KVM: PPC: Always select KVM_VFIO, plus Makefile cleanup
[linux/fpc-iii.git] / fs / crypto / crypto.c
blobc502c116924ca1bd603184089bff67be8f5100a5
1 /*
2 * This contains encryption functions for per-file encryption.
4 * Copyright (C) 2015, Google, Inc.
5 * Copyright (C) 2015, Motorola Mobility
7 * Written by Michael Halcrow, 2014.
9 * Filename encryption additions
10 * Uday Savagaonkar, 2014
11 * Encryption policy handling additions
12 * Ildar Muslukhov, 2014
13 * Add fscrypt_pullback_bio_page()
14 * Jaegeuk Kim, 2015.
16 * This has not yet undergone a rigorous security audit.
18 * The usage of AES-XTS should conform to recommendations in NIST
19 * Special Publication 800-38E and IEEE P1619/D16.
22 #include <linux/pagemap.h>
23 #include <linux/mempool.h>
24 #include <linux/module.h>
25 #include <linux/scatterlist.h>
26 #include <linux/ratelimit.h>
27 #include <linux/bio.h>
28 #include <linux/dcache.h>
29 #include <linux/namei.h>
30 #include <linux/fscrypto.h>
31 #include <linux/ecryptfs.h>
33 static unsigned int num_prealloc_crypto_pages = 32;
34 static unsigned int num_prealloc_crypto_ctxs = 128;
36 module_param(num_prealloc_crypto_pages, uint, 0444);
37 MODULE_PARM_DESC(num_prealloc_crypto_pages,
38 "Number of crypto pages to preallocate");
39 module_param(num_prealloc_crypto_ctxs, uint, 0444);
40 MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
41 "Number of crypto contexts to preallocate");
43 static mempool_t *fscrypt_bounce_page_pool = NULL;
45 static LIST_HEAD(fscrypt_free_ctxs);
46 static DEFINE_SPINLOCK(fscrypt_ctx_lock);
48 static struct workqueue_struct *fscrypt_read_workqueue;
49 static DEFINE_MUTEX(fscrypt_init_mutex);
51 static struct kmem_cache *fscrypt_ctx_cachep;
52 struct kmem_cache *fscrypt_info_cachep;
54 /**
55 * fscrypt_release_ctx() - Releases an encryption context
56 * @ctx: The encryption context to release.
58 * If the encryption context was allocated from the pre-allocated pool, returns
59 * it to that pool. Else, frees it.
61 * If there's a bounce page in the context, this frees that.
63 void fscrypt_release_ctx(struct fscrypt_ctx *ctx)
65 unsigned long flags;
67 if (ctx->flags & FS_WRITE_PATH_FL && ctx->w.bounce_page) {
68 mempool_free(ctx->w.bounce_page, fscrypt_bounce_page_pool);
69 ctx->w.bounce_page = NULL;
71 ctx->w.control_page = NULL;
72 if (ctx->flags & FS_CTX_REQUIRES_FREE_ENCRYPT_FL) {
73 kmem_cache_free(fscrypt_ctx_cachep, ctx);
74 } else {
75 spin_lock_irqsave(&fscrypt_ctx_lock, flags);
76 list_add(&ctx->free_list, &fscrypt_free_ctxs);
77 spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
80 EXPORT_SYMBOL(fscrypt_release_ctx);
82 /**
83 * fscrypt_get_ctx() - Gets an encryption context
84 * @inode: The inode for which we are doing the crypto
85 * @gfp_flags: The gfp flag for memory allocation
87 * Allocates and initializes an encryption context.
89 * Return: An allocated and initialized encryption context on success; error
90 * value or NULL otherwise.
92 struct fscrypt_ctx *fscrypt_get_ctx(struct inode *inode, gfp_t gfp_flags)
94 struct fscrypt_ctx *ctx = NULL;
95 struct fscrypt_info *ci = inode->i_crypt_info;
96 unsigned long flags;
98 if (ci == NULL)
99 return ERR_PTR(-ENOKEY);
102 * We first try getting the ctx from a free list because in
103 * the common case the ctx will have an allocated and
104 * initialized crypto tfm, so it's probably a worthwhile
105 * optimization. For the bounce page, we first try getting it
106 * from the kernel allocator because that's just about as fast
107 * as getting it from a list and because a cache of free pages
108 * should generally be a "last resort" option for a filesystem
109 * to be able to do its job.
111 spin_lock_irqsave(&fscrypt_ctx_lock, flags);
112 ctx = list_first_entry_or_null(&fscrypt_free_ctxs,
113 struct fscrypt_ctx, free_list);
114 if (ctx)
115 list_del(&ctx->free_list);
116 spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
117 if (!ctx) {
118 ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, gfp_flags);
119 if (!ctx)
120 return ERR_PTR(-ENOMEM);
121 ctx->flags |= FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
122 } else {
123 ctx->flags &= ~FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
125 ctx->flags &= ~FS_WRITE_PATH_FL;
126 return ctx;
128 EXPORT_SYMBOL(fscrypt_get_ctx);
131 * fscrypt_complete() - The completion callback for page encryption
132 * @req: The asynchronous encryption request context
133 * @res: The result of the encryption operation
135 static void fscrypt_complete(struct crypto_async_request *req, int res)
137 struct fscrypt_completion_result *ecr = req->data;
139 if (res == -EINPROGRESS)
140 return;
141 ecr->res = res;
142 complete(&ecr->completion);
145 typedef enum {
146 FS_DECRYPT = 0,
147 FS_ENCRYPT,
148 } fscrypt_direction_t;
150 static int do_page_crypto(struct inode *inode,
151 fscrypt_direction_t rw, pgoff_t index,
152 struct page *src_page, struct page *dest_page,
153 gfp_t gfp_flags)
155 u8 xts_tweak[FS_XTS_TWEAK_SIZE];
156 struct skcipher_request *req = NULL;
157 DECLARE_FS_COMPLETION_RESULT(ecr);
158 struct scatterlist dst, src;
159 struct fscrypt_info *ci = inode->i_crypt_info;
160 struct crypto_skcipher *tfm = ci->ci_ctfm;
161 int res = 0;
163 req = skcipher_request_alloc(tfm, gfp_flags);
164 if (!req) {
165 printk_ratelimited(KERN_ERR
166 "%s: crypto_request_alloc() failed\n",
167 __func__);
168 return -ENOMEM;
171 skcipher_request_set_callback(
172 req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
173 fscrypt_complete, &ecr);
175 BUILD_BUG_ON(FS_XTS_TWEAK_SIZE < sizeof(index));
176 memcpy(xts_tweak, &index, sizeof(index));
177 memset(&xts_tweak[sizeof(index)], 0,
178 FS_XTS_TWEAK_SIZE - sizeof(index));
180 sg_init_table(&dst, 1);
181 sg_set_page(&dst, dest_page, PAGE_SIZE, 0);
182 sg_init_table(&src, 1);
183 sg_set_page(&src, src_page, PAGE_SIZE, 0);
184 skcipher_request_set_crypt(req, &src, &dst, PAGE_SIZE,
185 xts_tweak);
186 if (rw == FS_DECRYPT)
187 res = crypto_skcipher_decrypt(req);
188 else
189 res = crypto_skcipher_encrypt(req);
190 if (res == -EINPROGRESS || res == -EBUSY) {
191 BUG_ON(req->base.data != &ecr);
192 wait_for_completion(&ecr.completion);
193 res = ecr.res;
195 skcipher_request_free(req);
196 if (res) {
197 printk_ratelimited(KERN_ERR
198 "%s: crypto_skcipher_encrypt() returned %d\n",
199 __func__, res);
200 return res;
202 return 0;
205 static struct page *alloc_bounce_page(struct fscrypt_ctx *ctx, gfp_t gfp_flags)
207 ctx->w.bounce_page = mempool_alloc(fscrypt_bounce_page_pool, gfp_flags);
208 if (ctx->w.bounce_page == NULL)
209 return ERR_PTR(-ENOMEM);
210 ctx->flags |= FS_WRITE_PATH_FL;
211 return ctx->w.bounce_page;
215 * fscypt_encrypt_page() - Encrypts a page
216 * @inode: The inode for which the encryption should take place
217 * @plaintext_page: The page to encrypt. Must be locked.
218 * @gfp_flags: The gfp flag for memory allocation
220 * Allocates a ciphertext page and encrypts plaintext_page into it using the ctx
221 * encryption context.
223 * Called on the page write path. The caller must call
224 * fscrypt_restore_control_page() on the returned ciphertext page to
225 * release the bounce buffer and the encryption context.
227 * Return: An allocated page with the encrypted content on success. Else, an
228 * error value or NULL.
230 struct page *fscrypt_encrypt_page(struct inode *inode,
231 struct page *plaintext_page, gfp_t gfp_flags)
233 struct fscrypt_ctx *ctx;
234 struct page *ciphertext_page = NULL;
235 int err;
237 BUG_ON(!PageLocked(plaintext_page));
239 ctx = fscrypt_get_ctx(inode, gfp_flags);
240 if (IS_ERR(ctx))
241 return (struct page *)ctx;
243 /* The encryption operation will require a bounce page. */
244 ciphertext_page = alloc_bounce_page(ctx, gfp_flags);
245 if (IS_ERR(ciphertext_page))
246 goto errout;
248 ctx->w.control_page = plaintext_page;
249 err = do_page_crypto(inode, FS_ENCRYPT, plaintext_page->index,
250 plaintext_page, ciphertext_page,
251 gfp_flags);
252 if (err) {
253 ciphertext_page = ERR_PTR(err);
254 goto errout;
256 SetPagePrivate(ciphertext_page);
257 set_page_private(ciphertext_page, (unsigned long)ctx);
258 lock_page(ciphertext_page);
259 return ciphertext_page;
261 errout:
262 fscrypt_release_ctx(ctx);
263 return ciphertext_page;
265 EXPORT_SYMBOL(fscrypt_encrypt_page);
268 * f2crypt_decrypt_page() - Decrypts a page in-place
269 * @page: The page to decrypt. Must be locked.
271 * Decrypts page in-place using the ctx encryption context.
273 * Called from the read completion callback.
275 * Return: Zero on success, non-zero otherwise.
277 int fscrypt_decrypt_page(struct page *page)
279 BUG_ON(!PageLocked(page));
281 return do_page_crypto(page->mapping->host,
282 FS_DECRYPT, page->index, page, page, GFP_NOFS);
284 EXPORT_SYMBOL(fscrypt_decrypt_page);
286 int fscrypt_zeroout_range(struct inode *inode, pgoff_t lblk,
287 sector_t pblk, unsigned int len)
289 struct fscrypt_ctx *ctx;
290 struct page *ciphertext_page = NULL;
291 struct bio *bio;
292 int ret, err = 0;
294 BUG_ON(inode->i_sb->s_blocksize != PAGE_SIZE);
296 ctx = fscrypt_get_ctx(inode, GFP_NOFS);
297 if (IS_ERR(ctx))
298 return PTR_ERR(ctx);
300 ciphertext_page = alloc_bounce_page(ctx, GFP_NOWAIT);
301 if (IS_ERR(ciphertext_page)) {
302 err = PTR_ERR(ciphertext_page);
303 goto errout;
306 while (len--) {
307 err = do_page_crypto(inode, FS_ENCRYPT, lblk,
308 ZERO_PAGE(0), ciphertext_page,
309 GFP_NOFS);
310 if (err)
311 goto errout;
313 bio = bio_alloc(GFP_NOWAIT, 1);
314 if (!bio) {
315 err = -ENOMEM;
316 goto errout;
318 bio->bi_bdev = inode->i_sb->s_bdev;
319 bio->bi_iter.bi_sector =
320 pblk << (inode->i_sb->s_blocksize_bits - 9);
321 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
322 ret = bio_add_page(bio, ciphertext_page,
323 inode->i_sb->s_blocksize, 0);
324 if (ret != inode->i_sb->s_blocksize) {
325 /* should never happen! */
326 WARN_ON(1);
327 bio_put(bio);
328 err = -EIO;
329 goto errout;
331 err = submit_bio_wait(bio);
332 if ((err == 0) && bio->bi_error)
333 err = -EIO;
334 bio_put(bio);
335 if (err)
336 goto errout;
337 lblk++;
338 pblk++;
340 err = 0;
341 errout:
342 fscrypt_release_ctx(ctx);
343 return err;
345 EXPORT_SYMBOL(fscrypt_zeroout_range);
348 * Validate dentries for encrypted directories to make sure we aren't
349 * potentially caching stale data after a key has been added or
350 * removed.
352 static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
354 struct dentry *dir;
355 struct fscrypt_info *ci;
356 int dir_has_key, cached_with_key;
358 if (flags & LOOKUP_RCU)
359 return -ECHILD;
361 dir = dget_parent(dentry);
362 if (!d_inode(dir)->i_sb->s_cop->is_encrypted(d_inode(dir))) {
363 dput(dir);
364 return 0;
367 ci = d_inode(dir)->i_crypt_info;
368 if (ci && ci->ci_keyring_key &&
369 (ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) |
370 (1 << KEY_FLAG_REVOKED) |
371 (1 << KEY_FLAG_DEAD))))
372 ci = NULL;
374 /* this should eventually be an flag in d_flags */
375 spin_lock(&dentry->d_lock);
376 cached_with_key = dentry->d_flags & DCACHE_ENCRYPTED_WITH_KEY;
377 spin_unlock(&dentry->d_lock);
378 dir_has_key = (ci != NULL);
379 dput(dir);
382 * If the dentry was cached without the key, and it is a
383 * negative dentry, it might be a valid name. We can't check
384 * if the key has since been made available due to locking
385 * reasons, so we fail the validation so ext4_lookup() can do
386 * this check.
388 * We also fail the validation if the dentry was created with
389 * the key present, but we no longer have the key, or vice versa.
391 if ((!cached_with_key && d_is_negative(dentry)) ||
392 (!cached_with_key && dir_has_key) ||
393 (cached_with_key && !dir_has_key))
394 return 0;
395 return 1;
398 const struct dentry_operations fscrypt_d_ops = {
399 .d_revalidate = fscrypt_d_revalidate,
401 EXPORT_SYMBOL(fscrypt_d_ops);
404 * Call fscrypt_decrypt_page on every single page, reusing the encryption
405 * context.
407 static void completion_pages(struct work_struct *work)
409 struct fscrypt_ctx *ctx =
410 container_of(work, struct fscrypt_ctx, r.work);
411 struct bio *bio = ctx->r.bio;
412 struct bio_vec *bv;
413 int i;
415 bio_for_each_segment_all(bv, bio, i) {
416 struct page *page = bv->bv_page;
417 int ret = fscrypt_decrypt_page(page);
419 if (ret) {
420 WARN_ON_ONCE(1);
421 SetPageError(page);
422 } else {
423 SetPageUptodate(page);
425 unlock_page(page);
427 fscrypt_release_ctx(ctx);
428 bio_put(bio);
431 void fscrypt_decrypt_bio_pages(struct fscrypt_ctx *ctx, struct bio *bio)
433 INIT_WORK(&ctx->r.work, completion_pages);
434 ctx->r.bio = bio;
435 queue_work(fscrypt_read_workqueue, &ctx->r.work);
437 EXPORT_SYMBOL(fscrypt_decrypt_bio_pages);
439 void fscrypt_pullback_bio_page(struct page **page, bool restore)
441 struct fscrypt_ctx *ctx;
442 struct page *bounce_page;
444 /* The bounce data pages are unmapped. */
445 if ((*page)->mapping)
446 return;
448 /* The bounce data page is unmapped. */
449 bounce_page = *page;
450 ctx = (struct fscrypt_ctx *)page_private(bounce_page);
452 /* restore control page */
453 *page = ctx->w.control_page;
455 if (restore)
456 fscrypt_restore_control_page(bounce_page);
458 EXPORT_SYMBOL(fscrypt_pullback_bio_page);
460 void fscrypt_restore_control_page(struct page *page)
462 struct fscrypt_ctx *ctx;
464 ctx = (struct fscrypt_ctx *)page_private(page);
465 set_page_private(page, (unsigned long)NULL);
466 ClearPagePrivate(page);
467 unlock_page(page);
468 fscrypt_release_ctx(ctx);
470 EXPORT_SYMBOL(fscrypt_restore_control_page);
472 static void fscrypt_destroy(void)
474 struct fscrypt_ctx *pos, *n;
476 list_for_each_entry_safe(pos, n, &fscrypt_free_ctxs, free_list)
477 kmem_cache_free(fscrypt_ctx_cachep, pos);
478 INIT_LIST_HEAD(&fscrypt_free_ctxs);
479 mempool_destroy(fscrypt_bounce_page_pool);
480 fscrypt_bounce_page_pool = NULL;
484 * fscrypt_initialize() - allocate major buffers for fs encryption.
486 * We only call this when we start accessing encrypted files, since it
487 * results in memory getting allocated that wouldn't otherwise be used.
489 * Return: Zero on success, non-zero otherwise.
491 int fscrypt_initialize(void)
493 int i, res = -ENOMEM;
495 if (fscrypt_bounce_page_pool)
496 return 0;
498 mutex_lock(&fscrypt_init_mutex);
499 if (fscrypt_bounce_page_pool)
500 goto already_initialized;
502 for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
503 struct fscrypt_ctx *ctx;
505 ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, GFP_NOFS);
506 if (!ctx)
507 goto fail;
508 list_add(&ctx->free_list, &fscrypt_free_ctxs);
511 fscrypt_bounce_page_pool =
512 mempool_create_page_pool(num_prealloc_crypto_pages, 0);
513 if (!fscrypt_bounce_page_pool)
514 goto fail;
516 already_initialized:
517 mutex_unlock(&fscrypt_init_mutex);
518 return 0;
519 fail:
520 fscrypt_destroy();
521 mutex_unlock(&fscrypt_init_mutex);
522 return res;
524 EXPORT_SYMBOL(fscrypt_initialize);
527 * fscrypt_init() - Set up for fs encryption.
529 static int __init fscrypt_init(void)
531 fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue",
532 WQ_HIGHPRI, 0);
533 if (!fscrypt_read_workqueue)
534 goto fail;
536 fscrypt_ctx_cachep = KMEM_CACHE(fscrypt_ctx, SLAB_RECLAIM_ACCOUNT);
537 if (!fscrypt_ctx_cachep)
538 goto fail_free_queue;
540 fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT);
541 if (!fscrypt_info_cachep)
542 goto fail_free_ctx;
544 return 0;
546 fail_free_ctx:
547 kmem_cache_destroy(fscrypt_ctx_cachep);
548 fail_free_queue:
549 destroy_workqueue(fscrypt_read_workqueue);
550 fail:
551 return -ENOMEM;
553 module_init(fscrypt_init)
556 * fscrypt_exit() - Shutdown the fs encryption system
558 static void __exit fscrypt_exit(void)
560 fscrypt_destroy();
562 if (fscrypt_read_workqueue)
563 destroy_workqueue(fscrypt_read_workqueue);
564 kmem_cache_destroy(fscrypt_ctx_cachep);
565 kmem_cache_destroy(fscrypt_info_cachep);
567 module_exit(fscrypt_exit);
569 MODULE_LICENSE("GPL");