Revert "perf augmented_syscalls: Drop 'write', 'poll' for testing without self pid...
[linux/fpc-iii.git] / tools / perf / util / machine.c
blob8f36ce813bc5b20308a2f799ba76192118fae3d1
1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <inttypes.h>
5 #include <regex.h>
6 #include "callchain.h"
7 #include "debug.h"
8 #include "event.h"
9 #include "evsel.h"
10 #include "hist.h"
11 #include "machine.h"
12 #include "map.h"
13 #include "sort.h"
14 #include "strlist.h"
15 #include "thread.h"
16 #include "vdso.h"
17 #include <stdbool.h>
18 #include <sys/types.h>
19 #include <sys/stat.h>
20 #include <unistd.h>
21 #include "unwind.h"
22 #include "linux/hash.h"
23 #include "asm/bug.h"
25 #include "sane_ctype.h"
26 #include <symbol/kallsyms.h>
27 #include <linux/mman.h>
29 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
31 static void dsos__init(struct dsos *dsos)
33 INIT_LIST_HEAD(&dsos->head);
34 dsos->root = RB_ROOT;
35 init_rwsem(&dsos->lock);
38 static void machine__threads_init(struct machine *machine)
40 int i;
42 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
43 struct threads *threads = &machine->threads[i];
44 threads->entries = RB_ROOT;
45 init_rwsem(&threads->lock);
46 threads->nr = 0;
47 INIT_LIST_HEAD(&threads->dead);
48 threads->last_match = NULL;
52 static int machine__set_mmap_name(struct machine *machine)
54 if (machine__is_host(machine))
55 machine->mmap_name = strdup("[kernel.kallsyms]");
56 else if (machine__is_default_guest(machine))
57 machine->mmap_name = strdup("[guest.kernel.kallsyms]");
58 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
59 machine->pid) < 0)
60 machine->mmap_name = NULL;
62 return machine->mmap_name ? 0 : -ENOMEM;
65 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
67 int err = -ENOMEM;
69 memset(machine, 0, sizeof(*machine));
70 map_groups__init(&machine->kmaps, machine);
71 RB_CLEAR_NODE(&machine->rb_node);
72 dsos__init(&machine->dsos);
74 machine__threads_init(machine);
76 machine->vdso_info = NULL;
77 machine->env = NULL;
79 machine->pid = pid;
81 machine->id_hdr_size = 0;
82 machine->kptr_restrict_warned = false;
83 machine->comm_exec = false;
84 machine->kernel_start = 0;
85 machine->vmlinux_map = NULL;
87 machine->root_dir = strdup(root_dir);
88 if (machine->root_dir == NULL)
89 return -ENOMEM;
91 if (machine__set_mmap_name(machine))
92 goto out;
94 if (pid != HOST_KERNEL_ID) {
95 struct thread *thread = machine__findnew_thread(machine, -1,
96 pid);
97 char comm[64];
99 if (thread == NULL)
100 goto out;
102 snprintf(comm, sizeof(comm), "[guest/%d]", pid);
103 thread__set_comm(thread, comm, 0);
104 thread__put(thread);
107 machine->current_tid = NULL;
108 err = 0;
110 out:
111 if (err) {
112 zfree(&machine->root_dir);
113 zfree(&machine->mmap_name);
115 return 0;
118 struct machine *machine__new_host(void)
120 struct machine *machine = malloc(sizeof(*machine));
122 if (machine != NULL) {
123 machine__init(machine, "", HOST_KERNEL_ID);
125 if (machine__create_kernel_maps(machine) < 0)
126 goto out_delete;
129 return machine;
130 out_delete:
131 free(machine);
132 return NULL;
135 struct machine *machine__new_kallsyms(void)
137 struct machine *machine = machine__new_host();
139 * FIXME:
140 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitely
141 * ask for not using the kcore parsing code, once this one is fixed
142 * to create a map per module.
144 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
145 machine__delete(machine);
146 machine = NULL;
149 return machine;
152 static void dsos__purge(struct dsos *dsos)
154 struct dso *pos, *n;
156 down_write(&dsos->lock);
158 list_for_each_entry_safe(pos, n, &dsos->head, node) {
159 RB_CLEAR_NODE(&pos->rb_node);
160 pos->root = NULL;
161 list_del_init(&pos->node);
162 dso__put(pos);
165 up_write(&dsos->lock);
168 static void dsos__exit(struct dsos *dsos)
170 dsos__purge(dsos);
171 exit_rwsem(&dsos->lock);
174 void machine__delete_threads(struct machine *machine)
176 struct rb_node *nd;
177 int i;
179 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
180 struct threads *threads = &machine->threads[i];
181 down_write(&threads->lock);
182 nd = rb_first(&threads->entries);
183 while (nd) {
184 struct thread *t = rb_entry(nd, struct thread, rb_node);
186 nd = rb_next(nd);
187 __machine__remove_thread(machine, t, false);
189 up_write(&threads->lock);
193 void machine__exit(struct machine *machine)
195 int i;
197 if (machine == NULL)
198 return;
200 machine__destroy_kernel_maps(machine);
201 map_groups__exit(&machine->kmaps);
202 dsos__exit(&machine->dsos);
203 machine__exit_vdso(machine);
204 zfree(&machine->root_dir);
205 zfree(&machine->mmap_name);
206 zfree(&machine->current_tid);
208 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
209 struct threads *threads = &machine->threads[i];
210 exit_rwsem(&threads->lock);
214 void machine__delete(struct machine *machine)
216 if (machine) {
217 machine__exit(machine);
218 free(machine);
222 void machines__init(struct machines *machines)
224 machine__init(&machines->host, "", HOST_KERNEL_ID);
225 machines->guests = RB_ROOT;
228 void machines__exit(struct machines *machines)
230 machine__exit(&machines->host);
231 /* XXX exit guest */
234 struct machine *machines__add(struct machines *machines, pid_t pid,
235 const char *root_dir)
237 struct rb_node **p = &machines->guests.rb_node;
238 struct rb_node *parent = NULL;
239 struct machine *pos, *machine = malloc(sizeof(*machine));
241 if (machine == NULL)
242 return NULL;
244 if (machine__init(machine, root_dir, pid) != 0) {
245 free(machine);
246 return NULL;
249 while (*p != NULL) {
250 parent = *p;
251 pos = rb_entry(parent, struct machine, rb_node);
252 if (pid < pos->pid)
253 p = &(*p)->rb_left;
254 else
255 p = &(*p)->rb_right;
258 rb_link_node(&machine->rb_node, parent, p);
259 rb_insert_color(&machine->rb_node, &machines->guests);
261 return machine;
264 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
266 struct rb_node *nd;
268 machines->host.comm_exec = comm_exec;
270 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
271 struct machine *machine = rb_entry(nd, struct machine, rb_node);
273 machine->comm_exec = comm_exec;
277 struct machine *machines__find(struct machines *machines, pid_t pid)
279 struct rb_node **p = &machines->guests.rb_node;
280 struct rb_node *parent = NULL;
281 struct machine *machine;
282 struct machine *default_machine = NULL;
284 if (pid == HOST_KERNEL_ID)
285 return &machines->host;
287 while (*p != NULL) {
288 parent = *p;
289 machine = rb_entry(parent, struct machine, rb_node);
290 if (pid < machine->pid)
291 p = &(*p)->rb_left;
292 else if (pid > machine->pid)
293 p = &(*p)->rb_right;
294 else
295 return machine;
296 if (!machine->pid)
297 default_machine = machine;
300 return default_machine;
303 struct machine *machines__findnew(struct machines *machines, pid_t pid)
305 char path[PATH_MAX];
306 const char *root_dir = "";
307 struct machine *machine = machines__find(machines, pid);
309 if (machine && (machine->pid == pid))
310 goto out;
312 if ((pid != HOST_KERNEL_ID) &&
313 (pid != DEFAULT_GUEST_KERNEL_ID) &&
314 (symbol_conf.guestmount)) {
315 sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
316 if (access(path, R_OK)) {
317 static struct strlist *seen;
319 if (!seen)
320 seen = strlist__new(NULL, NULL);
322 if (!strlist__has_entry(seen, path)) {
323 pr_err("Can't access file %s\n", path);
324 strlist__add(seen, path);
326 machine = NULL;
327 goto out;
329 root_dir = path;
332 machine = machines__add(machines, pid, root_dir);
333 out:
334 return machine;
337 void machines__process_guests(struct machines *machines,
338 machine__process_t process, void *data)
340 struct rb_node *nd;
342 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
343 struct machine *pos = rb_entry(nd, struct machine, rb_node);
344 process(pos, data);
348 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
350 struct rb_node *node;
351 struct machine *machine;
353 machines->host.id_hdr_size = id_hdr_size;
355 for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
356 machine = rb_entry(node, struct machine, rb_node);
357 machine->id_hdr_size = id_hdr_size;
360 return;
363 static void machine__update_thread_pid(struct machine *machine,
364 struct thread *th, pid_t pid)
366 struct thread *leader;
368 if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
369 return;
371 th->pid_ = pid;
373 if (th->pid_ == th->tid)
374 return;
376 leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
377 if (!leader)
378 goto out_err;
380 if (!leader->mg)
381 leader->mg = map_groups__new(machine);
383 if (!leader->mg)
384 goto out_err;
386 if (th->mg == leader->mg)
387 return;
389 if (th->mg) {
391 * Maps are created from MMAP events which provide the pid and
392 * tid. Consequently there never should be any maps on a thread
393 * with an unknown pid. Just print an error if there are.
395 if (!map_groups__empty(th->mg))
396 pr_err("Discarding thread maps for %d:%d\n",
397 th->pid_, th->tid);
398 map_groups__put(th->mg);
401 th->mg = map_groups__get(leader->mg);
402 out_put:
403 thread__put(leader);
404 return;
405 out_err:
406 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
407 goto out_put;
411 * Front-end cache - TID lookups come in blocks,
412 * so most of the time we dont have to look up
413 * the full rbtree:
415 static struct thread*
416 __threads__get_last_match(struct threads *threads, struct machine *machine,
417 int pid, int tid)
419 struct thread *th;
421 th = threads->last_match;
422 if (th != NULL) {
423 if (th->tid == tid) {
424 machine__update_thread_pid(machine, th, pid);
425 return thread__get(th);
428 threads->last_match = NULL;
431 return NULL;
434 static struct thread*
435 threads__get_last_match(struct threads *threads, struct machine *machine,
436 int pid, int tid)
438 struct thread *th = NULL;
440 if (perf_singlethreaded)
441 th = __threads__get_last_match(threads, machine, pid, tid);
443 return th;
446 static void
447 __threads__set_last_match(struct threads *threads, struct thread *th)
449 threads->last_match = th;
452 static void
453 threads__set_last_match(struct threads *threads, struct thread *th)
455 if (perf_singlethreaded)
456 __threads__set_last_match(threads, th);
460 * Caller must eventually drop thread->refcnt returned with a successful
461 * lookup/new thread inserted.
463 static struct thread *____machine__findnew_thread(struct machine *machine,
464 struct threads *threads,
465 pid_t pid, pid_t tid,
466 bool create)
468 struct rb_node **p = &threads->entries.rb_node;
469 struct rb_node *parent = NULL;
470 struct thread *th;
472 th = threads__get_last_match(threads, machine, pid, tid);
473 if (th)
474 return th;
476 while (*p != NULL) {
477 parent = *p;
478 th = rb_entry(parent, struct thread, rb_node);
480 if (th->tid == tid) {
481 threads__set_last_match(threads, th);
482 machine__update_thread_pid(machine, th, pid);
483 return thread__get(th);
486 if (tid < th->tid)
487 p = &(*p)->rb_left;
488 else
489 p = &(*p)->rb_right;
492 if (!create)
493 return NULL;
495 th = thread__new(pid, tid);
496 if (th != NULL) {
497 rb_link_node(&th->rb_node, parent, p);
498 rb_insert_color(&th->rb_node, &threads->entries);
501 * We have to initialize map_groups separately
502 * after rb tree is updated.
504 * The reason is that we call machine__findnew_thread
505 * within thread__init_map_groups to find the thread
506 * leader and that would screwed the rb tree.
508 if (thread__init_map_groups(th, machine)) {
509 rb_erase_init(&th->rb_node, &threads->entries);
510 RB_CLEAR_NODE(&th->rb_node);
511 thread__put(th);
512 return NULL;
515 * It is now in the rbtree, get a ref
517 thread__get(th);
518 threads__set_last_match(threads, th);
519 ++threads->nr;
522 return th;
525 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
527 return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
530 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
531 pid_t tid)
533 struct threads *threads = machine__threads(machine, tid);
534 struct thread *th;
536 down_write(&threads->lock);
537 th = __machine__findnew_thread(machine, pid, tid);
538 up_write(&threads->lock);
539 return th;
542 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
543 pid_t tid)
545 struct threads *threads = machine__threads(machine, tid);
546 struct thread *th;
548 down_read(&threads->lock);
549 th = ____machine__findnew_thread(machine, threads, pid, tid, false);
550 up_read(&threads->lock);
551 return th;
554 struct comm *machine__thread_exec_comm(struct machine *machine,
555 struct thread *thread)
557 if (machine->comm_exec)
558 return thread__exec_comm(thread);
559 else
560 return thread__comm(thread);
563 int machine__process_comm_event(struct machine *machine, union perf_event *event,
564 struct perf_sample *sample)
566 struct thread *thread = machine__findnew_thread(machine,
567 event->comm.pid,
568 event->comm.tid);
569 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
570 int err = 0;
572 if (exec)
573 machine->comm_exec = true;
575 if (dump_trace)
576 perf_event__fprintf_comm(event, stdout);
578 if (thread == NULL ||
579 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
580 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
581 err = -1;
584 thread__put(thread);
586 return err;
589 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
590 union perf_event *event,
591 struct perf_sample *sample __maybe_unused)
593 struct thread *thread = machine__findnew_thread(machine,
594 event->namespaces.pid,
595 event->namespaces.tid);
596 int err = 0;
598 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
599 "\nWARNING: kernel seems to support more namespaces than perf"
600 " tool.\nTry updating the perf tool..\n\n");
602 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
603 "\nWARNING: perf tool seems to support more namespaces than"
604 " the kernel.\nTry updating the kernel..\n\n");
606 if (dump_trace)
607 perf_event__fprintf_namespaces(event, stdout);
609 if (thread == NULL ||
610 thread__set_namespaces(thread, sample->time, &event->namespaces)) {
611 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
612 err = -1;
615 thread__put(thread);
617 return err;
620 int machine__process_lost_event(struct machine *machine __maybe_unused,
621 union perf_event *event, struct perf_sample *sample __maybe_unused)
623 dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
624 event->lost.id, event->lost.lost);
625 return 0;
628 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
629 union perf_event *event, struct perf_sample *sample)
631 dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
632 sample->id, event->lost_samples.lost);
633 return 0;
636 static struct dso *machine__findnew_module_dso(struct machine *machine,
637 struct kmod_path *m,
638 const char *filename)
640 struct dso *dso;
642 down_write(&machine->dsos.lock);
644 dso = __dsos__find(&machine->dsos, m->name, true);
645 if (!dso) {
646 dso = __dsos__addnew(&machine->dsos, m->name);
647 if (dso == NULL)
648 goto out_unlock;
650 dso__set_module_info(dso, m, machine);
651 dso__set_long_name(dso, strdup(filename), true);
654 dso__get(dso);
655 out_unlock:
656 up_write(&machine->dsos.lock);
657 return dso;
660 int machine__process_aux_event(struct machine *machine __maybe_unused,
661 union perf_event *event)
663 if (dump_trace)
664 perf_event__fprintf_aux(event, stdout);
665 return 0;
668 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
669 union perf_event *event)
671 if (dump_trace)
672 perf_event__fprintf_itrace_start(event, stdout);
673 return 0;
676 int machine__process_switch_event(struct machine *machine __maybe_unused,
677 union perf_event *event)
679 if (dump_trace)
680 perf_event__fprintf_switch(event, stdout);
681 return 0;
684 static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
686 const char *dup_filename;
688 if (!filename || !dso || !dso->long_name)
689 return;
690 if (dso->long_name[0] != '[')
691 return;
692 if (!strchr(filename, '/'))
693 return;
695 dup_filename = strdup(filename);
696 if (!dup_filename)
697 return;
699 dso__set_long_name(dso, dup_filename, true);
702 struct map *machine__findnew_module_map(struct machine *machine, u64 start,
703 const char *filename)
705 struct map *map = NULL;
706 struct dso *dso = NULL;
707 struct kmod_path m;
709 if (kmod_path__parse_name(&m, filename))
710 return NULL;
712 map = map_groups__find_by_name(&machine->kmaps, m.name);
713 if (map) {
715 * If the map's dso is an offline module, give dso__load()
716 * a chance to find the file path of that module by fixing
717 * long_name.
719 dso__adjust_kmod_long_name(map->dso, filename);
720 goto out;
723 dso = machine__findnew_module_dso(machine, &m, filename);
724 if (dso == NULL)
725 goto out;
727 map = map__new2(start, dso);
728 if (map == NULL)
729 goto out;
731 map_groups__insert(&machine->kmaps, map);
733 /* Put the map here because map_groups__insert alread got it */
734 map__put(map);
735 out:
736 /* put the dso here, corresponding to machine__findnew_module_dso */
737 dso__put(dso);
738 free(m.name);
739 return map;
742 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
744 struct rb_node *nd;
745 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
747 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
748 struct machine *pos = rb_entry(nd, struct machine, rb_node);
749 ret += __dsos__fprintf(&pos->dsos.head, fp);
752 return ret;
755 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
756 bool (skip)(struct dso *dso, int parm), int parm)
758 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
761 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
762 bool (skip)(struct dso *dso, int parm), int parm)
764 struct rb_node *nd;
765 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
767 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
768 struct machine *pos = rb_entry(nd, struct machine, rb_node);
769 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
771 return ret;
774 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
776 int i;
777 size_t printed = 0;
778 struct dso *kdso = machine__kernel_map(machine)->dso;
780 if (kdso->has_build_id) {
781 char filename[PATH_MAX];
782 if (dso__build_id_filename(kdso, filename, sizeof(filename),
783 false))
784 printed += fprintf(fp, "[0] %s\n", filename);
787 for (i = 0; i < vmlinux_path__nr_entries; ++i)
788 printed += fprintf(fp, "[%d] %s\n",
789 i + kdso->has_build_id, vmlinux_path[i]);
791 return printed;
794 size_t machine__fprintf(struct machine *machine, FILE *fp)
796 struct rb_node *nd;
797 size_t ret;
798 int i;
800 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
801 struct threads *threads = &machine->threads[i];
803 down_read(&threads->lock);
805 ret = fprintf(fp, "Threads: %u\n", threads->nr);
807 for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) {
808 struct thread *pos = rb_entry(nd, struct thread, rb_node);
810 ret += thread__fprintf(pos, fp);
813 up_read(&threads->lock);
815 return ret;
818 static struct dso *machine__get_kernel(struct machine *machine)
820 const char *vmlinux_name = machine->mmap_name;
821 struct dso *kernel;
823 if (machine__is_host(machine)) {
824 if (symbol_conf.vmlinux_name)
825 vmlinux_name = symbol_conf.vmlinux_name;
827 kernel = machine__findnew_kernel(machine, vmlinux_name,
828 "[kernel]", DSO_TYPE_KERNEL);
829 } else {
830 if (symbol_conf.default_guest_vmlinux_name)
831 vmlinux_name = symbol_conf.default_guest_vmlinux_name;
833 kernel = machine__findnew_kernel(machine, vmlinux_name,
834 "[guest.kernel]",
835 DSO_TYPE_GUEST_KERNEL);
838 if (kernel != NULL && (!kernel->has_build_id))
839 dso__read_running_kernel_build_id(kernel, machine);
841 return kernel;
844 struct process_args {
845 u64 start;
848 void machine__get_kallsyms_filename(struct machine *machine, char *buf,
849 size_t bufsz)
851 if (machine__is_default_guest(machine))
852 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
853 else
854 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
857 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
859 /* Figure out the start address of kernel map from /proc/kallsyms.
860 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
861 * symbol_name if it's not that important.
863 static int machine__get_running_kernel_start(struct machine *machine,
864 const char **symbol_name, u64 *start)
866 char filename[PATH_MAX];
867 int i, err = -1;
868 const char *name;
869 u64 addr = 0;
871 machine__get_kallsyms_filename(machine, filename, PATH_MAX);
873 if (symbol__restricted_filename(filename, "/proc/kallsyms"))
874 return 0;
876 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
877 err = kallsyms__get_function_start(filename, name, &addr);
878 if (!err)
879 break;
882 if (err)
883 return -1;
885 if (symbol_name)
886 *symbol_name = name;
888 *start = addr;
889 return 0;
892 int machine__create_extra_kernel_map(struct machine *machine,
893 struct dso *kernel,
894 struct extra_kernel_map *xm)
896 struct kmap *kmap;
897 struct map *map;
899 map = map__new2(xm->start, kernel);
900 if (!map)
901 return -1;
903 map->end = xm->end;
904 map->pgoff = xm->pgoff;
906 kmap = map__kmap(map);
908 kmap->kmaps = &machine->kmaps;
909 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
911 map_groups__insert(&machine->kmaps, map);
913 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
914 kmap->name, map->start, map->end);
916 map__put(map);
918 return 0;
921 static u64 find_entry_trampoline(struct dso *dso)
923 /* Duplicates are removed so lookup all aliases */
924 const char *syms[] = {
925 "_entry_trampoline",
926 "__entry_trampoline_start",
927 "entry_SYSCALL_64_trampoline",
929 struct symbol *sym = dso__first_symbol(dso);
930 unsigned int i;
932 for (; sym; sym = dso__next_symbol(sym)) {
933 if (sym->binding != STB_GLOBAL)
934 continue;
935 for (i = 0; i < ARRAY_SIZE(syms); i++) {
936 if (!strcmp(sym->name, syms[i]))
937 return sym->start;
941 return 0;
945 * These values can be used for kernels that do not have symbols for the entry
946 * trampolines in kallsyms.
948 #define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL
949 #define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000
950 #define X86_64_ENTRY_TRAMPOLINE 0x6000
952 /* Map x86_64 PTI entry trampolines */
953 int machine__map_x86_64_entry_trampolines(struct machine *machine,
954 struct dso *kernel)
956 struct map_groups *kmaps = &machine->kmaps;
957 struct maps *maps = &kmaps->maps;
958 int nr_cpus_avail, cpu;
959 bool found = false;
960 struct map *map;
961 u64 pgoff;
964 * In the vmlinux case, pgoff is a virtual address which must now be
965 * mapped to a vmlinux offset.
967 for (map = maps__first(maps); map; map = map__next(map)) {
968 struct kmap *kmap = __map__kmap(map);
969 struct map *dest_map;
971 if (!kmap || !is_entry_trampoline(kmap->name))
972 continue;
974 dest_map = map_groups__find(kmaps, map->pgoff);
975 if (dest_map != map)
976 map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
977 found = true;
979 if (found || machine->trampolines_mapped)
980 return 0;
982 pgoff = find_entry_trampoline(kernel);
983 if (!pgoff)
984 return 0;
986 nr_cpus_avail = machine__nr_cpus_avail(machine);
988 /* Add a 1 page map for each CPU's entry trampoline */
989 for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
990 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
991 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
992 X86_64_ENTRY_TRAMPOLINE;
993 struct extra_kernel_map xm = {
994 .start = va,
995 .end = va + page_size,
996 .pgoff = pgoff,
999 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1001 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1002 return -1;
1005 machine->trampolines_mapped = nr_cpus_avail;
1007 return 0;
1010 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1011 struct dso *kernel __maybe_unused)
1013 return 0;
1016 static int
1017 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1019 struct kmap *kmap;
1020 struct map *map;
1022 /* In case of renewal the kernel map, destroy previous one */
1023 machine__destroy_kernel_maps(machine);
1025 machine->vmlinux_map = map__new2(0, kernel);
1026 if (machine->vmlinux_map == NULL)
1027 return -1;
1029 machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1030 map = machine__kernel_map(machine);
1031 kmap = map__kmap(map);
1032 if (!kmap)
1033 return -1;
1035 kmap->kmaps = &machine->kmaps;
1036 map_groups__insert(&machine->kmaps, map);
1038 return 0;
1041 void machine__destroy_kernel_maps(struct machine *machine)
1043 struct kmap *kmap;
1044 struct map *map = machine__kernel_map(machine);
1046 if (map == NULL)
1047 return;
1049 kmap = map__kmap(map);
1050 map_groups__remove(&machine->kmaps, map);
1051 if (kmap && kmap->ref_reloc_sym) {
1052 zfree((char **)&kmap->ref_reloc_sym->name);
1053 zfree(&kmap->ref_reloc_sym);
1056 map__zput(machine->vmlinux_map);
1059 int machines__create_guest_kernel_maps(struct machines *machines)
1061 int ret = 0;
1062 struct dirent **namelist = NULL;
1063 int i, items = 0;
1064 char path[PATH_MAX];
1065 pid_t pid;
1066 char *endp;
1068 if (symbol_conf.default_guest_vmlinux_name ||
1069 symbol_conf.default_guest_modules ||
1070 symbol_conf.default_guest_kallsyms) {
1071 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1074 if (symbol_conf.guestmount) {
1075 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1076 if (items <= 0)
1077 return -ENOENT;
1078 for (i = 0; i < items; i++) {
1079 if (!isdigit(namelist[i]->d_name[0])) {
1080 /* Filter out . and .. */
1081 continue;
1083 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1084 if ((*endp != '\0') ||
1085 (endp == namelist[i]->d_name) ||
1086 (errno == ERANGE)) {
1087 pr_debug("invalid directory (%s). Skipping.\n",
1088 namelist[i]->d_name);
1089 continue;
1091 sprintf(path, "%s/%s/proc/kallsyms",
1092 symbol_conf.guestmount,
1093 namelist[i]->d_name);
1094 ret = access(path, R_OK);
1095 if (ret) {
1096 pr_debug("Can't access file %s\n", path);
1097 goto failure;
1099 machines__create_kernel_maps(machines, pid);
1101 failure:
1102 free(namelist);
1105 return ret;
1108 void machines__destroy_kernel_maps(struct machines *machines)
1110 struct rb_node *next = rb_first(&machines->guests);
1112 machine__destroy_kernel_maps(&machines->host);
1114 while (next) {
1115 struct machine *pos = rb_entry(next, struct machine, rb_node);
1117 next = rb_next(&pos->rb_node);
1118 rb_erase(&pos->rb_node, &machines->guests);
1119 machine__delete(pos);
1123 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1125 struct machine *machine = machines__findnew(machines, pid);
1127 if (machine == NULL)
1128 return -1;
1130 return machine__create_kernel_maps(machine);
1133 int machine__load_kallsyms(struct machine *machine, const char *filename)
1135 struct map *map = machine__kernel_map(machine);
1136 int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1138 if (ret > 0) {
1139 dso__set_loaded(map->dso);
1141 * Since /proc/kallsyms will have multiple sessions for the
1142 * kernel, with modules between them, fixup the end of all
1143 * sections.
1145 map_groups__fixup_end(&machine->kmaps);
1148 return ret;
1151 int machine__load_vmlinux_path(struct machine *machine)
1153 struct map *map = machine__kernel_map(machine);
1154 int ret = dso__load_vmlinux_path(map->dso, map);
1156 if (ret > 0)
1157 dso__set_loaded(map->dso);
1159 return ret;
1162 static char *get_kernel_version(const char *root_dir)
1164 char version[PATH_MAX];
1165 FILE *file;
1166 char *name, *tmp;
1167 const char *prefix = "Linux version ";
1169 sprintf(version, "%s/proc/version", root_dir);
1170 file = fopen(version, "r");
1171 if (!file)
1172 return NULL;
1174 version[0] = '\0';
1175 tmp = fgets(version, sizeof(version), file);
1176 fclose(file);
1178 name = strstr(version, prefix);
1179 if (!name)
1180 return NULL;
1181 name += strlen(prefix);
1182 tmp = strchr(name, ' ');
1183 if (tmp)
1184 *tmp = '\0';
1186 return strdup(name);
1189 static bool is_kmod_dso(struct dso *dso)
1191 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1192 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1195 static int map_groups__set_module_path(struct map_groups *mg, const char *path,
1196 struct kmod_path *m)
1198 char *long_name;
1199 struct map *map = map_groups__find_by_name(mg, m->name);
1201 if (map == NULL)
1202 return 0;
1204 long_name = strdup(path);
1205 if (long_name == NULL)
1206 return -ENOMEM;
1208 dso__set_long_name(map->dso, long_name, true);
1209 dso__kernel_module_get_build_id(map->dso, "");
1212 * Full name could reveal us kmod compression, so
1213 * we need to update the symtab_type if needed.
1215 if (m->comp && is_kmod_dso(map->dso)) {
1216 map->dso->symtab_type++;
1217 map->dso->comp = m->comp;
1220 return 0;
1223 static int map_groups__set_modules_path_dir(struct map_groups *mg,
1224 const char *dir_name, int depth)
1226 struct dirent *dent;
1227 DIR *dir = opendir(dir_name);
1228 int ret = 0;
1230 if (!dir) {
1231 pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1232 return -1;
1235 while ((dent = readdir(dir)) != NULL) {
1236 char path[PATH_MAX];
1237 struct stat st;
1239 /*sshfs might return bad dent->d_type, so we have to stat*/
1240 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1241 if (stat(path, &st))
1242 continue;
1244 if (S_ISDIR(st.st_mode)) {
1245 if (!strcmp(dent->d_name, ".") ||
1246 !strcmp(dent->d_name, ".."))
1247 continue;
1249 /* Do not follow top-level source and build symlinks */
1250 if (depth == 0) {
1251 if (!strcmp(dent->d_name, "source") ||
1252 !strcmp(dent->d_name, "build"))
1253 continue;
1256 ret = map_groups__set_modules_path_dir(mg, path,
1257 depth + 1);
1258 if (ret < 0)
1259 goto out;
1260 } else {
1261 struct kmod_path m;
1263 ret = kmod_path__parse_name(&m, dent->d_name);
1264 if (ret)
1265 goto out;
1267 if (m.kmod)
1268 ret = map_groups__set_module_path(mg, path, &m);
1270 free(m.name);
1272 if (ret)
1273 goto out;
1277 out:
1278 closedir(dir);
1279 return ret;
1282 static int machine__set_modules_path(struct machine *machine)
1284 char *version;
1285 char modules_path[PATH_MAX];
1287 version = get_kernel_version(machine->root_dir);
1288 if (!version)
1289 return -1;
1291 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1292 machine->root_dir, version);
1293 free(version);
1295 return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1297 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1298 const char *name __maybe_unused)
1300 return 0;
1303 static int machine__create_module(void *arg, const char *name, u64 start,
1304 u64 size)
1306 struct machine *machine = arg;
1307 struct map *map;
1309 if (arch__fix_module_text_start(&start, name) < 0)
1310 return -1;
1312 map = machine__findnew_module_map(machine, start, name);
1313 if (map == NULL)
1314 return -1;
1315 map->end = start + size;
1317 dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1319 return 0;
1322 static int machine__create_modules(struct machine *machine)
1324 const char *modules;
1325 char path[PATH_MAX];
1327 if (machine__is_default_guest(machine)) {
1328 modules = symbol_conf.default_guest_modules;
1329 } else {
1330 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1331 modules = path;
1334 if (symbol__restricted_filename(modules, "/proc/modules"))
1335 return -1;
1337 if (modules__parse(modules, machine, machine__create_module))
1338 return -1;
1340 if (!machine__set_modules_path(machine))
1341 return 0;
1343 pr_debug("Problems setting modules path maps, continuing anyway...\n");
1345 return 0;
1348 static void machine__set_kernel_mmap(struct machine *machine,
1349 u64 start, u64 end)
1351 machine->vmlinux_map->start = start;
1352 machine->vmlinux_map->end = end;
1354 * Be a bit paranoid here, some perf.data file came with
1355 * a zero sized synthesized MMAP event for the kernel.
1357 if (start == 0 && end == 0)
1358 machine->vmlinux_map->end = ~0ULL;
1361 int machine__create_kernel_maps(struct machine *machine)
1363 struct dso *kernel = machine__get_kernel(machine);
1364 const char *name = NULL;
1365 struct map *map;
1366 u64 addr = 0;
1367 int ret;
1369 if (kernel == NULL)
1370 return -1;
1372 ret = __machine__create_kernel_maps(machine, kernel);
1373 if (ret < 0)
1374 goto out_put;
1376 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1377 if (machine__is_host(machine))
1378 pr_debug("Problems creating module maps, "
1379 "continuing anyway...\n");
1380 else
1381 pr_debug("Problems creating module maps for guest %d, "
1382 "continuing anyway...\n", machine->pid);
1385 if (!machine__get_running_kernel_start(machine, &name, &addr)) {
1386 if (name &&
1387 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, addr)) {
1388 machine__destroy_kernel_maps(machine);
1389 ret = -1;
1390 goto out_put;
1393 /* we have a real start address now, so re-order the kmaps */
1394 map = machine__kernel_map(machine);
1396 map__get(map);
1397 map_groups__remove(&machine->kmaps, map);
1399 /* assume it's the last in the kmaps */
1400 machine__set_kernel_mmap(machine, addr, ~0ULL);
1402 map_groups__insert(&machine->kmaps, map);
1403 map__put(map);
1406 if (machine__create_extra_kernel_maps(machine, kernel))
1407 pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1409 /* update end address of the kernel map using adjacent module address */
1410 map = map__next(machine__kernel_map(machine));
1411 if (map)
1412 machine__set_kernel_mmap(machine, addr, map->start);
1413 out_put:
1414 dso__put(kernel);
1415 return ret;
1418 static bool machine__uses_kcore(struct machine *machine)
1420 struct dso *dso;
1422 list_for_each_entry(dso, &machine->dsos.head, node) {
1423 if (dso__is_kcore(dso))
1424 return true;
1427 return false;
1430 static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1431 union perf_event *event)
1433 return machine__is(machine, "x86_64") &&
1434 is_entry_trampoline(event->mmap.filename);
1437 static int machine__process_extra_kernel_map(struct machine *machine,
1438 union perf_event *event)
1440 struct map *kernel_map = machine__kernel_map(machine);
1441 struct dso *kernel = kernel_map ? kernel_map->dso : NULL;
1442 struct extra_kernel_map xm = {
1443 .start = event->mmap.start,
1444 .end = event->mmap.start + event->mmap.len,
1445 .pgoff = event->mmap.pgoff,
1448 if (kernel == NULL)
1449 return -1;
1451 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1453 return machine__create_extra_kernel_map(machine, kernel, &xm);
1456 static int machine__process_kernel_mmap_event(struct machine *machine,
1457 union perf_event *event)
1459 struct map *map;
1460 enum dso_kernel_type kernel_type;
1461 bool is_kernel_mmap;
1463 /* If we have maps from kcore then we do not need or want any others */
1464 if (machine__uses_kcore(machine))
1465 return 0;
1467 if (machine__is_host(machine))
1468 kernel_type = DSO_TYPE_KERNEL;
1469 else
1470 kernel_type = DSO_TYPE_GUEST_KERNEL;
1472 is_kernel_mmap = memcmp(event->mmap.filename,
1473 machine->mmap_name,
1474 strlen(machine->mmap_name) - 1) == 0;
1475 if (event->mmap.filename[0] == '/' ||
1476 (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1477 map = machine__findnew_module_map(machine, event->mmap.start,
1478 event->mmap.filename);
1479 if (map == NULL)
1480 goto out_problem;
1482 map->end = map->start + event->mmap.len;
1483 } else if (is_kernel_mmap) {
1484 const char *symbol_name = (event->mmap.filename +
1485 strlen(machine->mmap_name));
1487 * Should be there already, from the build-id table in
1488 * the header.
1490 struct dso *kernel = NULL;
1491 struct dso *dso;
1493 down_read(&machine->dsos.lock);
1495 list_for_each_entry(dso, &machine->dsos.head, node) {
1498 * The cpumode passed to is_kernel_module is not the
1499 * cpumode of *this* event. If we insist on passing
1500 * correct cpumode to is_kernel_module, we should
1501 * record the cpumode when we adding this dso to the
1502 * linked list.
1504 * However we don't really need passing correct
1505 * cpumode. We know the correct cpumode must be kernel
1506 * mode (if not, we should not link it onto kernel_dsos
1507 * list).
1509 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1510 * is_kernel_module() treats it as a kernel cpumode.
1513 if (!dso->kernel ||
1514 is_kernel_module(dso->long_name,
1515 PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1516 continue;
1519 kernel = dso;
1520 break;
1523 up_read(&machine->dsos.lock);
1525 if (kernel == NULL)
1526 kernel = machine__findnew_dso(machine, machine->mmap_name);
1527 if (kernel == NULL)
1528 goto out_problem;
1530 kernel->kernel = kernel_type;
1531 if (__machine__create_kernel_maps(machine, kernel) < 0) {
1532 dso__put(kernel);
1533 goto out_problem;
1536 if (strstr(kernel->long_name, "vmlinux"))
1537 dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1539 machine__set_kernel_mmap(machine, event->mmap.start,
1540 event->mmap.start + event->mmap.len);
1543 * Avoid using a zero address (kptr_restrict) for the ref reloc
1544 * symbol. Effectively having zero here means that at record
1545 * time /proc/sys/kernel/kptr_restrict was non zero.
1547 if (event->mmap.pgoff != 0) {
1548 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1549 symbol_name,
1550 event->mmap.pgoff);
1553 if (machine__is_default_guest(machine)) {
1555 * preload dso of guest kernel and modules
1557 dso__load(kernel, machine__kernel_map(machine));
1559 } else if (perf_event__is_extra_kernel_mmap(machine, event)) {
1560 return machine__process_extra_kernel_map(machine, event);
1562 return 0;
1563 out_problem:
1564 return -1;
1567 int machine__process_mmap2_event(struct machine *machine,
1568 union perf_event *event,
1569 struct perf_sample *sample)
1571 struct thread *thread;
1572 struct map *map;
1573 int ret = 0;
1575 if (dump_trace)
1576 perf_event__fprintf_mmap2(event, stdout);
1578 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1579 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1580 ret = machine__process_kernel_mmap_event(machine, event);
1581 if (ret < 0)
1582 goto out_problem;
1583 return 0;
1586 thread = machine__findnew_thread(machine, event->mmap2.pid,
1587 event->mmap2.tid);
1588 if (thread == NULL)
1589 goto out_problem;
1591 map = map__new(machine, event->mmap2.start,
1592 event->mmap2.len, event->mmap2.pgoff,
1593 event->mmap2.maj,
1594 event->mmap2.min, event->mmap2.ino,
1595 event->mmap2.ino_generation,
1596 event->mmap2.prot,
1597 event->mmap2.flags,
1598 event->mmap2.filename, thread);
1600 if (map == NULL)
1601 goto out_problem_map;
1603 ret = thread__insert_map(thread, map);
1604 if (ret)
1605 goto out_problem_insert;
1607 thread__put(thread);
1608 map__put(map);
1609 return 0;
1611 out_problem_insert:
1612 map__put(map);
1613 out_problem_map:
1614 thread__put(thread);
1615 out_problem:
1616 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1617 return 0;
1620 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1621 struct perf_sample *sample)
1623 struct thread *thread;
1624 struct map *map;
1625 u32 prot = 0;
1626 int ret = 0;
1628 if (dump_trace)
1629 perf_event__fprintf_mmap(event, stdout);
1631 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1632 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1633 ret = machine__process_kernel_mmap_event(machine, event);
1634 if (ret < 0)
1635 goto out_problem;
1636 return 0;
1639 thread = machine__findnew_thread(machine, event->mmap.pid,
1640 event->mmap.tid);
1641 if (thread == NULL)
1642 goto out_problem;
1644 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1645 prot = PROT_EXEC;
1647 map = map__new(machine, event->mmap.start,
1648 event->mmap.len, event->mmap.pgoff,
1649 0, 0, 0, 0, prot, 0,
1650 event->mmap.filename,
1651 thread);
1653 if (map == NULL)
1654 goto out_problem_map;
1656 ret = thread__insert_map(thread, map);
1657 if (ret)
1658 goto out_problem_insert;
1660 thread__put(thread);
1661 map__put(map);
1662 return 0;
1664 out_problem_insert:
1665 map__put(map);
1666 out_problem_map:
1667 thread__put(thread);
1668 out_problem:
1669 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1670 return 0;
1673 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1675 struct threads *threads = machine__threads(machine, th->tid);
1677 if (threads->last_match == th)
1678 threads__set_last_match(threads, NULL);
1680 BUG_ON(refcount_read(&th->refcnt) == 0);
1681 if (lock)
1682 down_write(&threads->lock);
1683 rb_erase_init(&th->rb_node, &threads->entries);
1684 RB_CLEAR_NODE(&th->rb_node);
1685 --threads->nr;
1687 * Move it first to the dead_threads list, then drop the reference,
1688 * if this is the last reference, then the thread__delete destructor
1689 * will be called and we will remove it from the dead_threads list.
1691 list_add_tail(&th->node, &threads->dead);
1692 if (lock)
1693 up_write(&threads->lock);
1694 thread__put(th);
1697 void machine__remove_thread(struct machine *machine, struct thread *th)
1699 return __machine__remove_thread(machine, th, true);
1702 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1703 struct perf_sample *sample)
1705 struct thread *thread = machine__find_thread(machine,
1706 event->fork.pid,
1707 event->fork.tid);
1708 struct thread *parent = machine__findnew_thread(machine,
1709 event->fork.ppid,
1710 event->fork.ptid);
1711 bool do_maps_clone = true;
1712 int err = 0;
1714 if (dump_trace)
1715 perf_event__fprintf_task(event, stdout);
1718 * There may be an existing thread that is not actually the parent,
1719 * either because we are processing events out of order, or because the
1720 * (fork) event that would have removed the thread was lost. Assume the
1721 * latter case and continue on as best we can.
1723 if (parent->pid_ != (pid_t)event->fork.ppid) {
1724 dump_printf("removing erroneous parent thread %d/%d\n",
1725 parent->pid_, parent->tid);
1726 machine__remove_thread(machine, parent);
1727 thread__put(parent);
1728 parent = machine__findnew_thread(machine, event->fork.ppid,
1729 event->fork.ptid);
1732 /* if a thread currently exists for the thread id remove it */
1733 if (thread != NULL) {
1734 machine__remove_thread(machine, thread);
1735 thread__put(thread);
1738 thread = machine__findnew_thread(machine, event->fork.pid,
1739 event->fork.tid);
1741 * When synthesizing FORK events, we are trying to create thread
1742 * objects for the already running tasks on the machine.
1744 * Normally, for a kernel FORK event, we want to clone the parent's
1745 * maps because that is what the kernel just did.
1747 * But when synthesizing, this should not be done. If we do, we end up
1748 * with overlapping maps as we process the sythesized MMAP2 events that
1749 * get delivered shortly thereafter.
1751 * Use the FORK event misc flags in an internal way to signal this
1752 * situation, so we can elide the map clone when appropriate.
1754 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1755 do_maps_clone = false;
1757 if (thread == NULL || parent == NULL ||
1758 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1759 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1760 err = -1;
1762 thread__put(thread);
1763 thread__put(parent);
1765 return err;
1768 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1769 struct perf_sample *sample __maybe_unused)
1771 struct thread *thread = machine__find_thread(machine,
1772 event->fork.pid,
1773 event->fork.tid);
1775 if (dump_trace)
1776 perf_event__fprintf_task(event, stdout);
1778 if (thread != NULL) {
1779 thread__exited(thread);
1780 thread__put(thread);
1783 return 0;
1786 int machine__process_event(struct machine *machine, union perf_event *event,
1787 struct perf_sample *sample)
1789 int ret;
1791 switch (event->header.type) {
1792 case PERF_RECORD_COMM:
1793 ret = machine__process_comm_event(machine, event, sample); break;
1794 case PERF_RECORD_MMAP:
1795 ret = machine__process_mmap_event(machine, event, sample); break;
1796 case PERF_RECORD_NAMESPACES:
1797 ret = machine__process_namespaces_event(machine, event, sample); break;
1798 case PERF_RECORD_MMAP2:
1799 ret = machine__process_mmap2_event(machine, event, sample); break;
1800 case PERF_RECORD_FORK:
1801 ret = machine__process_fork_event(machine, event, sample); break;
1802 case PERF_RECORD_EXIT:
1803 ret = machine__process_exit_event(machine, event, sample); break;
1804 case PERF_RECORD_LOST:
1805 ret = machine__process_lost_event(machine, event, sample); break;
1806 case PERF_RECORD_AUX:
1807 ret = machine__process_aux_event(machine, event); break;
1808 case PERF_RECORD_ITRACE_START:
1809 ret = machine__process_itrace_start_event(machine, event); break;
1810 case PERF_RECORD_LOST_SAMPLES:
1811 ret = machine__process_lost_samples_event(machine, event, sample); break;
1812 case PERF_RECORD_SWITCH:
1813 case PERF_RECORD_SWITCH_CPU_WIDE:
1814 ret = machine__process_switch_event(machine, event); break;
1815 default:
1816 ret = -1;
1817 break;
1820 return ret;
1823 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1825 if (!regexec(regex, sym->name, 0, NULL, 0))
1826 return 1;
1827 return 0;
1830 static void ip__resolve_ams(struct thread *thread,
1831 struct addr_map_symbol *ams,
1832 u64 ip)
1834 struct addr_location al;
1836 memset(&al, 0, sizeof(al));
1838 * We cannot use the header.misc hint to determine whether a
1839 * branch stack address is user, kernel, guest, hypervisor.
1840 * Branches may straddle the kernel/user/hypervisor boundaries.
1841 * Thus, we have to try consecutively until we find a match
1842 * or else, the symbol is unknown
1844 thread__find_cpumode_addr_location(thread, ip, &al);
1846 ams->addr = ip;
1847 ams->al_addr = al.addr;
1848 ams->sym = al.sym;
1849 ams->map = al.map;
1850 ams->phys_addr = 0;
1853 static void ip__resolve_data(struct thread *thread,
1854 u8 m, struct addr_map_symbol *ams,
1855 u64 addr, u64 phys_addr)
1857 struct addr_location al;
1859 memset(&al, 0, sizeof(al));
1861 thread__find_symbol(thread, m, addr, &al);
1863 ams->addr = addr;
1864 ams->al_addr = al.addr;
1865 ams->sym = al.sym;
1866 ams->map = al.map;
1867 ams->phys_addr = phys_addr;
1870 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1871 struct addr_location *al)
1873 struct mem_info *mi = mem_info__new();
1875 if (!mi)
1876 return NULL;
1878 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1879 ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
1880 sample->addr, sample->phys_addr);
1881 mi->data_src.val = sample->data_src;
1883 return mi;
1886 static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip)
1888 char *srcline = NULL;
1890 if (!map || callchain_param.key == CCKEY_FUNCTION)
1891 return srcline;
1893 srcline = srcline__tree_find(&map->dso->srclines, ip);
1894 if (!srcline) {
1895 bool show_sym = false;
1896 bool show_addr = callchain_param.key == CCKEY_ADDRESS;
1898 srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
1899 sym, show_sym, show_addr, ip);
1900 srcline__tree_insert(&map->dso->srclines, ip, srcline);
1903 return srcline;
1906 struct iterations {
1907 int nr_loop_iter;
1908 u64 cycles;
1911 static int add_callchain_ip(struct thread *thread,
1912 struct callchain_cursor *cursor,
1913 struct symbol **parent,
1914 struct addr_location *root_al,
1915 u8 *cpumode,
1916 u64 ip,
1917 bool branch,
1918 struct branch_flags *flags,
1919 struct iterations *iter,
1920 u64 branch_from)
1922 struct addr_location al;
1923 int nr_loop_iter = 0;
1924 u64 iter_cycles = 0;
1925 const char *srcline = NULL;
1927 al.filtered = 0;
1928 al.sym = NULL;
1929 if (!cpumode) {
1930 thread__find_cpumode_addr_location(thread, ip, &al);
1931 } else {
1932 if (ip >= PERF_CONTEXT_MAX) {
1933 switch (ip) {
1934 case PERF_CONTEXT_HV:
1935 *cpumode = PERF_RECORD_MISC_HYPERVISOR;
1936 break;
1937 case PERF_CONTEXT_KERNEL:
1938 *cpumode = PERF_RECORD_MISC_KERNEL;
1939 break;
1940 case PERF_CONTEXT_USER:
1941 *cpumode = PERF_RECORD_MISC_USER;
1942 break;
1943 default:
1944 pr_debug("invalid callchain context: "
1945 "%"PRId64"\n", (s64) ip);
1947 * It seems the callchain is corrupted.
1948 * Discard all.
1950 callchain_cursor_reset(cursor);
1951 return 1;
1953 return 0;
1955 thread__find_symbol(thread, *cpumode, ip, &al);
1958 if (al.sym != NULL) {
1959 if (perf_hpp_list.parent && !*parent &&
1960 symbol__match_regex(al.sym, &parent_regex))
1961 *parent = al.sym;
1962 else if (have_ignore_callees && root_al &&
1963 symbol__match_regex(al.sym, &ignore_callees_regex)) {
1964 /* Treat this symbol as the root,
1965 forgetting its callees. */
1966 *root_al = al;
1967 callchain_cursor_reset(cursor);
1971 if (symbol_conf.hide_unresolved && al.sym == NULL)
1972 return 0;
1974 if (iter) {
1975 nr_loop_iter = iter->nr_loop_iter;
1976 iter_cycles = iter->cycles;
1979 srcline = callchain_srcline(al.map, al.sym, al.addr);
1980 return callchain_cursor_append(cursor, ip, al.map, al.sym,
1981 branch, flags, nr_loop_iter,
1982 iter_cycles, branch_from, srcline);
1985 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
1986 struct addr_location *al)
1988 unsigned int i;
1989 const struct branch_stack *bs = sample->branch_stack;
1990 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1992 if (!bi)
1993 return NULL;
1995 for (i = 0; i < bs->nr; i++) {
1996 ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
1997 ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1998 bi[i].flags = bs->entries[i].flags;
2000 return bi;
2003 static void save_iterations(struct iterations *iter,
2004 struct branch_entry *be, int nr)
2006 int i;
2008 iter->nr_loop_iter = nr;
2009 iter->cycles = 0;
2011 for (i = 0; i < nr; i++)
2012 iter->cycles += be[i].flags.cycles;
2015 #define CHASHSZ 127
2016 #define CHASHBITS 7
2017 #define NO_ENTRY 0xff
2019 #define PERF_MAX_BRANCH_DEPTH 127
2021 /* Remove loops. */
2022 static int remove_loops(struct branch_entry *l, int nr,
2023 struct iterations *iter)
2025 int i, j, off;
2026 unsigned char chash[CHASHSZ];
2028 memset(chash, NO_ENTRY, sizeof(chash));
2030 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2032 for (i = 0; i < nr; i++) {
2033 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2035 /* no collision handling for now */
2036 if (chash[h] == NO_ENTRY) {
2037 chash[h] = i;
2038 } else if (l[chash[h]].from == l[i].from) {
2039 bool is_loop = true;
2040 /* check if it is a real loop */
2041 off = 0;
2042 for (j = chash[h]; j < i && i + off < nr; j++, off++)
2043 if (l[j].from != l[i + off].from) {
2044 is_loop = false;
2045 break;
2047 if (is_loop) {
2048 j = nr - (i + off);
2049 if (j > 0) {
2050 save_iterations(iter + i + off,
2051 l + i, off);
2053 memmove(iter + i, iter + i + off,
2054 j * sizeof(*iter));
2056 memmove(l + i, l + i + off,
2057 j * sizeof(*l));
2060 nr -= off;
2064 return nr;
2068 * Recolve LBR callstack chain sample
2069 * Return:
2070 * 1 on success get LBR callchain information
2071 * 0 no available LBR callchain information, should try fp
2072 * negative error code on other errors.
2074 static int resolve_lbr_callchain_sample(struct thread *thread,
2075 struct callchain_cursor *cursor,
2076 struct perf_sample *sample,
2077 struct symbol **parent,
2078 struct addr_location *root_al,
2079 int max_stack)
2081 struct ip_callchain *chain = sample->callchain;
2082 int chain_nr = min(max_stack, (int)chain->nr), i;
2083 u8 cpumode = PERF_RECORD_MISC_USER;
2084 u64 ip, branch_from = 0;
2086 for (i = 0; i < chain_nr; i++) {
2087 if (chain->ips[i] == PERF_CONTEXT_USER)
2088 break;
2091 /* LBR only affects the user callchain */
2092 if (i != chain_nr) {
2093 struct branch_stack *lbr_stack = sample->branch_stack;
2094 int lbr_nr = lbr_stack->nr, j, k;
2095 bool branch;
2096 struct branch_flags *flags;
2098 * LBR callstack can only get user call chain.
2099 * The mix_chain_nr is kernel call chain
2100 * number plus LBR user call chain number.
2101 * i is kernel call chain number,
2102 * 1 is PERF_CONTEXT_USER,
2103 * lbr_nr + 1 is the user call chain number.
2104 * For details, please refer to the comments
2105 * in callchain__printf
2107 int mix_chain_nr = i + 1 + lbr_nr + 1;
2109 for (j = 0; j < mix_chain_nr; j++) {
2110 int err;
2111 branch = false;
2112 flags = NULL;
2114 if (callchain_param.order == ORDER_CALLEE) {
2115 if (j < i + 1)
2116 ip = chain->ips[j];
2117 else if (j > i + 1) {
2118 k = j - i - 2;
2119 ip = lbr_stack->entries[k].from;
2120 branch = true;
2121 flags = &lbr_stack->entries[k].flags;
2122 } else {
2123 ip = lbr_stack->entries[0].to;
2124 branch = true;
2125 flags = &lbr_stack->entries[0].flags;
2126 branch_from =
2127 lbr_stack->entries[0].from;
2129 } else {
2130 if (j < lbr_nr) {
2131 k = lbr_nr - j - 1;
2132 ip = lbr_stack->entries[k].from;
2133 branch = true;
2134 flags = &lbr_stack->entries[k].flags;
2136 else if (j > lbr_nr)
2137 ip = chain->ips[i + 1 - (j - lbr_nr)];
2138 else {
2139 ip = lbr_stack->entries[0].to;
2140 branch = true;
2141 flags = &lbr_stack->entries[0].flags;
2142 branch_from =
2143 lbr_stack->entries[0].from;
2147 err = add_callchain_ip(thread, cursor, parent,
2148 root_al, &cpumode, ip,
2149 branch, flags, NULL,
2150 branch_from);
2151 if (err)
2152 return (err < 0) ? err : 0;
2154 return 1;
2157 return 0;
2160 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2161 struct callchain_cursor *cursor,
2162 struct symbol **parent,
2163 struct addr_location *root_al,
2164 u8 *cpumode, int ent)
2166 int err = 0;
2168 while (--ent >= 0) {
2169 u64 ip = chain->ips[ent];
2171 if (ip >= PERF_CONTEXT_MAX) {
2172 err = add_callchain_ip(thread, cursor, parent,
2173 root_al, cpumode, ip,
2174 false, NULL, NULL, 0);
2175 break;
2178 return err;
2181 static int thread__resolve_callchain_sample(struct thread *thread,
2182 struct callchain_cursor *cursor,
2183 struct perf_evsel *evsel,
2184 struct perf_sample *sample,
2185 struct symbol **parent,
2186 struct addr_location *root_al,
2187 int max_stack)
2189 struct branch_stack *branch = sample->branch_stack;
2190 struct ip_callchain *chain = sample->callchain;
2191 int chain_nr = 0;
2192 u8 cpumode = PERF_RECORD_MISC_USER;
2193 int i, j, err, nr_entries;
2194 int skip_idx = -1;
2195 int first_call = 0;
2197 if (chain)
2198 chain_nr = chain->nr;
2200 if (perf_evsel__has_branch_callstack(evsel)) {
2201 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2202 root_al, max_stack);
2203 if (err)
2204 return (err < 0) ? err : 0;
2208 * Based on DWARF debug information, some architectures skip
2209 * a callchain entry saved by the kernel.
2211 skip_idx = arch_skip_callchain_idx(thread, chain);
2214 * Add branches to call stack for easier browsing. This gives
2215 * more context for a sample than just the callers.
2217 * This uses individual histograms of paths compared to the
2218 * aggregated histograms the normal LBR mode uses.
2220 * Limitations for now:
2221 * - No extra filters
2222 * - No annotations (should annotate somehow)
2225 if (branch && callchain_param.branch_callstack) {
2226 int nr = min(max_stack, (int)branch->nr);
2227 struct branch_entry be[nr];
2228 struct iterations iter[nr];
2230 if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2231 pr_warning("corrupted branch chain. skipping...\n");
2232 goto check_calls;
2235 for (i = 0; i < nr; i++) {
2236 if (callchain_param.order == ORDER_CALLEE) {
2237 be[i] = branch->entries[i];
2239 if (chain == NULL)
2240 continue;
2243 * Check for overlap into the callchain.
2244 * The return address is one off compared to
2245 * the branch entry. To adjust for this
2246 * assume the calling instruction is not longer
2247 * than 8 bytes.
2249 if (i == skip_idx ||
2250 chain->ips[first_call] >= PERF_CONTEXT_MAX)
2251 first_call++;
2252 else if (be[i].from < chain->ips[first_call] &&
2253 be[i].from >= chain->ips[first_call] - 8)
2254 first_call++;
2255 } else
2256 be[i] = branch->entries[branch->nr - i - 1];
2259 memset(iter, 0, sizeof(struct iterations) * nr);
2260 nr = remove_loops(be, nr, iter);
2262 for (i = 0; i < nr; i++) {
2263 err = add_callchain_ip(thread, cursor, parent,
2264 root_al,
2265 NULL, be[i].to,
2266 true, &be[i].flags,
2267 NULL, be[i].from);
2269 if (!err)
2270 err = add_callchain_ip(thread, cursor, parent, root_al,
2271 NULL, be[i].from,
2272 true, &be[i].flags,
2273 &iter[i], 0);
2274 if (err == -EINVAL)
2275 break;
2276 if (err)
2277 return err;
2280 if (chain_nr == 0)
2281 return 0;
2283 chain_nr -= nr;
2286 check_calls:
2287 if (callchain_param.order != ORDER_CALLEE) {
2288 err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2289 &cpumode, chain->nr - first_call);
2290 if (err)
2291 return (err < 0) ? err : 0;
2293 for (i = first_call, nr_entries = 0;
2294 i < chain_nr && nr_entries < max_stack; i++) {
2295 u64 ip;
2297 if (callchain_param.order == ORDER_CALLEE)
2298 j = i;
2299 else
2300 j = chain->nr - i - 1;
2302 #ifdef HAVE_SKIP_CALLCHAIN_IDX
2303 if (j == skip_idx)
2304 continue;
2305 #endif
2306 ip = chain->ips[j];
2307 if (ip < PERF_CONTEXT_MAX)
2308 ++nr_entries;
2309 else if (callchain_param.order != ORDER_CALLEE) {
2310 err = find_prev_cpumode(chain, thread, cursor, parent,
2311 root_al, &cpumode, j);
2312 if (err)
2313 return (err < 0) ? err : 0;
2314 continue;
2317 err = add_callchain_ip(thread, cursor, parent,
2318 root_al, &cpumode, ip,
2319 false, NULL, NULL, 0);
2321 if (err)
2322 return (err < 0) ? err : 0;
2325 return 0;
2328 static int append_inlines(struct callchain_cursor *cursor,
2329 struct map *map, struct symbol *sym, u64 ip)
2331 struct inline_node *inline_node;
2332 struct inline_list *ilist;
2333 u64 addr;
2334 int ret = 1;
2336 if (!symbol_conf.inline_name || !map || !sym)
2337 return ret;
2339 addr = map__map_ip(map, ip);
2340 addr = map__rip_2objdump(map, addr);
2342 inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2343 if (!inline_node) {
2344 inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2345 if (!inline_node)
2346 return ret;
2347 inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2350 list_for_each_entry(ilist, &inline_node->val, list) {
2351 ret = callchain_cursor_append(cursor, ip, map,
2352 ilist->symbol, false,
2353 NULL, 0, 0, 0, ilist->srcline);
2355 if (ret != 0)
2356 return ret;
2359 return ret;
2362 static int unwind_entry(struct unwind_entry *entry, void *arg)
2364 struct callchain_cursor *cursor = arg;
2365 const char *srcline = NULL;
2366 u64 addr = entry->ip;
2368 if (symbol_conf.hide_unresolved && entry->sym == NULL)
2369 return 0;
2371 if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0)
2372 return 0;
2375 * Convert entry->ip from a virtual address to an offset in
2376 * its corresponding binary.
2378 if (entry->map)
2379 addr = map__map_ip(entry->map, entry->ip);
2381 srcline = callchain_srcline(entry->map, entry->sym, addr);
2382 return callchain_cursor_append(cursor, entry->ip,
2383 entry->map, entry->sym,
2384 false, NULL, 0, 0, 0, srcline);
2387 static int thread__resolve_callchain_unwind(struct thread *thread,
2388 struct callchain_cursor *cursor,
2389 struct perf_evsel *evsel,
2390 struct perf_sample *sample,
2391 int max_stack)
2393 /* Can we do dwarf post unwind? */
2394 if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2395 (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
2396 return 0;
2398 /* Bail out if nothing was captured. */
2399 if ((!sample->user_regs.regs) ||
2400 (!sample->user_stack.size))
2401 return 0;
2403 return unwind__get_entries(unwind_entry, cursor,
2404 thread, sample, max_stack);
2407 int thread__resolve_callchain(struct thread *thread,
2408 struct callchain_cursor *cursor,
2409 struct perf_evsel *evsel,
2410 struct perf_sample *sample,
2411 struct symbol **parent,
2412 struct addr_location *root_al,
2413 int max_stack)
2415 int ret = 0;
2417 callchain_cursor_reset(cursor);
2419 if (callchain_param.order == ORDER_CALLEE) {
2420 ret = thread__resolve_callchain_sample(thread, cursor,
2421 evsel, sample,
2422 parent, root_al,
2423 max_stack);
2424 if (ret)
2425 return ret;
2426 ret = thread__resolve_callchain_unwind(thread, cursor,
2427 evsel, sample,
2428 max_stack);
2429 } else {
2430 ret = thread__resolve_callchain_unwind(thread, cursor,
2431 evsel, sample,
2432 max_stack);
2433 if (ret)
2434 return ret;
2435 ret = thread__resolve_callchain_sample(thread, cursor,
2436 evsel, sample,
2437 parent, root_al,
2438 max_stack);
2441 return ret;
2444 int machine__for_each_thread(struct machine *machine,
2445 int (*fn)(struct thread *thread, void *p),
2446 void *priv)
2448 struct threads *threads;
2449 struct rb_node *nd;
2450 struct thread *thread;
2451 int rc = 0;
2452 int i;
2454 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2455 threads = &machine->threads[i];
2456 for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) {
2457 thread = rb_entry(nd, struct thread, rb_node);
2458 rc = fn(thread, priv);
2459 if (rc != 0)
2460 return rc;
2463 list_for_each_entry(thread, &threads->dead, node) {
2464 rc = fn(thread, priv);
2465 if (rc != 0)
2466 return rc;
2469 return rc;
2472 int machines__for_each_thread(struct machines *machines,
2473 int (*fn)(struct thread *thread, void *p),
2474 void *priv)
2476 struct rb_node *nd;
2477 int rc = 0;
2479 rc = machine__for_each_thread(&machines->host, fn, priv);
2480 if (rc != 0)
2481 return rc;
2483 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
2484 struct machine *machine = rb_entry(nd, struct machine, rb_node);
2486 rc = machine__for_each_thread(machine, fn, priv);
2487 if (rc != 0)
2488 return rc;
2490 return rc;
2493 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2494 struct target *target, struct thread_map *threads,
2495 perf_event__handler_t process, bool data_mmap,
2496 unsigned int proc_map_timeout,
2497 unsigned int nr_threads_synthesize)
2499 if (target__has_task(target))
2500 return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
2501 else if (target__has_cpu(target))
2502 return perf_event__synthesize_threads(tool, process,
2503 machine, data_mmap,
2504 proc_map_timeout,
2505 nr_threads_synthesize);
2506 /* command specified */
2507 return 0;
2510 pid_t machine__get_current_tid(struct machine *machine, int cpu)
2512 if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
2513 return -1;
2515 return machine->current_tid[cpu];
2518 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2519 pid_t tid)
2521 struct thread *thread;
2523 if (cpu < 0)
2524 return -EINVAL;
2526 if (!machine->current_tid) {
2527 int i;
2529 machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
2530 if (!machine->current_tid)
2531 return -ENOMEM;
2532 for (i = 0; i < MAX_NR_CPUS; i++)
2533 machine->current_tid[i] = -1;
2536 if (cpu >= MAX_NR_CPUS) {
2537 pr_err("Requested CPU %d too large. ", cpu);
2538 pr_err("Consider raising MAX_NR_CPUS\n");
2539 return -EINVAL;
2542 machine->current_tid[cpu] = tid;
2544 thread = machine__findnew_thread(machine, pid, tid);
2545 if (!thread)
2546 return -ENOMEM;
2548 thread->cpu = cpu;
2549 thread__put(thread);
2551 return 0;
2555 * Compares the raw arch string. N.B. see instead perf_env__arch() if a
2556 * normalized arch is needed.
2558 bool machine__is(struct machine *machine, const char *arch)
2560 return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
2563 int machine__nr_cpus_avail(struct machine *machine)
2565 return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
2568 int machine__get_kernel_start(struct machine *machine)
2570 struct map *map = machine__kernel_map(machine);
2571 int err = 0;
2574 * The only addresses above 2^63 are kernel addresses of a 64-bit
2575 * kernel. Note that addresses are unsigned so that on a 32-bit system
2576 * all addresses including kernel addresses are less than 2^32. In
2577 * that case (32-bit system), if the kernel mapping is unknown, all
2578 * addresses will be assumed to be in user space - see
2579 * machine__kernel_ip().
2581 machine->kernel_start = 1ULL << 63;
2582 if (map) {
2583 err = map__load(map);
2585 * On x86_64, PTI entry trampolines are less than the
2586 * start of kernel text, but still above 2^63. So leave
2587 * kernel_start = 1ULL << 63 for x86_64.
2589 if (!err && !machine__is(machine, "x86_64"))
2590 machine->kernel_start = map->start;
2592 return err;
2595 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2597 return dsos__findnew(&machine->dsos, filename);
2600 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2602 struct machine *machine = vmachine;
2603 struct map *map;
2604 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
2606 if (sym == NULL)
2607 return NULL;
2609 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2610 *addrp = map->unmap_ip(map, sym->start);
2611 return sym->name;