2 * arch/blackfin/kernel/kgdb.c - Blackfin kgdb pieces
4 * Copyright 2005-2008 Analog Devices Inc.
6 * Licensed under the GPL-2 or later.
9 #include <linux/string.h>
10 #include <linux/kernel.h>
11 #include <linux/sched.h>
12 #include <linux/smp.h>
13 #include <linux/spinlock.h>
14 #include <linux/delay.h>
15 #include <linux/ptrace.h> /* for linux pt_regs struct */
16 #include <linux/kgdb.h>
17 #include <linux/console.h>
18 #include <linux/init.h>
19 #include <linux/errno.h>
20 #include <linux/irq.h>
21 #include <linux/uaccess.h>
22 #include <asm/system.h>
23 #include <asm/traps.h>
24 #include <asm/blackfin.h>
27 /* Put the error code here just in case the user cares. */
29 /* Likewise, the vector number here (since GDB only gets the signal
30 number through the usual means, and that's not very specific). */
31 int gdb_bfin_vector
= -1;
33 #if KGDB_MAX_NO_CPUS != 8
34 #error change the definition of slavecpulocks
37 #define IN_MEM(addr, size, l1_addr, l1_size) \
39 unsigned long __addr = (unsigned long)(addr); \
40 (l1_size && __addr >= l1_addr && __addr + (size) <= l1_addr + l1_size); \
42 #define ASYNC_BANK_SIZE \
43 (ASYNC_BANK0_SIZE + ASYNC_BANK1_SIZE + \
44 ASYNC_BANK2_SIZE + ASYNC_BANK3_SIZE)
46 void pt_regs_to_gdb_regs(unsigned long *gdb_regs
, struct pt_regs
*regs
)
48 gdb_regs
[BFIN_R0
] = regs
->r0
;
49 gdb_regs
[BFIN_R1
] = regs
->r1
;
50 gdb_regs
[BFIN_R2
] = regs
->r2
;
51 gdb_regs
[BFIN_R3
] = regs
->r3
;
52 gdb_regs
[BFIN_R4
] = regs
->r4
;
53 gdb_regs
[BFIN_R5
] = regs
->r5
;
54 gdb_regs
[BFIN_R6
] = regs
->r6
;
55 gdb_regs
[BFIN_R7
] = regs
->r7
;
56 gdb_regs
[BFIN_P0
] = regs
->p0
;
57 gdb_regs
[BFIN_P1
] = regs
->p1
;
58 gdb_regs
[BFIN_P2
] = regs
->p2
;
59 gdb_regs
[BFIN_P3
] = regs
->p3
;
60 gdb_regs
[BFIN_P4
] = regs
->p4
;
61 gdb_regs
[BFIN_P5
] = regs
->p5
;
62 gdb_regs
[BFIN_SP
] = regs
->reserved
;
63 gdb_regs
[BFIN_FP
] = regs
->fp
;
64 gdb_regs
[BFIN_I0
] = regs
->i0
;
65 gdb_regs
[BFIN_I1
] = regs
->i1
;
66 gdb_regs
[BFIN_I2
] = regs
->i2
;
67 gdb_regs
[BFIN_I3
] = regs
->i3
;
68 gdb_regs
[BFIN_M0
] = regs
->m0
;
69 gdb_regs
[BFIN_M1
] = regs
->m1
;
70 gdb_regs
[BFIN_M2
] = regs
->m2
;
71 gdb_regs
[BFIN_M3
] = regs
->m3
;
72 gdb_regs
[BFIN_B0
] = regs
->b0
;
73 gdb_regs
[BFIN_B1
] = regs
->b1
;
74 gdb_regs
[BFIN_B2
] = regs
->b2
;
75 gdb_regs
[BFIN_B3
] = regs
->b3
;
76 gdb_regs
[BFIN_L0
] = regs
->l0
;
77 gdb_regs
[BFIN_L1
] = regs
->l1
;
78 gdb_regs
[BFIN_L2
] = regs
->l2
;
79 gdb_regs
[BFIN_L3
] = regs
->l3
;
80 gdb_regs
[BFIN_A0_DOT_X
] = regs
->a0x
;
81 gdb_regs
[BFIN_A0_DOT_W
] = regs
->a0w
;
82 gdb_regs
[BFIN_A1_DOT_X
] = regs
->a1x
;
83 gdb_regs
[BFIN_A1_DOT_W
] = regs
->a1w
;
84 gdb_regs
[BFIN_ASTAT
] = regs
->astat
;
85 gdb_regs
[BFIN_RETS
] = regs
->rets
;
86 gdb_regs
[BFIN_LC0
] = regs
->lc0
;
87 gdb_regs
[BFIN_LT0
] = regs
->lt0
;
88 gdb_regs
[BFIN_LB0
] = regs
->lb0
;
89 gdb_regs
[BFIN_LC1
] = regs
->lc1
;
90 gdb_regs
[BFIN_LT1
] = regs
->lt1
;
91 gdb_regs
[BFIN_LB1
] = regs
->lb1
;
92 gdb_regs
[BFIN_CYCLES
] = 0;
93 gdb_regs
[BFIN_CYCLES2
] = 0;
94 gdb_regs
[BFIN_USP
] = regs
->usp
;
95 gdb_regs
[BFIN_SEQSTAT
] = regs
->seqstat
;
96 gdb_regs
[BFIN_SYSCFG
] = regs
->syscfg
;
97 gdb_regs
[BFIN_RETI
] = regs
->pc
;
98 gdb_regs
[BFIN_RETX
] = regs
->retx
;
99 gdb_regs
[BFIN_RETN
] = regs
->retn
;
100 gdb_regs
[BFIN_RETE
] = regs
->rete
;
101 gdb_regs
[BFIN_PC
] = regs
->pc
;
102 gdb_regs
[BFIN_CC
] = 0;
103 gdb_regs
[BFIN_EXTRA1
] = 0;
104 gdb_regs
[BFIN_EXTRA2
] = 0;
105 gdb_regs
[BFIN_EXTRA3
] = 0;
106 gdb_regs
[BFIN_IPEND
] = regs
->ipend
;
110 * Extracts ebp, esp and eip values understandable by gdb from the values
111 * saved by switch_to.
112 * thread.esp points to ebp. flags and ebp are pushed in switch_to hence esp
113 * prior to entering switch_to is 8 greater than the value that is saved.
114 * If switch_to changes, change following code appropriately.
116 void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs
, struct task_struct
*p
)
118 gdb_regs
[BFIN_SP
] = p
->thread
.ksp
;
119 gdb_regs
[BFIN_PC
] = p
->thread
.pc
;
120 gdb_regs
[BFIN_SEQSTAT
] = p
->thread
.seqstat
;
123 void gdb_regs_to_pt_regs(unsigned long *gdb_regs
, struct pt_regs
*regs
)
125 regs
->r0
= gdb_regs
[BFIN_R0
];
126 regs
->r1
= gdb_regs
[BFIN_R1
];
127 regs
->r2
= gdb_regs
[BFIN_R2
];
128 regs
->r3
= gdb_regs
[BFIN_R3
];
129 regs
->r4
= gdb_regs
[BFIN_R4
];
130 regs
->r5
= gdb_regs
[BFIN_R5
];
131 regs
->r6
= gdb_regs
[BFIN_R6
];
132 regs
->r7
= gdb_regs
[BFIN_R7
];
133 regs
->p0
= gdb_regs
[BFIN_P0
];
134 regs
->p1
= gdb_regs
[BFIN_P1
];
135 regs
->p2
= gdb_regs
[BFIN_P2
];
136 regs
->p3
= gdb_regs
[BFIN_P3
];
137 regs
->p4
= gdb_regs
[BFIN_P4
];
138 regs
->p5
= gdb_regs
[BFIN_P5
];
139 regs
->fp
= gdb_regs
[BFIN_FP
];
140 regs
->i0
= gdb_regs
[BFIN_I0
];
141 regs
->i1
= gdb_regs
[BFIN_I1
];
142 regs
->i2
= gdb_regs
[BFIN_I2
];
143 regs
->i3
= gdb_regs
[BFIN_I3
];
144 regs
->m0
= gdb_regs
[BFIN_M0
];
145 regs
->m1
= gdb_regs
[BFIN_M1
];
146 regs
->m2
= gdb_regs
[BFIN_M2
];
147 regs
->m3
= gdb_regs
[BFIN_M3
];
148 regs
->b0
= gdb_regs
[BFIN_B0
];
149 regs
->b1
= gdb_regs
[BFIN_B1
];
150 regs
->b2
= gdb_regs
[BFIN_B2
];
151 regs
->b3
= gdb_regs
[BFIN_B3
];
152 regs
->l0
= gdb_regs
[BFIN_L0
];
153 regs
->l1
= gdb_regs
[BFIN_L1
];
154 regs
->l2
= gdb_regs
[BFIN_L2
];
155 regs
->l3
= gdb_regs
[BFIN_L3
];
156 regs
->a0x
= gdb_regs
[BFIN_A0_DOT_X
];
157 regs
->a0w
= gdb_regs
[BFIN_A0_DOT_W
];
158 regs
->a1x
= gdb_regs
[BFIN_A1_DOT_X
];
159 regs
->a1w
= gdb_regs
[BFIN_A1_DOT_W
];
160 regs
->rets
= gdb_regs
[BFIN_RETS
];
161 regs
->lc0
= gdb_regs
[BFIN_LC0
];
162 regs
->lt0
= gdb_regs
[BFIN_LT0
];
163 regs
->lb0
= gdb_regs
[BFIN_LB0
];
164 regs
->lc1
= gdb_regs
[BFIN_LC1
];
165 regs
->lt1
= gdb_regs
[BFIN_LT1
];
166 regs
->lb1
= gdb_regs
[BFIN_LB1
];
167 regs
->usp
= gdb_regs
[BFIN_USP
];
168 regs
->syscfg
= gdb_regs
[BFIN_SYSCFG
];
169 regs
->retx
= gdb_regs
[BFIN_PC
];
170 regs
->retn
= gdb_regs
[BFIN_RETN
];
171 regs
->rete
= gdb_regs
[BFIN_RETE
];
172 regs
->pc
= gdb_regs
[BFIN_PC
];
174 #if 0 /* can't change these */
175 regs
->astat
= gdb_regs
[BFIN_ASTAT
];
176 regs
->seqstat
= gdb_regs
[BFIN_SEQSTAT
];
177 regs
->ipend
= gdb_regs
[BFIN_IPEND
];
181 struct hw_breakpoint
{
182 unsigned int occupied
:1;
184 unsigned int enabled
:1;
186 unsigned int dataacc
:2;
187 unsigned short count
;
189 } breakinfo
[HW_WATCHPOINT_NUM
];
191 int bfin_set_hw_break(unsigned long addr
, int len
, enum kgdb_bptype type
)
198 case BP_HARDWARE_BREAKPOINT
:
199 bfin_type
= TYPE_INST_WATCHPOINT
;
201 case BP_WRITE_WATCHPOINT
:
203 bfin_type
= TYPE_DATA_WATCHPOINT
;
205 case BP_READ_WATCHPOINT
:
207 bfin_type
= TYPE_DATA_WATCHPOINT
;
209 case BP_ACCESS_WATCHPOINT
:
211 bfin_type
= TYPE_DATA_WATCHPOINT
;
217 /* Becasue hardware data watchpoint impelemented in current
218 * Blackfin can not trigger an exception event as the hardware
219 * instrction watchpoint does, we ignaore all data watch point here.
220 * They can be turned on easily after future blackfin design
221 * supports this feature.
223 for (breakno
= 0; breakno
< HW_INST_WATCHPOINT_NUM
; breakno
++)
224 if (bfin_type
== breakinfo
[breakno
].type
225 && !breakinfo
[breakno
].occupied
) {
226 breakinfo
[breakno
].occupied
= 1;
227 breakinfo
[breakno
].skip
= 0;
228 breakinfo
[breakno
].enabled
= 1;
229 breakinfo
[breakno
].addr
= addr
;
230 breakinfo
[breakno
].dataacc
= dataacc
;
231 breakinfo
[breakno
].count
= 0;
238 int bfin_remove_hw_break(unsigned long addr
, int len
, enum kgdb_bptype type
)
244 case BP_HARDWARE_BREAKPOINT
:
245 bfin_type
= TYPE_INST_WATCHPOINT
;
247 case BP_WRITE_WATCHPOINT
:
248 case BP_READ_WATCHPOINT
:
249 case BP_ACCESS_WATCHPOINT
:
250 bfin_type
= TYPE_DATA_WATCHPOINT
;
255 for (breakno
= 0; breakno
< HW_WATCHPOINT_NUM
; breakno
++)
256 if (bfin_type
== breakinfo
[breakno
].type
257 && breakinfo
[breakno
].occupied
258 && breakinfo
[breakno
].addr
== addr
) {
259 breakinfo
[breakno
].occupied
= 0;
260 breakinfo
[breakno
].enabled
= 0;
266 void bfin_remove_all_hw_break(void)
270 memset(breakinfo
, 0, sizeof(struct hw_breakpoint
)*HW_WATCHPOINT_NUM
);
272 for (breakno
= 0; breakno
< HW_INST_WATCHPOINT_NUM
; breakno
++)
273 breakinfo
[breakno
].type
= TYPE_INST_WATCHPOINT
;
274 for (; breakno
< HW_WATCHPOINT_NUM
; breakno
++)
275 breakinfo
[breakno
].type
= TYPE_DATA_WATCHPOINT
;
278 void bfin_correct_hw_break(void)
281 unsigned int wpiactl
= 0;
282 unsigned int wpdactl
= 0;
285 for (breakno
= 0; breakno
< HW_WATCHPOINT_NUM
; breakno
++)
286 if (breakinfo
[breakno
].enabled
) {
291 wpiactl
|= WPIAEN0
|WPICNTEN0
;
292 bfin_write_WPIA0(breakinfo
[breakno
].addr
);
293 bfin_write_WPIACNT0(breakinfo
[breakno
].count
297 wpiactl
|= WPIAEN1
|WPICNTEN1
;
298 bfin_write_WPIA1(breakinfo
[breakno
].addr
);
299 bfin_write_WPIACNT1(breakinfo
[breakno
].count
303 wpiactl
|= WPIAEN2
|WPICNTEN2
;
304 bfin_write_WPIA2(breakinfo
[breakno
].addr
);
305 bfin_write_WPIACNT2(breakinfo
[breakno
].count
309 wpiactl
|= WPIAEN3
|WPICNTEN3
;
310 bfin_write_WPIA3(breakinfo
[breakno
].addr
);
311 bfin_write_WPIACNT3(breakinfo
[breakno
].count
315 wpiactl
|= WPIAEN4
|WPICNTEN4
;
316 bfin_write_WPIA4(breakinfo
[breakno
].addr
);
317 bfin_write_WPIACNT4(breakinfo
[breakno
].count
321 wpiactl
|= WPIAEN5
|WPICNTEN5
;
322 bfin_write_WPIA5(breakinfo
[breakno
].addr
);
323 bfin_write_WPIACNT5(breakinfo
[breakno
].count
327 wpdactl
|= WPDAEN0
|WPDCNTEN0
|WPDSRC0
;
328 wpdactl
|= breakinfo
[breakno
].dataacc
330 bfin_write_WPDA0(breakinfo
[breakno
].addr
);
331 bfin_write_WPDACNT0(breakinfo
[breakno
].count
335 wpdactl
|= WPDAEN1
|WPDCNTEN1
|WPDSRC1
;
336 wpdactl
|= breakinfo
[breakno
].dataacc
338 bfin_write_WPDA1(breakinfo
[breakno
].addr
);
339 bfin_write_WPDACNT1(breakinfo
[breakno
].count
345 /* Should enable WPPWR bit first before set any other
346 * WPIACTL and WPDACTL bits */
348 bfin_write_WPIACTL(WPPWR
);
350 bfin_write_WPIACTL(wpiactl
|WPPWR
);
351 bfin_write_WPDACTL(wpdactl
);
356 void kgdb_disable_hw_debug(struct pt_regs
*regs
)
358 /* Disable hardware debugging while we are in kgdb */
359 bfin_write_WPIACTL(0);
360 bfin_write_WPDACTL(0);
365 void kgdb_passive_cpu_callback(void *info
)
367 kgdb_nmicallback(raw_smp_processor_id(), get_irq_regs());
370 void kgdb_roundup_cpus(unsigned long flags
)
372 smp_call_function(kgdb_passive_cpu_callback
, NULL
, 0);
375 void kgdb_roundup_cpu(int cpu
, unsigned long flags
)
377 smp_call_function_single(cpu
, kgdb_passive_cpu_callback
, NULL
, 0);
381 void kgdb_post_primary_code(struct pt_regs
*regs
, int eVector
, int err_code
)
383 /* Master processor is completely in the debugger */
384 gdb_bfin_vector
= eVector
;
385 gdb_bfin_errcode
= err_code
;
388 int kgdb_arch_handle_exception(int vector
, int signo
,
389 int err_code
, char *remcom_in_buffer
,
390 char *remcom_out_buffer
,
391 struct pt_regs
*regs
)
398 switch (remcom_in_buffer
[0]) {
401 if (kgdb_contthread
&& kgdb_contthread
!= current
) {
402 strcpy(remcom_out_buffer
, "E00");
406 kgdb_contthread
= NULL
;
408 /* try to read optional parameter, pc unchanged if no parm */
409 ptr
= &remcom_in_buffer
[1];
410 if (kgdb_hex2long(&ptr
, &addr
)) {
415 /* clear the trace bit */
416 regs
->syscfg
&= 0xfffffffe;
418 /* set the trace bit if we're stepping */
419 if (remcom_in_buffer
[0] == 's') {
421 kgdb_single_step
= regs
->ipend
;
422 kgdb_single_step
>>= 6;
423 for (i
= 10; i
> 0; i
--, kgdb_single_step
>>= 1)
424 if (kgdb_single_step
& 1)
426 /* i indicate event priority of current stopped instruction
427 * user space instruction is 0, IVG15 is 1, IVTMR is 10.
428 * kgdb_single_step > 0 means in single step mode
430 kgdb_single_step
= i
+ 1;
433 bfin_correct_hw_break();
437 return -1; /* this means that we do not want to exit from the handler */
440 struct kgdb_arch arch_kgdb_ops
= {
441 .gdb_bpt_instr
= {0xa1},
443 .flags
= KGDB_HW_BREAKPOINT
|KGDB_THR_PROC_SWAP
,
445 .flags
= KGDB_HW_BREAKPOINT
,
447 .set_hw_breakpoint
= bfin_set_hw_break
,
448 .remove_hw_breakpoint
= bfin_remove_hw_break
,
449 .remove_all_hw_break
= bfin_remove_all_hw_break
,
450 .correct_hw_break
= bfin_correct_hw_break
,
453 static int hex(char ch
)
455 if ((ch
>= 'a') && (ch
<= 'f'))
456 return ch
- 'a' + 10;
457 if ((ch
>= '0') && (ch
<= '9'))
459 if ((ch
>= 'A') && (ch
<= 'F'))
460 return ch
- 'A' + 10;
464 static int validate_memory_access_address(unsigned long addr
, int size
)
466 int cpu
= raw_smp_processor_id();
470 if (addr
>= 0x1000 && (addr
+ size
) <= physical_mem_end
)
472 if (addr
>= SYSMMR_BASE
)
474 if (IN_MEM(addr
, size
, ASYNC_BANK0_BASE
, ASYNC_BANK_SIZE
))
477 if (IN_MEM(addr
, size
, L1_SCRATCH_START
, L1_SCRATCH_LENGTH
))
479 if (IN_MEM(addr
, size
, L1_CODE_START
, L1_CODE_LENGTH
))
481 if (IN_MEM(addr
, size
, L1_DATA_A_START
, L1_DATA_A_LENGTH
))
483 if (IN_MEM(addr
, size
, L1_DATA_B_START
, L1_DATA_B_LENGTH
))
486 } else if (cpu
== 1) {
487 if (IN_MEM(addr
, size
, COREB_L1_SCRATCH_START
, L1_SCRATCH_LENGTH
))
489 if (IN_MEM(addr
, size
, COREB_L1_CODE_START
, L1_CODE_LENGTH
))
491 if (IN_MEM(addr
, size
, COREB_L1_DATA_A_START
, L1_DATA_A_LENGTH
))
493 if (IN_MEM(addr
, size
, COREB_L1_DATA_B_START
, L1_DATA_B_LENGTH
))
498 if (IN_MEM(addr
, size
, L2_START
, L2_LENGTH
))
505 * Convert the memory pointed to by mem into hex, placing result in buf.
506 * Return a pointer to the last char put in buf (null). May return an error.
508 int kgdb_mem2hex(char *mem
, char *buf
, int count
)
513 unsigned short mmr16
;
515 int cpu
= raw_smp_processor_id();
517 err
= validate_memory_access_address((unsigned long)mem
, count
);
522 * We use the upper half of buf as an intermediate buffer for the
523 * raw memory copy. Hex conversion will work against this one.
527 if ((unsigned int)mem
>= SYSMMR_BASE
) { /*access MMR registers*/
530 if ((unsigned int)mem
% 2 == 0) {
531 mmr16
= *(unsigned short *)mem
;
532 pch
= (unsigned char *)&mmr16
;
540 if ((unsigned int)mem
% 4 == 0) {
541 mmr32
= *(unsigned long *)mem
;
542 pch
= (unsigned char *)&mmr32
;
554 } else if ((cpu
== 0 && IN_MEM(mem
, count
, L1_CODE_START
, L1_CODE_LENGTH
))
556 || (cpu
== 1 && IN_MEM(mem
, count
, COREB_L1_CODE_START
, L1_CODE_LENGTH
))
559 /* access L1 instruction SRAM*/
560 if (dma_memcpy(tmp
, mem
, count
) == NULL
)
563 err
= probe_kernel_read(tmp
, mem
, count
);
567 buf
= pack_hex_byte(buf
, *tmp
);
579 * Copy the binary array pointed to by buf into mem. Fix $, #, and
580 * 0x7d escaped with 0x7d. Return a pointer to the character after
581 * the last byte written.
583 int kgdb_ebin2mem(char *buf
, char *mem
, int count
)
587 unsigned short *mmr16
;
588 unsigned long *mmr32
;
591 int cpu
= raw_smp_processor_id();
593 tmp_old
= tmp_new
= buf
;
595 for (size
= 0; size
< count
; ++size
) {
596 if (*tmp_old
== 0x7d)
597 *tmp_new
= *(++tmp_old
) ^ 0x20;
604 err
= validate_memory_access_address((unsigned long)mem
, size
);
608 if ((unsigned int)mem
>= SYSMMR_BASE
) { /*access MMR registers*/
611 if ((unsigned int)mem
% 2 == 0) {
612 mmr16
= (unsigned short *)buf
;
613 *(unsigned short *)mem
= *mmr16
;
618 if ((unsigned int)mem
% 4 == 0) {
619 mmr32
= (unsigned long *)buf
;
620 *(unsigned long *)mem
= *mmr32
;
627 } else if ((cpu
== 0 && IN_MEM(mem
, count
, L1_CODE_START
, L1_CODE_LENGTH
))
629 || (cpu
== 1 && IN_MEM(mem
, count
, COREB_L1_CODE_START
, L1_CODE_LENGTH
))
632 /* access L1 instruction SRAM */
633 if (dma_memcpy(mem
, buf
, size
) == NULL
)
636 err
= probe_kernel_write(mem
, buf
, size
);
642 * Convert the hex array pointed to by buf into binary to be placed in mem.
643 * Return a pointer to the character AFTER the last byte written.
644 * May return an error.
646 int kgdb_hex2mem(char *buf
, char *mem
, int count
)
650 unsigned short *mmr16
;
651 unsigned long *mmr32
;
653 int cpu
= raw_smp_processor_id();
655 err
= validate_memory_access_address((unsigned long)mem
, count
);
660 * We use the upper half of buf as an intermediate buffer for the
661 * raw memory that is converted from hex.
663 tmp_raw
= buf
+ count
* 2;
665 tmp_hex
= tmp_raw
- 1;
666 while (tmp_hex
>= buf
) {
668 *tmp_raw
= hex(*tmp_hex
--);
669 *tmp_raw
|= hex(*tmp_hex
--) << 4;
672 if ((unsigned int)mem
>= SYSMMR_BASE
) { /*access MMR registers*/
675 if ((unsigned int)mem
% 2 == 0) {
676 mmr16
= (unsigned short *)tmp_raw
;
677 *(unsigned short *)mem
= *mmr16
;
682 if ((unsigned int)mem
% 4 == 0) {
683 mmr32
= (unsigned long *)tmp_raw
;
684 *(unsigned long *)mem
= *mmr32
;
691 } else if ((cpu
== 0 && IN_MEM(mem
, count
, L1_CODE_START
, L1_CODE_LENGTH
))
693 || (cpu
== 1 && IN_MEM(mem
, count
, COREB_L1_CODE_START
, L1_CODE_LENGTH
))
696 /* access L1 instruction SRAM */
697 if (dma_memcpy(mem
, tmp_raw
, count
) == NULL
)
700 err
= probe_kernel_write(mem
, tmp_raw
, count
);
705 int kgdb_validate_break_address(unsigned long addr
)
707 int cpu
= raw_smp_processor_id();
709 if (addr
>= 0x1000 && (addr
+ BREAK_INSTR_SIZE
) <= physical_mem_end
)
711 if (IN_MEM(addr
, BREAK_INSTR_SIZE
, ASYNC_BANK0_BASE
, ASYNC_BANK_SIZE
))
713 if (cpu
== 0 && IN_MEM(addr
, BREAK_INSTR_SIZE
, L1_CODE_START
, L1_CODE_LENGTH
))
716 else if (cpu
== 1 && IN_MEM(addr
, BREAK_INSTR_SIZE
, COREB_L1_CODE_START
, L1_CODE_LENGTH
))
719 if (IN_MEM(addr
, BREAK_INSTR_SIZE
, L2_START
, L2_LENGTH
))
725 int kgdb_arch_set_breakpoint(unsigned long addr
, char *saved_instr
)
728 int cpu
= raw_smp_processor_id();
730 if ((cpu
== 0 && IN_MEM(addr
, BREAK_INSTR_SIZE
, L1_CODE_START
, L1_CODE_LENGTH
))
732 || (cpu
== 1 && IN_MEM(addr
, BREAK_INSTR_SIZE
, COREB_L1_CODE_START
, L1_CODE_LENGTH
))
735 /* access L1 instruction SRAM */
736 if (dma_memcpy(saved_instr
, (void *)addr
, BREAK_INSTR_SIZE
)
740 if (dma_memcpy((void *)addr
, arch_kgdb_ops
.gdb_bpt_instr
,
741 BREAK_INSTR_SIZE
) == NULL
)
746 err
= probe_kernel_read(saved_instr
, (char *)addr
,
751 return probe_kernel_write((char *)addr
,
752 arch_kgdb_ops
.gdb_bpt_instr
, BREAK_INSTR_SIZE
);
756 int kgdb_arch_remove_breakpoint(unsigned long addr
, char *bundle
)
758 if (IN_MEM(addr
, BREAK_INSTR_SIZE
, L1_CODE_START
, L1_CODE_LENGTH
)) {
759 /* access L1 instruction SRAM */
760 if (dma_memcpy((void *)addr
, bundle
, BREAK_INSTR_SIZE
) == NULL
)
765 return probe_kernel_write((char *)addr
,
766 (char *)bundle
, BREAK_INSTR_SIZE
);
769 int kgdb_arch_init(void)
771 kgdb_single_step
= 0;
773 bfin_remove_all_hw_break();
777 void kgdb_arch_exit(void)