2 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
3 * Copyright (C) 2013, Intel Corporation
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
16 #include <linux/bitops.h>
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/device.h>
20 #include <linux/ioport.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/interrupt.h>
24 #include <linux/kernel.h>
25 #include <linux/pci.h>
26 #include <linux/platform_device.h>
27 #include <linux/spi/pxa2xx_spi.h>
28 #include <linux/spi/spi.h>
29 #include <linux/delay.h>
30 #include <linux/gpio.h>
31 #include <linux/gpio/consumer.h>
32 #include <linux/slab.h>
33 #include <linux/clk.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/acpi.h>
37 #include "spi-pxa2xx.h"
39 MODULE_AUTHOR("Stephen Street");
40 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
41 MODULE_LICENSE("GPL");
42 MODULE_ALIAS("platform:pxa2xx-spi");
44 #define TIMOUT_DFLT 1000
47 * for testing SSCR1 changes that require SSP restart, basically
48 * everything except the service and interrupt enables, the pxa270 developer
49 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
50 * list, but the PXA255 dev man says all bits without really meaning the
51 * service and interrupt enables
53 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
54 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
55 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
56 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
57 | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
58 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
60 #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF \
61 | QUARK_X1000_SSCR1_EFWR \
62 | QUARK_X1000_SSCR1_RFT \
63 | QUARK_X1000_SSCR1_TFT \
64 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
66 #define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
67 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
68 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
69 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
70 | CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \
71 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
73 #define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE BIT(24)
74 #define LPSS_CS_CONTROL_SW_MODE BIT(0)
75 #define LPSS_CS_CONTROL_CS_HIGH BIT(1)
76 #define LPSS_CAPS_CS_EN_SHIFT 9
77 #define LPSS_CAPS_CS_EN_MASK (0xf << LPSS_CAPS_CS_EN_SHIFT)
80 /* LPSS offset from drv_data->ioaddr */
82 /* Register offsets from drv_data->lpss_base or -1 */
91 /* Chip select control */
92 unsigned cs_sel_shift
;
97 /* Keep these sorted with enum pxa_ssp_type */
98 static const struct lpss_config lpss_platforms
[] = {
104 .reg_capabilities
= -1,
106 .tx_threshold_lo
= 160,
107 .tx_threshold_hi
= 224,
114 .reg_capabilities
= -1,
116 .tx_threshold_lo
= 160,
117 .tx_threshold_hi
= 224,
124 .reg_capabilities
= -1,
126 .tx_threshold_lo
= 160,
127 .tx_threshold_hi
= 224,
129 .cs_sel_mask
= 1 << 2,
137 .reg_capabilities
= -1,
139 .tx_threshold_lo
= 32,
140 .tx_threshold_hi
= 56,
147 .reg_capabilities
= 0xfc,
149 .tx_threshold_lo
= 16,
150 .tx_threshold_hi
= 48,
152 .cs_sel_mask
= 3 << 8,
156 static inline const struct lpss_config
157 *lpss_get_config(const struct driver_data
*drv_data
)
159 return &lpss_platforms
[drv_data
->ssp_type
- LPSS_LPT_SSP
];
162 static bool is_lpss_ssp(const struct driver_data
*drv_data
)
164 switch (drv_data
->ssp_type
) {
176 static bool is_quark_x1000_ssp(const struct driver_data
*drv_data
)
178 return drv_data
->ssp_type
== QUARK_X1000_SSP
;
181 static u32
pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data
*drv_data
)
183 switch (drv_data
->ssp_type
) {
184 case QUARK_X1000_SSP
:
185 return QUARK_X1000_SSCR1_CHANGE_MASK
;
187 return CE4100_SSCR1_CHANGE_MASK
;
189 return SSCR1_CHANGE_MASK
;
194 pxa2xx_spi_get_rx_default_thre(const struct driver_data
*drv_data
)
196 switch (drv_data
->ssp_type
) {
197 case QUARK_X1000_SSP
:
198 return RX_THRESH_QUARK_X1000_DFLT
;
200 return RX_THRESH_CE4100_DFLT
;
202 return RX_THRESH_DFLT
;
206 static bool pxa2xx_spi_txfifo_full(const struct driver_data
*drv_data
)
210 switch (drv_data
->ssp_type
) {
211 case QUARK_X1000_SSP
:
212 mask
= QUARK_X1000_SSSR_TFL_MASK
;
215 mask
= CE4100_SSSR_TFL_MASK
;
218 mask
= SSSR_TFL_MASK
;
222 return (pxa2xx_spi_read(drv_data
, SSSR
) & mask
) == mask
;
225 static void pxa2xx_spi_clear_rx_thre(const struct driver_data
*drv_data
,
230 switch (drv_data
->ssp_type
) {
231 case QUARK_X1000_SSP
:
232 mask
= QUARK_X1000_SSCR1_RFT
;
235 mask
= CE4100_SSCR1_RFT
;
244 static void pxa2xx_spi_set_rx_thre(const struct driver_data
*drv_data
,
245 u32
*sccr1_reg
, u32 threshold
)
247 switch (drv_data
->ssp_type
) {
248 case QUARK_X1000_SSP
:
249 *sccr1_reg
|= QUARK_X1000_SSCR1_RxTresh(threshold
);
252 *sccr1_reg
|= CE4100_SSCR1_RxTresh(threshold
);
255 *sccr1_reg
|= SSCR1_RxTresh(threshold
);
260 static u32
pxa2xx_configure_sscr0(const struct driver_data
*drv_data
,
261 u32 clk_div
, u8 bits
)
263 switch (drv_data
->ssp_type
) {
264 case QUARK_X1000_SSP
:
266 | QUARK_X1000_SSCR0_Motorola
267 | QUARK_X1000_SSCR0_DataSize(bits
> 32 ? 8 : bits
)
272 | SSCR0_DataSize(bits
> 16 ? bits
- 16 : bits
)
274 | (bits
> 16 ? SSCR0_EDSS
: 0);
279 * Read and write LPSS SSP private registers. Caller must first check that
280 * is_lpss_ssp() returns true before these can be called.
282 static u32
__lpss_ssp_read_priv(struct driver_data
*drv_data
, unsigned offset
)
284 WARN_ON(!drv_data
->lpss_base
);
285 return readl(drv_data
->lpss_base
+ offset
);
288 static void __lpss_ssp_write_priv(struct driver_data
*drv_data
,
289 unsigned offset
, u32 value
)
291 WARN_ON(!drv_data
->lpss_base
);
292 writel(value
, drv_data
->lpss_base
+ offset
);
296 * lpss_ssp_setup - perform LPSS SSP specific setup
297 * @drv_data: pointer to the driver private data
299 * Perform LPSS SSP specific setup. This function must be called first if
300 * one is going to use LPSS SSP private registers.
302 static void lpss_ssp_setup(struct driver_data
*drv_data
)
304 const struct lpss_config
*config
;
307 config
= lpss_get_config(drv_data
);
308 drv_data
->lpss_base
= drv_data
->ioaddr
+ config
->offset
;
310 /* Enable software chip select control */
311 value
= __lpss_ssp_read_priv(drv_data
, config
->reg_cs_ctrl
);
312 value
&= ~(LPSS_CS_CONTROL_SW_MODE
| LPSS_CS_CONTROL_CS_HIGH
);
313 value
|= LPSS_CS_CONTROL_SW_MODE
| LPSS_CS_CONTROL_CS_HIGH
;
314 __lpss_ssp_write_priv(drv_data
, config
->reg_cs_ctrl
, value
);
316 /* Enable multiblock DMA transfers */
317 if (drv_data
->master_info
->enable_dma
) {
318 __lpss_ssp_write_priv(drv_data
, config
->reg_ssp
, 1);
320 if (config
->reg_general
>= 0) {
321 value
= __lpss_ssp_read_priv(drv_data
,
322 config
->reg_general
);
323 value
|= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE
;
324 __lpss_ssp_write_priv(drv_data
,
325 config
->reg_general
, value
);
330 static void lpss_ssp_select_cs(struct driver_data
*drv_data
,
331 const struct lpss_config
*config
)
335 if (!config
->cs_sel_mask
)
338 value
= __lpss_ssp_read_priv(drv_data
, config
->reg_cs_ctrl
);
340 cs
= drv_data
->master
->cur_msg
->spi
->chip_select
;
341 cs
<<= config
->cs_sel_shift
;
342 if (cs
!= (value
& config
->cs_sel_mask
)) {
344 * When switching another chip select output active the
345 * output must be selected first and wait 2 ssp_clk cycles
346 * before changing state to active. Otherwise a short
347 * glitch will occur on the previous chip select since
348 * output select is latched but state control is not.
350 value
&= ~config
->cs_sel_mask
;
352 __lpss_ssp_write_priv(drv_data
,
353 config
->reg_cs_ctrl
, value
);
355 (drv_data
->master
->max_speed_hz
/ 2));
359 static void lpss_ssp_cs_control(struct driver_data
*drv_data
, bool enable
)
361 const struct lpss_config
*config
;
364 config
= lpss_get_config(drv_data
);
367 lpss_ssp_select_cs(drv_data
, config
);
369 value
= __lpss_ssp_read_priv(drv_data
, config
->reg_cs_ctrl
);
371 value
&= ~LPSS_CS_CONTROL_CS_HIGH
;
373 value
|= LPSS_CS_CONTROL_CS_HIGH
;
374 __lpss_ssp_write_priv(drv_data
, config
->reg_cs_ctrl
, value
);
377 static void cs_assert(struct driver_data
*drv_data
)
379 struct chip_data
*chip
=
380 spi_get_ctldata(drv_data
->master
->cur_msg
->spi
);
382 if (drv_data
->ssp_type
== CE4100_SSP
) {
383 pxa2xx_spi_write(drv_data
, SSSR
, chip
->frm
);
387 if (chip
->cs_control
) {
388 chip
->cs_control(PXA2XX_CS_ASSERT
);
392 if (gpio_is_valid(chip
->gpio_cs
)) {
393 gpio_set_value(chip
->gpio_cs
, chip
->gpio_cs_inverted
);
397 if (is_lpss_ssp(drv_data
))
398 lpss_ssp_cs_control(drv_data
, true);
401 static void cs_deassert(struct driver_data
*drv_data
)
403 struct chip_data
*chip
=
404 spi_get_ctldata(drv_data
->master
->cur_msg
->spi
);
406 if (drv_data
->ssp_type
== CE4100_SSP
)
409 if (chip
->cs_control
) {
410 chip
->cs_control(PXA2XX_CS_DEASSERT
);
414 if (gpio_is_valid(chip
->gpio_cs
)) {
415 gpio_set_value(chip
->gpio_cs
, !chip
->gpio_cs_inverted
);
419 if (is_lpss_ssp(drv_data
))
420 lpss_ssp_cs_control(drv_data
, false);
423 int pxa2xx_spi_flush(struct driver_data
*drv_data
)
425 unsigned long limit
= loops_per_jiffy
<< 1;
428 while (pxa2xx_spi_read(drv_data
, SSSR
) & SSSR_RNE
)
429 pxa2xx_spi_read(drv_data
, SSDR
);
430 } while ((pxa2xx_spi_read(drv_data
, SSSR
) & SSSR_BSY
) && --limit
);
431 write_SSSR_CS(drv_data
, SSSR_ROR
);
436 static int null_writer(struct driver_data
*drv_data
)
438 u8 n_bytes
= drv_data
->n_bytes
;
440 if (pxa2xx_spi_txfifo_full(drv_data
)
441 || (drv_data
->tx
== drv_data
->tx_end
))
444 pxa2xx_spi_write(drv_data
, SSDR
, 0);
445 drv_data
->tx
+= n_bytes
;
450 static int null_reader(struct driver_data
*drv_data
)
452 u8 n_bytes
= drv_data
->n_bytes
;
454 while ((pxa2xx_spi_read(drv_data
, SSSR
) & SSSR_RNE
)
455 && (drv_data
->rx
< drv_data
->rx_end
)) {
456 pxa2xx_spi_read(drv_data
, SSDR
);
457 drv_data
->rx
+= n_bytes
;
460 return drv_data
->rx
== drv_data
->rx_end
;
463 static int u8_writer(struct driver_data
*drv_data
)
465 if (pxa2xx_spi_txfifo_full(drv_data
)
466 || (drv_data
->tx
== drv_data
->tx_end
))
469 pxa2xx_spi_write(drv_data
, SSDR
, *(u8
*)(drv_data
->tx
));
475 static int u8_reader(struct driver_data
*drv_data
)
477 while ((pxa2xx_spi_read(drv_data
, SSSR
) & SSSR_RNE
)
478 && (drv_data
->rx
< drv_data
->rx_end
)) {
479 *(u8
*)(drv_data
->rx
) = pxa2xx_spi_read(drv_data
, SSDR
);
483 return drv_data
->rx
== drv_data
->rx_end
;
486 static int u16_writer(struct driver_data
*drv_data
)
488 if (pxa2xx_spi_txfifo_full(drv_data
)
489 || (drv_data
->tx
== drv_data
->tx_end
))
492 pxa2xx_spi_write(drv_data
, SSDR
, *(u16
*)(drv_data
->tx
));
498 static int u16_reader(struct driver_data
*drv_data
)
500 while ((pxa2xx_spi_read(drv_data
, SSSR
) & SSSR_RNE
)
501 && (drv_data
->rx
< drv_data
->rx_end
)) {
502 *(u16
*)(drv_data
->rx
) = pxa2xx_spi_read(drv_data
, SSDR
);
506 return drv_data
->rx
== drv_data
->rx_end
;
509 static int u32_writer(struct driver_data
*drv_data
)
511 if (pxa2xx_spi_txfifo_full(drv_data
)
512 || (drv_data
->tx
== drv_data
->tx_end
))
515 pxa2xx_spi_write(drv_data
, SSDR
, *(u32
*)(drv_data
->tx
));
521 static int u32_reader(struct driver_data
*drv_data
)
523 while ((pxa2xx_spi_read(drv_data
, SSSR
) & SSSR_RNE
)
524 && (drv_data
->rx
< drv_data
->rx_end
)) {
525 *(u32
*)(drv_data
->rx
) = pxa2xx_spi_read(drv_data
, SSDR
);
529 return drv_data
->rx
== drv_data
->rx_end
;
532 void *pxa2xx_spi_next_transfer(struct driver_data
*drv_data
)
534 struct spi_message
*msg
= drv_data
->master
->cur_msg
;
535 struct spi_transfer
*trans
= drv_data
->cur_transfer
;
537 /* Move to next transfer */
538 if (trans
->transfer_list
.next
!= &msg
->transfers
) {
539 drv_data
->cur_transfer
=
540 list_entry(trans
->transfer_list
.next
,
543 return RUNNING_STATE
;
548 /* caller already set message->status; dma and pio irqs are blocked */
549 static void giveback(struct driver_data
*drv_data
)
551 struct spi_transfer
* last_transfer
;
552 struct spi_message
*msg
;
553 unsigned long timeout
;
555 msg
= drv_data
->master
->cur_msg
;
556 drv_data
->cur_transfer
= NULL
;
558 last_transfer
= list_last_entry(&msg
->transfers
, struct spi_transfer
,
561 /* Delay if requested before any change in chip select */
562 if (last_transfer
->delay_usecs
)
563 udelay(last_transfer
->delay_usecs
);
565 /* Wait until SSP becomes idle before deasserting the CS */
566 timeout
= jiffies
+ msecs_to_jiffies(10);
567 while (pxa2xx_spi_read(drv_data
, SSSR
) & SSSR_BSY
&&
568 !time_after(jiffies
, timeout
))
571 /* Drop chip select UNLESS cs_change is true or we are returning
572 * a message with an error, or next message is for another chip
574 if (!last_transfer
->cs_change
)
575 cs_deassert(drv_data
);
577 struct spi_message
*next_msg
;
579 /* Holding of cs was hinted, but we need to make sure
580 * the next message is for the same chip. Don't waste
581 * time with the following tests unless this was hinted.
583 * We cannot postpone this until pump_messages, because
584 * after calling msg->complete (below) the driver that
585 * sent the current message could be unloaded, which
586 * could invalidate the cs_control() callback...
589 /* get a pointer to the next message, if any */
590 next_msg
= spi_get_next_queued_message(drv_data
->master
);
592 /* see if the next and current messages point
595 if ((next_msg
&& next_msg
->spi
!= msg
->spi
) ||
596 msg
->state
== ERROR_STATE
)
597 cs_deassert(drv_data
);
600 spi_finalize_current_message(drv_data
->master
);
603 static void reset_sccr1(struct driver_data
*drv_data
)
605 struct chip_data
*chip
=
606 spi_get_ctldata(drv_data
->master
->cur_msg
->spi
);
609 sccr1_reg
= pxa2xx_spi_read(drv_data
, SSCR1
) & ~drv_data
->int_cr1
;
610 switch (drv_data
->ssp_type
) {
611 case QUARK_X1000_SSP
:
612 sccr1_reg
&= ~QUARK_X1000_SSCR1_RFT
;
615 sccr1_reg
&= ~CE4100_SSCR1_RFT
;
618 sccr1_reg
&= ~SSCR1_RFT
;
621 sccr1_reg
|= chip
->threshold
;
622 pxa2xx_spi_write(drv_data
, SSCR1
, sccr1_reg
);
625 static void int_error_stop(struct driver_data
*drv_data
, const char* msg
)
627 /* Stop and reset SSP */
628 write_SSSR_CS(drv_data
, drv_data
->clear_sr
);
629 reset_sccr1(drv_data
);
630 if (!pxa25x_ssp_comp(drv_data
))
631 pxa2xx_spi_write(drv_data
, SSTO
, 0);
632 pxa2xx_spi_flush(drv_data
);
633 pxa2xx_spi_write(drv_data
, SSCR0
,
634 pxa2xx_spi_read(drv_data
, SSCR0
) & ~SSCR0_SSE
);
636 dev_err(&drv_data
->pdev
->dev
, "%s\n", msg
);
638 drv_data
->master
->cur_msg
->state
= ERROR_STATE
;
639 tasklet_schedule(&drv_data
->pump_transfers
);
642 static void int_transfer_complete(struct driver_data
*drv_data
)
644 /* Clear and disable interrupts */
645 write_SSSR_CS(drv_data
, drv_data
->clear_sr
);
646 reset_sccr1(drv_data
);
647 if (!pxa25x_ssp_comp(drv_data
))
648 pxa2xx_spi_write(drv_data
, SSTO
, 0);
650 /* Update total byte transferred return count actual bytes read */
651 drv_data
->master
->cur_msg
->actual_length
+= drv_data
->len
-
652 (drv_data
->rx_end
- drv_data
->rx
);
654 /* Transfer delays and chip select release are
655 * handled in pump_transfers or giveback
658 /* Move to next transfer */
659 drv_data
->master
->cur_msg
->state
= pxa2xx_spi_next_transfer(drv_data
);
661 /* Schedule transfer tasklet */
662 tasklet_schedule(&drv_data
->pump_transfers
);
665 static irqreturn_t
interrupt_transfer(struct driver_data
*drv_data
)
667 u32 irq_mask
= (pxa2xx_spi_read(drv_data
, SSCR1
) & SSCR1_TIE
) ?
668 drv_data
->mask_sr
: drv_data
->mask_sr
& ~SSSR_TFS
;
670 u32 irq_status
= pxa2xx_spi_read(drv_data
, SSSR
) & irq_mask
;
672 if (irq_status
& SSSR_ROR
) {
673 int_error_stop(drv_data
, "interrupt_transfer: fifo overrun");
677 if (irq_status
& SSSR_TINT
) {
678 pxa2xx_spi_write(drv_data
, SSSR
, SSSR_TINT
);
679 if (drv_data
->read(drv_data
)) {
680 int_transfer_complete(drv_data
);
685 /* Drain rx fifo, Fill tx fifo and prevent overruns */
687 if (drv_data
->read(drv_data
)) {
688 int_transfer_complete(drv_data
);
691 } while (drv_data
->write(drv_data
));
693 if (drv_data
->read(drv_data
)) {
694 int_transfer_complete(drv_data
);
698 if (drv_data
->tx
== drv_data
->tx_end
) {
702 sccr1_reg
= pxa2xx_spi_read(drv_data
, SSCR1
);
703 sccr1_reg
&= ~SSCR1_TIE
;
706 * PXA25x_SSP has no timeout, set up rx threshould for the
707 * remaining RX bytes.
709 if (pxa25x_ssp_comp(drv_data
)) {
712 pxa2xx_spi_clear_rx_thre(drv_data
, &sccr1_reg
);
714 bytes_left
= drv_data
->rx_end
- drv_data
->rx
;
715 switch (drv_data
->n_bytes
) {
722 rx_thre
= pxa2xx_spi_get_rx_default_thre(drv_data
);
723 if (rx_thre
> bytes_left
)
724 rx_thre
= bytes_left
;
726 pxa2xx_spi_set_rx_thre(drv_data
, &sccr1_reg
, rx_thre
);
728 pxa2xx_spi_write(drv_data
, SSCR1
, sccr1_reg
);
731 /* We did something */
735 static void handle_bad_msg(struct driver_data
*drv_data
)
737 pxa2xx_spi_write(drv_data
, SSCR0
,
738 pxa2xx_spi_read(drv_data
, SSCR0
) & ~SSCR0_SSE
);
739 pxa2xx_spi_write(drv_data
, SSCR1
,
740 pxa2xx_spi_read(drv_data
, SSCR1
) & ~drv_data
->int_cr1
);
741 if (!pxa25x_ssp_comp(drv_data
))
742 pxa2xx_spi_write(drv_data
, SSTO
, 0);
743 write_SSSR_CS(drv_data
, drv_data
->clear_sr
);
745 dev_err(&drv_data
->pdev
->dev
,
746 "bad message state in interrupt handler\n");
749 static irqreturn_t
ssp_int(int irq
, void *dev_id
)
751 struct driver_data
*drv_data
= dev_id
;
753 u32 mask
= drv_data
->mask_sr
;
757 * The IRQ might be shared with other peripherals so we must first
758 * check that are we RPM suspended or not. If we are we assume that
759 * the IRQ was not for us (we shouldn't be RPM suspended when the
760 * interrupt is enabled).
762 if (pm_runtime_suspended(&drv_data
->pdev
->dev
))
766 * If the device is not yet in RPM suspended state and we get an
767 * interrupt that is meant for another device, check if status bits
768 * are all set to one. That means that the device is already
771 status
= pxa2xx_spi_read(drv_data
, SSSR
);
775 sccr1_reg
= pxa2xx_spi_read(drv_data
, SSCR1
);
777 /* Ignore possible writes if we don't need to write */
778 if (!(sccr1_reg
& SSCR1_TIE
))
781 /* Ignore RX timeout interrupt if it is disabled */
782 if (!(sccr1_reg
& SSCR1_TINTE
))
785 if (!(status
& mask
))
788 pxa2xx_spi_write(drv_data
, SSCR1
, sccr1_reg
& ~drv_data
->int_cr1
);
789 pxa2xx_spi_write(drv_data
, SSCR1
, sccr1_reg
);
791 if (!drv_data
->master
->cur_msg
) {
792 handle_bad_msg(drv_data
);
797 return drv_data
->transfer_handler(drv_data
);
801 * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
802 * input frequency by fractions of 2^24. It also has a divider by 5.
804 * There are formulas to get baud rate value for given input frequency and
805 * divider parameters, such as DDS_CLK_RATE and SCR:
809 * Fssp = Fsys * DDS_CLK_RATE / 2^24 (1)
810 * Baud rate = Fsclk = Fssp / (2 * (SCR + 1)) (2)
812 * DDS_CLK_RATE either 2^n or 2^n / 5.
813 * SCR is in range 0 .. 255
815 * Divisor = 5^i * 2^j * 2 * k
816 * i = [0, 1] i = 1 iff j = 0 or j > 3
817 * j = [0, 23] j = 0 iff i = 1
819 * Special case: j = 0, i = 1: Divisor = 2 / 5
821 * Accordingly to the specification the recommended values for DDS_CLK_RATE
823 * Case 1: 2^n, n = [0, 23]
824 * Case 2: 2^24 * 2 / 5 (0x666666)
825 * Case 3: less than or equal to 2^24 / 5 / 16 (0x33333)
827 * In all cases the lowest possible value is better.
829 * The function calculates parameters for all cases and chooses the one closest
830 * to the asked baud rate.
832 static unsigned int quark_x1000_get_clk_div(int rate
, u32
*dds
)
834 unsigned long xtal
= 200000000;
835 unsigned long fref
= xtal
/ 2; /* mandatory division by 2,
838 unsigned long fref1
= fref
/ 2; /* case 1 */
839 unsigned long fref2
= fref
* 2 / 5; /* case 2 */
841 unsigned long q
, q1
, q2
;
847 /* Set initial value for DDS_CLK_RATE */
848 mul
= (1 << 24) >> 1;
850 /* Calculate initial quot */
851 q1
= DIV_ROUND_UP(fref1
, rate
);
853 /* Scale q1 if it's too big */
855 /* Scale q1 to range [1, 512] */
856 scale
= fls_long(q1
- 1);
862 /* Round the result if we have a remainder */
866 /* Decrease DDS_CLK_RATE as much as we can without loss in precision */
871 /* Get the remainder */
872 r1
= abs(fref1
/ (1 << (24 - fls_long(mul
))) / q1
- rate
);
876 q2
= DIV_ROUND_UP(fref2
, rate
);
877 r2
= abs(fref2
/ q2
- rate
);
880 * Choose the best between two: less remainder we have the better. We
881 * can't go case 2 if q2 is greater than 256 since SCR register can
882 * hold only values 0 .. 255.
884 if (r2
>= r1
|| q2
> 256) {
885 /* case 1 is better */
889 /* case 2 is better */
892 mul
= (1 << 24) * 2 / 5;
895 /* Check case 3 only if the divisor is big enough */
896 if (fref
/ rate
>= 80) {
900 /* Calculate initial quot */
901 q1
= DIV_ROUND_UP(fref
, rate
);
904 /* Get the remainder */
905 fssp
= (u64
)fref
* m
;
906 do_div(fssp
, 1 << 24);
907 r1
= abs(fssp
- rate
);
909 /* Choose this one if it suits better */
911 /* case 3 is better */
921 static unsigned int ssp_get_clk_div(struct driver_data
*drv_data
, int rate
)
923 unsigned long ssp_clk
= drv_data
->master
->max_speed_hz
;
924 const struct ssp_device
*ssp
= drv_data
->ssp
;
926 rate
= min_t(int, ssp_clk
, rate
);
928 if (ssp
->type
== PXA25x_SSP
|| ssp
->type
== CE4100_SSP
)
929 return (ssp_clk
/ (2 * rate
) - 1) & 0xff;
931 return (ssp_clk
/ rate
- 1) & 0xfff;
934 static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data
*drv_data
,
937 struct chip_data
*chip
=
938 spi_get_ctldata(drv_data
->master
->cur_msg
->spi
);
939 unsigned int clk_div
;
941 switch (drv_data
->ssp_type
) {
942 case QUARK_X1000_SSP
:
943 clk_div
= quark_x1000_get_clk_div(rate
, &chip
->dds_rate
);
946 clk_div
= ssp_get_clk_div(drv_data
, rate
);
952 static bool pxa2xx_spi_can_dma(struct spi_master
*master
,
953 struct spi_device
*spi
,
954 struct spi_transfer
*xfer
)
956 struct chip_data
*chip
= spi_get_ctldata(spi
);
958 return chip
->enable_dma
&&
959 xfer
->len
<= MAX_DMA_LEN
&&
960 xfer
->len
>= chip
->dma_burst_size
;
963 static void pump_transfers(unsigned long data
)
965 struct driver_data
*drv_data
= (struct driver_data
*)data
;
966 struct spi_master
*master
= drv_data
->master
;
967 struct spi_message
*message
= master
->cur_msg
;
968 struct chip_data
*chip
= spi_get_ctldata(message
->spi
);
969 u32 dma_thresh
= chip
->dma_threshold
;
970 u32 dma_burst
= chip
->dma_burst_size
;
971 u32 change_mask
= pxa2xx_spi_get_ssrc1_change_mask(drv_data
);
972 struct spi_transfer
*transfer
;
973 struct spi_transfer
*previous
;
982 /* Get current state information */
983 transfer
= drv_data
->cur_transfer
;
985 /* Handle for abort */
986 if (message
->state
== ERROR_STATE
) {
987 message
->status
= -EIO
;
992 /* Handle end of message */
993 if (message
->state
== DONE_STATE
) {
999 /* Delay if requested at end of transfer before CS change */
1000 if (message
->state
== RUNNING_STATE
) {
1001 previous
= list_entry(transfer
->transfer_list
.prev
,
1002 struct spi_transfer
,
1004 if (previous
->delay_usecs
)
1005 udelay(previous
->delay_usecs
);
1007 /* Drop chip select only if cs_change is requested */
1008 if (previous
->cs_change
)
1009 cs_deassert(drv_data
);
1012 /* Check if we can DMA this transfer */
1013 if (transfer
->len
> MAX_DMA_LEN
&& chip
->enable_dma
) {
1015 /* reject already-mapped transfers; PIO won't always work */
1016 if (message
->is_dma_mapped
1017 || transfer
->rx_dma
|| transfer
->tx_dma
) {
1018 dev_err(&drv_data
->pdev
->dev
,
1019 "pump_transfers: mapped transfer length of "
1020 "%u is greater than %d\n",
1021 transfer
->len
, MAX_DMA_LEN
);
1022 message
->status
= -EINVAL
;
1027 /* warn ... we force this to PIO mode */
1028 dev_warn_ratelimited(&message
->spi
->dev
,
1029 "pump_transfers: DMA disabled for transfer length %ld "
1030 "greater than %d\n",
1031 (long)drv_data
->len
, MAX_DMA_LEN
);
1034 /* Setup the transfer state based on the type of transfer */
1035 if (pxa2xx_spi_flush(drv_data
) == 0) {
1036 dev_err(&drv_data
->pdev
->dev
, "pump_transfers: flush failed\n");
1037 message
->status
= -EIO
;
1041 drv_data
->n_bytes
= chip
->n_bytes
;
1042 drv_data
->tx
= (void *)transfer
->tx_buf
;
1043 drv_data
->tx_end
= drv_data
->tx
+ transfer
->len
;
1044 drv_data
->rx
= transfer
->rx_buf
;
1045 drv_data
->rx_end
= drv_data
->rx
+ transfer
->len
;
1046 drv_data
->len
= transfer
->len
;
1047 drv_data
->write
= drv_data
->tx
? chip
->write
: null_writer
;
1048 drv_data
->read
= drv_data
->rx
? chip
->read
: null_reader
;
1050 /* Change speed and bit per word on a per transfer */
1051 bits
= transfer
->bits_per_word
;
1052 speed
= transfer
->speed_hz
;
1054 clk_div
= pxa2xx_ssp_get_clk_div(drv_data
, speed
);
1057 drv_data
->n_bytes
= 1;
1058 drv_data
->read
= drv_data
->read
!= null_reader
?
1059 u8_reader
: null_reader
;
1060 drv_data
->write
= drv_data
->write
!= null_writer
?
1061 u8_writer
: null_writer
;
1062 } else if (bits
<= 16) {
1063 drv_data
->n_bytes
= 2;
1064 drv_data
->read
= drv_data
->read
!= null_reader
?
1065 u16_reader
: null_reader
;
1066 drv_data
->write
= drv_data
->write
!= null_writer
?
1067 u16_writer
: null_writer
;
1068 } else if (bits
<= 32) {
1069 drv_data
->n_bytes
= 4;
1070 drv_data
->read
= drv_data
->read
!= null_reader
?
1071 u32_reader
: null_reader
;
1072 drv_data
->write
= drv_data
->write
!= null_writer
?
1073 u32_writer
: null_writer
;
1076 * if bits/word is changed in dma mode, then must check the
1077 * thresholds and burst also
1079 if (chip
->enable_dma
) {
1080 if (pxa2xx_spi_set_dma_burst_and_threshold(chip
,
1084 dev_warn_ratelimited(&message
->spi
->dev
,
1085 "pump_transfers: DMA burst size reduced to match bits_per_word\n");
1088 message
->state
= RUNNING_STATE
;
1090 dma_mapped
= master
->can_dma
&&
1091 master
->can_dma(master
, message
->spi
, transfer
) &&
1092 master
->cur_msg_mapped
;
1095 /* Ensure we have the correct interrupt handler */
1096 drv_data
->transfer_handler
= pxa2xx_spi_dma_transfer
;
1098 err
= pxa2xx_spi_dma_prepare(drv_data
, dma_burst
);
1100 message
->status
= err
;
1105 /* Clear status and start DMA engine */
1106 cr1
= chip
->cr1
| dma_thresh
| drv_data
->dma_cr1
;
1107 pxa2xx_spi_write(drv_data
, SSSR
, drv_data
->clear_sr
);
1109 pxa2xx_spi_dma_start(drv_data
);
1111 /* Ensure we have the correct interrupt handler */
1112 drv_data
->transfer_handler
= interrupt_transfer
;
1115 cr1
= chip
->cr1
| chip
->threshold
| drv_data
->int_cr1
;
1116 write_SSSR_CS(drv_data
, drv_data
->clear_sr
);
1119 /* NOTE: PXA25x_SSP _could_ use external clocking ... */
1120 cr0
= pxa2xx_configure_sscr0(drv_data
, clk_div
, bits
);
1121 if (!pxa25x_ssp_comp(drv_data
))
1122 dev_dbg(&message
->spi
->dev
, "%u Hz actual, %s\n",
1123 master
->max_speed_hz
1124 / (1 + ((cr0
& SSCR0_SCR(0xfff)) >> 8)),
1125 dma_mapped
? "DMA" : "PIO");
1127 dev_dbg(&message
->spi
->dev
, "%u Hz actual, %s\n",
1128 master
->max_speed_hz
/ 2
1129 / (1 + ((cr0
& SSCR0_SCR(0x0ff)) >> 8)),
1130 dma_mapped
? "DMA" : "PIO");
1132 if (is_lpss_ssp(drv_data
)) {
1133 if ((pxa2xx_spi_read(drv_data
, SSIRF
) & 0xff)
1134 != chip
->lpss_rx_threshold
)
1135 pxa2xx_spi_write(drv_data
, SSIRF
,
1136 chip
->lpss_rx_threshold
);
1137 if ((pxa2xx_spi_read(drv_data
, SSITF
) & 0xffff)
1138 != chip
->lpss_tx_threshold
)
1139 pxa2xx_spi_write(drv_data
, SSITF
,
1140 chip
->lpss_tx_threshold
);
1143 if (is_quark_x1000_ssp(drv_data
) &&
1144 (pxa2xx_spi_read(drv_data
, DDS_RATE
) != chip
->dds_rate
))
1145 pxa2xx_spi_write(drv_data
, DDS_RATE
, chip
->dds_rate
);
1147 /* see if we need to reload the config registers */
1148 if ((pxa2xx_spi_read(drv_data
, SSCR0
) != cr0
)
1149 || (pxa2xx_spi_read(drv_data
, SSCR1
) & change_mask
)
1150 != (cr1
& change_mask
)) {
1151 /* stop the SSP, and update the other bits */
1152 pxa2xx_spi_write(drv_data
, SSCR0
, cr0
& ~SSCR0_SSE
);
1153 if (!pxa25x_ssp_comp(drv_data
))
1154 pxa2xx_spi_write(drv_data
, SSTO
, chip
->timeout
);
1155 /* first set CR1 without interrupt and service enables */
1156 pxa2xx_spi_write(drv_data
, SSCR1
, cr1
& change_mask
);
1157 /* restart the SSP */
1158 pxa2xx_spi_write(drv_data
, SSCR0
, cr0
);
1161 if (!pxa25x_ssp_comp(drv_data
))
1162 pxa2xx_spi_write(drv_data
, SSTO
, chip
->timeout
);
1165 cs_assert(drv_data
);
1167 /* after chip select, release the data by enabling service
1168 * requests and interrupts, without changing any mode bits */
1169 pxa2xx_spi_write(drv_data
, SSCR1
, cr1
);
1172 static int pxa2xx_spi_transfer_one_message(struct spi_master
*master
,
1173 struct spi_message
*msg
)
1175 struct driver_data
*drv_data
= spi_master_get_devdata(master
);
1177 /* Initial message state*/
1178 msg
->state
= START_STATE
;
1179 drv_data
->cur_transfer
= list_entry(msg
->transfers
.next
,
1180 struct spi_transfer
,
1183 /* Mark as busy and launch transfers */
1184 tasklet_schedule(&drv_data
->pump_transfers
);
1188 static int pxa2xx_spi_unprepare_transfer(struct spi_master
*master
)
1190 struct driver_data
*drv_data
= spi_master_get_devdata(master
);
1192 /* Disable the SSP now */
1193 pxa2xx_spi_write(drv_data
, SSCR0
,
1194 pxa2xx_spi_read(drv_data
, SSCR0
) & ~SSCR0_SSE
);
1199 static int setup_cs(struct spi_device
*spi
, struct chip_data
*chip
,
1200 struct pxa2xx_spi_chip
*chip_info
)
1202 struct driver_data
*drv_data
= spi_master_get_devdata(spi
->master
);
1208 if (drv_data
->cs_gpiods
) {
1209 struct gpio_desc
*gpiod
;
1211 gpiod
= drv_data
->cs_gpiods
[spi
->chip_select
];
1213 chip
->gpio_cs
= desc_to_gpio(gpiod
);
1214 chip
->gpio_cs_inverted
= spi
->mode
& SPI_CS_HIGH
;
1215 gpiod_set_value(gpiod
, chip
->gpio_cs_inverted
);
1221 if (chip_info
== NULL
)
1224 /* NOTE: setup() can be called multiple times, possibly with
1225 * different chip_info, release previously requested GPIO
1227 if (gpio_is_valid(chip
->gpio_cs
))
1228 gpio_free(chip
->gpio_cs
);
1230 /* If (*cs_control) is provided, ignore GPIO chip select */
1231 if (chip_info
->cs_control
) {
1232 chip
->cs_control
= chip_info
->cs_control
;
1236 if (gpio_is_valid(chip_info
->gpio_cs
)) {
1237 err
= gpio_request(chip_info
->gpio_cs
, "SPI_CS");
1239 dev_err(&spi
->dev
, "failed to request chip select GPIO%d\n",
1240 chip_info
->gpio_cs
);
1244 chip
->gpio_cs
= chip_info
->gpio_cs
;
1245 chip
->gpio_cs_inverted
= spi
->mode
& SPI_CS_HIGH
;
1247 err
= gpio_direction_output(chip
->gpio_cs
,
1248 !chip
->gpio_cs_inverted
);
1254 static int setup(struct spi_device
*spi
)
1256 struct pxa2xx_spi_chip
*chip_info
;
1257 struct chip_data
*chip
;
1258 const struct lpss_config
*config
;
1259 struct driver_data
*drv_data
= spi_master_get_devdata(spi
->master
);
1260 uint tx_thres
, tx_hi_thres
, rx_thres
;
1262 switch (drv_data
->ssp_type
) {
1263 case QUARK_X1000_SSP
:
1264 tx_thres
= TX_THRESH_QUARK_X1000_DFLT
;
1266 rx_thres
= RX_THRESH_QUARK_X1000_DFLT
;
1269 tx_thres
= TX_THRESH_CE4100_DFLT
;
1271 rx_thres
= RX_THRESH_CE4100_DFLT
;
1278 config
= lpss_get_config(drv_data
);
1279 tx_thres
= config
->tx_threshold_lo
;
1280 tx_hi_thres
= config
->tx_threshold_hi
;
1281 rx_thres
= config
->rx_threshold
;
1284 tx_thres
= TX_THRESH_DFLT
;
1286 rx_thres
= RX_THRESH_DFLT
;
1290 /* Only alloc on first setup */
1291 chip
= spi_get_ctldata(spi
);
1293 chip
= kzalloc(sizeof(struct chip_data
), GFP_KERNEL
);
1297 if (drv_data
->ssp_type
== CE4100_SSP
) {
1298 if (spi
->chip_select
> 4) {
1300 "failed setup: cs number must not be > 4.\n");
1305 chip
->frm
= spi
->chip_select
;
1308 chip
->enable_dma
= drv_data
->master_info
->enable_dma
;
1309 chip
->timeout
= TIMOUT_DFLT
;
1312 /* protocol drivers may change the chip settings, so...
1313 * if chip_info exists, use it */
1314 chip_info
= spi
->controller_data
;
1316 /* chip_info isn't always needed */
1319 if (chip_info
->timeout
)
1320 chip
->timeout
= chip_info
->timeout
;
1321 if (chip_info
->tx_threshold
)
1322 tx_thres
= chip_info
->tx_threshold
;
1323 if (chip_info
->tx_hi_threshold
)
1324 tx_hi_thres
= chip_info
->tx_hi_threshold
;
1325 if (chip_info
->rx_threshold
)
1326 rx_thres
= chip_info
->rx_threshold
;
1327 chip
->dma_threshold
= 0;
1328 if (chip_info
->enable_loopback
)
1329 chip
->cr1
= SSCR1_LBM
;
1332 chip
->lpss_rx_threshold
= SSIRF_RxThresh(rx_thres
);
1333 chip
->lpss_tx_threshold
= SSITF_TxLoThresh(tx_thres
)
1334 | SSITF_TxHiThresh(tx_hi_thres
);
1336 /* set dma burst and threshold outside of chip_info path so that if
1337 * chip_info goes away after setting chip->enable_dma, the
1338 * burst and threshold can still respond to changes in bits_per_word */
1339 if (chip
->enable_dma
) {
1340 /* set up legal burst and threshold for dma */
1341 if (pxa2xx_spi_set_dma_burst_and_threshold(chip
, spi
,
1343 &chip
->dma_burst_size
,
1344 &chip
->dma_threshold
)) {
1346 "in setup: DMA burst size reduced to match bits_per_word\n");
1350 switch (drv_data
->ssp_type
) {
1351 case QUARK_X1000_SSP
:
1352 chip
->threshold
= (QUARK_X1000_SSCR1_RxTresh(rx_thres
)
1353 & QUARK_X1000_SSCR1_RFT
)
1354 | (QUARK_X1000_SSCR1_TxTresh(tx_thres
)
1355 & QUARK_X1000_SSCR1_TFT
);
1358 chip
->threshold
= (CE4100_SSCR1_RxTresh(rx_thres
) & CE4100_SSCR1_RFT
) |
1359 (CE4100_SSCR1_TxTresh(tx_thres
) & CE4100_SSCR1_TFT
);
1362 chip
->threshold
= (SSCR1_RxTresh(rx_thres
) & SSCR1_RFT
) |
1363 (SSCR1_TxTresh(tx_thres
) & SSCR1_TFT
);
1367 chip
->cr1
&= ~(SSCR1_SPO
| SSCR1_SPH
);
1368 chip
->cr1
|= (((spi
->mode
& SPI_CPHA
) != 0) ? SSCR1_SPH
: 0)
1369 | (((spi
->mode
& SPI_CPOL
) != 0) ? SSCR1_SPO
: 0);
1371 if (spi
->mode
& SPI_LOOP
)
1372 chip
->cr1
|= SSCR1_LBM
;
1374 if (spi
->bits_per_word
<= 8) {
1376 chip
->read
= u8_reader
;
1377 chip
->write
= u8_writer
;
1378 } else if (spi
->bits_per_word
<= 16) {
1380 chip
->read
= u16_reader
;
1381 chip
->write
= u16_writer
;
1382 } else if (spi
->bits_per_word
<= 32) {
1384 chip
->read
= u32_reader
;
1385 chip
->write
= u32_writer
;
1388 spi_set_ctldata(spi
, chip
);
1390 if (drv_data
->ssp_type
== CE4100_SSP
)
1393 return setup_cs(spi
, chip
, chip_info
);
1396 static void cleanup(struct spi_device
*spi
)
1398 struct chip_data
*chip
= spi_get_ctldata(spi
);
1399 struct driver_data
*drv_data
= spi_master_get_devdata(spi
->master
);
1404 if (drv_data
->ssp_type
!= CE4100_SSP
&& !drv_data
->cs_gpiods
&&
1405 gpio_is_valid(chip
->gpio_cs
))
1406 gpio_free(chip
->gpio_cs
);
1414 static const struct acpi_device_id pxa2xx_spi_acpi_match
[] = {
1415 { "INT33C0", LPSS_LPT_SSP
},
1416 { "INT33C1", LPSS_LPT_SSP
},
1417 { "INT3430", LPSS_LPT_SSP
},
1418 { "INT3431", LPSS_LPT_SSP
},
1419 { "80860F0E", LPSS_BYT_SSP
},
1420 { "8086228E", LPSS_BSW_SSP
},
1423 MODULE_DEVICE_TABLE(acpi
, pxa2xx_spi_acpi_match
);
1425 static int pxa2xx_spi_get_port_id(struct acpi_device
*adev
)
1430 if (adev
&& adev
->pnp
.unique_id
&&
1431 !kstrtouint(adev
->pnp
.unique_id
, 0, &devid
))
1435 #else /* !CONFIG_ACPI */
1436 static int pxa2xx_spi_get_port_id(struct acpi_device
*adev
)
1443 * PCI IDs of compound devices that integrate both host controller and private
1444 * integrated DMA engine. Please note these are not used in module
1445 * autoloading and probing in this module but matching the LPSS SSP type.
1447 static const struct pci_device_id pxa2xx_spi_pci_compound_match
[] = {
1449 { PCI_VDEVICE(INTEL
, 0x9d29), LPSS_SPT_SSP
},
1450 { PCI_VDEVICE(INTEL
, 0x9d2a), LPSS_SPT_SSP
},
1452 { PCI_VDEVICE(INTEL
, 0xa129), LPSS_SPT_SSP
},
1453 { PCI_VDEVICE(INTEL
, 0xa12a), LPSS_SPT_SSP
},
1455 { PCI_VDEVICE(INTEL
, 0xa2a9), LPSS_SPT_SSP
},
1456 { PCI_VDEVICE(INTEL
, 0xa2aa), LPSS_SPT_SSP
},
1458 { PCI_VDEVICE(INTEL
, 0x0ac2), LPSS_BXT_SSP
},
1459 { PCI_VDEVICE(INTEL
, 0x0ac4), LPSS_BXT_SSP
},
1460 { PCI_VDEVICE(INTEL
, 0x0ac6), LPSS_BXT_SSP
},
1462 { PCI_VDEVICE(INTEL
, 0x1ac2), LPSS_BXT_SSP
},
1463 { PCI_VDEVICE(INTEL
, 0x1ac4), LPSS_BXT_SSP
},
1464 { PCI_VDEVICE(INTEL
, 0x1ac6), LPSS_BXT_SSP
},
1466 { PCI_VDEVICE(INTEL
, 0x31c2), LPSS_BXT_SSP
},
1467 { PCI_VDEVICE(INTEL
, 0x31c4), LPSS_BXT_SSP
},
1468 { PCI_VDEVICE(INTEL
, 0x31c6), LPSS_BXT_SSP
},
1470 { PCI_VDEVICE(INTEL
, 0x5ac2), LPSS_BXT_SSP
},
1471 { PCI_VDEVICE(INTEL
, 0x5ac4), LPSS_BXT_SSP
},
1472 { PCI_VDEVICE(INTEL
, 0x5ac6), LPSS_BXT_SSP
},
1476 static bool pxa2xx_spi_idma_filter(struct dma_chan
*chan
, void *param
)
1478 struct device
*dev
= param
;
1480 if (dev
!= chan
->device
->dev
->parent
)
1486 static struct pxa2xx_spi_master
*
1487 pxa2xx_spi_init_pdata(struct platform_device
*pdev
)
1489 struct pxa2xx_spi_master
*pdata
;
1490 struct acpi_device
*adev
;
1491 struct ssp_device
*ssp
;
1492 struct resource
*res
;
1493 const struct acpi_device_id
*adev_id
= NULL
;
1494 const struct pci_device_id
*pcidev_id
= NULL
;
1497 adev
= ACPI_COMPANION(&pdev
->dev
);
1499 if (dev_is_pci(pdev
->dev
.parent
))
1500 pcidev_id
= pci_match_id(pxa2xx_spi_pci_compound_match
,
1501 to_pci_dev(pdev
->dev
.parent
));
1503 adev_id
= acpi_match_device(pdev
->dev
.driver
->acpi_match_table
,
1509 type
= (int)adev_id
->driver_data
;
1511 type
= (int)pcidev_id
->driver_data
;
1515 pdata
= devm_kzalloc(&pdev
->dev
, sizeof(*pdata
), GFP_KERNEL
);
1519 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1525 ssp
->phys_base
= res
->start
;
1526 ssp
->mmio_base
= devm_ioremap_resource(&pdev
->dev
, res
);
1527 if (IS_ERR(ssp
->mmio_base
))
1531 pdata
->tx_param
= pdev
->dev
.parent
;
1532 pdata
->rx_param
= pdev
->dev
.parent
;
1533 pdata
->dma_filter
= pxa2xx_spi_idma_filter
;
1536 ssp
->clk
= devm_clk_get(&pdev
->dev
, NULL
);
1537 ssp
->irq
= platform_get_irq(pdev
, 0);
1540 ssp
->port_id
= pxa2xx_spi_get_port_id(adev
);
1542 pdata
->num_chipselect
= 1;
1543 pdata
->enable_dma
= true;
1548 #else /* !CONFIG_PCI */
1549 static inline struct pxa2xx_spi_master
*
1550 pxa2xx_spi_init_pdata(struct platform_device
*pdev
)
1556 static int pxa2xx_spi_fw_translate_cs(struct spi_master
*master
, unsigned cs
)
1558 struct driver_data
*drv_data
= spi_master_get_devdata(master
);
1560 if (has_acpi_companion(&drv_data
->pdev
->dev
)) {
1561 switch (drv_data
->ssp_type
) {
1563 * For Atoms the ACPI DeviceSelection used by the Windows
1564 * driver starts from 1 instead of 0 so translate it here
1565 * to match what Linux expects.
1579 static int pxa2xx_spi_probe(struct platform_device
*pdev
)
1581 struct device
*dev
= &pdev
->dev
;
1582 struct pxa2xx_spi_master
*platform_info
;
1583 struct spi_master
*master
;
1584 struct driver_data
*drv_data
;
1585 struct ssp_device
*ssp
;
1586 const struct lpss_config
*config
;
1590 platform_info
= dev_get_platdata(dev
);
1591 if (!platform_info
) {
1592 platform_info
= pxa2xx_spi_init_pdata(pdev
);
1593 if (!platform_info
) {
1594 dev_err(&pdev
->dev
, "missing platform data\n");
1599 ssp
= pxa_ssp_request(pdev
->id
, pdev
->name
);
1601 ssp
= &platform_info
->ssp
;
1603 if (!ssp
->mmio_base
) {
1604 dev_err(&pdev
->dev
, "failed to get ssp\n");
1608 master
= spi_alloc_master(dev
, sizeof(struct driver_data
));
1610 dev_err(&pdev
->dev
, "cannot alloc spi_master\n");
1614 drv_data
= spi_master_get_devdata(master
);
1615 drv_data
->master
= master
;
1616 drv_data
->master_info
= platform_info
;
1617 drv_data
->pdev
= pdev
;
1618 drv_data
->ssp
= ssp
;
1620 master
->dev
.of_node
= pdev
->dev
.of_node
;
1621 /* the spi->mode bits understood by this driver: */
1622 master
->mode_bits
= SPI_CPOL
| SPI_CPHA
| SPI_CS_HIGH
| SPI_LOOP
;
1624 master
->bus_num
= ssp
->port_id
;
1625 master
->dma_alignment
= DMA_ALIGNMENT
;
1626 master
->cleanup
= cleanup
;
1627 master
->setup
= setup
;
1628 master
->transfer_one_message
= pxa2xx_spi_transfer_one_message
;
1629 master
->unprepare_transfer_hardware
= pxa2xx_spi_unprepare_transfer
;
1630 master
->fw_translate_cs
= pxa2xx_spi_fw_translate_cs
;
1631 master
->auto_runtime_pm
= true;
1632 master
->flags
= SPI_MASTER_MUST_RX
| SPI_MASTER_MUST_TX
;
1634 drv_data
->ssp_type
= ssp
->type
;
1636 drv_data
->ioaddr
= ssp
->mmio_base
;
1637 drv_data
->ssdr_physical
= ssp
->phys_base
+ SSDR
;
1638 if (pxa25x_ssp_comp(drv_data
)) {
1639 switch (drv_data
->ssp_type
) {
1640 case QUARK_X1000_SSP
:
1641 master
->bits_per_word_mask
= SPI_BPW_RANGE_MASK(4, 32);
1644 master
->bits_per_word_mask
= SPI_BPW_RANGE_MASK(4, 16);
1648 drv_data
->int_cr1
= SSCR1_TIE
| SSCR1_RIE
;
1649 drv_data
->dma_cr1
= 0;
1650 drv_data
->clear_sr
= SSSR_ROR
;
1651 drv_data
->mask_sr
= SSSR_RFS
| SSSR_TFS
| SSSR_ROR
;
1653 master
->bits_per_word_mask
= SPI_BPW_RANGE_MASK(4, 32);
1654 drv_data
->int_cr1
= SSCR1_TIE
| SSCR1_RIE
| SSCR1_TINTE
;
1655 drv_data
->dma_cr1
= DEFAULT_DMA_CR1
;
1656 drv_data
->clear_sr
= SSSR_ROR
| SSSR_TINT
;
1657 drv_data
->mask_sr
= SSSR_TINT
| SSSR_RFS
| SSSR_TFS
| SSSR_ROR
;
1660 status
= request_irq(ssp
->irq
, ssp_int
, IRQF_SHARED
, dev_name(dev
),
1663 dev_err(&pdev
->dev
, "cannot get IRQ %d\n", ssp
->irq
);
1664 goto out_error_master_alloc
;
1667 /* Setup DMA if requested */
1668 if (platform_info
->enable_dma
) {
1669 status
= pxa2xx_spi_dma_setup(drv_data
);
1671 dev_dbg(dev
, "no DMA channels available, using PIO\n");
1672 platform_info
->enable_dma
= false;
1674 master
->can_dma
= pxa2xx_spi_can_dma
;
1678 /* Enable SOC clock */
1679 clk_prepare_enable(ssp
->clk
);
1681 master
->max_speed_hz
= clk_get_rate(ssp
->clk
);
1683 /* Load default SSP configuration */
1684 pxa2xx_spi_write(drv_data
, SSCR0
, 0);
1685 switch (drv_data
->ssp_type
) {
1686 case QUARK_X1000_SSP
:
1687 tmp
= QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT
) |
1688 QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT
);
1689 pxa2xx_spi_write(drv_data
, SSCR1
, tmp
);
1691 /* using the Motorola SPI protocol and use 8 bit frame */
1692 tmp
= QUARK_X1000_SSCR0_Motorola
| QUARK_X1000_SSCR0_DataSize(8);
1693 pxa2xx_spi_write(drv_data
, SSCR0
, tmp
);
1696 tmp
= CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT
) |
1697 CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT
);
1698 pxa2xx_spi_write(drv_data
, SSCR1
, tmp
);
1699 tmp
= SSCR0_SCR(2) | SSCR0_Motorola
| SSCR0_DataSize(8);
1700 pxa2xx_spi_write(drv_data
, SSCR0
, tmp
);
1703 tmp
= SSCR1_RxTresh(RX_THRESH_DFLT
) |
1704 SSCR1_TxTresh(TX_THRESH_DFLT
);
1705 pxa2xx_spi_write(drv_data
, SSCR1
, tmp
);
1706 tmp
= SSCR0_SCR(2) | SSCR0_Motorola
| SSCR0_DataSize(8);
1707 pxa2xx_spi_write(drv_data
, SSCR0
, tmp
);
1711 if (!pxa25x_ssp_comp(drv_data
))
1712 pxa2xx_spi_write(drv_data
, SSTO
, 0);
1714 if (!is_quark_x1000_ssp(drv_data
))
1715 pxa2xx_spi_write(drv_data
, SSPSP
, 0);
1717 if (is_lpss_ssp(drv_data
)) {
1718 lpss_ssp_setup(drv_data
);
1719 config
= lpss_get_config(drv_data
);
1720 if (config
->reg_capabilities
>= 0) {
1721 tmp
= __lpss_ssp_read_priv(drv_data
,
1722 config
->reg_capabilities
);
1723 tmp
&= LPSS_CAPS_CS_EN_MASK
;
1724 tmp
>>= LPSS_CAPS_CS_EN_SHIFT
;
1725 platform_info
->num_chipselect
= ffz(tmp
);
1726 } else if (config
->cs_num
) {
1727 platform_info
->num_chipselect
= config
->cs_num
;
1730 master
->num_chipselect
= platform_info
->num_chipselect
;
1732 count
= gpiod_count(&pdev
->dev
, "cs");
1736 master
->num_chipselect
= max_t(int, count
,
1737 master
->num_chipselect
);
1739 drv_data
->cs_gpiods
= devm_kcalloc(&pdev
->dev
,
1740 master
->num_chipselect
, sizeof(struct gpio_desc
*),
1742 if (!drv_data
->cs_gpiods
) {
1744 goto out_error_clock_enabled
;
1747 for (i
= 0; i
< master
->num_chipselect
; i
++) {
1748 struct gpio_desc
*gpiod
;
1750 gpiod
= devm_gpiod_get_index(dev
, "cs", i
,
1752 if (IS_ERR(gpiod
)) {
1753 /* Means use native chip select */
1754 if (PTR_ERR(gpiod
) == -ENOENT
)
1757 status
= (int)PTR_ERR(gpiod
);
1758 goto out_error_clock_enabled
;
1760 drv_data
->cs_gpiods
[i
] = gpiod
;
1765 tasklet_init(&drv_data
->pump_transfers
, pump_transfers
,
1766 (unsigned long)drv_data
);
1768 pm_runtime_set_autosuspend_delay(&pdev
->dev
, 50);
1769 pm_runtime_use_autosuspend(&pdev
->dev
);
1770 pm_runtime_set_active(&pdev
->dev
);
1771 pm_runtime_enable(&pdev
->dev
);
1773 /* Register with the SPI framework */
1774 platform_set_drvdata(pdev
, drv_data
);
1775 status
= devm_spi_register_master(&pdev
->dev
, master
);
1777 dev_err(&pdev
->dev
, "problem registering spi master\n");
1778 goto out_error_clock_enabled
;
1783 out_error_clock_enabled
:
1784 clk_disable_unprepare(ssp
->clk
);
1785 pxa2xx_spi_dma_release(drv_data
);
1786 free_irq(ssp
->irq
, drv_data
);
1788 out_error_master_alloc
:
1789 spi_master_put(master
);
1794 static int pxa2xx_spi_remove(struct platform_device
*pdev
)
1796 struct driver_data
*drv_data
= platform_get_drvdata(pdev
);
1797 struct ssp_device
*ssp
;
1801 ssp
= drv_data
->ssp
;
1803 pm_runtime_get_sync(&pdev
->dev
);
1805 /* Disable the SSP at the peripheral and SOC level */
1806 pxa2xx_spi_write(drv_data
, SSCR0
, 0);
1807 clk_disable_unprepare(ssp
->clk
);
1810 if (drv_data
->master_info
->enable_dma
)
1811 pxa2xx_spi_dma_release(drv_data
);
1813 pm_runtime_put_noidle(&pdev
->dev
);
1814 pm_runtime_disable(&pdev
->dev
);
1817 free_irq(ssp
->irq
, drv_data
);
1825 static void pxa2xx_spi_shutdown(struct platform_device
*pdev
)
1829 if ((status
= pxa2xx_spi_remove(pdev
)) != 0)
1830 dev_err(&pdev
->dev
, "shutdown failed with %d\n", status
);
1833 #ifdef CONFIG_PM_SLEEP
1834 static int pxa2xx_spi_suspend(struct device
*dev
)
1836 struct driver_data
*drv_data
= dev_get_drvdata(dev
);
1837 struct ssp_device
*ssp
= drv_data
->ssp
;
1840 status
= spi_master_suspend(drv_data
->master
);
1843 pxa2xx_spi_write(drv_data
, SSCR0
, 0);
1845 if (!pm_runtime_suspended(dev
))
1846 clk_disable_unprepare(ssp
->clk
);
1851 static int pxa2xx_spi_resume(struct device
*dev
)
1853 struct driver_data
*drv_data
= dev_get_drvdata(dev
);
1854 struct ssp_device
*ssp
= drv_data
->ssp
;
1857 /* Enable the SSP clock */
1858 if (!pm_runtime_suspended(dev
))
1859 clk_prepare_enable(ssp
->clk
);
1861 /* Restore LPSS private register bits */
1862 if (is_lpss_ssp(drv_data
))
1863 lpss_ssp_setup(drv_data
);
1865 /* Start the queue running */
1866 status
= spi_master_resume(drv_data
->master
);
1868 dev_err(dev
, "problem starting queue (%d)\n", status
);
1877 static int pxa2xx_spi_runtime_suspend(struct device
*dev
)
1879 struct driver_data
*drv_data
= dev_get_drvdata(dev
);
1881 clk_disable_unprepare(drv_data
->ssp
->clk
);
1885 static int pxa2xx_spi_runtime_resume(struct device
*dev
)
1887 struct driver_data
*drv_data
= dev_get_drvdata(dev
);
1889 clk_prepare_enable(drv_data
->ssp
->clk
);
1894 static const struct dev_pm_ops pxa2xx_spi_pm_ops
= {
1895 SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend
, pxa2xx_spi_resume
)
1896 SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend
,
1897 pxa2xx_spi_runtime_resume
, NULL
)
1900 static struct platform_driver driver
= {
1902 .name
= "pxa2xx-spi",
1903 .pm
= &pxa2xx_spi_pm_ops
,
1904 .acpi_match_table
= ACPI_PTR(pxa2xx_spi_acpi_match
),
1906 .probe
= pxa2xx_spi_probe
,
1907 .remove
= pxa2xx_spi_remove
,
1908 .shutdown
= pxa2xx_spi_shutdown
,
1911 static int __init
pxa2xx_spi_init(void)
1913 return platform_driver_register(&driver
);
1915 subsys_initcall(pxa2xx_spi_init
);
1917 static void __exit
pxa2xx_spi_exit(void)
1919 platform_driver_unregister(&driver
);
1921 module_exit(pxa2xx_spi_exit
);