mtd: dc21285: use raw spinlock functions for nw_gpio_lock
[linux/fpc-iii.git] / arch / mips / kernel / smp.c
blobfaa46ebd9ddae2fc43f20d6ff65f28688f665c4f
1 /*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version 2
5 * of the License, or (at your option) any later version.
7 * This program is distributed in the hope that it will be useful,
8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
10 * GNU General Public License for more details.
12 * You should have received a copy of the GNU General Public License
13 * along with this program; if not, write to the Free Software
14 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
16 * Copyright (C) 2000, 2001 Kanoj Sarcar
17 * Copyright (C) 2000, 2001 Ralf Baechle
18 * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
19 * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
21 #include <linux/cache.h>
22 #include <linux/delay.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/smp.h>
26 #include <linux/spinlock.h>
27 #include <linux/threads.h>
28 #include <linux/module.h>
29 #include <linux/time.h>
30 #include <linux/timex.h>
31 #include <linux/sched.h>
32 #include <linux/cpumask.h>
33 #include <linux/cpu.h>
34 #include <linux/err.h>
35 #include <linux/ftrace.h>
37 #include <linux/atomic.h>
38 #include <asm/cpu.h>
39 #include <asm/processor.h>
40 #include <asm/idle.h>
41 #include <asm/r4k-timer.h>
42 #include <asm/mmu_context.h>
43 #include <asm/time.h>
44 #include <asm/setup.h>
46 cpumask_t cpu_callin_map; /* Bitmask of started secondaries */
48 int __cpu_number_map[NR_CPUS]; /* Map physical to logical */
49 EXPORT_SYMBOL(__cpu_number_map);
51 int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */
52 EXPORT_SYMBOL(__cpu_logical_map);
54 /* Number of TCs (or siblings in Intel speak) per CPU core */
55 int smp_num_siblings = 1;
56 EXPORT_SYMBOL(smp_num_siblings);
58 /* representing the TCs (or siblings in Intel speak) of each logical CPU */
59 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
60 EXPORT_SYMBOL(cpu_sibling_map);
62 /* representing the core map of multi-core chips of each logical CPU */
63 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
64 EXPORT_SYMBOL(cpu_core_map);
66 /* representing cpus for which sibling maps can be computed */
67 static cpumask_t cpu_sibling_setup_map;
69 /* representing cpus for which core maps can be computed */
70 static cpumask_t cpu_core_setup_map;
72 cpumask_t cpu_coherent_mask;
74 static inline void set_cpu_sibling_map(int cpu)
76 int i;
78 cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
80 if (smp_num_siblings > 1) {
81 for_each_cpu(i, &cpu_sibling_setup_map) {
82 if (cpu_data[cpu].package == cpu_data[i].package &&
83 cpu_data[cpu].core == cpu_data[i].core) {
84 cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
85 cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
88 } else
89 cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]);
92 static inline void set_cpu_core_map(int cpu)
94 int i;
96 cpumask_set_cpu(cpu, &cpu_core_setup_map);
98 for_each_cpu(i, &cpu_core_setup_map) {
99 if (cpu_data[cpu].package == cpu_data[i].package) {
100 cpumask_set_cpu(i, &cpu_core_map[cpu]);
101 cpumask_set_cpu(cpu, &cpu_core_map[i]);
106 struct plat_smp_ops *mp_ops;
107 EXPORT_SYMBOL(mp_ops);
109 void register_smp_ops(struct plat_smp_ops *ops)
111 if (mp_ops)
112 printk(KERN_WARNING "Overriding previously set SMP ops\n");
114 mp_ops = ops;
118 * First C code run on the secondary CPUs after being started up by
119 * the master.
121 asmlinkage void start_secondary(void)
123 unsigned int cpu;
125 cpu_probe();
126 per_cpu_trap_init(false);
127 mips_clockevent_init();
128 mp_ops->init_secondary();
129 cpu_report();
132 * XXX parity protection should be folded in here when it's converted
133 * to an option instead of something based on .cputype
136 calibrate_delay();
137 preempt_disable();
138 cpu = smp_processor_id();
139 cpu_data[cpu].udelay_val = loops_per_jiffy;
141 cpumask_set_cpu(cpu, &cpu_coherent_mask);
142 notify_cpu_starting(cpu);
144 set_cpu_online(cpu, true);
146 set_cpu_sibling_map(cpu);
147 set_cpu_core_map(cpu);
149 cpumask_set_cpu(cpu, &cpu_callin_map);
151 synchronise_count_slave(cpu);
154 * irq will be enabled in ->smp_finish(), enabling it too early
155 * is dangerous.
157 WARN_ON_ONCE(!irqs_disabled());
158 mp_ops->smp_finish();
160 cpu_startup_entry(CPUHP_ONLINE);
164 * Call into both interrupt handlers, as we share the IPI for them
166 void __irq_entry smp_call_function_interrupt(void)
168 irq_enter();
169 generic_smp_call_function_interrupt();
170 irq_exit();
173 static void stop_this_cpu(void *dummy)
176 * Remove this CPU:
178 set_cpu_online(smp_processor_id(), false);
179 local_irq_disable();
180 while (1);
183 void smp_send_stop(void)
185 smp_call_function(stop_this_cpu, NULL, 0);
188 void __init smp_cpus_done(unsigned int max_cpus)
192 /* called from main before smp_init() */
193 void __init smp_prepare_cpus(unsigned int max_cpus)
195 init_new_context(current, &init_mm);
196 current_thread_info()->cpu = 0;
197 mp_ops->prepare_cpus(max_cpus);
198 set_cpu_sibling_map(0);
199 set_cpu_core_map(0);
200 #ifndef CONFIG_HOTPLUG_CPU
201 init_cpu_present(cpu_possible_mask);
202 #endif
203 cpumask_copy(&cpu_coherent_mask, cpu_possible_mask);
206 /* preload SMP state for boot cpu */
207 void smp_prepare_boot_cpu(void)
209 set_cpu_possible(0, true);
210 set_cpu_online(0, true);
211 cpumask_set_cpu(0, &cpu_callin_map);
214 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
216 mp_ops->boot_secondary(cpu, tidle);
219 * Trust is futile. We should really have timeouts ...
221 while (!cpumask_test_cpu(cpu, &cpu_callin_map)) {
222 udelay(100);
223 schedule();
226 synchronise_count_master(cpu);
227 return 0;
230 /* Not really SMP stuff ... */
231 int setup_profiling_timer(unsigned int multiplier)
233 return 0;
236 static void flush_tlb_all_ipi(void *info)
238 local_flush_tlb_all();
241 void flush_tlb_all(void)
243 on_each_cpu(flush_tlb_all_ipi, NULL, 1);
246 static void flush_tlb_mm_ipi(void *mm)
248 local_flush_tlb_mm((struct mm_struct *)mm);
252 * Special Variant of smp_call_function for use by TLB functions:
254 * o No return value
255 * o collapses to normal function call on UP kernels
256 * o collapses to normal function call on systems with a single shared
257 * primary cache.
259 static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
261 smp_call_function(func, info, 1);
264 static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
266 preempt_disable();
268 smp_on_other_tlbs(func, info);
269 func(info);
271 preempt_enable();
275 * The following tlb flush calls are invoked when old translations are
276 * being torn down, or pte attributes are changing. For single threaded
277 * address spaces, a new context is obtained on the current cpu, and tlb
278 * context on other cpus are invalidated to force a new context allocation
279 * at switch_mm time, should the mm ever be used on other cpus. For
280 * multithreaded address spaces, intercpu interrupts have to be sent.
281 * Another case where intercpu interrupts are required is when the target
282 * mm might be active on another cpu (eg debuggers doing the flushes on
283 * behalf of debugees, kswapd stealing pages from another process etc).
284 * Kanoj 07/00.
287 void flush_tlb_mm(struct mm_struct *mm)
289 preempt_disable();
291 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
292 smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
293 } else {
294 unsigned int cpu;
296 for_each_online_cpu(cpu) {
297 if (cpu != smp_processor_id() && cpu_context(cpu, mm))
298 cpu_context(cpu, mm) = 0;
301 local_flush_tlb_mm(mm);
303 preempt_enable();
306 struct flush_tlb_data {
307 struct vm_area_struct *vma;
308 unsigned long addr1;
309 unsigned long addr2;
312 static void flush_tlb_range_ipi(void *info)
314 struct flush_tlb_data *fd = info;
316 local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
319 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
321 struct mm_struct *mm = vma->vm_mm;
323 preempt_disable();
324 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
325 struct flush_tlb_data fd = {
326 .vma = vma,
327 .addr1 = start,
328 .addr2 = end,
331 smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
332 } else {
333 unsigned int cpu;
335 for_each_online_cpu(cpu) {
336 if (cpu != smp_processor_id() && cpu_context(cpu, mm))
337 cpu_context(cpu, mm) = 0;
340 local_flush_tlb_range(vma, start, end);
341 preempt_enable();
344 static void flush_tlb_kernel_range_ipi(void *info)
346 struct flush_tlb_data *fd = info;
348 local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
351 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
353 struct flush_tlb_data fd = {
354 .addr1 = start,
355 .addr2 = end,
358 on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
361 static void flush_tlb_page_ipi(void *info)
363 struct flush_tlb_data *fd = info;
365 local_flush_tlb_page(fd->vma, fd->addr1);
368 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
370 preempt_disable();
371 if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
372 struct flush_tlb_data fd = {
373 .vma = vma,
374 .addr1 = page,
377 smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
378 } else {
379 unsigned int cpu;
381 for_each_online_cpu(cpu) {
382 if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
383 cpu_context(cpu, vma->vm_mm) = 0;
386 local_flush_tlb_page(vma, page);
387 preempt_enable();
390 static void flush_tlb_one_ipi(void *info)
392 unsigned long vaddr = (unsigned long) info;
394 local_flush_tlb_one(vaddr);
397 void flush_tlb_one(unsigned long vaddr)
399 smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
402 EXPORT_SYMBOL(flush_tlb_page);
403 EXPORT_SYMBOL(flush_tlb_one);
405 #if defined(CONFIG_KEXEC)
406 void (*dump_ipi_function_ptr)(void *) = NULL;
407 void dump_send_ipi(void (*dump_ipi_callback)(void *))
409 int i;
410 int cpu = smp_processor_id();
412 dump_ipi_function_ptr = dump_ipi_callback;
413 smp_mb();
414 for_each_online_cpu(i)
415 if (i != cpu)
416 mp_ops->send_ipi_single(i, SMP_DUMP);
419 EXPORT_SYMBOL(dump_send_ipi);
420 #endif
422 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
424 static DEFINE_PER_CPU(atomic_t, tick_broadcast_count);
425 static DEFINE_PER_CPU(struct call_single_data, tick_broadcast_csd);
427 void tick_broadcast(const struct cpumask *mask)
429 atomic_t *count;
430 struct call_single_data *csd;
431 int cpu;
433 for_each_cpu(cpu, mask) {
434 count = &per_cpu(tick_broadcast_count, cpu);
435 csd = &per_cpu(tick_broadcast_csd, cpu);
437 if (atomic_inc_return(count) == 1)
438 smp_call_function_single_async(cpu, csd);
442 static void tick_broadcast_callee(void *info)
444 int cpu = smp_processor_id();
445 tick_receive_broadcast();
446 atomic_set(&per_cpu(tick_broadcast_count, cpu), 0);
449 static int __init tick_broadcast_init(void)
451 struct call_single_data *csd;
452 int cpu;
454 for (cpu = 0; cpu < NR_CPUS; cpu++) {
455 csd = &per_cpu(tick_broadcast_csd, cpu);
456 csd->func = tick_broadcast_callee;
459 return 0;
461 early_initcall(tick_broadcast_init);
463 #endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */