4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * #!-checking implemented by tytso.
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/proc_fs.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/ima.h>
49 #include <linux/syscalls.h>
50 #include <linux/tsacct_kern.h>
51 #include <linux/cn_proc.h>
52 #include <linux/audit.h>
53 #include <linux/tracehook.h>
54 #include <linux/kmod.h>
55 #include <linux/fsnotify.h>
57 #include <asm/uaccess.h>
58 #include <asm/mmu_context.h>
63 char core_pattern
[CORENAME_MAX_SIZE
] = "core";
64 int suid_dumpable
= 0;
66 /* The maximal length of core_pattern is also specified in sysctl.c */
68 static LIST_HEAD(formats
);
69 static DEFINE_RWLOCK(binfmt_lock
);
71 int register_binfmt(struct linux_binfmt
* fmt
)
75 write_lock(&binfmt_lock
);
76 list_add(&fmt
->lh
, &formats
);
77 write_unlock(&binfmt_lock
);
81 EXPORT_SYMBOL(register_binfmt
);
83 void unregister_binfmt(struct linux_binfmt
* fmt
)
85 write_lock(&binfmt_lock
);
87 write_unlock(&binfmt_lock
);
90 EXPORT_SYMBOL(unregister_binfmt
);
92 static inline void put_binfmt(struct linux_binfmt
* fmt
)
94 module_put(fmt
->module
);
98 * Note that a shared library must be both readable and executable due to
101 * Also note that we take the address to load from from the file itself.
103 SYSCALL_DEFINE1(uselib
, const char __user
*, library
)
107 char *tmp
= getname(library
);
108 int error
= PTR_ERR(tmp
);
111 error
= path_lookup_open(AT_FDCWD
, tmp
,
113 FMODE_READ
|FMODE_EXEC
);
120 if (!S_ISREG(nd
.path
.dentry
->d_inode
->i_mode
))
124 if (nd
.path
.mnt
->mnt_flags
& MNT_NOEXEC
)
127 error
= inode_permission(nd
.path
.dentry
->d_inode
,
128 MAY_READ
| MAY_EXEC
| MAY_OPEN
);
131 error
= ima_path_check(&nd
.path
, MAY_READ
| MAY_EXEC
| MAY_OPEN
);
135 file
= nameidata_to_filp(&nd
, O_RDONLY
|O_LARGEFILE
);
136 error
= PTR_ERR(file
);
140 fsnotify_open(file
->f_path
.dentry
);
144 struct linux_binfmt
* fmt
;
146 read_lock(&binfmt_lock
);
147 list_for_each_entry(fmt
, &formats
, lh
) {
148 if (!fmt
->load_shlib
)
150 if (!try_module_get(fmt
->module
))
152 read_unlock(&binfmt_lock
);
153 error
= fmt
->load_shlib(file
);
154 read_lock(&binfmt_lock
);
156 if (error
!= -ENOEXEC
)
159 read_unlock(&binfmt_lock
);
165 release_open_intent(&nd
);
172 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
178 #ifdef CONFIG_STACK_GROWSUP
180 ret
= expand_stack_downwards(bprm
->vma
, pos
);
185 ret
= get_user_pages(current
, bprm
->mm
, pos
,
186 1, write
, 1, &page
, NULL
);
191 unsigned long size
= bprm
->vma
->vm_end
- bprm
->vma
->vm_start
;
195 * We've historically supported up to 32 pages (ARG_MAX)
196 * of argument strings even with small stacks
202 * Limit to 1/4-th the stack size for the argv+env strings.
204 * - the remaining binfmt code will not run out of stack space,
205 * - the program will have a reasonable amount of stack left
208 rlim
= current
->signal
->rlim
;
209 if (size
> rlim
[RLIMIT_STACK
].rlim_cur
/ 4) {
218 static void put_arg_page(struct page
*page
)
223 static void free_arg_page(struct linux_binprm
*bprm
, int i
)
227 static void free_arg_pages(struct linux_binprm
*bprm
)
231 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
234 flush_cache_page(bprm
->vma
, pos
, page_to_pfn(page
));
237 static int __bprm_mm_init(struct linux_binprm
*bprm
)
240 struct vm_area_struct
*vma
= NULL
;
241 struct mm_struct
*mm
= bprm
->mm
;
243 bprm
->vma
= vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
247 down_write(&mm
->mmap_sem
);
251 * Place the stack at the largest stack address the architecture
252 * supports. Later, we'll move this to an appropriate place. We don't
253 * use STACK_TOP because that can depend on attributes which aren't
256 vma
->vm_end
= STACK_TOP_MAX
;
257 vma
->vm_start
= vma
->vm_end
- PAGE_SIZE
;
258 vma
->vm_flags
= VM_STACK_FLAGS
;
259 vma
->vm_page_prot
= vm_get_page_prot(vma
->vm_flags
);
260 err
= insert_vm_struct(mm
, vma
);
264 mm
->stack_vm
= mm
->total_vm
= 1;
265 up_write(&mm
->mmap_sem
);
266 bprm
->p
= vma
->vm_end
- sizeof(void *);
269 up_write(&mm
->mmap_sem
);
271 kmem_cache_free(vm_area_cachep
, vma
);
275 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
277 return len
<= MAX_ARG_STRLEN
;
282 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
287 page
= bprm
->page
[pos
/ PAGE_SIZE
];
288 if (!page
&& write
) {
289 page
= alloc_page(GFP_HIGHUSER
|__GFP_ZERO
);
292 bprm
->page
[pos
/ PAGE_SIZE
] = page
;
298 static void put_arg_page(struct page
*page
)
302 static void free_arg_page(struct linux_binprm
*bprm
, int i
)
305 __free_page(bprm
->page
[i
]);
306 bprm
->page
[i
] = NULL
;
310 static void free_arg_pages(struct linux_binprm
*bprm
)
314 for (i
= 0; i
< MAX_ARG_PAGES
; i
++)
315 free_arg_page(bprm
, i
);
318 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
323 static int __bprm_mm_init(struct linux_binprm
*bprm
)
325 bprm
->p
= PAGE_SIZE
* MAX_ARG_PAGES
- sizeof(void *);
329 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
331 return len
<= bprm
->p
;
334 #endif /* CONFIG_MMU */
337 * Create a new mm_struct and populate it with a temporary stack
338 * vm_area_struct. We don't have enough context at this point to set the stack
339 * flags, permissions, and offset, so we use temporary values. We'll update
340 * them later in setup_arg_pages().
342 int bprm_mm_init(struct linux_binprm
*bprm
)
345 struct mm_struct
*mm
= NULL
;
347 bprm
->mm
= mm
= mm_alloc();
352 err
= init_new_context(current
, mm
);
356 err
= __bprm_mm_init(bprm
);
372 * count() counts the number of strings in array ARGV.
374 static int count(char __user
* __user
* argv
, int max
)
382 if (get_user(p
, argv
))
396 * 'copy_strings()' copies argument/environment strings from the old
397 * processes's memory to the new process's stack. The call to get_user_pages()
398 * ensures the destination page is created and not swapped out.
400 static int copy_strings(int argc
, char __user
* __user
* argv
,
401 struct linux_binprm
*bprm
)
403 struct page
*kmapped_page
= NULL
;
405 unsigned long kpos
= 0;
413 if (get_user(str
, argv
+argc
) ||
414 !(len
= strnlen_user(str
, MAX_ARG_STRLEN
))) {
419 if (!valid_arg_len(bprm
, len
)) {
424 /* We're going to work our way backwords. */
430 int offset
, bytes_to_copy
;
432 offset
= pos
% PAGE_SIZE
;
436 bytes_to_copy
= offset
;
437 if (bytes_to_copy
> len
)
440 offset
-= bytes_to_copy
;
441 pos
-= bytes_to_copy
;
442 str
-= bytes_to_copy
;
443 len
-= bytes_to_copy
;
445 if (!kmapped_page
|| kpos
!= (pos
& PAGE_MASK
)) {
448 page
= get_arg_page(bprm
, pos
, 1);
455 flush_kernel_dcache_page(kmapped_page
);
456 kunmap(kmapped_page
);
457 put_arg_page(kmapped_page
);
460 kaddr
= kmap(kmapped_page
);
461 kpos
= pos
& PAGE_MASK
;
462 flush_arg_page(bprm
, kpos
, kmapped_page
);
464 if (copy_from_user(kaddr
+offset
, str
, bytes_to_copy
)) {
473 flush_kernel_dcache_page(kmapped_page
);
474 kunmap(kmapped_page
);
475 put_arg_page(kmapped_page
);
481 * Like copy_strings, but get argv and its values from kernel memory.
483 int copy_strings_kernel(int argc
,char ** argv
, struct linux_binprm
*bprm
)
486 mm_segment_t oldfs
= get_fs();
488 r
= copy_strings(argc
, (char __user
* __user
*)argv
, bprm
);
492 EXPORT_SYMBOL(copy_strings_kernel
);
497 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
498 * the binfmt code determines where the new stack should reside, we shift it to
499 * its final location. The process proceeds as follows:
501 * 1) Use shift to calculate the new vma endpoints.
502 * 2) Extend vma to cover both the old and new ranges. This ensures the
503 * arguments passed to subsequent functions are consistent.
504 * 3) Move vma's page tables to the new range.
505 * 4) Free up any cleared pgd range.
506 * 5) Shrink the vma to cover only the new range.
508 static int shift_arg_pages(struct vm_area_struct
*vma
, unsigned long shift
)
510 struct mm_struct
*mm
= vma
->vm_mm
;
511 unsigned long old_start
= vma
->vm_start
;
512 unsigned long old_end
= vma
->vm_end
;
513 unsigned long length
= old_end
- old_start
;
514 unsigned long new_start
= old_start
- shift
;
515 unsigned long new_end
= old_end
- shift
;
516 struct mmu_gather
*tlb
;
518 BUG_ON(new_start
> new_end
);
521 * ensure there are no vmas between where we want to go
524 if (vma
!= find_vma(mm
, new_start
))
528 * cover the whole range: [new_start, old_end)
530 vma_adjust(vma
, new_start
, old_end
, vma
->vm_pgoff
, NULL
);
533 * move the page tables downwards, on failure we rely on
534 * process cleanup to remove whatever mess we made.
536 if (length
!= move_page_tables(vma
, old_start
,
537 vma
, new_start
, length
))
541 tlb
= tlb_gather_mmu(mm
, 0);
542 if (new_end
> old_start
) {
544 * when the old and new regions overlap clear from new_end.
546 free_pgd_range(tlb
, new_end
, old_end
, new_end
,
547 vma
->vm_next
? vma
->vm_next
->vm_start
: 0);
550 * otherwise, clean from old_start; this is done to not touch
551 * the address space in [new_end, old_start) some architectures
552 * have constraints on va-space that make this illegal (IA64) -
553 * for the others its just a little faster.
555 free_pgd_range(tlb
, old_start
, old_end
, new_end
,
556 vma
->vm_next
? vma
->vm_next
->vm_start
: 0);
558 tlb_finish_mmu(tlb
, new_end
, old_end
);
561 * shrink the vma to just the new range.
563 vma_adjust(vma
, new_start
, new_end
, vma
->vm_pgoff
, NULL
);
568 #define EXTRA_STACK_VM_PAGES 20 /* random */
571 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
572 * the stack is optionally relocated, and some extra space is added.
574 int setup_arg_pages(struct linux_binprm
*bprm
,
575 unsigned long stack_top
,
576 int executable_stack
)
579 unsigned long stack_shift
;
580 struct mm_struct
*mm
= current
->mm
;
581 struct vm_area_struct
*vma
= bprm
->vma
;
582 struct vm_area_struct
*prev
= NULL
;
583 unsigned long vm_flags
;
584 unsigned long stack_base
;
586 #ifdef CONFIG_STACK_GROWSUP
587 /* Limit stack size to 1GB */
588 stack_base
= current
->signal
->rlim
[RLIMIT_STACK
].rlim_max
;
589 if (stack_base
> (1 << 30))
590 stack_base
= 1 << 30;
592 /* Make sure we didn't let the argument array grow too large. */
593 if (vma
->vm_end
- vma
->vm_start
> stack_base
)
596 stack_base
= PAGE_ALIGN(stack_top
- stack_base
);
598 stack_shift
= vma
->vm_start
- stack_base
;
599 mm
->arg_start
= bprm
->p
- stack_shift
;
600 bprm
->p
= vma
->vm_end
- stack_shift
;
602 stack_top
= arch_align_stack(stack_top
);
603 stack_top
= PAGE_ALIGN(stack_top
);
604 stack_shift
= vma
->vm_end
- stack_top
;
606 bprm
->p
-= stack_shift
;
607 mm
->arg_start
= bprm
->p
;
611 bprm
->loader
-= stack_shift
;
612 bprm
->exec
-= stack_shift
;
614 down_write(&mm
->mmap_sem
);
615 vm_flags
= VM_STACK_FLAGS
;
618 * Adjust stack execute permissions; explicitly enable for
619 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
620 * (arch default) otherwise.
622 if (unlikely(executable_stack
== EXSTACK_ENABLE_X
))
624 else if (executable_stack
== EXSTACK_DISABLE_X
)
625 vm_flags
&= ~VM_EXEC
;
626 vm_flags
|= mm
->def_flags
;
628 ret
= mprotect_fixup(vma
, &prev
, vma
->vm_start
, vma
->vm_end
,
634 /* Move stack pages down in memory. */
636 ret
= shift_arg_pages(vma
, stack_shift
);
638 up_write(&mm
->mmap_sem
);
643 #ifdef CONFIG_STACK_GROWSUP
644 stack_base
= vma
->vm_end
+ EXTRA_STACK_VM_PAGES
* PAGE_SIZE
;
646 stack_base
= vma
->vm_start
- EXTRA_STACK_VM_PAGES
* PAGE_SIZE
;
648 ret
= expand_stack(vma
, stack_base
);
653 up_write(&mm
->mmap_sem
);
656 EXPORT_SYMBOL(setup_arg_pages
);
658 #endif /* CONFIG_MMU */
660 struct file
*open_exec(const char *name
)
666 err
= path_lookup_open(AT_FDCWD
, name
, LOOKUP_FOLLOW
, &nd
,
667 FMODE_READ
|FMODE_EXEC
);
672 if (!S_ISREG(nd
.path
.dentry
->d_inode
->i_mode
))
675 if (nd
.path
.mnt
->mnt_flags
& MNT_NOEXEC
)
678 err
= inode_permission(nd
.path
.dentry
->d_inode
, MAY_EXEC
| MAY_OPEN
);
681 err
= ima_path_check(&nd
.path
, MAY_EXEC
| MAY_OPEN
);
685 file
= nameidata_to_filp(&nd
, O_RDONLY
|O_LARGEFILE
);
689 fsnotify_open(file
->f_path
.dentry
);
691 err
= deny_write_access(file
);
700 release_open_intent(&nd
);
705 EXPORT_SYMBOL(open_exec
);
707 int kernel_read(struct file
*file
, unsigned long offset
,
708 char *addr
, unsigned long count
)
716 /* The cast to a user pointer is valid due to the set_fs() */
717 result
= vfs_read(file
, (void __user
*)addr
, count
, &pos
);
722 EXPORT_SYMBOL(kernel_read
);
724 static int exec_mmap(struct mm_struct
*mm
)
726 struct task_struct
*tsk
;
727 struct mm_struct
* old_mm
, *active_mm
;
729 /* Notify parent that we're no longer interested in the old VM */
731 old_mm
= current
->mm
;
732 mm_release(tsk
, old_mm
);
736 * Make sure that if there is a core dump in progress
737 * for the old mm, we get out and die instead of going
738 * through with the exec. We must hold mmap_sem around
739 * checking core_state and changing tsk->mm.
741 down_read(&old_mm
->mmap_sem
);
742 if (unlikely(old_mm
->core_state
)) {
743 up_read(&old_mm
->mmap_sem
);
748 active_mm
= tsk
->active_mm
;
751 activate_mm(active_mm
, mm
);
753 arch_pick_mmap_layout(mm
);
755 up_read(&old_mm
->mmap_sem
);
756 BUG_ON(active_mm
!= old_mm
);
757 mm_update_next_owner(old_mm
);
766 * This function makes sure the current process has its own signal table,
767 * so that flush_signal_handlers can later reset the handlers without
768 * disturbing other processes. (Other processes might share the signal
769 * table via the CLONE_SIGHAND option to clone().)
771 static int de_thread(struct task_struct
*tsk
)
773 struct signal_struct
*sig
= tsk
->signal
;
774 struct sighand_struct
*oldsighand
= tsk
->sighand
;
775 spinlock_t
*lock
= &oldsighand
->siglock
;
778 if (thread_group_empty(tsk
))
779 goto no_thread_group
;
782 * Kill all other threads in the thread group.
785 if (signal_group_exit(sig
)) {
787 * Another group action in progress, just
788 * return so that the signal is processed.
790 spin_unlock_irq(lock
);
793 sig
->group_exit_task
= tsk
;
794 zap_other_threads(tsk
);
796 /* Account for the thread group leader hanging around: */
797 count
= thread_group_leader(tsk
) ? 1 : 2;
798 sig
->notify_count
= count
;
799 while (atomic_read(&sig
->count
) > count
) {
800 __set_current_state(TASK_UNINTERRUPTIBLE
);
801 spin_unlock_irq(lock
);
805 spin_unlock_irq(lock
);
808 * At this point all other threads have exited, all we have to
809 * do is to wait for the thread group leader to become inactive,
810 * and to assume its PID:
812 if (!thread_group_leader(tsk
)) {
813 struct task_struct
*leader
= tsk
->group_leader
;
815 sig
->notify_count
= -1; /* for exit_notify() */
817 write_lock_irq(&tasklist_lock
);
818 if (likely(leader
->exit_state
))
820 __set_current_state(TASK_UNINTERRUPTIBLE
);
821 write_unlock_irq(&tasklist_lock
);
826 * The only record we have of the real-time age of a
827 * process, regardless of execs it's done, is start_time.
828 * All the past CPU time is accumulated in signal_struct
829 * from sister threads now dead. But in this non-leader
830 * exec, nothing survives from the original leader thread,
831 * whose birth marks the true age of this process now.
832 * When we take on its identity by switching to its PID, we
833 * also take its birthdate (always earlier than our own).
835 tsk
->start_time
= leader
->start_time
;
837 BUG_ON(!same_thread_group(leader
, tsk
));
838 BUG_ON(has_group_leader_pid(tsk
));
840 * An exec() starts a new thread group with the
841 * TGID of the previous thread group. Rehash the
842 * two threads with a switched PID, and release
843 * the former thread group leader:
846 /* Become a process group leader with the old leader's pid.
847 * The old leader becomes a thread of the this thread group.
848 * Note: The old leader also uses this pid until release_task
849 * is called. Odd but simple and correct.
851 detach_pid(tsk
, PIDTYPE_PID
);
852 tsk
->pid
= leader
->pid
;
853 attach_pid(tsk
, PIDTYPE_PID
, task_pid(leader
));
854 transfer_pid(leader
, tsk
, PIDTYPE_PGID
);
855 transfer_pid(leader
, tsk
, PIDTYPE_SID
);
856 list_replace_rcu(&leader
->tasks
, &tsk
->tasks
);
858 tsk
->group_leader
= tsk
;
859 leader
->group_leader
= tsk
;
861 tsk
->exit_signal
= SIGCHLD
;
863 BUG_ON(leader
->exit_state
!= EXIT_ZOMBIE
);
864 leader
->exit_state
= EXIT_DEAD
;
865 write_unlock_irq(&tasklist_lock
);
867 release_task(leader
);
870 sig
->group_exit_task
= NULL
;
871 sig
->notify_count
= 0;
875 flush_itimer_signals();
877 if (atomic_read(&oldsighand
->count
) != 1) {
878 struct sighand_struct
*newsighand
;
880 * This ->sighand is shared with the CLONE_SIGHAND
881 * but not CLONE_THREAD task, switch to the new one.
883 newsighand
= kmem_cache_alloc(sighand_cachep
, GFP_KERNEL
);
887 atomic_set(&newsighand
->count
, 1);
888 memcpy(newsighand
->action
, oldsighand
->action
,
889 sizeof(newsighand
->action
));
891 write_lock_irq(&tasklist_lock
);
892 spin_lock(&oldsighand
->siglock
);
893 rcu_assign_pointer(tsk
->sighand
, newsighand
);
894 spin_unlock(&oldsighand
->siglock
);
895 write_unlock_irq(&tasklist_lock
);
897 __cleanup_sighand(oldsighand
);
900 BUG_ON(!thread_group_leader(tsk
));
905 * These functions flushes out all traces of the currently running executable
906 * so that a new one can be started
908 static void flush_old_files(struct files_struct
* files
)
913 spin_lock(&files
->file_lock
);
915 unsigned long set
, i
;
919 fdt
= files_fdtable(files
);
920 if (i
>= fdt
->max_fds
)
922 set
= fdt
->close_on_exec
->fds_bits
[j
];
925 fdt
->close_on_exec
->fds_bits
[j
] = 0;
926 spin_unlock(&files
->file_lock
);
927 for ( ; set
; i
++,set
>>= 1) {
932 spin_lock(&files
->file_lock
);
935 spin_unlock(&files
->file_lock
);
938 char *get_task_comm(char *buf
, struct task_struct
*tsk
)
940 /* buf must be at least sizeof(tsk->comm) in size */
942 strncpy(buf
, tsk
->comm
, sizeof(tsk
->comm
));
947 void set_task_comm(struct task_struct
*tsk
, char *buf
)
950 strlcpy(tsk
->comm
, buf
, sizeof(tsk
->comm
));
954 int flush_old_exec(struct linux_binprm
* bprm
)
958 char tcomm
[sizeof(current
->comm
)];
961 * Make sure we have a private signal table and that
962 * we are unassociated from the previous thread group.
964 retval
= de_thread(current
);
968 set_mm_exe_file(bprm
->mm
, bprm
->file
);
971 * Release all of the old mmap stuff
973 retval
= exec_mmap(bprm
->mm
);
977 bprm
->mm
= NULL
; /* We're using it now */
979 /* This is the point of no return */
980 current
->sas_ss_sp
= current
->sas_ss_size
= 0;
982 if (current_euid() == current_uid() && current_egid() == current_gid())
983 set_dumpable(current
->mm
, 1);
985 set_dumpable(current
->mm
, suid_dumpable
);
987 name
= bprm
->filename
;
989 /* Copies the binary name from after last slash */
990 for (i
=0; (ch
= *(name
++)) != '\0';) {
992 i
= 0; /* overwrite what we wrote */
994 if (i
< (sizeof(tcomm
) - 1))
998 set_task_comm(current
, tcomm
);
1000 current
->flags
&= ~PF_RANDOMIZE
;
1003 /* Set the new mm task size. We have to do that late because it may
1004 * depend on TIF_32BIT which is only updated in flush_thread() on
1005 * some architectures like powerpc
1007 current
->mm
->task_size
= TASK_SIZE
;
1009 /* install the new credentials */
1010 if (bprm
->cred
->uid
!= current_euid() ||
1011 bprm
->cred
->gid
!= current_egid()) {
1012 current
->pdeath_signal
= 0;
1013 } else if (file_permission(bprm
->file
, MAY_READ
) ||
1014 bprm
->interp_flags
& BINPRM_FLAGS_ENFORCE_NONDUMP
) {
1015 set_dumpable(current
->mm
, suid_dumpable
);
1018 current
->personality
&= ~bprm
->per_clear
;
1020 /* An exec changes our domain. We are no longer part of the thread
1023 current
->self_exec_id
++;
1025 flush_signal_handlers(current
, 0);
1026 flush_old_files(current
->files
);
1034 EXPORT_SYMBOL(flush_old_exec
);
1037 * install the new credentials for this executable
1039 void install_exec_creds(struct linux_binprm
*bprm
)
1041 security_bprm_committing_creds(bprm
);
1043 commit_creds(bprm
->cred
);
1046 /* cred_exec_mutex must be held at least to this point to prevent
1047 * ptrace_attach() from altering our determination of the task's
1048 * credentials; any time after this it may be unlocked */
1050 security_bprm_committed_creds(bprm
);
1052 EXPORT_SYMBOL(install_exec_creds
);
1055 * determine how safe it is to execute the proposed program
1056 * - the caller must hold current->cred_exec_mutex to protect against
1059 void check_unsafe_exec(struct linux_binprm
*bprm
, struct files_struct
*files
)
1061 struct task_struct
*p
= current
, *t
;
1062 unsigned long flags
;
1063 unsigned n_fs
, n_files
, n_sighand
;
1065 bprm
->unsafe
= tracehook_unsafe_exec(p
);
1070 lock_task_sighand(p
, &flags
);
1071 for (t
= next_thread(p
); t
!= p
; t
= next_thread(t
)) {
1074 if (t
->files
== files
)
1079 if (atomic_read(&p
->fs
->count
) > n_fs
||
1080 atomic_read(&p
->files
->count
) > n_files
||
1081 atomic_read(&p
->sighand
->count
) > n_sighand
)
1082 bprm
->unsafe
|= LSM_UNSAFE_SHARE
;
1084 unlock_task_sighand(p
, &flags
);
1088 * Fill the binprm structure from the inode.
1089 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1091 * This may be called multiple times for binary chains (scripts for example).
1093 int prepare_binprm(struct linux_binprm
*bprm
)
1096 struct inode
* inode
= bprm
->file
->f_path
.dentry
->d_inode
;
1099 mode
= inode
->i_mode
;
1100 if (bprm
->file
->f_op
== NULL
)
1103 /* clear any previous set[ug]id data from a previous binary */
1104 bprm
->cred
->euid
= current_euid();
1105 bprm
->cred
->egid
= current_egid();
1107 if (!(bprm
->file
->f_path
.mnt
->mnt_flags
& MNT_NOSUID
)) {
1109 if (mode
& S_ISUID
) {
1110 bprm
->per_clear
|= PER_CLEAR_ON_SETID
;
1111 bprm
->cred
->euid
= inode
->i_uid
;
1116 * If setgid is set but no group execute bit then this
1117 * is a candidate for mandatory locking, not a setgid
1120 if ((mode
& (S_ISGID
| S_IXGRP
)) == (S_ISGID
| S_IXGRP
)) {
1121 bprm
->per_clear
|= PER_CLEAR_ON_SETID
;
1122 bprm
->cred
->egid
= inode
->i_gid
;
1126 /* fill in binprm security blob */
1127 retval
= security_bprm_set_creds(bprm
);
1130 bprm
->cred_prepared
= 1;
1132 memset(bprm
->buf
, 0, BINPRM_BUF_SIZE
);
1133 return kernel_read(bprm
->file
, 0, bprm
->buf
, BINPRM_BUF_SIZE
);
1136 EXPORT_SYMBOL(prepare_binprm
);
1139 * Arguments are '\0' separated strings found at the location bprm->p
1140 * points to; chop off the first by relocating brpm->p to right after
1141 * the first '\0' encountered.
1143 int remove_arg_zero(struct linux_binprm
*bprm
)
1146 unsigned long offset
;
1154 offset
= bprm
->p
& ~PAGE_MASK
;
1155 page
= get_arg_page(bprm
, bprm
->p
, 0);
1160 kaddr
= kmap_atomic(page
, KM_USER0
);
1162 for (; offset
< PAGE_SIZE
&& kaddr
[offset
];
1163 offset
++, bprm
->p
++)
1166 kunmap_atomic(kaddr
, KM_USER0
);
1169 if (offset
== PAGE_SIZE
)
1170 free_arg_page(bprm
, (bprm
->p
>> PAGE_SHIFT
) - 1);
1171 } while (offset
== PAGE_SIZE
);
1180 EXPORT_SYMBOL(remove_arg_zero
);
1183 * cycle the list of binary formats handler, until one recognizes the image
1185 int search_binary_handler(struct linux_binprm
*bprm
,struct pt_regs
*regs
)
1187 unsigned int depth
= bprm
->recursion_depth
;
1189 struct linux_binfmt
*fmt
;
1191 retval
= security_bprm_check(bprm
);
1194 retval
= ima_bprm_check(bprm
);
1198 /* kernel module loader fixup */
1199 /* so we don't try to load run modprobe in kernel space. */
1202 retval
= audit_bprm(bprm
);
1207 for (try=0; try<2; try++) {
1208 read_lock(&binfmt_lock
);
1209 list_for_each_entry(fmt
, &formats
, lh
) {
1210 int (*fn
)(struct linux_binprm
*, struct pt_regs
*) = fmt
->load_binary
;
1213 if (!try_module_get(fmt
->module
))
1215 read_unlock(&binfmt_lock
);
1216 retval
= fn(bprm
, regs
);
1218 * Restore the depth counter to its starting value
1219 * in this call, so we don't have to rely on every
1220 * load_binary function to restore it on return.
1222 bprm
->recursion_depth
= depth
;
1225 tracehook_report_exec(fmt
, bprm
, regs
);
1227 allow_write_access(bprm
->file
);
1231 current
->did_exec
= 1;
1232 proc_exec_connector(current
);
1235 read_lock(&binfmt_lock
);
1237 if (retval
!= -ENOEXEC
|| bprm
->mm
== NULL
)
1240 read_unlock(&binfmt_lock
);
1244 read_unlock(&binfmt_lock
);
1245 if (retval
!= -ENOEXEC
|| bprm
->mm
== NULL
) {
1247 #ifdef CONFIG_MODULES
1249 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1250 if (printable(bprm
->buf
[0]) &&
1251 printable(bprm
->buf
[1]) &&
1252 printable(bprm
->buf
[2]) &&
1253 printable(bprm
->buf
[3]))
1254 break; /* -ENOEXEC */
1255 request_module("binfmt-%04x", *(unsigned short *)(&bprm
->buf
[2]));
1262 EXPORT_SYMBOL(search_binary_handler
);
1264 void free_bprm(struct linux_binprm
*bprm
)
1266 free_arg_pages(bprm
);
1268 abort_creds(bprm
->cred
);
1273 * sys_execve() executes a new program.
1275 int do_execve(char * filename
,
1276 char __user
*__user
*argv
,
1277 char __user
*__user
*envp
,
1278 struct pt_regs
* regs
)
1280 struct linux_binprm
*bprm
;
1282 struct files_struct
*displaced
;
1285 retval
= unshare_files(&displaced
);
1290 bprm
= kzalloc(sizeof(*bprm
), GFP_KERNEL
);
1294 retval
= mutex_lock_interruptible(¤t
->cred_exec_mutex
);
1297 current
->in_execve
= 1;
1300 bprm
->cred
= prepare_exec_creds();
1303 check_unsafe_exec(bprm
, displaced
);
1305 file
= open_exec(filename
);
1306 retval
= PTR_ERR(file
);
1313 bprm
->filename
= filename
;
1314 bprm
->interp
= filename
;
1316 retval
= bprm_mm_init(bprm
);
1320 bprm
->argc
= count(argv
, MAX_ARG_STRINGS
);
1321 if ((retval
= bprm
->argc
) < 0)
1324 bprm
->envc
= count(envp
, MAX_ARG_STRINGS
);
1325 if ((retval
= bprm
->envc
) < 0)
1328 retval
= prepare_binprm(bprm
);
1332 retval
= copy_strings_kernel(1, &bprm
->filename
, bprm
);
1336 bprm
->exec
= bprm
->p
;
1337 retval
= copy_strings(bprm
->envc
, envp
, bprm
);
1341 retval
= copy_strings(bprm
->argc
, argv
, bprm
);
1345 current
->flags
&= ~PF_KTHREAD
;
1346 retval
= search_binary_handler(bprm
,regs
);
1350 /* execve succeeded */
1351 current
->in_execve
= 0;
1352 mutex_unlock(¤t
->cred_exec_mutex
);
1353 acct_update_integrals(current
);
1356 put_files_struct(displaced
);
1365 allow_write_access(bprm
->file
);
1370 current
->in_execve
= 0;
1371 mutex_unlock(¤t
->cred_exec_mutex
);
1378 reset_files_struct(displaced
);
1383 int set_binfmt(struct linux_binfmt
*new)
1385 struct linux_binfmt
*old
= current
->binfmt
;
1388 if (!try_module_get(new->module
))
1391 current
->binfmt
= new;
1393 module_put(old
->module
);
1397 EXPORT_SYMBOL(set_binfmt
);
1399 /* format_corename will inspect the pattern parameter, and output a
1400 * name into corename, which must have space for at least
1401 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1403 static int format_corename(char *corename
, long signr
)
1405 const struct cred
*cred
= current_cred();
1406 const char *pat_ptr
= core_pattern
;
1407 int ispipe
= (*pat_ptr
== '|');
1408 char *out_ptr
= corename
;
1409 char *const out_end
= corename
+ CORENAME_MAX_SIZE
;
1411 int pid_in_pattern
= 0;
1413 /* Repeat as long as we have more pattern to process and more output
1416 if (*pat_ptr
!= '%') {
1417 if (out_ptr
== out_end
)
1419 *out_ptr
++ = *pat_ptr
++;
1421 switch (*++pat_ptr
) {
1424 /* Double percent, output one percent */
1426 if (out_ptr
== out_end
)
1433 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1434 "%d", task_tgid_vnr(current
));
1435 if (rc
> out_end
- out_ptr
)
1441 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1443 if (rc
> out_end
- out_ptr
)
1449 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1451 if (rc
> out_end
- out_ptr
)
1455 /* signal that caused the coredump */
1457 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1459 if (rc
> out_end
- out_ptr
)
1463 /* UNIX time of coredump */
1466 do_gettimeofday(&tv
);
1467 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1469 if (rc
> out_end
- out_ptr
)
1476 down_read(&uts_sem
);
1477 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1478 "%s", utsname()->nodename
);
1480 if (rc
> out_end
- out_ptr
)
1486 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1487 "%s", current
->comm
);
1488 if (rc
> out_end
- out_ptr
)
1492 /* core limit size */
1494 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1495 "%lu", current
->signal
->rlim
[RLIMIT_CORE
].rlim_cur
);
1496 if (rc
> out_end
- out_ptr
)
1506 /* Backward compatibility with core_uses_pid:
1508 * If core_pattern does not include a %p (as is the default)
1509 * and core_uses_pid is set, then .%pid will be appended to
1510 * the filename. Do not do this for piped commands. */
1511 if (!ispipe
&& !pid_in_pattern
&& core_uses_pid
) {
1512 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1513 ".%d", task_tgid_vnr(current
));
1514 if (rc
> out_end
- out_ptr
)
1523 static int zap_process(struct task_struct
*start
)
1525 struct task_struct
*t
;
1528 start
->signal
->flags
= SIGNAL_GROUP_EXIT
;
1529 start
->signal
->group_stop_count
= 0;
1533 if (t
!= current
&& t
->mm
) {
1534 sigaddset(&t
->pending
.signal
, SIGKILL
);
1535 signal_wake_up(t
, 1);
1538 } while_each_thread(start
, t
);
1543 static inline int zap_threads(struct task_struct
*tsk
, struct mm_struct
*mm
,
1544 struct core_state
*core_state
, int exit_code
)
1546 struct task_struct
*g
, *p
;
1547 unsigned long flags
;
1550 spin_lock_irq(&tsk
->sighand
->siglock
);
1551 if (!signal_group_exit(tsk
->signal
)) {
1552 mm
->core_state
= core_state
;
1553 tsk
->signal
->group_exit_code
= exit_code
;
1554 nr
= zap_process(tsk
);
1556 spin_unlock_irq(&tsk
->sighand
->siglock
);
1557 if (unlikely(nr
< 0))
1560 if (atomic_read(&mm
->mm_users
) == nr
+ 1)
1563 * We should find and kill all tasks which use this mm, and we should
1564 * count them correctly into ->nr_threads. We don't take tasklist
1565 * lock, but this is safe wrt:
1568 * None of sub-threads can fork after zap_process(leader). All
1569 * processes which were created before this point should be
1570 * visible to zap_threads() because copy_process() adds the new
1571 * process to the tail of init_task.tasks list, and lock/unlock
1572 * of ->siglock provides a memory barrier.
1575 * The caller holds mm->mmap_sem. This means that the task which
1576 * uses this mm can't pass exit_mm(), so it can't exit or clear
1580 * It does list_replace_rcu(&leader->tasks, ¤t->tasks),
1581 * we must see either old or new leader, this does not matter.
1582 * However, it can change p->sighand, so lock_task_sighand(p)
1583 * must be used. Since p->mm != NULL and we hold ->mmap_sem
1586 * Note also that "g" can be the old leader with ->mm == NULL
1587 * and already unhashed and thus removed from ->thread_group.
1588 * This is OK, __unhash_process()->list_del_rcu() does not
1589 * clear the ->next pointer, we will find the new leader via
1593 for_each_process(g
) {
1594 if (g
== tsk
->group_leader
)
1596 if (g
->flags
& PF_KTHREAD
)
1601 if (unlikely(p
->mm
== mm
)) {
1602 lock_task_sighand(p
, &flags
);
1603 nr
+= zap_process(p
);
1604 unlock_task_sighand(p
, &flags
);
1608 } while_each_thread(g
, p
);
1612 atomic_set(&core_state
->nr_threads
, nr
);
1616 static int coredump_wait(int exit_code
, struct core_state
*core_state
)
1618 struct task_struct
*tsk
= current
;
1619 struct mm_struct
*mm
= tsk
->mm
;
1620 struct completion
*vfork_done
;
1623 init_completion(&core_state
->startup
);
1624 core_state
->dumper
.task
= tsk
;
1625 core_state
->dumper
.next
= NULL
;
1626 core_waiters
= zap_threads(tsk
, mm
, core_state
, exit_code
);
1627 up_write(&mm
->mmap_sem
);
1629 if (unlikely(core_waiters
< 0))
1633 * Make sure nobody is waiting for us to release the VM,
1634 * otherwise we can deadlock when we wait on each other
1636 vfork_done
= tsk
->vfork_done
;
1638 tsk
->vfork_done
= NULL
;
1639 complete(vfork_done
);
1643 wait_for_completion(&core_state
->startup
);
1645 return core_waiters
;
1648 static void coredump_finish(struct mm_struct
*mm
)
1650 struct core_thread
*curr
, *next
;
1651 struct task_struct
*task
;
1653 next
= mm
->core_state
->dumper
.next
;
1654 while ((curr
= next
) != NULL
) {
1658 * see exit_mm(), curr->task must not see
1659 * ->task == NULL before we read ->next.
1663 wake_up_process(task
);
1666 mm
->core_state
= NULL
;
1670 * set_dumpable converts traditional three-value dumpable to two flags and
1671 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1672 * these bits are not changed atomically. So get_dumpable can observe the
1673 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1674 * return either old dumpable or new one by paying attention to the order of
1675 * modifying the bits.
1677 * dumpable | mm->flags (binary)
1678 * old new | initial interim final
1679 * ---------+-----------------------
1687 * (*) get_dumpable regards interim value of 10 as 11.
1689 void set_dumpable(struct mm_struct
*mm
, int value
)
1693 clear_bit(MMF_DUMPABLE
, &mm
->flags
);
1695 clear_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
1698 set_bit(MMF_DUMPABLE
, &mm
->flags
);
1700 clear_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
1703 set_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
1705 set_bit(MMF_DUMPABLE
, &mm
->flags
);
1710 int get_dumpable(struct mm_struct
*mm
)
1714 ret
= mm
->flags
& 0x3;
1715 return (ret
>= 2) ? 2 : ret
;
1718 void do_coredump(long signr
, int exit_code
, struct pt_regs
*regs
)
1720 struct core_state core_state
;
1721 char corename
[CORENAME_MAX_SIZE
+ 1];
1722 struct mm_struct
*mm
= current
->mm
;
1723 struct linux_binfmt
* binfmt
;
1724 struct inode
* inode
;
1726 const struct cred
*old_cred
;
1731 unsigned long core_limit
= current
->signal
->rlim
[RLIMIT_CORE
].rlim_cur
;
1732 char **helper_argv
= NULL
;
1733 int helper_argc
= 0;
1736 audit_core_dumps(signr
);
1738 binfmt
= current
->binfmt
;
1739 if (!binfmt
|| !binfmt
->core_dump
)
1742 cred
= prepare_creds();
1748 down_write(&mm
->mmap_sem
);
1750 * If another thread got here first, or we are not dumpable, bail out.
1752 if (mm
->core_state
|| !get_dumpable(mm
)) {
1753 up_write(&mm
->mmap_sem
);
1759 * We cannot trust fsuid as being the "true" uid of the
1760 * process nor do we know its entire history. We only know it
1761 * was tainted so we dump it as root in mode 2.
1763 if (get_dumpable(mm
) == 2) { /* Setuid core dump mode */
1764 flag
= O_EXCL
; /* Stop rewrite attacks */
1765 cred
->fsuid
= 0; /* Dump root private */
1768 retval
= coredump_wait(exit_code
, &core_state
);
1774 old_cred
= override_creds(cred
);
1777 * Clear any false indication of pending signals that might
1778 * be seen by the filesystem code called to write the core file.
1780 clear_thread_flag(TIF_SIGPENDING
);
1783 * lock_kernel() because format_corename() is controlled by sysctl, which
1784 * uses lock_kernel()
1787 ispipe
= format_corename(corename
, signr
);
1790 * Don't bother to check the RLIMIT_CORE value if core_pattern points
1791 * to a pipe. Since we're not writing directly to the filesystem
1792 * RLIMIT_CORE doesn't really apply, as no actual core file will be
1793 * created unless the pipe reader choses to write out the core file
1794 * at which point file size limits and permissions will be imposed
1795 * as it does with any other process
1797 if ((!ispipe
) && (core_limit
< binfmt
->min_coredump
))
1801 helper_argv
= argv_split(GFP_KERNEL
, corename
+1, &helper_argc
);
1803 printk(KERN_WARNING
"%s failed to allocate memory\n",
1807 /* Terminate the string before the first option */
1808 delimit
= strchr(corename
, ' ');
1811 delimit
= strrchr(helper_argv
[0], '/');
1815 delimit
= helper_argv
[0];
1816 if (!strcmp(delimit
, current
->comm
)) {
1817 printk(KERN_NOTICE
"Recursive core dump detected, "
1822 core_limit
= RLIM_INFINITY
;
1824 /* SIGPIPE can happen, but it's just never processed */
1825 if (call_usermodehelper_pipe(corename
+1, helper_argv
, NULL
,
1827 printk(KERN_INFO
"Core dump to %s pipe failed\n",
1832 file
= filp_open(corename
,
1833 O_CREAT
| 2 | O_NOFOLLOW
| O_LARGEFILE
| flag
,
1837 inode
= file
->f_path
.dentry
->d_inode
;
1838 if (inode
->i_nlink
> 1)
1839 goto close_fail
; /* multiple links - don't dump */
1840 if (!ispipe
&& d_unhashed(file
->f_path
.dentry
))
1843 /* AK: actually i see no reason to not allow this for named pipes etc.,
1844 but keep the previous behaviour for now. */
1845 if (!ispipe
&& !S_ISREG(inode
->i_mode
))
1848 * Dont allow local users get cute and trick others to coredump
1849 * into their pre-created files:
1851 if (inode
->i_uid
!= current_fsuid())
1855 if (!file
->f_op
->write
)
1857 if (!ispipe
&& do_truncate(file
->f_path
.dentry
, 0, 0, file
) != 0)
1860 retval
= binfmt
->core_dump(signr
, regs
, file
, core_limit
);
1863 current
->signal
->group_exit_code
|= 0x80;
1865 filp_close(file
, NULL
);
1868 argv_free(helper_argv
);
1870 revert_creds(old_cred
);
1872 coredump_finish(mm
);