arm/arm64: KVM: Rework the arch timer to use level-triggered semantics
[linux/fpc-iii.git] / arch / arm / kvm / arm.c
blob59125f48c7070247f9d9b20249e51e75272a5756
1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
19 #include <linux/cpu.h>
20 #include <linux/cpu_pm.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <trace/events/kvm.h>
32 #define CREATE_TRACE_POINTS
33 #include "trace.h"
35 #include <asm/uaccess.h>
36 #include <asm/ptrace.h>
37 #include <asm/mman.h>
38 #include <asm/tlbflush.h>
39 #include <asm/cacheflush.h>
40 #include <asm/virt.h>
41 #include <asm/kvm_arm.h>
42 #include <asm/kvm_asm.h>
43 #include <asm/kvm_mmu.h>
44 #include <asm/kvm_emulate.h>
45 #include <asm/kvm_coproc.h>
46 #include <asm/kvm_psci.h>
48 #ifdef REQUIRES_VIRT
49 __asm__(".arch_extension virt");
50 #endif
52 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
54 static unsigned long hyp_default_vectors;
56 /* Per-CPU variable containing the currently running vcpu. */
57 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
59 /* The VMID used in the VTTBR */
60 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
61 static u8 kvm_next_vmid;
62 static DEFINE_SPINLOCK(kvm_vmid_lock);
64 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
66 BUG_ON(preemptible());
67 __this_cpu_write(kvm_arm_running_vcpu, vcpu);
70 /**
71 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
72 * Must be called from non-preemptible context
74 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
76 BUG_ON(preemptible());
77 return __this_cpu_read(kvm_arm_running_vcpu);
80 /**
81 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
83 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
85 return &kvm_arm_running_vcpu;
88 int kvm_arch_hardware_enable(void)
90 return 0;
93 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
95 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
98 int kvm_arch_hardware_setup(void)
100 return 0;
103 void kvm_arch_check_processor_compat(void *rtn)
105 *(int *)rtn = 0;
110 * kvm_arch_init_vm - initializes a VM data structure
111 * @kvm: pointer to the KVM struct
113 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
115 int ret = 0;
117 if (type)
118 return -EINVAL;
120 ret = kvm_alloc_stage2_pgd(kvm);
121 if (ret)
122 goto out_fail_alloc;
124 ret = create_hyp_mappings(kvm, kvm + 1);
125 if (ret)
126 goto out_free_stage2_pgd;
128 kvm_vgic_early_init(kvm);
129 kvm_timer_init(kvm);
131 /* Mark the initial VMID generation invalid */
132 kvm->arch.vmid_gen = 0;
134 /* The maximum number of VCPUs is limited by the host's GIC model */
135 kvm->arch.max_vcpus = kvm_vgic_get_max_vcpus();
137 return ret;
138 out_free_stage2_pgd:
139 kvm_free_stage2_pgd(kvm);
140 out_fail_alloc:
141 return ret;
144 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
146 return VM_FAULT_SIGBUS;
151 * kvm_arch_destroy_vm - destroy the VM data structure
152 * @kvm: pointer to the KVM struct
154 void kvm_arch_destroy_vm(struct kvm *kvm)
156 int i;
158 kvm_free_stage2_pgd(kvm);
160 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
161 if (kvm->vcpus[i]) {
162 kvm_arch_vcpu_free(kvm->vcpus[i]);
163 kvm->vcpus[i] = NULL;
167 kvm_vgic_destroy(kvm);
170 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
172 int r;
173 switch (ext) {
174 case KVM_CAP_IRQCHIP:
175 case KVM_CAP_IOEVENTFD:
176 case KVM_CAP_DEVICE_CTRL:
177 case KVM_CAP_USER_MEMORY:
178 case KVM_CAP_SYNC_MMU:
179 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
180 case KVM_CAP_ONE_REG:
181 case KVM_CAP_ARM_PSCI:
182 case KVM_CAP_ARM_PSCI_0_2:
183 case KVM_CAP_READONLY_MEM:
184 case KVM_CAP_MP_STATE:
185 r = 1;
186 break;
187 case KVM_CAP_COALESCED_MMIO:
188 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
189 break;
190 case KVM_CAP_ARM_SET_DEVICE_ADDR:
191 r = 1;
192 break;
193 case KVM_CAP_NR_VCPUS:
194 r = num_online_cpus();
195 break;
196 case KVM_CAP_MAX_VCPUS:
197 r = KVM_MAX_VCPUS;
198 break;
199 default:
200 r = kvm_arch_dev_ioctl_check_extension(ext);
201 break;
203 return r;
206 long kvm_arch_dev_ioctl(struct file *filp,
207 unsigned int ioctl, unsigned long arg)
209 return -EINVAL;
213 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
215 int err;
216 struct kvm_vcpu *vcpu;
218 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
219 err = -EBUSY;
220 goto out;
223 if (id >= kvm->arch.max_vcpus) {
224 err = -EINVAL;
225 goto out;
228 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
229 if (!vcpu) {
230 err = -ENOMEM;
231 goto out;
234 err = kvm_vcpu_init(vcpu, kvm, id);
235 if (err)
236 goto free_vcpu;
238 err = create_hyp_mappings(vcpu, vcpu + 1);
239 if (err)
240 goto vcpu_uninit;
242 return vcpu;
243 vcpu_uninit:
244 kvm_vcpu_uninit(vcpu);
245 free_vcpu:
246 kmem_cache_free(kvm_vcpu_cache, vcpu);
247 out:
248 return ERR_PTR(err);
251 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
253 kvm_vgic_vcpu_early_init(vcpu);
256 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
258 kvm_mmu_free_memory_caches(vcpu);
259 kvm_timer_vcpu_terminate(vcpu);
260 kvm_vgic_vcpu_destroy(vcpu);
261 kmem_cache_free(kvm_vcpu_cache, vcpu);
264 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
266 kvm_arch_vcpu_free(vcpu);
269 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
271 return kvm_timer_should_fire(vcpu);
274 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
276 kvm_timer_schedule(vcpu);
279 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
281 kvm_timer_unschedule(vcpu);
284 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
286 /* Force users to call KVM_ARM_VCPU_INIT */
287 vcpu->arch.target = -1;
288 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
290 /* Set up the timer */
291 kvm_timer_vcpu_init(vcpu);
293 kvm_arm_reset_debug_ptr(vcpu);
295 return 0;
298 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
300 vcpu->cpu = cpu;
301 vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
303 kvm_arm_set_running_vcpu(vcpu);
306 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
309 * The arch-generic KVM code expects the cpu field of a vcpu to be -1
310 * if the vcpu is no longer assigned to a cpu. This is used for the
311 * optimized make_all_cpus_request path.
313 vcpu->cpu = -1;
315 kvm_arm_set_running_vcpu(NULL);
318 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
319 struct kvm_mp_state *mp_state)
321 if (vcpu->arch.pause)
322 mp_state->mp_state = KVM_MP_STATE_STOPPED;
323 else
324 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
326 return 0;
329 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
330 struct kvm_mp_state *mp_state)
332 switch (mp_state->mp_state) {
333 case KVM_MP_STATE_RUNNABLE:
334 vcpu->arch.pause = false;
335 break;
336 case KVM_MP_STATE_STOPPED:
337 vcpu->arch.pause = true;
338 break;
339 default:
340 return -EINVAL;
343 return 0;
347 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
348 * @v: The VCPU pointer
350 * If the guest CPU is not waiting for interrupts or an interrupt line is
351 * asserted, the CPU is by definition runnable.
353 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
355 return !!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v);
358 /* Just ensure a guest exit from a particular CPU */
359 static void exit_vm_noop(void *info)
363 void force_vm_exit(const cpumask_t *mask)
365 smp_call_function_many(mask, exit_vm_noop, NULL, true);
369 * need_new_vmid_gen - check that the VMID is still valid
370 * @kvm: The VM's VMID to checkt
372 * return true if there is a new generation of VMIDs being used
374 * The hardware supports only 256 values with the value zero reserved for the
375 * host, so we check if an assigned value belongs to a previous generation,
376 * which which requires us to assign a new value. If we're the first to use a
377 * VMID for the new generation, we must flush necessary caches and TLBs on all
378 * CPUs.
380 static bool need_new_vmid_gen(struct kvm *kvm)
382 return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
386 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
387 * @kvm The guest that we are about to run
389 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
390 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
391 * caches and TLBs.
393 static void update_vttbr(struct kvm *kvm)
395 phys_addr_t pgd_phys;
396 u64 vmid;
398 if (!need_new_vmid_gen(kvm))
399 return;
401 spin_lock(&kvm_vmid_lock);
404 * We need to re-check the vmid_gen here to ensure that if another vcpu
405 * already allocated a valid vmid for this vm, then this vcpu should
406 * use the same vmid.
408 if (!need_new_vmid_gen(kvm)) {
409 spin_unlock(&kvm_vmid_lock);
410 return;
413 /* First user of a new VMID generation? */
414 if (unlikely(kvm_next_vmid == 0)) {
415 atomic64_inc(&kvm_vmid_gen);
416 kvm_next_vmid = 1;
419 * On SMP we know no other CPUs can use this CPU's or each
420 * other's VMID after force_vm_exit returns since the
421 * kvm_vmid_lock blocks them from reentry to the guest.
423 force_vm_exit(cpu_all_mask);
425 * Now broadcast TLB + ICACHE invalidation over the inner
426 * shareable domain to make sure all data structures are
427 * clean.
429 kvm_call_hyp(__kvm_flush_vm_context);
432 kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
433 kvm->arch.vmid = kvm_next_vmid;
434 kvm_next_vmid++;
436 /* update vttbr to be used with the new vmid */
437 pgd_phys = virt_to_phys(kvm_get_hwpgd(kvm));
438 BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
439 vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK;
440 kvm->arch.vttbr = pgd_phys | vmid;
442 spin_unlock(&kvm_vmid_lock);
445 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
447 struct kvm *kvm = vcpu->kvm;
448 int ret;
450 if (likely(vcpu->arch.has_run_once))
451 return 0;
453 vcpu->arch.has_run_once = true;
456 * Map the VGIC hardware resources before running a vcpu the first
457 * time on this VM.
459 if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
460 ret = kvm_vgic_map_resources(kvm);
461 if (ret)
462 return ret;
466 * Enable the arch timers only if we have an in-kernel VGIC
467 * and it has been properly initialized, since we cannot handle
468 * interrupts from the virtual timer with a userspace gic.
470 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
471 kvm_timer_enable(kvm);
473 return 0;
476 bool kvm_arch_intc_initialized(struct kvm *kvm)
478 return vgic_initialized(kvm);
481 static void vcpu_pause(struct kvm_vcpu *vcpu)
483 wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
485 wait_event_interruptible(*wq, !vcpu->arch.pause);
488 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
490 return vcpu->arch.target >= 0;
494 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
495 * @vcpu: The VCPU pointer
496 * @run: The kvm_run structure pointer used for userspace state exchange
498 * This function is called through the VCPU_RUN ioctl called from user space. It
499 * will execute VM code in a loop until the time slice for the process is used
500 * or some emulation is needed from user space in which case the function will
501 * return with return value 0 and with the kvm_run structure filled in with the
502 * required data for the requested emulation.
504 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
506 int ret;
507 sigset_t sigsaved;
509 if (unlikely(!kvm_vcpu_initialized(vcpu)))
510 return -ENOEXEC;
512 ret = kvm_vcpu_first_run_init(vcpu);
513 if (ret)
514 return ret;
516 if (run->exit_reason == KVM_EXIT_MMIO) {
517 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
518 if (ret)
519 return ret;
522 if (vcpu->sigset_active)
523 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
525 ret = 1;
526 run->exit_reason = KVM_EXIT_UNKNOWN;
527 while (ret > 0) {
529 * Check conditions before entering the guest
531 cond_resched();
533 update_vttbr(vcpu->kvm);
535 if (vcpu->arch.pause)
536 vcpu_pause(vcpu);
539 * Disarming the background timer must be done in a
540 * preemptible context, as this call may sleep.
542 kvm_timer_flush_hwstate(vcpu);
545 * Preparing the interrupts to be injected also
546 * involves poking the GIC, which must be done in a
547 * non-preemptible context.
549 preempt_disable();
550 kvm_vgic_flush_hwstate(vcpu);
552 local_irq_disable();
555 * Re-check atomic conditions
557 if (signal_pending(current)) {
558 ret = -EINTR;
559 run->exit_reason = KVM_EXIT_INTR;
562 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm)) {
563 local_irq_enable();
564 kvm_timer_sync_hwstate(vcpu);
565 kvm_vgic_sync_hwstate(vcpu);
566 preempt_enable();
567 continue;
570 kvm_arm_setup_debug(vcpu);
572 /**************************************************************
573 * Enter the guest
575 trace_kvm_entry(*vcpu_pc(vcpu));
576 __kvm_guest_enter();
577 vcpu->mode = IN_GUEST_MODE;
579 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
581 vcpu->mode = OUTSIDE_GUEST_MODE;
583 * Back from guest
584 *************************************************************/
586 kvm_arm_clear_debug(vcpu);
589 * We may have taken a host interrupt in HYP mode (ie
590 * while executing the guest). This interrupt is still
591 * pending, as we haven't serviced it yet!
593 * We're now back in SVC mode, with interrupts
594 * disabled. Enabling the interrupts now will have
595 * the effect of taking the interrupt again, in SVC
596 * mode this time.
598 local_irq_enable();
601 * We do local_irq_enable() before calling kvm_guest_exit() so
602 * that if a timer interrupt hits while running the guest we
603 * account that tick as being spent in the guest. We enable
604 * preemption after calling kvm_guest_exit() so that if we get
605 * preempted we make sure ticks after that is not counted as
606 * guest time.
608 kvm_guest_exit();
609 trace_kvm_exit(kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
612 * We must sync the timer state before the vgic state so that
613 * the vgic can properly sample the updated state of the
614 * interrupt line.
616 kvm_timer_sync_hwstate(vcpu);
618 kvm_vgic_sync_hwstate(vcpu);
620 preempt_enable();
622 ret = handle_exit(vcpu, run, ret);
625 if (vcpu->sigset_active)
626 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
627 return ret;
630 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
632 int bit_index;
633 bool set;
634 unsigned long *ptr;
636 if (number == KVM_ARM_IRQ_CPU_IRQ)
637 bit_index = __ffs(HCR_VI);
638 else /* KVM_ARM_IRQ_CPU_FIQ */
639 bit_index = __ffs(HCR_VF);
641 ptr = (unsigned long *)&vcpu->arch.irq_lines;
642 if (level)
643 set = test_and_set_bit(bit_index, ptr);
644 else
645 set = test_and_clear_bit(bit_index, ptr);
648 * If we didn't change anything, no need to wake up or kick other CPUs
650 if (set == level)
651 return 0;
654 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
655 * trigger a world-switch round on the running physical CPU to set the
656 * virtual IRQ/FIQ fields in the HCR appropriately.
658 kvm_vcpu_kick(vcpu);
660 return 0;
663 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
664 bool line_status)
666 u32 irq = irq_level->irq;
667 unsigned int irq_type, vcpu_idx, irq_num;
668 int nrcpus = atomic_read(&kvm->online_vcpus);
669 struct kvm_vcpu *vcpu = NULL;
670 bool level = irq_level->level;
672 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
673 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
674 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
676 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
678 switch (irq_type) {
679 case KVM_ARM_IRQ_TYPE_CPU:
680 if (irqchip_in_kernel(kvm))
681 return -ENXIO;
683 if (vcpu_idx >= nrcpus)
684 return -EINVAL;
686 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
687 if (!vcpu)
688 return -EINVAL;
690 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
691 return -EINVAL;
693 return vcpu_interrupt_line(vcpu, irq_num, level);
694 case KVM_ARM_IRQ_TYPE_PPI:
695 if (!irqchip_in_kernel(kvm))
696 return -ENXIO;
698 if (vcpu_idx >= nrcpus)
699 return -EINVAL;
701 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
702 if (!vcpu)
703 return -EINVAL;
705 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
706 return -EINVAL;
708 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
709 case KVM_ARM_IRQ_TYPE_SPI:
710 if (!irqchip_in_kernel(kvm))
711 return -ENXIO;
713 if (irq_num < VGIC_NR_PRIVATE_IRQS)
714 return -EINVAL;
716 return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
719 return -EINVAL;
722 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
723 const struct kvm_vcpu_init *init)
725 unsigned int i;
726 int phys_target = kvm_target_cpu();
728 if (init->target != phys_target)
729 return -EINVAL;
732 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
733 * use the same target.
735 if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
736 return -EINVAL;
738 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
739 for (i = 0; i < sizeof(init->features) * 8; i++) {
740 bool set = (init->features[i / 32] & (1 << (i % 32)));
742 if (set && i >= KVM_VCPU_MAX_FEATURES)
743 return -ENOENT;
746 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
747 * use the same feature set.
749 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
750 test_bit(i, vcpu->arch.features) != set)
751 return -EINVAL;
753 if (set)
754 set_bit(i, vcpu->arch.features);
757 vcpu->arch.target = phys_target;
759 /* Now we know what it is, we can reset it. */
760 return kvm_reset_vcpu(vcpu);
764 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
765 struct kvm_vcpu_init *init)
767 int ret;
769 ret = kvm_vcpu_set_target(vcpu, init);
770 if (ret)
771 return ret;
774 * Ensure a rebooted VM will fault in RAM pages and detect if the
775 * guest MMU is turned off and flush the caches as needed.
777 if (vcpu->arch.has_run_once)
778 stage2_unmap_vm(vcpu->kvm);
780 vcpu_reset_hcr(vcpu);
783 * Handle the "start in power-off" case by marking the VCPU as paused.
785 if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
786 vcpu->arch.pause = true;
787 else
788 vcpu->arch.pause = false;
790 return 0;
793 long kvm_arch_vcpu_ioctl(struct file *filp,
794 unsigned int ioctl, unsigned long arg)
796 struct kvm_vcpu *vcpu = filp->private_data;
797 void __user *argp = (void __user *)arg;
799 switch (ioctl) {
800 case KVM_ARM_VCPU_INIT: {
801 struct kvm_vcpu_init init;
803 if (copy_from_user(&init, argp, sizeof(init)))
804 return -EFAULT;
806 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
808 case KVM_SET_ONE_REG:
809 case KVM_GET_ONE_REG: {
810 struct kvm_one_reg reg;
812 if (unlikely(!kvm_vcpu_initialized(vcpu)))
813 return -ENOEXEC;
815 if (copy_from_user(&reg, argp, sizeof(reg)))
816 return -EFAULT;
817 if (ioctl == KVM_SET_ONE_REG)
818 return kvm_arm_set_reg(vcpu, &reg);
819 else
820 return kvm_arm_get_reg(vcpu, &reg);
822 case KVM_GET_REG_LIST: {
823 struct kvm_reg_list __user *user_list = argp;
824 struct kvm_reg_list reg_list;
825 unsigned n;
827 if (unlikely(!kvm_vcpu_initialized(vcpu)))
828 return -ENOEXEC;
830 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
831 return -EFAULT;
832 n = reg_list.n;
833 reg_list.n = kvm_arm_num_regs(vcpu);
834 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
835 return -EFAULT;
836 if (n < reg_list.n)
837 return -E2BIG;
838 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
840 default:
841 return -EINVAL;
846 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
847 * @kvm: kvm instance
848 * @log: slot id and address to which we copy the log
850 * Steps 1-4 below provide general overview of dirty page logging. See
851 * kvm_get_dirty_log_protect() function description for additional details.
853 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
854 * always flush the TLB (step 4) even if previous step failed and the dirty
855 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
856 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
857 * writes will be marked dirty for next log read.
859 * 1. Take a snapshot of the bit and clear it if needed.
860 * 2. Write protect the corresponding page.
861 * 3. Copy the snapshot to the userspace.
862 * 4. Flush TLB's if needed.
864 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
866 bool is_dirty = false;
867 int r;
869 mutex_lock(&kvm->slots_lock);
871 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
873 if (is_dirty)
874 kvm_flush_remote_tlbs(kvm);
876 mutex_unlock(&kvm->slots_lock);
877 return r;
880 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
881 struct kvm_arm_device_addr *dev_addr)
883 unsigned long dev_id, type;
885 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
886 KVM_ARM_DEVICE_ID_SHIFT;
887 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
888 KVM_ARM_DEVICE_TYPE_SHIFT;
890 switch (dev_id) {
891 case KVM_ARM_DEVICE_VGIC_V2:
892 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
893 default:
894 return -ENODEV;
898 long kvm_arch_vm_ioctl(struct file *filp,
899 unsigned int ioctl, unsigned long arg)
901 struct kvm *kvm = filp->private_data;
902 void __user *argp = (void __user *)arg;
904 switch (ioctl) {
905 case KVM_CREATE_IRQCHIP: {
906 return kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
908 case KVM_ARM_SET_DEVICE_ADDR: {
909 struct kvm_arm_device_addr dev_addr;
911 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
912 return -EFAULT;
913 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
915 case KVM_ARM_PREFERRED_TARGET: {
916 int err;
917 struct kvm_vcpu_init init;
919 err = kvm_vcpu_preferred_target(&init);
920 if (err)
921 return err;
923 if (copy_to_user(argp, &init, sizeof(init)))
924 return -EFAULT;
926 return 0;
928 default:
929 return -EINVAL;
933 static void cpu_init_hyp_mode(void *dummy)
935 phys_addr_t boot_pgd_ptr;
936 phys_addr_t pgd_ptr;
937 unsigned long hyp_stack_ptr;
938 unsigned long stack_page;
939 unsigned long vector_ptr;
941 /* Switch from the HYP stub to our own HYP init vector */
942 __hyp_set_vectors(kvm_get_idmap_vector());
944 boot_pgd_ptr = kvm_mmu_get_boot_httbr();
945 pgd_ptr = kvm_mmu_get_httbr();
946 stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
947 hyp_stack_ptr = stack_page + PAGE_SIZE;
948 vector_ptr = (unsigned long)__kvm_hyp_vector;
950 __cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr);
952 kvm_arm_init_debug();
955 static int hyp_init_cpu_notify(struct notifier_block *self,
956 unsigned long action, void *cpu)
958 switch (action) {
959 case CPU_STARTING:
960 case CPU_STARTING_FROZEN:
961 if (__hyp_get_vectors() == hyp_default_vectors)
962 cpu_init_hyp_mode(NULL);
963 break;
966 return NOTIFY_OK;
969 static struct notifier_block hyp_init_cpu_nb = {
970 .notifier_call = hyp_init_cpu_notify,
973 #ifdef CONFIG_CPU_PM
974 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
975 unsigned long cmd,
976 void *v)
978 if (cmd == CPU_PM_EXIT &&
979 __hyp_get_vectors() == hyp_default_vectors) {
980 cpu_init_hyp_mode(NULL);
981 return NOTIFY_OK;
984 return NOTIFY_DONE;
987 static struct notifier_block hyp_init_cpu_pm_nb = {
988 .notifier_call = hyp_init_cpu_pm_notifier,
991 static void __init hyp_cpu_pm_init(void)
993 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
995 #else
996 static inline void hyp_cpu_pm_init(void)
999 #endif
1002 * Inits Hyp-mode on all online CPUs
1004 static int init_hyp_mode(void)
1006 int cpu;
1007 int err = 0;
1010 * Allocate Hyp PGD and setup Hyp identity mapping
1012 err = kvm_mmu_init();
1013 if (err)
1014 goto out_err;
1017 * It is probably enough to obtain the default on one
1018 * CPU. It's unlikely to be different on the others.
1020 hyp_default_vectors = __hyp_get_vectors();
1023 * Allocate stack pages for Hypervisor-mode
1025 for_each_possible_cpu(cpu) {
1026 unsigned long stack_page;
1028 stack_page = __get_free_page(GFP_KERNEL);
1029 if (!stack_page) {
1030 err = -ENOMEM;
1031 goto out_free_stack_pages;
1034 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1038 * Map the Hyp-code called directly from the host
1040 err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end);
1041 if (err) {
1042 kvm_err("Cannot map world-switch code\n");
1043 goto out_free_mappings;
1047 * Map the Hyp stack pages
1049 for_each_possible_cpu(cpu) {
1050 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1051 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
1053 if (err) {
1054 kvm_err("Cannot map hyp stack\n");
1055 goto out_free_mappings;
1060 * Map the host CPU structures
1062 kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
1063 if (!kvm_host_cpu_state) {
1064 err = -ENOMEM;
1065 kvm_err("Cannot allocate host CPU state\n");
1066 goto out_free_mappings;
1069 for_each_possible_cpu(cpu) {
1070 kvm_cpu_context_t *cpu_ctxt;
1072 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1073 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1);
1075 if (err) {
1076 kvm_err("Cannot map host CPU state: %d\n", err);
1077 goto out_free_context;
1082 * Execute the init code on each CPU.
1084 on_each_cpu(cpu_init_hyp_mode, NULL, 1);
1087 * Init HYP view of VGIC
1089 err = kvm_vgic_hyp_init();
1090 if (err)
1091 goto out_free_context;
1094 * Init HYP architected timer support
1096 err = kvm_timer_hyp_init();
1097 if (err)
1098 goto out_free_context;
1100 #ifndef CONFIG_HOTPLUG_CPU
1101 free_boot_hyp_pgd();
1102 #endif
1104 kvm_perf_init();
1106 kvm_info("Hyp mode initialized successfully\n");
1108 return 0;
1109 out_free_context:
1110 free_percpu(kvm_host_cpu_state);
1111 out_free_mappings:
1112 free_hyp_pgds();
1113 out_free_stack_pages:
1114 for_each_possible_cpu(cpu)
1115 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1116 out_err:
1117 kvm_err("error initializing Hyp mode: %d\n", err);
1118 return err;
1121 static void check_kvm_target_cpu(void *ret)
1123 *(int *)ret = kvm_target_cpu();
1126 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1128 struct kvm_vcpu *vcpu;
1129 int i;
1131 mpidr &= MPIDR_HWID_BITMASK;
1132 kvm_for_each_vcpu(i, vcpu, kvm) {
1133 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1134 return vcpu;
1136 return NULL;
1140 * Initialize Hyp-mode and memory mappings on all CPUs.
1142 int kvm_arch_init(void *opaque)
1144 int err;
1145 int ret, cpu;
1147 if (!is_hyp_mode_available()) {
1148 kvm_err("HYP mode not available\n");
1149 return -ENODEV;
1152 for_each_online_cpu(cpu) {
1153 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1154 if (ret < 0) {
1155 kvm_err("Error, CPU %d not supported!\n", cpu);
1156 return -ENODEV;
1160 cpu_notifier_register_begin();
1162 err = init_hyp_mode();
1163 if (err)
1164 goto out_err;
1166 err = __register_cpu_notifier(&hyp_init_cpu_nb);
1167 if (err) {
1168 kvm_err("Cannot register HYP init CPU notifier (%d)\n", err);
1169 goto out_err;
1172 cpu_notifier_register_done();
1174 hyp_cpu_pm_init();
1176 kvm_coproc_table_init();
1177 return 0;
1178 out_err:
1179 cpu_notifier_register_done();
1180 return err;
1183 /* NOP: Compiling as a module not supported */
1184 void kvm_arch_exit(void)
1186 kvm_perf_teardown();
1189 static int arm_init(void)
1191 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1192 return rc;
1195 module_init(arm_init);