2 * fs/eventpoll.c (Efficient event retrieval implementation)
3 * Copyright (C) 2001,...,2009 Davide Libenzi
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * Davide Libenzi <davidel@xmailserver.org>
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <asm/uaccess.h>
39 #include <linux/atomic.h>
43 * There are three level of locking required by epoll :
47 * 3) ep->lock (spinlock)
49 * The acquire order is the one listed above, from 1 to 3.
50 * We need a spinlock (ep->lock) because we manipulate objects
51 * from inside the poll callback, that might be triggered from
52 * a wake_up() that in turn might be called from IRQ context.
53 * So we can't sleep inside the poll callback and hence we need
54 * a spinlock. During the event transfer loop (from kernel to
55 * user space) we could end up sleeping due a copy_to_user(), so
56 * we need a lock that will allow us to sleep. This lock is a
57 * mutex (ep->mtx). It is acquired during the event transfer loop,
58 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
59 * Then we also need a global mutex to serialize eventpoll_release_file()
61 * This mutex is acquired by ep_free() during the epoll file
62 * cleanup path and it is also acquired by eventpoll_release_file()
63 * if a file has been pushed inside an epoll set and it is then
64 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
65 * It is also acquired when inserting an epoll fd onto another epoll
66 * fd. We do this so that we walk the epoll tree and ensure that this
67 * insertion does not create a cycle of epoll file descriptors, which
68 * could lead to deadlock. We need a global mutex to prevent two
69 * simultaneous inserts (A into B and B into A) from racing and
70 * constructing a cycle without either insert observing that it is
72 * It is necessary to acquire multiple "ep->mtx"es at once in the
73 * case when one epoll fd is added to another. In this case, we
74 * always acquire the locks in the order of nesting (i.e. after
75 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
76 * before e2->mtx). Since we disallow cycles of epoll file
77 * descriptors, this ensures that the mutexes are well-ordered. In
78 * order to communicate this nesting to lockdep, when walking a tree
79 * of epoll file descriptors, we use the current recursion depth as
81 * It is possible to drop the "ep->mtx" and to use the global
82 * mutex "epmutex" (together with "ep->lock") to have it working,
83 * but having "ep->mtx" will make the interface more scalable.
84 * Events that require holding "epmutex" are very rare, while for
85 * normal operations the epoll private "ep->mtx" will guarantee
86 * a better scalability.
89 /* Epoll private bits inside the event mask */
90 #define EP_PRIVATE_BITS (EPOLLONESHOT | EPOLLET)
92 /* Maximum number of nesting allowed inside epoll sets */
93 #define EP_MAX_NESTS 4
95 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
97 #define EP_UNACTIVE_PTR ((void *) -1L)
99 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
101 struct epoll_filefd
{
107 * Structure used to track possible nested calls, for too deep recursions
110 struct nested_call_node
{
111 struct list_head llink
;
117 * This structure is used as collector for nested calls, to check for
118 * maximum recursion dept and loop cycles.
120 struct nested_calls
{
121 struct list_head tasks_call_list
;
126 * Each file descriptor added to the eventpoll interface will
127 * have an entry of this type linked to the "rbr" RB tree.
130 /* RB tree node used to link this structure to the eventpoll RB tree */
133 /* List header used to link this structure to the eventpoll ready list */
134 struct list_head rdllink
;
137 * Works together "struct eventpoll"->ovflist in keeping the
138 * single linked chain of items.
142 /* The file descriptor information this item refers to */
143 struct epoll_filefd ffd
;
145 /* Number of active wait queue attached to poll operations */
148 /* List containing poll wait queues */
149 struct list_head pwqlist
;
151 /* The "container" of this item */
152 struct eventpoll
*ep
;
154 /* List header used to link this item to the "struct file" items list */
155 struct list_head fllink
;
157 /* The structure that describe the interested events and the source fd */
158 struct epoll_event event
;
162 * This structure is stored inside the "private_data" member of the file
163 * structure and represents the main data structure for the eventpoll
167 /* Protect the access to this structure */
171 * This mutex is used to ensure that files are not removed
172 * while epoll is using them. This is held during the event
173 * collection loop, the file cleanup path, the epoll file exit
174 * code and the ctl operations.
178 /* Wait queue used by sys_epoll_wait() */
179 wait_queue_head_t wq
;
181 /* Wait queue used by file->poll() */
182 wait_queue_head_t poll_wait
;
184 /* List of ready file descriptors */
185 struct list_head rdllist
;
187 /* RB tree root used to store monitored fd structs */
191 * This is a single linked list that chains all the "struct epitem" that
192 * happened while transferring ready events to userspace w/out
195 struct epitem
*ovflist
;
197 /* The user that created the eventpoll descriptor */
198 struct user_struct
*user
;
202 /* used to optimize loop detection check */
204 struct list_head visited_list_link
;
207 /* Wait structure used by the poll hooks */
208 struct eppoll_entry
{
209 /* List header used to link this structure to the "struct epitem" */
210 struct list_head llink
;
212 /* The "base" pointer is set to the container "struct epitem" */
216 * Wait queue item that will be linked to the target file wait
221 /* The wait queue head that linked the "wait" wait queue item */
222 wait_queue_head_t
*whead
;
225 /* Wrapper struct used by poll queueing */
231 /* Used by the ep_send_events() function as callback private data */
232 struct ep_send_events_data
{
234 struct epoll_event __user
*events
;
238 * Configuration options available inside /proc/sys/fs/epoll/
240 /* Maximum number of epoll watched descriptors, per user */
241 static long max_user_watches __read_mostly
;
244 * This mutex is used to serialize ep_free() and eventpoll_release_file().
246 static DEFINE_MUTEX(epmutex
);
248 /* Used to check for epoll file descriptor inclusion loops */
249 static struct nested_calls poll_loop_ncalls
;
251 /* Used for safe wake up implementation */
252 static struct nested_calls poll_safewake_ncalls
;
254 /* Used to call file's f_op->poll() under the nested calls boundaries */
255 static struct nested_calls poll_readywalk_ncalls
;
257 /* Slab cache used to allocate "struct epitem" */
258 static struct kmem_cache
*epi_cache __read_mostly
;
260 /* Slab cache used to allocate "struct eppoll_entry" */
261 static struct kmem_cache
*pwq_cache __read_mostly
;
263 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */
264 static LIST_HEAD(visited_list
);
267 * List of files with newly added links, where we may need to limit the number
268 * of emanating paths. Protected by the epmutex.
270 static LIST_HEAD(tfile_check_list
);
274 #include <linux/sysctl.h>
277 static long long_max
= LONG_MAX
;
279 ctl_table epoll_table
[] = {
281 .procname
= "max_user_watches",
282 .data
= &max_user_watches
,
283 .maxlen
= sizeof(max_user_watches
),
285 .proc_handler
= proc_doulongvec_minmax
,
291 #endif /* CONFIG_SYSCTL */
293 static const struct file_operations eventpoll_fops
;
295 static inline int is_file_epoll(struct file
*f
)
297 return f
->f_op
== &eventpoll_fops
;
300 /* Setup the structure that is used as key for the RB tree */
301 static inline void ep_set_ffd(struct epoll_filefd
*ffd
,
302 struct file
*file
, int fd
)
308 /* Compare RB tree keys */
309 static inline int ep_cmp_ffd(struct epoll_filefd
*p1
,
310 struct epoll_filefd
*p2
)
312 return (p1
->file
> p2
->file
? +1:
313 (p1
->file
< p2
->file
? -1 : p1
->fd
- p2
->fd
));
316 /* Tells us if the item is currently linked */
317 static inline int ep_is_linked(struct list_head
*p
)
319 return !list_empty(p
);
322 static inline struct eppoll_entry
*ep_pwq_from_wait(wait_queue_t
*p
)
324 return container_of(p
, struct eppoll_entry
, wait
);
327 /* Get the "struct epitem" from a wait queue pointer */
328 static inline struct epitem
*ep_item_from_wait(wait_queue_t
*p
)
330 return container_of(p
, struct eppoll_entry
, wait
)->base
;
333 /* Get the "struct epitem" from an epoll queue wrapper */
334 static inline struct epitem
*ep_item_from_epqueue(poll_table
*p
)
336 return container_of(p
, struct ep_pqueue
, pt
)->epi
;
339 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
340 static inline int ep_op_has_event(int op
)
342 return op
!= EPOLL_CTL_DEL
;
345 /* Initialize the poll safe wake up structure */
346 static void ep_nested_calls_init(struct nested_calls
*ncalls
)
348 INIT_LIST_HEAD(&ncalls
->tasks_call_list
);
349 spin_lock_init(&ncalls
->lock
);
353 * ep_events_available - Checks if ready events might be available.
355 * @ep: Pointer to the eventpoll context.
357 * Returns: Returns a value different than zero if ready events are available,
360 static inline int ep_events_available(struct eventpoll
*ep
)
362 return !list_empty(&ep
->rdllist
) || ep
->ovflist
!= EP_UNACTIVE_PTR
;
366 * ep_call_nested - Perform a bound (possibly) nested call, by checking
367 * that the recursion limit is not exceeded, and that
368 * the same nested call (by the meaning of same cookie) is
371 * @ncalls: Pointer to the nested_calls structure to be used for this call.
372 * @max_nests: Maximum number of allowed nesting calls.
373 * @nproc: Nested call core function pointer.
374 * @priv: Opaque data to be passed to the @nproc callback.
375 * @cookie: Cookie to be used to identify this nested call.
376 * @ctx: This instance context.
378 * Returns: Returns the code returned by the @nproc callback, or -1 if
379 * the maximum recursion limit has been exceeded.
381 static int ep_call_nested(struct nested_calls
*ncalls
, int max_nests
,
382 int (*nproc
)(void *, void *, int), void *priv
,
383 void *cookie
, void *ctx
)
385 int error
, call_nests
= 0;
387 struct list_head
*lsthead
= &ncalls
->tasks_call_list
;
388 struct nested_call_node
*tncur
;
389 struct nested_call_node tnode
;
391 spin_lock_irqsave(&ncalls
->lock
, flags
);
394 * Try to see if the current task is already inside this wakeup call.
395 * We use a list here, since the population inside this set is always
398 list_for_each_entry(tncur
, lsthead
, llink
) {
399 if (tncur
->ctx
== ctx
&&
400 (tncur
->cookie
== cookie
|| ++call_nests
> max_nests
)) {
402 * Ops ... loop detected or maximum nest level reached.
403 * We abort this wake by breaking the cycle itself.
410 /* Add the current task and cookie to the list */
412 tnode
.cookie
= cookie
;
413 list_add(&tnode
.llink
, lsthead
);
415 spin_unlock_irqrestore(&ncalls
->lock
, flags
);
417 /* Call the nested function */
418 error
= (*nproc
)(priv
, cookie
, call_nests
);
420 /* Remove the current task from the list */
421 spin_lock_irqsave(&ncalls
->lock
, flags
);
422 list_del(&tnode
.llink
);
424 spin_unlock_irqrestore(&ncalls
->lock
, flags
);
430 * As described in commit 0ccf831cb lockdep: annotate epoll
431 * the use of wait queues used by epoll is done in a very controlled
432 * manner. Wake ups can nest inside each other, but are never done
433 * with the same locking. For example:
436 * efd1 = epoll_create();
437 * efd2 = epoll_create();
438 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
439 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
441 * When a packet arrives to the device underneath "dfd", the net code will
442 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
443 * callback wakeup entry on that queue, and the wake_up() performed by the
444 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
445 * (efd1) notices that it may have some event ready, so it needs to wake up
446 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
447 * that ends up in another wake_up(), after having checked about the
448 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
449 * avoid stack blasting.
451 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
452 * this special case of epoll.
454 #ifdef CONFIG_DEBUG_LOCK_ALLOC
455 static inline void ep_wake_up_nested(wait_queue_head_t
*wqueue
,
456 unsigned long events
, int subclass
)
460 spin_lock_irqsave_nested(&wqueue
->lock
, flags
, subclass
);
461 wake_up_locked_poll(wqueue
, events
);
462 spin_unlock_irqrestore(&wqueue
->lock
, flags
);
465 static inline void ep_wake_up_nested(wait_queue_head_t
*wqueue
,
466 unsigned long events
, int subclass
)
468 wake_up_poll(wqueue
, events
);
472 static int ep_poll_wakeup_proc(void *priv
, void *cookie
, int call_nests
)
474 ep_wake_up_nested((wait_queue_head_t
*) cookie
, POLLIN
,
480 * Perform a safe wake up of the poll wait list. The problem is that
481 * with the new callback'd wake up system, it is possible that the
482 * poll callback is reentered from inside the call to wake_up() done
483 * on the poll wait queue head. The rule is that we cannot reenter the
484 * wake up code from the same task more than EP_MAX_NESTS times,
485 * and we cannot reenter the same wait queue head at all. This will
486 * enable to have a hierarchy of epoll file descriptor of no more than
489 static void ep_poll_safewake(wait_queue_head_t
*wq
)
491 int this_cpu
= get_cpu();
493 ep_call_nested(&poll_safewake_ncalls
, EP_MAX_NESTS
,
494 ep_poll_wakeup_proc
, NULL
, wq
, (void *) (long) this_cpu
);
499 static void ep_remove_wait_queue(struct eppoll_entry
*pwq
)
501 wait_queue_head_t
*whead
;
504 /* If it is cleared by POLLFREE, it should be rcu-safe */
505 whead
= rcu_dereference(pwq
->whead
);
507 remove_wait_queue(whead
, &pwq
->wait
);
512 * This function unregisters poll callbacks from the associated file
513 * descriptor. Must be called with "mtx" held (or "epmutex" if called from
516 static void ep_unregister_pollwait(struct eventpoll
*ep
, struct epitem
*epi
)
518 struct list_head
*lsthead
= &epi
->pwqlist
;
519 struct eppoll_entry
*pwq
;
521 while (!list_empty(lsthead
)) {
522 pwq
= list_first_entry(lsthead
, struct eppoll_entry
, llink
);
524 list_del(&pwq
->llink
);
525 ep_remove_wait_queue(pwq
);
526 kmem_cache_free(pwq_cache
, pwq
);
531 * ep_scan_ready_list - Scans the ready list in a way that makes possible for
532 * the scan code, to call f_op->poll(). Also allows for
533 * O(NumReady) performance.
535 * @ep: Pointer to the epoll private data structure.
536 * @sproc: Pointer to the scan callback.
537 * @priv: Private opaque data passed to the @sproc callback.
538 * @depth: The current depth of recursive f_op->poll calls.
540 * Returns: The same integer error code returned by the @sproc callback.
542 static int ep_scan_ready_list(struct eventpoll
*ep
,
543 int (*sproc
)(struct eventpoll
*,
544 struct list_head
*, void *),
548 int error
, pwake
= 0;
550 struct epitem
*epi
, *nepi
;
554 * We need to lock this because we could be hit by
555 * eventpoll_release_file() and epoll_ctl().
557 mutex_lock_nested(&ep
->mtx
, depth
);
560 * Steal the ready list, and re-init the original one to the
561 * empty list. Also, set ep->ovflist to NULL so that events
562 * happening while looping w/out locks, are not lost. We cannot
563 * have the poll callback to queue directly on ep->rdllist,
564 * because we want the "sproc" callback to be able to do it
567 spin_lock_irqsave(&ep
->lock
, flags
);
568 list_splice_init(&ep
->rdllist
, &txlist
);
570 spin_unlock_irqrestore(&ep
->lock
, flags
);
573 * Now call the callback function.
575 error
= (*sproc
)(ep
, &txlist
, priv
);
577 spin_lock_irqsave(&ep
->lock
, flags
);
579 * During the time we spent inside the "sproc" callback, some
580 * other events might have been queued by the poll callback.
581 * We re-insert them inside the main ready-list here.
583 for (nepi
= ep
->ovflist
; (epi
= nepi
) != NULL
;
584 nepi
= epi
->next
, epi
->next
= EP_UNACTIVE_PTR
) {
586 * We need to check if the item is already in the list.
587 * During the "sproc" callback execution time, items are
588 * queued into ->ovflist but the "txlist" might already
589 * contain them, and the list_splice() below takes care of them.
591 if (!ep_is_linked(&epi
->rdllink
))
592 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
595 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
596 * releasing the lock, events will be queued in the normal way inside
599 ep
->ovflist
= EP_UNACTIVE_PTR
;
602 * Quickly re-inject items left on "txlist".
604 list_splice(&txlist
, &ep
->rdllist
);
606 if (!list_empty(&ep
->rdllist
)) {
608 * Wake up (if active) both the eventpoll wait list and
609 * the ->poll() wait list (delayed after we release the lock).
611 if (waitqueue_active(&ep
->wq
))
612 wake_up_locked(&ep
->wq
);
613 if (waitqueue_active(&ep
->poll_wait
))
616 spin_unlock_irqrestore(&ep
->lock
, flags
);
618 mutex_unlock(&ep
->mtx
);
620 /* We have to call this outside the lock */
622 ep_poll_safewake(&ep
->poll_wait
);
628 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
629 * all the associated resources. Must be called with "mtx" held.
631 static int ep_remove(struct eventpoll
*ep
, struct epitem
*epi
)
634 struct file
*file
= epi
->ffd
.file
;
637 * Removes poll wait queue hooks. We _have_ to do this without holding
638 * the "ep->lock" otherwise a deadlock might occur. This because of the
639 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
640 * queue head lock when unregistering the wait queue. The wakeup callback
641 * will run by holding the wait queue head lock and will call our callback
642 * that will try to get "ep->lock".
644 ep_unregister_pollwait(ep
, epi
);
646 /* Remove the current item from the list of epoll hooks */
647 spin_lock(&file
->f_lock
);
648 if (ep_is_linked(&epi
->fllink
))
649 list_del_init(&epi
->fllink
);
650 spin_unlock(&file
->f_lock
);
652 rb_erase(&epi
->rbn
, &ep
->rbr
);
654 spin_lock_irqsave(&ep
->lock
, flags
);
655 if (ep_is_linked(&epi
->rdllink
))
656 list_del_init(&epi
->rdllink
);
657 spin_unlock_irqrestore(&ep
->lock
, flags
);
659 /* At this point it is safe to free the eventpoll item */
660 kmem_cache_free(epi_cache
, epi
);
662 atomic_long_dec(&ep
->user
->epoll_watches
);
667 static void ep_free(struct eventpoll
*ep
)
672 /* We need to release all tasks waiting for these file */
673 if (waitqueue_active(&ep
->poll_wait
))
674 ep_poll_safewake(&ep
->poll_wait
);
677 * We need to lock this because we could be hit by
678 * eventpoll_release_file() while we're freeing the "struct eventpoll".
679 * We do not need to hold "ep->mtx" here because the epoll file
680 * is on the way to be removed and no one has references to it
681 * anymore. The only hit might come from eventpoll_release_file() but
682 * holding "epmutex" is sufficient here.
684 mutex_lock(&epmutex
);
687 * Walks through the whole tree by unregistering poll callbacks.
689 for (rbp
= rb_first(&ep
->rbr
); rbp
; rbp
= rb_next(rbp
)) {
690 epi
= rb_entry(rbp
, struct epitem
, rbn
);
692 ep_unregister_pollwait(ep
, epi
);
696 * Walks through the whole tree by freeing each "struct epitem". At this
697 * point we are sure no poll callbacks will be lingering around, and also by
698 * holding "epmutex" we can be sure that no file cleanup code will hit
699 * us during this operation. So we can avoid the lock on "ep->lock".
701 while ((rbp
= rb_first(&ep
->rbr
)) != NULL
) {
702 epi
= rb_entry(rbp
, struct epitem
, rbn
);
706 mutex_unlock(&epmutex
);
707 mutex_destroy(&ep
->mtx
);
712 static int ep_eventpoll_release(struct inode
*inode
, struct file
*file
)
714 struct eventpoll
*ep
= file
->private_data
;
722 static int ep_read_events_proc(struct eventpoll
*ep
, struct list_head
*head
,
725 struct epitem
*epi
, *tmp
;
728 init_poll_funcptr(&pt
, NULL
);
729 list_for_each_entry_safe(epi
, tmp
, head
, rdllink
) {
730 pt
._key
= epi
->event
.events
;
731 if (epi
->ffd
.file
->f_op
->poll(epi
->ffd
.file
, &pt
) &
733 return POLLIN
| POLLRDNORM
;
736 * Item has been dropped into the ready list by the poll
737 * callback, but it's not actually ready, as far as
738 * caller requested events goes. We can remove it here.
740 list_del_init(&epi
->rdllink
);
747 static int ep_poll_readyevents_proc(void *priv
, void *cookie
, int call_nests
)
749 return ep_scan_ready_list(priv
, ep_read_events_proc
, NULL
, call_nests
+ 1);
752 static unsigned int ep_eventpoll_poll(struct file
*file
, poll_table
*wait
)
755 struct eventpoll
*ep
= file
->private_data
;
757 /* Insert inside our poll wait queue */
758 poll_wait(file
, &ep
->poll_wait
, wait
);
761 * Proceed to find out if wanted events are really available inside
762 * the ready list. This need to be done under ep_call_nested()
763 * supervision, since the call to f_op->poll() done on listed files
764 * could re-enter here.
766 pollflags
= ep_call_nested(&poll_readywalk_ncalls
, EP_MAX_NESTS
,
767 ep_poll_readyevents_proc
, ep
, ep
, current
);
769 return pollflags
!= -1 ? pollflags
: 0;
772 /* File callbacks that implement the eventpoll file behaviour */
773 static const struct file_operations eventpoll_fops
= {
774 .release
= ep_eventpoll_release
,
775 .poll
= ep_eventpoll_poll
,
776 .llseek
= noop_llseek
,
780 * This is called from eventpoll_release() to unlink files from the eventpoll
781 * interface. We need to have this facility to cleanup correctly files that are
782 * closed without being removed from the eventpoll interface.
784 void eventpoll_release_file(struct file
*file
)
786 struct list_head
*lsthead
= &file
->f_ep_links
;
787 struct eventpoll
*ep
;
791 * We don't want to get "file->f_lock" because it is not
792 * necessary. It is not necessary because we're in the "struct file"
793 * cleanup path, and this means that no one is using this file anymore.
794 * So, for example, epoll_ctl() cannot hit here since if we reach this
795 * point, the file counter already went to zero and fget() would fail.
796 * The only hit might come from ep_free() but by holding the mutex
797 * will correctly serialize the operation. We do need to acquire
798 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
799 * from anywhere but ep_free().
801 * Besides, ep_remove() acquires the lock, so we can't hold it here.
803 mutex_lock(&epmutex
);
805 while (!list_empty(lsthead
)) {
806 epi
= list_first_entry(lsthead
, struct epitem
, fllink
);
809 list_del_init(&epi
->fllink
);
810 mutex_lock_nested(&ep
->mtx
, 0);
812 mutex_unlock(&ep
->mtx
);
815 mutex_unlock(&epmutex
);
818 static int ep_alloc(struct eventpoll
**pep
)
821 struct user_struct
*user
;
822 struct eventpoll
*ep
;
824 user
= get_current_user();
826 ep
= kzalloc(sizeof(*ep
), GFP_KERNEL
);
830 spin_lock_init(&ep
->lock
);
831 mutex_init(&ep
->mtx
);
832 init_waitqueue_head(&ep
->wq
);
833 init_waitqueue_head(&ep
->poll_wait
);
834 INIT_LIST_HEAD(&ep
->rdllist
);
836 ep
->ovflist
= EP_UNACTIVE_PTR
;
849 * Search the file inside the eventpoll tree. The RB tree operations
850 * are protected by the "mtx" mutex, and ep_find() must be called with
853 static struct epitem
*ep_find(struct eventpoll
*ep
, struct file
*file
, int fd
)
857 struct epitem
*epi
, *epir
= NULL
;
858 struct epoll_filefd ffd
;
860 ep_set_ffd(&ffd
, file
, fd
);
861 for (rbp
= ep
->rbr
.rb_node
; rbp
; ) {
862 epi
= rb_entry(rbp
, struct epitem
, rbn
);
863 kcmp
= ep_cmp_ffd(&ffd
, &epi
->ffd
);
878 * This is the callback that is passed to the wait queue wakeup
879 * mechanism. It is called by the stored file descriptors when they
880 * have events to report.
882 static int ep_poll_callback(wait_queue_t
*wait
, unsigned mode
, int sync
, void *key
)
886 struct epitem
*epi
= ep_item_from_wait(wait
);
887 struct eventpoll
*ep
= epi
->ep
;
889 if ((unsigned long)key
& POLLFREE
) {
890 ep_pwq_from_wait(wait
)->whead
= NULL
;
892 * whead = NULL above can race with ep_remove_wait_queue()
893 * which can do another remove_wait_queue() after us, so we
894 * can't use __remove_wait_queue(). whead->lock is held by
897 list_del_init(&wait
->task_list
);
900 spin_lock_irqsave(&ep
->lock
, flags
);
903 * If the event mask does not contain any poll(2) event, we consider the
904 * descriptor to be disabled. This condition is likely the effect of the
905 * EPOLLONESHOT bit that disables the descriptor when an event is received,
906 * until the next EPOLL_CTL_MOD will be issued.
908 if (!(epi
->event
.events
& ~EP_PRIVATE_BITS
))
912 * Check the events coming with the callback. At this stage, not
913 * every device reports the events in the "key" parameter of the
914 * callback. We need to be able to handle both cases here, hence the
915 * test for "key" != NULL before the event match test.
917 if (key
&& !((unsigned long) key
& epi
->event
.events
))
921 * If we are transferring events to userspace, we can hold no locks
922 * (because we're accessing user memory, and because of linux f_op->poll()
923 * semantics). All the events that happen during that period of time are
924 * chained in ep->ovflist and requeued later on.
926 if (unlikely(ep
->ovflist
!= EP_UNACTIVE_PTR
)) {
927 if (epi
->next
== EP_UNACTIVE_PTR
) {
928 epi
->next
= ep
->ovflist
;
934 /* If this file is already in the ready list we exit soon */
935 if (!ep_is_linked(&epi
->rdllink
))
936 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
939 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
942 if (waitqueue_active(&ep
->wq
))
943 wake_up_locked(&ep
->wq
);
944 if (waitqueue_active(&ep
->poll_wait
))
948 spin_unlock_irqrestore(&ep
->lock
, flags
);
950 /* We have to call this outside the lock */
952 ep_poll_safewake(&ep
->poll_wait
);
958 * This is the callback that is used to add our wait queue to the
959 * target file wakeup lists.
961 static void ep_ptable_queue_proc(struct file
*file
, wait_queue_head_t
*whead
,
964 struct epitem
*epi
= ep_item_from_epqueue(pt
);
965 struct eppoll_entry
*pwq
;
967 if (epi
->nwait
>= 0 && (pwq
= kmem_cache_alloc(pwq_cache
, GFP_KERNEL
))) {
968 init_waitqueue_func_entry(&pwq
->wait
, ep_poll_callback
);
971 add_wait_queue(whead
, &pwq
->wait
);
972 list_add_tail(&pwq
->llink
, &epi
->pwqlist
);
975 /* We have to signal that an error occurred */
980 static void ep_rbtree_insert(struct eventpoll
*ep
, struct epitem
*epi
)
983 struct rb_node
**p
= &ep
->rbr
.rb_node
, *parent
= NULL
;
988 epic
= rb_entry(parent
, struct epitem
, rbn
);
989 kcmp
= ep_cmp_ffd(&epi
->ffd
, &epic
->ffd
);
991 p
= &parent
->rb_right
;
993 p
= &parent
->rb_left
;
995 rb_link_node(&epi
->rbn
, parent
, p
);
996 rb_insert_color(&epi
->rbn
, &ep
->rbr
);
1001 #define PATH_ARR_SIZE 5
1003 * These are the number paths of length 1 to 5, that we are allowing to emanate
1004 * from a single file of interest. For example, we allow 1000 paths of length
1005 * 1, to emanate from each file of interest. This essentially represents the
1006 * potential wakeup paths, which need to be limited in order to avoid massive
1007 * uncontrolled wakeup storms. The common use case should be a single ep which
1008 * is connected to n file sources. In this case each file source has 1 path
1009 * of length 1. Thus, the numbers below should be more than sufficient. These
1010 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1011 * and delete can't add additional paths. Protected by the epmutex.
1013 static const int path_limits
[PATH_ARR_SIZE
] = { 1000, 500, 100, 50, 10 };
1014 static int path_count
[PATH_ARR_SIZE
];
1016 static int path_count_inc(int nests
)
1018 /* Allow an arbitrary number of depth 1 paths */
1022 if (++path_count
[nests
] > path_limits
[nests
])
1027 static void path_count_init(void)
1031 for (i
= 0; i
< PATH_ARR_SIZE
; i
++)
1035 static int reverse_path_check_proc(void *priv
, void *cookie
, int call_nests
)
1038 struct file
*file
= priv
;
1039 struct file
*child_file
;
1042 list_for_each_entry(epi
, &file
->f_ep_links
, fllink
) {
1043 child_file
= epi
->ep
->file
;
1044 if (is_file_epoll(child_file
)) {
1045 if (list_empty(&child_file
->f_ep_links
)) {
1046 if (path_count_inc(call_nests
)) {
1051 error
= ep_call_nested(&poll_loop_ncalls
,
1053 reverse_path_check_proc
,
1054 child_file
, child_file
,
1060 printk(KERN_ERR
"reverse_path_check_proc: "
1061 "file is not an ep!\n");
1068 * reverse_path_check - The tfile_check_list is list of file *, which have
1069 * links that are proposed to be newly added. We need to
1070 * make sure that those added links don't add too many
1071 * paths such that we will spend all our time waking up
1072 * eventpoll objects.
1074 * Returns: Returns zero if the proposed links don't create too many paths,
1077 static int reverse_path_check(void)
1080 struct file
*current_file
;
1082 /* let's call this for all tfiles */
1083 list_for_each_entry(current_file
, &tfile_check_list
, f_tfile_llink
) {
1085 error
= ep_call_nested(&poll_loop_ncalls
, EP_MAX_NESTS
,
1086 reverse_path_check_proc
, current_file
,
1087 current_file
, current
);
1095 * Must be called with "mtx" held.
1097 static int ep_insert(struct eventpoll
*ep
, struct epoll_event
*event
,
1098 struct file
*tfile
, int fd
)
1100 int error
, revents
, pwake
= 0;
1101 unsigned long flags
;
1104 struct ep_pqueue epq
;
1106 user_watches
= atomic_long_read(&ep
->user
->epoll_watches
);
1107 if (unlikely(user_watches
>= max_user_watches
))
1109 if (!(epi
= kmem_cache_alloc(epi_cache
, GFP_KERNEL
)))
1112 /* Item initialization follow here ... */
1113 INIT_LIST_HEAD(&epi
->rdllink
);
1114 INIT_LIST_HEAD(&epi
->fllink
);
1115 INIT_LIST_HEAD(&epi
->pwqlist
);
1117 ep_set_ffd(&epi
->ffd
, tfile
, fd
);
1118 epi
->event
= *event
;
1120 epi
->next
= EP_UNACTIVE_PTR
;
1122 /* Initialize the poll table using the queue callback */
1124 init_poll_funcptr(&epq
.pt
, ep_ptable_queue_proc
);
1125 epq
.pt
._key
= event
->events
;
1128 * Attach the item to the poll hooks and get current event bits.
1129 * We can safely use the file* here because its usage count has
1130 * been increased by the caller of this function. Note that after
1131 * this operation completes, the poll callback can start hitting
1134 revents
= tfile
->f_op
->poll(tfile
, &epq
.pt
);
1137 * We have to check if something went wrong during the poll wait queue
1138 * install process. Namely an allocation for a wait queue failed due
1139 * high memory pressure.
1143 goto error_unregister
;
1145 /* Add the current item to the list of active epoll hook for this file */
1146 spin_lock(&tfile
->f_lock
);
1147 list_add_tail(&epi
->fllink
, &tfile
->f_ep_links
);
1148 spin_unlock(&tfile
->f_lock
);
1151 * Add the current item to the RB tree. All RB tree operations are
1152 * protected by "mtx", and ep_insert() is called with "mtx" held.
1154 ep_rbtree_insert(ep
, epi
);
1156 /* now check if we've created too many backpaths */
1158 if (reverse_path_check())
1159 goto error_remove_epi
;
1161 /* We have to drop the new item inside our item list to keep track of it */
1162 spin_lock_irqsave(&ep
->lock
, flags
);
1164 /* If the file is already "ready" we drop it inside the ready list */
1165 if ((revents
& event
->events
) && !ep_is_linked(&epi
->rdllink
)) {
1166 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
1168 /* Notify waiting tasks that events are available */
1169 if (waitqueue_active(&ep
->wq
))
1170 wake_up_locked(&ep
->wq
);
1171 if (waitqueue_active(&ep
->poll_wait
))
1175 spin_unlock_irqrestore(&ep
->lock
, flags
);
1177 atomic_long_inc(&ep
->user
->epoll_watches
);
1179 /* We have to call this outside the lock */
1181 ep_poll_safewake(&ep
->poll_wait
);
1186 spin_lock(&tfile
->f_lock
);
1187 if (ep_is_linked(&epi
->fllink
))
1188 list_del_init(&epi
->fllink
);
1189 spin_unlock(&tfile
->f_lock
);
1191 rb_erase(&epi
->rbn
, &ep
->rbr
);
1194 ep_unregister_pollwait(ep
, epi
);
1197 * We need to do this because an event could have been arrived on some
1198 * allocated wait queue. Note that we don't care about the ep->ovflist
1199 * list, since that is used/cleaned only inside a section bound by "mtx".
1200 * And ep_insert() is called with "mtx" held.
1202 spin_lock_irqsave(&ep
->lock
, flags
);
1203 if (ep_is_linked(&epi
->rdllink
))
1204 list_del_init(&epi
->rdllink
);
1205 spin_unlock_irqrestore(&ep
->lock
, flags
);
1207 kmem_cache_free(epi_cache
, epi
);
1213 * Modify the interest event mask by dropping an event if the new mask
1214 * has a match in the current file status. Must be called with "mtx" held.
1216 static int ep_modify(struct eventpoll
*ep
, struct epitem
*epi
, struct epoll_event
*event
)
1219 unsigned int revents
;
1222 init_poll_funcptr(&pt
, NULL
);
1225 * Set the new event interest mask before calling f_op->poll();
1226 * otherwise we might miss an event that happens between the
1227 * f_op->poll() call and the new event set registering.
1229 epi
->event
.events
= event
->events
;
1230 pt
._key
= event
->events
;
1231 epi
->event
.data
= event
->data
; /* protected by mtx */
1234 * Get current event bits. We can safely use the file* here because
1235 * its usage count has been increased by the caller of this function.
1237 revents
= epi
->ffd
.file
->f_op
->poll(epi
->ffd
.file
, &pt
);
1240 * If the item is "hot" and it is not registered inside the ready
1241 * list, push it inside.
1243 if (revents
& event
->events
) {
1244 spin_lock_irq(&ep
->lock
);
1245 if (!ep_is_linked(&epi
->rdllink
)) {
1246 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
1248 /* Notify waiting tasks that events are available */
1249 if (waitqueue_active(&ep
->wq
))
1250 wake_up_locked(&ep
->wq
);
1251 if (waitqueue_active(&ep
->poll_wait
))
1254 spin_unlock_irq(&ep
->lock
);
1257 /* We have to call this outside the lock */
1259 ep_poll_safewake(&ep
->poll_wait
);
1264 static int ep_send_events_proc(struct eventpoll
*ep
, struct list_head
*head
,
1267 struct ep_send_events_data
*esed
= priv
;
1269 unsigned int revents
;
1271 struct epoll_event __user
*uevent
;
1274 init_poll_funcptr(&pt
, NULL
);
1277 * We can loop without lock because we are passed a task private list.
1278 * Items cannot vanish during the loop because ep_scan_ready_list() is
1279 * holding "mtx" during this call.
1281 for (eventcnt
= 0, uevent
= esed
->events
;
1282 !list_empty(head
) && eventcnt
< esed
->maxevents
;) {
1283 epi
= list_first_entry(head
, struct epitem
, rdllink
);
1285 list_del_init(&epi
->rdllink
);
1287 pt
._key
= epi
->event
.events
;
1288 revents
= epi
->ffd
.file
->f_op
->poll(epi
->ffd
.file
, &pt
) &
1292 * If the event mask intersect the caller-requested one,
1293 * deliver the event to userspace. Again, ep_scan_ready_list()
1294 * is holding "mtx", so no operations coming from userspace
1295 * can change the item.
1298 if (__put_user(revents
, &uevent
->events
) ||
1299 __put_user(epi
->event
.data
, &uevent
->data
)) {
1300 list_add(&epi
->rdllink
, head
);
1301 return eventcnt
? eventcnt
: -EFAULT
;
1305 if (epi
->event
.events
& EPOLLONESHOT
)
1306 epi
->event
.events
&= EP_PRIVATE_BITS
;
1307 else if (!(epi
->event
.events
& EPOLLET
)) {
1309 * If this file has been added with Level
1310 * Trigger mode, we need to insert back inside
1311 * the ready list, so that the next call to
1312 * epoll_wait() will check again the events
1313 * availability. At this point, no one can insert
1314 * into ep->rdllist besides us. The epoll_ctl()
1315 * callers are locked out by
1316 * ep_scan_ready_list() holding "mtx" and the
1317 * poll callback will queue them in ep->ovflist.
1319 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
1327 static int ep_send_events(struct eventpoll
*ep
,
1328 struct epoll_event __user
*events
, int maxevents
)
1330 struct ep_send_events_data esed
;
1332 esed
.maxevents
= maxevents
;
1333 esed
.events
= events
;
1335 return ep_scan_ready_list(ep
, ep_send_events_proc
, &esed
, 0);
1338 static inline struct timespec
ep_set_mstimeout(long ms
)
1340 struct timespec now
, ts
= {
1341 .tv_sec
= ms
/ MSEC_PER_SEC
,
1342 .tv_nsec
= NSEC_PER_MSEC
* (ms
% MSEC_PER_SEC
),
1346 return timespec_add_safe(now
, ts
);
1350 * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1353 * @ep: Pointer to the eventpoll context.
1354 * @events: Pointer to the userspace buffer where the ready events should be
1356 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1357 * @timeout: Maximum timeout for the ready events fetch operation, in
1358 * milliseconds. If the @timeout is zero, the function will not block,
1359 * while if the @timeout is less than zero, the function will block
1360 * until at least one event has been retrieved (or an error
1363 * Returns: Returns the number of ready events which have been fetched, or an
1364 * error code, in case of error.
1366 static int ep_poll(struct eventpoll
*ep
, struct epoll_event __user
*events
,
1367 int maxevents
, long timeout
)
1369 int res
= 0, eavail
, timed_out
= 0;
1370 unsigned long flags
;
1373 ktime_t expires
, *to
= NULL
;
1376 struct timespec end_time
= ep_set_mstimeout(timeout
);
1378 slack
= select_estimate_accuracy(&end_time
);
1380 *to
= timespec_to_ktime(end_time
);
1381 } else if (timeout
== 0) {
1383 * Avoid the unnecessary trip to the wait queue loop, if the
1384 * caller specified a non blocking operation.
1387 spin_lock_irqsave(&ep
->lock
, flags
);
1392 spin_lock_irqsave(&ep
->lock
, flags
);
1394 if (!ep_events_available(ep
)) {
1396 * We don't have any available event to return to the caller.
1397 * We need to sleep here, and we will be wake up by
1398 * ep_poll_callback() when events will become available.
1400 init_waitqueue_entry(&wait
, current
);
1401 __add_wait_queue_exclusive(&ep
->wq
, &wait
);
1405 * We don't want to sleep if the ep_poll_callback() sends us
1406 * a wakeup in between. That's why we set the task state
1407 * to TASK_INTERRUPTIBLE before doing the checks.
1409 set_current_state(TASK_INTERRUPTIBLE
);
1410 if (ep_events_available(ep
) || timed_out
)
1412 if (signal_pending(current
)) {
1417 spin_unlock_irqrestore(&ep
->lock
, flags
);
1418 if (!schedule_hrtimeout_range(to
, slack
, HRTIMER_MODE_ABS
))
1421 spin_lock_irqsave(&ep
->lock
, flags
);
1423 __remove_wait_queue(&ep
->wq
, &wait
);
1425 set_current_state(TASK_RUNNING
);
1428 /* Is it worth to try to dig for events ? */
1429 eavail
= ep_events_available(ep
);
1431 spin_unlock_irqrestore(&ep
->lock
, flags
);
1434 * Try to transfer events to user space. In case we get 0 events and
1435 * there's still timeout left over, we go trying again in search of
1438 if (!res
&& eavail
&&
1439 !(res
= ep_send_events(ep
, events
, maxevents
)) && !timed_out
)
1446 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1447 * API, to verify that adding an epoll file inside another
1448 * epoll structure, does not violate the constraints, in
1449 * terms of closed loops, or too deep chains (which can
1450 * result in excessive stack usage).
1452 * @priv: Pointer to the epoll file to be currently checked.
1453 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1454 * data structure pointer.
1455 * @call_nests: Current dept of the @ep_call_nested() call stack.
1457 * Returns: Returns zero if adding the epoll @file inside current epoll
1458 * structure @ep does not violate the constraints, or -1 otherwise.
1460 static int ep_loop_check_proc(void *priv
, void *cookie
, int call_nests
)
1463 struct file
*file
= priv
;
1464 struct eventpoll
*ep
= file
->private_data
;
1465 struct eventpoll
*ep_tovisit
;
1466 struct rb_node
*rbp
;
1469 mutex_lock_nested(&ep
->mtx
, call_nests
+ 1);
1471 list_add(&ep
->visited_list_link
, &visited_list
);
1472 for (rbp
= rb_first(&ep
->rbr
); rbp
; rbp
= rb_next(rbp
)) {
1473 epi
= rb_entry(rbp
, struct epitem
, rbn
);
1474 if (unlikely(is_file_epoll(epi
->ffd
.file
))) {
1475 ep_tovisit
= epi
->ffd
.file
->private_data
;
1476 if (ep_tovisit
->visited
)
1478 error
= ep_call_nested(&poll_loop_ncalls
, EP_MAX_NESTS
,
1479 ep_loop_check_proc
, epi
->ffd
.file
,
1480 ep_tovisit
, current
);
1485 * If we've reached a file that is not associated with
1486 * an ep, then we need to check if the newly added
1487 * links are going to add too many wakeup paths. We do
1488 * this by adding it to the tfile_check_list, if it's
1489 * not already there, and calling reverse_path_check()
1490 * during ep_insert().
1492 if (list_empty(&epi
->ffd
.file
->f_tfile_llink
))
1493 list_add(&epi
->ffd
.file
->f_tfile_llink
,
1497 mutex_unlock(&ep
->mtx
);
1503 * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1504 * another epoll file (represented by @ep) does not create
1505 * closed loops or too deep chains.
1507 * @ep: Pointer to the epoll private data structure.
1508 * @file: Pointer to the epoll file to be checked.
1510 * Returns: Returns zero if adding the epoll @file inside current epoll
1511 * structure @ep does not violate the constraints, or -1 otherwise.
1513 static int ep_loop_check(struct eventpoll
*ep
, struct file
*file
)
1516 struct eventpoll
*ep_cur
, *ep_next
;
1518 ret
= ep_call_nested(&poll_loop_ncalls
, EP_MAX_NESTS
,
1519 ep_loop_check_proc
, file
, ep
, current
);
1520 /* clear visited list */
1521 list_for_each_entry_safe(ep_cur
, ep_next
, &visited_list
,
1522 visited_list_link
) {
1523 ep_cur
->visited
= 0;
1524 list_del(&ep_cur
->visited_list_link
);
1529 static void clear_tfile_check_list(void)
1533 /* first clear the tfile_check_list */
1534 while (!list_empty(&tfile_check_list
)) {
1535 file
= list_first_entry(&tfile_check_list
, struct file
,
1537 list_del_init(&file
->f_tfile_llink
);
1539 INIT_LIST_HEAD(&tfile_check_list
);
1543 * Open an eventpoll file descriptor.
1545 SYSCALL_DEFINE1(epoll_create1
, int, flags
)
1548 struct eventpoll
*ep
= NULL
;
1551 /* Check the EPOLL_* constant for consistency. */
1552 BUILD_BUG_ON(EPOLL_CLOEXEC
!= O_CLOEXEC
);
1554 if (flags
& ~EPOLL_CLOEXEC
)
1557 * Create the internal data structure ("struct eventpoll").
1559 error
= ep_alloc(&ep
);
1563 * Creates all the items needed to setup an eventpoll file. That is,
1564 * a file structure and a free file descriptor.
1566 fd
= get_unused_fd_flags(O_RDWR
| (flags
& O_CLOEXEC
));
1571 file
= anon_inode_getfile("[eventpoll]", &eventpoll_fops
, ep
,
1572 O_RDWR
| (flags
& O_CLOEXEC
));
1574 error
= PTR_ERR(file
);
1577 fd_install(fd
, file
);
1588 SYSCALL_DEFINE1(epoll_create
, int, size
)
1593 return sys_epoll_create1(0);
1597 * The following function implements the controller interface for
1598 * the eventpoll file that enables the insertion/removal/change of
1599 * file descriptors inside the interest set.
1601 SYSCALL_DEFINE4(epoll_ctl
, int, epfd
, int, op
, int, fd
,
1602 struct epoll_event __user
*, event
)
1605 int did_lock_epmutex
= 0;
1606 struct file
*file
, *tfile
;
1607 struct eventpoll
*ep
;
1609 struct epoll_event epds
;
1612 if (ep_op_has_event(op
) &&
1613 copy_from_user(&epds
, event
, sizeof(struct epoll_event
)))
1616 /* Get the "struct file *" for the eventpoll file */
1622 /* Get the "struct file *" for the target file */
1627 /* The target file descriptor must support poll */
1629 if (!tfile
->f_op
|| !tfile
->f_op
->poll
)
1630 goto error_tgt_fput
;
1633 * We have to check that the file structure underneath the file descriptor
1634 * the user passed to us _is_ an eventpoll file. And also we do not permit
1635 * adding an epoll file descriptor inside itself.
1638 if (file
== tfile
|| !is_file_epoll(file
))
1639 goto error_tgt_fput
;
1642 * At this point it is safe to assume that the "private_data" contains
1643 * our own data structure.
1645 ep
= file
->private_data
;
1648 * When we insert an epoll file descriptor, inside another epoll file
1649 * descriptor, there is the change of creating closed loops, which are
1650 * better be handled here, than in more critical paths. While we are
1651 * checking for loops we also determine the list of files reachable
1652 * and hang them on the tfile_check_list, so we can check that we
1653 * haven't created too many possible wakeup paths.
1655 * We need to hold the epmutex across both ep_insert and ep_remove
1656 * b/c we want to make sure we are looking at a coherent view of
1659 if (op
== EPOLL_CTL_ADD
|| op
== EPOLL_CTL_DEL
) {
1660 mutex_lock(&epmutex
);
1661 did_lock_epmutex
= 1;
1663 if (op
== EPOLL_CTL_ADD
) {
1664 if (is_file_epoll(tfile
)) {
1666 if (ep_loop_check(ep
, tfile
) != 0) {
1667 clear_tfile_check_list();
1668 goto error_tgt_fput
;
1671 list_add(&tfile
->f_tfile_llink
, &tfile_check_list
);
1674 mutex_lock_nested(&ep
->mtx
, 0);
1677 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
1678 * above, we can be sure to be able to use the item looked up by
1679 * ep_find() till we release the mutex.
1681 epi
= ep_find(ep
, tfile
, fd
);
1687 epds
.events
|= POLLERR
| POLLHUP
;
1688 error
= ep_insert(ep
, &epds
, tfile
, fd
);
1691 clear_tfile_check_list();
1695 error
= ep_remove(ep
, epi
);
1701 epds
.events
|= POLLERR
| POLLHUP
;
1702 error
= ep_modify(ep
, epi
, &epds
);
1707 mutex_unlock(&ep
->mtx
);
1710 if (did_lock_epmutex
)
1711 mutex_unlock(&epmutex
);
1722 * Implement the event wait interface for the eventpoll file. It is the kernel
1723 * part of the user space epoll_wait(2).
1725 SYSCALL_DEFINE4(epoll_wait
, int, epfd
, struct epoll_event __user
*, events
,
1726 int, maxevents
, int, timeout
)
1730 struct eventpoll
*ep
;
1732 /* The maximum number of event must be greater than zero */
1733 if (maxevents
<= 0 || maxevents
> EP_MAX_EVENTS
)
1736 /* Verify that the area passed by the user is writeable */
1737 if (!access_ok(VERIFY_WRITE
, events
, maxevents
* sizeof(struct epoll_event
))) {
1742 /* Get the "struct file *" for the eventpoll file */
1749 * We have to check that the file structure underneath the fd
1750 * the user passed to us _is_ an eventpoll file.
1753 if (!is_file_epoll(file
))
1757 * At this point it is safe to assume that the "private_data" contains
1758 * our own data structure.
1760 ep
= file
->private_data
;
1762 /* Time to fish for events ... */
1763 error
= ep_poll(ep
, events
, maxevents
, timeout
);
1772 #ifdef HAVE_SET_RESTORE_SIGMASK
1775 * Implement the event wait interface for the eventpoll file. It is the kernel
1776 * part of the user space epoll_pwait(2).
1778 SYSCALL_DEFINE6(epoll_pwait
, int, epfd
, struct epoll_event __user
*, events
,
1779 int, maxevents
, int, timeout
, const sigset_t __user
*, sigmask
,
1783 sigset_t ksigmask
, sigsaved
;
1786 * If the caller wants a certain signal mask to be set during the wait,
1790 if (sigsetsize
!= sizeof(sigset_t
))
1792 if (copy_from_user(&ksigmask
, sigmask
, sizeof(ksigmask
)))
1794 sigdelsetmask(&ksigmask
, sigmask(SIGKILL
) | sigmask(SIGSTOP
));
1795 sigprocmask(SIG_SETMASK
, &ksigmask
, &sigsaved
);
1798 error
= sys_epoll_wait(epfd
, events
, maxevents
, timeout
);
1801 * If we changed the signal mask, we need to restore the original one.
1802 * In case we've got a signal while waiting, we do not restore the
1803 * signal mask yet, and we allow do_signal() to deliver the signal on
1804 * the way back to userspace, before the signal mask is restored.
1807 if (error
== -EINTR
) {
1808 memcpy(¤t
->saved_sigmask
, &sigsaved
,
1810 set_restore_sigmask();
1812 sigprocmask(SIG_SETMASK
, &sigsaved
, NULL
);
1818 #endif /* HAVE_SET_RESTORE_SIGMASK */
1820 static int __init
eventpoll_init(void)
1826 * Allows top 4% of lomem to be allocated for epoll watches (per user).
1828 max_user_watches
= (((si
.totalram
- si
.totalhigh
) / 25) << PAGE_SHIFT
) /
1830 BUG_ON(max_user_watches
< 0);
1833 * Initialize the structure used to perform epoll file descriptor
1834 * inclusion loops checks.
1836 ep_nested_calls_init(&poll_loop_ncalls
);
1838 /* Initialize the structure used to perform safe poll wait head wake ups */
1839 ep_nested_calls_init(&poll_safewake_ncalls
);
1841 /* Initialize the structure used to perform file's f_op->poll() calls */
1842 ep_nested_calls_init(&poll_readywalk_ncalls
);
1844 /* Allocates slab cache used to allocate "struct epitem" items */
1845 epi_cache
= kmem_cache_create("eventpoll_epi", sizeof(struct epitem
),
1846 0, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
, NULL
);
1848 /* Allocates slab cache used to allocate "struct eppoll_entry" */
1849 pwq_cache
= kmem_cache_create("eventpoll_pwq",
1850 sizeof(struct eppoll_entry
), 0, SLAB_PANIC
, NULL
);
1854 fs_initcall(eventpoll_init
);