4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * #!-checking implemented by tytso.
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
57 #include <linux/oom.h>
58 #include <linux/compat.h>
59 #include <linux/vmalloc.h>
61 #include <asm/uaccess.h>
62 #include <asm/mmu_context.h>
65 #include <trace/events/task.h>
68 #include <trace/events/sched.h>
70 int suid_dumpable
= 0;
72 static LIST_HEAD(formats
);
73 static DEFINE_RWLOCK(binfmt_lock
);
75 void __register_binfmt(struct linux_binfmt
* fmt
, int insert
)
78 if (WARN_ON(!fmt
->load_binary
))
80 write_lock(&binfmt_lock
);
81 insert
? list_add(&fmt
->lh
, &formats
) :
82 list_add_tail(&fmt
->lh
, &formats
);
83 write_unlock(&binfmt_lock
);
86 EXPORT_SYMBOL(__register_binfmt
);
88 void unregister_binfmt(struct linux_binfmt
* fmt
)
90 write_lock(&binfmt_lock
);
92 write_unlock(&binfmt_lock
);
95 EXPORT_SYMBOL(unregister_binfmt
);
97 static inline void put_binfmt(struct linux_binfmt
* fmt
)
99 module_put(fmt
->module
);
102 bool path_noexec(const struct path
*path
)
104 return (path
->mnt
->mnt_flags
& MNT_NOEXEC
) ||
105 (path
->mnt
->mnt_sb
->s_iflags
& SB_I_NOEXEC
);
110 * Note that a shared library must be both readable and executable due to
113 * Also note that we take the address to load from from the file itself.
115 SYSCALL_DEFINE1(uselib
, const char __user
*, library
)
117 struct linux_binfmt
*fmt
;
119 struct filename
*tmp
= getname(library
);
120 int error
= PTR_ERR(tmp
);
121 static const struct open_flags uselib_flags
= {
122 .open_flag
= O_LARGEFILE
| O_RDONLY
| __FMODE_EXEC
,
123 .acc_mode
= MAY_READ
| MAY_EXEC
,
124 .intent
= LOOKUP_OPEN
,
125 .lookup_flags
= LOOKUP_FOLLOW
,
131 file
= do_filp_open(AT_FDCWD
, tmp
, &uselib_flags
);
133 error
= PTR_ERR(file
);
138 if (!S_ISREG(file_inode(file
)->i_mode
))
142 if (path_noexec(&file
->f_path
))
149 read_lock(&binfmt_lock
);
150 list_for_each_entry(fmt
, &formats
, lh
) {
151 if (!fmt
->load_shlib
)
153 if (!try_module_get(fmt
->module
))
155 read_unlock(&binfmt_lock
);
156 error
= fmt
->load_shlib(file
);
157 read_lock(&binfmt_lock
);
159 if (error
!= -ENOEXEC
)
162 read_unlock(&binfmt_lock
);
168 #endif /* #ifdef CONFIG_USELIB */
172 * The nascent bprm->mm is not visible until exec_mmap() but it can
173 * use a lot of memory, account these pages in current->mm temporary
174 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
175 * change the counter back via acct_arg_size(0).
177 static void acct_arg_size(struct linux_binprm
*bprm
, unsigned long pages
)
179 struct mm_struct
*mm
= current
->mm
;
180 long diff
= (long)(pages
- bprm
->vma_pages
);
185 bprm
->vma_pages
= pages
;
186 add_mm_counter(mm
, MM_ANONPAGES
, diff
);
189 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
195 #ifdef CONFIG_STACK_GROWSUP
197 ret
= expand_downwards(bprm
->vma
, pos
);
203 * We are doing an exec(). 'current' is the process
204 * doing the exec and bprm->mm is the new process's mm.
206 ret
= get_user_pages_remote(current
, bprm
->mm
, pos
, 1, write
,
212 unsigned long size
= bprm
->vma
->vm_end
- bprm
->vma
->vm_start
;
215 acct_arg_size(bprm
, size
/ PAGE_SIZE
);
218 * We've historically supported up to 32 pages (ARG_MAX)
219 * of argument strings even with small stacks
225 * Limit to 1/4-th the stack size for the argv+env strings.
227 * - the remaining binfmt code will not run out of stack space,
228 * - the program will have a reasonable amount of stack left
231 rlim
= current
->signal
->rlim
;
232 if (size
> ACCESS_ONCE(rlim
[RLIMIT_STACK
].rlim_cur
) / 4) {
241 static void put_arg_page(struct page
*page
)
246 static void free_arg_pages(struct linux_binprm
*bprm
)
250 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
253 flush_cache_page(bprm
->vma
, pos
, page_to_pfn(page
));
256 static int __bprm_mm_init(struct linux_binprm
*bprm
)
259 struct vm_area_struct
*vma
= NULL
;
260 struct mm_struct
*mm
= bprm
->mm
;
262 bprm
->vma
= vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
266 if (down_write_killable(&mm
->mmap_sem
)) {
273 * Place the stack at the largest stack address the architecture
274 * supports. Later, we'll move this to an appropriate place. We don't
275 * use STACK_TOP because that can depend on attributes which aren't
278 BUILD_BUG_ON(VM_STACK_FLAGS
& VM_STACK_INCOMPLETE_SETUP
);
279 vma
->vm_end
= STACK_TOP_MAX
;
280 vma
->vm_start
= vma
->vm_end
- PAGE_SIZE
;
281 vma
->vm_flags
= VM_SOFTDIRTY
| VM_STACK_FLAGS
| VM_STACK_INCOMPLETE_SETUP
;
282 vma
->vm_page_prot
= vm_get_page_prot(vma
->vm_flags
);
283 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
285 err
= insert_vm_struct(mm
, vma
);
289 mm
->stack_vm
= mm
->total_vm
= 1;
290 arch_bprm_mm_init(mm
, vma
);
291 up_write(&mm
->mmap_sem
);
292 bprm
->p
= vma
->vm_end
- sizeof(void *);
295 up_write(&mm
->mmap_sem
);
298 kmem_cache_free(vm_area_cachep
, vma
);
302 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
304 return len
<= MAX_ARG_STRLEN
;
309 static inline void acct_arg_size(struct linux_binprm
*bprm
, unsigned long pages
)
313 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
318 page
= bprm
->page
[pos
/ PAGE_SIZE
];
319 if (!page
&& write
) {
320 page
= alloc_page(GFP_HIGHUSER
|__GFP_ZERO
);
323 bprm
->page
[pos
/ PAGE_SIZE
] = page
;
329 static void put_arg_page(struct page
*page
)
333 static void free_arg_page(struct linux_binprm
*bprm
, int i
)
336 __free_page(bprm
->page
[i
]);
337 bprm
->page
[i
] = NULL
;
341 static void free_arg_pages(struct linux_binprm
*bprm
)
345 for (i
= 0; i
< MAX_ARG_PAGES
; i
++)
346 free_arg_page(bprm
, i
);
349 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
354 static int __bprm_mm_init(struct linux_binprm
*bprm
)
356 bprm
->p
= PAGE_SIZE
* MAX_ARG_PAGES
- sizeof(void *);
360 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
362 return len
<= bprm
->p
;
365 #endif /* CONFIG_MMU */
368 * Create a new mm_struct and populate it with a temporary stack
369 * vm_area_struct. We don't have enough context at this point to set the stack
370 * flags, permissions, and offset, so we use temporary values. We'll update
371 * them later in setup_arg_pages().
373 static int bprm_mm_init(struct linux_binprm
*bprm
)
376 struct mm_struct
*mm
= NULL
;
378 bprm
->mm
= mm
= mm_alloc();
383 err
= __bprm_mm_init(bprm
);
398 struct user_arg_ptr
{
403 const char __user
*const __user
*native
;
405 const compat_uptr_t __user
*compat
;
410 static const char __user
*get_user_arg_ptr(struct user_arg_ptr argv
, int nr
)
412 const char __user
*native
;
415 if (unlikely(argv
.is_compat
)) {
416 compat_uptr_t compat
;
418 if (get_user(compat
, argv
.ptr
.compat
+ nr
))
419 return ERR_PTR(-EFAULT
);
421 return compat_ptr(compat
);
425 if (get_user(native
, argv
.ptr
.native
+ nr
))
426 return ERR_PTR(-EFAULT
);
432 * count() counts the number of strings in array ARGV.
434 static int count(struct user_arg_ptr argv
, int max
)
438 if (argv
.ptr
.native
!= NULL
) {
440 const char __user
*p
= get_user_arg_ptr(argv
, i
);
452 if (fatal_signal_pending(current
))
453 return -ERESTARTNOHAND
;
461 * 'copy_strings()' copies argument/environment strings from the old
462 * processes's memory to the new process's stack. The call to get_user_pages()
463 * ensures the destination page is created and not swapped out.
465 static int copy_strings(int argc
, struct user_arg_ptr argv
,
466 struct linux_binprm
*bprm
)
468 struct page
*kmapped_page
= NULL
;
470 unsigned long kpos
= 0;
474 const char __user
*str
;
479 str
= get_user_arg_ptr(argv
, argc
);
483 len
= strnlen_user(str
, MAX_ARG_STRLEN
);
488 if (!valid_arg_len(bprm
, len
))
491 /* We're going to work our way backwords. */
497 int offset
, bytes_to_copy
;
499 if (fatal_signal_pending(current
)) {
500 ret
= -ERESTARTNOHAND
;
505 offset
= pos
% PAGE_SIZE
;
509 bytes_to_copy
= offset
;
510 if (bytes_to_copy
> len
)
513 offset
-= bytes_to_copy
;
514 pos
-= bytes_to_copy
;
515 str
-= bytes_to_copy
;
516 len
-= bytes_to_copy
;
518 if (!kmapped_page
|| kpos
!= (pos
& PAGE_MASK
)) {
521 page
= get_arg_page(bprm
, pos
, 1);
528 flush_kernel_dcache_page(kmapped_page
);
529 kunmap(kmapped_page
);
530 put_arg_page(kmapped_page
);
533 kaddr
= kmap(kmapped_page
);
534 kpos
= pos
& PAGE_MASK
;
535 flush_arg_page(bprm
, kpos
, kmapped_page
);
537 if (copy_from_user(kaddr
+offset
, str
, bytes_to_copy
)) {
546 flush_kernel_dcache_page(kmapped_page
);
547 kunmap(kmapped_page
);
548 put_arg_page(kmapped_page
);
554 * Like copy_strings, but get argv and its values from kernel memory.
556 int copy_strings_kernel(int argc
, const char *const *__argv
,
557 struct linux_binprm
*bprm
)
560 mm_segment_t oldfs
= get_fs();
561 struct user_arg_ptr argv
= {
562 .ptr
.native
= (const char __user
*const __user
*)__argv
,
566 r
= copy_strings(argc
, argv
, bprm
);
571 EXPORT_SYMBOL(copy_strings_kernel
);
576 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
577 * the binfmt code determines where the new stack should reside, we shift it to
578 * its final location. The process proceeds as follows:
580 * 1) Use shift to calculate the new vma endpoints.
581 * 2) Extend vma to cover both the old and new ranges. This ensures the
582 * arguments passed to subsequent functions are consistent.
583 * 3) Move vma's page tables to the new range.
584 * 4) Free up any cleared pgd range.
585 * 5) Shrink the vma to cover only the new range.
587 static int shift_arg_pages(struct vm_area_struct
*vma
, unsigned long shift
)
589 struct mm_struct
*mm
= vma
->vm_mm
;
590 unsigned long old_start
= vma
->vm_start
;
591 unsigned long old_end
= vma
->vm_end
;
592 unsigned long length
= old_end
- old_start
;
593 unsigned long new_start
= old_start
- shift
;
594 unsigned long new_end
= old_end
- shift
;
595 struct mmu_gather tlb
;
597 BUG_ON(new_start
> new_end
);
600 * ensure there are no vmas between where we want to go
603 if (vma
!= find_vma(mm
, new_start
))
607 * cover the whole range: [new_start, old_end)
609 if (vma_adjust(vma
, new_start
, old_end
, vma
->vm_pgoff
, NULL
))
613 * move the page tables downwards, on failure we rely on
614 * process cleanup to remove whatever mess we made.
616 if (length
!= move_page_tables(vma
, old_start
,
617 vma
, new_start
, length
, false))
621 tlb_gather_mmu(&tlb
, mm
, old_start
, old_end
);
622 if (new_end
> old_start
) {
624 * when the old and new regions overlap clear from new_end.
626 free_pgd_range(&tlb
, new_end
, old_end
, new_end
,
627 vma
->vm_next
? vma
->vm_next
->vm_start
: USER_PGTABLES_CEILING
);
630 * otherwise, clean from old_start; this is done to not touch
631 * the address space in [new_end, old_start) some architectures
632 * have constraints on va-space that make this illegal (IA64) -
633 * for the others its just a little faster.
635 free_pgd_range(&tlb
, old_start
, old_end
, new_end
,
636 vma
->vm_next
? vma
->vm_next
->vm_start
: USER_PGTABLES_CEILING
);
638 tlb_finish_mmu(&tlb
, old_start
, old_end
);
641 * Shrink the vma to just the new range. Always succeeds.
643 vma_adjust(vma
, new_start
, new_end
, vma
->vm_pgoff
, NULL
);
649 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
650 * the stack is optionally relocated, and some extra space is added.
652 int setup_arg_pages(struct linux_binprm
*bprm
,
653 unsigned long stack_top
,
654 int executable_stack
)
657 unsigned long stack_shift
;
658 struct mm_struct
*mm
= current
->mm
;
659 struct vm_area_struct
*vma
= bprm
->vma
;
660 struct vm_area_struct
*prev
= NULL
;
661 unsigned long vm_flags
;
662 unsigned long stack_base
;
663 unsigned long stack_size
;
664 unsigned long stack_expand
;
665 unsigned long rlim_stack
;
667 #ifdef CONFIG_STACK_GROWSUP
668 /* Limit stack size */
669 stack_base
= rlimit_max(RLIMIT_STACK
);
670 if (stack_base
> STACK_SIZE_MAX
)
671 stack_base
= STACK_SIZE_MAX
;
673 /* Add space for stack randomization. */
674 stack_base
+= (STACK_RND_MASK
<< PAGE_SHIFT
);
676 /* Make sure we didn't let the argument array grow too large. */
677 if (vma
->vm_end
- vma
->vm_start
> stack_base
)
680 stack_base
= PAGE_ALIGN(stack_top
- stack_base
);
682 stack_shift
= vma
->vm_start
- stack_base
;
683 mm
->arg_start
= bprm
->p
- stack_shift
;
684 bprm
->p
= vma
->vm_end
- stack_shift
;
686 stack_top
= arch_align_stack(stack_top
);
687 stack_top
= PAGE_ALIGN(stack_top
);
689 if (unlikely(stack_top
< mmap_min_addr
) ||
690 unlikely(vma
->vm_end
- vma
->vm_start
>= stack_top
- mmap_min_addr
))
693 stack_shift
= vma
->vm_end
- stack_top
;
695 bprm
->p
-= stack_shift
;
696 mm
->arg_start
= bprm
->p
;
700 bprm
->loader
-= stack_shift
;
701 bprm
->exec
-= stack_shift
;
703 if (down_write_killable(&mm
->mmap_sem
))
706 vm_flags
= VM_STACK_FLAGS
;
709 * Adjust stack execute permissions; explicitly enable for
710 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
711 * (arch default) otherwise.
713 if (unlikely(executable_stack
== EXSTACK_ENABLE_X
))
715 else if (executable_stack
== EXSTACK_DISABLE_X
)
716 vm_flags
&= ~VM_EXEC
;
717 vm_flags
|= mm
->def_flags
;
718 vm_flags
|= VM_STACK_INCOMPLETE_SETUP
;
720 ret
= mprotect_fixup(vma
, &prev
, vma
->vm_start
, vma
->vm_end
,
726 /* Move stack pages down in memory. */
728 ret
= shift_arg_pages(vma
, stack_shift
);
733 /* mprotect_fixup is overkill to remove the temporary stack flags */
734 vma
->vm_flags
&= ~VM_STACK_INCOMPLETE_SETUP
;
736 stack_expand
= 131072UL; /* randomly 32*4k (or 2*64k) pages */
737 stack_size
= vma
->vm_end
- vma
->vm_start
;
739 * Align this down to a page boundary as expand_stack
742 rlim_stack
= rlimit(RLIMIT_STACK
) & PAGE_MASK
;
743 #ifdef CONFIG_STACK_GROWSUP
744 if (stack_size
+ stack_expand
> rlim_stack
)
745 stack_base
= vma
->vm_start
+ rlim_stack
;
747 stack_base
= vma
->vm_end
+ stack_expand
;
749 if (stack_size
+ stack_expand
> rlim_stack
)
750 stack_base
= vma
->vm_end
- rlim_stack
;
752 stack_base
= vma
->vm_start
- stack_expand
;
754 current
->mm
->start_stack
= bprm
->p
;
755 ret
= expand_stack(vma
, stack_base
);
760 up_write(&mm
->mmap_sem
);
763 EXPORT_SYMBOL(setup_arg_pages
);
768 * Transfer the program arguments and environment from the holding pages
769 * onto the stack. The provided stack pointer is adjusted accordingly.
771 int transfer_args_to_stack(struct linux_binprm
*bprm
,
772 unsigned long *sp_location
)
774 unsigned long index
, stop
, sp
;
777 stop
= bprm
->p
>> PAGE_SHIFT
;
780 for (index
= MAX_ARG_PAGES
- 1; index
>= stop
; index
--) {
781 unsigned int offset
= index
== stop
? bprm
->p
& ~PAGE_MASK
: 0;
782 char *src
= kmap(bprm
->page
[index
]) + offset
;
783 sp
-= PAGE_SIZE
- offset
;
784 if (copy_to_user((void *) sp
, src
, PAGE_SIZE
- offset
) != 0)
786 kunmap(bprm
->page
[index
]);
796 EXPORT_SYMBOL(transfer_args_to_stack
);
798 #endif /* CONFIG_MMU */
800 static struct file
*do_open_execat(int fd
, struct filename
*name
, int flags
)
804 struct open_flags open_exec_flags
= {
805 .open_flag
= O_LARGEFILE
| O_RDONLY
| __FMODE_EXEC
,
806 .acc_mode
= MAY_EXEC
,
807 .intent
= LOOKUP_OPEN
,
808 .lookup_flags
= LOOKUP_FOLLOW
,
811 if ((flags
& ~(AT_SYMLINK_NOFOLLOW
| AT_EMPTY_PATH
)) != 0)
812 return ERR_PTR(-EINVAL
);
813 if (flags
& AT_SYMLINK_NOFOLLOW
)
814 open_exec_flags
.lookup_flags
&= ~LOOKUP_FOLLOW
;
815 if (flags
& AT_EMPTY_PATH
)
816 open_exec_flags
.lookup_flags
|= LOOKUP_EMPTY
;
818 file
= do_filp_open(fd
, name
, &open_exec_flags
);
823 if (!S_ISREG(file_inode(file
)->i_mode
))
826 if (path_noexec(&file
->f_path
))
829 err
= deny_write_access(file
);
833 if (name
->name
[0] != '\0')
844 struct file
*open_exec(const char *name
)
846 struct filename
*filename
= getname_kernel(name
);
847 struct file
*f
= ERR_CAST(filename
);
849 if (!IS_ERR(filename
)) {
850 f
= do_open_execat(AT_FDCWD
, filename
, 0);
855 EXPORT_SYMBOL(open_exec
);
857 int kernel_read(struct file
*file
, loff_t offset
,
858 char *addr
, unsigned long count
)
866 /* The cast to a user pointer is valid due to the set_fs() */
867 result
= vfs_read(file
, (void __user
*)addr
, count
, &pos
);
872 EXPORT_SYMBOL(kernel_read
);
874 int kernel_read_file(struct file
*file
, void **buf
, loff_t
*size
,
875 loff_t max_size
, enum kernel_read_file_id id
)
881 if (!S_ISREG(file_inode(file
)->i_mode
) || max_size
< 0)
884 ret
= security_kernel_read_file(file
, id
);
888 ret
= deny_write_access(file
);
892 i_size
= i_size_read(file_inode(file
));
893 if (max_size
> 0 && i_size
> max_size
) {
902 if (id
!= READING_FIRMWARE_PREALLOC_BUFFER
)
903 *buf
= vmalloc(i_size
);
910 while (pos
< i_size
) {
911 bytes
= kernel_read(file
, pos
, (char *)(*buf
) + pos
,
928 ret
= security_kernel_post_read_file(file
, *buf
, i_size
, id
);
934 if (id
!= READING_FIRMWARE_PREALLOC_BUFFER
) {
941 allow_write_access(file
);
944 EXPORT_SYMBOL_GPL(kernel_read_file
);
946 int kernel_read_file_from_path(char *path
, void **buf
, loff_t
*size
,
947 loff_t max_size
, enum kernel_read_file_id id
)
955 file
= filp_open(path
, O_RDONLY
, 0);
957 return PTR_ERR(file
);
959 ret
= kernel_read_file(file
, buf
, size
, max_size
, id
);
963 EXPORT_SYMBOL_GPL(kernel_read_file_from_path
);
965 int kernel_read_file_from_fd(int fd
, void **buf
, loff_t
*size
, loff_t max_size
,
966 enum kernel_read_file_id id
)
968 struct fd f
= fdget(fd
);
974 ret
= kernel_read_file(f
.file
, buf
, size
, max_size
, id
);
979 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd
);
981 ssize_t
read_code(struct file
*file
, unsigned long addr
, loff_t pos
, size_t len
)
983 ssize_t res
= vfs_read(file
, (void __user
*)addr
, len
, &pos
);
985 flush_icache_range(addr
, addr
+ len
);
988 EXPORT_SYMBOL(read_code
);
990 static int exec_mmap(struct mm_struct
*mm
)
992 struct task_struct
*tsk
;
993 struct mm_struct
*old_mm
, *active_mm
;
995 /* Notify parent that we're no longer interested in the old VM */
997 old_mm
= current
->mm
;
998 mm_release(tsk
, old_mm
);
1001 sync_mm_rss(old_mm
);
1003 * Make sure that if there is a core dump in progress
1004 * for the old mm, we get out and die instead of going
1005 * through with the exec. We must hold mmap_sem around
1006 * checking core_state and changing tsk->mm.
1008 down_read(&old_mm
->mmap_sem
);
1009 if (unlikely(old_mm
->core_state
)) {
1010 up_read(&old_mm
->mmap_sem
);
1015 active_mm
= tsk
->active_mm
;
1017 tsk
->active_mm
= mm
;
1018 activate_mm(active_mm
, mm
);
1019 tsk
->mm
->vmacache_seqnum
= 0;
1020 vmacache_flush(tsk
);
1023 up_read(&old_mm
->mmap_sem
);
1024 BUG_ON(active_mm
!= old_mm
);
1025 setmax_mm_hiwater_rss(&tsk
->signal
->maxrss
, old_mm
);
1026 mm_update_next_owner(old_mm
);
1035 * This function makes sure the current process has its own signal table,
1036 * so that flush_signal_handlers can later reset the handlers without
1037 * disturbing other processes. (Other processes might share the signal
1038 * table via the CLONE_SIGHAND option to clone().)
1040 static int de_thread(struct task_struct
*tsk
)
1042 struct signal_struct
*sig
= tsk
->signal
;
1043 struct sighand_struct
*oldsighand
= tsk
->sighand
;
1044 spinlock_t
*lock
= &oldsighand
->siglock
;
1046 if (thread_group_empty(tsk
))
1047 goto no_thread_group
;
1050 * Kill all other threads in the thread group.
1052 spin_lock_irq(lock
);
1053 if (signal_group_exit(sig
)) {
1055 * Another group action in progress, just
1056 * return so that the signal is processed.
1058 spin_unlock_irq(lock
);
1062 sig
->group_exit_task
= tsk
;
1063 sig
->notify_count
= zap_other_threads(tsk
);
1064 if (!thread_group_leader(tsk
))
1065 sig
->notify_count
--;
1067 while (sig
->notify_count
) {
1068 __set_current_state(TASK_KILLABLE
);
1069 spin_unlock_irq(lock
);
1071 if (unlikely(__fatal_signal_pending(tsk
)))
1073 spin_lock_irq(lock
);
1075 spin_unlock_irq(lock
);
1078 * At this point all other threads have exited, all we have to
1079 * do is to wait for the thread group leader to become inactive,
1080 * and to assume its PID:
1082 if (!thread_group_leader(tsk
)) {
1083 struct task_struct
*leader
= tsk
->group_leader
;
1086 threadgroup_change_begin(tsk
);
1087 write_lock_irq(&tasklist_lock
);
1089 * Do this under tasklist_lock to ensure that
1090 * exit_notify() can't miss ->group_exit_task
1092 sig
->notify_count
= -1;
1093 if (likely(leader
->exit_state
))
1095 __set_current_state(TASK_KILLABLE
);
1096 write_unlock_irq(&tasklist_lock
);
1097 threadgroup_change_end(tsk
);
1099 if (unlikely(__fatal_signal_pending(tsk
)))
1104 * The only record we have of the real-time age of a
1105 * process, regardless of execs it's done, is start_time.
1106 * All the past CPU time is accumulated in signal_struct
1107 * from sister threads now dead. But in this non-leader
1108 * exec, nothing survives from the original leader thread,
1109 * whose birth marks the true age of this process now.
1110 * When we take on its identity by switching to its PID, we
1111 * also take its birthdate (always earlier than our own).
1113 tsk
->start_time
= leader
->start_time
;
1114 tsk
->real_start_time
= leader
->real_start_time
;
1116 BUG_ON(!same_thread_group(leader
, tsk
));
1117 BUG_ON(has_group_leader_pid(tsk
));
1119 * An exec() starts a new thread group with the
1120 * TGID of the previous thread group. Rehash the
1121 * two threads with a switched PID, and release
1122 * the former thread group leader:
1125 /* Become a process group leader with the old leader's pid.
1126 * The old leader becomes a thread of the this thread group.
1127 * Note: The old leader also uses this pid until release_task
1128 * is called. Odd but simple and correct.
1130 tsk
->pid
= leader
->pid
;
1131 change_pid(tsk
, PIDTYPE_PID
, task_pid(leader
));
1132 transfer_pid(leader
, tsk
, PIDTYPE_PGID
);
1133 transfer_pid(leader
, tsk
, PIDTYPE_SID
);
1135 list_replace_rcu(&leader
->tasks
, &tsk
->tasks
);
1136 list_replace_init(&leader
->sibling
, &tsk
->sibling
);
1138 tsk
->group_leader
= tsk
;
1139 leader
->group_leader
= tsk
;
1141 tsk
->exit_signal
= SIGCHLD
;
1142 leader
->exit_signal
= -1;
1144 BUG_ON(leader
->exit_state
!= EXIT_ZOMBIE
);
1145 leader
->exit_state
= EXIT_DEAD
;
1148 * We are going to release_task()->ptrace_unlink() silently,
1149 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1150 * the tracer wont't block again waiting for this thread.
1152 if (unlikely(leader
->ptrace
))
1153 __wake_up_parent(leader
, leader
->parent
);
1154 write_unlock_irq(&tasklist_lock
);
1155 threadgroup_change_end(tsk
);
1157 release_task(leader
);
1160 sig
->group_exit_task
= NULL
;
1161 sig
->notify_count
= 0;
1164 /* we have changed execution domain */
1165 tsk
->exit_signal
= SIGCHLD
;
1168 flush_itimer_signals();
1170 if (atomic_read(&oldsighand
->count
) != 1) {
1171 struct sighand_struct
*newsighand
;
1173 * This ->sighand is shared with the CLONE_SIGHAND
1174 * but not CLONE_THREAD task, switch to the new one.
1176 newsighand
= kmem_cache_alloc(sighand_cachep
, GFP_KERNEL
);
1180 atomic_set(&newsighand
->count
, 1);
1181 memcpy(newsighand
->action
, oldsighand
->action
,
1182 sizeof(newsighand
->action
));
1184 write_lock_irq(&tasklist_lock
);
1185 spin_lock(&oldsighand
->siglock
);
1186 rcu_assign_pointer(tsk
->sighand
, newsighand
);
1187 spin_unlock(&oldsighand
->siglock
);
1188 write_unlock_irq(&tasklist_lock
);
1190 __cleanup_sighand(oldsighand
);
1193 BUG_ON(!thread_group_leader(tsk
));
1197 /* protects against exit_notify() and __exit_signal() */
1198 read_lock(&tasklist_lock
);
1199 sig
->group_exit_task
= NULL
;
1200 sig
->notify_count
= 0;
1201 read_unlock(&tasklist_lock
);
1205 char *get_task_comm(char *buf
, struct task_struct
*tsk
)
1207 /* buf must be at least sizeof(tsk->comm) in size */
1209 strncpy(buf
, tsk
->comm
, sizeof(tsk
->comm
));
1213 EXPORT_SYMBOL_GPL(get_task_comm
);
1216 * These functions flushes out all traces of the currently running executable
1217 * so that a new one can be started
1220 void __set_task_comm(struct task_struct
*tsk
, const char *buf
, bool exec
)
1223 trace_task_rename(tsk
, buf
);
1224 strlcpy(tsk
->comm
, buf
, sizeof(tsk
->comm
));
1226 perf_event_comm(tsk
, exec
);
1229 int flush_old_exec(struct linux_binprm
* bprm
)
1234 * Make sure we have a private signal table and that
1235 * we are unassociated from the previous thread group.
1237 retval
= de_thread(current
);
1242 * Must be called _before_ exec_mmap() as bprm->mm is
1243 * not visibile until then. This also enables the update
1246 set_mm_exe_file(bprm
->mm
, bprm
->file
);
1249 * Release all of the old mmap stuff
1251 acct_arg_size(bprm
, 0);
1252 retval
= exec_mmap(bprm
->mm
);
1256 bprm
->mm
= NULL
; /* We're using it now */
1259 current
->flags
&= ~(PF_RANDOMIZE
| PF_FORKNOEXEC
| PF_KTHREAD
|
1260 PF_NOFREEZE
| PF_NO_SETAFFINITY
);
1262 current
->personality
&= ~bprm
->per_clear
;
1269 EXPORT_SYMBOL(flush_old_exec
);
1271 void would_dump(struct linux_binprm
*bprm
, struct file
*file
)
1273 if (inode_permission(file_inode(file
), MAY_READ
) < 0)
1274 bprm
->interp_flags
|= BINPRM_FLAGS_ENFORCE_NONDUMP
;
1276 EXPORT_SYMBOL(would_dump
);
1278 void setup_new_exec(struct linux_binprm
* bprm
)
1280 arch_pick_mmap_layout(current
->mm
);
1282 /* This is the point of no return */
1283 current
->sas_ss_sp
= current
->sas_ss_size
= 0;
1285 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1286 set_dumpable(current
->mm
, SUID_DUMP_USER
);
1288 set_dumpable(current
->mm
, suid_dumpable
);
1291 __set_task_comm(current
, kbasename(bprm
->filename
), true);
1293 /* Set the new mm task size. We have to do that late because it may
1294 * depend on TIF_32BIT which is only updated in flush_thread() on
1295 * some architectures like powerpc
1297 current
->mm
->task_size
= TASK_SIZE
;
1299 /* install the new credentials */
1300 if (!uid_eq(bprm
->cred
->uid
, current_euid()) ||
1301 !gid_eq(bprm
->cred
->gid
, current_egid())) {
1302 current
->pdeath_signal
= 0;
1304 would_dump(bprm
, bprm
->file
);
1305 if (bprm
->interp_flags
& BINPRM_FLAGS_ENFORCE_NONDUMP
)
1306 set_dumpable(current
->mm
, suid_dumpable
);
1309 /* An exec changes our domain. We are no longer part of the thread
1311 current
->self_exec_id
++;
1312 flush_signal_handlers(current
, 0);
1313 do_close_on_exec(current
->files
);
1315 EXPORT_SYMBOL(setup_new_exec
);
1318 * Prepare credentials and lock ->cred_guard_mutex.
1319 * install_exec_creds() commits the new creds and drops the lock.
1320 * Or, if exec fails before, free_bprm() should release ->cred and
1323 int prepare_bprm_creds(struct linux_binprm
*bprm
)
1325 if (mutex_lock_interruptible(¤t
->signal
->cred_guard_mutex
))
1326 return -ERESTARTNOINTR
;
1328 bprm
->cred
= prepare_exec_creds();
1329 if (likely(bprm
->cred
))
1332 mutex_unlock(¤t
->signal
->cred_guard_mutex
);
1336 static void free_bprm(struct linux_binprm
*bprm
)
1338 free_arg_pages(bprm
);
1340 mutex_unlock(¤t
->signal
->cred_guard_mutex
);
1341 abort_creds(bprm
->cred
);
1344 allow_write_access(bprm
->file
);
1347 /* If a binfmt changed the interp, free it. */
1348 if (bprm
->interp
!= bprm
->filename
)
1349 kfree(bprm
->interp
);
1353 int bprm_change_interp(char *interp
, struct linux_binprm
*bprm
)
1355 /* If a binfmt changed the interp, free it first. */
1356 if (bprm
->interp
!= bprm
->filename
)
1357 kfree(bprm
->interp
);
1358 bprm
->interp
= kstrdup(interp
, GFP_KERNEL
);
1363 EXPORT_SYMBOL(bprm_change_interp
);
1366 * install the new credentials for this executable
1368 void install_exec_creds(struct linux_binprm
*bprm
)
1370 security_bprm_committing_creds(bprm
);
1372 commit_creds(bprm
->cred
);
1376 * Disable monitoring for regular users
1377 * when executing setuid binaries. Must
1378 * wait until new credentials are committed
1379 * by commit_creds() above
1381 if (get_dumpable(current
->mm
) != SUID_DUMP_USER
)
1382 perf_event_exit_task(current
);
1384 * cred_guard_mutex must be held at least to this point to prevent
1385 * ptrace_attach() from altering our determination of the task's
1386 * credentials; any time after this it may be unlocked.
1388 security_bprm_committed_creds(bprm
);
1389 mutex_unlock(¤t
->signal
->cred_guard_mutex
);
1391 EXPORT_SYMBOL(install_exec_creds
);
1394 * determine how safe it is to execute the proposed program
1395 * - the caller must hold ->cred_guard_mutex to protect against
1396 * PTRACE_ATTACH or seccomp thread-sync
1398 static void check_unsafe_exec(struct linux_binprm
*bprm
)
1400 struct task_struct
*p
= current
, *t
;
1404 if (p
->ptrace
& PT_PTRACE_CAP
)
1405 bprm
->unsafe
|= LSM_UNSAFE_PTRACE_CAP
;
1407 bprm
->unsafe
|= LSM_UNSAFE_PTRACE
;
1411 * This isn't strictly necessary, but it makes it harder for LSMs to
1414 if (task_no_new_privs(current
))
1415 bprm
->unsafe
|= LSM_UNSAFE_NO_NEW_PRIVS
;
1419 spin_lock(&p
->fs
->lock
);
1421 while_each_thread(p
, t
) {
1427 if (p
->fs
->users
> n_fs
)
1428 bprm
->unsafe
|= LSM_UNSAFE_SHARE
;
1431 spin_unlock(&p
->fs
->lock
);
1434 static void bprm_fill_uid(struct linux_binprm
*bprm
)
1436 struct inode
*inode
;
1442 * Since this can be called multiple times (via prepare_binprm),
1443 * we must clear any previous work done when setting set[ug]id
1444 * bits from any earlier bprm->file uses (for example when run
1445 * first for a setuid script then again for its interpreter).
1447 bprm
->cred
->euid
= current_euid();
1448 bprm
->cred
->egid
= current_egid();
1450 if (!mnt_may_suid(bprm
->file
->f_path
.mnt
))
1453 if (task_no_new_privs(current
))
1456 inode
= file_inode(bprm
->file
);
1457 mode
= READ_ONCE(inode
->i_mode
);
1458 if (!(mode
& (S_ISUID
|S_ISGID
)))
1461 /* Be careful if suid/sgid is set */
1464 /* reload atomically mode/uid/gid now that lock held */
1465 mode
= inode
->i_mode
;
1468 inode_unlock(inode
);
1470 /* We ignore suid/sgid if there are no mappings for them in the ns */
1471 if (!kuid_has_mapping(bprm
->cred
->user_ns
, uid
) ||
1472 !kgid_has_mapping(bprm
->cred
->user_ns
, gid
))
1475 if (mode
& S_ISUID
) {
1476 bprm
->per_clear
|= PER_CLEAR_ON_SETID
;
1477 bprm
->cred
->euid
= uid
;
1480 if ((mode
& (S_ISGID
| S_IXGRP
)) == (S_ISGID
| S_IXGRP
)) {
1481 bprm
->per_clear
|= PER_CLEAR_ON_SETID
;
1482 bprm
->cred
->egid
= gid
;
1487 * Fill the binprm structure from the inode.
1488 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1490 * This may be called multiple times for binary chains (scripts for example).
1492 int prepare_binprm(struct linux_binprm
*bprm
)
1496 bprm_fill_uid(bprm
);
1498 /* fill in binprm security blob */
1499 retval
= security_bprm_set_creds(bprm
);
1502 bprm
->cred_prepared
= 1;
1504 memset(bprm
->buf
, 0, BINPRM_BUF_SIZE
);
1505 return kernel_read(bprm
->file
, 0, bprm
->buf
, BINPRM_BUF_SIZE
);
1508 EXPORT_SYMBOL(prepare_binprm
);
1511 * Arguments are '\0' separated strings found at the location bprm->p
1512 * points to; chop off the first by relocating brpm->p to right after
1513 * the first '\0' encountered.
1515 int remove_arg_zero(struct linux_binprm
*bprm
)
1518 unsigned long offset
;
1526 offset
= bprm
->p
& ~PAGE_MASK
;
1527 page
= get_arg_page(bprm
, bprm
->p
, 0);
1532 kaddr
= kmap_atomic(page
);
1534 for (; offset
< PAGE_SIZE
&& kaddr
[offset
];
1535 offset
++, bprm
->p
++)
1538 kunmap_atomic(kaddr
);
1540 } while (offset
== PAGE_SIZE
);
1549 EXPORT_SYMBOL(remove_arg_zero
);
1551 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1553 * cycle the list of binary formats handler, until one recognizes the image
1555 int search_binary_handler(struct linux_binprm
*bprm
)
1557 bool need_retry
= IS_ENABLED(CONFIG_MODULES
);
1558 struct linux_binfmt
*fmt
;
1561 /* This allows 4 levels of binfmt rewrites before failing hard. */
1562 if (bprm
->recursion_depth
> 5)
1565 retval
= security_bprm_check(bprm
);
1571 read_lock(&binfmt_lock
);
1572 list_for_each_entry(fmt
, &formats
, lh
) {
1573 if (!try_module_get(fmt
->module
))
1575 read_unlock(&binfmt_lock
);
1576 bprm
->recursion_depth
++;
1577 retval
= fmt
->load_binary(bprm
);
1578 read_lock(&binfmt_lock
);
1580 bprm
->recursion_depth
--;
1581 if (retval
< 0 && !bprm
->mm
) {
1582 /* we got to flush_old_exec() and failed after it */
1583 read_unlock(&binfmt_lock
);
1584 force_sigsegv(SIGSEGV
, current
);
1587 if (retval
!= -ENOEXEC
|| !bprm
->file
) {
1588 read_unlock(&binfmt_lock
);
1592 read_unlock(&binfmt_lock
);
1595 if (printable(bprm
->buf
[0]) && printable(bprm
->buf
[1]) &&
1596 printable(bprm
->buf
[2]) && printable(bprm
->buf
[3]))
1598 if (request_module("binfmt-%04x", *(ushort
*)(bprm
->buf
+ 2)) < 0)
1606 EXPORT_SYMBOL(search_binary_handler
);
1608 static int exec_binprm(struct linux_binprm
*bprm
)
1610 pid_t old_pid
, old_vpid
;
1613 /* Need to fetch pid before load_binary changes it */
1614 old_pid
= current
->pid
;
1616 old_vpid
= task_pid_nr_ns(current
, task_active_pid_ns(current
->parent
));
1619 ret
= search_binary_handler(bprm
);
1622 trace_sched_process_exec(current
, old_pid
, bprm
);
1623 ptrace_event(PTRACE_EVENT_EXEC
, old_vpid
);
1624 proc_exec_connector(current
);
1631 * sys_execve() executes a new program.
1633 static int do_execveat_common(int fd
, struct filename
*filename
,
1634 struct user_arg_ptr argv
,
1635 struct user_arg_ptr envp
,
1638 char *pathbuf
= NULL
;
1639 struct linux_binprm
*bprm
;
1641 struct files_struct
*displaced
;
1644 if (IS_ERR(filename
))
1645 return PTR_ERR(filename
);
1648 * We move the actual failure in case of RLIMIT_NPROC excess from
1649 * set*uid() to execve() because too many poorly written programs
1650 * don't check setuid() return code. Here we additionally recheck
1651 * whether NPROC limit is still exceeded.
1653 if ((current
->flags
& PF_NPROC_EXCEEDED
) &&
1654 atomic_read(¤t_user()->processes
) > rlimit(RLIMIT_NPROC
)) {
1659 /* We're below the limit (still or again), so we don't want to make
1660 * further execve() calls fail. */
1661 current
->flags
&= ~PF_NPROC_EXCEEDED
;
1663 retval
= unshare_files(&displaced
);
1668 bprm
= kzalloc(sizeof(*bprm
), GFP_KERNEL
);
1672 retval
= prepare_bprm_creds(bprm
);
1676 check_unsafe_exec(bprm
);
1677 current
->in_execve
= 1;
1679 file
= do_open_execat(fd
, filename
, flags
);
1680 retval
= PTR_ERR(file
);
1687 if (fd
== AT_FDCWD
|| filename
->name
[0] == '/') {
1688 bprm
->filename
= filename
->name
;
1690 if (filename
->name
[0] == '\0')
1691 pathbuf
= kasprintf(GFP_TEMPORARY
, "/dev/fd/%d", fd
);
1693 pathbuf
= kasprintf(GFP_TEMPORARY
, "/dev/fd/%d/%s",
1694 fd
, filename
->name
);
1700 * Record that a name derived from an O_CLOEXEC fd will be
1701 * inaccessible after exec. Relies on having exclusive access to
1702 * current->files (due to unshare_files above).
1704 if (close_on_exec(fd
, rcu_dereference_raw(current
->files
->fdt
)))
1705 bprm
->interp_flags
|= BINPRM_FLAGS_PATH_INACCESSIBLE
;
1706 bprm
->filename
= pathbuf
;
1708 bprm
->interp
= bprm
->filename
;
1710 retval
= bprm_mm_init(bprm
);
1714 bprm
->argc
= count(argv
, MAX_ARG_STRINGS
);
1715 if ((retval
= bprm
->argc
) < 0)
1718 bprm
->envc
= count(envp
, MAX_ARG_STRINGS
);
1719 if ((retval
= bprm
->envc
) < 0)
1722 retval
= prepare_binprm(bprm
);
1726 retval
= copy_strings_kernel(1, &bprm
->filename
, bprm
);
1730 bprm
->exec
= bprm
->p
;
1731 retval
= copy_strings(bprm
->envc
, envp
, bprm
);
1735 retval
= copy_strings(bprm
->argc
, argv
, bprm
);
1739 retval
= exec_binprm(bprm
);
1743 /* execve succeeded */
1744 current
->fs
->in_exec
= 0;
1745 current
->in_execve
= 0;
1746 acct_update_integrals(current
);
1747 task_numa_free(current
);
1752 put_files_struct(displaced
);
1757 acct_arg_size(bprm
, 0);
1762 current
->fs
->in_exec
= 0;
1763 current
->in_execve
= 0;
1771 reset_files_struct(displaced
);
1777 int do_execve(struct filename
*filename
,
1778 const char __user
*const __user
*__argv
,
1779 const char __user
*const __user
*__envp
)
1781 struct user_arg_ptr argv
= { .ptr
.native
= __argv
};
1782 struct user_arg_ptr envp
= { .ptr
.native
= __envp
};
1783 return do_execveat_common(AT_FDCWD
, filename
, argv
, envp
, 0);
1786 int do_execveat(int fd
, struct filename
*filename
,
1787 const char __user
*const __user
*__argv
,
1788 const char __user
*const __user
*__envp
,
1791 struct user_arg_ptr argv
= { .ptr
.native
= __argv
};
1792 struct user_arg_ptr envp
= { .ptr
.native
= __envp
};
1794 return do_execveat_common(fd
, filename
, argv
, envp
, flags
);
1797 #ifdef CONFIG_COMPAT
1798 static int compat_do_execve(struct filename
*filename
,
1799 const compat_uptr_t __user
*__argv
,
1800 const compat_uptr_t __user
*__envp
)
1802 struct user_arg_ptr argv
= {
1804 .ptr
.compat
= __argv
,
1806 struct user_arg_ptr envp
= {
1808 .ptr
.compat
= __envp
,
1810 return do_execveat_common(AT_FDCWD
, filename
, argv
, envp
, 0);
1813 static int compat_do_execveat(int fd
, struct filename
*filename
,
1814 const compat_uptr_t __user
*__argv
,
1815 const compat_uptr_t __user
*__envp
,
1818 struct user_arg_ptr argv
= {
1820 .ptr
.compat
= __argv
,
1822 struct user_arg_ptr envp
= {
1824 .ptr
.compat
= __envp
,
1826 return do_execveat_common(fd
, filename
, argv
, envp
, flags
);
1830 void set_binfmt(struct linux_binfmt
*new)
1832 struct mm_struct
*mm
= current
->mm
;
1835 module_put(mm
->binfmt
->module
);
1839 __module_get(new->module
);
1841 EXPORT_SYMBOL(set_binfmt
);
1844 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1846 void set_dumpable(struct mm_struct
*mm
, int value
)
1848 unsigned long old
, new;
1850 if (WARN_ON((unsigned)value
> SUID_DUMP_ROOT
))
1854 old
= ACCESS_ONCE(mm
->flags
);
1855 new = (old
& ~MMF_DUMPABLE_MASK
) | value
;
1856 } while (cmpxchg(&mm
->flags
, old
, new) != old
);
1859 SYSCALL_DEFINE3(execve
,
1860 const char __user
*, filename
,
1861 const char __user
*const __user
*, argv
,
1862 const char __user
*const __user
*, envp
)
1864 return do_execve(getname(filename
), argv
, envp
);
1867 SYSCALL_DEFINE5(execveat
,
1868 int, fd
, const char __user
*, filename
,
1869 const char __user
*const __user
*, argv
,
1870 const char __user
*const __user
*, envp
,
1873 int lookup_flags
= (flags
& AT_EMPTY_PATH
) ? LOOKUP_EMPTY
: 0;
1875 return do_execveat(fd
,
1876 getname_flags(filename
, lookup_flags
, NULL
),
1880 #ifdef CONFIG_COMPAT
1881 COMPAT_SYSCALL_DEFINE3(execve
, const char __user
*, filename
,
1882 const compat_uptr_t __user
*, argv
,
1883 const compat_uptr_t __user
*, envp
)
1885 return compat_do_execve(getname(filename
), argv
, envp
);
1888 COMPAT_SYSCALL_DEFINE5(execveat
, int, fd
,
1889 const char __user
*, filename
,
1890 const compat_uptr_t __user
*, argv
,
1891 const compat_uptr_t __user
*, envp
,
1894 int lookup_flags
= (flags
& AT_EMPTY_PATH
) ? LOOKUP_EMPTY
: 0;
1896 return compat_do_execveat(fd
,
1897 getname_flags(filename
, lookup_flags
, NULL
),