(inode
);
1183 if (unlikely(generation
&& inode
->i_generation
!= generation
)) {
1184 /* we didn't find the right inode.. */
1186 return ERR_PTR(-ESTALE
);
1191 static struct dentry
*f2fs_fh_to_dentry(struct super_block
*sb
, struct fid
*fid
,
1192 int fh_len
, int fh_type
)
1194 return generic_fh_to_dentry(sb
, fid
, fh_len
, fh_type
,
1195 f2fs_nfs_get_inode
);
1198 static struct dentry
*f2fs_fh_to_parent(struct super_block
*sb
, struct fid
*fid
,
1199 int fh_len
, int fh_type
)
1201 return generic_fh_to_parent(sb
, fid
, fh_len
, fh_type
,
1202 f2fs_nfs_get_inode
);
1205 static const struct export_operations f2fs_export_ops
= {
1206 .fh_to_dentry
= f2fs_fh_to_dentry
,
1207 .fh_to_parent
= f2fs_fh_to_parent
,
1208 .get_parent
= f2fs_get_parent
,
1211 static loff_t
max_file_blocks(void)
1213 loff_t result
= (DEF_ADDRS_PER_INODE
- F2FS_INLINE_XATTR_ADDRS
);
1214 loff_t leaf_count
= ADDRS_PER_BLOCK
;
1216 /* two direct node blocks */
1217 result
+= (leaf_count
* 2);
1219 /* two indirect node blocks */
1220 leaf_count
*= NIDS_PER_BLOCK
;
1221 result
+= (leaf_count
* 2);
1223 /* one double indirect node block */
1224 leaf_count
*= NIDS_PER_BLOCK
;
1225 result
+= leaf_count
;
1230 static int __f2fs_commit_super(struct buffer_head
*bh
,
1231 struct f2fs_super_block
*super
)
1235 memcpy(bh
->b_data
+ F2FS_SUPER_OFFSET
, super
, sizeof(*super
));
1236 set_buffer_uptodate(bh
);
1237 set_buffer_dirty(bh
);
1240 /* it's rare case, we can do fua all the time */
1241 return __sync_dirty_buffer(bh
, WRITE_FLUSH_FUA
);
1244 static inline bool sanity_check_area_boundary(struct f2fs_sb_info
*sbi
,
1245 struct buffer_head
*bh
)
1247 struct f2fs_super_block
*raw_super
= (struct f2fs_super_block
*)
1248 (bh
->b_data
+ F2FS_SUPER_OFFSET
);
1249 struct super_block
*sb
= sbi
->sb
;
1250 u32 segment0_blkaddr
= le32_to_cpu(raw_super
->segment0_blkaddr
);
1251 u32 cp_blkaddr
= le32_to_cpu(raw_super
->cp_blkaddr
);
1252 u32 sit_blkaddr
= le32_to_cpu(raw_super
->sit_blkaddr
);
1253 u32 nat_blkaddr
= le32_to_cpu(raw_super
->nat_blkaddr
);
1254 u32 ssa_blkaddr
= le32_to_cpu(raw_super
->ssa_blkaddr
);
1255 u32 main_blkaddr
= le32_to_cpu(raw_super
->main_blkaddr
);
1256 u32 segment_count_ckpt
= le32_to_cpu(raw_super
->segment_count_ckpt
);
1257 u32 segment_count_sit
= le32_to_cpu(raw_super
->segment_count_sit
);
1258 u32 segment_count_nat
= le32_to_cpu(raw_super
->segment_count_nat
);
1259 u32 segment_count_ssa
= le32_to_cpu(raw_super
->segment_count_ssa
);
1260 u32 segment_count_main
= le32_to_cpu(raw_super
->segment_count_main
);
1261 u32 segment_count
= le32_to_cpu(raw_super
->segment_count
);
1262 u32 log_blocks_per_seg
= le32_to_cpu(raw_super
->log_blocks_per_seg
);
1263 u64 main_end_blkaddr
= main_blkaddr
+
1264 (segment_count_main
<< log_blocks_per_seg
);
1265 u64 seg_end_blkaddr
= segment0_blkaddr
+
1266 (segment_count
<< log_blocks_per_seg
);
1268 if (segment0_blkaddr
!= cp_blkaddr
) {
1269 f2fs_msg(sb
, KERN_INFO
,
1270 "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
1271 segment0_blkaddr
, cp_blkaddr
);
1275 if (cp_blkaddr
+ (segment_count_ckpt
<< log_blocks_per_seg
) !=
1277 f2fs_msg(sb
, KERN_INFO
,
1278 "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
1279 cp_blkaddr
, sit_blkaddr
,
1280 segment_count_ckpt
<< log_blocks_per_seg
);
1284 if (sit_blkaddr
+ (segment_count_sit
<< log_blocks_per_seg
) !=
1286 f2fs_msg(sb
, KERN_INFO
,
1287 "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
1288 sit_blkaddr
, nat_blkaddr
,
1289 segment_count_sit
<< log_blocks_per_seg
);
1293 if (nat_blkaddr
+ (segment_count_nat
<< log_blocks_per_seg
) !=
1295 f2fs_msg(sb
, KERN_INFO
,
1296 "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
1297 nat_blkaddr
, ssa_blkaddr
,
1298 segment_count_nat
<< log_blocks_per_seg
);
1302 if (ssa_blkaddr
+ (segment_count_ssa
<< log_blocks_per_seg
) !=
1304 f2fs_msg(sb
, KERN_INFO
,
1305 "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
1306 ssa_blkaddr
, main_blkaddr
,
1307 segment_count_ssa
<< log_blocks_per_seg
);
1311 if (main_end_blkaddr
> seg_end_blkaddr
) {
1312 f2fs_msg(sb
, KERN_INFO
,
1313 "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
1316 (segment_count
<< log_blocks_per_seg
),
1317 segment_count_main
<< log_blocks_per_seg
);
1319 } else if (main_end_blkaddr
< seg_end_blkaddr
) {
1323 /* fix in-memory information all the time */
1324 raw_super
->segment_count
= cpu_to_le32((main_end_blkaddr
-
1325 segment0_blkaddr
) >> log_blocks_per_seg
);
1327 if (f2fs_readonly(sb
) || bdev_read_only(sb
->s_bdev
)) {
1328 set_sbi_flag(sbi
, SBI_NEED_SB_WRITE
);
1331 err
= __f2fs_commit_super(bh
, NULL
);
1332 res
= err
? "failed" : "done";
1334 f2fs_msg(sb
, KERN_INFO
,
1335 "Fix alignment : %s, start(%u) end(%u) block(%u)",
1338 (segment_count
<< log_blocks_per_seg
),
1339 segment_count_main
<< log_blocks_per_seg
);
1346 static int sanity_check_raw_super(struct f2fs_sb_info
*sbi
,
1347 struct buffer_head
*bh
)
1349 struct f2fs_super_block
*raw_super
= (struct f2fs_super_block
*)
1350 (bh
->b_data
+ F2FS_SUPER_OFFSET
);
1351 struct super_block
*sb
= sbi
->sb
;
1352 unsigned int blocksize
;
1354 if (F2FS_SUPER_MAGIC
!= le32_to_cpu(raw_super
->magic
)) {
1355 f2fs_msg(sb
, KERN_INFO
,
1356 "Magic Mismatch, valid(0x%x) - read(0x%x)",
1357 F2FS_SUPER_MAGIC
, le32_to_cpu(raw_super
->magic
));
1361 /* Currently, support only 4KB page cache size */
1362 if (F2FS_BLKSIZE
!= PAGE_SIZE
) {
1363 f2fs_msg(sb
, KERN_INFO
,
1364 "Invalid page_cache_size (%lu), supports only 4KB\n",
1369 /* Currently, support only 4KB block size */
1370 blocksize
= 1 << le32_to_cpu(raw_super
->log_blocksize
);
1371 if (blocksize
!= F2FS_BLKSIZE
) {
1372 f2fs_msg(sb
, KERN_INFO
,
1373 "Invalid blocksize (%u), supports only 4KB\n",
1378 /* check log blocks per segment */
1379 if (le32_to_cpu(raw_super
->log_blocks_per_seg
) != 9) {
1380 f2fs_msg(sb
, KERN_INFO
,
1381 "Invalid log blocks per segment (%u)\n",
1382 le32_to_cpu(raw_super
->log_blocks_per_seg
));
1386 /* Currently, support 512/1024/2048/4096 bytes sector size */
1387 if (le32_to_cpu(raw_super
->log_sectorsize
) >
1388 F2FS_MAX_LOG_SECTOR_SIZE
||
1389 le32_to_cpu(raw_super
->log_sectorsize
) <
1390 F2FS_MIN_LOG_SECTOR_SIZE
) {
1391 f2fs_msg(sb
, KERN_INFO
, "Invalid log sectorsize (%u)",
1392 le32_to_cpu(raw_super
->log_sectorsize
));
1395 if (le32_to_cpu(raw_super
->log_sectors_per_block
) +
1396 le32_to_cpu(raw_super
->log_sectorsize
) !=
1397 F2FS_MAX_LOG_SECTOR_SIZE
) {
1398 f2fs_msg(sb
, KERN_INFO
,
1399 "Invalid log sectors per block(%u) log sectorsize(%u)",
1400 le32_to_cpu(raw_super
->log_sectors_per_block
),
1401 le32_to_cpu(raw_super
->log_sectorsize
));
1405 /* check reserved ino info */
1406 if (le32_to_cpu(raw_super
->node_ino
) != 1 ||
1407 le32_to_cpu(raw_super
->meta_ino
) != 2 ||
1408 le32_to_cpu(raw_super
->root_ino
) != 3) {
1409 f2fs_msg(sb
, KERN_INFO
,
1410 "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
1411 le32_to_cpu(raw_super
->node_ino
),
1412 le32_to_cpu(raw_super
->meta_ino
),
1413 le32_to_cpu(raw_super
->root_ino
));
1417 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
1418 if (sanity_check_area_boundary(sbi
, bh
))
1424 int sanity_check_ckpt(struct f2fs_sb_info
*sbi
)
1426 unsigned int total
, fsmeta
;
1427 struct f2fs_super_block
*raw_super
= F2FS_RAW_SUPER(sbi
);
1428 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1430 total
= le32_to_cpu(raw_super
->segment_count
);
1431 fsmeta
= le32_to_cpu(raw_super
->segment_count_ckpt
);
1432 fsmeta
+= le32_to_cpu(raw_super
->segment_count_sit
);
1433 fsmeta
+= le32_to_cpu(raw_super
->segment_count_nat
);
1434 fsmeta
+= le32_to_cpu(ckpt
->rsvd_segment_count
);
1435 fsmeta
+= le32_to_cpu(raw_super
->segment_count_ssa
);
1437 if (unlikely(fsmeta
>= total
))
1440 if (unlikely(f2fs_cp_error(sbi
))) {
1441 f2fs_msg(sbi
->sb
, KERN_ERR
, "A bug case: need to run fsck");
1447 static void init_sb_info(struct f2fs_sb_info
*sbi
)
1449 struct f2fs_super_block
*raw_super
= sbi
->raw_super
;
1451 sbi
->log_sectors_per_block
=
1452 le32_to_cpu(raw_super
->log_sectors_per_block
);
1453 sbi
->log_blocksize
= le32_to_cpu(raw_super
->log_blocksize
);
1454 sbi
->blocksize
= 1 << sbi
->log_blocksize
;
1455 sbi
->log_blocks_per_seg
= le32_to_cpu(raw_super
->log_blocks_per_seg
);
1456 sbi
->blocks_per_seg
= 1 << sbi
->log_blocks_per_seg
;
1457 sbi
->segs_per_sec
= le32_to_cpu(raw_super
->segs_per_sec
);
1458 sbi
->secs_per_zone
= le32_to_cpu(raw_super
->secs_per_zone
);
1459 sbi
->total_sections
= le32_to_cpu(raw_super
->section_count
);
1460 sbi
->total_node_count
=
1461 (le32_to_cpu(raw_super
->segment_count_nat
) / 2)
1462 * sbi
->blocks_per_seg
* NAT_ENTRY_PER_BLOCK
;
1463 sbi
->root_ino_num
= le32_to_cpu(raw_super
->root_ino
);
1464 sbi
->node_ino_num
= le32_to_cpu(raw_super
->node_ino
);
1465 sbi
->meta_ino_num
= le32_to_cpu(raw_super
->meta_ino
);
1466 sbi
->cur_victim_sec
= NULL_SECNO
;
1467 sbi
->max_victim_search
= DEF_MAX_VICTIM_SEARCH
;
1469 sbi
->dir_level
= DEF_DIR_LEVEL
;
1470 sbi
->interval_time
[CP_TIME
] = DEF_CP_INTERVAL
;
1471 sbi
->interval_time
[REQ_TIME
] = DEF_IDLE_INTERVAL
;
1472 clear_sbi_flag(sbi
, SBI_NEED_FSCK
);
1474 INIT_LIST_HEAD(&sbi
->s_list
);
1475 mutex_init(&sbi
->umount_mutex
);
1476 mutex_init(&sbi
->wio_mutex
[NODE
]);
1477 mutex_init(&sbi
->wio_mutex
[DATA
]);
1478 spin_lock_init(&sbi
->cp_lock
);
1480 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1481 memcpy(sbi
->key_prefix
, F2FS_KEY_DESC_PREFIX
,
1482 F2FS_KEY_DESC_PREFIX_SIZE
);
1483 sbi
->key_prefix_size
= F2FS_KEY_DESC_PREFIX_SIZE
;
1487 static int init_percpu_info(struct f2fs_sb_info
*sbi
)
1491 for (i
= 0; i
< NR_COUNT_TYPE
; i
++) {
1492 err
= percpu_counter_init(&sbi
->nr_pages
[i
], 0, GFP_KERNEL
);
1497 err
= percpu_counter_init(&sbi
->alloc_valid_block_count
, 0, GFP_KERNEL
);
1501 return percpu_counter_init(&sbi
->total_valid_inode_count
, 0,
1506 * Read f2fs raw super block.
1507 * Because we have two copies of super block, so read both of them
1508 * to get the first valid one. If any one of them is broken, we pass
1509 * them recovery flag back to the caller.
1511 static int read_raw_super_block(struct f2fs_sb_info
*sbi
,
1512 struct f2fs_super_block
**raw_super
,
1513 int *valid_super_block
, int *recovery
)
1515 struct super_block
*sb
= sbi
->sb
;
1517 struct buffer_head
*bh
;
1518 struct f2fs_super_block
*super
;
1521 super
= kzalloc(sizeof(struct f2fs_super_block
), GFP_KERNEL
);
1525 for (block
= 0; block
< 2; block
++) {
1526 bh
= sb_bread(sb
, block
);
1528 f2fs_msg(sb
, KERN_ERR
, "Unable to read %dth superblock",
1534 /* sanity checking of raw super */
1535 if (sanity_check_raw_super(sbi
, bh
)) {
1536 f2fs_msg(sb
, KERN_ERR
,
1537 "Can't find valid F2FS filesystem in %dth superblock",
1545 memcpy(super
, bh
->b_data
+ F2FS_SUPER_OFFSET
,
1547 *valid_super_block
= block
;
1553 /* Fail to read any one of the superblocks*/
1557 /* No valid superblock */
1566 int f2fs_commit_super(struct f2fs_sb_info
*sbi
, bool recover
)
1568 struct buffer_head
*bh
;
1571 if ((recover
&& f2fs_readonly(sbi
->sb
)) ||
1572 bdev_read_only(sbi
->sb
->s_bdev
)) {
1573 set_sbi_flag(sbi
, SBI_NEED_SB_WRITE
);
1577 /* write back-up superblock first */
1578 bh
= sb_getblk(sbi
->sb
, sbi
->valid_super_block
? 0: 1);
1581 err
= __f2fs_commit_super(bh
, F2FS_RAW_SUPER(sbi
));
1584 /* if we are in recovery path, skip writing valid superblock */
1588 /* write current valid superblock */
1589 bh
= sb_getblk(sbi
->sb
, sbi
->valid_super_block
);
1592 err
= __f2fs_commit_super(bh
, F2FS_RAW_SUPER(sbi
));
1597 static int f2fs_fill_super(struct super_block
*sb
, void *data
, int silent
)
1599 struct f2fs_sb_info
*sbi
;
1600 struct f2fs_super_block
*raw_super
;
1603 bool retry
= true, need_fsck
= false;
1604 char *options
= NULL
;
1605 int recovery
, i
, valid_super_block
;
1606 struct curseg_info
*seg_i
;
1611 valid_super_block
= -1;
1614 /* allocate memory for f2fs-specific super block info */
1615 sbi
= kzalloc(sizeof(struct f2fs_sb_info
), GFP_KERNEL
);
1621 /* Load the checksum driver */
1622 sbi
->s_chksum_driver
= crypto_alloc_shash("crc32", 0, 0);
1623 if (IS_ERR(sbi
->s_chksum_driver
)) {
1624 f2fs_msg(sb
, KERN_ERR
, "Cannot load crc32 driver.");
1625 err
= PTR_ERR(sbi
->s_chksum_driver
);
1626 sbi
->s_chksum_driver
= NULL
;
1630 /* set a block size */
1631 if (unlikely(!sb_set_blocksize(sb
, F2FS_BLKSIZE
))) {
1632 f2fs_msg(sb
, KERN_ERR
, "unable to set blocksize");
1636 err
= read_raw_super_block(sbi
, &raw_super
, &valid_super_block
,
1641 sb
->s_fs_info
= sbi
;
1642 sbi
->raw_super
= raw_super
;
1644 default_options(sbi
);
1645 /* parse mount options */
1646 options
= kstrdup((const char *)data
, GFP_KERNEL
);
1647 if (data
&& !options
) {
1652 err
= parse_options(sb
, options
);
1656 sbi
->max_file_blocks
= max_file_blocks();
1657 sb
->s_maxbytes
= sbi
->max_file_blocks
<<
1658 le32_to_cpu(raw_super
->log_blocksize
);
1659 sb
->s_max_links
= F2FS_LINK_MAX
;
1660 get_random_bytes(&sbi
->s_next_generation
, sizeof(u32
));
1662 sb
->s_op
= &f2fs_sops
;
1663 sb
->s_cop
= &f2fs_cryptops
;
1664 sb
->s_xattr
= f2fs_xattr_handlers
;
1665 sb
->s_export_op
= &f2fs_export_ops
;
1666 sb
->s_magic
= F2FS_SUPER_MAGIC
;
1667 sb
->s_time_gran
= 1;
1668 sb
->s_flags
= (sb
->s_flags
& ~MS_POSIXACL
) |
1669 (test_opt(sbi
, POSIX_ACL
) ? MS_POSIXACL
: 0);
1670 memcpy(sb
->s_uuid
, raw_super
->uuid
, sizeof(raw_super
->uuid
));
1672 /* init f2fs-specific super block info */
1673 sbi
->valid_super_block
= valid_super_block
;
1674 mutex_init(&sbi
->gc_mutex
);
1675 mutex_init(&sbi
->cp_mutex
);
1676 init_rwsem(&sbi
->node_write
);
1678 /* disallow all the data/node/meta page writes */
1679 set_sbi_flag(sbi
, SBI_POR_DOING
);
1680 spin_lock_init(&sbi
->stat_lock
);
1682 init_rwsem(&sbi
->read_io
.io_rwsem
);
1683 sbi
->read_io
.sbi
= sbi
;
1684 sbi
->read_io
.bio
= NULL
;
1685 for (i
= 0; i
< NR_PAGE_TYPE
; i
++) {
1686 init_rwsem(&sbi
->write_io
[i
].io_rwsem
);
1687 sbi
->write_io
[i
].sbi
= sbi
;
1688 sbi
->write_io
[i
].bio
= NULL
;
1691 init_rwsem(&sbi
->cp_rwsem
);
1692 init_waitqueue_head(&sbi
->cp_wait
);
1695 err
= init_percpu_info(sbi
);
1699 /* get an inode for meta space */
1700 sbi
->meta_inode
= f2fs_iget(sb
, F2FS_META_INO(sbi
));
1701 if (IS_ERR(sbi
->meta_inode
)) {
1702 f2fs_msg(sb
, KERN_ERR
, "Failed to read F2FS meta data inode");
1703 err
= PTR_ERR(sbi
->meta_inode
);
1707 err
= get_valid_checkpoint(sbi
);
1709 f2fs_msg(sb
, KERN_ERR
, "Failed to get valid F2FS checkpoint");
1710 goto free_meta_inode
;
1713 sbi
->total_valid_node_count
=
1714 le32_to_cpu(sbi
->ckpt
->valid_node_count
);
1715 percpu_counter_set(&sbi
->total_valid_inode_count
,
1716 le32_to_cpu(sbi
->ckpt
->valid_inode_count
));
1717 sbi
->user_block_count
= le64_to_cpu(sbi
->ckpt
->user_block_count
);
1718 sbi
->total_valid_block_count
=
1719 le64_to_cpu(sbi
->ckpt
->valid_block_count
);
1720 sbi
->last_valid_block_count
= sbi
->total_valid_block_count
;
1722 for (i
= 0; i
< NR_INODE_TYPE
; i
++) {
1723 INIT_LIST_HEAD(&sbi
->inode_list
[i
]);
1724 spin_lock_init(&sbi
->inode_lock
[i
]);
1727 init_extent_cache_info(sbi
);
1729 init_ino_entry_info(sbi
);
1731 /* setup f2fs internal modules */
1732 err
= build_segment_manager(sbi
);
1734 f2fs_msg(sb
, KERN_ERR
,
1735 "Failed to initialize F2FS segment manager");
1738 err
= build_node_manager(sbi
);
1740 f2fs_msg(sb
, KERN_ERR
,
1741 "Failed to initialize F2FS node manager");
1745 /* For write statistics */
1746 if (sb
->s_bdev
->bd_part
)
1747 sbi
->sectors_written_start
=
1748 (u64
)part_stat_read(sb
->s_bdev
->bd_part
, sectors
[1]);
1750 /* Read accumulated write IO statistics if exists */
1751 seg_i
= CURSEG_I(sbi
, CURSEG_HOT_NODE
);
1752 if (__exist_node_summaries(sbi
))
1753 sbi
->kbytes_written
=
1754 le64_to_cpu(seg_i
->journal
->info
.kbytes_written
);
1756 build_gc_manager(sbi
);
1758 /* get an inode for node space */
1759 sbi
->node_inode
= f2fs_iget(sb
, F2FS_NODE_INO(sbi
));
1760 if (IS_ERR(sbi
->node_inode
)) {
1761 f2fs_msg(sb
, KERN_ERR
, "Failed to read node inode");
1762 err
= PTR_ERR(sbi
->node_inode
);
1766 f2fs_join_shrinker(sbi
);
1768 /* if there are nt orphan nodes free them */
1769 err
= recover_orphan_inodes(sbi
);
1771 goto free_node_inode
;
1773 /* read root inode and dentry */
1774 root
= f2fs_iget(sb
, F2FS_ROOT_INO(sbi
));
1776 f2fs_msg(sb
, KERN_ERR
, "Failed to read root inode");
1777 err
= PTR_ERR(root
);
1778 goto free_node_inode
;
1780 if (!S_ISDIR(root
->i_mode
) || !root
->i_blocks
|| !root
->i_size
) {
1783 goto free_node_inode
;
1786 sb
->s_root
= d_make_root(root
); /* allocate root dentry */
1789 goto free_root_inode
;
1792 err
= f2fs_build_stats(sbi
);
1794 goto free_root_inode
;
1797 sbi
->s_proc
= proc_mkdir(sb
->s_id
, f2fs_proc_root
);
1800 proc_create_data("segment_info", S_IRUGO
, sbi
->s_proc
,
1801 &f2fs_seq_segment_info_fops
, sb
);
1802 proc_create_data("segment_bits", S_IRUGO
, sbi
->s_proc
,
1803 &f2fs_seq_segment_bits_fops
, sb
);
1806 sbi
->s_kobj
.kset
= f2fs_kset
;
1807 init_completion(&sbi
->s_kobj_unregister
);
1808 err
= kobject_init_and_add(&sbi
->s_kobj
, &f2fs_ktype
, NULL
,
1813 /* recover fsynced data */
1814 if (!test_opt(sbi
, DISABLE_ROLL_FORWARD
)) {
1816 * mount should be failed, when device has readonly mode, and
1817 * previous checkpoint was not done by clean system shutdown.
1819 if (bdev_read_only(sb
->s_bdev
) &&
1820 !is_set_ckpt_flags(sbi
, CP_UMOUNT_FLAG
)) {
1826 set_sbi_flag(sbi
, SBI_NEED_FSCK
);
1831 err
= recover_fsync_data(sbi
, false);
1834 f2fs_msg(sb
, KERN_ERR
,
1835 "Cannot recover all fsync data errno=%d", err
);
1839 err
= recover_fsync_data(sbi
, true);
1841 if (!f2fs_readonly(sb
) && err
> 0) {
1843 f2fs_msg(sb
, KERN_ERR
,
1844 "Need to recover fsync data");
1849 /* recover_fsync_data() cleared this already */
1850 clear_sbi_flag(sbi
, SBI_POR_DOING
);
1853 * If filesystem is not mounted as read-only then
1854 * do start the gc_thread.
1856 if (test_opt(sbi
, BG_GC
) && !f2fs_readonly(sb
)) {
1857 /* After POR, we can run background GC thread.*/
1858 err
= start_gc_thread(sbi
);
1864 /* recover broken superblock */
1866 err
= f2fs_commit_super(sbi
, true);
1867 f2fs_msg(sb
, KERN_INFO
,
1868 "Try to recover %dth superblock, ret: %d",
1869 sbi
->valid_super_block
? 1 : 2, err
);
1872 f2fs_update_time(sbi
, CP_TIME
);
1873 f2fs_update_time(sbi
, REQ_TIME
);
1877 f2fs_sync_inode_meta(sbi
);
1878 kobject_del(&sbi
->s_kobj
);
1879 kobject_put(&sbi
->s_kobj
);
1880 wait_for_completion(&sbi
->s_kobj_unregister
);
1883 remove_proc_entry("segment_info", sbi
->s_proc
);
1884 remove_proc_entry("segment_bits", sbi
->s_proc
);
1885 remove_proc_entry(sb
->s_id
, f2fs_proc_root
);
1887 f2fs_destroy_stats(sbi
);
1892 truncate_inode_pages_final(NODE_MAPPING(sbi
));
1893 mutex_lock(&sbi
->umount_mutex
);
1894 release_ino_entry(sbi
, true);
1895 f2fs_leave_shrinker(sbi
);
1896 iput(sbi
->node_inode
);
1897 mutex_unlock(&sbi
->umount_mutex
);
1899 destroy_node_manager(sbi
);
1901 destroy_segment_manager(sbi
);
1904 make_bad_inode(sbi
->meta_inode
);
1905 iput(sbi
->meta_inode
);
1907 destroy_percpu_info(sbi
);
1912 if (sbi
->s_chksum_driver
)
1913 crypto_free_shash(sbi
->s_chksum_driver
);
1916 /* give only one another chance */
1919 shrink_dcache_sb(sb
);
1925 static struct dentry
*f2fs_mount(struct file_system_type
*fs_type
, int flags
,
1926 const char *dev_name
, void *data
)
1928 return mount_bdev(fs_type
, flags
, dev_name
, data
, f2fs_fill_super
);
1931 static void kill_f2fs_super(struct super_block
*sb
)
1934 set_sbi_flag(F2FS_SB(sb
), SBI_IS_CLOSE
);
1935 kill_block_super(sb
);
1938 static struct file_system_type f2fs_fs_type
= {
1939 .owner
= THIS_MODULE
,
1941 .mount
= f2fs_mount
,
1942 .kill_sb
= kill_f2fs_super
,
1943 .fs_flags
= FS_REQUIRES_DEV
,
1945 MODULE_ALIAS_FS("f2fs");
1947 static int __init
init_inodecache(void)
1949 f2fs_inode_cachep
= kmem_cache_create("f2fs_inode_cache",
1950 sizeof(struct f2fs_inode_info
), 0,
1951 SLAB_RECLAIM_ACCOUNT
|SLAB_ACCOUNT
, NULL
);
1952 if (!f2fs_inode_cachep
)
1957 static void destroy_inodecache(void)
1960 * Make sure all delayed rcu free inodes are flushed before we
1964 kmem_cache_destroy(f2fs_inode_cachep
);
1967 static int __init
init_f2fs_fs(void)
1971 f2fs_build_trace_ios();
1973 err
= init_inodecache();
1976 err
= create_node_manager_caches();
1978 goto free_inodecache
;
1979 err
= create_segment_manager_caches();
1981 goto free_node_manager_caches
;
1982 err
= create_checkpoint_caches();
1984 goto free_segment_manager_caches
;
1985 err
= create_extent_cache();
1987 goto free_checkpoint_caches
;
1988 f2fs_kset
= kset_create_and_add("f2fs", NULL
, fs_kobj
);
1991 goto free_extent_cache
;
1993 err
= register_shrinker(&f2fs_shrinker_info
);
1997 err
= register_filesystem(&f2fs_fs_type
);
2000 err
= f2fs_create_root_stats();
2002 goto free_filesystem
;
2003 f2fs_proc_root
= proc_mkdir("fs/f2fs", NULL
);
2007 unregister_filesystem(&f2fs_fs_type
);
2009 unregister_shrinker(&f2fs_shrinker_info
);
2011 kset_unregister(f2fs_kset
);
2013 destroy_extent_cache();
2014 free_checkpoint_caches
:
2015 destroy_checkpoint_caches();
2016 free_segment_manager_caches
:
2017 destroy_segment_manager_caches();
2018 free_node_manager_caches
:
2019 destroy_node_manager_caches();
2021 destroy_inodecache();
2026 static void __exit
exit_f2fs_fs(void)
2028 remove_proc_entry("fs/f2fs", NULL
);
2029 f2fs_destroy_root_stats();
2030 unregister_filesystem(&f2fs_fs_type
);
2031 unregister_shrinker(&f2fs_shrinker_info
);
2032 kset_unregister(f2fs_kset
);
2033 destroy_extent_cache();
2034 destroy_checkpoint_caches();
2035 destroy_segment_manager_caches();
2036 destroy_node_manager_caches();
2037 destroy_inodecache();
2038 f2fs_destroy_trace_ios();
2041 module_init(init_f2fs_fs
)
2042 module_exit(exit_f2fs_fs
)
2044 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
2045 MODULE_DESCRIPTION("Flash Friendly File System");
2046 MODULE_LICENSE("GPL");