1 // SPDX-License-Identifier: GPL-2.0
3 #include <linux/fsnotify_backend.h>
4 #include <linux/namei.h>
5 #include <linux/mount.h>
6 #include <linux/kthread.h>
7 #include <linux/refcount.h>
8 #include <linux/slab.h>
16 struct audit_chunk
*root
;
17 struct list_head chunks
;
18 struct list_head rules
;
19 struct list_head list
;
20 struct list_head same_root
;
26 struct list_head hash
;
28 struct fsnotify_mark
*mark
;
29 struct list_head trees
; /* with root here */
34 struct list_head list
;
35 struct audit_tree
*owner
;
36 unsigned index
; /* index; upper bit indicates 'will prune' */
40 struct audit_tree_mark
{
41 struct fsnotify_mark mark
;
42 struct audit_chunk
*chunk
;
45 static LIST_HEAD(tree_list
);
46 static LIST_HEAD(prune_list
);
47 static struct task_struct
*prune_thread
;
50 * One struct chunk is attached to each inode of interest through
51 * audit_tree_mark (fsnotify mark). We replace struct chunk on tagging /
52 * untagging, the mark is stable as long as there is chunk attached. The
53 * association between mark and chunk is protected by hash_lock and
54 * audit_tree_group->mark_mutex. Thus as long as we hold
55 * audit_tree_group->mark_mutex and check that the mark is alive by
56 * FSNOTIFY_MARK_FLAG_ATTACHED flag check, we are sure the mark points to
59 * Rules have pointer to struct audit_tree.
60 * Rules have struct list_head rlist forming a list of rules over
62 * References to struct chunk are collected at audit_inode{,_child}()
63 * time and used in AUDIT_TREE rule matching.
64 * These references are dropped at the same time we are calling
65 * audit_free_names(), etc.
67 * Cyclic lists galore:
68 * tree.chunks anchors chunk.owners[].list hash_lock
69 * tree.rules anchors rule.rlist audit_filter_mutex
70 * chunk.trees anchors tree.same_root hash_lock
71 * chunk.hash is a hash with middle bits of watch.inode as
72 * a hash function. RCU, hash_lock
74 * tree is refcounted; one reference for "some rules on rules_list refer to
75 * it", one for each chunk with pointer to it.
77 * chunk is refcounted by embedded .refs. Mark associated with the chunk holds
78 * one chunk reference. This reference is dropped either when a mark is going
79 * to be freed (corresponding inode goes away) or when chunk attached to the
80 * mark gets replaced. This reference must be dropped using
81 * audit_mark_put_chunk() to make sure the reference is dropped only after RCU
82 * grace period as it protects RCU readers of the hash table.
84 * node.index allows to get from node.list to containing chunk.
85 * MSB of that sucker is stolen to mark taggings that we might have to
86 * revert - several operations have very unpleasant cleanup logics and
87 * that makes a difference. Some.
90 static struct fsnotify_group
*audit_tree_group
;
91 static struct kmem_cache
*audit_tree_mark_cachep __read_mostly
;
93 static struct audit_tree
*alloc_tree(const char *s
)
95 struct audit_tree
*tree
;
97 tree
= kmalloc(sizeof(struct audit_tree
) + strlen(s
) + 1, GFP_KERNEL
);
99 refcount_set(&tree
->count
, 1);
101 INIT_LIST_HEAD(&tree
->chunks
);
102 INIT_LIST_HEAD(&tree
->rules
);
103 INIT_LIST_HEAD(&tree
->list
);
104 INIT_LIST_HEAD(&tree
->same_root
);
106 strcpy(tree
->pathname
, s
);
111 static inline void get_tree(struct audit_tree
*tree
)
113 refcount_inc(&tree
->count
);
116 static inline void put_tree(struct audit_tree
*tree
)
118 if (refcount_dec_and_test(&tree
->count
))
119 kfree_rcu(tree
, head
);
122 /* to avoid bringing the entire thing in audit.h */
123 const char *audit_tree_path(struct audit_tree
*tree
)
125 return tree
->pathname
;
128 static void free_chunk(struct audit_chunk
*chunk
)
132 for (i
= 0; i
< chunk
->count
; i
++) {
133 if (chunk
->owners
[i
].owner
)
134 put_tree(chunk
->owners
[i
].owner
);
139 void audit_put_chunk(struct audit_chunk
*chunk
)
141 if (atomic_long_dec_and_test(&chunk
->refs
))
145 static void __put_chunk(struct rcu_head
*rcu
)
147 struct audit_chunk
*chunk
= container_of(rcu
, struct audit_chunk
, head
);
148 audit_put_chunk(chunk
);
152 * Drop reference to the chunk that was held by the mark. This is the reference
153 * that gets dropped after we've removed the chunk from the hash table and we
154 * use it to make sure chunk cannot be freed before RCU grace period expires.
156 static void audit_mark_put_chunk(struct audit_chunk
*chunk
)
158 call_rcu(&chunk
->head
, __put_chunk
);
161 static inline struct audit_tree_mark
*audit_mark(struct fsnotify_mark
*mark
)
163 return container_of(mark
, struct audit_tree_mark
, mark
);
166 static struct audit_chunk
*mark_chunk(struct fsnotify_mark
*mark
)
168 return audit_mark(mark
)->chunk
;
171 static void audit_tree_destroy_watch(struct fsnotify_mark
*mark
)
173 kmem_cache_free(audit_tree_mark_cachep
, audit_mark(mark
));
176 static struct fsnotify_mark
*alloc_mark(void)
178 struct audit_tree_mark
*amark
;
180 amark
= kmem_cache_zalloc(audit_tree_mark_cachep
, GFP_KERNEL
);
183 fsnotify_init_mark(&amark
->mark
, audit_tree_group
);
184 amark
->mark
.mask
= FS_IN_IGNORED
;
188 static struct audit_chunk
*alloc_chunk(int count
)
190 struct audit_chunk
*chunk
;
194 size
= offsetof(struct audit_chunk
, owners
) + count
* sizeof(struct node
);
195 chunk
= kzalloc(size
, GFP_KERNEL
);
199 INIT_LIST_HEAD(&chunk
->hash
);
200 INIT_LIST_HEAD(&chunk
->trees
);
201 chunk
->count
= count
;
202 atomic_long_set(&chunk
->refs
, 1);
203 for (i
= 0; i
< count
; i
++) {
204 INIT_LIST_HEAD(&chunk
->owners
[i
].list
);
205 chunk
->owners
[i
].index
= i
;
210 enum {HASH_SIZE
= 128};
211 static struct list_head chunk_hash_heads
[HASH_SIZE
];
212 static __cacheline_aligned_in_smp
DEFINE_SPINLOCK(hash_lock
);
214 /* Function to return search key in our hash from inode. */
215 static unsigned long inode_to_key(const struct inode
*inode
)
217 /* Use address pointed to by connector->obj as the key */
218 return (unsigned long)&inode
->i_fsnotify_marks
;
221 static inline struct list_head
*chunk_hash(unsigned long key
)
223 unsigned long n
= key
/ L1_CACHE_BYTES
;
224 return chunk_hash_heads
+ n
% HASH_SIZE
;
227 /* hash_lock & mark->group->mark_mutex is held by caller */
228 static void insert_hash(struct audit_chunk
*chunk
)
230 struct list_head
*list
;
233 * Make sure chunk is fully initialized before making it visible in the
234 * hash. Pairs with a data dependency barrier in READ_ONCE() in
235 * audit_tree_lookup().
238 WARN_ON_ONCE(!chunk
->key
);
239 list
= chunk_hash(chunk
->key
);
240 list_add_rcu(&chunk
->hash
, list
);
243 /* called under rcu_read_lock */
244 struct audit_chunk
*audit_tree_lookup(const struct inode
*inode
)
246 unsigned long key
= inode_to_key(inode
);
247 struct list_head
*list
= chunk_hash(key
);
248 struct audit_chunk
*p
;
250 list_for_each_entry_rcu(p
, list
, hash
) {
252 * We use a data dependency barrier in READ_ONCE() to make sure
253 * the chunk we see is fully initialized.
255 if (READ_ONCE(p
->key
) == key
) {
256 atomic_long_inc(&p
->refs
);
263 bool audit_tree_match(struct audit_chunk
*chunk
, struct audit_tree
*tree
)
266 for (n
= 0; n
< chunk
->count
; n
++)
267 if (chunk
->owners
[n
].owner
== tree
)
272 /* tagging and untagging inodes with trees */
274 static struct audit_chunk
*find_chunk(struct node
*p
)
276 int index
= p
->index
& ~(1U<<31);
278 return container_of(p
, struct audit_chunk
, owners
[0]);
281 static void replace_mark_chunk(struct fsnotify_mark
*mark
,
282 struct audit_chunk
*chunk
)
284 struct audit_chunk
*old
;
286 assert_spin_locked(&hash_lock
);
287 old
= mark_chunk(mark
);
288 audit_mark(mark
)->chunk
= chunk
;
295 static void replace_chunk(struct audit_chunk
*new, struct audit_chunk
*old
)
297 struct audit_tree
*owner
;
301 list_splice_init(&old
->trees
, &new->trees
);
302 list_for_each_entry(owner
, &new->trees
, same_root
)
304 for (i
= j
= 0; j
< old
->count
; i
++, j
++) {
305 if (!old
->owners
[j
].owner
) {
309 owner
= old
->owners
[j
].owner
;
310 new->owners
[i
].owner
= owner
;
311 new->owners
[i
].index
= old
->owners
[j
].index
- j
+ i
;
312 if (!owner
) /* result of earlier fallback */
315 list_replace_init(&old
->owners
[j
].list
, &new->owners
[i
].list
);
317 replace_mark_chunk(old
->mark
, new);
319 * Make sure chunk is fully initialized before making it visible in the
320 * hash. Pairs with a data dependency barrier in READ_ONCE() in
321 * audit_tree_lookup().
324 list_replace_rcu(&old
->hash
, &new->hash
);
327 static void remove_chunk_node(struct audit_chunk
*chunk
, struct node
*p
)
329 struct audit_tree
*owner
= p
->owner
;
331 if (owner
->root
== chunk
) {
332 list_del_init(&owner
->same_root
);
335 list_del_init(&p
->list
);
340 static int chunk_count_trees(struct audit_chunk
*chunk
)
345 for (i
= 0; i
< chunk
->count
; i
++)
346 if (chunk
->owners
[i
].owner
)
351 static void untag_chunk(struct audit_chunk
*chunk
, struct fsnotify_mark
*mark
)
353 struct audit_chunk
*new;
356 mutex_lock(&audit_tree_group
->mark_mutex
);
358 * mark_mutex stabilizes chunk attached to the mark so we can check
359 * whether it didn't change while we've dropped hash_lock.
361 if (!(mark
->flags
& FSNOTIFY_MARK_FLAG_ATTACHED
) ||
362 mark_chunk(mark
) != chunk
)
365 size
= chunk_count_trees(chunk
);
367 spin_lock(&hash_lock
);
368 list_del_init(&chunk
->trees
);
369 list_del_rcu(&chunk
->hash
);
370 replace_mark_chunk(mark
, NULL
);
371 spin_unlock(&hash_lock
);
372 fsnotify_detach_mark(mark
);
373 mutex_unlock(&audit_tree_group
->mark_mutex
);
374 audit_mark_put_chunk(chunk
);
375 fsnotify_free_mark(mark
);
379 new = alloc_chunk(size
);
383 spin_lock(&hash_lock
);
385 * This has to go last when updating chunk as once replace_chunk() is
386 * called, new RCU readers can see the new chunk.
388 replace_chunk(new, chunk
);
389 spin_unlock(&hash_lock
);
390 mutex_unlock(&audit_tree_group
->mark_mutex
);
391 audit_mark_put_chunk(chunk
);
395 mutex_unlock(&audit_tree_group
->mark_mutex
);
398 /* Call with group->mark_mutex held, releases it */
399 static int create_chunk(struct inode
*inode
, struct audit_tree
*tree
)
401 struct fsnotify_mark
*mark
;
402 struct audit_chunk
*chunk
= alloc_chunk(1);
405 mutex_unlock(&audit_tree_group
->mark_mutex
);
411 mutex_unlock(&audit_tree_group
->mark_mutex
);
416 if (fsnotify_add_inode_mark_locked(mark
, inode
, 0)) {
417 mutex_unlock(&audit_tree_group
->mark_mutex
);
418 fsnotify_put_mark(mark
);
423 spin_lock(&hash_lock
);
425 spin_unlock(&hash_lock
);
426 fsnotify_detach_mark(mark
);
427 mutex_unlock(&audit_tree_group
->mark_mutex
);
428 fsnotify_free_mark(mark
);
429 fsnotify_put_mark(mark
);
433 replace_mark_chunk(mark
, chunk
);
434 chunk
->owners
[0].index
= (1U << 31);
435 chunk
->owners
[0].owner
= tree
;
437 list_add(&chunk
->owners
[0].list
, &tree
->chunks
);
440 list_add(&tree
->same_root
, &chunk
->trees
);
442 chunk
->key
= inode_to_key(inode
);
444 * Inserting into the hash table has to go last as once we do that RCU
445 * readers can see the chunk.
448 spin_unlock(&hash_lock
);
449 mutex_unlock(&audit_tree_group
->mark_mutex
);
451 * Drop our initial reference. When mark we point to is getting freed,
452 * we get notification through ->freeing_mark callback and cleanup
453 * chunk pointing to this mark.
455 fsnotify_put_mark(mark
);
459 /* the first tagged inode becomes root of tree */
460 static int tag_chunk(struct inode
*inode
, struct audit_tree
*tree
)
462 struct fsnotify_mark
*mark
;
463 struct audit_chunk
*chunk
, *old
;
467 mutex_lock(&audit_tree_group
->mark_mutex
);
468 mark
= fsnotify_find_mark(&inode
->i_fsnotify_marks
, audit_tree_group
);
470 return create_chunk(inode
, tree
);
473 * Found mark is guaranteed to be attached and mark_mutex protects mark
474 * from getting detached and thus it makes sure there is chunk attached
477 /* are we already there? */
478 spin_lock(&hash_lock
);
479 old
= mark_chunk(mark
);
480 for (n
= 0; n
< old
->count
; n
++) {
481 if (old
->owners
[n
].owner
== tree
) {
482 spin_unlock(&hash_lock
);
483 mutex_unlock(&audit_tree_group
->mark_mutex
);
484 fsnotify_put_mark(mark
);
488 spin_unlock(&hash_lock
);
490 chunk
= alloc_chunk(old
->count
+ 1);
492 mutex_unlock(&audit_tree_group
->mark_mutex
);
493 fsnotify_put_mark(mark
);
497 spin_lock(&hash_lock
);
499 spin_unlock(&hash_lock
);
500 mutex_unlock(&audit_tree_group
->mark_mutex
);
501 fsnotify_put_mark(mark
);
505 p
= &chunk
->owners
[chunk
->count
- 1];
506 p
->index
= (chunk
->count
- 1) | (1U<<31);
509 list_add(&p
->list
, &tree
->chunks
);
512 list_add(&tree
->same_root
, &chunk
->trees
);
515 * This has to go last when updating chunk as once replace_chunk() is
516 * called, new RCU readers can see the new chunk.
518 replace_chunk(chunk
, old
);
519 spin_unlock(&hash_lock
);
520 mutex_unlock(&audit_tree_group
->mark_mutex
);
521 fsnotify_put_mark(mark
); /* pair to fsnotify_find_mark */
522 audit_mark_put_chunk(old
);
527 static void audit_tree_log_remove_rule(struct audit_krule
*rule
)
529 struct audit_buffer
*ab
;
533 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_CONFIG_CHANGE
);
536 audit_log_format(ab
, "op=remove_rule dir=");
537 audit_log_untrustedstring(ab
, rule
->tree
->pathname
);
538 audit_log_key(ab
, rule
->filterkey
);
539 audit_log_format(ab
, " list=%d res=1", rule
->listnr
);
543 static void kill_rules(struct audit_tree
*tree
)
545 struct audit_krule
*rule
, *next
;
546 struct audit_entry
*entry
;
548 list_for_each_entry_safe(rule
, next
, &tree
->rules
, rlist
) {
549 entry
= container_of(rule
, struct audit_entry
, rule
);
551 list_del_init(&rule
->rlist
);
553 /* not a half-baked one */
554 audit_tree_log_remove_rule(rule
);
556 audit_remove_mark(entry
->rule
.exe
);
558 list_del_rcu(&entry
->list
);
559 list_del(&entry
->rule
.list
);
560 call_rcu(&entry
->rcu
, audit_free_rule_rcu
);
566 * Remove tree from chunks. If 'tagged' is set, remove tree only from tagged
567 * chunks. The function expects tagged chunks are all at the beginning of the
570 static void prune_tree_chunks(struct audit_tree
*victim
, bool tagged
)
572 spin_lock(&hash_lock
);
573 while (!list_empty(&victim
->chunks
)) {
575 struct audit_chunk
*chunk
;
576 struct fsnotify_mark
*mark
;
578 p
= list_first_entry(&victim
->chunks
, struct node
, list
);
579 /* have we run out of marked? */
580 if (tagged
&& !(p
->index
& (1U<<31)))
582 chunk
= find_chunk(p
);
584 remove_chunk_node(chunk
, p
);
585 /* Racing with audit_tree_freeing_mark()? */
588 fsnotify_get_mark(mark
);
589 spin_unlock(&hash_lock
);
591 untag_chunk(chunk
, mark
);
592 fsnotify_put_mark(mark
);
594 spin_lock(&hash_lock
);
596 spin_unlock(&hash_lock
);
601 * finish killing struct audit_tree
603 static void prune_one(struct audit_tree
*victim
)
605 prune_tree_chunks(victim
, false);
608 /* trim the uncommitted chunks from tree */
610 static void trim_marked(struct audit_tree
*tree
)
612 struct list_head
*p
, *q
;
613 spin_lock(&hash_lock
);
615 spin_unlock(&hash_lock
);
619 for (p
= tree
->chunks
.next
; p
!= &tree
->chunks
; p
= q
) {
620 struct node
*node
= list_entry(p
, struct node
, list
);
622 if (node
->index
& (1U<<31)) {
624 list_add(p
, &tree
->chunks
);
627 spin_unlock(&hash_lock
);
629 prune_tree_chunks(tree
, true);
631 spin_lock(&hash_lock
);
632 if (!tree
->root
&& !tree
->goner
) {
634 spin_unlock(&hash_lock
);
635 mutex_lock(&audit_filter_mutex
);
637 list_del_init(&tree
->list
);
638 mutex_unlock(&audit_filter_mutex
);
641 spin_unlock(&hash_lock
);
645 static void audit_schedule_prune(void);
647 /* called with audit_filter_mutex */
648 int audit_remove_tree_rule(struct audit_krule
*rule
)
650 struct audit_tree
*tree
;
653 spin_lock(&hash_lock
);
654 list_del_init(&rule
->rlist
);
655 if (list_empty(&tree
->rules
) && !tree
->goner
) {
657 list_del_init(&tree
->same_root
);
659 list_move(&tree
->list
, &prune_list
);
661 spin_unlock(&hash_lock
);
662 audit_schedule_prune();
666 spin_unlock(&hash_lock
);
672 static int compare_root(struct vfsmount
*mnt
, void *arg
)
674 return inode_to_key(d_backing_inode(mnt
->mnt_root
)) ==
678 void audit_trim_trees(void)
680 struct list_head cursor
;
682 mutex_lock(&audit_filter_mutex
);
683 list_add(&cursor
, &tree_list
);
684 while (cursor
.next
!= &tree_list
) {
685 struct audit_tree
*tree
;
687 struct vfsmount
*root_mnt
;
691 tree
= container_of(cursor
.next
, struct audit_tree
, list
);
694 list_add(&cursor
, &tree
->list
);
695 mutex_unlock(&audit_filter_mutex
);
697 err
= kern_path(tree
->pathname
, 0, &path
);
701 root_mnt
= collect_mounts(&path
);
703 if (IS_ERR(root_mnt
))
706 spin_lock(&hash_lock
);
707 list_for_each_entry(node
, &tree
->chunks
, list
) {
708 struct audit_chunk
*chunk
= find_chunk(node
);
709 /* this could be NULL if the watch is dying else where... */
710 node
->index
|= 1U<<31;
711 if (iterate_mounts(compare_root
,
712 (void *)(chunk
->key
),
714 node
->index
&= ~(1U<<31);
716 spin_unlock(&hash_lock
);
718 drop_collected_mounts(root_mnt
);
721 mutex_lock(&audit_filter_mutex
);
724 mutex_unlock(&audit_filter_mutex
);
727 int audit_make_tree(struct audit_krule
*rule
, char *pathname
, u32 op
)
730 if (pathname
[0] != '/' ||
731 rule
->listnr
!= AUDIT_FILTER_EXIT
||
733 rule
->inode_f
|| rule
->watch
|| rule
->tree
)
735 rule
->tree
= alloc_tree(pathname
);
741 void audit_put_tree(struct audit_tree
*tree
)
746 static int tag_mount(struct vfsmount
*mnt
, void *arg
)
748 return tag_chunk(d_backing_inode(mnt
->mnt_root
), arg
);
752 * That gets run when evict_chunk() ends up needing to kill audit_tree.
753 * Runs from a separate thread.
755 static int prune_tree_thread(void *unused
)
758 if (list_empty(&prune_list
)) {
759 set_current_state(TASK_INTERRUPTIBLE
);
764 mutex_lock(&audit_filter_mutex
);
766 while (!list_empty(&prune_list
)) {
767 struct audit_tree
*victim
;
769 victim
= list_entry(prune_list
.next
,
770 struct audit_tree
, list
);
771 list_del_init(&victim
->list
);
773 mutex_unlock(&audit_filter_mutex
);
777 mutex_lock(&audit_filter_mutex
);
780 mutex_unlock(&audit_filter_mutex
);
786 static int audit_launch_prune(void)
790 prune_thread
= kthread_run(prune_tree_thread
, NULL
,
792 if (IS_ERR(prune_thread
)) {
793 pr_err("cannot start thread audit_prune_tree");
800 /* called with audit_filter_mutex */
801 int audit_add_tree_rule(struct audit_krule
*rule
)
803 struct audit_tree
*seed
= rule
->tree
, *tree
;
805 struct vfsmount
*mnt
;
809 list_for_each_entry(tree
, &tree_list
, list
) {
810 if (!strcmp(seed
->pathname
, tree
->pathname
)) {
813 list_add(&rule
->rlist
, &tree
->rules
);
818 list_add(&tree
->list
, &tree_list
);
819 list_add(&rule
->rlist
, &tree
->rules
);
820 /* do not set rule->tree yet */
821 mutex_unlock(&audit_filter_mutex
);
823 if (unlikely(!prune_thread
)) {
824 err
= audit_launch_prune();
829 err
= kern_path(tree
->pathname
, 0, &path
);
832 mnt
= collect_mounts(&path
);
840 err
= iterate_mounts(tag_mount
, tree
, mnt
);
841 drop_collected_mounts(mnt
);
845 spin_lock(&hash_lock
);
846 list_for_each_entry(node
, &tree
->chunks
, list
)
847 node
->index
&= ~(1U<<31);
848 spin_unlock(&hash_lock
);
854 mutex_lock(&audit_filter_mutex
);
855 if (list_empty(&rule
->rlist
)) {
864 mutex_lock(&audit_filter_mutex
);
865 list_del_init(&tree
->list
);
866 list_del_init(&tree
->rules
);
871 int audit_tag_tree(char *old
, char *new)
873 struct list_head cursor
, barrier
;
875 struct path path1
, path2
;
876 struct vfsmount
*tagged
;
879 err
= kern_path(new, 0, &path2
);
882 tagged
= collect_mounts(&path2
);
885 return PTR_ERR(tagged
);
887 err
= kern_path(old
, 0, &path1
);
889 drop_collected_mounts(tagged
);
893 mutex_lock(&audit_filter_mutex
);
894 list_add(&barrier
, &tree_list
);
895 list_add(&cursor
, &barrier
);
897 while (cursor
.next
!= &tree_list
) {
898 struct audit_tree
*tree
;
901 tree
= container_of(cursor
.next
, struct audit_tree
, list
);
904 list_add(&cursor
, &tree
->list
);
905 mutex_unlock(&audit_filter_mutex
);
907 err
= kern_path(tree
->pathname
, 0, &path2
);
909 good_one
= path_is_under(&path1
, &path2
);
915 mutex_lock(&audit_filter_mutex
);
919 failed
= iterate_mounts(tag_mount
, tree
, tagged
);
922 mutex_lock(&audit_filter_mutex
);
926 mutex_lock(&audit_filter_mutex
);
927 spin_lock(&hash_lock
);
929 list_del(&tree
->list
);
930 list_add(&tree
->list
, &tree_list
);
932 spin_unlock(&hash_lock
);
936 while (barrier
.prev
!= &tree_list
) {
937 struct audit_tree
*tree
;
939 tree
= container_of(barrier
.prev
, struct audit_tree
, list
);
941 list_del(&tree
->list
);
942 list_add(&tree
->list
, &barrier
);
943 mutex_unlock(&audit_filter_mutex
);
947 spin_lock(&hash_lock
);
948 list_for_each_entry(node
, &tree
->chunks
, list
)
949 node
->index
&= ~(1U<<31);
950 spin_unlock(&hash_lock
);
956 mutex_lock(&audit_filter_mutex
);
960 mutex_unlock(&audit_filter_mutex
);
962 drop_collected_mounts(tagged
);
967 static void audit_schedule_prune(void)
969 wake_up_process(prune_thread
);
973 * ... and that one is done if evict_chunk() decides to delay until the end
974 * of syscall. Runs synchronously.
976 void audit_kill_trees(struct list_head
*list
)
979 mutex_lock(&audit_filter_mutex
);
981 while (!list_empty(list
)) {
982 struct audit_tree
*victim
;
984 victim
= list_entry(list
->next
, struct audit_tree
, list
);
986 list_del_init(&victim
->list
);
988 mutex_unlock(&audit_filter_mutex
);
992 mutex_lock(&audit_filter_mutex
);
995 mutex_unlock(&audit_filter_mutex
);
1000 * Here comes the stuff asynchronous to auditctl operations
1003 static void evict_chunk(struct audit_chunk
*chunk
)
1005 struct audit_tree
*owner
;
1006 struct list_head
*postponed
= audit_killed_trees();
1010 mutex_lock(&audit_filter_mutex
);
1011 spin_lock(&hash_lock
);
1012 while (!list_empty(&chunk
->trees
)) {
1013 owner
= list_entry(chunk
->trees
.next
,
1014 struct audit_tree
, same_root
);
1017 list_del_init(&owner
->same_root
);
1018 spin_unlock(&hash_lock
);
1021 list_move(&owner
->list
, &prune_list
);
1024 list_move(&owner
->list
, postponed
);
1026 spin_lock(&hash_lock
);
1028 list_del_rcu(&chunk
->hash
);
1029 for (n
= 0; n
< chunk
->count
; n
++)
1030 list_del_init(&chunk
->owners
[n
].list
);
1031 spin_unlock(&hash_lock
);
1032 mutex_unlock(&audit_filter_mutex
);
1034 audit_schedule_prune();
1037 static int audit_tree_handle_event(struct fsnotify_group
*group
,
1038 struct inode
*to_tell
,
1039 u32 mask
, const void *data
, int data_type
,
1040 const unsigned char *file_name
, u32 cookie
,
1041 struct fsnotify_iter_info
*iter_info
)
1046 static void audit_tree_freeing_mark(struct fsnotify_mark
*mark
,
1047 struct fsnotify_group
*group
)
1049 struct audit_chunk
*chunk
;
1051 mutex_lock(&mark
->group
->mark_mutex
);
1052 spin_lock(&hash_lock
);
1053 chunk
= mark_chunk(mark
);
1054 replace_mark_chunk(mark
, NULL
);
1055 spin_unlock(&hash_lock
);
1056 mutex_unlock(&mark
->group
->mark_mutex
);
1059 audit_mark_put_chunk(chunk
);
1063 * We are guaranteed to have at least one reference to the mark from
1064 * either the inode or the caller of fsnotify_destroy_mark().
1066 BUG_ON(refcount_read(&mark
->refcnt
) < 1);
1069 static const struct fsnotify_ops audit_tree_ops
= {
1070 .handle_event
= audit_tree_handle_event
,
1071 .freeing_mark
= audit_tree_freeing_mark
,
1072 .free_mark
= audit_tree_destroy_watch
,
1075 static int __init
audit_tree_init(void)
1079 audit_tree_mark_cachep
= KMEM_CACHE(audit_tree_mark
, SLAB_PANIC
);
1081 audit_tree_group
= fsnotify_alloc_group(&audit_tree_ops
);
1082 if (IS_ERR(audit_tree_group
))
1083 audit_panic("cannot initialize fsnotify group for rectree watches");
1085 for (i
= 0; i
< HASH_SIZE
; i
++)
1086 INIT_LIST_HEAD(&chunk_hash_heads
[i
]);
1090 __initcall(audit_tree_init
);