2 * Driver for Cirrus Logic EP93xx SPI controller.
4 * Copyright (C) 2010-2011 Mika Westerberg
6 * Explicit FIFO handling code was inspired by amba-pl022 driver.
8 * Chip select support using other than built-in GPIOs by H. Hartley Sweeten.
10 * For more information about the SPI controller see documentation on Cirrus
12 * http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License version 2 as
16 * published by the Free Software Foundation.
20 #include <linux/clk.h>
21 #include <linux/err.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/dmaengine.h>
25 #include <linux/bitops.h>
26 #include <linux/interrupt.h>
27 #include <linux/module.h>
28 #include <linux/platform_device.h>
29 #include <linux/sched.h>
30 #include <linux/scatterlist.h>
31 #include <linux/gpio.h>
32 #include <linux/spi/spi.h>
34 #include <linux/platform_data/dma-ep93xx.h>
35 #include <linux/platform_data/spi-ep93xx.h>
38 #define SSPCR0_MODE_SHIFT 6
39 #define SSPCR0_SCR_SHIFT 8
42 #define SSPCR1_RIE BIT(0)
43 #define SSPCR1_TIE BIT(1)
44 #define SSPCR1_RORIE BIT(2)
45 #define SSPCR1_LBM BIT(3)
46 #define SSPCR1_SSE BIT(4)
47 #define SSPCR1_MS BIT(5)
48 #define SSPCR1_SOD BIT(6)
53 #define SSPSR_TFE BIT(0)
54 #define SSPSR_TNF BIT(1)
55 #define SSPSR_RNE BIT(2)
56 #define SSPSR_RFF BIT(3)
57 #define SSPSR_BSY BIT(4)
58 #define SSPCPSR 0x0010
61 #define SSPIIR_RIS BIT(0)
62 #define SSPIIR_TIS BIT(1)
63 #define SSPIIR_RORIS BIT(2)
66 /* timeout in milliseconds */
68 /* maximum depth of RX/TX FIFO */
69 #define SPI_FIFO_SIZE 8
72 * struct ep93xx_spi - EP93xx SPI controller structure
73 * @pdev: pointer to platform device
74 * @clk: clock for the controller
75 * @regs_base: pointer to ioremap()'d registers
76 * @sspdr_phys: physical address of the SSPDR register
77 * @wait: wait here until given transfer is completed
78 * @current_msg: message that is currently processed (or %NULL if none)
79 * @tx: current byte in transfer to transmit
80 * @rx: current byte in transfer to receive
81 * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one
82 * frame decreases this level and sending one frame increases it.
83 * @dma_rx: RX DMA channel
84 * @dma_tx: TX DMA channel
85 * @dma_rx_data: RX parameters passed to the DMA engine
86 * @dma_tx_data: TX parameters passed to the DMA engine
87 * @rx_sgt: sg table for RX transfers
88 * @tx_sgt: sg table for TX transfers
89 * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by
93 const struct platform_device
*pdev
;
95 void __iomem
*regs_base
;
96 unsigned long sspdr_phys
;
97 struct completion wait
;
98 struct spi_message
*current_msg
;
102 struct dma_chan
*dma_rx
;
103 struct dma_chan
*dma_tx
;
104 struct ep93xx_dma_data dma_rx_data
;
105 struct ep93xx_dma_data dma_tx_data
;
106 struct sg_table rx_sgt
;
107 struct sg_table tx_sgt
;
111 /* converts bits per word to CR0.DSS value */
112 #define bits_per_word_to_dss(bpw) ((bpw) - 1)
114 static void ep93xx_spi_write_u8(const struct ep93xx_spi
*espi
,
117 writeb(value
, espi
->regs_base
+ reg
);
120 static u8
ep93xx_spi_read_u8(const struct ep93xx_spi
*spi
, u16 reg
)
122 return readb(spi
->regs_base
+ reg
);
125 static void ep93xx_spi_write_u16(const struct ep93xx_spi
*espi
,
128 writew(value
, espi
->regs_base
+ reg
);
131 static u16
ep93xx_spi_read_u16(const struct ep93xx_spi
*spi
, u16 reg
)
133 return readw(spi
->regs_base
+ reg
);
136 static int ep93xx_spi_enable(const struct ep93xx_spi
*espi
)
141 err
= clk_enable(espi
->clk
);
145 regval
= ep93xx_spi_read_u8(espi
, SSPCR1
);
146 regval
|= SSPCR1_SSE
;
147 ep93xx_spi_write_u8(espi
, SSPCR1
, regval
);
152 static void ep93xx_spi_disable(const struct ep93xx_spi
*espi
)
156 regval
= ep93xx_spi_read_u8(espi
, SSPCR1
);
157 regval
&= ~SSPCR1_SSE
;
158 ep93xx_spi_write_u8(espi
, SSPCR1
, regval
);
160 clk_disable(espi
->clk
);
163 static void ep93xx_spi_enable_interrupts(const struct ep93xx_spi
*espi
)
167 regval
= ep93xx_spi_read_u8(espi
, SSPCR1
);
168 regval
|= (SSPCR1_RORIE
| SSPCR1_TIE
| SSPCR1_RIE
);
169 ep93xx_spi_write_u8(espi
, SSPCR1
, regval
);
172 static void ep93xx_spi_disable_interrupts(const struct ep93xx_spi
*espi
)
176 regval
= ep93xx_spi_read_u8(espi
, SSPCR1
);
177 regval
&= ~(SSPCR1_RORIE
| SSPCR1_TIE
| SSPCR1_RIE
);
178 ep93xx_spi_write_u8(espi
, SSPCR1
, regval
);
182 * ep93xx_spi_calc_divisors() - calculates SPI clock divisors
183 * @espi: ep93xx SPI controller struct
184 * @rate: desired SPI output clock rate
185 * @div_cpsr: pointer to return the cpsr (pre-scaler) divider
186 * @div_scr: pointer to return the scr divider
188 static int ep93xx_spi_calc_divisors(const struct ep93xx_spi
*espi
,
189 u32 rate
, u8
*div_cpsr
, u8
*div_scr
)
191 struct spi_master
*master
= platform_get_drvdata(espi
->pdev
);
192 unsigned long spi_clk_rate
= clk_get_rate(espi
->clk
);
196 * Make sure that max value is between values supported by the
197 * controller. Note that minimum value is already checked in
198 * ep93xx_spi_transfer_one_message().
200 rate
= clamp(rate
, master
->min_speed_hz
, master
->max_speed_hz
);
203 * Calculate divisors so that we can get speed according the
205 * rate = spi_clock_rate / (cpsr * (1 + scr))
207 * cpsr must be even number and starts from 2, scr can be any number
210 for (cpsr
= 2; cpsr
<= 254; cpsr
+= 2) {
211 for (scr
= 0; scr
<= 255; scr
++) {
212 if ((spi_clk_rate
/ (cpsr
* (scr
+ 1))) <= rate
) {
214 *div_cpsr
= (u8
)cpsr
;
223 static void ep93xx_spi_cs_control(struct spi_device
*spi
, bool enable
)
225 if (spi
->mode
& SPI_CS_HIGH
)
228 if (gpio_is_valid(spi
->cs_gpio
))
229 gpio_set_value(spi
->cs_gpio
, !enable
);
232 static int ep93xx_spi_chip_setup(const struct ep93xx_spi
*espi
,
233 struct spi_device
*spi
,
234 struct spi_transfer
*xfer
)
236 u8 dss
= bits_per_word_to_dss(xfer
->bits_per_word
);
242 err
= ep93xx_spi_calc_divisors(espi
, xfer
->speed_hz
,
243 &div_cpsr
, &div_scr
);
247 cr0
= div_scr
<< SSPCR0_SCR_SHIFT
;
248 cr0
|= (spi
->mode
& (SPI_CPHA
| SPI_CPOL
)) << SSPCR0_MODE_SHIFT
;
251 dev_dbg(&espi
->pdev
->dev
, "setup: mode %d, cpsr %d, scr %d, dss %d\n",
252 spi
->mode
, div_cpsr
, div_scr
, dss
);
253 dev_dbg(&espi
->pdev
->dev
, "setup: cr0 %#x\n", cr0
);
255 ep93xx_spi_write_u8(espi
, SSPCPSR
, div_cpsr
);
256 ep93xx_spi_write_u16(espi
, SSPCR0
, cr0
);
261 static void ep93xx_do_write(struct ep93xx_spi
*espi
, struct spi_transfer
*t
)
263 if (t
->bits_per_word
> 8) {
267 tx_val
= ((u16
*)t
->tx_buf
)[espi
->tx
];
268 ep93xx_spi_write_u16(espi
, SSPDR
, tx_val
);
269 espi
->tx
+= sizeof(tx_val
);
274 tx_val
= ((u8
*)t
->tx_buf
)[espi
->tx
];
275 ep93xx_spi_write_u8(espi
, SSPDR
, tx_val
);
276 espi
->tx
+= sizeof(tx_val
);
280 static void ep93xx_do_read(struct ep93xx_spi
*espi
, struct spi_transfer
*t
)
282 if (t
->bits_per_word
> 8) {
285 rx_val
= ep93xx_spi_read_u16(espi
, SSPDR
);
287 ((u16
*)t
->rx_buf
)[espi
->rx
] = rx_val
;
288 espi
->rx
+= sizeof(rx_val
);
292 rx_val
= ep93xx_spi_read_u8(espi
, SSPDR
);
294 ((u8
*)t
->rx_buf
)[espi
->rx
] = rx_val
;
295 espi
->rx
+= sizeof(rx_val
);
300 * ep93xx_spi_read_write() - perform next RX/TX transfer
301 * @espi: ep93xx SPI controller struct
303 * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If
304 * called several times, the whole transfer will be completed. Returns
305 * %-EINPROGRESS when current transfer was not yet completed otherwise %0.
307 * When this function is finished, RX FIFO should be empty and TX FIFO should be
310 static int ep93xx_spi_read_write(struct ep93xx_spi
*espi
)
312 struct spi_message
*msg
= espi
->current_msg
;
313 struct spi_transfer
*t
= msg
->state
;
315 /* read as long as RX FIFO has frames in it */
316 while ((ep93xx_spi_read_u8(espi
, SSPSR
) & SSPSR_RNE
)) {
317 ep93xx_do_read(espi
, t
);
321 /* write as long as TX FIFO has room */
322 while (espi
->fifo_level
< SPI_FIFO_SIZE
&& espi
->tx
< t
->len
) {
323 ep93xx_do_write(espi
, t
);
327 if (espi
->rx
== t
->len
)
333 static void ep93xx_spi_pio_transfer(struct ep93xx_spi
*espi
)
336 * Now everything is set up for the current transfer. We prime the TX
337 * FIFO, enable interrupts, and wait for the transfer to complete.
339 if (ep93xx_spi_read_write(espi
)) {
340 ep93xx_spi_enable_interrupts(espi
);
341 wait_for_completion(&espi
->wait
);
346 * ep93xx_spi_dma_prepare() - prepares a DMA transfer
347 * @espi: ep93xx SPI controller struct
348 * @dir: DMA transfer direction
350 * Function configures the DMA, maps the buffer and prepares the DMA
351 * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR
352 * in case of failure.
354 static struct dma_async_tx_descriptor
*
355 ep93xx_spi_dma_prepare(struct ep93xx_spi
*espi
, enum dma_transfer_direction dir
)
357 struct spi_transfer
*t
= espi
->current_msg
->state
;
358 struct dma_async_tx_descriptor
*txd
;
359 enum dma_slave_buswidth buswidth
;
360 struct dma_slave_config conf
;
361 struct scatterlist
*sg
;
362 struct sg_table
*sgt
;
363 struct dma_chan
*chan
;
364 const void *buf
, *pbuf
;
368 if (t
->bits_per_word
> 8)
369 buswidth
= DMA_SLAVE_BUSWIDTH_2_BYTES
;
371 buswidth
= DMA_SLAVE_BUSWIDTH_1_BYTE
;
373 memset(&conf
, 0, sizeof(conf
));
374 conf
.direction
= dir
;
376 if (dir
== DMA_DEV_TO_MEM
) {
381 conf
.src_addr
= espi
->sspdr_phys
;
382 conf
.src_addr_width
= buswidth
;
388 conf
.dst_addr
= espi
->sspdr_phys
;
389 conf
.dst_addr_width
= buswidth
;
392 ret
= dmaengine_slave_config(chan
, &conf
);
397 * We need to split the transfer into PAGE_SIZE'd chunks. This is
398 * because we are using @espi->zeropage to provide a zero RX buffer
399 * for the TX transfers and we have only allocated one page for that.
401 * For performance reasons we allocate a new sg_table only when
402 * needed. Otherwise we will re-use the current one. Eventually the
403 * last sg_table is released in ep93xx_spi_release_dma().
406 nents
= DIV_ROUND_UP(len
, PAGE_SIZE
);
407 if (nents
!= sgt
->nents
) {
410 ret
= sg_alloc_table(sgt
, nents
, GFP_KERNEL
);
416 for_each_sg(sgt
->sgl
, sg
, sgt
->nents
, i
) {
417 size_t bytes
= min_t(size_t, len
, PAGE_SIZE
);
420 sg_set_page(sg
, virt_to_page(pbuf
), bytes
,
421 offset_in_page(pbuf
));
423 sg_set_page(sg
, virt_to_page(espi
->zeropage
),
432 dev_warn(&espi
->pdev
->dev
, "len = %zu expected 0!\n", len
);
433 return ERR_PTR(-EINVAL
);
436 nents
= dma_map_sg(chan
->device
->dev
, sgt
->sgl
, sgt
->nents
, dir
);
438 return ERR_PTR(-ENOMEM
);
440 txd
= dmaengine_prep_slave_sg(chan
, sgt
->sgl
, nents
, dir
, DMA_CTRL_ACK
);
442 dma_unmap_sg(chan
->device
->dev
, sgt
->sgl
, sgt
->nents
, dir
);
443 return ERR_PTR(-ENOMEM
);
449 * ep93xx_spi_dma_finish() - finishes with a DMA transfer
450 * @espi: ep93xx SPI controller struct
451 * @dir: DMA transfer direction
453 * Function finishes with the DMA transfer. After this, the DMA buffer is
456 static void ep93xx_spi_dma_finish(struct ep93xx_spi
*espi
,
457 enum dma_transfer_direction dir
)
459 struct dma_chan
*chan
;
460 struct sg_table
*sgt
;
462 if (dir
== DMA_DEV_TO_MEM
) {
470 dma_unmap_sg(chan
->device
->dev
, sgt
->sgl
, sgt
->nents
, dir
);
473 static void ep93xx_spi_dma_callback(void *callback_param
)
475 complete(callback_param
);
478 static void ep93xx_spi_dma_transfer(struct ep93xx_spi
*espi
)
480 struct spi_message
*msg
= espi
->current_msg
;
481 struct dma_async_tx_descriptor
*rxd
, *txd
;
483 rxd
= ep93xx_spi_dma_prepare(espi
, DMA_DEV_TO_MEM
);
485 dev_err(&espi
->pdev
->dev
, "DMA RX failed: %ld\n", PTR_ERR(rxd
));
486 msg
->status
= PTR_ERR(rxd
);
490 txd
= ep93xx_spi_dma_prepare(espi
, DMA_MEM_TO_DEV
);
492 ep93xx_spi_dma_finish(espi
, DMA_DEV_TO_MEM
);
493 dev_err(&espi
->pdev
->dev
, "DMA TX failed: %ld\n", PTR_ERR(txd
));
494 msg
->status
= PTR_ERR(txd
);
498 /* We are ready when RX is done */
499 rxd
->callback
= ep93xx_spi_dma_callback
;
500 rxd
->callback_param
= &espi
->wait
;
502 /* Now submit both descriptors and wait while they finish */
503 dmaengine_submit(rxd
);
504 dmaengine_submit(txd
);
506 dma_async_issue_pending(espi
->dma_rx
);
507 dma_async_issue_pending(espi
->dma_tx
);
509 wait_for_completion(&espi
->wait
);
511 ep93xx_spi_dma_finish(espi
, DMA_MEM_TO_DEV
);
512 ep93xx_spi_dma_finish(espi
, DMA_DEV_TO_MEM
);
516 * ep93xx_spi_process_transfer() - processes one SPI transfer
517 * @espi: ep93xx SPI controller struct
518 * @msg: current message
519 * @t: transfer to process
521 * This function processes one SPI transfer given in @t. Function waits until
522 * transfer is complete (may sleep) and updates @msg->status based on whether
523 * transfer was successfully processed or not.
525 static void ep93xx_spi_process_transfer(struct ep93xx_spi
*espi
,
526 struct spi_message
*msg
,
527 struct spi_transfer
*t
)
533 err
= ep93xx_spi_chip_setup(espi
, msg
->spi
, t
);
535 dev_err(&espi
->pdev
->dev
,
536 "failed to setup chip for transfer\n");
545 * There is no point of setting up DMA for the transfers which will
546 * fit into the FIFO and can be transferred with a single interrupt.
547 * So in these cases we will be using PIO and don't bother for DMA.
549 if (espi
->dma_rx
&& t
->len
> SPI_FIFO_SIZE
)
550 ep93xx_spi_dma_transfer(espi
);
552 ep93xx_spi_pio_transfer(espi
);
555 * In case of error during transmit, we bail out from processing
561 msg
->actual_length
+= t
->len
;
564 * After this transfer is finished, perform any possible
565 * post-transfer actions requested by the protocol driver.
567 if (t
->delay_usecs
) {
568 set_current_state(TASK_UNINTERRUPTIBLE
);
569 schedule_timeout(usecs_to_jiffies(t
->delay_usecs
));
572 if (!list_is_last(&t
->transfer_list
, &msg
->transfers
)) {
574 * In case protocol driver is asking us to drop the
575 * chipselect briefly, we let the scheduler to handle
578 ep93xx_spi_cs_control(msg
->spi
, false);
580 ep93xx_spi_cs_control(msg
->spi
, true);
586 * ep93xx_spi_process_message() - process one SPI message
587 * @espi: ep93xx SPI controller struct
588 * @msg: message to process
590 * This function processes a single SPI message. We go through all transfers in
591 * the message and pass them to ep93xx_spi_process_transfer(). Chipselect is
592 * asserted during the whole message (unless per transfer cs_change is set).
594 * @msg->status contains %0 in case of success or negative error code in case of
597 static void ep93xx_spi_process_message(struct ep93xx_spi
*espi
,
598 struct spi_message
*msg
)
600 unsigned long timeout
;
601 struct spi_transfer
*t
;
605 * Enable the SPI controller and its clock.
607 err
= ep93xx_spi_enable(espi
);
609 dev_err(&espi
->pdev
->dev
, "failed to enable SPI controller\n");
615 * Just to be sure: flush any data from RX FIFO.
617 timeout
= jiffies
+ msecs_to_jiffies(SPI_TIMEOUT
);
618 while (ep93xx_spi_read_u16(espi
, SSPSR
) & SSPSR_RNE
) {
619 if (time_after(jiffies
, timeout
)) {
620 dev_warn(&espi
->pdev
->dev
,
621 "timeout while flushing RX FIFO\n");
622 msg
->status
= -ETIMEDOUT
;
625 ep93xx_spi_read_u16(espi
, SSPDR
);
629 * We explicitly handle FIFO level. This way we don't have to check TX
630 * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns.
632 espi
->fifo_level
= 0;
635 * Assert the chipselect.
637 ep93xx_spi_cs_control(msg
->spi
, true);
639 list_for_each_entry(t
, &msg
->transfers
, transfer_list
) {
640 ep93xx_spi_process_transfer(espi
, msg
, t
);
646 * Now the whole message is transferred (or failed for some reason). We
647 * deselect the device and disable the SPI controller.
649 ep93xx_spi_cs_control(msg
->spi
, false);
650 ep93xx_spi_disable(espi
);
653 static int ep93xx_spi_transfer_one_message(struct spi_master
*master
,
654 struct spi_message
*msg
)
656 struct ep93xx_spi
*espi
= spi_master_get_devdata(master
);
660 msg
->actual_length
= 0;
662 espi
->current_msg
= msg
;
663 ep93xx_spi_process_message(espi
, msg
);
664 espi
->current_msg
= NULL
;
666 spi_finalize_current_message(master
);
671 static irqreturn_t
ep93xx_spi_interrupt(int irq
, void *dev_id
)
673 struct ep93xx_spi
*espi
= dev_id
;
674 u8 irq_status
= ep93xx_spi_read_u8(espi
, SSPIIR
);
677 * If we got ROR (receive overrun) interrupt we know that something is
678 * wrong. Just abort the message.
680 if (unlikely(irq_status
& SSPIIR_RORIS
)) {
681 /* clear the overrun interrupt */
682 ep93xx_spi_write_u8(espi
, SSPICR
, 0);
683 dev_warn(&espi
->pdev
->dev
,
684 "receive overrun, aborting the message\n");
685 espi
->current_msg
->status
= -EIO
;
688 * Interrupt is either RX (RIS) or TX (TIS). For both cases we
689 * simply execute next data transfer.
691 if (ep93xx_spi_read_write(espi
)) {
693 * In normal case, there still is some processing left
694 * for current transfer. Let's wait for the next
702 * Current transfer is finished, either with error or with success. In
703 * any case we disable interrupts and notify the worker to handle
704 * any post-processing of the message.
706 ep93xx_spi_disable_interrupts(espi
);
707 complete(&espi
->wait
);
711 static bool ep93xx_spi_dma_filter(struct dma_chan
*chan
, void *filter_param
)
713 if (ep93xx_dma_chan_is_m2p(chan
))
716 chan
->private = filter_param
;
720 static int ep93xx_spi_setup_dma(struct ep93xx_spi
*espi
)
725 espi
->zeropage
= (void *)get_zeroed_page(GFP_KERNEL
);
730 dma_cap_set(DMA_SLAVE
, mask
);
732 espi
->dma_rx_data
.port
= EP93XX_DMA_SSP
;
733 espi
->dma_rx_data
.direction
= DMA_DEV_TO_MEM
;
734 espi
->dma_rx_data
.name
= "ep93xx-spi-rx";
736 espi
->dma_rx
= dma_request_channel(mask
, ep93xx_spi_dma_filter
,
743 espi
->dma_tx_data
.port
= EP93XX_DMA_SSP
;
744 espi
->dma_tx_data
.direction
= DMA_MEM_TO_DEV
;
745 espi
->dma_tx_data
.name
= "ep93xx-spi-tx";
747 espi
->dma_tx
= dma_request_channel(mask
, ep93xx_spi_dma_filter
,
751 goto fail_release_rx
;
757 dma_release_channel(espi
->dma_rx
);
760 free_page((unsigned long)espi
->zeropage
);
765 static void ep93xx_spi_release_dma(struct ep93xx_spi
*espi
)
768 dma_release_channel(espi
->dma_rx
);
769 sg_free_table(&espi
->rx_sgt
);
772 dma_release_channel(espi
->dma_tx
);
773 sg_free_table(&espi
->tx_sgt
);
777 free_page((unsigned long)espi
->zeropage
);
780 static int ep93xx_spi_probe(struct platform_device
*pdev
)
782 struct spi_master
*master
;
783 struct ep93xx_spi_info
*info
;
784 struct ep93xx_spi
*espi
;
785 struct resource
*res
;
790 info
= dev_get_platdata(&pdev
->dev
);
792 dev_err(&pdev
->dev
, "missing platform data\n");
796 irq
= platform_get_irq(pdev
, 0);
798 dev_err(&pdev
->dev
, "failed to get irq resources\n");
802 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
804 dev_err(&pdev
->dev
, "unable to get iomem resource\n");
808 master
= spi_alloc_master(&pdev
->dev
, sizeof(*espi
));
812 master
->transfer_one_message
= ep93xx_spi_transfer_one_message
;
813 master
->bus_num
= pdev
->id
;
814 master
->mode_bits
= SPI_CPOL
| SPI_CPHA
| SPI_CS_HIGH
;
815 master
->bits_per_word_mask
= SPI_BPW_RANGE_MASK(4, 16);
817 master
->num_chipselect
= info
->num_chipselect
;
818 master
->cs_gpios
= devm_kzalloc(&master
->dev
,
819 sizeof(int) * master
->num_chipselect
,
821 if (!master
->cs_gpios
) {
823 goto fail_release_master
;
826 for (i
= 0; i
< master
->num_chipselect
; i
++) {
827 master
->cs_gpios
[i
] = info
->chipselect
[i
];
829 if (!gpio_is_valid(master
->cs_gpios
[i
]))
832 error
= devm_gpio_request_one(&pdev
->dev
, master
->cs_gpios
[i
],
836 dev_err(&pdev
->dev
, "could not request cs gpio %d\n",
837 master
->cs_gpios
[i
]);
838 goto fail_release_master
;
842 platform_set_drvdata(pdev
, master
);
844 espi
= spi_master_get_devdata(master
);
846 espi
->clk
= devm_clk_get(&pdev
->dev
, NULL
);
847 if (IS_ERR(espi
->clk
)) {
848 dev_err(&pdev
->dev
, "unable to get spi clock\n");
849 error
= PTR_ERR(espi
->clk
);
850 goto fail_release_master
;
853 init_completion(&espi
->wait
);
856 * Calculate maximum and minimum supported clock rates
857 * for the controller.
859 master
->max_speed_hz
= clk_get_rate(espi
->clk
) / 2;
860 master
->min_speed_hz
= clk_get_rate(espi
->clk
) / (254 * 256);
863 espi
->sspdr_phys
= res
->start
+ SSPDR
;
865 espi
->regs_base
= devm_ioremap_resource(&pdev
->dev
, res
);
866 if (IS_ERR(espi
->regs_base
)) {
867 error
= PTR_ERR(espi
->regs_base
);
868 goto fail_release_master
;
871 error
= devm_request_irq(&pdev
->dev
, irq
, ep93xx_spi_interrupt
,
872 0, "ep93xx-spi", espi
);
874 dev_err(&pdev
->dev
, "failed to request irq\n");
875 goto fail_release_master
;
878 if (info
->use_dma
&& ep93xx_spi_setup_dma(espi
))
879 dev_warn(&pdev
->dev
, "DMA setup failed. Falling back to PIO\n");
881 /* make sure that the hardware is disabled */
882 ep93xx_spi_write_u8(espi
, SSPCR1
, 0);
884 error
= devm_spi_register_master(&pdev
->dev
, master
);
886 dev_err(&pdev
->dev
, "failed to register SPI master\n");
890 dev_info(&pdev
->dev
, "EP93xx SPI Controller at 0x%08lx irq %d\n",
891 (unsigned long)res
->start
, irq
);
896 ep93xx_spi_release_dma(espi
);
898 spi_master_put(master
);
903 static int ep93xx_spi_remove(struct platform_device
*pdev
)
905 struct spi_master
*master
= platform_get_drvdata(pdev
);
906 struct ep93xx_spi
*espi
= spi_master_get_devdata(master
);
908 ep93xx_spi_release_dma(espi
);
913 static struct platform_driver ep93xx_spi_driver
= {
915 .name
= "ep93xx-spi",
917 .probe
= ep93xx_spi_probe
,
918 .remove
= ep93xx_spi_remove
,
920 module_platform_driver(ep93xx_spi_driver
);
922 MODULE_DESCRIPTION("EP93xx SPI Controller driver");
923 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
924 MODULE_LICENSE("GPL");
925 MODULE_ALIAS("platform:ep93xx-spi");