arm64: Remove reference to asm/opcodes.h
[linux/fpc-iii.git] / fs / f2fs / super.c
blob6132b4ce4e4ce348eec2c7c33ddce3700cb14b1b
1 /*
2 * fs/f2fs/super.c
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/f2fs_fs.h>
26 #include <linux/sysfs.h>
28 #include "f2fs.h"
29 #include "node.h"
30 #include "segment.h"
31 #include "xattr.h"
32 #include "gc.h"
33 #include "trace.h"
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/f2fs.h>
38 static struct proc_dir_entry *f2fs_proc_root;
39 static struct kmem_cache *f2fs_inode_cachep;
40 static struct kset *f2fs_kset;
42 #ifdef CONFIG_F2FS_FAULT_INJECTION
44 char *fault_name[FAULT_MAX] = {
45 [FAULT_KMALLOC] = "kmalloc",
46 [FAULT_PAGE_ALLOC] = "page alloc",
47 [FAULT_ALLOC_NID] = "alloc nid",
48 [FAULT_ORPHAN] = "orphan",
49 [FAULT_BLOCK] = "no more block",
50 [FAULT_DIR_DEPTH] = "too big dir depth",
51 [FAULT_EVICT_INODE] = "evict_inode fail",
52 [FAULT_IO] = "IO error",
53 [FAULT_CHECKPOINT] = "checkpoint error",
56 static void f2fs_build_fault_attr(struct f2fs_sb_info *sbi,
57 unsigned int rate)
59 struct f2fs_fault_info *ffi = &sbi->fault_info;
61 if (rate) {
62 atomic_set(&ffi->inject_ops, 0);
63 ffi->inject_rate = rate;
64 ffi->inject_type = (1 << FAULT_MAX) - 1;
65 } else {
66 memset(ffi, 0, sizeof(struct f2fs_fault_info));
69 #endif
71 /* f2fs-wide shrinker description */
72 static struct shrinker f2fs_shrinker_info = {
73 .scan_objects = f2fs_shrink_scan,
74 .count_objects = f2fs_shrink_count,
75 .seeks = DEFAULT_SEEKS,
78 enum {
79 Opt_gc_background,
80 Opt_disable_roll_forward,
81 Opt_norecovery,
82 Opt_discard,
83 Opt_nodiscard,
84 Opt_noheap,
85 Opt_user_xattr,
86 Opt_nouser_xattr,
87 Opt_acl,
88 Opt_noacl,
89 Opt_active_logs,
90 Opt_disable_ext_identify,
91 Opt_inline_xattr,
92 Opt_inline_data,
93 Opt_inline_dentry,
94 Opt_noinline_dentry,
95 Opt_flush_merge,
96 Opt_noflush_merge,
97 Opt_nobarrier,
98 Opt_fastboot,
99 Opt_extent_cache,
100 Opt_noextent_cache,
101 Opt_noinline_data,
102 Opt_data_flush,
103 Opt_mode,
104 Opt_fault_injection,
105 Opt_lazytime,
106 Opt_nolazytime,
107 Opt_err,
110 static match_table_t f2fs_tokens = {
111 {Opt_gc_background, "background_gc=%s"},
112 {Opt_disable_roll_forward, "disable_roll_forward"},
113 {Opt_norecovery, "norecovery"},
114 {Opt_discard, "discard"},
115 {Opt_nodiscard, "nodiscard"},
116 {Opt_noheap, "no_heap"},
117 {Opt_user_xattr, "user_xattr"},
118 {Opt_nouser_xattr, "nouser_xattr"},
119 {Opt_acl, "acl"},
120 {Opt_noacl, "noacl"},
121 {Opt_active_logs, "active_logs=%u"},
122 {Opt_disable_ext_identify, "disable_ext_identify"},
123 {Opt_inline_xattr, "inline_xattr"},
124 {Opt_inline_data, "inline_data"},
125 {Opt_inline_dentry, "inline_dentry"},
126 {Opt_noinline_dentry, "noinline_dentry"},
127 {Opt_flush_merge, "flush_merge"},
128 {Opt_noflush_merge, "noflush_merge"},
129 {Opt_nobarrier, "nobarrier"},
130 {Opt_fastboot, "fastboot"},
131 {Opt_extent_cache, "extent_cache"},
132 {Opt_noextent_cache, "noextent_cache"},
133 {Opt_noinline_data, "noinline_data"},
134 {Opt_data_flush, "data_flush"},
135 {Opt_mode, "mode=%s"},
136 {Opt_fault_injection, "fault_injection=%u"},
137 {Opt_lazytime, "lazytime"},
138 {Opt_nolazytime, "nolazytime"},
139 {Opt_err, NULL},
142 /* Sysfs support for f2fs */
143 enum {
144 GC_THREAD, /* struct f2fs_gc_thread */
145 SM_INFO, /* struct f2fs_sm_info */
146 NM_INFO, /* struct f2fs_nm_info */
147 F2FS_SBI, /* struct f2fs_sb_info */
148 #ifdef CONFIG_F2FS_FAULT_INJECTION
149 FAULT_INFO_RATE, /* struct f2fs_fault_info */
150 FAULT_INFO_TYPE, /* struct f2fs_fault_info */
151 #endif
154 struct f2fs_attr {
155 struct attribute attr;
156 ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *);
157 ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *,
158 const char *, size_t);
159 int struct_type;
160 int offset;
163 static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type)
165 if (struct_type == GC_THREAD)
166 return (unsigned char *)sbi->gc_thread;
167 else if (struct_type == SM_INFO)
168 return (unsigned char *)SM_I(sbi);
169 else if (struct_type == NM_INFO)
170 return (unsigned char *)NM_I(sbi);
171 else if (struct_type == F2FS_SBI)
172 return (unsigned char *)sbi;
173 #ifdef CONFIG_F2FS_FAULT_INJECTION
174 else if (struct_type == FAULT_INFO_RATE ||
175 struct_type == FAULT_INFO_TYPE)
176 return (unsigned char *)&sbi->fault_info;
177 #endif
178 return NULL;
181 static ssize_t lifetime_write_kbytes_show(struct f2fs_attr *a,
182 struct f2fs_sb_info *sbi, char *buf)
184 struct super_block *sb = sbi->sb;
186 if (!sb->s_bdev->bd_part)
187 return snprintf(buf, PAGE_SIZE, "0\n");
189 return snprintf(buf, PAGE_SIZE, "%llu\n",
190 (unsigned long long)(sbi->kbytes_written +
191 BD_PART_WRITTEN(sbi)));
194 static ssize_t f2fs_sbi_show(struct f2fs_attr *a,
195 struct f2fs_sb_info *sbi, char *buf)
197 unsigned char *ptr = NULL;
198 unsigned int *ui;
200 ptr = __struct_ptr(sbi, a->struct_type);
201 if (!ptr)
202 return -EINVAL;
204 ui = (unsigned int *)(ptr + a->offset);
206 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
209 static ssize_t f2fs_sbi_store(struct f2fs_attr *a,
210 struct f2fs_sb_info *sbi,
211 const char *buf, size_t count)
213 unsigned char *ptr;
214 unsigned long t;
215 unsigned int *ui;
216 ssize_t ret;
218 ptr = __struct_ptr(sbi, a->struct_type);
219 if (!ptr)
220 return -EINVAL;
222 ui = (unsigned int *)(ptr + a->offset);
224 ret = kstrtoul(skip_spaces(buf), 0, &t);
225 if (ret < 0)
226 return ret;
227 #ifdef CONFIG_F2FS_FAULT_INJECTION
228 if (a->struct_type == FAULT_INFO_TYPE && t >= (1 << FAULT_MAX))
229 return -EINVAL;
230 #endif
231 *ui = t;
232 return count;
235 static ssize_t f2fs_attr_show(struct kobject *kobj,
236 struct attribute *attr, char *buf)
238 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
239 s_kobj);
240 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
242 return a->show ? a->show(a, sbi, buf) : 0;
245 static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr,
246 const char *buf, size_t len)
248 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
249 s_kobj);
250 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
252 return a->store ? a->store(a, sbi, buf, len) : 0;
255 static void f2fs_sb_release(struct kobject *kobj)
257 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
258 s_kobj);
259 complete(&sbi->s_kobj_unregister);
262 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \
263 static struct f2fs_attr f2fs_attr_##_name = { \
264 .attr = {.name = __stringify(_name), .mode = _mode }, \
265 .show = _show, \
266 .store = _store, \
267 .struct_type = _struct_type, \
268 .offset = _offset \
271 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname) \
272 F2FS_ATTR_OFFSET(struct_type, name, 0644, \
273 f2fs_sbi_show, f2fs_sbi_store, \
274 offsetof(struct struct_name, elname))
276 #define F2FS_GENERAL_RO_ATTR(name) \
277 static struct f2fs_attr f2fs_attr_##name = __ATTR(name, 0444, name##_show, NULL)
279 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time);
280 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time);
281 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time);
282 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle);
283 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments);
284 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards);
285 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, batched_trim_sections, trim_sections);
286 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy);
287 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util);
288 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks);
289 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh);
290 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ra_nid_pages, ra_nid_pages);
291 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, dirty_nats_ratio, dirty_nats_ratio);
292 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search);
293 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level);
294 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, cp_interval, interval_time[CP_TIME]);
295 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, idle_interval, interval_time[REQ_TIME]);
296 #ifdef CONFIG_F2FS_FAULT_INJECTION
297 F2FS_RW_ATTR(FAULT_INFO_RATE, f2fs_fault_info, inject_rate, inject_rate);
298 F2FS_RW_ATTR(FAULT_INFO_TYPE, f2fs_fault_info, inject_type, inject_type);
299 #endif
300 F2FS_GENERAL_RO_ATTR(lifetime_write_kbytes);
302 #define ATTR_LIST(name) (&f2fs_attr_##name.attr)
303 static struct attribute *f2fs_attrs[] = {
304 ATTR_LIST(gc_min_sleep_time),
305 ATTR_LIST(gc_max_sleep_time),
306 ATTR_LIST(gc_no_gc_sleep_time),
307 ATTR_LIST(gc_idle),
308 ATTR_LIST(reclaim_segments),
309 ATTR_LIST(max_small_discards),
310 ATTR_LIST(batched_trim_sections),
311 ATTR_LIST(ipu_policy),
312 ATTR_LIST(min_ipu_util),
313 ATTR_LIST(min_fsync_blocks),
314 ATTR_LIST(max_victim_search),
315 ATTR_LIST(dir_level),
316 ATTR_LIST(ram_thresh),
317 ATTR_LIST(ra_nid_pages),
318 ATTR_LIST(dirty_nats_ratio),
319 ATTR_LIST(cp_interval),
320 ATTR_LIST(idle_interval),
321 #ifdef CONFIG_F2FS_FAULT_INJECTION
322 ATTR_LIST(inject_rate),
323 ATTR_LIST(inject_type),
324 #endif
325 ATTR_LIST(lifetime_write_kbytes),
326 NULL,
329 static const struct sysfs_ops f2fs_attr_ops = {
330 .show = f2fs_attr_show,
331 .store = f2fs_attr_store,
334 static struct kobj_type f2fs_ktype = {
335 .default_attrs = f2fs_attrs,
336 .sysfs_ops = &f2fs_attr_ops,
337 .release = f2fs_sb_release,
340 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
342 struct va_format vaf;
343 va_list args;
345 va_start(args, fmt);
346 vaf.fmt = fmt;
347 vaf.va = &args;
348 printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
349 va_end(args);
352 static void init_once(void *foo)
354 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
356 inode_init_once(&fi->vfs_inode);
359 static int parse_options(struct super_block *sb, char *options)
361 struct f2fs_sb_info *sbi = F2FS_SB(sb);
362 struct request_queue *q;
363 substring_t args[MAX_OPT_ARGS];
364 char *p, *name;
365 int arg = 0;
367 if (!options)
368 return 0;
370 while ((p = strsep(&options, ",")) != NULL) {
371 int token;
372 if (!*p)
373 continue;
375 * Initialize args struct so we know whether arg was
376 * found; some options take optional arguments.
378 args[0].to = args[0].from = NULL;
379 token = match_token(p, f2fs_tokens, args);
381 switch (token) {
382 case Opt_gc_background:
383 name = match_strdup(&args[0]);
385 if (!name)
386 return -ENOMEM;
387 if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
388 set_opt(sbi, BG_GC);
389 clear_opt(sbi, FORCE_FG_GC);
390 } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
391 clear_opt(sbi, BG_GC);
392 clear_opt(sbi, FORCE_FG_GC);
393 } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
394 set_opt(sbi, BG_GC);
395 set_opt(sbi, FORCE_FG_GC);
396 } else {
397 kfree(name);
398 return -EINVAL;
400 kfree(name);
401 break;
402 case Opt_disable_roll_forward:
403 set_opt(sbi, DISABLE_ROLL_FORWARD);
404 break;
405 case Opt_norecovery:
406 /* this option mounts f2fs with ro */
407 set_opt(sbi, DISABLE_ROLL_FORWARD);
408 if (!f2fs_readonly(sb))
409 return -EINVAL;
410 break;
411 case Opt_discard:
412 q = bdev_get_queue(sb->s_bdev);
413 if (blk_queue_discard(q)) {
414 set_opt(sbi, DISCARD);
415 } else {
416 f2fs_msg(sb, KERN_WARNING,
417 "mounting with \"discard\" option, but "
418 "the device does not support discard");
420 break;
421 case Opt_nodiscard:
422 clear_opt(sbi, DISCARD);
423 case Opt_noheap:
424 set_opt(sbi, NOHEAP);
425 break;
426 #ifdef CONFIG_F2FS_FS_XATTR
427 case Opt_user_xattr:
428 set_opt(sbi, XATTR_USER);
429 break;
430 case Opt_nouser_xattr:
431 clear_opt(sbi, XATTR_USER);
432 break;
433 case Opt_inline_xattr:
434 set_opt(sbi, INLINE_XATTR);
435 break;
436 #else
437 case Opt_user_xattr:
438 f2fs_msg(sb, KERN_INFO,
439 "user_xattr options not supported");
440 break;
441 case Opt_nouser_xattr:
442 f2fs_msg(sb, KERN_INFO,
443 "nouser_xattr options not supported");
444 break;
445 case Opt_inline_xattr:
446 f2fs_msg(sb, KERN_INFO,
447 "inline_xattr options not supported");
448 break;
449 #endif
450 #ifdef CONFIG_F2FS_FS_POSIX_ACL
451 case Opt_acl:
452 set_opt(sbi, POSIX_ACL);
453 break;
454 case Opt_noacl:
455 clear_opt(sbi, POSIX_ACL);
456 break;
457 #else
458 case Opt_acl:
459 f2fs_msg(sb, KERN_INFO, "acl options not supported");
460 break;
461 case Opt_noacl:
462 f2fs_msg(sb, KERN_INFO, "noacl options not supported");
463 break;
464 #endif
465 case Opt_active_logs:
466 if (args->from && match_int(args, &arg))
467 return -EINVAL;
468 if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
469 return -EINVAL;
470 sbi->active_logs = arg;
471 break;
472 case Opt_disable_ext_identify:
473 set_opt(sbi, DISABLE_EXT_IDENTIFY);
474 break;
475 case Opt_inline_data:
476 set_opt(sbi, INLINE_DATA);
477 break;
478 case Opt_inline_dentry:
479 set_opt(sbi, INLINE_DENTRY);
480 break;
481 case Opt_noinline_dentry:
482 clear_opt(sbi, INLINE_DENTRY);
483 break;
484 case Opt_flush_merge:
485 set_opt(sbi, FLUSH_MERGE);
486 break;
487 case Opt_noflush_merge:
488 clear_opt(sbi, FLUSH_MERGE);
489 break;
490 case Opt_nobarrier:
491 set_opt(sbi, NOBARRIER);
492 break;
493 case Opt_fastboot:
494 set_opt(sbi, FASTBOOT);
495 break;
496 case Opt_extent_cache:
497 set_opt(sbi, EXTENT_CACHE);
498 break;
499 case Opt_noextent_cache:
500 clear_opt(sbi, EXTENT_CACHE);
501 break;
502 case Opt_noinline_data:
503 clear_opt(sbi, INLINE_DATA);
504 break;
505 case Opt_data_flush:
506 set_opt(sbi, DATA_FLUSH);
507 break;
508 case Opt_mode:
509 name = match_strdup(&args[0]);
511 if (!name)
512 return -ENOMEM;
513 if (strlen(name) == 8 &&
514 !strncmp(name, "adaptive", 8)) {
515 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
516 } else if (strlen(name) == 3 &&
517 !strncmp(name, "lfs", 3)) {
518 set_opt_mode(sbi, F2FS_MOUNT_LFS);
519 } else {
520 kfree(name);
521 return -EINVAL;
523 kfree(name);
524 break;
525 case Opt_fault_injection:
526 if (args->from && match_int(args, &arg))
527 return -EINVAL;
528 #ifdef CONFIG_F2FS_FAULT_INJECTION
529 f2fs_build_fault_attr(sbi, arg);
530 #else
531 f2fs_msg(sb, KERN_INFO,
532 "FAULT_INJECTION was not selected");
533 #endif
534 break;
535 case Opt_lazytime:
536 sb->s_flags |= MS_LAZYTIME;
537 break;
538 case Opt_nolazytime:
539 sb->s_flags &= ~MS_LAZYTIME;
540 break;
541 default:
542 f2fs_msg(sb, KERN_ERR,
543 "Unrecognized mount option \"%s\" or missing value",
545 return -EINVAL;
548 return 0;
551 static struct inode *f2fs_alloc_inode(struct super_block *sb)
553 struct f2fs_inode_info *fi;
555 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
556 if (!fi)
557 return NULL;
559 init_once((void *) fi);
561 if (percpu_counter_init(&fi->dirty_pages, 0, GFP_NOFS)) {
562 kmem_cache_free(f2fs_inode_cachep, fi);
563 return NULL;
566 /* Initialize f2fs-specific inode info */
567 fi->vfs_inode.i_version = 1;
568 fi->i_current_depth = 1;
569 fi->i_advise = 0;
570 init_rwsem(&fi->i_sem);
571 INIT_LIST_HEAD(&fi->dirty_list);
572 INIT_LIST_HEAD(&fi->gdirty_list);
573 INIT_LIST_HEAD(&fi->inmem_pages);
574 mutex_init(&fi->inmem_lock);
575 init_rwsem(&fi->dio_rwsem[READ]);
576 init_rwsem(&fi->dio_rwsem[WRITE]);
578 /* Will be used by directory only */
579 fi->i_dir_level = F2FS_SB(sb)->dir_level;
580 return &fi->vfs_inode;
583 static int f2fs_drop_inode(struct inode *inode)
586 * This is to avoid a deadlock condition like below.
587 * writeback_single_inode(inode)
588 * - f2fs_write_data_page
589 * - f2fs_gc -> iput -> evict
590 * - inode_wait_for_writeback(inode)
592 if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
593 if (!inode->i_nlink && !is_bad_inode(inode)) {
594 /* to avoid evict_inode call simultaneously */
595 atomic_inc(&inode->i_count);
596 spin_unlock(&inode->i_lock);
598 /* some remained atomic pages should discarded */
599 if (f2fs_is_atomic_file(inode))
600 drop_inmem_pages(inode);
602 /* should remain fi->extent_tree for writepage */
603 f2fs_destroy_extent_node(inode);
605 sb_start_intwrite(inode->i_sb);
606 f2fs_i_size_write(inode, 0);
608 if (F2FS_HAS_BLOCKS(inode))
609 f2fs_truncate(inode);
611 sb_end_intwrite(inode->i_sb);
613 fscrypt_put_encryption_info(inode, NULL);
614 spin_lock(&inode->i_lock);
615 atomic_dec(&inode->i_count);
617 return 0;
620 return generic_drop_inode(inode);
623 int f2fs_inode_dirtied(struct inode *inode)
625 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
627 spin_lock(&sbi->inode_lock[DIRTY_META]);
628 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
629 spin_unlock(&sbi->inode_lock[DIRTY_META]);
630 return 1;
633 set_inode_flag(inode, FI_DIRTY_INODE);
634 list_add_tail(&F2FS_I(inode)->gdirty_list,
635 &sbi->inode_list[DIRTY_META]);
636 inc_page_count(sbi, F2FS_DIRTY_IMETA);
637 stat_inc_dirty_inode(sbi, DIRTY_META);
638 spin_unlock(&sbi->inode_lock[DIRTY_META]);
640 return 0;
643 void f2fs_inode_synced(struct inode *inode)
645 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
647 spin_lock(&sbi->inode_lock[DIRTY_META]);
648 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
649 spin_unlock(&sbi->inode_lock[DIRTY_META]);
650 return;
652 list_del_init(&F2FS_I(inode)->gdirty_list);
653 clear_inode_flag(inode, FI_DIRTY_INODE);
654 clear_inode_flag(inode, FI_AUTO_RECOVER);
655 dec_page_count(sbi, F2FS_DIRTY_IMETA);
656 stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
657 spin_unlock(&sbi->inode_lock[DIRTY_META]);
661 * f2fs_dirty_inode() is called from __mark_inode_dirty()
663 * We should call set_dirty_inode to write the dirty inode through write_inode.
665 static void f2fs_dirty_inode(struct inode *inode, int flags)
667 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
669 if (inode->i_ino == F2FS_NODE_INO(sbi) ||
670 inode->i_ino == F2FS_META_INO(sbi))
671 return;
673 if (flags == I_DIRTY_TIME)
674 return;
676 if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
677 clear_inode_flag(inode, FI_AUTO_RECOVER);
679 f2fs_inode_dirtied(inode);
682 static void f2fs_i_callback(struct rcu_head *head)
684 struct inode *inode = container_of(head, struct inode, i_rcu);
685 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
688 static void f2fs_destroy_inode(struct inode *inode)
690 percpu_counter_destroy(&F2FS_I(inode)->dirty_pages);
691 call_rcu(&inode->i_rcu, f2fs_i_callback);
694 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
696 int i;
698 for (i = 0; i < NR_COUNT_TYPE; i++)
699 percpu_counter_destroy(&sbi->nr_pages[i]);
700 percpu_counter_destroy(&sbi->alloc_valid_block_count);
701 percpu_counter_destroy(&sbi->total_valid_inode_count);
704 static void f2fs_put_super(struct super_block *sb)
706 struct f2fs_sb_info *sbi = F2FS_SB(sb);
708 if (sbi->s_proc) {
709 remove_proc_entry("segment_info", sbi->s_proc);
710 remove_proc_entry("segment_bits", sbi->s_proc);
711 remove_proc_entry(sb->s_id, f2fs_proc_root);
713 kobject_del(&sbi->s_kobj);
715 stop_gc_thread(sbi);
717 /* prevent remaining shrinker jobs */
718 mutex_lock(&sbi->umount_mutex);
721 * We don't need to do checkpoint when superblock is clean.
722 * But, the previous checkpoint was not done by umount, it needs to do
723 * clean checkpoint again.
725 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
726 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
727 struct cp_control cpc = {
728 .reason = CP_UMOUNT,
730 write_checkpoint(sbi, &cpc);
733 /* write_checkpoint can update stat informaion */
734 f2fs_destroy_stats(sbi);
737 * normally superblock is clean, so we need to release this.
738 * In addition, EIO will skip do checkpoint, we need this as well.
740 release_ino_entry(sbi, true);
741 release_discard_addrs(sbi);
743 f2fs_leave_shrinker(sbi);
744 mutex_unlock(&sbi->umount_mutex);
746 /* our cp_error case, we can wait for any writeback page */
747 f2fs_flush_merged_bios(sbi);
749 iput(sbi->node_inode);
750 iput(sbi->meta_inode);
752 /* destroy f2fs internal modules */
753 destroy_node_manager(sbi);
754 destroy_segment_manager(sbi);
756 kfree(sbi->ckpt);
757 kobject_put(&sbi->s_kobj);
758 wait_for_completion(&sbi->s_kobj_unregister);
760 sb->s_fs_info = NULL;
761 if (sbi->s_chksum_driver)
762 crypto_free_shash(sbi->s_chksum_driver);
763 kfree(sbi->raw_super);
765 destroy_percpu_info(sbi);
766 kfree(sbi);
769 int f2fs_sync_fs(struct super_block *sb, int sync)
771 struct f2fs_sb_info *sbi = F2FS_SB(sb);
772 int err = 0;
774 trace_f2fs_sync_fs(sb, sync);
776 if (sync) {
777 struct cp_control cpc;
779 cpc.reason = __get_cp_reason(sbi);
781 mutex_lock(&sbi->gc_mutex);
782 err = write_checkpoint(sbi, &cpc);
783 mutex_unlock(&sbi->gc_mutex);
785 f2fs_trace_ios(NULL, 1);
787 return err;
790 static int f2fs_freeze(struct super_block *sb)
792 int err;
794 if (f2fs_readonly(sb))
795 return 0;
797 err = f2fs_sync_fs(sb, 1);
798 return err;
801 static int f2fs_unfreeze(struct super_block *sb)
803 return 0;
806 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
808 struct super_block *sb = dentry->d_sb;
809 struct f2fs_sb_info *sbi = F2FS_SB(sb);
810 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
811 block_t total_count, user_block_count, start_count, ovp_count;
813 total_count = le64_to_cpu(sbi->raw_super->block_count);
814 user_block_count = sbi->user_block_count;
815 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
816 ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
817 buf->f_type = F2FS_SUPER_MAGIC;
818 buf->f_bsize = sbi->blocksize;
820 buf->f_blocks = total_count - start_count;
821 buf->f_bfree = user_block_count - valid_user_blocks(sbi) + ovp_count;
822 buf->f_bavail = user_block_count - valid_user_blocks(sbi);
824 buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
825 buf->f_ffree = buf->f_files - valid_inode_count(sbi);
827 buf->f_namelen = F2FS_NAME_LEN;
828 buf->f_fsid.val[0] = (u32)id;
829 buf->f_fsid.val[1] = (u32)(id >> 32);
831 return 0;
834 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
836 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
838 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
839 if (test_opt(sbi, FORCE_FG_GC))
840 seq_printf(seq, ",background_gc=%s", "sync");
841 else
842 seq_printf(seq, ",background_gc=%s", "on");
843 } else {
844 seq_printf(seq, ",background_gc=%s", "off");
846 if (test_opt(sbi, DISABLE_ROLL_FORWARD))
847 seq_puts(seq, ",disable_roll_forward");
848 if (test_opt(sbi, DISCARD))
849 seq_puts(seq, ",discard");
850 if (test_opt(sbi, NOHEAP))
851 seq_puts(seq, ",no_heap_alloc");
852 #ifdef CONFIG_F2FS_FS_XATTR
853 if (test_opt(sbi, XATTR_USER))
854 seq_puts(seq, ",user_xattr");
855 else
856 seq_puts(seq, ",nouser_xattr");
857 if (test_opt(sbi, INLINE_XATTR))
858 seq_puts(seq, ",inline_xattr");
859 #endif
860 #ifdef CONFIG_F2FS_FS_POSIX_ACL
861 if (test_opt(sbi, POSIX_ACL))
862 seq_puts(seq, ",acl");
863 else
864 seq_puts(seq, ",noacl");
865 #endif
866 if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
867 seq_puts(seq, ",disable_ext_identify");
868 if (test_opt(sbi, INLINE_DATA))
869 seq_puts(seq, ",inline_data");
870 else
871 seq_puts(seq, ",noinline_data");
872 if (test_opt(sbi, INLINE_DENTRY))
873 seq_puts(seq, ",inline_dentry");
874 else
875 seq_puts(seq, ",noinline_dentry");
876 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
877 seq_puts(seq, ",flush_merge");
878 if (test_opt(sbi, NOBARRIER))
879 seq_puts(seq, ",nobarrier");
880 if (test_opt(sbi, FASTBOOT))
881 seq_puts(seq, ",fastboot");
882 if (test_opt(sbi, EXTENT_CACHE))
883 seq_puts(seq, ",extent_cache");
884 else
885 seq_puts(seq, ",noextent_cache");
886 if (test_opt(sbi, DATA_FLUSH))
887 seq_puts(seq, ",data_flush");
889 seq_puts(seq, ",mode=");
890 if (test_opt(sbi, ADAPTIVE))
891 seq_puts(seq, "adaptive");
892 else if (test_opt(sbi, LFS))
893 seq_puts(seq, "lfs");
894 seq_printf(seq, ",active_logs=%u", sbi->active_logs);
896 return 0;
899 static int segment_info_seq_show(struct seq_file *seq, void *offset)
901 struct super_block *sb = seq->private;
902 struct f2fs_sb_info *sbi = F2FS_SB(sb);
903 unsigned int total_segs =
904 le32_to_cpu(sbi->raw_super->segment_count_main);
905 int i;
907 seq_puts(seq, "format: segment_type|valid_blocks\n"
908 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
910 for (i = 0; i < total_segs; i++) {
911 struct seg_entry *se = get_seg_entry(sbi, i);
913 if ((i % 10) == 0)
914 seq_printf(seq, "%-10d", i);
915 seq_printf(seq, "%d|%-3u", se->type,
916 get_valid_blocks(sbi, i, 1));
917 if ((i % 10) == 9 || i == (total_segs - 1))
918 seq_putc(seq, '\n');
919 else
920 seq_putc(seq, ' ');
923 return 0;
926 static int segment_bits_seq_show(struct seq_file *seq, void *offset)
928 struct super_block *sb = seq->private;
929 struct f2fs_sb_info *sbi = F2FS_SB(sb);
930 unsigned int total_segs =
931 le32_to_cpu(sbi->raw_super->segment_count_main);
932 int i, j;
934 seq_puts(seq, "format: segment_type|valid_blocks|bitmaps\n"
935 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
937 for (i = 0; i < total_segs; i++) {
938 struct seg_entry *se = get_seg_entry(sbi, i);
940 seq_printf(seq, "%-10d", i);
941 seq_printf(seq, "%d|%-3u|", se->type,
942 get_valid_blocks(sbi, i, 1));
943 for (j = 0; j < SIT_VBLOCK_MAP_SIZE; j++)
944 seq_printf(seq, " %.2x", se->cur_valid_map[j]);
945 seq_putc(seq, '\n');
947 return 0;
950 #define F2FS_PROC_FILE_DEF(_name) \
951 static int _name##_open_fs(struct inode *inode, struct file *file) \
953 return single_open(file, _name##_seq_show, PDE_DATA(inode)); \
956 static const struct file_operations f2fs_seq_##_name##_fops = { \
957 .open = _name##_open_fs, \
958 .read = seq_read, \
959 .llseek = seq_lseek, \
960 .release = single_release, \
963 F2FS_PROC_FILE_DEF(segment_info);
964 F2FS_PROC_FILE_DEF(segment_bits);
966 static void default_options(struct f2fs_sb_info *sbi)
968 /* init some FS parameters */
969 sbi->active_logs = NR_CURSEG_TYPE;
971 set_opt(sbi, BG_GC);
972 set_opt(sbi, INLINE_DATA);
973 set_opt(sbi, INLINE_DENTRY);
974 set_opt(sbi, EXTENT_CACHE);
975 sbi->sb->s_flags |= MS_LAZYTIME;
976 set_opt(sbi, FLUSH_MERGE);
977 if (f2fs_sb_mounted_hmsmr(sbi->sb)) {
978 set_opt_mode(sbi, F2FS_MOUNT_LFS);
979 set_opt(sbi, DISCARD);
980 } else {
981 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
984 #ifdef CONFIG_F2FS_FS_XATTR
985 set_opt(sbi, XATTR_USER);
986 #endif
987 #ifdef CONFIG_F2FS_FS_POSIX_ACL
988 set_opt(sbi, POSIX_ACL);
989 #endif
991 #ifdef CONFIG_F2FS_FAULT_INJECTION
992 f2fs_build_fault_attr(sbi, 0);
993 #endif
996 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
998 struct f2fs_sb_info *sbi = F2FS_SB(sb);
999 struct f2fs_mount_info org_mount_opt;
1000 int err, active_logs;
1001 bool need_restart_gc = false;
1002 bool need_stop_gc = false;
1003 bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
1004 #ifdef CONFIG_F2FS_FAULT_INJECTION
1005 struct f2fs_fault_info ffi = sbi->fault_info;
1006 #endif
1009 * Save the old mount options in case we
1010 * need to restore them.
1012 org_mount_opt = sbi->mount_opt;
1013 active_logs = sbi->active_logs;
1015 /* recover superblocks we couldn't write due to previous RO mount */
1016 if (!(*flags & MS_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
1017 err = f2fs_commit_super(sbi, false);
1018 f2fs_msg(sb, KERN_INFO,
1019 "Try to recover all the superblocks, ret: %d", err);
1020 if (!err)
1021 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1024 sbi->mount_opt.opt = 0;
1025 default_options(sbi);
1027 /* parse mount options */
1028 err = parse_options(sb, data);
1029 if (err)
1030 goto restore_opts;
1033 * Previous and new state of filesystem is RO,
1034 * so skip checking GC and FLUSH_MERGE conditions.
1036 if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
1037 goto skip;
1039 /* disallow enable/disable extent_cache dynamically */
1040 if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
1041 err = -EINVAL;
1042 f2fs_msg(sbi->sb, KERN_WARNING,
1043 "switch extent_cache option is not allowed");
1044 goto restore_opts;
1048 * We stop the GC thread if FS is mounted as RO
1049 * or if background_gc = off is passed in mount
1050 * option. Also sync the filesystem.
1052 if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
1053 if (sbi->gc_thread) {
1054 stop_gc_thread(sbi);
1055 need_restart_gc = true;
1057 } else if (!sbi->gc_thread) {
1058 err = start_gc_thread(sbi);
1059 if (err)
1060 goto restore_opts;
1061 need_stop_gc = true;
1064 if (*flags & MS_RDONLY) {
1065 writeback_inodes_sb(sb, WB_REASON_SYNC);
1066 sync_inodes_sb(sb);
1068 set_sbi_flag(sbi, SBI_IS_DIRTY);
1069 set_sbi_flag(sbi, SBI_IS_CLOSE);
1070 f2fs_sync_fs(sb, 1);
1071 clear_sbi_flag(sbi, SBI_IS_CLOSE);
1075 * We stop issue flush thread if FS is mounted as RO
1076 * or if flush_merge is not passed in mount option.
1078 if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
1079 destroy_flush_cmd_control(sbi);
1080 } else if (!SM_I(sbi)->cmd_control_info) {
1081 err = create_flush_cmd_control(sbi);
1082 if (err)
1083 goto restore_gc;
1085 skip:
1086 /* Update the POSIXACL Flag */
1087 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1088 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1090 return 0;
1091 restore_gc:
1092 if (need_restart_gc) {
1093 if (start_gc_thread(sbi))
1094 f2fs_msg(sbi->sb, KERN_WARNING,
1095 "background gc thread has stopped");
1096 } else if (need_stop_gc) {
1097 stop_gc_thread(sbi);
1099 restore_opts:
1100 sbi->mount_opt = org_mount_opt;
1101 sbi->active_logs = active_logs;
1102 #ifdef CONFIG_F2FS_FAULT_INJECTION
1103 sbi->fault_info = ffi;
1104 #endif
1105 return err;
1108 static struct super_operations f2fs_sops = {
1109 .alloc_inode = f2fs_alloc_inode,
1110 .drop_inode = f2fs_drop_inode,
1111 .destroy_inode = f2fs_destroy_inode,
1112 .write_inode = f2fs_write_inode,
1113 .dirty_inode = f2fs_dirty_inode,
1114 .show_options = f2fs_show_options,
1115 .evict_inode = f2fs_evict_inode,
1116 .put_super = f2fs_put_super,
1117 .sync_fs = f2fs_sync_fs,
1118 .freeze_fs = f2fs_freeze,
1119 .unfreeze_fs = f2fs_unfreeze,
1120 .statfs = f2fs_statfs,
1121 .remount_fs = f2fs_remount,
1124 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1125 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
1127 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1128 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1129 ctx, len, NULL);
1132 static int f2fs_key_prefix(struct inode *inode, u8 **key)
1134 *key = F2FS_I_SB(inode)->key_prefix;
1135 return F2FS_I_SB(inode)->key_prefix_size;
1138 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
1139 void *fs_data)
1141 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1142 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1143 ctx, len, fs_data, XATTR_CREATE);
1146 static unsigned f2fs_max_namelen(struct inode *inode)
1148 return S_ISLNK(inode->i_mode) ?
1149 inode->i_sb->s_blocksize : F2FS_NAME_LEN;
1152 static struct fscrypt_operations f2fs_cryptops = {
1153 .get_context = f2fs_get_context,
1154 .key_prefix = f2fs_key_prefix,
1155 .set_context = f2fs_set_context,
1156 .is_encrypted = f2fs_encrypted_inode,
1157 .empty_dir = f2fs_empty_dir,
1158 .max_namelen = f2fs_max_namelen,
1160 #else
1161 static struct fscrypt_operations f2fs_cryptops = {
1162 .is_encrypted = f2fs_encrypted_inode,
1164 #endif
1166 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
1167 u64 ino, u32 generation)
1169 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1170 struct inode *inode;
1172 if (check_nid_range(sbi, ino))
1173 return ERR_PTR(-ESTALE);
1176 * f2fs_iget isn't quite right if the inode is currently unallocated!
1177 * However f2fs_iget currently does appropriate checks to handle stale
1178 * inodes so everything is OK.
1180 inode = f2fs_iget(sb, ino);
1181 if (IS_ERR(inode))
1182 return ERR_CAST(inode);
1183 if (unlikely(generation && inode->i_generation != generation)) {
1184 /* we didn't find the right inode.. */
1185 iput(inode);
1186 return ERR_PTR(-ESTALE);
1188 return inode;
1191 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1192 int fh_len, int fh_type)
1194 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1195 f2fs_nfs_get_inode);
1198 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
1199 int fh_len, int fh_type)
1201 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1202 f2fs_nfs_get_inode);
1205 static const struct export_operations f2fs_export_ops = {
1206 .fh_to_dentry = f2fs_fh_to_dentry,
1207 .fh_to_parent = f2fs_fh_to_parent,
1208 .get_parent = f2fs_get_parent,
1211 static loff_t max_file_blocks(void)
1213 loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS);
1214 loff_t leaf_count = ADDRS_PER_BLOCK;
1216 /* two direct node blocks */
1217 result += (leaf_count * 2);
1219 /* two indirect node blocks */
1220 leaf_count *= NIDS_PER_BLOCK;
1221 result += (leaf_count * 2);
1223 /* one double indirect node block */
1224 leaf_count *= NIDS_PER_BLOCK;
1225 result += leaf_count;
1227 return result;
1230 static int __f2fs_commit_super(struct buffer_head *bh,
1231 struct f2fs_super_block *super)
1233 lock_buffer(bh);
1234 if (super)
1235 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
1236 set_buffer_uptodate(bh);
1237 set_buffer_dirty(bh);
1238 unlock_buffer(bh);
1240 /* it's rare case, we can do fua all the time */
1241 return __sync_dirty_buffer(bh, WRITE_FLUSH_FUA);
1244 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
1245 struct buffer_head *bh)
1247 struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1248 (bh->b_data + F2FS_SUPER_OFFSET);
1249 struct super_block *sb = sbi->sb;
1250 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1251 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
1252 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
1253 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
1254 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1255 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1256 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
1257 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
1258 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
1259 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
1260 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
1261 u32 segment_count = le32_to_cpu(raw_super->segment_count);
1262 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1263 u64 main_end_blkaddr = main_blkaddr +
1264 (segment_count_main << log_blocks_per_seg);
1265 u64 seg_end_blkaddr = segment0_blkaddr +
1266 (segment_count << log_blocks_per_seg);
1268 if (segment0_blkaddr != cp_blkaddr) {
1269 f2fs_msg(sb, KERN_INFO,
1270 "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
1271 segment0_blkaddr, cp_blkaddr);
1272 return true;
1275 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
1276 sit_blkaddr) {
1277 f2fs_msg(sb, KERN_INFO,
1278 "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
1279 cp_blkaddr, sit_blkaddr,
1280 segment_count_ckpt << log_blocks_per_seg);
1281 return true;
1284 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
1285 nat_blkaddr) {
1286 f2fs_msg(sb, KERN_INFO,
1287 "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
1288 sit_blkaddr, nat_blkaddr,
1289 segment_count_sit << log_blocks_per_seg);
1290 return true;
1293 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
1294 ssa_blkaddr) {
1295 f2fs_msg(sb, KERN_INFO,
1296 "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
1297 nat_blkaddr, ssa_blkaddr,
1298 segment_count_nat << log_blocks_per_seg);
1299 return true;
1302 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
1303 main_blkaddr) {
1304 f2fs_msg(sb, KERN_INFO,
1305 "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
1306 ssa_blkaddr, main_blkaddr,
1307 segment_count_ssa << log_blocks_per_seg);
1308 return true;
1311 if (main_end_blkaddr > seg_end_blkaddr) {
1312 f2fs_msg(sb, KERN_INFO,
1313 "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
1314 main_blkaddr,
1315 segment0_blkaddr +
1316 (segment_count << log_blocks_per_seg),
1317 segment_count_main << log_blocks_per_seg);
1318 return true;
1319 } else if (main_end_blkaddr < seg_end_blkaddr) {
1320 int err = 0;
1321 char *res;
1323 /* fix in-memory information all the time */
1324 raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
1325 segment0_blkaddr) >> log_blocks_per_seg);
1327 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
1328 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1329 res = "internally";
1330 } else {
1331 err = __f2fs_commit_super(bh, NULL);
1332 res = err ? "failed" : "done";
1334 f2fs_msg(sb, KERN_INFO,
1335 "Fix alignment : %s, start(%u) end(%u) block(%u)",
1336 res, main_blkaddr,
1337 segment0_blkaddr +
1338 (segment_count << log_blocks_per_seg),
1339 segment_count_main << log_blocks_per_seg);
1340 if (err)
1341 return true;
1343 return false;
1346 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
1347 struct buffer_head *bh)
1349 struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1350 (bh->b_data + F2FS_SUPER_OFFSET);
1351 struct super_block *sb = sbi->sb;
1352 unsigned int blocksize;
1354 if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
1355 f2fs_msg(sb, KERN_INFO,
1356 "Magic Mismatch, valid(0x%x) - read(0x%x)",
1357 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
1358 return 1;
1361 /* Currently, support only 4KB page cache size */
1362 if (F2FS_BLKSIZE != PAGE_SIZE) {
1363 f2fs_msg(sb, KERN_INFO,
1364 "Invalid page_cache_size (%lu), supports only 4KB\n",
1365 PAGE_SIZE);
1366 return 1;
1369 /* Currently, support only 4KB block size */
1370 blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
1371 if (blocksize != F2FS_BLKSIZE) {
1372 f2fs_msg(sb, KERN_INFO,
1373 "Invalid blocksize (%u), supports only 4KB\n",
1374 blocksize);
1375 return 1;
1378 /* check log blocks per segment */
1379 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
1380 f2fs_msg(sb, KERN_INFO,
1381 "Invalid log blocks per segment (%u)\n",
1382 le32_to_cpu(raw_super->log_blocks_per_seg));
1383 return 1;
1386 /* Currently, support 512/1024/2048/4096 bytes sector size */
1387 if (le32_to_cpu(raw_super->log_sectorsize) >
1388 F2FS_MAX_LOG_SECTOR_SIZE ||
1389 le32_to_cpu(raw_super->log_sectorsize) <
1390 F2FS_MIN_LOG_SECTOR_SIZE) {
1391 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
1392 le32_to_cpu(raw_super->log_sectorsize));
1393 return 1;
1395 if (le32_to_cpu(raw_super->log_sectors_per_block) +
1396 le32_to_cpu(raw_super->log_sectorsize) !=
1397 F2FS_MAX_LOG_SECTOR_SIZE) {
1398 f2fs_msg(sb, KERN_INFO,
1399 "Invalid log sectors per block(%u) log sectorsize(%u)",
1400 le32_to_cpu(raw_super->log_sectors_per_block),
1401 le32_to_cpu(raw_super->log_sectorsize));
1402 return 1;
1405 /* check reserved ino info */
1406 if (le32_to_cpu(raw_super->node_ino) != 1 ||
1407 le32_to_cpu(raw_super->meta_ino) != 2 ||
1408 le32_to_cpu(raw_super->root_ino) != 3) {
1409 f2fs_msg(sb, KERN_INFO,
1410 "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
1411 le32_to_cpu(raw_super->node_ino),
1412 le32_to_cpu(raw_super->meta_ino),
1413 le32_to_cpu(raw_super->root_ino));
1414 return 1;
1417 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
1418 if (sanity_check_area_boundary(sbi, bh))
1419 return 1;
1421 return 0;
1424 int sanity_check_ckpt(struct f2fs_sb_info *sbi)
1426 unsigned int total, fsmeta;
1427 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1428 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1430 total = le32_to_cpu(raw_super->segment_count);
1431 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
1432 fsmeta += le32_to_cpu(raw_super->segment_count_sit);
1433 fsmeta += le32_to_cpu(raw_super->segment_count_nat);
1434 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
1435 fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
1437 if (unlikely(fsmeta >= total))
1438 return 1;
1440 if (unlikely(f2fs_cp_error(sbi))) {
1441 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
1442 return 1;
1444 return 0;
1447 static void init_sb_info(struct f2fs_sb_info *sbi)
1449 struct f2fs_super_block *raw_super = sbi->raw_super;
1451 sbi->log_sectors_per_block =
1452 le32_to_cpu(raw_super->log_sectors_per_block);
1453 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
1454 sbi->blocksize = 1 << sbi->log_blocksize;
1455 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1456 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
1457 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
1458 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
1459 sbi->total_sections = le32_to_cpu(raw_super->section_count);
1460 sbi->total_node_count =
1461 (le32_to_cpu(raw_super->segment_count_nat) / 2)
1462 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
1463 sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
1464 sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
1465 sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
1466 sbi->cur_victim_sec = NULL_SECNO;
1467 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
1469 sbi->dir_level = DEF_DIR_LEVEL;
1470 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
1471 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
1472 clear_sbi_flag(sbi, SBI_NEED_FSCK);
1474 INIT_LIST_HEAD(&sbi->s_list);
1475 mutex_init(&sbi->umount_mutex);
1476 mutex_init(&sbi->wio_mutex[NODE]);
1477 mutex_init(&sbi->wio_mutex[DATA]);
1478 spin_lock_init(&sbi->cp_lock);
1480 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1481 memcpy(sbi->key_prefix, F2FS_KEY_DESC_PREFIX,
1482 F2FS_KEY_DESC_PREFIX_SIZE);
1483 sbi->key_prefix_size = F2FS_KEY_DESC_PREFIX_SIZE;
1484 #endif
1487 static int init_percpu_info(struct f2fs_sb_info *sbi)
1489 int i, err;
1491 for (i = 0; i < NR_COUNT_TYPE; i++) {
1492 err = percpu_counter_init(&sbi->nr_pages[i], 0, GFP_KERNEL);
1493 if (err)
1494 return err;
1497 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
1498 if (err)
1499 return err;
1501 return percpu_counter_init(&sbi->total_valid_inode_count, 0,
1502 GFP_KERNEL);
1506 * Read f2fs raw super block.
1507 * Because we have two copies of super block, so read both of them
1508 * to get the first valid one. If any one of them is broken, we pass
1509 * them recovery flag back to the caller.
1511 static int read_raw_super_block(struct f2fs_sb_info *sbi,
1512 struct f2fs_super_block **raw_super,
1513 int *valid_super_block, int *recovery)
1515 struct super_block *sb = sbi->sb;
1516 int block;
1517 struct buffer_head *bh;
1518 struct f2fs_super_block *super;
1519 int err = 0;
1521 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
1522 if (!super)
1523 return -ENOMEM;
1525 for (block = 0; block < 2; block++) {
1526 bh = sb_bread(sb, block);
1527 if (!bh) {
1528 f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
1529 block + 1);
1530 err = -EIO;
1531 continue;
1534 /* sanity checking of raw super */
1535 if (sanity_check_raw_super(sbi, bh)) {
1536 f2fs_msg(sb, KERN_ERR,
1537 "Can't find valid F2FS filesystem in %dth superblock",
1538 block + 1);
1539 err = -EINVAL;
1540 brelse(bh);
1541 continue;
1544 if (!*raw_super) {
1545 memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
1546 sizeof(*super));
1547 *valid_super_block = block;
1548 *raw_super = super;
1550 brelse(bh);
1553 /* Fail to read any one of the superblocks*/
1554 if (err < 0)
1555 *recovery = 1;
1557 /* No valid superblock */
1558 if (!*raw_super)
1559 kfree(super);
1560 else
1561 err = 0;
1563 return err;
1566 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
1568 struct buffer_head *bh;
1569 int err;
1571 if ((recover && f2fs_readonly(sbi->sb)) ||
1572 bdev_read_only(sbi->sb->s_bdev)) {
1573 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1574 return -EROFS;
1577 /* write back-up superblock first */
1578 bh = sb_getblk(sbi->sb, sbi->valid_super_block ? 0: 1);
1579 if (!bh)
1580 return -EIO;
1581 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
1582 brelse(bh);
1584 /* if we are in recovery path, skip writing valid superblock */
1585 if (recover || err)
1586 return err;
1588 /* write current valid superblock */
1589 bh = sb_getblk(sbi->sb, sbi->valid_super_block);
1590 if (!bh)
1591 return -EIO;
1592 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
1593 brelse(bh);
1594 return err;
1597 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
1599 struct f2fs_sb_info *sbi;
1600 struct f2fs_super_block *raw_super;
1601 struct inode *root;
1602 int err;
1603 bool retry = true, need_fsck = false;
1604 char *options = NULL;
1605 int recovery, i, valid_super_block;
1606 struct curseg_info *seg_i;
1608 try_onemore:
1609 err = -EINVAL;
1610 raw_super = NULL;
1611 valid_super_block = -1;
1612 recovery = 0;
1614 /* allocate memory for f2fs-specific super block info */
1615 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
1616 if (!sbi)
1617 return -ENOMEM;
1619 sbi->sb = sb;
1621 /* Load the checksum driver */
1622 sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
1623 if (IS_ERR(sbi->s_chksum_driver)) {
1624 f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver.");
1625 err = PTR_ERR(sbi->s_chksum_driver);
1626 sbi->s_chksum_driver = NULL;
1627 goto free_sbi;
1630 /* set a block size */
1631 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
1632 f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
1633 goto free_sbi;
1636 err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
1637 &recovery);
1638 if (err)
1639 goto free_sbi;
1641 sb->s_fs_info = sbi;
1642 sbi->raw_super = raw_super;
1644 default_options(sbi);
1645 /* parse mount options */
1646 options = kstrdup((const char *)data, GFP_KERNEL);
1647 if (data && !options) {
1648 err = -ENOMEM;
1649 goto free_sb_buf;
1652 err = parse_options(sb, options);
1653 if (err)
1654 goto free_options;
1656 sbi->max_file_blocks = max_file_blocks();
1657 sb->s_maxbytes = sbi->max_file_blocks <<
1658 le32_to_cpu(raw_super->log_blocksize);
1659 sb->s_max_links = F2FS_LINK_MAX;
1660 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
1662 sb->s_op = &f2fs_sops;
1663 sb->s_cop = &f2fs_cryptops;
1664 sb->s_xattr = f2fs_xattr_handlers;
1665 sb->s_export_op = &f2fs_export_ops;
1666 sb->s_magic = F2FS_SUPER_MAGIC;
1667 sb->s_time_gran = 1;
1668 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1669 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1670 memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
1672 /* init f2fs-specific super block info */
1673 sbi->valid_super_block = valid_super_block;
1674 mutex_init(&sbi->gc_mutex);
1675 mutex_init(&sbi->cp_mutex);
1676 init_rwsem(&sbi->node_write);
1678 /* disallow all the data/node/meta page writes */
1679 set_sbi_flag(sbi, SBI_POR_DOING);
1680 spin_lock_init(&sbi->stat_lock);
1682 init_rwsem(&sbi->read_io.io_rwsem);
1683 sbi->read_io.sbi = sbi;
1684 sbi->read_io.bio = NULL;
1685 for (i = 0; i < NR_PAGE_TYPE; i++) {
1686 init_rwsem(&sbi->write_io[i].io_rwsem);
1687 sbi->write_io[i].sbi = sbi;
1688 sbi->write_io[i].bio = NULL;
1691 init_rwsem(&sbi->cp_rwsem);
1692 init_waitqueue_head(&sbi->cp_wait);
1693 init_sb_info(sbi);
1695 err = init_percpu_info(sbi);
1696 if (err)
1697 goto free_options;
1699 /* get an inode for meta space */
1700 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
1701 if (IS_ERR(sbi->meta_inode)) {
1702 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
1703 err = PTR_ERR(sbi->meta_inode);
1704 goto free_options;
1707 err = get_valid_checkpoint(sbi);
1708 if (err) {
1709 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
1710 goto free_meta_inode;
1713 sbi->total_valid_node_count =
1714 le32_to_cpu(sbi->ckpt->valid_node_count);
1715 percpu_counter_set(&sbi->total_valid_inode_count,
1716 le32_to_cpu(sbi->ckpt->valid_inode_count));
1717 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
1718 sbi->total_valid_block_count =
1719 le64_to_cpu(sbi->ckpt->valid_block_count);
1720 sbi->last_valid_block_count = sbi->total_valid_block_count;
1722 for (i = 0; i < NR_INODE_TYPE; i++) {
1723 INIT_LIST_HEAD(&sbi->inode_list[i]);
1724 spin_lock_init(&sbi->inode_lock[i]);
1727 init_extent_cache_info(sbi);
1729 init_ino_entry_info(sbi);
1731 /* setup f2fs internal modules */
1732 err = build_segment_manager(sbi);
1733 if (err) {
1734 f2fs_msg(sb, KERN_ERR,
1735 "Failed to initialize F2FS segment manager");
1736 goto free_sm;
1738 err = build_node_manager(sbi);
1739 if (err) {
1740 f2fs_msg(sb, KERN_ERR,
1741 "Failed to initialize F2FS node manager");
1742 goto free_nm;
1745 /* For write statistics */
1746 if (sb->s_bdev->bd_part)
1747 sbi->sectors_written_start =
1748 (u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]);
1750 /* Read accumulated write IO statistics if exists */
1751 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1752 if (__exist_node_summaries(sbi))
1753 sbi->kbytes_written =
1754 le64_to_cpu(seg_i->journal->info.kbytes_written);
1756 build_gc_manager(sbi);
1758 /* get an inode for node space */
1759 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
1760 if (IS_ERR(sbi->node_inode)) {
1761 f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
1762 err = PTR_ERR(sbi->node_inode);
1763 goto free_nm;
1766 f2fs_join_shrinker(sbi);
1768 /* if there are nt orphan nodes free them */
1769 err = recover_orphan_inodes(sbi);
1770 if (err)
1771 goto free_node_inode;
1773 /* read root inode and dentry */
1774 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
1775 if (IS_ERR(root)) {
1776 f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
1777 err = PTR_ERR(root);
1778 goto free_node_inode;
1780 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
1781 iput(root);
1782 err = -EINVAL;
1783 goto free_node_inode;
1786 sb->s_root = d_make_root(root); /* allocate root dentry */
1787 if (!sb->s_root) {
1788 err = -ENOMEM;
1789 goto free_root_inode;
1792 err = f2fs_build_stats(sbi);
1793 if (err)
1794 goto free_root_inode;
1796 if (f2fs_proc_root)
1797 sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root);
1799 if (sbi->s_proc) {
1800 proc_create_data("segment_info", S_IRUGO, sbi->s_proc,
1801 &f2fs_seq_segment_info_fops, sb);
1802 proc_create_data("segment_bits", S_IRUGO, sbi->s_proc,
1803 &f2fs_seq_segment_bits_fops, sb);
1806 sbi->s_kobj.kset = f2fs_kset;
1807 init_completion(&sbi->s_kobj_unregister);
1808 err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL,
1809 "%s", sb->s_id);
1810 if (err)
1811 goto free_proc;
1813 /* recover fsynced data */
1814 if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
1816 * mount should be failed, when device has readonly mode, and
1817 * previous checkpoint was not done by clean system shutdown.
1819 if (bdev_read_only(sb->s_bdev) &&
1820 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
1821 err = -EROFS;
1822 goto free_kobj;
1825 if (need_fsck)
1826 set_sbi_flag(sbi, SBI_NEED_FSCK);
1828 if (!retry)
1829 goto skip_recovery;
1831 err = recover_fsync_data(sbi, false);
1832 if (err < 0) {
1833 need_fsck = true;
1834 f2fs_msg(sb, KERN_ERR,
1835 "Cannot recover all fsync data errno=%d", err);
1836 goto free_kobj;
1838 } else {
1839 err = recover_fsync_data(sbi, true);
1841 if (!f2fs_readonly(sb) && err > 0) {
1842 err = -EINVAL;
1843 f2fs_msg(sb, KERN_ERR,
1844 "Need to recover fsync data");
1845 goto free_kobj;
1848 skip_recovery:
1849 /* recover_fsync_data() cleared this already */
1850 clear_sbi_flag(sbi, SBI_POR_DOING);
1853 * If filesystem is not mounted as read-only then
1854 * do start the gc_thread.
1856 if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
1857 /* After POR, we can run background GC thread.*/
1858 err = start_gc_thread(sbi);
1859 if (err)
1860 goto free_kobj;
1862 kfree(options);
1864 /* recover broken superblock */
1865 if (recovery) {
1866 err = f2fs_commit_super(sbi, true);
1867 f2fs_msg(sb, KERN_INFO,
1868 "Try to recover %dth superblock, ret: %d",
1869 sbi->valid_super_block ? 1 : 2, err);
1872 f2fs_update_time(sbi, CP_TIME);
1873 f2fs_update_time(sbi, REQ_TIME);
1874 return 0;
1876 free_kobj:
1877 f2fs_sync_inode_meta(sbi);
1878 kobject_del(&sbi->s_kobj);
1879 kobject_put(&sbi->s_kobj);
1880 wait_for_completion(&sbi->s_kobj_unregister);
1881 free_proc:
1882 if (sbi->s_proc) {
1883 remove_proc_entry("segment_info", sbi->s_proc);
1884 remove_proc_entry("segment_bits", sbi->s_proc);
1885 remove_proc_entry(sb->s_id, f2fs_proc_root);
1887 f2fs_destroy_stats(sbi);
1888 free_root_inode:
1889 dput(sb->s_root);
1890 sb->s_root = NULL;
1891 free_node_inode:
1892 truncate_inode_pages_final(NODE_MAPPING(sbi));
1893 mutex_lock(&sbi->umount_mutex);
1894 release_ino_entry(sbi, true);
1895 f2fs_leave_shrinker(sbi);
1896 iput(sbi->node_inode);
1897 mutex_unlock(&sbi->umount_mutex);
1898 free_nm:
1899 destroy_node_manager(sbi);
1900 free_sm:
1901 destroy_segment_manager(sbi);
1902 kfree(sbi->ckpt);
1903 free_meta_inode:
1904 make_bad_inode(sbi->meta_inode);
1905 iput(sbi->meta_inode);
1906 free_options:
1907 destroy_percpu_info(sbi);
1908 kfree(options);
1909 free_sb_buf:
1910 kfree(raw_super);
1911 free_sbi:
1912 if (sbi->s_chksum_driver)
1913 crypto_free_shash(sbi->s_chksum_driver);
1914 kfree(sbi);
1916 /* give only one another chance */
1917 if (retry) {
1918 retry = false;
1919 shrink_dcache_sb(sb);
1920 goto try_onemore;
1922 return err;
1925 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
1926 const char *dev_name, void *data)
1928 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
1931 static void kill_f2fs_super(struct super_block *sb)
1933 if (sb->s_root)
1934 set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
1935 kill_block_super(sb);
1938 static struct file_system_type f2fs_fs_type = {
1939 .owner = THIS_MODULE,
1940 .name = "f2fs",
1941 .mount = f2fs_mount,
1942 .kill_sb = kill_f2fs_super,
1943 .fs_flags = FS_REQUIRES_DEV,
1945 MODULE_ALIAS_FS("f2fs");
1947 static int __init init_inodecache(void)
1949 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
1950 sizeof(struct f2fs_inode_info), 0,
1951 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
1952 if (!f2fs_inode_cachep)
1953 return -ENOMEM;
1954 return 0;
1957 static void destroy_inodecache(void)
1960 * Make sure all delayed rcu free inodes are flushed before we
1961 * destroy cache.
1963 rcu_barrier();
1964 kmem_cache_destroy(f2fs_inode_cachep);
1967 static int __init init_f2fs_fs(void)
1969 int err;
1971 f2fs_build_trace_ios();
1973 err = init_inodecache();
1974 if (err)
1975 goto fail;
1976 err = create_node_manager_caches();
1977 if (err)
1978 goto free_inodecache;
1979 err = create_segment_manager_caches();
1980 if (err)
1981 goto free_node_manager_caches;
1982 err = create_checkpoint_caches();
1983 if (err)
1984 goto free_segment_manager_caches;
1985 err = create_extent_cache();
1986 if (err)
1987 goto free_checkpoint_caches;
1988 f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj);
1989 if (!f2fs_kset) {
1990 err = -ENOMEM;
1991 goto free_extent_cache;
1993 err = register_shrinker(&f2fs_shrinker_info);
1994 if (err)
1995 goto free_kset;
1997 err = register_filesystem(&f2fs_fs_type);
1998 if (err)
1999 goto free_shrinker;
2000 err = f2fs_create_root_stats();
2001 if (err)
2002 goto free_filesystem;
2003 f2fs_proc_root = proc_mkdir("fs/f2fs", NULL);
2004 return 0;
2006 free_filesystem:
2007 unregister_filesystem(&f2fs_fs_type);
2008 free_shrinker:
2009 unregister_shrinker(&f2fs_shrinker_info);
2010 free_kset:
2011 kset_unregister(f2fs_kset);
2012 free_extent_cache:
2013 destroy_extent_cache();
2014 free_checkpoint_caches:
2015 destroy_checkpoint_caches();
2016 free_segment_manager_caches:
2017 destroy_segment_manager_caches();
2018 free_node_manager_caches:
2019 destroy_node_manager_caches();
2020 free_inodecache:
2021 destroy_inodecache();
2022 fail:
2023 return err;
2026 static void __exit exit_f2fs_fs(void)
2028 remove_proc_entry("fs/f2fs", NULL);
2029 f2fs_destroy_root_stats();
2030 unregister_filesystem(&f2fs_fs_type);
2031 unregister_shrinker(&f2fs_shrinker_info);
2032 kset_unregister(f2fs_kset);
2033 destroy_extent_cache();
2034 destroy_checkpoint_caches();
2035 destroy_segment_manager_caches();
2036 destroy_node_manager_caches();
2037 destroy_inodecache();
2038 f2fs_destroy_trace_ios();
2041 module_init(init_f2fs_fs)
2042 module_exit(exit_f2fs_fs)
2044 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
2045 MODULE_DESCRIPTION("Flash Friendly File System");
2046 MODULE_LICENSE("GPL");